code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" # # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def _snake_case ( *_snake_case : Dict ): with open(_snake_case , '''r''' ) as fh: fcntl.flock(_snake_case , fcntl.LOCK_EX ) try: print(*_snake_case ) finally: fcntl.flock(_snake_case , fcntl.LOCK_UN ) snake_case__ : str = int(os.environ['''LOCAL_RANK''']) torch.cuda.set_device(local_rank) snake_case__ : int = torch.device('''cuda''', local_rank) snake_case__ : Union[str, Any] = socket.gethostname() snake_case__ : str = f"""[{hostname}-{local_rank}]""" try: # test distributed dist.init_process_group('''nccl''') dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank snake_case__ : List[Any] = dist.get_rank() snake_case__ : List[str] = dist.get_world_size() printflock(f"""{gpu} is OK (global rank: {rank}/{world_size})""") dist.barrier() if rank == 0: printflock(f"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""") except Exception: printflock(f"""{gpu} is broken""") raise
60
'''simple docstring''' from numpy import exp, pi, sqrt def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : float = 1.0 ) -> int: return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
185
0
from __future__ import annotations from functools import lru_cache from math import ceil SCREAMING_SNAKE_CASE : List[str] = 100 SCREAMING_SNAKE_CASE : Any = set(range(3, NUM_PRIMES, 2)) primes.add(2) SCREAMING_SNAKE_CASE : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_0_0 ) def UpperCamelCase ( _a ) -> set[int]: '''simple docstring''' if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} lowercase_ :set[int] = set() lowercase_ :int lowercase_ :int for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def UpperCamelCase ( _a = 5_0_0_0 ) -> int | None: '''simple docstring''' for number_to_partition in range(1 , _a ): if len(partition(_a ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(f"{solution() = }")
252
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase ( self ): lowercase_ :List[Any] = 1 lowercase_ :List[Any] = 3 lowercase_ :str = (32, 32) lowercase_ :Tuple = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCamelCase_ ) return image @property def UpperCamelCase ( self ): torch.manual_seed(0 ) lowercase_ :Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) return model @property def UpperCamelCase ( self ): torch.manual_seed(0 ) lowercase_ :str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def UpperCamelCase ( self ): torch.manual_seed(0 ) lowercase_ :int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(UpperCamelCase_ ) @property def UpperCamelCase ( self ): def extract(*UpperCamelCase_ , **UpperCamelCase_ ): class UpperCamelCase : '''simple docstring''' def __init__( self ): lowercase_ :Dict = torch.ones([0] ) def UpperCamelCase ( self , UpperCamelCase_ ): self.pixel_values.to(UpperCamelCase_ ) return self return Out() return extract def UpperCamelCase ( self ): lowercase_ :Optional[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase_ :List[Any] = self.dummy_cond_unet lowercase_ :int = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=UpperCamelCase_ , set_alpha_to_one=UpperCamelCase_ , ) lowercase_ :Any = self.dummy_vae lowercase_ :Dict = self.dummy_text_encoder lowercase_ :str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # make sure here that pndm scheduler skips prk lowercase_ :Optional[Any] = StableDiffusionPipeline( unet=UpperCamelCase_ , scheduler=UpperCamelCase_ , vae=UpperCamelCase_ , text_encoder=UpperCamelCase_ , tokenizer=UpperCamelCase_ , safety_checker=UpperCamelCase_ , feature_extractor=self.dummy_extractor , ) lowercase_ :Union[str, Any] = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase_ :str = '''A painting of a squirrel eating a burger''' lowercase_ :int = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) lowercase_ :Optional[Any] = sd_pipe([prompt] , generator=UpperCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' ) lowercase_ :Any = output.images lowercase_ :List[Any] = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) lowercase_ :List[Any] = sd_pipe( [prompt] , generator=UpperCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , return_dict=UpperCamelCase_ , )[0] lowercase_ :Dict = image[0, -3:, -3:, -1] lowercase_ :List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase_ :List[Any] = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase ( self ): lowercase_ :List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase_ :List[str] = self.dummy_cond_unet lowercase_ :Optional[Any] = PNDMScheduler(skip_prk_steps=UpperCamelCase_ ) lowercase_ :Optional[Any] = self.dummy_vae lowercase_ :List[Any] = self.dummy_text_encoder lowercase_ :str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # make sure here that pndm scheduler skips prk lowercase_ :Tuple = StableDiffusionPipeline( unet=UpperCamelCase_ , scheduler=UpperCamelCase_ , vae=UpperCamelCase_ , text_encoder=UpperCamelCase_ , tokenizer=UpperCamelCase_ , safety_checker=UpperCamelCase_ , feature_extractor=self.dummy_extractor , ) lowercase_ :Optional[int] = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase_ :str = '''A painting of a squirrel eating a burger''' lowercase_ :Any = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) lowercase_ :Optional[int] = sd_pipe([prompt] , generator=UpperCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' ) lowercase_ :Optional[Any] = output.images lowercase_ :List[Any] = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) lowercase_ :List[str] = sd_pipe( [prompt] , generator=UpperCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , return_dict=UpperCamelCase_ , )[0] lowercase_ :Dict = image[0, -3:, -3:, -1] lowercase_ :str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase_ :Dict = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase ( self ): lowercase_ :List[str] = StableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-lms-pipe''' , safety_checker=UpperCamelCase_ ) assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) assert isinstance(pipe.scheduler , UpperCamelCase_ ) assert pipe.safety_checker is None lowercase_ :Optional[int] = pipe('''example prompt''' , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(UpperCamelCase_ ) lowercase_ :Union[str, Any] = StableDiffusionPipeline.from_pretrained(UpperCamelCase_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None lowercase_ :List[Any] = pipe('''example prompt''' , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def UpperCamelCase ( self ): lowercase_ :Optional[Any] = self.dummy_cond_unet lowercase_ :Any = PNDMScheduler(skip_prk_steps=UpperCamelCase_ ) lowercase_ :int = self.dummy_vae lowercase_ :Tuple = self.dummy_text_encoder lowercase_ :Dict = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # put models in fp16 lowercase_ :Optional[int] = unet.half() lowercase_ :Union[str, Any] = vae.half() lowercase_ :Optional[int] = bert.half() # make sure here that pndm scheduler skips prk lowercase_ :Any = StableDiffusionPipeline( unet=UpperCamelCase_ , scheduler=UpperCamelCase_ , vae=UpperCamelCase_ , text_encoder=UpperCamelCase_ , tokenizer=UpperCamelCase_ , safety_checker=UpperCamelCase_ , feature_extractor=self.dummy_extractor , ) lowercase_ :Dict = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase_ :List[str] = '''A painting of a squirrel eating a burger''' lowercase_ :List[Any] = sd_pipe([prompt] , num_inference_steps=2 , output_type='''np''' ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self ): lowercase_ :Optional[Any] = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' , safety_checker=UpperCamelCase_ ) lowercase_ :Dict = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowercase_ :List[Any] = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase_ :List[Any] = ( '''portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle''' ''' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with''' ''' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and''' ''' children from bahnhof zoo, detailed ''' ) lowercase_ :str = 40_0366_0346 lowercase_ :Optional[Any] = 7 # without safety guidance (sld_guidance_scale = 0) lowercase_ :Tuple = torch.manual_seed(UpperCamelCase_ ) lowercase_ :int = sd_pipe( [prompt] , generator=UpperCamelCase_ , guidance_scale=UpperCamelCase_ , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , ) lowercase_ :List[str] = output.images lowercase_ :int = image[0, -3:, -3:, -1] lowercase_ :str = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) lowercase_ :Dict = torch.manual_seed(UpperCamelCase_ ) lowercase_ :Any = sd_pipe( [prompt] , generator=UpperCamelCase_ , guidance_scale=UpperCamelCase_ , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowercase_ :int = output.images lowercase_ :Union[str, Any] = image[0, -3:, -3:, -1] lowercase_ :Optional[int] = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase ( self ): lowercase_ :Tuple = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' , safety_checker=UpperCamelCase_ ) lowercase_ :List[Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowercase_ :Dict = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase_ :Optional[int] = '''padme amidala taking a bath artwork, safe for work, no nudity''' lowercase_ :Any = 27_3497_1755 lowercase_ :str = 7 lowercase_ :Optional[Any] = torch.manual_seed(UpperCamelCase_ ) lowercase_ :Tuple = sd_pipe( [prompt] , generator=UpperCamelCase_ , guidance_scale=UpperCamelCase_ , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , ) lowercase_ :Optional[Any] = output.images lowercase_ :str = image[0, -3:, -3:, -1] lowercase_ :int = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 lowercase_ :Any = torch.manual_seed(UpperCamelCase_ ) lowercase_ :List[Any] = sd_pipe( [prompt] , generator=UpperCamelCase_ , guidance_scale=UpperCamelCase_ , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowercase_ :List[str] = output.images lowercase_ :Optional[Any] = image[0, -3:, -3:, -1] lowercase_ :Optional[Any] = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase ( self ): lowercase_ :Tuple = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' ) lowercase_ :Tuple = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase_ :List[str] = ( '''the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.''' ''' leyendecker''' ) lowercase_ :Any = 10_4435_5234 lowercase_ :Union[str, Any] = 12 lowercase_ :str = torch.manual_seed(UpperCamelCase_ ) lowercase_ :str = sd_pipe( [prompt] , generator=UpperCamelCase_ , guidance_scale=UpperCamelCase_ , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , ) lowercase_ :Optional[int] = output.images lowercase_ :str = image[0, -3:, -3:, -1] lowercase_ :Optional[int] = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 lowercase_ :Dict = torch.manual_seed(UpperCamelCase_ ) lowercase_ :Optional[Any] = sd_pipe( [prompt] , generator=UpperCamelCase_ , guidance_scale=UpperCamelCase_ , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowercase_ :Optional[Any] = output.images lowercase_ :List[Any] = image[0, -3:, -3:, -1] lowercase_ :Any = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
252
1
from typing import Any def lowerCAmelCase_ ( __A ) -> list[Any]: '''simple docstring''' if not input_list: return [] UpperCAmelCase__ = [input_list.count(__A ) for value in input_list] UpperCAmelCase__ = max(__A ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(__A ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
65
'''simple docstring''' import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class __UpperCAmelCase ( _lowerCamelCase ): @require_torch def lowerCamelCase ( self ): """simple docstring""" _snake_case = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' _snake_case = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' _snake_case = '\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache _snake_case = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(lowerCAmelCase_ ) BertModel.from_pretrained(lowerCAmelCase_ ) BertTokenizer.from_pretrained(lowerCAmelCase_ ) pipeline(task='fill-mask' , model=lowerCAmelCase_ ) # baseline - just load from_pretrained with normal network _snake_case = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed _snake_case = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _snake_case = '1' _snake_case = subprocess.run(lowerCAmelCase_ , env=lowerCAmelCase_ , check=lowerCAmelCase_ , capture_output=lowerCAmelCase_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def lowerCamelCase ( self ): """simple docstring""" _snake_case = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' _snake_case = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' _snake_case = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache _snake_case = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(lowerCAmelCase_ ) BertModel.from_pretrained(lowerCAmelCase_ ) BertTokenizer.from_pretrained(lowerCAmelCase_ ) pipeline(task='fill-mask' , model=lowerCAmelCase_ ) # baseline - just load from_pretrained with normal network _snake_case = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed _snake_case = self.get_env() _snake_case = subprocess.run(lowerCAmelCase_ , env=lowerCAmelCase_ , check=lowerCAmelCase_ , capture_output=lowerCAmelCase_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def lowerCamelCase ( self ): """simple docstring""" _snake_case = '\nfrom transformers import BertConfig, BertModel, BertTokenizer\n ' _snake_case = '\nmname = "hf-internal-testing/tiny-random-bert-sharded"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint("success")\n ' _snake_case = '\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")\nsocket.socket = offline_socket\n ' # baseline - just load from_pretrained with normal network _snake_case = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed _snake_case = self.get_env() _snake_case = subprocess.run(lowerCAmelCase_ , env=lowerCAmelCase_ , check=lowerCAmelCase_ , capture_output=lowerCAmelCase_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) # next emulate no network _snake_case = [sys.executable, '-c', '\n'.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _snake_case = '1' _snake_case = subprocess.run(lowerCAmelCase_ , env=lowerCAmelCase_ , check=lowerCAmelCase_ , capture_output=lowerCAmelCase_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def lowerCamelCase ( self ): """simple docstring""" _snake_case = '\nfrom transformers import pipeline\n ' _snake_case = '\nmname = "hf-internal-testing/tiny-random-bert"\npipe = pipeline(model=mname)\n ' _snake_case = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")\nsocket.socket = offline_socket\n ' _snake_case = self.get_env() _snake_case = '1' _snake_case = [sys.executable, '-c', '\n'.join([load, mock, run] )] _snake_case = subprocess.run(lowerCAmelCase_ , env=lowerCAmelCase_ , check=lowerCAmelCase_ , capture_output=lowerCAmelCase_ ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( 'You cannot infer task automatically within `pipeline` when using offline mode' , result.stderr.decode().replace('\n' , '' ) , ) @require_torch def lowerCamelCase ( self ): """simple docstring""" _snake_case = '\nfrom transformers import AutoModel\n ' _snake_case = '\nmname = "hf-internal-testing/test_dynamic_model"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint("success")\n ' # baseline - just load from_pretrained with normal network _snake_case = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed _snake_case = self.get_env() _snake_case = subprocess.run(lowerCAmelCase_ , env=lowerCAmelCase_ , check=lowerCAmelCase_ , capture_output=lowerCAmelCase_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _snake_case = '1' _snake_case = subprocess.run(lowerCAmelCase_ , env=lowerCAmelCase_ , check=lowerCAmelCase_ , capture_output=lowerCAmelCase_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() )
42
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : str =logging.get_logger(__name__) A_ : List[str] ={ """uw-madison/mra-base-512-4""": """https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json""", } class __a ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = "mra" def __init__( self , a__=5_02_65 , a__=7_68 , a__=12 , a__=12 , a__=30_72 , a__="gelu" , a__=0.1 , a__=0.1 , a__=5_12 , a__=1 , a__=0.02 , a__=1e-5 , a__="absolute" , a__=4 , a__="full" , a__=0 , a__=0 , a__=1 , a__=0 , a__=2 , **a__ , ): super().__init__(pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , **a__ ) _lowerCamelCase = vocab_size _lowerCamelCase = max_position_embeddings _lowerCamelCase = hidden_size _lowerCamelCase = num_hidden_layers _lowerCamelCase = num_attention_heads _lowerCamelCase = intermediate_size _lowerCamelCase = hidden_act _lowerCamelCase = hidden_dropout_prob _lowerCamelCase = attention_probs_dropout_prob _lowerCamelCase = initializer_range _lowerCamelCase = type_vocab_size _lowerCamelCase = layer_norm_eps _lowerCamelCase = position_embedding_type _lowerCamelCase = block_per_row _lowerCamelCase = approx_mode _lowerCamelCase = initial_prior_first_n_blocks _lowerCamelCase = initial_prior_diagonal_n_blocks
80
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING A_ : int =logging.get_logger(__name__) A_ : Tuple ={ """ut/deta""": """https://huggingface.co/ut/deta/resolve/main/config.json""", } class __a ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : int = "deta" SCREAMING_SNAKE_CASE__ : Union[str, Any] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , a__=None , a__=9_00 , a__=20_48 , a__=6 , a__=20_48 , a__=8 , a__=6 , a__=10_24 , a__=8 , a__=0.0 , a__=True , a__="relu" , a__=2_56 , a__=0.1 , a__=0.0 , a__=0.0 , a__=0.02 , a__=1.0 , a__=True , a__=False , a__="sine" , a__=5 , a__=4 , a__=4 , a__=True , a__=3_00 , a__=True , a__=True , a__=1 , a__=5 , a__=2 , a__=1 , a__=1 , a__=5 , a__=2 , a__=0.1 , a__=0.25 , **a__ , ): if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) _lowerCamelCase = CONFIG_MAPPING['resnet'](out_features=['stage2', 'stage3', 'stage4'] ) else: if isinstance(a__ , a__ ): _lowerCamelCase = backbone_config.pop('model_type' ) _lowerCamelCase = CONFIG_MAPPING[backbone_model_type] _lowerCamelCase = config_class.from_dict(a__ ) _lowerCamelCase = backbone_config _lowerCamelCase = num_queries _lowerCamelCase = max_position_embeddings _lowerCamelCase = d_model _lowerCamelCase = encoder_ffn_dim _lowerCamelCase = encoder_layers _lowerCamelCase = encoder_attention_heads _lowerCamelCase = decoder_ffn_dim _lowerCamelCase = decoder_layers _lowerCamelCase = decoder_attention_heads _lowerCamelCase = dropout _lowerCamelCase = attention_dropout _lowerCamelCase = activation_dropout _lowerCamelCase = activation_function _lowerCamelCase = init_std _lowerCamelCase = init_xavier_std _lowerCamelCase = encoder_layerdrop _lowerCamelCase = auxiliary_loss _lowerCamelCase = position_embedding_type # deformable attributes _lowerCamelCase = num_feature_levels _lowerCamelCase = encoder_n_points _lowerCamelCase = decoder_n_points _lowerCamelCase = two_stage _lowerCamelCase = two_stage_num_proposals _lowerCamelCase = with_box_refine _lowerCamelCase = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher _lowerCamelCase = class_cost _lowerCamelCase = bbox_cost _lowerCamelCase = giou_cost # Loss coefficients _lowerCamelCase = mask_loss_coefficient _lowerCamelCase = dice_loss_coefficient _lowerCamelCase = bbox_loss_coefficient _lowerCamelCase = giou_loss_coefficient _lowerCamelCase = eos_coefficient _lowerCamelCase = focal_alpha super().__init__(is_encoder_decoder=a__ , **a__ ) @property def snake_case_ ( self ): return self.encoder_attention_heads @property def snake_case_ ( self ): return self.d_model def snake_case_ ( self ): _lowerCamelCase = copy.deepcopy(self.__dict__ ) _lowerCamelCase = self.backbone_config.to_dict() _lowerCamelCase = self.__class__.model_type return output
80
1
from __future__ import annotations import time import numpy as np SCREAMING_SNAKE_CASE : Optional[Any] = [8, 5, 9, 7] SCREAMING_SNAKE_CASE : int = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] SCREAMING_SNAKE_CASE : Union[str, Any] = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class _lowerCamelCase: def __init__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, ) -> None: """simple docstring""" _lowercase : List[str] = claim_vector _lowercase : int = allocated_resources_table _lowercase : Dict = maximum_claim_table def UpperCamelCase ( self) -> list[int]: """simple docstring""" return [ sum(p_item[i] for p_item in self.__allocated_resources_table) for i in range(len(self.__allocated_resources_table[0])) ] def UpperCamelCase ( self) -> list[int]: """simple docstring""" return np.array(self.__claim_vector) - np.array( self.__processes_resource_summation()) def UpperCamelCase ( self) -> list[list[int]]: """simple docstring""" return [ list(np.array(self.__maximum_claim_table[i]) - np.array(lowerCamelCase)) for i, allocated_resource in enumerate(self.__allocated_resources_table) ] def UpperCamelCase ( self) -> dict[int, list[int]]: """simple docstring""" return {self.__need().index(lowerCamelCase): i for i in self.__need()} def UpperCamelCase ( self, **lowerCamelCase) -> None: """simple docstring""" _lowercase : Union[str, Any] = self.__need() _lowercase : List[str] = self.__allocated_resources_table _lowercase : List[Any] = self.__available_resources() _lowercase : Union[str, Any] = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('_' * 50 + '\n') while need_list: _lowercase : int = False for each_need in need_list: _lowercase : Dict = True for index, need in enumerate(lowerCamelCase): if need > available_resources[index]: _lowercase : Tuple = False break if execution: _lowercase : Tuple = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: _lowercase : Tuple = original_need_index print(F'''Process {process_number + 1} is executing.''') # remove the process run from stack need_list.remove(lowerCamelCase) # update available/freed resources stack _lowercase : Optional[Any] = np.array(lowerCamelCase) + np.array( alloc_resources_table[process_number]) print( 'Updated available resource stack for processes: ' + ' '.join([str(lowerCamelCase) for x in available_resources])) break if safe: print('The process is in a safe state.\n') else: print('System in unsafe state. Aborting...\n') break def UpperCamelCase ( self) -> List[Any]: """simple docstring""" print(' ' * 9 + 'Allocated Resource Table') for item in self.__allocated_resources_table: print( F'''P{self.__allocated_resources_table.index(lowerCamelCase) + 1}''' + ' '.join(F'''{it:>8}''' for it in item) + '\n') print(' ' * 9 + 'System Resource Table') for item in self.__maximum_claim_table: print( F'''P{self.__maximum_claim_table.index(lowerCamelCase) + 1}''' + ' '.join(F'''{it:>8}''' for it in item) + '\n') print( 'Current Usage by Active Processes: ' + ' '.join(str(lowerCamelCase) for x in self.__claim_vector)) print( 'Initial Available Resources: ' + ' '.join(str(lowerCamelCase) for x in self.__available_resources())) time.sleep(1) if __name__ == "__main__": import doctest doctest.testmod()
21
import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class lowerCAmelCase__ ( __lowercase ): def __init__( self : int ) -> Optional[int]: __lowerCamelCase = [] def __A ( self : Any , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str , **SCREAMING_SNAKE_CASE__ : List[Any] ) -> Tuple: self.events.append('''on_init_end''' ) def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Any: self.events.append('''on_train_begin''' ) def __A ( self : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : int ) -> Any: self.events.append('''on_train_end''' ) def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , **SCREAMING_SNAKE_CASE__ : List[Any] ) -> int: self.events.append('''on_epoch_begin''' ) def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: self.events.append('''on_epoch_end''' ) def __A ( self : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : str ) -> List[Any]: self.events.append('''on_step_begin''' ) def __A ( self : Any , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Any , **SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Tuple: self.events.append('''on_step_end''' ) def __A ( self : int , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : List[Any] ) -> Union[str, Any]: self.events.append('''on_evaluate''' ) def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str , **SCREAMING_SNAKE_CASE__ : str ) -> str: self.events.append('''on_predict''' ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: self.events.append('''on_save''' ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : List[str] ) -> List[str]: self.events.append('''on_log''' ) def __A ( self : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] , **SCREAMING_SNAKE_CASE__ : Optional[int] ) -> str: self.events.append('''on_prediction_step''' ) @require_torch class lowerCAmelCase__ ( unittest.TestCase ): def __A ( self : Union[str, Any] ) -> Optional[Any]: __lowerCamelCase = tempfile.mkdtemp() def __A ( self : int ) -> List[str]: shutil.rmtree(self.output_dir ) def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[Any]=0 , SCREAMING_SNAKE_CASE__ : Any=0 , SCREAMING_SNAKE_CASE__ : List[str]=64 , SCREAMING_SNAKE_CASE__ : Optional[int]=64 , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Optional[int]=False , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Union[str, Any]: # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. __lowerCamelCase = RegressionDataset(length=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = RegressionDataset(length=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = RegressionModelConfig(a=SCREAMING_SNAKE_CASE__ , b=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = RegressionPreTrainedModel(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = TrainingArguments(self.output_dir , disable_tqdm=SCREAMING_SNAKE_CASE__ , report_to=[] , **SCREAMING_SNAKE_CASE__ ) return Trainer( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , train_dataset=SCREAMING_SNAKE_CASE__ , eval_dataset=SCREAMING_SNAKE_CASE__ , callbacks=SCREAMING_SNAKE_CASE__ , ) def __A ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str ) -> Optional[int]: self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) ) # Order doesn't matter __lowerCamelCase = sorted(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : cb.__name__ if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else cb.__class__.__name__ ) __lowerCamelCase = sorted(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : cb.__name__ if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else cb.__class__.__name__ ) for cba, cba in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): self.assertEqual(SCREAMING_SNAKE_CASE__ , cba.__class__ ) elif not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): self.assertEqual(cba.__class__ , SCREAMING_SNAKE_CASE__ ) else: self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Tuple: __lowerCamelCase = ['''on_init_end''', '''on_train_begin'''] __lowerCamelCase = 0 __lowerCamelCase = len(trainer.get_eval_dataloader() ) __lowerCamelCase = ['''on_prediction_step'''] * len(trainer.get_eval_dataloader() ) + ['''on_log''', '''on_evaluate'''] for _ in range(trainer.state.num_train_epochs ): expected_events.append('''on_epoch_begin''' ) for _ in range(SCREAMING_SNAKE_CASE__ ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('''on_log''' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('''on_save''' ) expected_events.append('''on_epoch_end''' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def __A ( self : Union[str, Any] ) -> int: __lowerCamelCase = self.get_trainer() __lowerCamelCase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE__ ) # Callbacks passed at init are added to the default callbacks __lowerCamelCase = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(SCREAMING_SNAKE_CASE__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE__ ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback __lowerCamelCase = self.get_trainer(disable_tqdm=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE__ ) def __A ( self : List[Any] ) -> str: __lowerCamelCase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] __lowerCamelCase = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(SCREAMING_SNAKE_CASE__ ) expected_callbacks.remove(SCREAMING_SNAKE_CASE__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.get_trainer() __lowerCamelCase = trainer.pop_callback(SCREAMING_SNAKE_CASE__ ) self.assertEqual(cb.__class__ , SCREAMING_SNAKE_CASE__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE__ ) trainer.add_callback(SCREAMING_SNAKE_CASE__ ) expected_callbacks.insert(0 , SCREAMING_SNAKE_CASE__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE__ ) # We can also add, pop, or remove by instance __lowerCamelCase = self.get_trainer() __lowerCamelCase = trainer.callback_handler.callbacks[0] trainer.remove_callback(SCREAMING_SNAKE_CASE__ ) expected_callbacks.remove(SCREAMING_SNAKE_CASE__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.get_trainer() __lowerCamelCase = trainer.callback_handler.callbacks[0] __lowerCamelCase = trainer.pop_callback(SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE__ ) trainer.add_callback(SCREAMING_SNAKE_CASE__ ) expected_callbacks.insert(0 , SCREAMING_SNAKE_CASE__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE__ ) def __A ( self : Union[str, Any] ) -> Any: import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='''ignore''' , category=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() __lowerCamelCase = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE__ , self.get_expected_events(SCREAMING_SNAKE_CASE__ ) ) # Independent log/save/eval __lowerCamelCase = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() __lowerCamelCase = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE__ , self.get_expected_events(SCREAMING_SNAKE_CASE__ ) ) __lowerCamelCase = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() __lowerCamelCase = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE__ , self.get_expected_events(SCREAMING_SNAKE_CASE__ ) ) __lowerCamelCase = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy='''steps''' ) trainer.train() __lowerCamelCase = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE__ , self.get_expected_events(SCREAMING_SNAKE_CASE__ ) ) __lowerCamelCase = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy='''epoch''' ) trainer.train() __lowerCamelCase = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE__ , self.get_expected_events(SCREAMING_SNAKE_CASE__ ) ) # A bit of everything __lowerCamelCase = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy='''steps''' , ) trainer.train() __lowerCamelCase = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE__ , self.get_expected_events(SCREAMING_SNAKE_CASE__ ) ) # warning should be emitted for duplicated callbacks with patch('''transformers.trainer_callback.logger.warning''' ) as warn_mock: __lowerCamelCase = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(SCREAMING_SNAKE_CASE__ ) in warn_mock.call_args[0][0]
270
0
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class __a (__lowercase , __lowercase , unittest.TestCase): '''simple docstring''' _SCREAMING_SNAKE_CASE :Optional[Any] = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) _SCREAMING_SNAKE_CASE :Tuple = ( { "feature-extraction": TFMobileBertModel, "fill-mask": TFMobileBertForMaskedLM, "question-answering": TFMobileBertForQuestionAnswering, "text-classification": TFMobileBertForSequenceClassification, "token-classification": TFMobileBertForTokenClassification, "zero-shot": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) _SCREAMING_SNAKE_CASE :int = False _SCREAMING_SNAKE_CASE :Dict = False def _a ( self , _a , _a , _a=False ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = super()._prepare_for_class(snake_case_ , snake_case_ , return_labels=snake_case_ ) if return_labels: if model_class in get_values(snake_case_ ): SCREAMING_SNAKE_CASE__ : List[str] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class __a (__lowercase): '''simple docstring''' def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=99 , _a=32 , _a=32 , _a=2 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=3 , _a=4 , _a=None , ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = parent SCREAMING_SNAKE_CASE__ : Optional[int] = batch_size SCREAMING_SNAKE_CASE__ : int = seq_length SCREAMING_SNAKE_CASE__ : Optional[int] = is_training SCREAMING_SNAKE_CASE__ : Any = use_input_mask SCREAMING_SNAKE_CASE__ : int = use_token_type_ids SCREAMING_SNAKE_CASE__ : Union[str, Any] = use_labels SCREAMING_SNAKE_CASE__ : int = vocab_size SCREAMING_SNAKE_CASE__ : int = hidden_size SCREAMING_SNAKE_CASE__ : Any = num_hidden_layers SCREAMING_SNAKE_CASE__ : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE__ : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE__ : Optional[int] = hidden_act SCREAMING_SNAKE_CASE__ : Optional[int] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : List[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE__ : str = type_vocab_size SCREAMING_SNAKE_CASE__ : List[str] = type_sequence_label_size SCREAMING_SNAKE_CASE__ : List[str] = initializer_range SCREAMING_SNAKE_CASE__ : List[Any] = num_labels SCREAMING_SNAKE_CASE__ : List[str] = num_choices SCREAMING_SNAKE_CASE__ : Any = scope SCREAMING_SNAKE_CASE__ : str = embedding_size def _a ( self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : int = None if self.use_input_mask: SCREAMING_SNAKE_CASE__ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ : str = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE__ : List[Any] = None SCREAMING_SNAKE_CASE__ : Optional[Any] = None SCREAMING_SNAKE_CASE__ : Union[str, Any] = None if self.use_labels: SCREAMING_SNAKE_CASE__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ : int = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE__ : Dict = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self , _a , _a , _a , _a , _a , _a , _a ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = TFMobileBertModel(config=snake_case_ ) SCREAMING_SNAKE_CASE__ : int = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} SCREAMING_SNAKE_CASE__ : Tuple = model(snake_case_ ) SCREAMING_SNAKE_CASE__ : Any = [input_ids, input_mask] SCREAMING_SNAKE_CASE__ : Tuple = model(snake_case_ ) SCREAMING_SNAKE_CASE__ : List[str] = model(snake_case_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _a ( self , _a , _a , _a , _a , _a , _a , _a ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = TFMobileBertForMaskedLM(config=snake_case_ ) SCREAMING_SNAKE_CASE__ : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} SCREAMING_SNAKE_CASE__ : str = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , _a , _a , _a , _a , _a , _a , _a ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = TFMobileBertForNextSentencePrediction(config=snake_case_ ) SCREAMING_SNAKE_CASE__ : Tuple = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} SCREAMING_SNAKE_CASE__ : List[Any] = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _a ( self , _a , _a , _a , _a , _a , _a , _a ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = TFMobileBertForPreTraining(config=snake_case_ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} SCREAMING_SNAKE_CASE__ : int = model(snake_case_ ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _a ( self , _a , _a , _a , _a , _a , _a , _a ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.num_labels SCREAMING_SNAKE_CASE__ : Union[str, Any] = TFMobileBertForSequenceClassification(config=snake_case_ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} SCREAMING_SNAKE_CASE__ : List[Any] = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self , _a , _a , _a , _a , _a , _a , _a ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.num_choices SCREAMING_SNAKE_CASE__ : Tuple = TFMobileBertForMultipleChoice(config=snake_case_ ) SCREAMING_SNAKE_CASE__ : Optional[int] = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE__ : Dict = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE__ : str = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } SCREAMING_SNAKE_CASE__ : Tuple = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self , _a , _a , _a , _a , _a , _a , _a ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.num_labels SCREAMING_SNAKE_CASE__ : Any = TFMobileBertForTokenClassification(config=snake_case_ ) SCREAMING_SNAKE_CASE__ : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self , _a , _a , _a , _a , _a , _a , _a ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = TFMobileBertForQuestionAnswering(config=snake_case_ ) SCREAMING_SNAKE_CASE__ : str = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} SCREAMING_SNAKE_CASE__ : Dict = model(snake_case_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.prepare_config_and_inputs() ( SCREAMING_SNAKE_CASE__ ) : List[str] = config_and_inputs SCREAMING_SNAKE_CASE__ : Any = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict def _a ( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = TFMobileBertModelTest.TFMobileBertModelTester(self ) SCREAMING_SNAKE_CASE__ : List[Any] = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def _a ( self ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def _a ( self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*snake_case_ ) def _a ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*snake_case_ ) def _a ( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*snake_case_ ) def _a ( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*snake_case_ ) def _a ( self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*snake_case_ ) def _a ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*snake_case_ ) def _a ( self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*snake_case_ ) def _a ( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*snake_case_ ) @slow def _a ( self ) -> Optional[Any]: """simple docstring""" for model_name in ["google/mobilebert-uncased"]: SCREAMING_SNAKE_CASE__ : Optional[int] = TFMobileBertModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @require_tf class __a (unittest.TestCase): '''simple docstring''' @slow def _a ( self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = TFMobileBertForPreTraining.from_pretrained("""google/mobilebert-uncased""" ) SCREAMING_SNAKE_CASE__ : int = tf.constant([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE__ : str = model(snake_case_ )[0] SCREAMING_SNAKE_CASE__ : Optional[int] = [1, 6, 30_522] self.assertEqual(output.shape , snake_case_ ) SCREAMING_SNAKE_CASE__ : str = tf.constant( [ [ [-4.5_919_547, -9.248_295, -9.645_256], [-6.7_306_175, -6.440_284, -6.6_052_837], [-7.2_743_506, -6.7_847_915, -6.024_673], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , snake_case_ , atol=1E-4 )
351
"""simple docstring""" import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class __a (tf.keras.optimizers.schedules.LearningRateSchedule): '''simple docstring''' def __init__( self , _a , _a , _a , _a = 1.0 , _a = None , ) -> Union[str, Any]: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ : List[Any] = initial_learning_rate SCREAMING_SNAKE_CASE__ : Tuple = warmup_steps SCREAMING_SNAKE_CASE__ : Optional[Any] = power SCREAMING_SNAKE_CASE__ : Optional[Any] = decay_schedule_fn SCREAMING_SNAKE_CASE__ : Any = name def __call__( self , _a ) -> List[Any]: """simple docstring""" with tf.name_scope(self.name or """WarmUp""" ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. SCREAMING_SNAKE_CASE__ : Optional[Any] = tf.cast(_a , tf.floataa ) SCREAMING_SNAKE_CASE__ : Optional[Any] = tf.cast(self.warmup_steps , tf.floataa ) SCREAMING_SNAKE_CASE__ : str = global_step_float / warmup_steps_float SCREAMING_SNAKE_CASE__ : Optional[int] = self.initial_learning_rate * tf.math.pow(_a , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=_a , ) def _a ( self ) -> List[Any]: """simple docstring""" return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 0.9 , __lowerCAmelCase = 0.999 , __lowerCAmelCase = 1E-8 , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 1.0 , __lowerCAmelCase = None , ) -> Dict: SCREAMING_SNAKE_CASE__ : Optional[int] = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=__lowerCAmelCase , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=__lowerCAmelCase , ) if num_warmup_steps: SCREAMING_SNAKE_CASE__ : Dict = WarmUp( initial_learning_rate=__lowerCAmelCase , decay_schedule_fn=__lowerCAmelCase , warmup_steps=__lowerCAmelCase , ) if weight_decay_rate > 0.0: SCREAMING_SNAKE_CASE__ : int = AdamWeightDecay( learning_rate=__lowerCAmelCase , weight_decay_rate=__lowerCAmelCase , beta_a=__lowerCAmelCase , beta_a=__lowerCAmelCase , epsilon=__lowerCAmelCase , clipnorm=__lowerCAmelCase , global_clipnorm=__lowerCAmelCase , exclude_from_weight_decay=["""LayerNorm""", """layer_norm""", """bias"""] , include_in_weight_decay=__lowerCAmelCase , ) else: SCREAMING_SNAKE_CASE__ : int = tf.keras.optimizers.Adam( learning_rate=__lowerCAmelCase , beta_a=__lowerCAmelCase , beta_a=__lowerCAmelCase , epsilon=__lowerCAmelCase , clipnorm=__lowerCAmelCase , global_clipnorm=__lowerCAmelCase , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class __a (UpperCamelCase_): '''simple docstring''' def __init__( self , _a = 0.001 , _a = 0.9 , _a = 0.999 , _a = 1E-7 , _a = False , _a = 0.0 , _a = None , _a = None , _a = "AdamWeightDecay" , **_a , ) -> Union[str, Any]: """simple docstring""" super().__init__(_a , _a , _a , _a , _a , _a , **_a ) SCREAMING_SNAKE_CASE__ : Tuple = weight_decay_rate SCREAMING_SNAKE_CASE__ : Tuple = include_in_weight_decay SCREAMING_SNAKE_CASE__ : Dict = exclude_from_weight_decay @classmethod def _a ( cls , _a ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = {"""WarmUp""": WarmUp} return super(_a , cls ).from_config(_a , custom_objects=_a ) def _a ( self , _a , _a , _a ) -> str: """simple docstring""" super(_a , self )._prepare_local(_a , _a , _a ) SCREAMING_SNAKE_CASE__ : Tuple = tf.constant( self.weight_decay_rate , name="""adam_weight_decay_rate""" ) def _a ( self , _a , _a , _a ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]["""weight_decay_rate"""] , use_locking=self._use_locking , ) return tf.no_op() def _a ( self , _a , _a=None , **_a ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = list(zip(*_a ) ) return super(_a , self ).apply_gradients(zip(_a , _a ) , name=_a , **_a ) def _a ( self , _a , _a , _a ) -> str: """simple docstring""" if apply_state is None: return self._decayed_lr_t[var_dtype], {} SCREAMING_SNAKE_CASE__ : Dict = apply_state or {} SCREAMING_SNAKE_CASE__ : List[str] = apply_state.get((var_device, var_dtype) ) if coefficients is None: SCREAMING_SNAKE_CASE__ : Union[str, Any] = self._fallback_apply_state(_a , _a ) SCREAMING_SNAKE_CASE__ : List[Any] = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def _a ( self , _a , _a , _a=None ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = self._get_lr(var.device , var.dtype.base_dtype , _a ) SCREAMING_SNAKE_CASE__ : Any = self._decay_weights_op(_a , _a , _a ) with tf.control_dependencies([decay] ): return super(_a , self )._resource_apply_dense(_a , _a , **_a ) def _a ( self , _a , _a , _a , _a=None ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = self._get_lr(var.device , var.dtype.base_dtype , _a ) SCREAMING_SNAKE_CASE__ : Dict = self._decay_weights_op(_a , _a , _a ) with tf.control_dependencies([decay] ): return super(_a , self )._resource_apply_sparse(_a , _a , _a , **_a ) def _a ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = super().get_config() config.update({"""weight_decay_rate""": self.weight_decay_rate} ) return config def _a ( self , _a ) -> Tuple: """simple docstring""" if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(_a , _a ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(_a , _a ) is not None: return False return True class __a (UpperCamelCase_): '''simple docstring''' def __init__( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = [] SCREAMING_SNAKE_CASE__ : List[str] = None @property def _a ( self ) -> str: """simple docstring""" if self._accum_steps is None: SCREAMING_SNAKE_CASE__ : Dict = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=_a , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def _a ( self ) -> List[str]: """simple docstring""" if not self._gradients: raise ValueError("""The accumulator should be called first to initialize the gradients""" ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self , _a ) -> str: """simple docstring""" if not self._gradients: SCREAMING_SNAKE_CASE__ : Optional[Any] = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(_a ) , trainable=_a , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(_a ) != len(self._gradients ): raise ValueError(f'''Expected {len(self._gradients )} gradients, but got {len(_a )}''' ) for accum_gradient, gradient in zip(self._gradients , _a ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(_a ) self._accum_steps.assign_add(1 ) def _a ( self ) -> Any: """simple docstring""" if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(_a ) )
56
0
from ..utils import DummyObject, requires_backends class __A( metaclass=snake_case__ ): snake_case_ = ["""flax"""] def __init__( self , *_snake_case , **_snake_case ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls , *_snake_case , **_snake_case ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls , *_snake_case , **_snake_case ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''flax'''] ) class __A( metaclass=snake_case__ ): snake_case_ = ["""flax"""] def __init__( self , *_snake_case , **_snake_case ) -> int: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls , *_snake_case , **_snake_case ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls , *_snake_case , **_snake_case ) -> Dict: '''simple docstring''' requires_backends(cls , ['''flax'''] ) class __A( metaclass=snake_case__ ): snake_case_ = ["""flax"""] def __init__( self , *_snake_case , **_snake_case ) -> int: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls , *_snake_case , **_snake_case ) -> str: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls , *_snake_case , **_snake_case ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''flax'''] ) class __A( metaclass=snake_case__ ): snake_case_ = ["""flax"""] def __init__( self , *_snake_case , **_snake_case ) -> List[Any]: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls , *_snake_case , **_snake_case ) -> Dict: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls , *_snake_case , **_snake_case ) -> Dict: '''simple docstring''' requires_backends(cls , ['''flax'''] ) class __A( metaclass=snake_case__ ): snake_case_ = ["""flax"""] def __init__( self , *_snake_case , **_snake_case ) -> Any: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls , *_snake_case , **_snake_case ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls , *_snake_case , **_snake_case ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''flax'''] ) class __A( metaclass=snake_case__ ): snake_case_ = ["""flax"""] def __init__( self , *_snake_case , **_snake_case ) -> Dict: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls , *_snake_case , **_snake_case ) -> str: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls , *_snake_case , **_snake_case ) -> Any: '''simple docstring''' requires_backends(cls , ['''flax'''] ) class __A( metaclass=snake_case__ ): snake_case_ = ["""flax"""] def __init__( self , *_snake_case , **_snake_case ) -> str: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls , *_snake_case , **_snake_case ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls , *_snake_case , **_snake_case ) -> Any: '''simple docstring''' requires_backends(cls , ['''flax'''] ) class __A( metaclass=snake_case__ ): snake_case_ = ["""flax"""] def __init__( self , *_snake_case , **_snake_case ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls , *_snake_case , **_snake_case ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls , *_snake_case , **_snake_case ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''flax'''] ) class __A( metaclass=snake_case__ ): snake_case_ = ["""flax"""] def __init__( self , *_snake_case , **_snake_case ) -> Tuple: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls , *_snake_case , **_snake_case ) -> Any: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls , *_snake_case , **_snake_case ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''flax'''] ) class __A( metaclass=snake_case__ ): snake_case_ = ["""flax"""] def __init__( self , *_snake_case , **_snake_case ) -> List[Any]: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls , *_snake_case , **_snake_case ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls , *_snake_case , **_snake_case ) -> Any: '''simple docstring''' requires_backends(cls , ['''flax'''] ) class __A( metaclass=snake_case__ ): snake_case_ = ["""flax"""] def __init__( self , *_snake_case , **_snake_case ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls , *_snake_case , **_snake_case ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls , *_snake_case , **_snake_case ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''flax'''] ) class __A( metaclass=snake_case__ ): snake_case_ = ["""flax"""] def __init__( self , *_snake_case , **_snake_case ) -> List[str]: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls , *_snake_case , **_snake_case ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls , *_snake_case , **_snake_case ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''flax'''] ) class __A( metaclass=snake_case__ ): snake_case_ = ["""flax"""] def __init__( self , *_snake_case , **_snake_case ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls , *_snake_case , **_snake_case ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls , *_snake_case , **_snake_case ) -> Any: '''simple docstring''' requires_backends(cls , ['''flax'''] )
6
from random import randint from tempfile import TemporaryFile import numpy as np def _a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[str] ): __lowerCAmelCase = 0 if start < end: __lowerCAmelCase = randint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = a[end] __lowerCAmelCase = a[pivot] __lowerCAmelCase = temp __lowerCAmelCase , __lowerCAmelCase = _in_place_partition(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) count += _in_place_quick_sort(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , p - 1 ) count += _in_place_quick_sort(SCREAMING_SNAKE_CASE_ , p + 1 , SCREAMING_SNAKE_CASE_ ) return count def _a ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ): __lowerCAmelCase = 0 __lowerCAmelCase = randint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = a[end] __lowerCAmelCase = a[pivot] __lowerCAmelCase = temp __lowerCAmelCase = start - 1 for index in range(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value __lowerCAmelCase = new_pivot_index + 1 __lowerCAmelCase = a[new_pivot_index] __lowerCAmelCase = a[index] __lowerCAmelCase = temp __lowerCAmelCase = a[new_pivot_index + 1] __lowerCAmelCase = a[end] __lowerCAmelCase = temp return new_pivot_index + 1, count UpperCamelCase__ = TemporaryFile() UpperCamelCase__ = 100 # 1000 elements are to be sorted UpperCamelCase__ , UpperCamelCase__ = 0, 1 # mean and standard deviation UpperCamelCase__ = np.random.normal(mu, sigma, p) np.save(outfile, X) print("""The array is""") print(X) outfile.seek(0) # using the same array UpperCamelCase__ = np.load(outfile) UpperCamelCase__ = len(M) - 1 UpperCamelCase__ = _in_place_quick_sort(M, 0, r) print( """No of Comparisons for 100 elements selected from a standard normal distribution""" """is :""" ) print(z)
92
0
"""simple docstring""" import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__(self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=30 , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=32 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=10 , _lowerCamelCase=0.02 , ): """simple docstring""" UpperCAmelCase__ : Dict = parent UpperCAmelCase__ : Any = batch_size UpperCAmelCase__ : Union[str, Any] = image_size UpperCAmelCase__ : int = patch_size UpperCAmelCase__ : Tuple = num_channels UpperCAmelCase__ : Dict = is_training UpperCAmelCase__ : Optional[int] = use_labels UpperCAmelCase__ : int = hidden_size UpperCAmelCase__ : Optional[Any] = num_hidden_layers UpperCAmelCase__ : int = num_attention_heads UpperCAmelCase__ : str = intermediate_size UpperCAmelCase__ : Any = hidden_act UpperCAmelCase__ : List[str] = hidden_dropout_prob UpperCAmelCase__ : List[Any] = attention_probs_dropout_prob UpperCAmelCase__ : Union[str, Any] = type_sequence_label_size UpperCAmelCase__ : Any = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase__ : List[str] = (image_size // patch_size) ** 2 UpperCAmelCase__ : Optional[Any] = num_patches + 1 def _a (self ): """simple docstring""" UpperCAmelCase__ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : Tuple = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , ) return config, pixel_values def _a (self , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Dict = FlaxViTModel(config=_lowerCamelCase ) UpperCAmelCase__ : Any = model(_lowerCamelCase ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase__ : List[Any] = (self.image_size, self.image_size) UpperCAmelCase__ : Tuple = (self.patch_size, self.patch_size) UpperCAmelCase__ : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def _a (self , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Dict = self.type_sequence_label_size UpperCAmelCase__ : Any = FlaxViTForImageClassification(config=_lowerCamelCase ) UpperCAmelCase__ : Optional[int] = model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase__ : List[Any] = 1 UpperCAmelCase__ : Tuple = FlaxViTForImageClassification(_lowerCamelCase ) UpperCAmelCase__ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase__ : Optional[int] = model(_lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[int] = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : str = config_and_inputs UpperCAmelCase__ : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class lowerCamelCase ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def _a (self ): """simple docstring""" UpperCAmelCase__ : str = FlaxViTModelTester(self ) UpperCAmelCase__ : Any = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 ) def _a (self ): """simple docstring""" self.config_tester.run_common_tests() def _a (self ): """simple docstring""" UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : List[Any] = model_class(_lowerCamelCase ) UpperCAmelCase__ : Dict = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : Optional[int] = [*signature.parameters.keys()] UpperCAmelCase__ : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase__ : List[str] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : Dict = model_class(_lowerCamelCase ) @jax.jit def model_jitted(_lowerCamelCase , **_lowerCamelCase ): return model(pixel_values=_lowerCamelCase , **_lowerCamelCase ) with self.subTest("""JIT Enabled""" ): UpperCAmelCase__ : Tuple = model_jitted(**_lowerCamelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): UpperCAmelCase__ : str = model_jitted(**_lowerCamelCase ).to_tuple() self.assertEqual(len(_lowerCamelCase ) , len(_lowerCamelCase ) ) for jitted_output, output in zip(_lowerCamelCase , _lowerCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _a (self ): """simple docstring""" for model_class_name in self.all_model_classes: UpperCAmelCase__ : Union[str, Any] = model_class_name.from_pretrained("""google/vit-base-patch16-224""" ) UpperCAmelCase__ : Tuple = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(_lowerCamelCase )
166
"""simple docstring""" import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = ['image_processor', 'tokenizer'] SCREAMING_SNAKE_CASE = 'OwlViTImageProcessor' SCREAMING_SNAKE_CASE = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__(self , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , _lowerCamelCase , ) UpperCAmelCase__ : Optional[int] = kwargs.pop("""feature_extractor""" ) UpperCAmelCase__ : Tuple = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(_lowerCamelCase , _lowerCamelCase ) def __call__(self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="max_length" , _lowerCamelCase="np" , **_lowerCamelCase ): """simple docstring""" if text is None and query_images is None and images is None: raise ValueError( """You have to specify at least one text or query image or image. All three cannot be none.""" ) if text is not None: if isinstance(_lowerCamelCase , _lowerCamelCase ) or (isinstance(_lowerCamelCase , _lowerCamelCase ) and not isinstance(text[0] , _lowerCamelCase )): UpperCAmelCase__ : Any = [self.tokenizer(_lowerCamelCase , padding=_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase )] elif isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(text[0] , _lowerCamelCase ): UpperCAmelCase__ : Any = [] # Maximum number of queries across batch UpperCAmelCase__ : int = max([len(_lowerCamelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(_lowerCamelCase ) != max_num_queries: UpperCAmelCase__ : Optional[int] = t + [""" """] * (max_num_queries - len(_lowerCamelCase )) UpperCAmelCase__ : Union[str, Any] = self.tokenizer(_lowerCamelCase , padding=_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase ) encodings.append(_lowerCamelCase ) else: raise TypeError("""Input text should be a string, a list of strings or a nested list of strings""" ) if return_tensors == "np": UpperCAmelCase__ : Optional[Any] = np.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) UpperCAmelCase__ : Any = np.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp UpperCAmelCase__ : Any = jnp.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) UpperCAmelCase__ : List[str] = jnp.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch UpperCAmelCase__ : str = torch.cat([encoding["""input_ids"""] for encoding in encodings] , dim=0 ) UpperCAmelCase__ : int = torch.cat([encoding["""attention_mask"""] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf UpperCAmelCase__ : Any = tf.stack([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) UpperCAmelCase__ : Tuple = tf.stack([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) else: raise ValueError("""Target return tensor type could not be returned""" ) UpperCAmelCase__ : Dict = BatchEncoding() UpperCAmelCase__ : int = input_ids UpperCAmelCase__ : Optional[int] = attention_mask if query_images is not None: UpperCAmelCase__ : int = BatchEncoding() UpperCAmelCase__ : Optional[int] = self.image_processor( _lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase ).pixel_values UpperCAmelCase__ : List[Any] = query_pixel_values if images is not None: UpperCAmelCase__ : Any = self.image_processor(_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase ) if text is not None and images is not None: UpperCAmelCase__ : List[str] = image_features.pixel_values return encoding elif query_images is not None and images is not None: UpperCAmelCase__ : int = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**_lowerCamelCase ) , tensor_type=_lowerCamelCase ) def _a (self , *_lowerCamelCase , **_lowerCamelCase ): """simple docstring""" return self.image_processor.post_process(*_lowerCamelCase , **_lowerCamelCase ) def _a (self , *_lowerCamelCase , **_lowerCamelCase ): """simple docstring""" return self.image_processor.post_process_object_detection(*_lowerCamelCase , **_lowerCamelCase ) def _a (self , *_lowerCamelCase , **_lowerCamelCase ): """simple docstring""" return self.image_processor.post_process_image_guided_detection(*_lowerCamelCase , **_lowerCamelCase ) def _a (self , *_lowerCamelCase , **_lowerCamelCase ): """simple docstring""" return self.tokenizer.batch_decode(*_lowerCamelCase , **_lowerCamelCase ) def _a (self , *_lowerCamelCase , **_lowerCamelCase ): """simple docstring""" return self.tokenizer.decode(*_lowerCamelCase , **_lowerCamelCase ) @property def _a (self ): """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , _lowerCamelCase , ) return self.image_processor_class @property def _a (self ): """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , _lowerCamelCase , ) return self.image_processor
166
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ : List[Any] = logging.get_logger(__name__) lowerCAmelCase__ : List[Any] = { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json', # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class __snake_case ( __UpperCAmelCase ): __lowerCamelCase = """gpt_neox""" def __init__( self , __UpperCamelCase=50432 , __UpperCamelCase=6144 , __UpperCamelCase=44 , __UpperCamelCase=64 , __UpperCamelCase=24576 , __UpperCamelCase="gelu" , __UpperCamelCase=0.2_5 , __UpperCamelCase=10000 , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=0.1 , __UpperCamelCase=2048 , __UpperCamelCase=0.0_2 , __UpperCamelCase=1E-5 , __UpperCamelCase=True , __UpperCamelCase=0 , __UpperCamelCase=2 , __UpperCamelCase=False , __UpperCamelCase=True , __UpperCamelCase=None , **__UpperCamelCase , ) -> List[Any]: '''simple docstring''' super().__init__(bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase ) snake_case__ : str = vocab_size snake_case__ : Optional[Any] = max_position_embeddings snake_case__ : Optional[Any] = hidden_size snake_case__ : List[str] = num_hidden_layers snake_case__ : Optional[Any] = num_attention_heads snake_case__ : List[Any] = intermediate_size snake_case__ : int = hidden_act snake_case__ : Dict = rotary_pct snake_case__ : List[str] = rotary_emb_base snake_case__ : Union[str, Any] = attention_dropout snake_case__ : List[Any] = hidden_dropout snake_case__ : Any = classifier_dropout snake_case__ : List[str] = initializer_range snake_case__ : Union[str, Any] = layer_norm_eps snake_case__ : List[str] = use_cache snake_case__ : Tuple = tie_word_embeddings snake_case__ : List[Any] = use_parallel_residual snake_case__ : List[str] = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( 'The hidden size is not divisble by the number of attention heads! Make sure to update them!' ) def __a ( self ) -> List[str]: '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _lowerCamelCase ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' F"""got {self.rope_scaling}""" ) snake_case__ : int = self.rope_scaling.get('type' , _lowerCamelCase ) snake_case__ : Union[str, Any] = self.rope_scaling.get('factor' , _lowerCamelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(_lowerCamelCase , _lowerCamelCase ) or rope_scaling_factor <= 1.0: raise ValueError(F"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
143
"""simple docstring""" import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class lowercase ( __UpperCAmelCase): __lowerCAmelCase : str = ["""image_processor""", """tokenizer"""] __lowerCAmelCase : Optional[Any] = """OwlViTImageProcessor""" __lowerCAmelCase : Any = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self : Union[str, Any] , _lowerCamelCase : str=None , _lowerCamelCase : Tuple=None , **_lowerCamelCase : List[Any] ): """simple docstring""" A_ : Optional[Any] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _lowerCamelCase , ) A_ : List[Any] = kwargs.pop('''feature_extractor''' ) A_ : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_lowerCamelCase , _lowerCamelCase ) def __call__( self : Optional[int] , _lowerCamelCase : List[Any]=None , _lowerCamelCase : Dict=None , _lowerCamelCase : int=None , _lowerCamelCase : str="max_length" , _lowerCamelCase : List[Any]="np" , **_lowerCamelCase : Optional[int] ): """simple docstring""" if text is None and query_images is None and images is None: raise ValueError( '''You have to specify at least one text or query image or image. All three cannot be none.''' ) if text is not None: if isinstance(_lowerCamelCase , _lowerCamelCase ) or (isinstance(_lowerCamelCase , _lowerCamelCase ) and not isinstance(text[0] , _lowerCamelCase )): A_ : List[str] = [self.tokenizer(_lowerCamelCase , padding=_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase )] elif isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(text[0] , _lowerCamelCase ): A_ : Optional[int] = [] # Maximum number of queries across batch A_ : Any = max([len(_lowerCamelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(_lowerCamelCase ) != max_num_queries: A_ : Optional[int] = t + [''' '''] * (max_num_queries - len(_lowerCamelCase )) A_ : Tuple = self.tokenizer(_lowerCamelCase , padding=_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase ) encodings.append(_lowerCamelCase ) else: raise TypeError('''Input text should be a string, a list of strings or a nested list of strings''' ) if return_tensors == "np": A_ : Union[str, Any] = np.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) A_ : Dict = np.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp A_ : List[Any] = jnp.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) A_ : Any = jnp.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch A_ : Any = torch.cat([encoding['''input_ids'''] for encoding in encodings] , dim=0 ) A_ : Union[str, Any] = torch.cat([encoding['''attention_mask'''] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf A_ : Tuple = tf.stack([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) A_ : str = tf.stack([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) else: raise ValueError('''Target return tensor type could not be returned''' ) A_ : Any = BatchEncoding() A_ : Optional[Any] = input_ids A_ : str = attention_mask if query_images is not None: A_ : Union[str, Any] = BatchEncoding() A_ : Optional[Any] = self.image_processor( _lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase ).pixel_values A_ : Dict = query_pixel_values if images is not None: A_ : int = self.image_processor(_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase ) if text is not None and images is not None: A_ : str = image_features.pixel_values return encoding elif query_images is not None and images is not None: A_ : Union[str, Any] = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**_lowerCamelCase ) , tensor_type=_lowerCamelCase ) def a_ ( self : Optional[Any] , *_lowerCamelCase : int , **_lowerCamelCase : Dict ): """simple docstring""" return self.image_processor.post_process(*_lowerCamelCase , **_lowerCamelCase ) def a_ ( self : Optional[Any] , *_lowerCamelCase : Optional[Any] , **_lowerCamelCase : Dict ): """simple docstring""" return self.image_processor.post_process_object_detection(*_lowerCamelCase , **_lowerCamelCase ) def a_ ( self : List[Any] , *_lowerCamelCase : List[str] , **_lowerCamelCase : Optional[int] ): """simple docstring""" return self.image_processor.post_process_image_guided_detection(*_lowerCamelCase , **_lowerCamelCase ) def a_ ( self : str , *_lowerCamelCase : Tuple , **_lowerCamelCase : List[Any] ): """simple docstring""" return self.tokenizer.batch_decode(*_lowerCamelCase , **_lowerCamelCase ) def a_ ( self : Dict , *_lowerCamelCase : Any , **_lowerCamelCase : Union[str, Any] ): """simple docstring""" return self.tokenizer.decode(*_lowerCamelCase , **_lowerCamelCase ) @property def a_ ( self : List[str] ): """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _lowerCamelCase , ) return self.image_processor_class @property def a_ ( self : Any ): """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _lowerCamelCase , ) return self.image_processor
167
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : str = { """configuration_git""": ["""GIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GitConfig""", """GitVisionConfig"""], """processing_git""": ["""GitProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[str] = [ """GIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GitForCausalLM""", """GitModel""", """GitPreTrainedModel""", """GitVisionModel""", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys UpperCAmelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
148
import os def _A ( ): """simple docstring""" a__ : Optional[int] =os.path.join(os.path.dirname(SCREAMING_SNAKE_CASE ) , "num.txt" ) with open(SCREAMING_SNAKE_CASE ) as file_hand: return str(sum(int(SCREAMING_SNAKE_CASE ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
148
1
import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __snake_case ( UpperCamelCase_ ,unittest.TestCase ): # TODO: is there an appropriate internal test set? _a = '''ssube/stable-diffusion-x4-upscaler-onnx''' def UpperCAmelCase__ ( self : Tuple , A_ : Optional[Any]=0): lowerCAmelCase_ : Optional[Any] = floats_tensor((1, 3, 1_2_8, 1_2_8) , rng=random.Random(A_)) lowerCAmelCase_ : Dict = torch.manual_seed(A_) lowerCAmelCase_ : Dict = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def UpperCAmelCase__ ( self : List[str]): lowerCAmelCase_ : int = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') pipe.set_progress_bar_config(disable=A_) lowerCAmelCase_ : List[str] = self.get_dummy_inputs() lowerCAmelCase_ : Any = pipe(**A_).images lowerCAmelCase_ : Optional[int] = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCAmelCase_ : List[str] = np.array( [0.697_4782, 0.6890_2093, 0.7013_5885, 0.758_3618, 0.780_4545, 0.785_4912, 0.7866_7426, 0.7874_3863, 0.7807_0223]) assert np.abs(image_slice - expected_slice).max() < 1e-1 def UpperCAmelCase__ ( self : Union[str, Any]): lowerCAmelCase_ : Union[str, Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') lowerCAmelCase_ : List[str] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=A_) pipe.set_progress_bar_config(disable=A_) lowerCAmelCase_ : Any = self.get_dummy_inputs() lowerCAmelCase_ : int = pipe(**A_).images lowerCAmelCase_ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCAmelCase_ : str = np.array( [0.689_8892, 0.5924_0556, 0.5249_9527, 0.5886_6215, 0.5225_8235, 0.5257_2715, 0.6241_4473, 0.617_4387, 0.621_4964]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def UpperCAmelCase__ ( self : Dict): lowerCAmelCase_ : List[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') lowerCAmelCase_ : int = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=A_) lowerCAmelCase_ : Optional[Any] = self.get_dummy_inputs() lowerCAmelCase_ : Optional[int] = pipe(**A_).images lowerCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCAmelCase_ : Optional[int] = np.array( [0.765_9278, 0.7643_7664, 0.7557_9107, 0.769_1116, 0.7766_6986, 0.772_7672, 0.775_8664, 0.781_2226, 0.7694_2515]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def UpperCAmelCase__ ( self : Optional[Any]): lowerCAmelCase_ : Union[str, Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') lowerCAmelCase_ : Tuple = EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=A_) lowerCAmelCase_ : str = self.get_dummy_inputs() lowerCAmelCase_ : int = pipe(**A_).images lowerCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCAmelCase_ : Tuple = np.array( [0.697_4782, 0.6890_2093, 0.7013_5885, 0.758_3618, 0.780_4545, 0.785_4912, 0.7866_7426, 0.7874_3863, 0.7807_0223]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def UpperCAmelCase__ ( self : Optional[int]): lowerCAmelCase_ : int = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') lowerCAmelCase_ : List[Any] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=A_) lowerCAmelCase_ : Tuple = self.get_dummy_inputs() lowerCAmelCase_ : Dict = pipe(**A_).images lowerCAmelCase_ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCAmelCase_ : List[str] = np.array( [0.7742_4496, 0.77_3601, 0.764_5288, 0.776_9598, 0.777_2739, 0.773_8688, 0.7818_7233, 0.7787_9584, 0.76_7043]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class __snake_case ( unittest.TestCase ): @property def UpperCAmelCase__ ( self : Union[str, Any]): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCAmelCase__ ( self : Any): lowerCAmelCase_ : Dict = ort.SessionOptions() lowerCAmelCase_ : Optional[int] = False return options def UpperCAmelCase__ ( self : str): lowerCAmelCase_ : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''') lowerCAmelCase_ : Tuple = init_image.resize((1_2_8, 1_2_8)) # using the PNDM scheduler by default lowerCAmelCase_ : Union[str, Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=A_) lowerCAmelCase_ : Optional[Any] = '''A fantasy landscape, trending on artstation''' lowerCAmelCase_ : str = torch.manual_seed(0) lowerCAmelCase_ : Optional[Any] = pipe( prompt=A_ , image=A_ , guidance_scale=7.5 , num_inference_steps=1_0 , generator=A_ , output_type='''np''' , ) lowerCAmelCase_ : Union[str, Any] = output.images lowerCAmelCase_ : List[Any] = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) lowerCAmelCase_ : Optional[Any] = np.array([0.4883, 0.4947, 0.4980, 0.4975, 0.4982, 0.4980, 0.5000, 0.5006, 0.4972]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2 def UpperCAmelCase__ ( self : Dict): lowerCAmelCase_ : Tuple = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''') lowerCAmelCase_ : List[str] = init_image.resize((1_2_8, 1_2_8)) lowerCAmelCase_ : Dict = LMSDiscreteScheduler.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , subfolder='''scheduler''') lowerCAmelCase_ : List[str] = OnnxStableDiffusionUpscalePipeline.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , scheduler=A_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=A_) lowerCAmelCase_ : Optional[Any] = '''A fantasy landscape, trending on artstation''' lowerCAmelCase_ : Any = torch.manual_seed(0) lowerCAmelCase_ : List[str] = pipe( prompt=A_ , image=A_ , guidance_scale=7.5 , num_inference_steps=2_0 , generator=A_ , output_type='''np''' , ) lowerCAmelCase_ : List[Any] = output.images lowerCAmelCase_ : Tuple = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) lowerCAmelCase_ : Optional[int] = np.array( [0.5017_3753, 0.5022_3356, 0.50_2039, 0.5023_3036, 0.502_3725, 0.502_2601, 0.501_8758, 0.5023_4085, 0.5024_1566]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
103
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self : Tuple): # clean up the VRAM after each test super().tearDown() gc.collect() def UpperCAmelCase__ ( self : List[str]): lowerCAmelCase_ : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') lowerCAmelCase_ : str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') lowerCAmelCase_ : List[Any] = '''xvjiarui/stable-diffusion-2-inpainting''' lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = FlaxStableDiffusionInpaintPipeline.from_pretrained(A_ , safety_checker=A_) lowerCAmelCase_ : List[str] = '''Face of a yellow cat, high resolution, sitting on a park bench''' lowerCAmelCase_ : List[Any] = jax.random.PRNGKey(0) lowerCAmelCase_ : str = 5_0 lowerCAmelCase_ : List[Any] = jax.device_count() lowerCAmelCase_ : Union[str, Any] = num_samples * [prompt] lowerCAmelCase_ : str = num_samples * [init_image] lowerCAmelCase_ : Union[str, Any] = num_samples * [mask_image] lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = pipeline.prepare_inputs(A_ , A_ , A_) # shard inputs and rng lowerCAmelCase_ : str = replicate(A_) lowerCAmelCase_ : str = jax.random.split(A_ , jax.device_count()) lowerCAmelCase_ : List[Any] = shard(A_) lowerCAmelCase_ : str = shard(A_) lowerCAmelCase_ : Tuple = shard(A_) lowerCAmelCase_ : int = pipeline( A_ , A_ , A_ , A_ , A_ , A_ , jit=A_) lowerCAmelCase_ : Optional[int] = output.images.reshape(A_ , 5_1_2 , 5_1_2 , 3) lowerCAmelCase_ : List[str] = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] lowerCAmelCase_ : int = jnp.asarray(jax.device_get(image_slice.flatten())) lowerCAmelCase_ : str = jnp.array( [0.361_1307, 0.3764_9736, 0.375_7408, 0.3821_3953, 0.3929_5167, 0.384_1631, 0.4155_4978, 0.413_7475, 0.421_7084]) print(F"""output_slice: {output_slice}""") assert jnp.abs(output_slice - expected_slice).max() < 1e-2
103
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: lowerCamelCase_ : Union[str, Any] = None lowerCamelCase_ : Any = logging.get_logger(__name__) lowerCamelCase_ : Union[str, Any] = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} lowerCamelCase_ : Dict = { """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json""" ), }, } lowerCamelCase_ : List[str] = { """moussaKam/mbarthez""": 1_024, """moussaKam/barthez""": 1_024, """moussaKam/barthez-orangesum-title""": 1_024, } lowerCamelCase_ : str = """▁""" class a__ ( __snake_case ): A__ : List[Any] = VOCAB_FILES_NAMES A__ : Tuple = PRETRAINED_VOCAB_FILES_MAP A__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Union[str, Any] = ['input_ids', 'attention_mask'] A__ : List[Any] = BarthezTokenizer def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , **UpperCAmelCase , ) -> Tuple: # Mask token behave like a normal word, i.e. include the space before it __a = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , **UpperCAmelCase , ) __a = vocab_file __a = False if not self.vocab_file else True def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __a = [self.cls_token_id] __a = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __a = os.path.join( UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ): copyfile(self.vocab_file , UpperCAmelCase ) return (out_vocab_file,)
197
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCamelCase_ : Optional[Any] = { """configuration_roberta_prelayernorm""": [ """ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaPreLayerNormConfig""", """RobertaPreLayerNormOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = [ """ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaPreLayerNormForCausalLM""", """RobertaPreLayerNormForMaskedLM""", """RobertaPreLayerNormForMultipleChoice""", """RobertaPreLayerNormForQuestionAnswering""", """RobertaPreLayerNormForSequenceClassification""", """RobertaPreLayerNormForTokenClassification""", """RobertaPreLayerNormModel""", """RobertaPreLayerNormPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Any = [ """TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaPreLayerNormForCausalLM""", """TFRobertaPreLayerNormForMaskedLM""", """TFRobertaPreLayerNormForMultipleChoice""", """TFRobertaPreLayerNormForQuestionAnswering""", """TFRobertaPreLayerNormForSequenceClassification""", """TFRobertaPreLayerNormForTokenClassification""", """TFRobertaPreLayerNormMainLayer""", """TFRobertaPreLayerNormModel""", """TFRobertaPreLayerNormPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Any = [ """FlaxRobertaPreLayerNormForCausalLM""", """FlaxRobertaPreLayerNormForMaskedLM""", """FlaxRobertaPreLayerNormForMultipleChoice""", """FlaxRobertaPreLayerNormForQuestionAnswering""", """FlaxRobertaPreLayerNormForSequenceClassification""", """FlaxRobertaPreLayerNormForTokenClassification""", """FlaxRobertaPreLayerNormModel""", """FlaxRobertaPreLayerNormPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys lowerCamelCase_ : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
197
1
"""simple docstring""" from math import pi, sqrt def lowercase_ ( _snake_case ): if num <= 0: raise ValueError("""math domain error""" ) if num > 171.5: raise OverflowError("""math range error""" ) elif num - int(_snake_case ) not in (0, 0.5): raise NotImplementedError("""num must be an integer or a half-integer""" ) elif num == 0.5: return sqrt(_snake_case ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def lowercase_ ( ): assert gamma(0.5 ) == sqrt(_snake_case ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() UpperCAmelCase__ : Dict = 1.0 while num: UpperCAmelCase__ : List[Any] = float(input('Gamma of: ')) print(f"""gamma({num}) = {gamma(num)}""") print('\nEnter 0 to exit...')
25
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase = { '''tokenizer_file''': { '''bigscience/tokenizer''': '''https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json''', '''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json''', '''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json''', '''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json''', '''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json''', '''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json''', '''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json''', }, } class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Tuple = VOCAB_FILES_NAMES __snake_case : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __snake_case : Optional[Any] = ["input_ids", "attention_mask"] __snake_case : Optional[int] = None def __init__( self: Dict , UpperCAmelCase_: Union[str, Any]=None , UpperCAmelCase_: str=None , UpperCAmelCase_: Optional[int]=None , UpperCAmelCase_: int="<unk>" , UpperCAmelCase_: List[str]="<s>" , UpperCAmelCase_: Tuple="</s>" , UpperCAmelCase_: List[Any]="<pad>" , UpperCAmelCase_: Dict=False , UpperCAmelCase_: Dict=False , **UpperCAmelCase_: Dict , ): '''simple docstring''' super().__init__( UpperCAmelCase_ , UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_ , **UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , UpperCAmelCase_ ) != add_prefix_space: _SCREAMING_SNAKE_CASE = getattr(UpperCAmelCase_ , pre_tok_state.pop("""type""" ) ) _SCREAMING_SNAKE_CASE = add_prefix_space _SCREAMING_SNAKE_CASE = pre_tok_class(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = add_prefix_space def UpperCamelCase ( self: List[str] , *UpperCAmelCase_: Any , **UpperCAmelCase_: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = kwargs.get("""is_split_into_words""" , UpperCAmelCase_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with' """ pretokenized inputs.""" ) return super()._batch_encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Union[str, Any] , *UpperCAmelCase_: Dict , **UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = kwargs.get("""is_split_into_words""" , UpperCAmelCase_ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with' """ pretokenized inputs.""" ) return super()._encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] = None ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_ ) return tuple(UpperCAmelCase_ ) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: "Conversation" ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) + [self.eos_token_id] ) if len(UpperCAmelCase_ ) > self.model_max_length: _SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :] return input_ids
306
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: __UpperCAmelCase = None __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} __UpperCAmelCase = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json' ), }, } __UpperCAmelCase = { 'moussaKam/mbarthez': 1024, 'moussaKam/barthez': 1024, 'moussaKam/barthez-orangesum-title': 1024, } __UpperCAmelCase = '▁' class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : List[Any] = VOCAB_FILES_NAMES _snake_case : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _snake_case : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Dict = ['''input_ids''', '''attention_mask'''] _snake_case : Union[str, Any] = BarthezTokenizer def __init__( self , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase="<s>" , _UpperCamelCase="</s>" , _UpperCamelCase="</s>" , _UpperCamelCase="<s>" , _UpperCamelCase="<unk>" , _UpperCamelCase="<pad>" , _UpperCamelCase="<mask>" , **_UpperCamelCase , ) -> str: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ : List[Any] = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else mask_token super().__init__( _UpperCamelCase , tokenizer_file=_UpperCamelCase , bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , cls_token=_UpperCamelCase , pad_token=_UpperCamelCase , mask_token=_UpperCamelCase , **_UpperCamelCase , ) UpperCAmelCase_ : Tuple = vocab_file UpperCAmelCase_ : Tuple = False if not self.vocab_file else True def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase_ : Union[str, Any] = [self.cls_token_id] UpperCAmelCase_ : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None ) -> List[int]: UpperCAmelCase_ : Any = [self.sep_token_id] UpperCAmelCase_ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(_UpperCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return UpperCAmelCase_ : List[Any] = os.path.join( _UpperCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ): copyfile(self.vocab_file , _UpperCamelCase ) return (out_vocab_file,)
145
import os import re import shutil import sys import tempfile import unittest import black __UpperCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. __UpperCAmelCase = ' \"""\n Output class for the scheduler\'s step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"""\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n' class lowerCamelCase (unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ) -> Tuple: UpperCAmelCase_ : str = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , 'schedulers/' ) ) UpperCAmelCase_ : int = self.diffusers_dir shutil.copy( os.path.join(_UpperCamelCase , 'src/diffusers/schedulers/scheduling_ddpm.py' ) , os.path.join(self.diffusers_dir , 'schedulers/scheduling_ddpm.py' ) , ) def __UpperCAmelCase ( self ) -> Optional[int]: UpperCAmelCase_ : str = 'src/diffusers' shutil.rmtree(self.diffusers_dir ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None ) -> Optional[Any]: UpperCAmelCase_ : Dict = comment + f"\nclass {class_name}(nn.Module):\n" + class_code if overwrite_result is not None: UpperCAmelCase_ : Optional[Any] = comment + f"\nclass {class_name}(nn.Module):\n" + overwrite_result UpperCAmelCase_ : Any = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 ) UpperCAmelCase_ : Optional[Any] = black.format_str(_UpperCamelCase , mode=_UpperCamelCase ) UpperCAmelCase_ : Any = os.path.join(self.diffusers_dir , 'new_code.py' ) with open(_UpperCamelCase , 'w' , newline='\n' ) as f: f.write(_UpperCamelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_UpperCamelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_UpperCamelCase ) with open(_UpperCamelCase , 'r' ) as f: self.assertTrue(f.read() , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> List[str]: UpperCAmelCase_ : List[Any] = check_copies.find_code_in_diffusers('schedulers.scheduling_ddpm.DDPMSchedulerOutput' ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> str: # Base copy consistency self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , _UpperCamelCase , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , re.sub('DDPM' , 'Test' , _UpperCamelCase ) , ) # Copy consistency with a really long name UpperCAmelCase_ : Optional[int] = 'TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( f"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}" , f"{long_class_name}SchedulerOutput" , re.sub('Bert' , _UpperCamelCase , _UpperCamelCase ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , _UpperCamelCase , overwrite_result=re.sub('DDPM' , 'Test' , _UpperCamelCase ) , )
145
1
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset __lowerCAmelCase : Tuple = random.Random() def a__ ( A_, A_=1.0, A_=None, A_=None ): '''simple docstring''' if rng is None: __magic_name__ = global_rng __magic_name__ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[int] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple=7 , UpperCamelCase__ : int=400 , UpperCamelCase__ : List[str]=2000 , UpperCamelCase__ : Tuple=2048 , UpperCamelCase__ : Union[str, Any]=128 , UpperCamelCase__ : List[Any]=1 , UpperCamelCase__ : Tuple=512 , UpperCamelCase__ : int=30 , UpperCamelCase__ : Optional[Any]=4_4100 , ) -> int: """simple docstring""" __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = min_seq_length __magic_name__ = max_seq_length __magic_name__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __magic_name__ = spectrogram_length __magic_name__ = feature_size __magic_name__ = num_audio_channels __magic_name__ = hop_length __magic_name__ = chunk_length __magic_name__ = sampling_rate def _lowercase ( self : Optional[int] ) -> int: """simple docstring""" return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def _lowercase ( self : Any , UpperCamelCase__ : Tuple=False , UpperCamelCase__ : List[Any]=False ) -> List[Any]: """simple docstring""" def _flatten(UpperCamelCase__ : Tuple ): return list(itertools.chain(*UpperCamelCase__ ) ) if equal_length: __magic_name__ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __magic_name__ = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __magic_name__ = [np.asarray(UpperCamelCase__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase_ ( _A , unittest.TestCase ): '''simple docstring''' a__ = TvltFeatureExtractor def _lowercase ( self : List[Any] ) -> List[str]: """simple docstring""" __magic_name__ = TvltFeatureExtractionTester(self ) def _lowercase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __magic_name__ = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(UpperCamelCase__ , """spectrogram_length""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """feature_size""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """num_audio_channels""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """hop_length""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """chunk_length""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """sampling_rate""" ) ) def _lowercase ( self : Tuple ) -> int: """simple docstring""" __magic_name__ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __magic_name__ = feat_extract_first.save_pretrained(UpperCamelCase__ )[0] check_json_file_has_correct_format(UpperCamelCase__ ) __magic_name__ = self.feature_extraction_class.from_pretrained(UpperCamelCase__ ) __magic_name__ = feat_extract_first.to_dict() __magic_name__ = feat_extract_second.to_dict() __magic_name__ = dict_first.pop("""mel_filters""" ) __magic_name__ = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ ) ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) def _lowercase ( self : Dict ) -> str: """simple docstring""" __magic_name__ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __magic_name__ = os.path.join(UpperCamelCase__ , """feat_extract.json""" ) feat_extract_first.to_json_file(UpperCamelCase__ ) __magic_name__ = self.feature_extraction_class.from_json_file(UpperCamelCase__ ) __magic_name__ = feat_extract_first.to_dict() __magic_name__ = feat_extract_second.to_dict() __magic_name__ = dict_first.pop("""mel_filters""" ) __magic_name__ = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ ) ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) def _lowercase ( self : List[Any] ) -> Optional[int]: """simple docstring""" __magic_name__ = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 __magic_name__ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __magic_name__ = [np.asarray(UpperCamelCase__ ) for speech_input in speech_inputs] # Test not batched input __magic_name__ = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched __magic_name__ = feature_extractor(UpperCamelCase__ , return_tensors="""np""" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking __magic_name__ = feature_extractor( UpperCamelCase__ , return_tensors="""np""" , sampling_rate=4_4100 , mask_audio=UpperCamelCase__ ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. __magic_name__ = [floats_list((1, x) )[0] for x in (800, 800, 800)] __magic_name__ = np.asarray(UpperCamelCase__ ) __magic_name__ = feature_extractor(UpperCamelCase__ , return_tensors="""np""" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def _lowercase ( self : Tuple , UpperCamelCase__ : Tuple ) -> List[Any]: """simple docstring""" __magic_name__ = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech __magic_name__ = ds.sort("""id""" ).select(range(UpperCamelCase__ ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def _lowercase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" __magic_name__ = self._load_datasamples(1 ) __magic_name__ = TvltFeatureExtractor() __magic_name__ = feature_extractor(UpperCamelCase__ , return_tensors="""pt""" ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) __magic_name__ = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , UpperCamelCase__ , atol=1E-4 ) )
88
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCAmelCase : Tuple = { 'google/pegasus-large': 'https://huggingface.co/google/pegasus-large/resolve/main/config.json', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class UpperCAmelCase_ ( _A ): '''simple docstring''' a__ = """pegasus""" a__ = ["""past_key_values"""] a__ = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : Optional[int] , UpperCamelCase__ : Optional[int]=5_0265 , UpperCamelCase__ : Optional[int]=1024 , UpperCamelCase__ : Any=12 , UpperCamelCase__ : Union[str, Any]=4096 , UpperCamelCase__ : Any=16 , UpperCamelCase__ : Union[str, Any]=12 , UpperCamelCase__ : List[str]=4096 , UpperCamelCase__ : Tuple=16 , UpperCamelCase__ : Optional[int]=0.0 , UpperCamelCase__ : List[Any]=0.0 , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : List[Any]="gelu" , UpperCamelCase__ : List[Any]=1024 , UpperCamelCase__ : Optional[Any]=0.1 , UpperCamelCase__ : str=0.0 , UpperCamelCase__ : Any=0.0 , UpperCamelCase__ : Union[str, Any]=0.02 , UpperCamelCase__ : Any=0 , UpperCamelCase__ : int=False , UpperCamelCase__ : Any=0 , UpperCamelCase__ : List[str]=1 , UpperCamelCase__ : Tuple=1 , **UpperCamelCase__ : Union[str, Any] , ) -> str: """simple docstring""" __magic_name__ = vocab_size __magic_name__ = max_position_embeddings __magic_name__ = d_model __magic_name__ = encoder_ffn_dim __magic_name__ = encoder_layers __magic_name__ = encoder_attention_heads __magic_name__ = decoder_ffn_dim __magic_name__ = decoder_layers __magic_name__ = decoder_attention_heads __magic_name__ = dropout __magic_name__ = attention_dropout __magic_name__ = activation_dropout __magic_name__ = activation_function __magic_name__ = init_std __magic_name__ = encoder_layerdrop __magic_name__ = decoder_layerdrop __magic_name__ = use_cache __magic_name__ = encoder_layers __magic_name__ = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , decoder_start_token_id=UpperCamelCase__ , forced_eos_token_id=UpperCamelCase__ , **UpperCamelCase__ , ) @property def _lowercase ( self : List[Any] ) -> int: """simple docstring""" return self.encoder_attention_heads @property def _lowercase ( self : Dict ) -> int: """simple docstring""" return self.d_model
88
1
"""simple docstring""" from collections.abc import Callable def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> float: __lowerCAmelCase: float = a __lowerCAmelCase: float = b if function(__SCREAMING_SNAKE_CASE ) == 0: # one of the a or b is a root for the function return a elif function(__SCREAMING_SNAKE_CASE ) == 0: return b elif ( function(__SCREAMING_SNAKE_CASE ) * function(__SCREAMING_SNAKE_CASE ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError("could not find root in given interval." ) else: __lowerCAmelCase: float = start + (end - start) / 2.0 while abs(start - mid ) > 1_0**-7: # until precisely equals to 10^-7 if function(__SCREAMING_SNAKE_CASE ) == 0: return mid elif function(__SCREAMING_SNAKE_CASE ) * function(__SCREAMING_SNAKE_CASE ) < 0: __lowerCAmelCase: List[str] = mid else: __lowerCAmelCase: List[str] = mid __lowerCAmelCase: str = start + (end - start) / 2.0 return mid def a__ ( __SCREAMING_SNAKE_CASE ) -> float: return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
108
"""simple docstring""" from math import ceil def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> str: __lowerCAmelCase: Tuple = list(range(0 , __SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase: Optional[Any] = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check __lowerCAmelCase: List[Any] = [] for i in device_map_blocks: if device_map_blocks.count(__SCREAMING_SNAKE_CASE ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(__SCREAMING_SNAKE_CASE ) # Missing blocks __lowerCAmelCase: Optional[Any] = [i for i in blocks if i not in device_map_blocks] __lowerCAmelCase: List[Any] = [i for i in device_map_blocks if i not in blocks] if len(__SCREAMING_SNAKE_CASE ) != 0: raise ValueError( "Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device." " These attention blocks were specified more than once: " + str(__SCREAMING_SNAKE_CASE ) ) if len(__SCREAMING_SNAKE_CASE ) != 0: raise ValueError( "There are attention blocks for this model that are not specified in the device_map. Add these attention " "blocks to a device on the device_map: " + str(__SCREAMING_SNAKE_CASE ) ) if len(__SCREAMING_SNAKE_CASE ) != 0: raise ValueError( "The device_map contains more attention blocks than this model has. Remove these from the device_map:" + str(__SCREAMING_SNAKE_CASE ) ) def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> str: __lowerCAmelCase: List[Any] = list(range(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase: Dict = int(ceil(n_layers / len(__SCREAMING_SNAKE_CASE ) ) ) __lowerCAmelCase: Union[str, Any] = [layers[i : i + n_blocks] for i in range(0 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )] return dict(zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
108
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=a ) class __snake_case ( a ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization UpperCAmelCase__ : str = field(default='''text-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) UpperCAmelCase__ : ClassVar[Features] = Features({'''text''': Value('''string''' )} ) UpperCAmelCase__ : ClassVar[Features] = Features({'''labels''': ClassLabel} ) UpperCAmelCase__ : str = "text" UpperCAmelCase__ : str = "labels" def lowerCamelCase ( self : Optional[int] , _snake_case : List[str]): """simple docstring""" if self.label_column not in features: raise ValueError(F"""Column {self.label_column} is not present in features.""") if not isinstance(features[self.label_column] , _snake_case): raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""") UpperCAmelCase_ = copy.deepcopy(self) UpperCAmelCase_ = self.label_schema.copy() UpperCAmelCase_ = features[self.label_column] UpperCAmelCase_ = label_schema return task_template @property def lowerCamelCase ( self : Dict): """simple docstring""" return { self.text_column: "text", self.label_column: "labels", }
51
import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class A__ ( __magic_name__ ): def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = tempfile.mkdtemp() lowerCAmelCase__ : Dict = 8 # DPR tok lowerCAmelCase__ : str = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] lowerCAmelCase__ : List[str] = os.path.join(self.tmpdirname , 'dpr_tokenizer' ) os.makedirs(a , exist_ok=a ) lowerCAmelCase__ : Union[str, Any] = os.path.join(a , DPR_VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) # BART tok lowerCAmelCase__ : Optional[Any] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] lowerCAmelCase__ : str = dict(zip(a , range(len(a ) ) ) ) lowerCAmelCase__ : int = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] lowerCAmelCase__ : Dict = {'unk_token': '<unk>'} lowerCAmelCase__ : Dict = os.path.join(self.tmpdirname , 'bart_tokenizer' ) os.makedirs(a , exist_ok=a ) lowerCAmelCase__ : Optional[Any] = os.path.join(a , BART_VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase__ : Any = os.path.join(a , BART_VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(a ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(a ) ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'dpr_tokenizer' ) ) def _lowerCamelCase ( self : Any ): '''simple docstring''' return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'bart_tokenizer' ) ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) @require_tokenizers def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = os.path.join(self.tmpdirname , 'rag_tokenizer' ) lowerCAmelCase__ : Any = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) lowerCAmelCase__ : Any = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(a ) rag_tokenizer.save_pretrained(a ) lowerCAmelCase__ : List[str] = RagTokenizer.from_pretrained(a , config=a ) self.assertIsInstance(new_rag_tokenizer.question_encoder , a ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , a ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = RagTokenizer.from_pretrained('facebook/rag-token-nq' ) lowerCAmelCase__ : Any = [ 'who got the first nobel prize in physics', 'when is the next deadpool movie being released', 'which mode is used for short wave broadcast service', 'who is the owner of reading football club', 'when is the next scandal episode coming out', 'when is the last time the philadelphia won the superbowl', 'what is the most current adobe flash player version', 'how many episodes are there in dragon ball z', 'what is the first step in the evolution of the eye', 'where is gall bladder situated in human body', 'what is the main mineral in lithium batteries', 'who is the president of usa right now', 'where do the greasers live in the outsiders', 'panda is a national animal of which country', 'what is the name of manchester united stadium', ] lowerCAmelCase__ : List[str] = tokenizer(a ) self.assertIsNotNone(a ) @slow def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : List[str] = RagTokenizer.from_pretrained('facebook/rag-sequence-nq' ) lowerCAmelCase__ : List[str] = [ 'who got the first nobel prize in physics', 'when is the next deadpool movie being released', 'which mode is used for short wave broadcast service', 'who is the owner of reading football club', 'when is the next scandal episode coming out', 'when is the last time the philadelphia won the superbowl', 'what is the most current adobe flash player version', 'how many episodes are there in dragon ball z', 'what is the first step in the evolution of the eye', 'where is gall bladder situated in human body', 'what is the main mineral in lithium batteries', 'who is the president of usa right now', 'where do the greasers live in the outsiders', 'panda is a national animal of which country', 'what is the name of manchester united stadium', ] lowerCAmelCase__ : int = tokenizer(a ) self.assertIsNotNone(a )
212
0
'''simple docstring''' from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput class lowerCamelCase ( __lowerCAmelCase ): def __init__( self, lowercase_, lowercase_ ) -> Tuple: super().__init__() self.register_modules(unet=lowercase_, scheduler=lowercase_ ) @torch.no_grad() def __call__( self, lowercase_ = 1, lowercase_ = None, lowercase_ = 50, lowercase_ = "pil", lowercase_ = True, **lowercase_, ) -> Union[ImagePipelineOutput, Tuple]: snake_case = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size), generator=lowercase_, ) snake_case = image.to(self.device ) # set step values self.scheduler.set_timesteps(lowercase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output snake_case = self.unet(lowercase_, lowercase_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 snake_case = self.scheduler.step(lowercase_, lowercase_, lowercase_ ).prev_sample snake_case = (image / 2 + 0.5).clamp(0, 1 ) snake_case = image.cpu().permute(0, 2, 3, 1 ).numpy() if output_type == "pil": snake_case = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=lowercase_ ), "This is a local test"
370
'''simple docstring''' import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset lowerCAmelCase_ = pd.read_csv( "https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/" "position_salaries.csv" ) lowerCAmelCase_ = dataset.iloc[:, 1:2].values lowerCAmelCase_ = dataset.iloc[:, 2].values lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = train_test_split(X, y, test_size=0.2, random_state=0) lowerCAmelCase_ = PolynomialFeatures(degree=4) lowerCAmelCase_ = poly_reg.fit_transform(X) lowerCAmelCase_ = LinearRegression() pol_reg.fit(X_poly, y) def __magic_name__ ( ) -> Any: plt.scatter(A , A , color='red' ) plt.plot(A , pol_reg.predict(poly_reg.fit_transform(A ) ) , color='blue' ) plt.title('Truth or Bluff (Linear Regression)' ) plt.xlabel('Position level' ) plt.ylabel('Salary' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
332
0
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _A = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class _lowerCamelCase ( a_ , unittest.TestCase ): _lowerCamelCase :List[Any] = ReformerTokenizer _lowerCamelCase :Any = ReformerTokenizerFast _lowerCamelCase :str = True _lowerCamelCase :Any = False _lowerCamelCase :str = True def _lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" super().setUp() lowerCAmelCase__ : Optional[Any] = ReformerTokenizer(UpperCamelCase , keep_accents=UpperCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : Optional[int] = """<s>""" lowerCAmelCase__ : List[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase ) , UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase ) , UpperCamelCase ) def _lowerCAmelCase ( self : int ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(UpperCamelCase ) , 10_00 ) def _lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_00 ) def _lowerCAmelCase ( self : List[Any] ) -> int: """simple docstring""" if not self.test_rust_tokenizer: return lowerCAmelCase__ : Any = self.get_tokenizer() lowerCAmelCase__ : List[str] = self.get_rust_tokenizer() lowerCAmelCase__ : List[Any] = """I was born in 92000, and this is falsé.""" lowerCAmelCase__ : Optional[Any] = tokenizer.tokenize(UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = rust_tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : Dict = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) lowerCAmelCase__ : str = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : List[Any] = self.get_rust_tokenizer() lowerCAmelCase__ : Optional[int] = tokenizer.encode(UpperCamelCase ) lowerCAmelCase__ : List[Any] = rust_tokenizer.encode(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def _lowerCAmelCase ( self : int , UpperCamelCase : Optional[int]=15 ) -> str: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCAmelCase__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(UpperCamelCase , **UpperCamelCase ) # Simple input lowerCAmelCase__ : int = """This is a simple input""" lowerCAmelCase__ : List[Any] = ["""This is a simple input 1""", """This is a simple input 2"""] lowerCAmelCase__ : List[str] = ("""This is a simple input""", """This is a pair""") lowerCAmelCase__ : Tuple = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(UpperCamelCase , tokenizer_r.encode , UpperCamelCase , max_length=UpperCamelCase , padding="""max_length""" ) # Simple input self.assertRaises(UpperCamelCase , tokenizer_r.encode_plus , UpperCamelCase , max_length=UpperCamelCase , padding="""max_length""" ) # Simple input self.assertRaises( UpperCamelCase , tokenizer_r.batch_encode_plus , UpperCamelCase , max_length=UpperCamelCase , padding="""max_length""" , ) # Pair input self.assertRaises(UpperCamelCase , tokenizer_r.encode , UpperCamelCase , max_length=UpperCamelCase , padding="""max_length""" ) # Pair input self.assertRaises(UpperCamelCase , tokenizer_r.encode_plus , UpperCamelCase , max_length=UpperCamelCase , padding="""max_length""" ) # Pair input self.assertRaises( UpperCamelCase , tokenizer_r.batch_encode_plus , UpperCamelCase , max_length=UpperCamelCase , padding="""max_length""" , ) def _lowerCAmelCase ( self : List[Any] ) -> int: """simple docstring""" pass def _lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : int = ReformerTokenizer(UpperCamelCase , keep_accents=UpperCamelCase ) lowerCAmelCase__ : List[Any] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(UpperCamelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase ) , [2_85, 46, 10, 1_70, 3_82] , ) lowerCAmelCase__ : Union[str, Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCamelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) lowerCAmelCase__ : Dict = tokenizer.convert_tokens_to_ids(UpperCamelCase ) self.assertListEqual( UpperCamelCase , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) lowerCAmelCase__ : Dict = tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual( UpperCamelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def _lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" return ReformerTokenizer.from_pretrained("""google/reformer-crime-and-punishment""" ) @slow def _lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : Optional[Any] = """Hello World!""" lowerCAmelCase__ : List[str] = [1_26, 32, 2_62, 1_52, 38, 72, 2_87] self.assertListEqual(UpperCamelCase , self.big_tokenizer.encode(UpperCamelCase ) ) @slow def _lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" lowerCAmelCase__ : str = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) lowerCAmelCase__ : List[str] = [ 1_08, 2_65, 24, 1_11, 4, 2_58, 1_56, 35, 28, 2_75, 3, 2_59, 2_97, 2_60, 84, 4, 35, 1_10, 44, 8, 2_59, 91, 2_68, 21, 11, 2_09, 2_74, 1_09, 2_66, 2_77, 1_17, 86, 93, 3_15, 2_58, 2_78, 2_58, 2_77, 2_58, 0, 2_58, 2_88, 2_58, 3_19, 2_58, 0, 2_58, 0, 2_58, 0, 2_58, 0, 2_58, 2_87, 2_58, 3_15, 2_58, 2_89, 2_58, 2_78, 99, 2_69, 2_66, 2_62, 8, 2_59, 2_41, 4, 2_17, 2_30, 2_68, 2_66, 55, 1_68, 1_06, 75, 1_93, 2_66, 2_23, 27, 49, 26, 2_82, 25, 2_64, 2_99, 19, 26, 0, 2_58, 2_77, 1_17, 86, 93, 1_76, 1_83, 2_70, 11, 2_62, 42, 61, 2_65, ] self.assertListEqual(UpperCamelCase , self.big_tokenizer.encode(UpperCamelCase ) ) @require_torch @slow def _lowerCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" import torch from transformers import ReformerConfig, ReformerModel # Build sequence lowerCAmelCase__ : Dict = list(self.big_tokenizer.get_vocab().keys() )[:10] lowerCAmelCase__ : Union[str, Any] = """ """.join(UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = self.big_tokenizer.encode_plus(UpperCamelCase , return_tensors="""pt""" ) lowerCAmelCase__ : Dict = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors="""pt""" ) lowerCAmelCase__ : Any = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) lowerCAmelCase__ : Any = encoded_sequence["""input_ids"""].shape lowerCAmelCase__ : List[Any] = ReformerModel(UpperCamelCase ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**UpperCamelCase ) model(**UpperCamelCase ) @slow def _lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" # fmt: off lowerCAmelCase__ : str = {"""input_ids""": [[1_08, 2_65, 24, 1_11, 4, 2_58, 1_56, 7, 51, 2_79, 58, 7, 76, 25, 69, 2_78], [1_40, 2_43, 2_64, 1_34, 17, 2_67, 77, 2_63, 22, 2_62, 2_97, 2_58, 3_04, 1_77, 2_79, 2_66, 14, 89, 13, 35, 2_61, 2_99, 2_72, 1_37, 2_75, 2_78]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 lowerCAmelCase__ : Dict = [ """This is a very simple sentence.""", """The quick brown fox jumps over the lazy dog.""", ] self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase , model_name="""google/reformer-crime-and-punishment""" , revision="""0e6c3decb8211d49bf881013425dc8b0448b3f5a""" , padding=UpperCamelCase , sequences=UpperCamelCase , )
242
"""simple docstring""" def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase = 0 ) -> list: lowerCAmelCase__ : Optional[Any] = length or len(__UpperCAmelCase ) lowerCAmelCase__ : int = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: lowerCAmelCase__ , lowerCAmelCase__ : Tuple = list_data[i + 1], list_data[i] lowerCAmelCase__ : List[str] = True return list_data if not swapped else bubble_sort(__UpperCAmelCase , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
242
1
'''simple docstring''' import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase , _lowercase=14 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=99 , _lowercase=32 , _lowercase=5 , _lowercase=4 , _lowercase=37 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=16 , _lowercase=2 , _lowercase=0.02 , _lowercase=3 , _lowercase=4 , _lowercase=None , ): """simple docstring""" _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_token_type_ids _lowerCAmelCase = use_input_mask _lowerCAmelCase = use_labels _lowerCAmelCase = use_mc_token_ids _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = num_labels _lowerCAmelCase = num_choices _lowerCAmelCase = scope _lowerCAmelCase = self.vocab_size - 1 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_input_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = None if self.use_token_type_ids: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase = None if self.use_mc_token_ids: _lowerCAmelCase = ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase = self.get_config() _lowerCAmelCase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def _lowercase ( self ): """simple docstring""" return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , *_lowercase ): """simple docstring""" _lowerCAmelCase = CTRLModel(config=_lowercase ) model.to(_lowercase ) model.eval() model(_lowercase , token_type_ids=_lowercase , head_mask=_lowercase ) model(_lowercase , token_type_ids=_lowercase ) _lowerCAmelCase = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , *_lowercase ): """simple docstring""" _lowerCAmelCase = CTRLLMHeadModel(_lowercase ) model.to(_lowercase ) model.eval() _lowerCAmelCase = model(_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = config_and_inputs _lowerCAmelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask} return config, inputs_dict def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , *_lowercase ): """simple docstring""" _lowerCAmelCase = self.num_labels _lowerCAmelCase = CTRLForSequenceClassification(_lowercase ) model.to(_lowercase ) model.eval() _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = model(_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' _lowercase : Tuple = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () _lowercase : List[str] = (CTRLLMHeadModel,) if is_torch_available() else () _lowercase : Tuple = ( { '''feature-extraction''': CTRLModel, '''text-classification''': CTRLForSequenceClassification, '''text-generation''': CTRLLMHeadModel, '''zero-shot''': CTRLForSequenceClassification, } if is_torch_available() else {} ) _lowercase : Any = True _lowercase : Union[str, Any] = False _lowercase : Tuple = False def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = CTRLModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=_lowercase , n_embd=37 ) def _lowercase ( self ): """simple docstring""" super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def _lowercase ( self ): """simple docstring""" self.config_tester.run_common_tests() def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_lowercase ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _lowercase ( self ): """simple docstring""" pass @slow def _lowercase ( self ): """simple docstring""" for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = CTRLModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) @unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :) def _lowercase ( self ): """simple docstring""" pass @require_torch class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = CTRLLMHeadModel.from_pretrained("""ctrl""" ) model.to(_lowercase ) _lowerCAmelCase = torch.tensor( [[11_859, 0, 1_611, 8]] , dtype=torch.long , device=_lowercase ) # Legal the president is _lowerCAmelCase = [ 11_859, 0, 1_611, 8, 5, 150, 26_449, 2, 19, 348, 469, 3, 2_595, 48, 20_740, 246_533, 246_533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a _lowerCAmelCase = model.generate(_lowercase , do_sample=_lowercase ) self.assertListEqual(output_ids[0].tolist() , _lowercase )
371
'''simple docstring''' from __future__ import annotations from typing import Any class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' pass class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase ): """simple docstring""" _lowerCAmelCase = data _lowerCAmelCase = None def __iter__( self ): """simple docstring""" _lowerCAmelCase = self _lowerCAmelCase = [] while node: if node in visited: raise ContainsLoopError visited.append(_lowercase ) yield node.data _lowerCAmelCase = node.next_node @property def _lowercase ( self ): """simple docstring""" try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": _lowercase = Node(1) _lowercase = Node(2) _lowercase = Node(3) _lowercase = Node(4) print(root_node.has_loop) # False _lowercase = root_node.next_node print(root_node.has_loop) # True _lowercase = Node(5) _lowercase = Node(6) _lowercase = Node(5) _lowercase = Node(6) print(root_node.has_loop) # False _lowercase = Node(1) print(root_node.has_loop) # False
229
0
'''simple docstring''' import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): if isinstance(UpperCAmelCase , torch.Tensor ): return image elif isinstance(UpperCAmelCase , PIL.Image.Image ): lowercase__ : List[str] = [image] if isinstance(image[0] , PIL.Image.Image ): lowercase__ : List[str] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image] lowercase__ : Any = np.concatenate(UpperCAmelCase , axis=0 ) lowercase__ : Optional[Any] = np.array(UpperCAmelCase ).astype(np.floataa ) / 2_5_5.0 lowercase__ : Dict = image.transpose(0 , 3 , 1 , 2 ) lowercase__ : Union[str, Any] = 2.0 * image - 1.0 lowercase__ : List[str] = torch.from_numpy(UpperCAmelCase ) elif isinstance(image[0] , torch.Tensor ): lowercase__ : Dict = torch.cat(UpperCAmelCase , dim=0 ) return image def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=0.9_9_9_5 ): if not isinstance(UpperCAmelCase , np.ndarray ): lowercase__ : Union[str, Any] = True lowercase__ : List[str] = va.device lowercase__ : List[str] = va.cpu().numpy() lowercase__ : Dict = va.cpu().numpy() lowercase__ : int = np.sum(va * va / (np.linalg.norm(UpperCAmelCase ) * np.linalg.norm(UpperCAmelCase )) ) if np.abs(UpperCAmelCase ) > DOT_THRESHOLD: lowercase__ : List[Any] = (1 - t) * va + t * va else: lowercase__ : Optional[int] = np.arccos(UpperCAmelCase ) lowercase__ : Tuple = np.sin(UpperCAmelCase ) lowercase__ : Optional[int] = theta_a * t lowercase__ : Dict = np.sin(UpperCAmelCase ) lowercase__ : List[Any] = np.sin(theta_a - theta_t ) / sin_theta_a lowercase__ : Optional[int] = sin_theta_t / sin_theta_a lowercase__ : List[str] = sa * va + sa * va if inputs_are_torch: lowercase__ : List[Any] = torch.from_numpy(UpperCAmelCase ).to(UpperCAmelCase ) return va def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): lowercase__ : int = F.normalize(UpperCAmelCase , dim=-1 ) lowercase__ : Dict = F.normalize(UpperCAmelCase , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): for param in model.parameters(): lowercase__ : Dict = value class UpperCAmelCase ( a__ ): '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , ) -> Optional[int]: super().__init__() self.register_modules( vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , clip_model=__lowerCAmelCase , tokenizer=__lowerCAmelCase , unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , feature_extractor=__lowerCAmelCase , coca_model=__lowerCAmelCase , coca_tokenizer=__lowerCAmelCase , coca_transform=__lowerCAmelCase , ) lowercase__ : int = ( feature_extractor.size if isinstance(feature_extractor.size , __lowerCAmelCase ) else feature_extractor.size['''shortest_edge'''] ) lowercase__ : int = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , __lowerCAmelCase ) set_requires_grad(self.clip_model , __lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase = "auto" ) -> Tuple: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowercase__ : Optional[int] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__lowerCAmelCase ) def _lowerCAmelCase( self ) -> List[Any]: self.enable_attention_slicing(__lowerCAmelCase ) def _lowerCAmelCase( self ) -> Optional[int]: set_requires_grad(self.vae , __lowerCAmelCase ) def _lowerCAmelCase( self ) -> List[Any]: set_requires_grad(self.vae , __lowerCAmelCase ) def _lowerCAmelCase( self ) -> Any: set_requires_grad(self.unet , __lowerCAmelCase ) def _lowerCAmelCase( self ) -> Union[str, Any]: set_requires_grad(self.unet , __lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: # get the original timestep using init_timestep lowercase__ : List[Any] = min(int(num_inference_steps * strength ) , __lowerCAmelCase ) lowercase__ : Tuple = max(num_inference_steps - init_timestep , 0 ) lowercase__ : List[str] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None ) -> Tuple: if not isinstance(__lowerCAmelCase , torch.Tensor ): raise ValueError(F"""`image` has to be of type `torch.Tensor` but is {type(__lowerCAmelCase )}""" ) lowercase__ : Optional[int] = image.to(device=__lowerCAmelCase , dtype=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowercase__ : List[str] = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(__lowerCAmelCase ) ] lowercase__ : List[Any] = torch.cat(__lowerCAmelCase , dim=0 ) else: lowercase__ : Tuple = self.vae.encode(__lowerCAmelCase ).latent_dist.sample(__lowerCAmelCase ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowercase__ : Dict = 0.1_8_2_1_5 * init_latents lowercase__ : List[str] = init_latents.repeat_interleave(__lowerCAmelCase , dim=0 ) lowercase__ : List[str] = randn_tensor(init_latents.shape , generator=__lowerCAmelCase , device=__lowerCAmelCase , dtype=__lowerCAmelCase ) # get latents lowercase__ : Any = self.scheduler.add_noise(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) lowercase__ : Union[str, Any] = init_latents return latents def _lowerCAmelCase( self , __lowerCAmelCase ) -> List[str]: lowercase__ : Optional[Any] = self.coca_transform(__lowerCAmelCase ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): lowercase__ : Any = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) lowercase__ : str = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('''<end_of_text>''' )[0].replace('''<start_of_text>''' , '''''' ).rstrip(''' .,''' ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase ) -> Any: lowercase__ : str = self.feature_extractor.preprocess(__lowerCAmelCase ) lowercase__ : Optional[Any] = torch.from_numpy(clip_image_input['''pixel_values'''][0] ).unsqueeze(0 ).to(self.device ).half() lowercase__ : List[str] = self.clip_model.get_image_features(__lowerCAmelCase ) lowercase__ : str = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=__lowerCAmelCase ) lowercase__ : Dict = image_embeddings_clip.repeat_interleave(__lowerCAmelCase , dim=0 ) return image_embeddings_clip @torch.enable_grad() def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) -> List[str]: lowercase__ : int = latents.detach().requires_grad_() lowercase__ : int = self.scheduler.scale_model_input(__lowerCAmelCase , __lowerCAmelCase ) # predict the noise residual lowercase__ : str = self.unet(__lowerCAmelCase , __lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): lowercase__ : Union[str, Any] = self.scheduler.alphas_cumprod[timestep] lowercase__ : Dict = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase__ : str = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 lowercase__ : Optional[Any] = torch.sqrt(__lowerCAmelCase ) lowercase__ : str = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , __lowerCAmelCase ): lowercase__ : List[Any] = self.scheduler.sigmas[index] lowercase__ : Union[str, Any] = latents - sigma * noise_pred else: raise ValueError(F"""scheduler type {type(self.scheduler )} not supported""" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowercase__ : Optional[Any] = 1 / 0.1_8_2_1_5 * sample lowercase__ : List[str] = self.vae.decode(__lowerCAmelCase ).sample lowercase__ : Dict = (image / 2 + 0.5).clamp(0 , 1 ) lowercase__ : Optional[Any] = transforms.Resize(self.feature_extractor_size )(__lowerCAmelCase ) lowercase__ : Optional[Any] = self.normalize(__lowerCAmelCase ).to(latents.dtype ) lowercase__ : int = self.clip_model.get_image_features(__lowerCAmelCase ) lowercase__ : Dict = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=__lowerCAmelCase ) lowercase__ : Union[str, Any] = spherical_dist_loss(__lowerCAmelCase , __lowerCAmelCase ).mean() * clip_guidance_scale lowercase__ : str = -torch.autograd.grad(__lowerCAmelCase , __lowerCAmelCase )[0] if isinstance(self.scheduler , __lowerCAmelCase ): lowercase__ : Dict = latents.detach() + grads * (sigma**2) lowercase__ : Dict = noise_pred_original else: lowercase__ : Optional[Any] = noise_pred_original - torch.sqrt(__lowerCAmelCase ) * grads return noise_pred, latents @torch.no_grad() def __call__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = 512 , __lowerCAmelCase = 512 , __lowerCAmelCase = 0.6 , __lowerCAmelCase = 50 , __lowerCAmelCase = 7.5 , __lowerCAmelCase = 1 , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 100 , __lowerCAmelCase = None , __lowerCAmelCase = "pil" , __lowerCAmelCase = True , __lowerCAmelCase = 0.8 , __lowerCAmelCase = 0.1 , __lowerCAmelCase = 0.1 , ) -> Any: if isinstance(__lowerCAmelCase , __lowerCAmelCase ) and len(__lowerCAmelCase ) != batch_size: raise ValueError(F"""You have passed {batch_size} batch_size, but only {len(__lowerCAmelCase )} generators.""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if isinstance(__lowerCAmelCase , torch.Generator ) and batch_size > 1: lowercase__ : List[Any] = [generator] + [None] * (batch_size - 1) lowercase__ : Any = [ ('''model''', self.coca_model is None), ('''tokenizer''', self.coca_tokenizer is None), ('''transform''', self.coca_transform is None), ] lowercase__ : Dict = [x[0] for x in coca_is_none if x[1]] lowercase__ : Optional[Any] = ''', '''.join(__lowerCAmelCase ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(__lowerCAmelCase ): raise ValueError( F"""Content prompt is None and CoCa [{coca_is_none_str}] is None.""" F"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) lowercase__ : Optional[int] = self.get_image_description(__lowerCAmelCase ) if style_prompt is None: if len(__lowerCAmelCase ): raise ValueError( F"""Style prompt is None and CoCa [{coca_is_none_str}] is None.""" F""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) lowercase__ : Optional[int] = self.get_image_description(__lowerCAmelCase ) # get prompt text embeddings for content and style lowercase__ : Union[str, Any] = self.tokenizer( __lowerCAmelCase , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=__lowerCAmelCase , return_tensors='''pt''' , ) lowercase__ : List[Any] = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] lowercase__ : int = self.tokenizer( __lowerCAmelCase , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=__lowerCAmelCase , return_tensors='''pt''' , ) lowercase__ : Union[str, Any] = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] lowercase__ : Dict = slerp(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # duplicate text embeddings for each generation per prompt lowercase__ : int = text_embeddings.repeat_interleave(__lowerCAmelCase , dim=0 ) # set timesteps lowercase__ : List[Any] = '''offset''' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) lowercase__ : List[Any] = {} if accepts_offset: lowercase__ : str = 1 self.scheduler.set_timesteps(__lowerCAmelCase , **__lowerCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) lowercase__ , lowercase__ : int = self.get_timesteps(__lowerCAmelCase , __lowerCAmelCase , self.device ) lowercase__ : int = timesteps[:1].repeat(__lowerCAmelCase ) # Preprocess image lowercase__ : Union[str, Any] = preprocess(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) lowercase__ : List[str] = self.prepare_latents( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , text_embeddings.dtype , self.device , __lowerCAmelCase ) lowercase__ : Optional[int] = preprocess(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) lowercase__ : Dict = self.prepare_latents( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , text_embeddings.dtype , self.device , __lowerCAmelCase ) lowercase__ : Tuple = slerp(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if clip_guidance_scale > 0: lowercase__ : List[Any] = self.get_clip_image_embeddings(__lowerCAmelCase , __lowerCAmelCase ) lowercase__ : List[Any] = self.get_clip_image_embeddings(__lowerCAmelCase , __lowerCAmelCase ) lowercase__ : Union[str, Any] = slerp( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowercase__ : Any = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowercase__ : Optional[int] = content_text_input.input_ids.shape[-1] lowercase__ : Dict = self.tokenizer([''''''] , padding='''max_length''' , max_length=__lowerCAmelCase , return_tensors='''pt''' ) lowercase__ : Any = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt lowercase__ : Tuple = uncond_embeddings.repeat_interleave(__lowerCAmelCase , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase__ : Union[str, Any] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowercase__ : Any = (batch_size, self.unet.config.in_channels, height // 8, width // 8) lowercase__ : Tuple = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps lowercase__ : Union[str, Any] = torch.randn(__lowerCAmelCase , generator=__lowerCAmelCase , device='''cpu''' , dtype=__lowerCAmelCase ).to( self.device ) else: lowercase__ : int = torch.randn(__lowerCAmelCase , generator=__lowerCAmelCase , device=self.device , dtype=__lowerCAmelCase ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) lowercase__ : Optional[int] = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowercase__ : List[Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowercase__ : Tuple = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowercase__ : List[str] = {} if accepts_eta: lowercase__ : Any = eta # check if the scheduler accepts generator lowercase__ : Dict = '''generator''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: lowercase__ : Any = generator with self.progress_bar(total=__lowerCAmelCase ): for i, t in enumerate(__lowerCAmelCase ): # expand the latents if we are doing classifier free guidance lowercase__ : Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase__ : Optional[int] = self.scheduler.scale_model_input(__lowerCAmelCase , __lowerCAmelCase ) # predict the noise residual lowercase__ : Optional[Any] = self.unet(__lowerCAmelCase , __lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase ).sample # perform classifier free guidance if do_classifier_free_guidance: lowercase__ , lowercase__ : List[str] = noise_pred.chunk(2 ) lowercase__ : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: lowercase__ : Union[str, Any] = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) lowercase__ , lowercase__ : Any = self.cond_fn( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) # compute the previous noisy sample x_t -> x_t-1 lowercase__ : Optional[int] = self.scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowercase__ : Dict = 1 / 0.1_8_2_1_5 * latents lowercase__ : Any = self.vae.decode(__lowerCAmelCase ).sample lowercase__ : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) lowercase__ : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowercase__ : int = self.numpy_to_pil(__lowerCAmelCase ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=__lowerCAmelCase , nsfw_content_detected=__lowerCAmelCase )
198
'''simple docstring''' def __UpperCamelCase ( UpperCAmelCase ): lowercase__ : List[str] = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def __UpperCamelCase ( UpperCAmelCase = 100 ): lowercase__ : Dict = 1 lowercase__ : Optional[int] = 2 for i in range(2 , max_n + 1 ): lowercase__ : List[str] = pre_numerator lowercase__ : Optional[Any] = 2 * i // 3 if i % 3 == 0 else 1 lowercase__ : Union[str, Any] = cur_numerator lowercase__ : int = e_cont * pre_numerator + temp return sum_digits(UpperCAmelCase ) if __name__ == "__main__": print(F'{solution() = }')
198
1
"""simple docstring""" import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel A: str = "0.12" # assumed parallelism: 8 @require_flax @is_staging_test class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @classmethod def SCREAMING_SNAKE_CASE ( cls ) -> int: '''simple docstring''' UpperCAmelCase : Dict = TOKEN HfFolder.save_token(_SCREAMING_SNAKE_CASE ) @classmethod def SCREAMING_SNAKE_CASE ( cls ) -> List[Any]: '''simple docstring''' try: delete_repo(token=cls._token , repo_id="""test-model-flax""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-model-flax-org""" ) except HTTPError: pass def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : int = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase : Dict = FlaxBertModel(_SCREAMING_SNAKE_CASE ) model.push_to_hub("""test-model-flax""" , use_auth_token=self._token ) UpperCAmelCase : Optional[Any] = FlaxBertModel.from_pretrained(F"{USER}/test-model-flax" ) UpperCAmelCase : Dict = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase : List[Any] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase : Optional[int] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-3 , msg=F"{key} not identical" ) # Reset repo delete_repo(token=self._token , repo_id="""test-model-flax""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_SCREAMING_SNAKE_CASE , repo_id="""test-model-flax""" , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token ) UpperCAmelCase : Dict = FlaxBertModel.from_pretrained(F"{USER}/test-model-flax" ) UpperCAmelCase : Tuple = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase : List[Any] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase : Optional[Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-3 , msg=F"{key} not identical" ) def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : Union[str, Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase : List[str] = FlaxBertModel(_SCREAMING_SNAKE_CASE ) model.push_to_hub("""valid_org/test-model-flax-org""" , use_auth_token=self._token ) UpperCAmelCase : Optional[Any] = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" ) UpperCAmelCase : Any = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase : str = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase : Any = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-3 , msg=F"{key} not identical" ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-model-flax-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _SCREAMING_SNAKE_CASE , repo_id="""valid_org/test-model-flax-org""" , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token ) UpperCAmelCase : Optional[int] = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" ) UpperCAmelCase : Any = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase : Dict = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase : int = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-3 , msg=F"{key} not identical" ) def _snake_case ( UpperCamelCase : Any , UpperCamelCase : List[Any] ): UpperCAmelCase : Optional[Any] = True UpperCAmelCase : Union[str, Any] = flatten_dict(modela.params ) UpperCAmelCase : Tuple = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: UpperCAmelCase : List[str] = False return models_are_equal @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Dict = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) UpperCAmelCase : Dict = FlaxBertModel(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : int = """bert""" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): UpperCAmelCase : Optional[int] = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Tuple = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE ) self.assertTrue(check_models_equal(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' UpperCAmelCase : List[Any] = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) UpperCAmelCase : Dict = FlaxBertModel(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[Any] = """bert""" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , max_shard_size="""10KB""" ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): UpperCAmelCase : str = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[str] = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE ) self.assertTrue(check_models_equal(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Union[str, Any] = """bert""" UpperCAmelCase : Union[str, Any] = """hf-internal-testing/tiny-random-bert-subfolder""" with self.assertRaises(_SCREAMING_SNAKE_CASE ): UpperCAmelCase : Dict = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Any = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Optional[int] = """bert""" UpperCAmelCase : int = """hf-internal-testing/tiny-random-bert-sharded-subfolder""" with self.assertRaises(_SCREAMING_SNAKE_CASE ): UpperCAmelCase : int = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[Any] = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
76
"""simple docstring""" import math import sys def _snake_case ( UpperCamelCase : str ): UpperCAmelCase : Dict = """""" try: with open(UpperCamelCase , """rb""" ) as binary_file: UpperCAmelCase : str = binary_file.read() for dat in data: UpperCAmelCase : List[Any] = F"{dat:08b}" result += curr_byte return result except OSError: print("""File not accessible""" ) sys.exit() def _snake_case ( UpperCamelCase : str ): UpperCAmelCase : Optional[int] = {"""0""": """0""", """1""": """1"""} UpperCAmelCase , UpperCAmelCase : Optional[int] = """""", """""" UpperCAmelCase : int = len(UpperCamelCase ) for i in range(len(UpperCamelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue UpperCAmelCase : Any = lexicon[curr_string] result += last_match_id UpperCAmelCase : Any = last_match_id + """0""" if math.loga(UpperCamelCase ).is_integer(): UpperCAmelCase : Optional[Any] = {} for curr_key in list(UpperCamelCase ): UpperCAmelCase : Dict = lexicon.pop(UpperCamelCase ) UpperCAmelCase : int = new_lex UpperCAmelCase : int = last_match_id + """1""" index += 1 UpperCAmelCase : List[str] = """""" return result def _snake_case ( UpperCamelCase : str , UpperCamelCase : str ): UpperCAmelCase : Dict = 8 try: with open(UpperCamelCase , """wb""" ) as opened_file: UpperCAmelCase : Union[str, Any] = [ to_write[i : i + byte_length] for i in range(0 , len(UpperCamelCase ) , UpperCamelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("""10000000""" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(UpperCamelCase , 2 ).to_bytes(1 , byteorder="""big""" ) ) except OSError: print("""File not accessible""" ) sys.exit() def _snake_case ( UpperCamelCase : str ): UpperCAmelCase : Any = 0 for letter in data_bits: if letter == "1": break counter += 1 UpperCAmelCase : List[str] = data_bits[counter:] UpperCAmelCase : Tuple = data_bits[counter + 1 :] return data_bits def _snake_case ( UpperCamelCase : str , UpperCamelCase : str ): UpperCAmelCase : int = read_file_binary(UpperCamelCase ) UpperCAmelCase : str = remove_prefix(UpperCamelCase ) UpperCAmelCase : Any = decompress_data(UpperCamelCase ) write_file_binary(UpperCamelCase , UpperCamelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
76
1
"""simple docstring""" import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger a__ : List[str] = get_logger(__name__) a__ : Optional[Any] = Path(__file__).parent / '''model_card_template.md''' a__ : Optional[int] = uuida().hex a__ : Any = os.getenv('''HF_HUB_OFFLINE''', '''''').upper() in ENV_VARS_TRUE_VALUES a__ : Any = os.getenv('''DISABLE_TELEMETRY''', '''''').upper() in ENV_VARS_TRUE_VALUES a__ : int = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '''/api/telemetry/''' def UpperCAmelCase__ (lowerCAmelCase_ = None ): '''simple docstring''' __SCREAMING_SNAKE_CASE = f"""diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}""" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f"""; torch/{_torch_version}""" if is_flax_available(): ua += f"""; jax/{_jax_version}""" ua += f"""; flax/{_flax_version}""" if is_onnx_available(): ua += f"""; onnxruntime/{_onnxruntime_version}""" # CI will set this value to True if os.environ.get("DIFFUSERS_IS_CI" , "" ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): ua += "; " + "; ".join(f"""{k}/{v}""" for k, v in user_agent.items() ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): ua += "; " + user_agent return ua def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None ): '''simple docstring''' if token is None: __SCREAMING_SNAKE_CASE = HfFolder.get_token() if organization is None: __SCREAMING_SNAKE_CASE = whoami(lowerCAmelCase_ )["name"] return f"""{username}/{model_id}""" else: return f"""{organization}/{model_id}""" def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' if not is_jinja_available(): raise ValueError( "Modelcard rendering is based on Jinja templates." " Please make sure to have `jinja` installed before using `create_model_card`." " To install it, please run `pip install Jinja2`." ) if hasattr(lowerCAmelCase_ , "local_rank" ) and args.local_rank not in [-1, 0]: return __SCREAMING_SNAKE_CASE = args.hub_token if hasattr(lowerCAmelCase_ , "hub_token" ) else None __SCREAMING_SNAKE_CASE = get_full_repo_name(lowerCAmelCase_ , token=lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language="en" , license="apache-2.0" , library_name="diffusers" , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=lowerCAmelCase_ , model_name=lowerCAmelCase_ , repo_name=lowerCAmelCase_ , dataset_name=args.dataset_name if hasattr(lowerCAmelCase_ , "dataset_name" ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(lowerCAmelCase_ , "gradient_accumulation_steps" ) else None ) , adam_betaa=args.adam_betaa if hasattr(lowerCAmelCase_ , "adam_beta1" ) else None , adam_betaa=args.adam_betaa if hasattr(lowerCAmelCase_ , "adam_beta2" ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(lowerCAmelCase_ , "adam_weight_decay" ) else None , adam_epsilon=args.adam_epsilon if hasattr(lowerCAmelCase_ , "adam_epsilon" ) else None , lr_scheduler=args.lr_scheduler if hasattr(lowerCAmelCase_ , "lr_scheduler" ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(lowerCAmelCase_ , "lr_warmup_steps" ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(lowerCAmelCase_ , "ema_inv_gamma" ) else None , ema_power=args.ema_power if hasattr(lowerCAmelCase_ , "ema_power" ) else None , ema_max_decay=args.ema_max_decay if hasattr(lowerCAmelCase_ , "ema_max_decay" ) else None , mixed_precision=args.mixed_precision , ) __SCREAMING_SNAKE_CASE = os.path.join(args.output_dir , "README.md" ) model_card.save(lowerCAmelCase_ ) def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ = None ): '''simple docstring''' if resolved_file is None or commit_hash is not None: return commit_hash __SCREAMING_SNAKE_CASE = str(Path(lowerCAmelCase_ ).as_posix() ) __SCREAMING_SNAKE_CASE = re.search(R"snapshots/([^/]+)/" , lowerCAmelCase_ ) if search is None: return None __SCREAMING_SNAKE_CASE = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(lowerCAmelCase_ ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. a__ : Tuple = os.path.expanduser( os.getenv('''HF_HOME''', os.path.join(os.getenv('''XDG_CACHE_HOME''', '''~/.cache'''), '''huggingface''')) ) a__ : int = os.path.join(hf_cache_home, '''diffusers''') def UpperCAmelCase__ (lowerCAmelCase_ = None , lowerCAmelCase_ = None ): '''simple docstring''' if new_cache_dir is None: __SCREAMING_SNAKE_CASE = DIFFUSERS_CACHE if old_cache_dir is None: __SCREAMING_SNAKE_CASE = old_diffusers_cache __SCREAMING_SNAKE_CASE = Path(lowerCAmelCase_ ).expanduser() __SCREAMING_SNAKE_CASE = Path(lowerCAmelCase_ ).expanduser() for old_blob_path in old_cache_dir.glob("**/blobs/*" ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): __SCREAMING_SNAKE_CASE = new_cache_dir / old_blob_path.relative_to(lowerCAmelCase_ ) new_blob_path.parent.mkdir(parents=lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) os.replace(lowerCAmelCase_ , lowerCAmelCase_ ) try: os.symlink(lowerCAmelCase_ , lowerCAmelCase_ ) except OSError: logger.warning( "Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded." ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). a__ : int = os.path.join(DIFFUSERS_CACHE, '''version_diffusers_cache.txt''') if not os.path.isfile(cache_version_file): a__ : Any = 0 else: with open(cache_version_file) as f: try: a__ : Optional[int] = int(f.read()) except ValueError: a__ : Optional[int] = 0 if cache_version < 1: a__ : List[Any] = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( '''The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ''' '''existing cached models. This is a one-time operation, you can interrupt it or run it ''' '''later by calling `diffusers.utils.hub_utils.move_cache()`.''' ) try: move_cache() except Exception as e: a__ : Union[str, Any] = '''\n'''.join(traceback.format_tb(e.__traceback__)) logger.error( F"There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease " '''file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ''' '''message and we will do our best to help.''' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, '''w''') as f: f.write('''1''') except Exception: logger.warning( F"There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure " '''the directory exists and can be written to.''' ) def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ = None ): '''simple docstring''' if variant is not None: __SCREAMING_SNAKE_CASE = weights_name.split("." ) __SCREAMING_SNAKE_CASE = splits[:-1] + [variant] + splits[-1:] __SCREAMING_SNAKE_CASE = ".".join(lowerCAmelCase_ ) return weights_name def UpperCAmelCase__ (lowerCAmelCase_ , *, lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , ): '''simple docstring''' __SCREAMING_SNAKE_CASE = str(lowerCAmelCase_ ) if os.path.isfile(lowerCAmelCase_ ): return pretrained_model_name_or_path elif os.path.isdir(lowerCAmelCase_ ): if os.path.isfile(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) ): # Load from a PyTorch checkpoint __SCREAMING_SNAKE_CASE = os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) ): __SCREAMING_SNAKE_CASE = os.path.join(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return model_file else: raise EnvironmentError( f"""Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.""" ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(lowerCAmelCase_ ).base_version ) >= version.parse("0.20.0" ) ): try: __SCREAMING_SNAKE_CASE = hf_hub_download( lowerCAmelCase_ , filename=_add_variant(lowerCAmelCase_ , lowerCAmelCase_ ) , cache_dir=lowerCAmelCase_ , force_download=lowerCAmelCase_ , proxies=lowerCAmelCase_ , resume_download=lowerCAmelCase_ , local_files_only=lowerCAmelCase_ , use_auth_token=lowerCAmelCase_ , user_agent=lowerCAmelCase_ , subfolder=lowerCAmelCase_ , revision=revision or commit_hash , ) warnings.warn( f"""Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead.""" , lowerCAmelCase_ , ) return model_file except: # noqa: E722 warnings.warn( f"""You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(lowerCAmelCase_ , lowerCAmelCase_ )} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(lowerCAmelCase_ , lowerCAmelCase_ )}' so that the correct variant file can be added.""" , lowerCAmelCase_ , ) try: # 2. Load model file as usual __SCREAMING_SNAKE_CASE = hf_hub_download( lowerCAmelCase_ , filename=lowerCAmelCase_ , cache_dir=lowerCAmelCase_ , force_download=lowerCAmelCase_ , proxies=lowerCAmelCase_ , resume_download=lowerCAmelCase_ , local_files_only=lowerCAmelCase_ , use_auth_token=lowerCAmelCase_ , user_agent=lowerCAmelCase_ , subfolder=lowerCAmelCase_ , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( f"""{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier """ "listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a " "token having permission to this repo with `use_auth_token` or log in with `huggingface-cli " "login`." ) except RevisionNotFoundError: raise EnvironmentError( f"""{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for """ "this model name. Check the model page at " f"""'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions.""" ) except EntryNotFoundError: raise EnvironmentError( f"""{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.""" ) except HTTPError as err: raise EnvironmentError( f"""There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}""" ) except ValueError: raise EnvironmentError( f"""We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it""" f""" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a""" f""" directory containing a file named {weights_name} or""" " \nCheckout your internet connection or see how to run the library in" " offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'." ) except EnvironmentError: raise EnvironmentError( f"""Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from """ "'https://huggingface.co/models', make sure you don't have a local directory with the same name. " f"""Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory """ f"""containing a file named {weights_name}""" )
54
import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness A_ :List[str] = '''\ @misc{chen2021evaluating, title={Evaluating Large Language Models Trained on Code}, author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \ and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \ and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \ and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \ and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \ and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \ and Mohammad Bavarian and Clemens Winter and Philippe Tillet \ and Felipe Petroski Such and Dave Cummings and Matthias Plappert \ and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \ and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \ and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \ and William Saunders and Christopher Hesse and Andrew N. Carr \ and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \ and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \ and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \ and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba}, year={2021}, eprint={2107.03374}, archivePrefix={arXiv}, primaryClass={cs.LG} } ''' A_ :Any = '''\ This metric implements the evaluation harness for the HumanEval problem solving dataset described in the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). ''' A_ :Tuple = ''' Calculates how good are predictions given some references, using certain scores Args: predictions: list of candidates to evaluate. Each candidates should be a list of strings with several code candidates to solve the problem. references: a list with a test for each prediction. Each test should evaluate the correctness of a code candidate. k: number of code candidates to consider in the evaluation (Default: [1, 10, 100]) num_workers: number of workers used to evaluate the canidate programs (Default: 4). timeout: Returns: pass_at_k: dict with pass rates for each k results: dict with granular results of each unittest Examples: >>> code_eval = datasets.load_metric("code_eval") >>> test_cases = ["assert add(2,3)==5"] >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]] >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2]) >>> print(pass_at_k) {\'pass@1\': 0.5, \'pass@2\': 1.0} ''' A_ :List[str] = ''' ################################################################################ !!!WARNING!!! ################################################################################ The "code_eval" metric executes untrusted model-generated code in Python. Although it is highly unlikely that model-generated code will do something overtly malicious in response to this test suite, model-generated code may act destructively due to a lack of model capability or alignment. Users are strongly encouraged to sandbox this evaluation suite so that it does not perform destructive actions on their host or network. For more information on how OpenAI sandboxes its code, see the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). Once you have read this disclaimer and taken appropriate precautions, set the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this with: >>> import os >>> os.environ["HF_ALLOW_CODE_EVAL"] = "1" ################################################################################\ ''' A_ :Tuple = '''The MIT License Copyright (c) OpenAI (https://openai.com) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): """simple docstring""" def __lowercase ( self ): """simple docstring""" return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ) ), 'references': datasets.Value('string' ), } ) , homepage='https://github.com/openai/human-eval' , codebase_urls=['https://github.com/openai/human-eval'] , reference_urls=['https://github.com/openai/human-eval'] , license=_LICENSE , ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=[1, 10, 100] , lowerCamelCase__=4 , lowerCamelCase__=3.0 ): """simple docstring""" if os.getenv('HF_ALLOW_CODE_EVAL' , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError('This metric is currently not supported on Windows.' ) with ThreadPoolExecutor(max_workers=lowerCamelCase__ ) as executor: __UpperCamelCase : List[str] =[] __UpperCamelCase : Any =Counter() __UpperCamelCase : List[Any] =0 __UpperCamelCase : int =defaultdict(lowerCamelCase__ ) for task_id, (candidates, test_case) in enumerate(zip(lowerCamelCase__ , lowerCamelCase__ ) ): for candidate in candidates: __UpperCamelCase : str =candidate + '\n' + test_case __UpperCamelCase : Any =(test_program, timeout, task_id, completion_id[task_id]) __UpperCamelCase : Optional[Any] =executor.submit(lowerCamelCase__ , *lowerCamelCase__ ) futures.append(lowerCamelCase__ ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(lowerCamelCase__ ): __UpperCamelCase : str =future.result() results[result["task_id"]].append((result['completion_id'], result) ) __UpperCamelCase , __UpperCamelCase : int =[], [] for result in results.values(): result.sort() __UpperCamelCase : str =[r[1]['passed'] for r in result] total.append(len(lowerCamelCase__ ) ) correct.append(sum(lowerCamelCase__ ) ) __UpperCamelCase : Optional[int] =np.array(lowerCamelCase__ ) __UpperCamelCase : List[str] =np.array(lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] =k __UpperCamelCase : List[Any] ={f'pass@{k}': estimate_pass_at_k(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def A ( a_ ,a_ ,a_ ) -> Optional[int]: def estimator(a_ ,a_ ,a_ ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 ,n + 1 ) ) if isinstance(a_ ,a_ ): __UpperCamelCase : Optional[int] =itertools.repeat(a_ ,len(a_ ) ) else: assert len(a_ ) == len(a_ ) __UpperCamelCase : List[Any] =iter(a_ ) return np.array([estimator(int(a_ ) ,int(a_ ) ,a_ ) for n, c in zip(a_ ,a_ )] )
71
0
"""simple docstring""" from __future__ import annotations lowercase__ = list[tuple[int, int]] lowercase__ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowercase__ = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class __snake_case : def __init__( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> List[Any]: '''simple docstring''' a__: Union[str, Any] = pos_x a__: Union[str, Any] = pos_y a__: Tuple = (pos_y, pos_x) a__: Any = goal_x a__: List[Any] = goal_y a__: Union[str, Any] = g_cost a__: int = parent a__: List[Any] = self.calculate_heuristic() def lowerCamelCase_ ( self) -> float: '''simple docstring''' a__: Dict = abs(self.pos_x - self.goal_x) a__: Any = abs(self.pos_y - self.goal_y) return dx + dy def __lt__( self , lowercase) -> bool: '''simple docstring''' return self.f_cost < other.f_cost class __snake_case : def __init__( self , lowercase , lowercase) -> List[str]: '''simple docstring''' a__: Dict = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , lowercase) a__: List[Any] = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_99_99 , lowercase) a__: Any = [self.start] a__: list[Node] = [] a__: Optional[int] = False def lowerCamelCase_ ( self) -> Path | None: '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() a__: List[Any] = self.open_nodes.pop(0) if current_node.pos == self.target.pos: a__: List[Any] = True return self.retrace_path(lowercase) self.closed_nodes.append(lowercase) a__: str = self.get_successors(lowercase) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(lowercase) else: # retrieve the best current path a__: str = self.open_nodes.pop(self.open_nodes.index(lowercase)) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(lowercase) else: self.open_nodes.append(lowercase) if not self.reached: return [self.start.pos] return None def lowerCamelCase_ ( self , lowercase) -> list[Node]: '''simple docstring''' a__: Tuple = [] for action in delta: a__: Optional[int] = parent.pos_x + action[1] a__: Tuple = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0]) - 1 and 0 <= pos_y <= len(lowercase) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( lowercase , lowercase , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , lowercase , )) return successors def lowerCamelCase_ ( self , lowercase) -> Path: '''simple docstring''' a__: Union[str, Any] = node a__: Optional[Any] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x)) a__: Dict = current_node.parent path.reverse() return path if __name__ == "__main__": lowercase__ = (0, 0) lowercase__ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print('------') lowercase__ = GreedyBestFirst(init, goal) lowercase__ = greedy_bf.search() if path: for pos_x, pos_y in path: lowercase__ = 2 for elem in grid: print(elem)
203
"""simple docstring""" import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class __snake_case ( unittest.TestCase ): @slow def lowerCamelCase_ ( self) -> Tuple: '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(lowercase): a__: Optional[Any] = AutoConfig.from_pretrained(lowercase) self.assertIsNotNone(lowercase) self.assertIsInstance(lowercase , lowercase) a__: Any = FlaxAutoModel.from_pretrained(lowercase) self.assertIsNotNone(lowercase) self.assertIsInstance(lowercase , lowercase) @slow def lowerCamelCase_ ( self) -> Tuple: '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: with self.subTest(lowercase): a__: str = AutoConfig.from_pretrained(lowercase) self.assertIsNotNone(lowercase) self.assertIsInstance(lowercase , lowercase) a__: Any = FlaxAutoModel.from_pretrained(lowercase) self.assertIsNotNone(lowercase) self.assertIsInstance(lowercase , lowercase) @slow def lowerCamelCase_ ( self) -> str: '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: a__: Dict = AutoTokenizer.from_pretrained(lowercase) a__: Union[str, Any] = FlaxBertModel.from_pretrained(lowercase) a__: List[str] = tokenizer('Do you support jax jitted function?' , return_tensors=TensorType.JAX) @jax.jit def eval(**lowercase): return model(**lowercase) eval(**lowercase).block_until_ready() @slow def lowerCamelCase_ ( self) -> str: '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: a__: Optional[Any] = AutoTokenizer.from_pretrained(lowercase) a__: Any = FlaxRobertaModel.from_pretrained(lowercase) a__: int = tokenizer('Do you support jax jitted function?' , return_tensors=TensorType.JAX) @jax.jit def eval(**lowercase): return model(**lowercase) eval(**lowercase).block_until_ready() def lowerCamelCase_ ( self) -> Any: '''simple docstring''' with self.assertRaisesRegex( lowercase , 'bert-base is not a local folder and is not a valid model identifier'): a__: str = FlaxAutoModel.from_pretrained('bert-base') def lowerCamelCase_ ( self) -> Optional[int]: '''simple docstring''' with self.assertRaisesRegex( lowercase , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)'): a__: List[str] = FlaxAutoModel.from_pretrained(lowercase , revision='aaaaaa') def lowerCamelCase_ ( self) -> Tuple: '''simple docstring''' with self.assertRaisesRegex( lowercase , 'hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack' , ): a__: List[str] = FlaxAutoModel.from_pretrained('hf-internal-testing/config-no-model') def lowerCamelCase_ ( self) -> List[str]: '''simple docstring''' with self.assertRaisesRegex(lowercase , 'Use `from_pt=True` to load this model'): a__: List[str] = FlaxAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only')
203
1
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ : str = logging.get_logger(__name__) def __lowercase ( _A , _A=False ) -> List[Any]: SCREAMING_SNAKE_CASE : Dict = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith("""head""" ): SCREAMING_SNAKE_CASE : List[str] = '''segformer.encoder.''' + key if key.startswith("""backbone""" ): SCREAMING_SNAKE_CASE : Union[str, Any] = key.replace("""backbone""" , """segformer.encoder""" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 SCREAMING_SNAKE_CASE : str = key[key.find("""patch_embed""" ) + len("""patch_embed""" )] SCREAMING_SNAKE_CASE : Optional[Any] = key.replace(F"patch_embed{idx}" , F"patch_embeddings.{int(UpperCamelCase__ )-1}" ) if "norm" in key: SCREAMING_SNAKE_CASE : List[Any] = key.replace("""norm""" , """layer_norm""" ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 SCREAMING_SNAKE_CASE : List[str] = key[key.find("""segformer.encoder.layer_norm""" ) + len("""segformer.encoder.layer_norm""" )] SCREAMING_SNAKE_CASE : List[Any] = key.replace(F"layer_norm{idx}" , F"layer_norm.{int(UpperCamelCase__ )-1}" ) if "layer_norm1" in key: SCREAMING_SNAKE_CASE : Tuple = key.replace("""layer_norm1""" , """layer_norm_1""" ) if "layer_norm2" in key: SCREAMING_SNAKE_CASE : List[Any] = key.replace("""layer_norm2""" , """layer_norm_2""" ) if "block" in key: # replace for example block1 by block.0 SCREAMING_SNAKE_CASE : List[Any] = key[key.find("""block""" ) + len("""block""" )] SCREAMING_SNAKE_CASE : str = key.replace(F"block{idx}" , F"block.{int(UpperCamelCase__ )-1}" ) if "attn.q" in key: SCREAMING_SNAKE_CASE : Union[str, Any] = key.replace("""attn.q""" , """attention.self.query""" ) if "attn.proj" in key: SCREAMING_SNAKE_CASE : Union[str, Any] = key.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in key: SCREAMING_SNAKE_CASE : Any = key.replace("""attn""" , """attention.self""" ) if "fc1" in key: SCREAMING_SNAKE_CASE : Tuple = key.replace("""fc1""" , """dense1""" ) if "fc2" in key: SCREAMING_SNAKE_CASE : Tuple = key.replace("""fc2""" , """dense2""" ) if "linear_pred" in key: SCREAMING_SNAKE_CASE : List[str] = key.replace("""linear_pred""" , """classifier""" ) if "linear_fuse" in key: SCREAMING_SNAKE_CASE : List[Any] = key.replace("""linear_fuse.conv""" , """linear_fuse""" ) SCREAMING_SNAKE_CASE : List[Any] = key.replace("""linear_fuse.bn""" , """batch_norm""" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 SCREAMING_SNAKE_CASE : int = key[key.find("""linear_c""" ) + len("""linear_c""" )] SCREAMING_SNAKE_CASE : List[Any] = key.replace(F"linear_c{idx}" , F"linear_c.{int(UpperCamelCase__ )-1}" ) if key.startswith("""head""" ): SCREAMING_SNAKE_CASE : Tuple = key.replace("""head""" , """classifier""" ) SCREAMING_SNAKE_CASE : Tuple = value return new_state_dict def __lowercase ( _A , _A ) -> Optional[int]: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) SCREAMING_SNAKE_CASE : Optional[Any] = state_dict.pop(F"segformer.encoder.block.{i}.{j}.attention.self.kv.weight" ) SCREAMING_SNAKE_CASE : str = state_dict.pop(F"segformer.encoder.block.{i}.{j}.attention.self.kv.bias" ) # next, add keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE : Optional[Any] = kv_weight[ : config.hidden_sizes[i], : ] SCREAMING_SNAKE_CASE : int = kv_bias[: config.hidden_sizes[i]] SCREAMING_SNAKE_CASE : str = kv_weight[ config.hidden_sizes[i] :, : ] SCREAMING_SNAKE_CASE : Union[str, Any] = kv_bias[ config.hidden_sizes[i] : ] def __lowercase ( ) -> Any: SCREAMING_SNAKE_CASE : Optional[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' SCREAMING_SNAKE_CASE : List[Any] = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) return image @torch.no_grad() def __lowercase ( _A , _A , _A ) -> List[Any]: SCREAMING_SNAKE_CASE : Dict = SegformerConfig() SCREAMING_SNAKE_CASE : str = False # set attributes based on model_name SCREAMING_SNAKE_CASE : Dict = '''huggingface/label-files''' if "segformer" in model_name: SCREAMING_SNAKE_CASE : Union[str, Any] = model_name[len("""segformer.""" ) : len("""segformer.""" ) + 2] if "ade" in model_name: SCREAMING_SNAKE_CASE : Tuple = 150 SCREAMING_SNAKE_CASE : Any = '''ade20k-id2label.json''' SCREAMING_SNAKE_CASE : List[str] = (1, 150, 128, 128) elif "city" in model_name: SCREAMING_SNAKE_CASE : Any = 19 SCREAMING_SNAKE_CASE : int = '''cityscapes-id2label.json''' SCREAMING_SNAKE_CASE : str = (1, 19, 128, 128) else: raise ValueError(F"Model {model_name} not supported" ) elif "mit" in model_name: SCREAMING_SNAKE_CASE : str = True SCREAMING_SNAKE_CASE : Optional[Any] = model_name[4:6] SCREAMING_SNAKE_CASE : str = 1000 SCREAMING_SNAKE_CASE : List[Any] = '''imagenet-1k-id2label.json''' SCREAMING_SNAKE_CASE : Dict = (1, 1000) else: raise ValueError(F"Model {model_name} not supported" ) # set config attributes SCREAMING_SNAKE_CASE : List[Any] = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type="""dataset""" ) , """r""" ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : Any = idalabel SCREAMING_SNAKE_CASE : List[Any] = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": SCREAMING_SNAKE_CASE : List[str] = [64, 128, 320, 512] SCREAMING_SNAKE_CASE : List[str] = 256 elif size == "b2": SCREAMING_SNAKE_CASE : Union[str, Any] = [64, 128, 320, 512] SCREAMING_SNAKE_CASE : Optional[Any] = 768 SCREAMING_SNAKE_CASE : Any = [3, 4, 6, 3] elif size == "b3": SCREAMING_SNAKE_CASE : Optional[Any] = [64, 128, 320, 512] SCREAMING_SNAKE_CASE : Any = 768 SCREAMING_SNAKE_CASE : Tuple = [3, 4, 18, 3] elif size == "b4": SCREAMING_SNAKE_CASE : List[Any] = [64, 128, 320, 512] SCREAMING_SNAKE_CASE : int = 768 SCREAMING_SNAKE_CASE : str = [3, 8, 27, 3] elif size == "b5": SCREAMING_SNAKE_CASE : Optional[int] = [64, 128, 320, 512] SCREAMING_SNAKE_CASE : Dict = 768 SCREAMING_SNAKE_CASE : Union[str, Any] = [3, 6, 40, 3] else: raise ValueError(F"Size {size} not supported" ) # load image processor (only resize + normalize) SCREAMING_SNAKE_CASE : Any = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=UpperCamelCase__ , align=UpperCamelCase__ , do_random_crop=UpperCamelCase__ ) # prepare image SCREAMING_SNAKE_CASE : Dict = prepare_img() SCREAMING_SNAKE_CASE : Optional[Any] = image_processor(images=UpperCamelCase__ , return_tensors="""pt""" ).pixel_values logger.info(F"Converting model {model_name}..." ) # load original state dict if encoder_only: SCREAMING_SNAKE_CASE : Dict = torch.load(UpperCamelCase__ , map_location=torch.device("""cpu""" ) ) else: SCREAMING_SNAKE_CASE : Any = torch.load(UpperCamelCase__ , map_location=torch.device("""cpu""" ) )['''state_dict'''] # rename keys SCREAMING_SNAKE_CASE : Tuple = rename_keys(UpperCamelCase__ , encoder_only=UpperCamelCase__ ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(UpperCamelCase__ , UpperCamelCase__ ) # create HuggingFace model and load state dict if encoder_only: SCREAMING_SNAKE_CASE : List[str] = False SCREAMING_SNAKE_CASE : Tuple = SegformerForImageClassification(UpperCamelCase__ ) else: SCREAMING_SNAKE_CASE : Optional[Any] = SegformerForSemanticSegmentation(UpperCamelCase__ ) model.load_state_dict(UpperCamelCase__ ) model.eval() # forward pass SCREAMING_SNAKE_CASE : Optional[Any] = model(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": SCREAMING_SNAKE_CASE : Dict = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": SCREAMING_SNAKE_CASE : str = torch.tensor( [ [[-7.5820, -8.7231, -8.3215], [-8.0600, -10.3529, -10.0304], [-7.5208, -9.4103, -9.6239]], [[-12.6918, -13.8994, -13.7137], [-13.3196, -15.7523, -15.4789], [-12.9343, -14.8757, -14.9689]], [[-11.1911, -11.9421, -11.3243], [-11.3342, -13.6839, -13.3581], [-10.3909, -12.1832, -12.4858]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor( [ [[-11.8173, -14.3850, -16.3128], [-14.5648, -16.5804, -18.6568], [-14.7223, -15.7387, -18.4218]], [[-15.7290, -17.9171, -19.4423], [-18.3105, -19.9448, -21.4661], [-17.9296, -18.6497, -20.7910]], [[-15.0783, -17.0336, -18.2789], [-16.8771, -18.6870, -20.1612], [-16.2454, -17.1426, -19.5055]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor( [ [[-9.0878, -10.2081, -10.1891], [-9.3144, -10.7941, -10.9843], [-9.2294, -10.3855, -10.5704]], [[-12.2316, -13.9068, -13.6102], [-12.9161, -14.3702, -14.3235], [-12.5233, -13.7174, -13.7932]], [[-14.6275, -15.2490, -14.9727], [-14.3400, -15.9687, -16.2827], [-14.1484, -15.4033, -15.8937]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": SCREAMING_SNAKE_CASE : List[str] = torch.tensor( [ [[-12.3144, -13.2447, -14.0802], [-13.3614, -14.5816, -15.6117], [-13.3340, -14.4433, -16.2219]], [[-19.2781, -20.4128, -20.7506], [-20.6153, -21.6566, -22.0998], [-19.9800, -21.0430, -22.1494]], [[-18.8739, -19.7804, -21.1834], [-20.1233, -21.6765, -23.2944], [-20.0315, -21.2641, -23.6944]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": SCREAMING_SNAKE_CASE : str = torch.tensor( [ [[-9.5524, -12.0835, -11.7348], [-10.5229, -13.6446, -14.5662], [-9.5842, -12.8851, -13.9414]], [[-15.3432, -17.5323, -17.0818], [-16.3330, -18.9255, -19.2101], [-15.1340, -17.7848, -18.3971]], [[-12.6072, -14.9486, -14.6631], [-13.7629, -17.0907, -17.7745], [-12.7899, -16.1695, -17.1671]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": SCREAMING_SNAKE_CASE : Any = torch.tensor( [ [[-11.9295, -13.4057, -14.8106], [-13.3431, -14.8179, -15.3781], [-14.2836, -15.5942, -16.1588]], [[-11.4906, -12.8067, -13.6564], [-13.1189, -14.0500, -14.1543], [-13.8748, -14.5136, -14.8789]], [[0.5374, 0.1067, -0.4742], [0.1141, -0.2255, -0.7099], [-0.3000, -0.5924, -1.3105]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": SCREAMING_SNAKE_CASE : List[Any] = torch.tensor( [ [[-7.8217, -9.8767, -10.1717], [-9.4438, -10.9058, -11.4047], [-9.7939, -12.3495, -12.1079]], [[-7.1514, -9.5336, -10.0860], [-9.7776, -11.6822, -11.8439], [-10.1411, -12.7655, -12.8972]], [[0.3021, 0.0805, -0.2310], [-0.0328, -0.1605, -0.2714], [-0.1408, -0.5477, -0.6976]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": SCREAMING_SNAKE_CASE : int = torch.tensor( [ [ [-1.1372e01, -1.2787e01, -1.3477e01], [-1.2536e01, -1.4194e01, -1.4409e01], [-1.3217e01, -1.4888e01, -1.5327e01], ], [ [-1.4791e01, -1.7122e01, -1.8277e01], [-1.7163e01, -1.9192e01, -1.9533e01], [-1.7897e01, -1.9991e01, -2.0315e01], ], [ [7.6723e-01, 4.1921e-01, -7.7878e-02], [4.7772e-01, 9.5557e-03, -2.8082e-01], [3.6032e-01, -2.4826e-01, -5.1168e-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": SCREAMING_SNAKE_CASE : Any = torch.tensor( [ [[-9.4959, -11.3087, -11.7479], [-11.0025, -12.6540, -12.3319], [-11.4064, -13.0487, -12.9905]], [[-9.8905, -11.3084, -12.0854], [-11.1726, -12.7698, -12.9583], [-11.5985, -13.3278, -14.1774]], [[0.2213, 0.0192, -0.2466], [-0.1731, -0.4213, -0.4874], [-0.3126, -0.6541, -1.1389]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor( [ [[-16.0976, -16.4856, -17.3962], [-16.6234, -19.0342, -19.7685], [-16.0900, -18.0661, -19.1180]], [[-18.4750, -18.8488, -19.5074], [-19.4030, -22.1570, -22.5977], [-19.1191, -20.8486, -22.3783]], [[-4.5178, -5.5037, -6.5109], [-5.0884, -7.2174, -8.0334], [-4.4156, -5.8117, -7.2970]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": SCREAMING_SNAKE_CASE : List[str] = torch.tensor( [ [[-14.2081, -14.4732, -14.1977], [-14.5867, -16.4423, -16.6356], [-13.4441, -14.9685, -16.8696]], [[-14.4576, -14.7073, -15.0451], [-15.0816, -17.6237, -17.9873], [-14.4213, -16.0199, -18.5992]], [[-4.7349, -4.9588, -5.0966], [-4.3210, -6.9325, -7.2591], [-3.4312, -4.7484, -7.1917]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": SCREAMING_SNAKE_CASE : Tuple = torch.tensor( [ [[-11.7737, -11.9526, -11.3273], [-13.6692, -14.4574, -13.8878], [-13.8937, -14.6924, -15.9345]], [[-14.6706, -14.5330, -14.1306], [-16.1502, -16.8180, -16.4269], [-16.8338, -17.8939, -20.1746]], [[1.0491, 0.8289, 1.0310], [1.1044, 0.5219, 0.8055], [1.0899, 0.6926, 0.5590]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": SCREAMING_SNAKE_CASE : Dict = torch.tensor( [ [[-12.5641, -13.4777, -13.0684], [-13.9587, -15.8983, -16.6557], [-13.3109, -15.7350, -16.3141]], [[-14.7074, -15.4352, -14.5944], [-16.6353, -18.1663, -18.6120], [-15.1702, -18.0329, -18.1547]], [[-1.7990, -2.0951, -1.7784], [-2.6397, -3.8245, -3.9686], [-1.5264, -2.8126, -2.9316]], ] ) else: SCREAMING_SNAKE_CASE : int = logits.argmax(-1 ).item() print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , UpperCamelCase__ , atol=1e-2 ) # finally, save model and image processor logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) image_processor.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": UpperCAmelCase__ : List[str] = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""segformer.b0.512x512.ade.160k""", type=str, help="""Name of the model you\'d like to convert.""", ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) UpperCAmelCase__ : Union[str, Any] = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
245
'''simple docstring''' from PIL import Image def _a( UpperCamelCase__ : Image, UpperCamelCase__ : float ): '''simple docstring''' def brightness(UpperCamelCase__ : int ) -> float: return 1_2_8 + level + (c - 1_2_8) if not -2_5_5.0 <= level <= 2_5_5.0: raise ValueError('''level must be between -255.0 (black) and 255.0 (white)''' ) return img.point(UpperCamelCase__ ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change brightness to 100 a_ = change_brightness(img, 1_0_0) brigt_img.save('image_data/lena_brightness.png', format='png')
152
0
"""simple docstring""" from __future__ import annotations def lowercase__(A ) ->list[int]: """simple docstring""" lowercase__ : str= [True] * limit lowercase__ : Tuple= False lowercase__ : int= False lowercase__ : int= True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): lowercase__ : str= i * 2 while index < limit: lowercase__ : List[Any]= False lowercase__ : List[Any]= index + i lowercase__ : Any= [2] for i in range(3 , A , 2 ): if is_prime[i]: primes.append(A ) return primes def lowercase__(A = 1_000_000 ) ->int: """simple docstring""" lowercase__ : int= prime_sieve(A ) lowercase__ : List[Any]= 0 lowercase__ : int= 0 for i in range(len(A ) ): for j in range(i + length , len(A ) ): lowercase__ : List[str]= sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: lowercase__ : Dict= j - i lowercase__ : Any= sol return largest if __name__ == "__main__": print(F"""{solution() = }""")
150
"""simple docstring""" from __future__ import annotations class __UpperCAmelCase: """simple docstring""" def __init__( self , snake_case__=None ): '''simple docstring''' lowercase__ : Union[str, Any]= data lowercase__ : Optional[Any]= None def __repr__( self ): '''simple docstring''' lowercase__ : str= [] lowercase__ : Tuple= self while temp: string_rep.append(F'''{temp.data}''' ) lowercase__ : Optional[int]= temp.next return "->".join(snake_case__ ) def lowercase__(A ) ->Dict: """simple docstring""" if not elements_list: raise Exception("The Elements List is empty" ) lowercase__ : Optional[int]= Node(elements_list[0] ) for i in range(1 , len(A ) ): lowercase__ : Optional[Any]= Node(elements_list[i] ) lowercase__ : str= current.next return head def lowercase__(A ) ->None: """simple docstring""" if head_node is not None and isinstance(A , A ): print_reverse(head_node.next ) print(head_node.data ) def lowercase__() ->str: """simple docstring""" from doctest import testmod testmod() lowercase__ : Optional[int]= make_linked_list([14, 52, 14, 12, 43] ) print("Linked List:" ) print(A ) print("Elements in Reverse:" ) print_reverse(A ) if __name__ == "__main__": main()
150
1
def __lowercase ( lowerCamelCase : dict ): UpperCamelCase_ : set[int] = set() # To detect a back edge, keep track of vertices currently in the recursion stack UpperCamelCase_ : set[int] = set() return any( node not in visited and depth_first_search(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) for node in graph ) def __lowercase ( lowerCamelCase : dict , lowerCamelCase : int , lowerCamelCase : set , lowerCamelCase : set ): visited.add(UpperCAmelCase_ ) rec_stk.add(UpperCAmelCase_ ) for node in graph[vertex]: if node not in visited: if depth_first_search(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(UpperCAmelCase_ ) return False if __name__ == "__main__": from doctest import testmod testmod()
175
"""simple docstring""" def __UpperCAmelCase ( ) -> int: '''simple docstring''' return [ a * b * (10_00 - a - b) for a in range(1 , 9_99 ) for b in range(UpperCAmelCase_ , 9_99 ) if (a * a + b * b == (10_00 - a - b) ** 2) ][0] if __name__ == "__main__": print(f'''{solution() = }''')
172
0
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Optional[int] ) -> Dict: """simple docstring""" UpperCamelCase :str = filter(lambda __magic_name__ : p.requires_grad , model.parameters() ) UpperCamelCase :List[str] = sum([np.prod(p.size() ) for p in model_parameters] ) return params UpperCAmelCase_ : Tuple = logging.getLogger(__name__) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : List[str] , __magic_name__ : Optional[int] ) -> Union[str, Any]: """simple docstring""" if metric == "rouge2": UpperCamelCase :Any = """{val_avg_rouge2:.4f}-{step_count}""" elif metric == "bleu": UpperCamelCase :Optional[int] = """{val_avg_bleu:.4f}-{step_count}""" elif metric == "em": UpperCamelCase :Optional[Any] = """{val_avg_em:.4f}-{step_count}""" elif metric == "loss": UpperCamelCase :List[Any] = """{val_avg_loss:.4f}-{step_count}""" else: raise NotImplementedError( f"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" """ function.""" ) UpperCamelCase :Optional[Any] = ModelCheckpoint( dirpath=__lowerCamelCase , filename=__lowerCamelCase , monitor=f"""val_{metric}""" , mode="""max""" , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def SCREAMING_SNAKE_CASE_ ( __magic_name__ : List[Any] , __magic_name__ : Optional[int] ) -> Any: """simple docstring""" return EarlyStopping( monitor=f"""val_{metric}""" , mode="""min""" if """loss""" in metric else """max""" , patience=__lowerCamelCase , verbose=__lowerCamelCase , ) class _SCREAMING_SNAKE_CASE ( pl.Callback ): def _A ( self : List[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : List[str] ): UpperCamelCase :Any = {F"""lr_group_{i}""": param["""lr"""] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_lowerCamelCase ) @rank_zero_only def _A ( self : Any , __lowerCamelCase : pl.Trainer , __lowerCamelCase : pl.LightningModule , __lowerCamelCase : str , __lowerCamelCase : Any=True ): logger.info(F"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) UpperCamelCase :Dict = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["""log""", """progress_bar""", """preds"""]} ) # Log results UpperCamelCase :Tuple = Path(pl_module.hparams.output_dir ) if type_path == "test": UpperCamelCase :Any = od / """test_results.txt""" UpperCamelCase :int = od / """test_generations.txt""" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. UpperCamelCase :Optional[Any] = od / F"""{type_path}_results/{trainer.global_step:05d}.txt""" UpperCamelCase :Optional[int] = od / F"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=_lowerCamelCase ) generations_file.parent.mkdir(exist_ok=_lowerCamelCase ) with open(_lowerCamelCase , """a+""" ) as writer: for key in sorted(_lowerCamelCase ): if key in ["log", "progress_bar", "preds"]: continue UpperCamelCase :Tuple = metrics[key] if isinstance(_lowerCamelCase , torch.Tensor ): UpperCamelCase :Optional[int] = val.item() UpperCamelCase :List[str] = F"""{key}: {val:.6f}\n""" writer.write(_lowerCamelCase ) if not save_generations: return if "preds" in metrics: UpperCamelCase :List[str] = """\n""".join(metrics["""preds"""] ) generations_file.open("""w+""" ).write(_lowerCamelCase ) @rank_zero_only def _A ( self : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] ): try: UpperCamelCase :Optional[Any] = pl_module.model.model.num_parameters() except AttributeError: UpperCamelCase :str = pl_module.model.num_parameters() UpperCamelCase :Union[str, Any] = count_trainable_parameters(_lowerCamelCase ) # mp stands for million parameters trainer.logger.log_metrics({"""n_params""": npars, """mp""": npars / 1E6, """grad_mp""": n_trainable_pars / 1E6} ) @rank_zero_only def _A ( self : Dict , __lowerCamelCase : pl.Trainer , __lowerCamelCase : pl.LightningModule ): save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_lowerCamelCase , _lowerCamelCase , """test""" ) @rank_zero_only def _A ( self : Any , __lowerCamelCase : pl.Trainer , __lowerCamelCase : Any ): save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
368
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = {'''vocab_file''': '''sentencepiece.bpe.model'''} UpperCAmelCase_ : str = { '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, } UpperCAmelCase_ : List[Any] = { '''moussaKam/mbarthez''': 10_24, '''moussaKam/barthez''': 10_24, '''moussaKam/barthez-orangesum-title''': 10_24, } UpperCAmelCase_ : List[str] = '''▁''' class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : Optional[int] = VOCAB_FILES_NAMES snake_case__ : int = PRETRAINED_VOCAB_FILES_MAP snake_case__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ : Dict = ["""input_ids""", """attention_mask"""] def __init__( self : int , __lowerCamelCase : Dict , __lowerCamelCase : List[str]="<s>" , __lowerCamelCase : str="</s>" , __lowerCamelCase : List[str]="</s>" , __lowerCamelCase : Optional[int]="<s>" , __lowerCamelCase : Optional[int]="<unk>" , __lowerCamelCase : Optional[Any]="<pad>" , __lowerCamelCase : str="<mask>" , __lowerCamelCase : Optional[Dict[str, Any]] = None , **__lowerCamelCase : Any , ): # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase :int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token UpperCamelCase :int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) UpperCamelCase :Union[str, Any] = vocab_file UpperCamelCase :List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__lowerCamelCase ) ) UpperCamelCase :Optional[int] = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} UpperCamelCase :Tuple = len(self.sp_model ) - 1 UpperCamelCase :List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def _A ( self : Optional[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase :Any = [self.cls_token_id] UpperCamelCase :Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _A ( self : Dict , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def _A ( self : int , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): UpperCamelCase :Any = [self.sep_token_id] UpperCamelCase :int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _A ( self : List[Any] ): return len(self.sp_model ) def _A ( self : Any ): UpperCamelCase :Optional[int] = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _A ( self : int , __lowerCamelCase : str ): return self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase ) def _A ( self : Dict , __lowerCamelCase : Optional[int] ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCamelCase :List[Any] = self.sp_model.PieceToId(__lowerCamelCase ) return spm_id if spm_id else self.unk_token_id def _A ( self : Union[str, Any] , __lowerCamelCase : Union[str, Any] ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(__lowerCamelCase ) def _A ( self : Optional[int] , __lowerCamelCase : Union[str, Any] ): UpperCamelCase :List[Any] = [] UpperCamelCase :str = """""" UpperCamelCase :Optional[int] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__lowerCamelCase ) + token UpperCamelCase :List[str] = True UpperCamelCase :Dict = [] else: current_sub_tokens.append(__lowerCamelCase ) UpperCamelCase :Optional[Any] = False out_string += self.sp_model.decode(__lowerCamelCase ) return out_string.strip() def __getstate__( self : str ): UpperCamelCase :Tuple = self.__dict__.copy() UpperCamelCase :str = None return state def __setstate__( self : Tuple , __lowerCamelCase : Optional[int] ): UpperCamelCase :Any = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): UpperCamelCase :Any = {} UpperCamelCase :str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _A ( self : str , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): if not os.path.isdir(__lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCamelCase :Union[str, Any] = os.path.join( __lowerCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase , """wb""" ) as fi: UpperCamelCase :List[str] = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (out_vocab_file,)
62
0
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def _SCREAMING_SNAKE_CASE (A , A=0.999 , A="cosine" , ) -> List[str]: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(A ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(A ): return math.exp(t * -12.0 ) else: raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}" ) lowercase__ = [] for i in range(A_ ): lowercase__ = i / num_diffusion_timesteps lowercase__ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(A_ ) / alpha_bar_fn(A_ ) , A_ ) ) return torch.tensor(A_ , dtype=torch.floataa ) class __lowerCAmelCase (UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' lowerCAmelCase__ : List[str] = [e.name for e in KarrasDiffusionSchedulers] lowerCAmelCase__ : Any = 2 @register_to_config def __init__(self : Any , UpperCamelCase : int = 1000 , UpperCamelCase : float = 0.0_00_85 , UpperCamelCase : float = 0.0_12 , UpperCamelCase : str = "linear" , UpperCamelCase : Optional[Union[np.ndarray, List[float]]] = None , UpperCamelCase : str = "epsilon" , UpperCamelCase : Optional[bool] = False , UpperCamelCase : Optional[bool] = False , UpperCamelCase : float = 1.0 , UpperCamelCase : str = "linspace" , UpperCamelCase : int = 0 , ): '''simple docstring''' if trained_betas is not None: lowercase__ = torch.tensor(__lowerCamelCase , dtype=torch.floataa ) elif beta_schedule == "linear": lowercase__ = torch.linspace(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowercase__ = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , __lowerCamelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowercase__ = betas_for_alpha_bar(__lowerCamelCase , alpha_transform_type='''cosine''' ) elif beta_schedule == "exp": lowercase__ = betas_for_alpha_bar(__lowerCamelCase , alpha_transform_type='''exp''' ) else: raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}" ) lowercase__ = 1.0 - self.betas lowercase__ = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowercase__ = use_karras_sigmas def UpperCamelCase__ (self : List[Any] , UpperCamelCase : Tuple , UpperCamelCase : Dict=None ): '''simple docstring''' if schedule_timesteps is None: lowercase__ = self.timesteps lowercase__ = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: lowercase__ = 1 if len(__lowerCamelCase ) > 1 else 0 else: lowercase__ = timestep.cpu().item() if torch.is_tensor(__lowerCamelCase ) else timestep lowercase__ = self._index_counter[timestep_int] return indices[pos].item() @property def UpperCamelCase__ (self : Tuple ): '''simple docstring''' if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def UpperCamelCase__ (self : Tuple , UpperCamelCase : torch.FloatTensor , UpperCamelCase : Union[float, torch.FloatTensor] , ): '''simple docstring''' lowercase__ = self.index_for_timestep(__lowerCamelCase ) lowercase__ = self.sigmas[step_index] lowercase__ = sample / ((sigma**2 + 1) ** 0.5) return sample def UpperCamelCase__ (self : Dict , UpperCamelCase : int , UpperCamelCase : Union[str, torch.device] = None , UpperCamelCase : Optional[int] = None , ): '''simple docstring''' lowercase__ = num_inference_steps lowercase__ = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": lowercase__ = np.linspace(0 , num_train_timesteps - 1 , __lowerCamelCase , dtype=__lowerCamelCase )[::-1].copy() elif self.config.timestep_spacing == "leading": lowercase__ = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowercase__ = (np.arange(0 , __lowerCamelCase ) * step_ratio).round()[::-1].copy().astype(__lowerCamelCase ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": lowercase__ = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowercase__ = (np.arange(__lowerCamelCase , 0 , -step_ratio )).round().copy().astype(__lowerCamelCase ) timesteps -= 1 else: raise ValueError( f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'." ) lowercase__ = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) lowercase__ = np.log(__lowerCamelCase ) lowercase__ = np.interp(__lowerCamelCase , np.arange(0 , len(__lowerCamelCase ) ) , __lowerCamelCase ) if self.config.use_karras_sigmas: lowercase__ = self._convert_to_karras(in_sigmas=__lowerCamelCase , num_inference_steps=self.num_inference_steps ) lowercase__ = np.array([self._sigma_to_t(__lowerCamelCase , __lowerCamelCase ) for sigma in sigmas] ) lowercase__ = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) lowercase__ = torch.from_numpy(__lowerCamelCase ).to(device=__lowerCamelCase ) lowercase__ = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) lowercase__ = torch.from_numpy(__lowerCamelCase ) lowercase__ = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(__lowerCamelCase ).startswith('''mps''' ): # mps does not support float64 lowercase__ = timesteps.to(__lowerCamelCase , dtype=torch.floataa ) else: lowercase__ = timesteps.to(device=__lowerCamelCase ) # empty dt and derivative lowercase__ = None lowercase__ = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter lowercase__ = defaultdict(__lowerCamelCase ) def UpperCamelCase__ (self : List[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : List[Any] ): '''simple docstring''' lowercase__ = np.log(__lowerCamelCase ) # get distribution lowercase__ = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range lowercase__ = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) lowercase__ = low_idx + 1 lowercase__ = log_sigmas[low_idx] lowercase__ = log_sigmas[high_idx] # interpolate sigmas lowercase__ = (low - log_sigma) / (low - high) lowercase__ = np.clip(__lowerCamelCase , 0 , 1 ) # transform interpolation to time range lowercase__ = (1 - w) * low_idx + w * high_idx lowercase__ = t.reshape(sigma.shape ) return t def UpperCamelCase__ (self : str , UpperCamelCase : torch.FloatTensor , UpperCamelCase : Any ): '''simple docstring''' lowercase__ = in_sigmas[-1].item() lowercase__ = in_sigmas[0].item() lowercase__ = 7.0 # 7.0 is the value used in the paper lowercase__ = np.linspace(0 , 1 , __lowerCamelCase ) lowercase__ = sigma_min ** (1 / rho) lowercase__ = sigma_max ** (1 / rho) lowercase__ = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def UpperCamelCase__ (self : Any ): '''simple docstring''' return self.dt is None def UpperCamelCase__ (self : Optional[Any] , UpperCamelCase : Union[torch.FloatTensor, np.ndarray] , UpperCamelCase : Union[float, torch.FloatTensor] , UpperCamelCase : Union[torch.FloatTensor, np.ndarray] , UpperCamelCase : bool = True , ): '''simple docstring''' lowercase__ = self.index_for_timestep(__lowerCamelCase ) # advance index counter by 1 lowercase__ = timestep.cpu().item() if torch.is_tensor(__lowerCamelCase ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: lowercase__ = self.sigmas[step_index] lowercase__ = self.sigmas[step_index + 1] else: # 2nd order / Heun's method lowercase__ = self.sigmas[step_index - 1] lowercase__ = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API lowercase__ = 0 lowercase__ = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": lowercase__ = sigma_hat if self.state_in_first_order else sigma_next lowercase__ = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": lowercase__ = sigma_hat if self.state_in_first_order else sigma_next lowercase__ = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": lowercase__ = model_output else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" ) if self.config.clip_sample: lowercase__ = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order lowercase__ = (sample - pred_original_sample) / sigma_hat # 3. delta timestep lowercase__ = sigma_next - sigma_hat # store for 2nd order step lowercase__ = derivative lowercase__ = dt lowercase__ = sample else: # 2. 2nd order / Heun's method lowercase__ = (sample - pred_original_sample) / sigma_next lowercase__ = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample lowercase__ = self.dt lowercase__ = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__lowerCamelCase ) def UpperCamelCase__ (self : int , UpperCamelCase : torch.FloatTensor , UpperCamelCase : torch.FloatTensor , UpperCamelCase : torch.FloatTensor , ): '''simple docstring''' lowercase__ = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(__lowerCamelCase ): # mps does not support float64 lowercase__ = self.timesteps.to(original_samples.device , dtype=torch.floataa ) lowercase__ = timesteps.to(original_samples.device , dtype=torch.floataa ) else: lowercase__ = self.timesteps.to(original_samples.device ) lowercase__ = timesteps.to(original_samples.device ) lowercase__ = [self.index_for_timestep(__lowerCamelCase , __lowerCamelCase ) for t in timesteps] lowercase__ = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): lowercase__ = sigma.unsqueeze(-1 ) lowercase__ = original_samples + noise * sigma return noisy_samples def __len__(self : int ): '''simple docstring''' return self.config.num_train_timesteps
2
import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class _a : """simple docstring""" def __init__( self: str , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: str=sys.maxsize ): '''simple docstring''' UpperCamelCase__: List[Any] = "bilinear" UpperCamelCase__: Optional[int] = max_size UpperCamelCase__: Optional[int] = short_edge_length def __call__( self: Optional[Any] , __lowerCamelCase: str ): '''simple docstring''' UpperCamelCase__: Union[str, Any] = [] for img in imgs: UpperCamelCase__ , UpperCamelCase__: Any = img.shape[:2] # later: provide list and randomly choose index for resize UpperCamelCase__: Optional[int] = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img UpperCamelCase__: Dict = size * 1.0 / min(__lowerCamelCase , __lowerCamelCase ) if h < w: UpperCamelCase__ , UpperCamelCase__: Optional[Any] = size, scale * w else: UpperCamelCase__ , UpperCamelCase__: Dict = scale * h, size if max(__lowerCamelCase , __lowerCamelCase ) > self.max_size: UpperCamelCase__: str = self.max_size * 1.0 / max(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase__: List[str] = newh * scale UpperCamelCase__: Any = neww * scale UpperCamelCase__: List[str] = int(neww + 0.5 ) UpperCamelCase__: List[Any] = int(newh + 0.5 ) if img.dtype == np.uinta: UpperCamelCase__: Dict = Image.fromarray(__lowerCamelCase ) UpperCamelCase__: Any = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) UpperCamelCase__: str = np.asarray(__lowerCamelCase ) else: UpperCamelCase__: Dict = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw UpperCamelCase__: Optional[Any] = nn.functional.interpolate( __lowerCamelCase , (newh, neww) , mode=self.interp_method , align_corners=__lowerCamelCase ).squeeze(0 ) img_augs.append(__lowerCamelCase ) return img_augs class _a : """simple docstring""" def __init__( self: Dict , __lowerCamelCase: Optional[Any] ): '''simple docstring''' UpperCamelCase__: List[Any] = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) UpperCamelCase__: Union[str, Any] = cfg.INPUT.FORMAT UpperCamelCase__: Union[str, Any] = cfg.SIZE_DIVISIBILITY UpperCamelCase__: Tuple = cfg.PAD_VALUE UpperCamelCase__: str = cfg.INPUT.MAX_SIZE_TEST UpperCamelCase__: int = cfg.MODEL.DEVICE UpperCamelCase__: str = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) UpperCamelCase__: int = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) UpperCamelCase__: List[Any] = lambda __lowerCamelCase : (x - self.pixel_mean) / self.pixel_std def UpperCAmelCase_ ( self: List[str] , __lowerCamelCase: List[Any] ): '''simple docstring''' UpperCamelCase__: Dict = tuple(max(__lowerCamelCase ) for s in zip(*[img.shape for img in images] ) ) UpperCamelCase__: Tuple = [im.shape[-2:] for im in images] UpperCamelCase__: Optional[int] = [ nn.functional.pad( __lowerCamelCase , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(__lowerCamelCase , __lowerCamelCase ) ] return torch.stack(__lowerCamelCase ), torch.tensor(__lowerCamelCase ) def __call__( self: str , __lowerCamelCase: Dict , __lowerCamelCase: Any=False ): '''simple docstring''' with torch.no_grad(): if not isinstance(__lowerCamelCase , __lowerCamelCase ): UpperCamelCase__: int = [images] if single_image: assert len(__lowerCamelCase ) == 1 for i in range(len(__lowerCamelCase ) ): if isinstance(images[i] , torch.Tensor ): images.insert(__lowerCamelCase , images.pop(__lowerCamelCase ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( __lowerCamelCase , torch.as_tensor(img_tensorize(images.pop(__lowerCamelCase ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge UpperCamelCase__: int = torch.tensor([im.shape[:2] for im in images] ) UpperCamelCase__: int = self.aug(__lowerCamelCase ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic UpperCamelCase__: Any = [self.normalizer(__lowerCamelCase ) for x in images] # now pad them to do the following operations UpperCamelCase__ , UpperCamelCase__: Any = self.pad(__lowerCamelCase ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad UpperCamelCase__: Optional[int] = torch.true_divide(__lowerCamelCase , __lowerCamelCase ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def lowerCAmelCase_ ( A_ ,A_): boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def lowerCAmelCase_ ( A_ ,A_): assert torch.isfinite(A_).all(), "Box tensor contains infinite or NaN!" UpperCamelCase__ , UpperCamelCase__: int = box_size tensor[:, 0].clamp_(min=0 ,max=A_) tensor[:, 1].clamp_(min=0 ,max=A_) tensor[:, 2].clamp_(min=0 ,max=A_) tensor[:, 3].clamp_(min=0 ,max=A_)
149
0
"""simple docstring""" import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def __lowerCamelCase ( a_ : Union[str, Any] , a_ : str , a_ : Tuple ) -> str: __SCREAMING_SNAKE_CASE :List[str] = 1.5 __SCREAMING_SNAKE_CASE :str = int(factor * num_class_images ) __SCREAMING_SNAKE_CASE :Union[str, Any] = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=_lowerCAmelCase , aesthetic_weight=0.1 ) os.makedirs(f'''{class_data_dir}/images''' , exist_ok=_lowerCAmelCase ) if len(list(Path(f'''{class_data_dir}/images''' ).iterdir() ) ) >= num_class_images: return while True: __SCREAMING_SNAKE_CASE :Optional[Any] = client.query(text=_lowerCAmelCase ) if len(_lowerCAmelCase ) >= factor * num_class_images or num_images > 1e4: break else: __SCREAMING_SNAKE_CASE :Dict = int(factor * num_images ) __SCREAMING_SNAKE_CASE :Union[str, Any] = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=_lowerCAmelCase , aesthetic_weight=0.1 , ) __SCREAMING_SNAKE_CASE :Any = 0 __SCREAMING_SNAKE_CASE :Optional[int] = 0 __SCREAMING_SNAKE_CASE :List[Any] = tqdm(desc='''downloading real regularization images''' , total=_lowerCAmelCase ) with open(f'''{class_data_dir}/caption.txt''' , '''w''' ) as fa, open(f'''{class_data_dir}/urls.txt''' , '''w''' ) as fa, open( f'''{class_data_dir}/images.txt''' , '''w''' ) as fa: while total < num_class_images: __SCREAMING_SNAKE_CASE :List[Any] = class_images[count] count += 1 try: __SCREAMING_SNAKE_CASE :Optional[Any] = requests.get(images['''url'''] ) if img.status_code == 2_00: __SCREAMING_SNAKE_CASE :Any = Image.open(BytesIO(img.content ) ) with open(f'''{class_data_dir}/images/{total}.jpg''' , '''wb''' ) as f: f.write(img.content ) fa.write(images['''caption'''] + '''\n''' ) fa.write(images['''url'''] + '''\n''' ) fa.write(f'''{class_data_dir}/images/{total}.jpg''' + '''\n''' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def __lowerCamelCase ( ) -> List[Any]: __SCREAMING_SNAKE_CASE :Tuple = argparse.ArgumentParser('''''' , add_help=_lowerCAmelCase ) parser.add_argument('''--class_prompt''' , help='''text prompt to retrieve images''' , required=_lowerCAmelCase , type=_lowerCAmelCase ) parser.add_argument('''--class_data_dir''' , help='''path to save images''' , required=_lowerCAmelCase , type=_lowerCAmelCase ) parser.add_argument('''--num_class_images''' , help='''number of images to download''' , default=2_00 , type=_lowerCAmelCase ) return parser.parse_args() if __name__ == "__main__": lowerCamelCase_ = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
354
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = {"vocab_file": "spiece.model"} lowerCamelCase_ = { "vocab_file": { "bert_for_seq_generation": ( "https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model" ), } } lowerCamelCase_ = {"bert_for_seq_generation": 5_1_2} class _SCREAMING_SNAKE_CASE( A ): SCREAMING_SNAKE_CASE_ : str = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : List[int] = [] SCREAMING_SNAKE_CASE_ : List[Any] = ['''input_ids''', '''attention_mask'''] def __init__( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__="<s>" ,SCREAMING_SNAKE_CASE__="</s>" ,SCREAMING_SNAKE_CASE__="<unk>" ,SCREAMING_SNAKE_CASE__="<pad>" ,SCREAMING_SNAKE_CASE__="<::::>" ,SCREAMING_SNAKE_CASE__ = None ,**SCREAMING_SNAKE_CASE__ ,) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=SCREAMING_SNAKE_CASE__ ,eos_token=SCREAMING_SNAKE_CASE__ ,unk_token=SCREAMING_SNAKE_CASE__ ,pad_token=SCREAMING_SNAKE_CASE__ ,sep_token=SCREAMING_SNAKE_CASE__ ,sp_model_kwargs=self.sp_model_kwargs ,**SCREAMING_SNAKE_CASE__ ,) __SCREAMING_SNAKE_CASE :Dict = vocab_file __SCREAMING_SNAKE_CASE :Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(SCREAMING_SNAKE_CASE__ ) @property def _UpperCamelCase ( self ) -> List[str]: """simple docstring""" return self.sp_model.get_piece_size() def _UpperCamelCase ( self ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE :List[Any] = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE :int = self.__dict__.copy() __SCREAMING_SNAKE_CASE :Dict = None return state def __setstate__( self ,SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :List[str] = d # for backward compatibility if not hasattr(self ,'''sp_model_kwargs''' ): __SCREAMING_SNAKE_CASE :str = {} __SCREAMING_SNAKE_CASE :str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> List[str]: """simple docstring""" return self.sp_model.encode(SCREAMING_SNAKE_CASE__ ,out_type=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> int: """simple docstring""" return self.sp_model.piece_to_id(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[int] = self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE__ ) return token def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :int = [] __SCREAMING_SNAKE_CASE :List[str] = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__ ) + token __SCREAMING_SNAKE_CASE :Dict = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE__ ) out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__ ) return out_string.strip() def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __SCREAMING_SNAKE_CASE :Union[str, Any] = os.path.join( SCREAMING_SNAKE_CASE__ ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,SCREAMING_SNAKE_CASE__ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE__ ,'''wb''' ) as fi: __SCREAMING_SNAKE_CASE :Tuple = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE__ ) return (out_vocab_file,)
239
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class __snake_case ( metaclass=_lowercase): snake_case__ : List[Any] = ["note_seq"] def __init__( self : str , *__lowerCAmelCase : int , **__lowerCAmelCase : str ): """simple docstring""" requires_backends(self , ['''note_seq'''] ) @classmethod def SCREAMING_SNAKE_CASE ( cls : Dict , *__lowerCAmelCase : str , **__lowerCAmelCase : Tuple ): """simple docstring""" requires_backends(cls , ['''note_seq'''] ) @classmethod def SCREAMING_SNAKE_CASE ( cls : Tuple , *__lowerCAmelCase : Optional[Any] , **__lowerCAmelCase : Dict ): """simple docstring""" requires_backends(cls , ['''note_seq'''] )
72
"""simple docstring""" def snake_case_ ( A_ : list[list] ): '''simple docstring''' _lowerCamelCase : Optional[int] = current_set.copy() for row_index, row in enumerate(A_ ): _lowerCamelCase : Tuple = row[0] for column_index, column in enumerate(A_ ): if magnitude == 0: _lowerCamelCase : List[Any] = column continue _lowerCamelCase : List[Any] = column / magnitude # Subtract to cancel term _lowerCamelCase : Union[str, Any] = current_set[0] _lowerCamelCase : Dict = [first_row] _lowerCamelCase : str = current_set[1::] for row in current_set: _lowerCamelCase : Union[str, Any] = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(A_ ) continue for column_index in range(len(A_ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(A_ ) # Create next recursion iteration set if len(final_set[0] ) != 3: _lowerCamelCase : Any = final_set[0] _lowerCamelCase : Any = [] _lowerCamelCase : Optional[int] = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) _lowerCamelCase : Dict = simplify(A_ ) for i in range(len(A_ ) ): resultant[i].insert(0, current_first_column[i] ) resultant.insert(0, A_ ) _lowerCamelCase : Tuple = resultant return final_set def snake_case_ ( A_ : list[list] ): '''simple docstring''' if len(A_ ) == 0: raise IndexError('''solve_simultaneous() requires n lists of length n+1''' ) _lowerCamelCase : Dict = len(A_ ) + 1 if any(len(A_ ) != _length for item in equations ): raise IndexError('''solve_simultaneous() requires n lists of length n+1''' ) for row in equations: if any(not isinstance(A_, (int, float) ) for column in row ): raise ValueError('''solve_simultaneous() requires lists of integers''' ) if len(A_ ) == 1: return [equations[0][-1] / equations[0][0]] _lowerCamelCase : Optional[Any] = equations.copy() if any(0 in row for row in data_set ): _lowerCamelCase : str = data_set.copy() _lowerCamelCase : List[Any] = [] for row_index, row in enumerate(A_ ): if 0 not in row: _lowerCamelCase : Union[str, Any] = data_set.pop(A_ ) break if not full_row: raise ValueError('''solve_simultaneous() requires at least 1 full equation''' ) data_set.insert(0, A_ ) _lowerCamelCase : List[str] = data_set.copy() _lowerCamelCase : int = simplify(A_ ) _lowerCamelCase : int = simplified[::-1] _lowerCamelCase : list = [] for row in simplified: _lowerCamelCase : Tuple = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue _lowerCamelCase : Optional[Any] = row.copy()[: len(A_ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(A_ ) == 0: solutions.append(0 ) continue _lowerCamelCase : Tuple = temp_row[1::] _lowerCamelCase : Tuple = temp_row[::-1] for column_index, column in enumerate(A_ ): current_solution -= column * solutions[column_index] solutions.append(A_ ) _lowerCamelCase : Optional[int] = [] for item in solutions: final.append(float(round(A_, 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
72
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __A ={ 'configuration_vision_encoder_decoder': ['VisionEncoderDecoderConfig', 'VisionEncoderDecoderOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =['VisionEncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =['TFVisionEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =['FlaxVisionEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys __A =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
368
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class _snake_case ( a__ ): lowerCAmelCase :torch.FloatTensor class _snake_case ( a__ , a__ ): @register_to_config def __init__( self , _lowerCamelCase = 3 , _lowerCamelCase = 3 , _lowerCamelCase = ("DownEncoderBlock2D",) , _lowerCamelCase = ("UpDecoderBlock2D",) , _lowerCamelCase = (64,) , _lowerCamelCase = 1 , _lowerCamelCase = "silu" , _lowerCamelCase = 3 , _lowerCamelCase = 32 , _lowerCamelCase = 256 , _lowerCamelCase = 32 , _lowerCamelCase = None , _lowerCamelCase = 0.18215 , _lowerCamelCase = "group" , ): super().__init__() # pass init params to Encoder UpperCAmelCase__ : str = Encoder( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , down_block_types=_lowerCamelCase , block_out_channels=_lowerCamelCase , layers_per_block=_lowerCamelCase , act_fn=_lowerCamelCase , norm_num_groups=_lowerCamelCase , double_z=_lowerCamelCase , ) UpperCAmelCase__ : Optional[Any] = vq_embed_dim if vq_embed_dim is not None else latent_channels UpperCAmelCase__ : Any = nn.Convad(_lowerCamelCase , _lowerCamelCase , 1) UpperCAmelCase__ : Optional[int] = VectorQuantizer(_lowerCamelCase , _lowerCamelCase , beta=0.25 , remap=_lowerCamelCase , sane_index_shape=_lowerCamelCase) UpperCAmelCase__ : Optional[int] = nn.Convad(_lowerCamelCase , _lowerCamelCase , 1) # pass init params to Decoder UpperCAmelCase__ : str = Decoder( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , up_block_types=_lowerCamelCase , block_out_channels=_lowerCamelCase , layers_per_block=_lowerCamelCase , act_fn=_lowerCamelCase , norm_num_groups=_lowerCamelCase , norm_type=_lowerCamelCase , ) @apply_forward_hook def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase = True): UpperCAmelCase__ : Union[str, Any] = self.encoder(_lowerCamelCase) UpperCAmelCase__ : str = self.quant_conv(_lowerCamelCase) if not return_dict: return (h,) return VQEncoderOutput(latents=_lowerCamelCase) @apply_forward_hook def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase = False , _lowerCamelCase = True): # also go through quantization layer if not force_not_quantize: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.quantize(_lowerCamelCase) else: UpperCAmelCase__ : Union[str, Any] = h UpperCAmelCase__ : Any = self.post_quant_conv(_lowerCamelCase) UpperCAmelCase__ : Any = self.decoder(_lowerCamelCase , quant if self.config.norm_type == """spatial""" else None) if not return_dict: return (dec,) return DecoderOutput(sample=_lowerCamelCase) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase = True): UpperCAmelCase__ : Dict = sample UpperCAmelCase__ : Dict = self.encode(_lowerCamelCase).latents UpperCAmelCase__ : List[str] = self.decode(_lowerCamelCase).sample if not return_dict: return (dec,) return DecoderOutput(sample=_lowerCamelCase)
283
0
from __future__ import annotations import collections import pprint from pathlib import Path def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> Union[str, Any]: return "".join(sorted(__lowerCamelCase ) ) def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> Any: return word_by_signature[signature(__lowerCamelCase )] lowerCamelCase__ : Dict = Path(__file__).parent.joinpath('words.txt').read_text(encoding='utf-8') lowerCamelCase__ : Dict = sorted({word.strip().lower() for word in data.splitlines()}) lowerCamelCase__ : Optional[Any] = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": lowerCamelCase__ : List[str] = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('anagrams.txt', 'w') as file: file.write('all_anagrams = \n ') file.write(pprint.pformat(all_anagrams))
225
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class UpperCAmelCase ( A_ ): A__ : List[str] = "megatron-bert" def __init__(self : Optional[int] , snake_case__ : List[str]=2_90_56 , snake_case__ : List[Any]=10_24 , snake_case__ : str=24 , snake_case__ : Tuple=16 , snake_case__ : Union[str, Any]=40_96 , snake_case__ : str="gelu" , snake_case__ : str=0.1 , snake_case__ : Optional[int]=0.1 , snake_case__ : Tuple=5_12 , snake_case__ : Union[str, Any]=2 , snake_case__ : Dict=0.02 , snake_case__ : List[Any]=1e-12 , snake_case__ : int=0 , snake_case__ : Tuple="absolute" , snake_case__ : Any=True , **snake_case__ : Union[str, Any] , ) -> Optional[Any]: '''simple docstring''' super().__init__(pad_token_id=snake_case__ , **snake_case__ ) snake_case : Tuple = vocab_size snake_case : str = hidden_size snake_case : str = num_hidden_layers snake_case : str = num_attention_heads snake_case : Optional[int] = hidden_act snake_case : int = intermediate_size snake_case : List[str] = hidden_dropout_prob snake_case : Union[str, Any] = attention_probs_dropout_prob snake_case : Dict = max_position_embeddings snake_case : List[str] = type_vocab_size snake_case : List[str] = initializer_range snake_case : Tuple = layer_norm_eps snake_case : int = position_embedding_type snake_case : str = use_cache
59
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class UpperCamelCase ( lowercase_ ): lowercase = 'Salesforce/blip-image-captioning-base' lowercase = ( 'This is a tool that generates a description of an image. It takes an input named `image` which should be the ' 'image to caption, and returns a text that contains the description in English.' ) lowercase = 'image_captioner' lowercase = AutoModelForVisionaSeq lowercase = ['image'] lowercase = ['text'] def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Optional[int]: '''simple docstring''' requires_backends(self ,['vision'] ) super().__init__(*__UpperCamelCase ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Any: '''simple docstring''' return self.pre_processor(images=__UpperCamelCase ,return_tensors='pt' ) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]: '''simple docstring''' return self.model.generate(**__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' return self.pre_processor.batch_decode(__UpperCamelCase ,skip_special_tokens=__UpperCamelCase )[0].strip()
321
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Union[str, Any] = [[1, 2, 4], [1, 2, 3, 4]] lowercase_ : List[Any] = DisjunctiveConstraint(__UpperCamelCase ) self.assertTrue(isinstance(dc.token_ids ,__UpperCamelCase ) ) with self.assertRaises(__UpperCamelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__UpperCamelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : List[Any] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__UpperCamelCase ): DisjunctiveConstraint(__UpperCamelCase ) # fails here def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : Optional[int] = [[1, 2, 3], [1, 2, 4]] lowercase_ : Dict = DisjunctiveConstraint(__UpperCamelCase ) lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = dc.update(1 ) lowercase_ : str = stepped is True and completed is False and reset is False self.assertTrue(__UpperCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowercase_ , lowercase_ , lowercase_ : Optional[Any] = dc.update(2 ) lowercase_ : Any = stepped is True and completed is False and reset is False self.assertTrue(__UpperCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase_ , lowercase_ , lowercase_ : Tuple = dc.update(3 ) lowercase_ : Union[str, Any] = stepped is True and completed is True and reset is False self.assertTrue(__UpperCamelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : List[str] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] lowercase_ : Union[str, Any] = DisjunctiveConstraint(__UpperCamelCase ) lowercase_ , lowercase_ , lowercase_ : Optional[int] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowercase_ , lowercase_ , lowercase_ : int = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase_ , lowercase_ , lowercase_ : str = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) lowercase_ , lowercase_ , lowercase_ : List[str] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() lowercase_ , lowercase_ , lowercase_ : Optional[int] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) lowercase_ , lowercase_ , lowercase_ : int = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase_ , lowercase_ , lowercase_ : Dict = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
321
1
import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : str , a : List[str] , a : str=7 , a : int=3 , a : Dict=18 , a : Optional[Any]=30 , a : int=400 , a : str=True , a : Dict=None , a : str=True , ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Any = size if size is not None else {"height": 18, "width": 18} SCREAMING_SNAKE_CASE : Optional[int] = parent SCREAMING_SNAKE_CASE : Optional[int] = batch_size SCREAMING_SNAKE_CASE : Tuple = num_channels SCREAMING_SNAKE_CASE : Any = image_size SCREAMING_SNAKE_CASE : List[Any] = min_resolution SCREAMING_SNAKE_CASE : str = max_resolution SCREAMING_SNAKE_CASE : List[Any] = do_resize SCREAMING_SNAKE_CASE : Optional[Any] = size SCREAMING_SNAKE_CASE : Dict = do_normalize def __UpperCamelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8866_4436_3403_3203, 0.6618_8293_6954_4983, 0.3891_7464_0178_6804], [-0.6042_5591_4688_1104, -0.0_2295_0088_6052_8469, 0.5423_7973_6900_3296], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class _UpperCamelCase ( __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =ImageGPTImageProcessor if is_vision_available() else None def __UpperCamelCase ( self : Dict ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = ImageGPTImageProcessingTester(self ) @property def __UpperCamelCase ( self : str ) -> Any: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __UpperCamelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a , "clusters" ) ) self.assertTrue(hasattr(a , "do_resize" ) ) self.assertTrue(hasattr(a , "size" ) ) self.assertTrue(hasattr(a , "do_normalize" ) ) def __UpperCamelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 18} ) SCREAMING_SNAKE_CASE : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.image_processing_class(**self.image_processor_dict ) SCREAMING_SNAKE_CASE : Any = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(a , obj[key] ) ) else: self.assertEqual(obj[key] , a ) def __UpperCamelCase ( self : Optional[int] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE : int = os.path.join(a , "image_processor.json" ) image_processor_first.to_json_file(a ) SCREAMING_SNAKE_CASE : Any = self.image_processing_class.from_json_file(a ).to_dict() SCREAMING_SNAKE_CASE : Optional[Any] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(a , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , a ) def __UpperCamelCase ( self : str ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(a ) SCREAMING_SNAKE_CASE : Tuple = self.image_processing_class.from_pretrained(a ).to_dict() SCREAMING_SNAKE_CASE : Optional[Any] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(a , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , a ) @unittest.skip("ImageGPT requires clusters at initialization" ) def __UpperCamelCase ( self : Dict ) -> Any: """simple docstring""" pass def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : List[Any] = load_dataset("hf-internal-testing/fixtures_image_utils" , split="test") SCREAMING_SNAKE_CASE : Dict = Image.open(dataset[4]["file"]) SCREAMING_SNAKE_CASE : List[Any] = Image.open(dataset[5]["file"]) SCREAMING_SNAKE_CASE : List[Any] = [imagea, imagea] return images @require_vision @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCamelCase ( self : Tuple ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = ImageGPTImageProcessor.from_pretrained("openai/imagegpt-small" ) SCREAMING_SNAKE_CASE : Dict = prepare_images() # test non-batched SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(images[0] , return_tensors="pt" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1024) ) SCREAMING_SNAKE_CASE : Optional[Any] = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() , a ) # test batched SCREAMING_SNAKE_CASE : Dict = image_processing(a , return_tensors="pt" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1024) ) SCREAMING_SNAKE_CASE : Any = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , a )
76
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : int = {} SCREAMING_SNAKE_CASE : Any = tokenizer(example["content"] , truncation=_a)["input_ids"] SCREAMING_SNAKE_CASE : Dict = len(example["content"]) / len(output["input_ids"]) return output a_ = HfArgumentParser(PretokenizationArguments) a_ = parser.parse_args() if args.num_workers is None: a_ = multiprocessing.cpu_count() a_ = AutoTokenizer.from_pretrained(args.tokenizer_dir) a_ = time.time() a_ = load_dataset(args.dataset_name, split='train') print(F'''Dataset loaded in {time.time()-t_start:.2f}s''') a_ = time.time() a_ = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ 'repo_name', 'path', 'copies', 'size', 'content', 'license', 'hash', 'line_mean', 'line_max', 'alpha_frac', 'autogenerated', ], ) print(F'''Dataset tokenized in {time.time()-t_start:.2f}s''') a_ = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
76
1
"""simple docstring""" from __future__ import annotations import os from typing import Any import requests a : Tuple = """https://api.github.com""" # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user a : Tuple = BASE_URL + """/user""" # https://github.com/settings/tokens a : List[Any] = os.environ.get("""USER_TOKEN""", """""") def lowercase__(A ) ->dict[Any, Any]: """simple docstring""" lowercase__ : List[str]= { "Authorization": f'''token {auth_token}''', "Accept": "application/vnd.github.v3+json", } return requests.get(A , headers=A ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(F"""{key}: {value}""") else: raise ValueError("""'USER_TOKEN' field cannot be empty.""")
150
"""simple docstring""" import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device a : Union[str, Any] = False class __UpperCAmelCase( unittest.TestCase ): """simple docstring""" pass @nightly @require_torch_gpu class __UpperCAmelCase( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self ): '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Dict= VersatileDiffusionTextToImagePipeline.from_pretrained("shi-labs/versatile-diffusion" ) # remove text_unet pipe.remove_unused_weights() pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowercase__ : Any= "A painting of a squirrel eating a burger " lowercase__ : Optional[Any]= torch.manual_seed(0 ) lowercase__ : List[str]= pipe( prompt=snake_case__ , generator=snake_case__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(snake_case__ ) lowercase__ : Optional[Any]= VersatileDiffusionTextToImagePipeline.from_pretrained(snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowercase__ : Any= generator.manual_seed(0 ) lowercase__ : Tuple= pipe( prompt=snake_case__ , generator=snake_case__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Tuple= VersatileDiffusionTextToImagePipeline.from_pretrained( "shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowercase__ : List[str]= "A painting of a squirrel eating a burger " lowercase__ : Union[str, Any]= torch.manual_seed(0 ) lowercase__ : Optional[Any]= pipe( prompt=snake_case__ , generator=snake_case__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" ).images lowercase__ : List[str]= image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowercase__ : Optional[int]= np.array([0.33_67, 0.31_69, 0.26_56, 0.38_70, 0.47_90, 0.37_96, 0.40_09, 0.48_78, 0.47_78] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
150
1
'''simple docstring''' import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case ( lowercase , unittest.TestCase ): """simple docstring""" _lowerCamelCase = MgpstrTokenizer _lowerCamelCase = False _lowerCamelCase = {} _lowerCamelCase = False def snake_case ( self ): """simple docstring""" super().setUp() # fmt: off lowerCamelCase_ = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on lowerCamelCase_ = dict(zip(UpperCamelCase , range(len(UpperCamelCase ) ) ) ) lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(UpperCamelCase ) + "\n" ) def snake_case ( self , **UpperCamelCase ): """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase ) def snake_case ( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = "tester" lowerCamelCase_ = "tester" return input_text, output_text @unittest.skip("MGP-STR always lower cases letters." ) def snake_case ( self ): """simple docstring""" pass def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.get_tokenizers(do_lower_case=UpperCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): lowerCamelCase_ = "[SPECIAL_TOKEN]" tokenizer.add_special_tokens({"cls_token": special_token} ) lowerCamelCase_ = tokenizer.encode([special_token] , add_special_tokens=UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , 1 ) lowerCamelCase_ = tokenizer.decode(UpperCamelCase , skip_special_tokens=UpperCamelCase ) self.assertTrue(special_token not in decoded ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): lowerCamelCase_ ,lowerCamelCase_ = self.get_input_output_texts(UpperCamelCase ) lowerCamelCase_ = tokenizer.tokenize(UpperCamelCase ) lowerCamelCase_ = tokenizer.convert_tokens_to_ids(UpperCamelCase ) lowerCamelCase_ = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowerCamelCase_ = tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertNotEqual(len(UpperCamelCase ) , 0 ) lowerCamelCase_ = tokenizer.decode(UpperCamelCase ) self.assertIsInstance(UpperCamelCase , UpperCamelCase ) self.assertEqual(text_a.replace(" " , "" ) , UpperCamelCase ) @unittest.skip("MGP-STR tokenizer only handles one sequence." ) def snake_case ( self ): """simple docstring""" pass @unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" ) def snake_case ( self ): """simple docstring""" pass
55
from __future__ import annotations import time a =list[tuple[int, int]] a =[ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] a =[[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class A_ : def __init__( self : List[str] ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : Node | None): __lowerCamelCase : Tuple = pos_x __lowerCamelCase : List[str] = pos_y __lowerCamelCase : str = (pos_y, pos_x) __lowerCamelCase : str = goal_x __lowerCamelCase : int = goal_y __lowerCamelCase : List[Any] = parent class A_ : def __init__( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : tuple[int, int] ,SCREAMING_SNAKE_CASE__ : tuple[int, int]): __lowerCamelCase : Any = Node(start[1] ,start[0] ,goal[1] ,goal[0] ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = Node(goal[1] ,goal[0] ,goal[1] ,goal[0] ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = [self.start] __lowerCamelCase : List[str] = False def lowerCAmelCase ( self : List[Any]): while self.node_queue: __lowerCamelCase : Any = self.node_queue.pop(0) if current_node.pos == self.target.pos: __lowerCamelCase : Dict = True return self.retrace_path(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = self.get_successors(SCREAMING_SNAKE_CASE__) for node in successors: self.node_queue.append(SCREAMING_SNAKE_CASE__) if not self.reached: return [self.start.pos] return None def lowerCAmelCase ( self : str ,SCREAMING_SNAKE_CASE__ : Node): __lowerCamelCase : Union[str, Any] = [] for action in delta: __lowerCamelCase : Optional[Any] = parent.pos_x + action[1] __lowerCamelCase : Optional[int] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0]) - 1 and 0 <= pos_y <= len(SCREAMING_SNAKE_CASE__) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,self.target.pos_y ,self.target.pos_x ,SCREAMING_SNAKE_CASE__)) return successors def lowerCAmelCase ( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : Node | None): __lowerCamelCase : List[Any] = node __lowerCamelCase : int = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x)) __lowerCamelCase : int = current_node.parent path.reverse() return path class A_ : def __init__( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : int): __lowerCamelCase : int = BreadthFirstSearch(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = BreadthFirstSearch(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = False def lowerCAmelCase ( self : str): while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: __lowerCamelCase : Any = self.fwd_bfs.node_queue.pop(0) __lowerCamelCase : Any = self.bwd_bfs.node_queue.pop(0) if current_bwd_node.pos == current_fwd_node.pos: __lowerCamelCase : List[str] = True return self.retrace_bidirectional_path( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = current_bwd_node __lowerCamelCase : int = current_fwd_node __lowerCamelCase : str = { self.fwd_bfs: self.fwd_bfs.get_successors(SCREAMING_SNAKE_CASE__), self.bwd_bfs: self.bwd_bfs.get_successors(SCREAMING_SNAKE_CASE__), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(SCREAMING_SNAKE_CASE__) if not self.reached: return [self.fwd_bfs.start.pos] return None def lowerCAmelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : Node ,SCREAMING_SNAKE_CASE__ : Node): __lowerCamelCase : List[Any] = self.fwd_bfs.retrace_path(SCREAMING_SNAKE_CASE__) __lowerCamelCase : str = self.bwd_bfs.retrace_path(SCREAMING_SNAKE_CASE__) bwd_path.pop() bwd_path.reverse() __lowerCamelCase : List[Any] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() a =(0, 0) a =(len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) a =time.time() a =BreadthFirstSearch(init, goal) a =bfs.search() a =time.time() - start_bfs_time print("""Unidirectional BFS computation time : """, bfs_time) a =time.time() a =BidirectionalBreadthFirstSearch(init, goal) a =bd_bfs.search() a =time.time() - start_bd_bfs_time print("""Bidirectional BFS computation time : """, bd_bfs_time)
73
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ :Tuple = { '''configuration_mctct''': ['''MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MCTCTConfig'''], '''feature_extraction_mctct''': ['''MCTCTFeatureExtractor'''], '''processing_mctct''': ['''MCTCTProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ :Union[str, Any] = [ '''MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MCTCTForCTC''', '''MCTCTModel''', '''MCTCTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys A_ :Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
245
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def A ( a_ = 3 ) -> qiskit.result.counts.Counts: if isinstance(a_ ,a_ ): raise TypeError('number of qubits must be a integer.' ) if number_of_qubits <= 0: raise ValueError('number of qubits must be > 0.' ) if math.floor(a_ ) != number_of_qubits: raise ValueError('number of qubits must be exact integer.' ) if number_of_qubits > 10: raise ValueError('number of qubits too large to simulate(>10).' ) __UpperCamelCase : str =QuantumRegister(a_ ,'qr' ) __UpperCamelCase : Optional[int] =ClassicalRegister(a_ ,'cr' ) __UpperCamelCase : Optional[Any] =QuantumCircuit(a_ ,a_ ) __UpperCamelCase : Any =number_of_qubits for i in range(a_ ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(a_ ): quantum_circuit.cp(np.pi / 2 ** (counter - j) ,a_ ,a_ ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(a_ ,number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(a_ ,a_ ) # simulate with 10000 shots __UpperCamelCase : Any =Aer.get_backend('qasm_simulator' ) __UpperCamelCase : Tuple =execute(a_ ,a_ ,shots=10_000 ) return job.result().get_counts(a_ ) if __name__ == "__main__": print( f"Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}" )
245
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Optional[int] = logging.get_logger(__name__) _lowerCamelCase : str = { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class UpperCamelCase_ ( A__ ): '''simple docstring''' UpperCAmelCase__ = 'dpr' def __init__( self : Tuple , UpperCAmelCase__ : Optional[int]=30_522 , UpperCAmelCase__ : Union[str, Any]=768 , UpperCAmelCase__ : int=12 , UpperCAmelCase__ : List[str]=12 , UpperCAmelCase__ : Dict=3_072 , UpperCAmelCase__ : Optional[int]="gelu" , UpperCAmelCase__ : str=0.1 , UpperCAmelCase__ : Optional[Any]=0.1 , UpperCAmelCase__ : Union[str, Any]=512 , UpperCAmelCase__ : List[Any]=2 , UpperCAmelCase__ : Dict=0.02 , UpperCAmelCase__ : List[Any]=1e-12 , UpperCAmelCase__ : Optional[Any]=0 , UpperCAmelCase__ : List[str]="absolute" , UpperCAmelCase__ : List[Any] = 0 , **UpperCAmelCase__ : List[str] , ) ->Union[str, Any]: '''simple docstring''' super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = initializer_range A__ = layer_norm_eps A__ = projection_dim A__ = position_embedding_type
14
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __a = { '''configuration_ctrl''': ['''CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CTRLConfig'''], '''tokenization_ctrl''': ['''CTRLTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ '''CTRL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CTRLForSequenceClassification''', '''CTRLLMHeadModel''', '''CTRLModel''', '''CTRLPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ '''TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFCTRLForSequenceClassification''', '''TFCTRLLMHeadModel''', '''TFCTRLModel''', '''TFCTRLPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
337
0
"""simple docstring""" import numpy as np class _lowerCAmelCase : def __init__( self ) -> List[Any]: '''simple docstring''' snake_case : List[str] = (0, 0) snake_case : int = None snake_case : Optional[int] = 0 snake_case : Dict = 0 snake_case : Optional[Any] = 0 def __eq__( self , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' return self.position == cell.position def lowerCamelCase ( self ) -> Any: '''simple docstring''' print(self.position ) class _lowerCAmelCase : def __init__( self , UpperCamelCase__=(5, 5) ) -> Optional[int]: '''simple docstring''' snake_case : Dict = np.zeros(__lowercase ) snake_case : Tuple = world_size[0] snake_case : List[Any] = world_size[1] def lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' print(self.w ) def lowerCamelCase ( self , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' snake_case : Optional[int] = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] snake_case : List[str] = cell.position[0] snake_case : Dict = cell.position[1] snake_case : int = [] for n in neughbour_cord: snake_case : int = current_x + n[0] snake_case : Tuple = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: snake_case : int = Cell() snake_case : Optional[int] = (x, y) snake_case : Union[str, Any] = cell neighbours.append(__lowercase ) return neighbours def __lowerCAmelCase ( lowercase : Dict , lowercase : List[Any] , lowercase : List[Any] ) -> List[str]: """simple docstring""" snake_case : str = [] snake_case : str = [] _open.append(lowercase ) while _open: snake_case : int = np.argmin([n.f for n in _open] ) snake_case : Dict = _open[min_f] _closed.append(_open.pop(lowercase ) ) if current == goal: break for n in world.get_neigbours(lowercase ): for c in _closed: if c == n: continue snake_case : List[Any] = current.g + 1 snake_case : int = n.position snake_case : List[Any] = goal.position snake_case : List[str] = (ya - ya) ** 2 + (xa - xa) ** 2 snake_case : List[str] = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(lowercase ) snake_case : int = [] while current.parent is not None: path.append(current.position ) snake_case : Optional[int] = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": __snake_case = Gridworld() # Start position and goal __snake_case = Cell() __snake_case = (0, 0) __snake_case = Cell() __snake_case = (4, 4) print(F'''path from {start.position} to {goal.position}''') __snake_case = astar(world, start, goal) # Just for visual reasons. for i in s: __snake_case = 1 print(world.w)
367
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __lowerCAmelCase ( lowercase : List[str] , lowercase : int , lowercase : Dict , lowercase : Dict , lowercase : int ) -> int: """simple docstring""" with open(lowercase ) as metadata_file: snake_case : str = json.load(lowercase ) snake_case : Optional[Any] = LukeConfig(use_entity_aware_attention=lowercase , **metadata["model_config"] ) # Load in the weights from the checkpoint_path snake_case : Tuple = torch.load(lowercase , map_location="cpu" )["module"] # Load the entity vocab file snake_case : Optional[Any] = load_original_entity_vocab(lowercase ) # add an entry for [MASK2] snake_case : Dict = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 snake_case : Union[str, Any] = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks snake_case : Tuple = AddedToken("<ent>" , lstrip=lowercase , rstrip=lowercase ) snake_case : str = AddedToken("<ent2>" , lstrip=lowercase , rstrip=lowercase ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(lowercase ) with open(os.path.join(lowercase , "tokenizer_config.json" ) , "r" ) as f: snake_case : str = json.load(lowercase ) snake_case : List[str] = "MLukeTokenizer" with open(os.path.join(lowercase , "tokenizer_config.json" ) , "w" ) as f: json.dump(lowercase , lowercase ) with open(os.path.join(lowercase , MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f: json.dump(lowercase , lowercase ) snake_case : Dict = MLukeTokenizer.from_pretrained(lowercase ) # Initialize the embeddings of the special tokens snake_case : Tuple = tokenizer.convert_tokens_to_ids(["@"] )[0] snake_case : str = tokenizer.convert_tokens_to_ids(["#"] )[0] snake_case : Union[str, Any] = state_dict["embeddings.word_embeddings.weight"] snake_case : str = word_emb[ent_init_index].unsqueeze(0 ) snake_case : Union[str, Any] = word_emb[enta_init_index].unsqueeze(0 ) snake_case : Union[str, Any] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: snake_case : Tuple = state_dict[bias_name] snake_case : Optional[Any] = decoder_bias[ent_init_index].unsqueeze(0 ) snake_case : Optional[Any] = decoder_bias[enta_init_index].unsqueeze(0 ) snake_case : Any = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: snake_case : Optional[int] = F'encoder.layer.{layer_index}.attention.self.' snake_case : Optional[Any] = state_dict[prefix + matrix_name] snake_case : Optional[Any] = state_dict[prefix + matrix_name] snake_case : Any = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks snake_case : List[Any] = state_dict["entity_embeddings.entity_embeddings.weight"] snake_case : str = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) snake_case : Tuple = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' snake_case : Optional[int] = state_dict["entity_predictions.bias"] snake_case : Optional[int] = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) snake_case : Union[str, Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) snake_case : Union[str, Any] = LukeForMaskedLM(config=lowercase ).eval() state_dict.pop("entity_predictions.decoder.weight" ) state_dict.pop("lm_head.decoder.weight" ) state_dict.pop("lm_head.decoder.bias" ) snake_case : Tuple = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )): snake_case : Any = state_dict[key] else: snake_case : Tuple = state_dict[key] snake_case ,snake_case : Optional[Any] = model.load_state_dict(lowercase , strict=lowercase ) if set(lowercase ) != {"luke.embeddings.position_ids"}: raise ValueError(F'Unexpected unexpected_keys: {unexpected_keys}' ) if set(lowercase ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'Unexpected missing_keys: {missing_keys}' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs snake_case : Optional[Any] = MLukeTokenizer.from_pretrained(lowercase , task="entity_classification" ) snake_case : List[str] = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." snake_case : str = (0, 9) snake_case : Union[str, Any] = tokenizer(lowercase , entity_spans=[span] , return_tensors="pt" ) snake_case : int = model(**lowercase ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base snake_case : int = torch.Size((1, 33, 768) ) snake_case : str = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowercase , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base snake_case : Any = torch.Size((1, 1, 768) ) snake_case : List[Any] = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' F' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowercase , atol=1e-4 ): raise ValueError # Verify masked word/entity prediction snake_case : List[str] = MLukeTokenizer.from_pretrained(lowercase ) snake_case : List[Any] = "Tokyo is the capital of <mask>." snake_case : Optional[Any] = (24, 30) snake_case : List[str] = tokenizer(lowercase , entity_spans=[span] , return_tensors="pt" ) snake_case : Any = model(**lowercase ) snake_case : int = encoding["input_ids"][0].tolist() snake_case : str = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) ) snake_case : Tuple = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(lowercase ) snake_case : Tuple = outputs.entity_logits[0][0].argmax().item() snake_case : Optional[int] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(lowercase ) ) model.save_pretrained(lowercase ) def __lowerCAmelCase ( lowercase : Union[str, Any] ) -> Dict: """simple docstring""" snake_case : Tuple = ["[MASK]", "[PAD]", "[UNK]"] snake_case : Optional[Any] = [json.loads(lowercase ) for line in open(lowercase )] snake_case : Any = {} for entry in data: snake_case : Union[str, Any] = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: snake_case : Union[str, Any] = entity_id break snake_case : Dict = F'{language}:{entity_name}' snake_case : str = entity_id return new_mapping if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Path to a pytorch_model.bin file.""") parser.add_argument( """--metadata_path""", default=None, type=str, help="""Path to a metadata.json file, defining the configuration.""" ) parser.add_argument( """--entity_vocab_path""", default=None, type=str, help="""Path to an entity_vocab.tsv file, containing the entity vocabulary.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to where to dump the output PyTorch model.""" ) parser.add_argument( """--model_size""", default="""base""", type=str, choices=["""base""", """large"""], help="""Size of the model to be converted.""" ) __snake_case = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
112
0
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig __lowercase = logging.get_logger(__name__) # General docstring __lowercase = '''RegNetConfig''' # Base docstring __lowercase = '''facebook/regnet-y-040''' __lowercase = [1, 1088, 7, 7] # Image classification docstring __lowercase = '''facebook/regnet-y-040''' __lowercase = '''tabby, tabby cat''' __lowercase = [ '''facebook/regnet-y-040''', # See all regnet models at https://huggingface.co/models?filter=regnet ] class lowerCamelCase_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , __lowercase , __lowercase = 3 , __lowercase = 1 , __lowercase = 1 , __lowercase = "relu" , **__lowercase , ) -> Dict: super().__init__(**__lowercase) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb __UpperCamelCase :Optional[int] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2) __UpperCamelCase :Any = tf.keras.layers.ConvaD( filters=__lowercase , kernel_size=__lowercase , strides=__lowercase , padding='''VALID''' , groups=__lowercase , use_bias=__lowercase , name='''convolution''' , ) __UpperCamelCase :Tuple = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='''normalization''') __UpperCamelCase :List[str] = ACTaFN[activation] if activation is not None else tf.identity def UpperCamelCase__ ( self , __lowercase) -> List[Any]: __UpperCamelCase :Optional[int] = self.convolution(self.padding(__lowercase)) __UpperCamelCase :Optional[int] = self.normalization(__lowercase) __UpperCamelCase :Tuple = self.activation(__lowercase) return hidden_state class lowerCamelCase_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , __lowercase , **__lowercase) -> int: super().__init__(**__lowercase) __UpperCamelCase :Tuple = config.num_channels __UpperCamelCase :Optional[int] = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='''embedder''' , ) def UpperCamelCase__ ( self , __lowercase) -> Dict: __UpperCamelCase :Dict = shape_list(__lowercase)[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''') # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) __UpperCamelCase :Dict = tf.transpose(__lowercase , perm=(0, 2, 3, 1)) __UpperCamelCase :Optional[int] = self.embedder(__lowercase) return hidden_state class lowerCamelCase_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , __lowercase , __lowercase = 2 , **__lowercase) -> Optional[Any]: super().__init__(**__lowercase) __UpperCamelCase :Union[str, Any] = tf.keras.layers.ConvaD( filters=__lowercase , kernel_size=1 , strides=__lowercase , use_bias=__lowercase , name='''convolution''') __UpperCamelCase :int = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='''normalization''') def UpperCamelCase__ ( self , __lowercase , __lowercase = False) -> tf.Tensor: return self.normalization(self.convolution(__lowercase) , training=__lowercase) class lowerCamelCase_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , __lowercase , __lowercase , **__lowercase) -> Union[str, Any]: super().__init__(**__lowercase) __UpperCamelCase :int = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__lowercase , name='''pooler''') __UpperCamelCase :List[Any] = [ tf.keras.layers.ConvaD(filters=__lowercase , kernel_size=1 , activation='''relu''' , name='''attention.0'''), tf.keras.layers.ConvaD(filters=__lowercase , kernel_size=1 , activation='''sigmoid''' , name='''attention.2'''), ] def UpperCamelCase__ ( self , __lowercase) -> Any: # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] __UpperCamelCase :List[str] = self.pooler(__lowercase) for layer_module in self.attention: __UpperCamelCase :List[str] = layer_module(__lowercase) __UpperCamelCase :int = hidden_state * pooled return hidden_state class lowerCamelCase_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , __lowercase , __lowercase , __lowercase , __lowercase = 1 , **__lowercase) -> Tuple: super().__init__(**__lowercase) __UpperCamelCase :str = in_channels != out_channels or stride != 1 __UpperCamelCase :Any = max(1 , out_channels // config.groups_width) __UpperCamelCase :Optional[Any] = ( TFRegNetShortCut(__lowercase , stride=__lowercase , name='''shortcut''') if should_apply_shortcut else tf.keras.layers.Activation('''linear''' , name='''shortcut''') ) # `self.layers` instead of `self.layer` because that is a reserved argument. __UpperCamelCase :Optional[int] = [ TFRegNetConvLayer(__lowercase , kernel_size=1 , activation=config.hidden_act , name='''layer.0'''), TFRegNetConvLayer( __lowercase , stride=__lowercase , groups=__lowercase , activation=config.hidden_act , name='''layer.1'''), TFRegNetConvLayer(__lowercase , kernel_size=1 , activation=__lowercase , name='''layer.2'''), ] __UpperCamelCase :Dict = ACTaFN[config.hidden_act] def UpperCamelCase__ ( self , __lowercase) -> Any: __UpperCamelCase :Optional[int] = hidden_state for layer_module in self.layers: __UpperCamelCase :Any = layer_module(__lowercase) __UpperCamelCase :Tuple = self.shortcut(__lowercase) hidden_state += residual __UpperCamelCase :Optional[Any] = self.activation(__lowercase) return hidden_state class lowerCamelCase_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , __lowercase , __lowercase , __lowercase , __lowercase = 1 , **__lowercase) -> Union[str, Any]: super().__init__(**__lowercase) __UpperCamelCase :int = in_channels != out_channels or stride != 1 __UpperCamelCase :Optional[int] = max(1 , out_channels // config.groups_width) __UpperCamelCase :Dict = ( TFRegNetShortCut(__lowercase , stride=__lowercase , name='''shortcut''') if should_apply_shortcut else tf.keras.layers.Activation('''linear''' , name='''shortcut''') ) __UpperCamelCase :Dict = [ TFRegNetConvLayer(__lowercase , kernel_size=1 , activation=config.hidden_act , name='''layer.0'''), TFRegNetConvLayer( __lowercase , stride=__lowercase , groups=__lowercase , activation=config.hidden_act , name='''layer.1'''), TFRegNetSELayer(__lowercase , reduced_channels=int(round(in_channels / 4)) , name='''layer.2'''), TFRegNetConvLayer(__lowercase , kernel_size=1 , activation=__lowercase , name='''layer.3'''), ] __UpperCamelCase :Dict = ACTaFN[config.hidden_act] def UpperCamelCase__ ( self , __lowercase) -> Optional[int]: __UpperCamelCase :str = hidden_state for layer_module in self.layers: __UpperCamelCase :Optional[Any] = layer_module(__lowercase) __UpperCamelCase :List[Any] = self.shortcut(__lowercase) hidden_state += residual __UpperCamelCase :List[str] = self.activation(__lowercase) return hidden_state class lowerCamelCase_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , __lowercase , __lowercase , __lowercase , __lowercase = 2 , __lowercase = 2 , **__lowercase) -> int: super().__init__(**__lowercase) __UpperCamelCase :List[Any] = TFRegNetXLayer if config.layer_type == '''x''' else TFRegNetYLayer __UpperCamelCase :List[str] = [ # downsampling is done in the first layer with stride of 2 layer(__lowercase , __lowercase , __lowercase , stride=__lowercase , name='''layers.0'''), *[layer(__lowercase , __lowercase , __lowercase , name=f"""layers.{i+1}""") for i in range(depth - 1)], ] def UpperCamelCase__ ( self , __lowercase) -> Optional[Any]: for layer_module in self.layers: __UpperCamelCase :Tuple = layer_module(__lowercase) return hidden_state class lowerCamelCase_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , __lowercase , **__lowercase) -> str: super().__init__(**__lowercase) __UpperCamelCase :Any = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( __lowercase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='''stages.0''' , )) __UpperCamelCase :str = zip(config.hidden_sizes , config.hidden_sizes[1:]) for i, ((in_channels, out_channels), depth) in enumerate(zip(__lowercase , config.depths[1:])): self.stages.append(TFRegNetStage(__lowercase , __lowercase , __lowercase , depth=__lowercase , name=f"""stages.{i+1}""")) def UpperCamelCase__ ( self , __lowercase , __lowercase = False , __lowercase = True) -> TFBaseModelOutputWithNoAttention: __UpperCamelCase :Optional[Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __UpperCamelCase :Tuple = hidden_states + (hidden_state,) __UpperCamelCase :Optional[Any] = stage_module(__lowercase) if output_hidden_states: __UpperCamelCase :Tuple = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None) return TFBaseModelOutputWithNoAttention(last_hidden_state=__lowercase , hidden_states=__lowercase) @keras_serializable class lowerCamelCase_ ( tf.keras.layers.Layer ): '''simple docstring''' a__ : Optional[Any] = RegNetConfig def __init__( self , __lowercase , **__lowercase) -> Union[str, Any]: super().__init__(**__lowercase) __UpperCamelCase :List[str] = config __UpperCamelCase :List[Any] = TFRegNetEmbeddings(__lowercase , name='''embedder''') __UpperCamelCase :Any = TFRegNetEncoder(__lowercase , name='''encoder''') __UpperCamelCase :Optional[int] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__lowercase , name='''pooler''') @unpack_inputs def UpperCamelCase__ ( self , __lowercase , __lowercase = None , __lowercase = None , __lowercase = False , ) -> TFBaseModelOutputWithPoolingAndNoAttention: __UpperCamelCase :Optional[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __UpperCamelCase :Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict __UpperCamelCase :Union[str, Any] = self.embedder(__lowercase , training=__lowercase) __UpperCamelCase :Any = self.encoder( __lowercase , output_hidden_states=__lowercase , return_dict=__lowercase , training=__lowercase) __UpperCamelCase :List[str] = encoder_outputs[0] __UpperCamelCase :List[str] = self.pooler(__lowercase) # Change to NCHW output format have uniformity in the modules __UpperCamelCase :str = tf.transpose(__lowercase , perm=(0, 3, 1, 2)) __UpperCamelCase :List[Any] = tf.transpose(__lowercase , perm=(0, 3, 1, 2)) # Change the other hidden state outputs to NCHW as well if output_hidden_states: __UpperCamelCase :List[str] = tuple([tf.transpose(__lowercase , perm=(0, 3, 1, 2)) for h in encoder_outputs[1]]) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__lowercase , pooler_output=__lowercase , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : int = RegNetConfig a__ : List[str] = """regnet""" a__ : Optional[int] = """pixel_values""" @property def UpperCamelCase__ ( self) -> str: return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa)} __lowercase = r''' Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. ''' __lowercase = r''' Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( """The bare RegNet model outputting raw features without any specific head on top.""" , UpperCAmelCase_ , ) class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self , __lowercase , *__lowercase , **__lowercase) -> List[Any]: super().__init__(__lowercase , *__lowercase , **__lowercase) __UpperCamelCase :Tuple = TFRegNetMainLayer(__lowercase , name='''regnet''') @unpack_inputs @add_start_docstrings_to_model_forward(__lowercase) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__lowercase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase__ ( self , __lowercase , __lowercase = None , __lowercase = None , __lowercase=False , ) -> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: __UpperCamelCase :int = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __UpperCamelCase :Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict __UpperCamelCase :List[Any] = self.regnet( pixel_values=__lowercase , output_hidden_states=__lowercase , return_dict=__lowercase , training=__lowercase , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( """ RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , UpperCAmelCase_ , ) class lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' def __init__( self , __lowercase , *__lowercase , **__lowercase) -> int: super().__init__(__lowercase , *__lowercase , **__lowercase) __UpperCamelCase :Optional[Any] = config.num_labels __UpperCamelCase :str = TFRegNetMainLayer(__lowercase , name='''regnet''') # classification head __UpperCamelCase :List[Any] = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name='''classifier.1''') if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(__lowercase) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__lowercase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase__ ( self , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase=False , ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: __UpperCamelCase :Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __UpperCamelCase :int = return_dict if return_dict is not None else self.config.use_return_dict __UpperCamelCase :Union[str, Any] = self.regnet( __lowercase , output_hidden_states=__lowercase , return_dict=__lowercase , training=__lowercase) __UpperCamelCase :List[str] = outputs.pooler_output if return_dict else outputs[1] __UpperCamelCase :str = self.classifier[0](__lowercase) __UpperCamelCase :List[Any] = self.classifier[1](__lowercase) __UpperCamelCase :Tuple = None if labels is None else self.hf_compute_loss(labels=__lowercase , logits=__lowercase) if not return_dict: __UpperCamelCase :Tuple = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=__lowercase , logits=__lowercase , hidden_states=outputs.hidden_states)
43
"""simple docstring""" import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCAmelCase__ = 1_6 UpperCAmelCase__ = 3_2 def __UpperCAmelCase ( lowercase ,lowercase = 16 ): """simple docstring""" _UpperCAmelCase = AutoTokenizer.from_pretrained("""bert-base-cased""" ) _UpperCAmelCase = load_dataset("""glue""" ,"""mrpc""" ) def tokenize_function(lowercase ): # max_length=None => use the model max length (it's actually the default) _UpperCAmelCase = tokenizer(examples["""sentence1"""] ,examples["""sentence2"""] ,truncation=lowercase ,max_length=lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _UpperCAmelCase = datasets.map( lowercase ,batched=lowercase ,remove_columns=["""idx""", """sentence1""", """sentence2"""] ,) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCAmelCase = tokenized_datasets.rename_column("""label""" ,"""labels""" ) def collate_fn(lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. _UpperCAmelCase = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _UpperCAmelCase = 16 elif accelerator.mixed_precision != "no": _UpperCAmelCase = 8 else: _UpperCAmelCase = None return tokenizer.pad( lowercase ,padding="""longest""" ,max_length=lowercase ,pad_to_multiple_of=lowercase ,return_tensors="""pt""" ,) # Instantiate dataloaders. _UpperCAmelCase = DataLoader( tokenized_datasets["""train"""] ,shuffle=lowercase ,collate_fn=lowercase ,batch_size=lowercase ) _UpperCAmelCase = DataLoader( tokenized_datasets["""validation"""] ,shuffle=lowercase ,collate_fn=lowercase ,batch_size=lowercase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCAmelCase__ = mocked_dataloaders # noqa: F811 def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" ,lowercase ) == "1": _UpperCAmelCase = 2 # Initialize accelerator _UpperCAmelCase = Accelerator(cpu=args.cpu ,mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCAmelCase = config["""lr"""] _UpperCAmelCase = int(config["""num_epochs"""] ) _UpperCAmelCase = int(config["""seed"""] ) _UpperCAmelCase = int(config["""batch_size"""] ) _UpperCAmelCase = evaluate.load("""glue""" ,"""mrpc""" ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=lowercase ) def inner_training_loop(lowercase ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(lowercase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" ,return_dict=lowercase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _UpperCAmelCase = model.to(accelerator.device ) # Instantiate optimizer _UpperCAmelCase = AdamW(params=model.parameters() ,lr=lowercase ) _UpperCAmelCase , _UpperCAmelCase = get_dataloaders(lowercase ,lowercase ) # Instantiate scheduler _UpperCAmelCase = get_linear_schedule_with_warmup( optimizer=lowercase ,num_warmup_steps=1_00 ,num_training_steps=(len(lowercase ) * num_epochs) ,) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = accelerator.prepare( lowercase ,lowercase ,lowercase ,lowercase ,lowercase ) # Now we train the model for epoch in range(lowercase ): model.train() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _UpperCAmelCase = model(**lowercase ) _UpperCAmelCase = outputs.loss accelerator.backward(lowercase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase = model(**lowercase ) _UpperCAmelCase = outputs.logits.argmax(dim=-1 ) _UpperCAmelCase , _UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=lowercase ,references=lowercase ,) _UpperCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' ,lowercase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" ,type=lowercase ,default=lowercase ,choices=["""no""", """fp16""", """bf16""", """fp8"""] ,help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" ,) parser.add_argument("""--cpu""" ,action="""store_true""" ,help="""If passed, will train on the CPU.""" ) _UpperCAmelCase = parser.parse_args() _UpperCAmelCase = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(lowercase ,lowercase ) if __name__ == "__main__": main()
289
0
"""simple docstring""" import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) _UpperCamelCase : int = logging.getLogger() _UpperCamelCase : Optional[int] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class snake_case ( UpperCAmelCase ): def lowerCamelCase__ ( self : Union[str, Any] , A : str ): '''simple docstring''' os.makedirs(A , exist_ok=A ) a : Tuple = {'source': 'What is love ?', 'target': 'life'} a : Optional[Any] = {'train': 1_2, 'val': 2, 'test': 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: a : List[Any] = '\n'.join([contents[field]] * n_lines[split] ) with open(os.path.join(A , F'''{split}.{field}''' ) , 'w' ) as f: f.write(A ) def lowerCamelCase__ ( self : Tuple , A : int , A : str = "pytorch" ): '''simple docstring''' a : Dict = self.get_auto_remove_tmp_dir() a : Tuple = os.path.join(A , 'output' ) a : str = os.path.join(A , 'data' ) self._create_dummy_data(data_dir=A ) a : List[str] = F''' --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ '''.split() if gpus > 0: testargs.append(F'''--gpus={gpus}''' ) if is_apex_available(): testargs.append('--fp16' ) else: testargs.append('--gpus=0' ) testargs.append('--distributed_backend=ddp_cpu' ) testargs.append('--num_processes=2' ) a : List[str] = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(A , env=self.get_env() ) a : List[Any] = os.path.join(A , 'metrics.json' ) with open(A ) as f: a : str = json.load(A ) return result @require_torch_gpu def lowerCamelCase__ ( self : Any ): '''simple docstring''' a : Any = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' a : Optional[Any] = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_gpu @require_ray def lowerCamelCase__ ( self : Any ): '''simple docstring''' a : Any = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu @require_ray def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' a : Any = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 )
186
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _UpperCamelCase : List[str] = logging.get_logger(__name__) _UpperCamelCase : Optional[Any] = '▁' _UpperCamelCase : List[Any] = {'vocab_file': 'sentencepiece.bpe.model'} _UpperCamelCase : Optional[int] = { 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model' ), } } _UpperCamelCase : List[str] = { 'facebook/nllb-200-distilled-600M': 1024, } # fmt: off _UpperCamelCase : List[str] = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class snake_case ( UpperCAmelCase ): __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = ['''input_ids''', '''attention_mask'''] __magic_name__ = [] __magic_name__ = [] def __init__( self : List[str] , A : Union[str, Any] , A : List[Any]="<s>" , A : Dict="</s>" , A : List[Any]="</s>" , A : Any="<s>" , A : Dict="<unk>" , A : Any="<pad>" , A : Optional[int]="<mask>" , A : str=None , A : Tuple=None , A : List[str]=None , A : Optional[Dict[str, Any]] = None , A : Any=None , A : List[Any]=False , **A : Tuple , ): '''simple docstring''' a : int = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token a : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs a : Optional[Any] = legacy_behaviour super().__init__( bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , mask_token=A , tokenizer_file=A , src_lang=A , tgt_lang=A , additional_special_tokens=A , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=A , **A , ) a : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A ) ) a : Optional[int] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token a : List[str] = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab a : Any = 1 a : int = len(self.sp_model ) a : Optional[int] = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(A ) } a : Optional[int] = {v: k for k, v in self.lang_code_to_id.items()} a : Optional[Any] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) a : int = {v: k for k, v in self.fairseq_tokens_to_ids.items()} a : List[str] = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) a : Optional[int] = src_lang if src_lang is not None else 'eng_Latn' a : List[Any] = self.lang_code_to_id[self._src_lang] a : List[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : List[str] ): '''simple docstring''' a : Dict = self.__dict__.copy() a : int = None a : List[str] = self.sp_model.serialized_model_proto() return state def __setstate__( self : str , A : Any ): '''simple docstring''' a : str = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): a : Any = {} a : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' return self._src_lang @src_lang.setter def lowerCamelCase__ ( self : Dict , A : str ): '''simple docstring''' a : Any = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowerCamelCase__ ( self : Optional[int] , A : List[int] , A : Optional[List[int]] = None , A : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) a : Tuple = [1] * len(self.prefix_tokens ) a : int = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(A )) + suffix_ones return prefix_ones + ([0] * len(A )) + ([0] * len(A )) + suffix_ones def lowerCamelCase__ ( self : Any , A : List[int] , A : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCamelCase__ ( self : Optional[int] , A : List[int] , A : Optional[List[int]] = None ): '''simple docstring''' a : List[str] = [self.sep_token_id] a : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase__ ( self : List[str] , A : Optional[int] , A : str , A : Optional[str] , A : Optional[str] , **A : str ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) a : Any = src_lang a : Any = self(A , add_special_tokens=A , return_tensors=A , **A ) a : Tuple = self.convert_tokens_to_ids(A ) a : Optional[Any] = tgt_lang_id return inputs def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' a : Union[str, Any] = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase__ ( self : Any , A : str ): '''simple docstring''' return self.sp_model.encode(A , out_type=A ) def lowerCamelCase__ ( self : Union[str, Any] , A : Tuple ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] a : int = self.sp_model.PieceToId(A ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowerCamelCase__ ( self : Tuple , A : List[str] ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowerCamelCase__ ( self : List[str] , A : Dict ): '''simple docstring''' a : List[str] = ''.join(A ).replace(A , ' ' ).strip() return out_string def lowerCamelCase__ ( self : Any , A : str , A : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(A ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return a : Optional[int] = os.path.join( A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A ) elif not os.path.isfile(self.vocab_file ): with open(A , 'wb' ) as fi: a : Tuple = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,) def lowerCamelCase__ ( self : Any , A : List[str] , A : str = "eng_Latn" , A : Optional[List[str]] = None , A : str = "fra_Latn" , **A : Optional[int] , ): '''simple docstring''' a : Union[str, Any] = src_lang a : Optional[int] = tgt_lang return super().prepare_seqaseq_batch(A , A , **A ) def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCamelCase__ ( self : Union[str, Any] , A : Dict ): '''simple docstring''' a : Optional[int] = self.lang_code_to_id[src_lang] if self.legacy_behaviour: a : List[Any] = [] a : Optional[int] = [self.eos_token_id, self.cur_lang_code] else: a : Union[str, Any] = [self.cur_lang_code] a : List[str] = [self.eos_token_id] def lowerCamelCase__ ( self : Optional[Any] , A : str ): '''simple docstring''' a : Tuple = self.lang_code_to_id[lang] if self.legacy_behaviour: a : List[str] = [] a : Union[str, Any] = [self.eos_token_id, self.cur_lang_code] else: a : Union[str, Any] = [self.cur_lang_code] a : List[str] = [self.eos_token_id]
186
1
"""simple docstring""" import argparse import os import re import packaging.version __A = "examples/" __A = { "examples": (re.compile(r"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(r"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(r"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), r"\1version=\"VERSION\","), "doc": (re.compile(r"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } __A = { "init": "src/diffusers/__init__.py", "setup": "setup.py", } __A = "README.md" def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Tuple: with open(__SCREAMING_SNAKE_CASE , "r" , encoding="utf-8" , newline="\n" ) as f: __lowerCAmelCase: Union[str, Any] = f.read() __lowerCAmelCase , __lowerCAmelCase: Dict = REPLACE_PATTERNS[pattern] __lowerCAmelCase: Tuple = replace.replace("VERSION" , __SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Any = re_pattern.sub(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) with open(__SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(__SCREAMING_SNAKE_CASE ) def a__ ( __SCREAMING_SNAKE_CASE ) -> int: for folder, directories, fnames in os.walk(__SCREAMING_SNAKE_CASE ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("research_projects" ) if "legacy" in directories: directories.remove("legacy" ) for fname in fnames: if fname.endswith(".py" ): update_version_in_file(os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , pattern="examples" ) def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ) -> Union[str, Any]: for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if not patch: update_version_in_examples(__SCREAMING_SNAKE_CASE ) def a__ ( ) -> List[Any]: __lowerCAmelCase: Optional[Any] = "🤗 Transformers currently provides the following architectures" __lowerCAmelCase: List[str] = "1. Want to contribute a new model?" with open(__SCREAMING_SNAKE_CASE , "r" , encoding="utf-8" , newline="\n" ) as f: __lowerCAmelCase: int = f.readlines() # Find the start of the list. __lowerCAmelCase: Optional[int] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __lowerCAmelCase: Dict = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("1." ): __lowerCAmelCase: int = lines[index].replace( "https://huggingface.co/docs/diffusers/main/model_doc" , "https://huggingface.co/docs/diffusers/model_doc" , ) index += 1 with open(__SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(__SCREAMING_SNAKE_CASE ) def a__ ( ) -> List[str]: with open(REPLACE_FILES["init"] , "r" ) as f: __lowerCAmelCase: int = f.read() __lowerCAmelCase: List[str] = REPLACE_PATTERNS["init"][0].search(__SCREAMING_SNAKE_CASE ).groups()[0] return packaging.version.parse(__SCREAMING_SNAKE_CASE ) def a__ ( __SCREAMING_SNAKE_CASE=False ) -> str: __lowerCAmelCase: Dict = get_version() if patch and default_version.is_devrelease: raise ValueError("Can't create a patch version from the dev branch, checkout a released version!" ) if default_version.is_devrelease: __lowerCAmelCase: Optional[int] = default_version.base_version elif patch: __lowerCAmelCase: List[str] = F"{default_version.major}.{default_version.minor}.{default_version.micro + 1}" else: __lowerCAmelCase: Tuple = F"{default_version.major}.{default_version.minor + 1}.0" # Now let's ask nicely if that's the right one. __lowerCAmelCase: Tuple = input(F"Which version are you releasing? [{default_version}]" ) if len(__SCREAMING_SNAKE_CASE ) == 0: __lowerCAmelCase: Union[str, Any] = default_version print(F"Updating version to {version}." ) global_version_update(__SCREAMING_SNAKE_CASE , patch=__SCREAMING_SNAKE_CASE ) def a__ ( ) -> List[Any]: __lowerCAmelCase: Tuple = get_version() __lowerCAmelCase: str = F"{current_version.major}.{current_version.minor + 1}.0.dev0" __lowerCAmelCase: Tuple = current_version.base_version # Check with the user we got that right. __lowerCAmelCase: List[str] = input(F"Which version are we developing now? [{dev_version}]" ) if len(__SCREAMING_SNAKE_CASE ) == 0: __lowerCAmelCase: Optional[Any] = dev_version print(F"Updating version to {version}." ) global_version_update(__SCREAMING_SNAKE_CASE ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") __A = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
217
"""simple docstring""" import pickle import numpy as np from matplotlib import pyplot as plt class snake_case : def __init__( self : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any]=0.2 , UpperCamelCase__ : Any=0.2)-> Optional[int]: '''simple docstring''' __lowerCAmelCase: Optional[Any] = bp_numa __lowerCAmelCase: Optional[int] = bp_numa __lowerCAmelCase: Tuple = bp_numa __lowerCAmelCase: Optional[int] = conva_get[:2] __lowerCAmelCase: int = conva_get[2] __lowerCAmelCase: List[str] = size_pa __lowerCAmelCase: Tuple = rate_w __lowerCAmelCase: Dict = rate_t __lowerCAmelCase: List[Any] = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0]) + 0.5) for i in range(self.conva[1]) ] __lowerCAmelCase: Union[str, Any] = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa) + 0.5) __lowerCAmelCase: int = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa) + 0.5) __lowerCAmelCase: Optional[Any] = -2 * np.random.rand(self.conva[1]) + 1 __lowerCAmelCase: int = -2 * np.random.rand(self.num_bpa) + 1 __lowerCAmelCase: str = -2 * np.random.rand(self.num_bpa) + 1 def lowercase_ ( self : Optional[int] , UpperCamelCase__ : int)-> List[str]: '''simple docstring''' __lowerCAmelCase: Any = { "num_bp1": self.num_bpa, "num_bp2": self.num_bpa, "num_bp3": self.num_bpa, "conv1": self.conva, "step_conv1": self.step_conva, "size_pooling1": self.size_poolinga, "rate_weight": self.rate_weight, "rate_thre": self.rate_thre, "w_conv1": self.w_conva, "wkj": self.wkj, "vji": self.vji, "thre_conv1": self.thre_conva, "thre_bp2": self.thre_bpa, "thre_bp3": self.thre_bpa, } with open(UpperCamelCase__ , "wb") as f: pickle.dump(UpperCamelCase__ , UpperCamelCase__) print(f"Model saved: {save_path}") @classmethod def lowercase_ ( cls : Dict , UpperCamelCase__ : Union[str, Any])-> List[Any]: '''simple docstring''' with open(UpperCamelCase__ , "rb") as f: __lowerCAmelCase: Dict = pickle.load(UpperCamelCase__) # noqa: S301 __lowerCAmelCase: Optional[int] = model_dic.get("conv1") conv_get.append(model_dic.get("step_conv1")) __lowerCAmelCase: List[str] = model_dic.get("size_pooling1") __lowerCAmelCase: Union[str, Any] = model_dic.get("num_bp1") __lowerCAmelCase: Any = model_dic.get("num_bp2") __lowerCAmelCase: Union[str, Any] = model_dic.get("num_bp3") __lowerCAmelCase: Optional[int] = model_dic.get("rate_weight") __lowerCAmelCase: int = model_dic.get("rate_thre") # create model instance __lowerCAmelCase: Tuple = CNN(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__) # modify model parameter __lowerCAmelCase: Any = model_dic.get("w_conv1") __lowerCAmelCase: Optional[Any] = model_dic.get("wkj") __lowerCAmelCase: Any = model_dic.get("vji") __lowerCAmelCase: Dict = model_dic.get("thre_conv1") __lowerCAmelCase: int = model_dic.get("thre_bp2") __lowerCAmelCase: Optional[int] = model_dic.get("thre_bp3") return conv_ins def lowercase_ ( self : Dict , UpperCamelCase__ : List[Any])-> List[Any]: '''simple docstring''' return 1 / (1 + np.exp(-1 * x)) def lowercase_ ( self : Dict , UpperCamelCase__ : List[Any])-> Optional[Any]: '''simple docstring''' return round(UpperCamelCase__ , 3) def lowercase_ ( self : Optional[int] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple , UpperCamelCase__ : int)-> Dict: '''simple docstring''' __lowerCAmelCase: List[Any] = convs[0] __lowerCAmelCase: int = convs[1] __lowerCAmelCase: Union[str, Any] = np.shape(UpperCamelCase__)[0] # get the data slice of original image data, data_focus __lowerCAmelCase: Optional[Any] = [] for i_focus in range(0 , size_data - size_conv + 1 , UpperCamelCase__): for j_focus in range(0 , size_data - size_conv + 1 , UpperCamelCase__): __lowerCAmelCase: Union[str, Any] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(UpperCamelCase__) # calculate the feature map of every single kernel, and saved as list of matrix __lowerCAmelCase: int = [] __lowerCAmelCase: Optional[int] = int((size_data - size_conv) / conv_step + 1) for i_map in range(UpperCamelCase__): __lowerCAmelCase: List[str] = [] for i_focus in range(len(UpperCamelCase__)): __lowerCAmelCase: Union[str, Any] = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map])) - thre_convs[i_map] ) featuremap.append(self.sig(UpperCamelCase__)) __lowerCAmelCase: str = np.asmatrix(UpperCamelCase__).reshape( UpperCamelCase__ , UpperCamelCase__) data_featuremap.append(UpperCamelCase__) # expanding the data slice to One dimenssion __lowerCAmelCase: Optional[Any] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(UpperCamelCase__)) __lowerCAmelCase: List[Any] = np.asarray(UpperCamelCase__) return focus_list, data_featuremap def lowercase_ ( self : Any , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[Any]="average_pool")-> str: '''simple docstring''' __lowerCAmelCase: Tuple = len(featuremaps[0]) __lowerCAmelCase: List[Any] = int(size_map / size_pooling) __lowerCAmelCase: int = [] for i_map in range(len(UpperCamelCase__)): __lowerCAmelCase: str = featuremaps[i_map] __lowerCAmelCase: List[Any] = [] for i_focus in range(0 , UpperCamelCase__ , UpperCamelCase__): for j_focus in range(0 , UpperCamelCase__ , UpperCamelCase__): __lowerCAmelCase: Any = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(UpperCamelCase__)) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(UpperCamelCase__)) __lowerCAmelCase: Optional[int] = np.asmatrix(UpperCamelCase__).reshape(UpperCamelCase__ , UpperCamelCase__) featuremap_pooled.append(UpperCamelCase__) return featuremap_pooled def lowercase_ ( self : Union[str, Any] , UpperCamelCase__ : str)-> int: '''simple docstring''' __lowerCAmelCase: List[Any] = [] for i in range(len(UpperCamelCase__)): __lowerCAmelCase: Union[str, Any] = np.shape(data[i]) __lowerCAmelCase: int = data[i].reshape(1 , shapes[0] * shapes[1]) __lowerCAmelCase: Dict = data_listed.getA().tolist()[0] data_expanded.extend(UpperCamelCase__) __lowerCAmelCase: Any = np.asarray(UpperCamelCase__) return data_expanded def lowercase_ ( self : Union[str, Any] , UpperCamelCase__ : Union[str, Any])-> Optional[Any]: '''simple docstring''' __lowerCAmelCase: Dict = np.asarray(UpperCamelCase__) __lowerCAmelCase: Optional[int] = np.shape(UpperCamelCase__) __lowerCAmelCase: Optional[int] = data_mat.reshape(1 , shapes[0] * shapes[1]) return data_expanded def lowercase_ ( self : Dict , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict)-> List[Any]: '''simple docstring''' __lowerCAmelCase: Optional[int] = [] __lowerCAmelCase: Any = 0 for i_map in range(UpperCamelCase__): __lowerCAmelCase: Optional[Any] = np.ones((size_map, size_map)) for i in range(0 , UpperCamelCase__ , UpperCamelCase__): for j in range(0 , UpperCamelCase__ , UpperCamelCase__): __lowerCAmelCase: Optional[Any] = pd_pool[ i_pool ] __lowerCAmelCase: str = i_pool + 1 __lowerCAmelCase: Dict = np.multiply( UpperCamelCase__ , np.multiply(out_map[i_map] , (1 - out_map[i_map]))) pd_all.append(UpperCamelCase__) return pd_all def lowercase_ ( self : str , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : int , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : str=bool)-> List[str]: '''simple docstring''' print("----------------------Start Training-------------------------") print((" - - Shape: Train_Data ", np.shape(UpperCamelCase__))) print((" - - Shape: Teach_Data ", np.shape(UpperCamelCase__))) __lowerCAmelCase: str = 0 __lowerCAmelCase: Optional[int] = [] __lowerCAmelCase: List[Any] = 1_0_0_0_0 while rp < n_repeat and mse >= error_accuracy: __lowerCAmelCase: Optional[Any] = 0 print(f"-------------Learning Time {rp}--------------") for p in range(len(UpperCamelCase__)): # print('------------Learning Image: %d--------------'%p) __lowerCAmelCase: Dict = np.asmatrix(datas_train[p]) __lowerCAmelCase: Dict = np.asarray(datas_teach[p]) __lowerCAmelCase , __lowerCAmelCase: int = self.convolute( UpperCamelCase__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) __lowerCAmelCase: Any = self.pooling(UpperCamelCase__ , self.size_poolinga) __lowerCAmelCase: Optional[Any] = np.shape(UpperCamelCase__) __lowerCAmelCase: str = self._expand(UpperCamelCase__) __lowerCAmelCase: str = data_bp_input __lowerCAmelCase: int = np.dot(UpperCamelCase__ , self.vji.T) - self.thre_bpa __lowerCAmelCase: int = self.sig(UpperCamelCase__) __lowerCAmelCase: Optional[Any] = np.dot(UpperCamelCase__ , self.wkj.T) - self.thre_bpa __lowerCAmelCase: str = self.sig(UpperCamelCase__) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- __lowerCAmelCase: Union[str, Any] = np.multiply( (data_teach - bp_outa) , np.multiply(UpperCamelCase__ , (1 - bp_outa))) __lowerCAmelCase: Any = np.multiply( np.dot(UpperCamelCase__ , self.wkj) , np.multiply(UpperCamelCase__ , (1 - bp_outa))) __lowerCAmelCase: str = np.dot(UpperCamelCase__ , self.vji) __lowerCAmelCase: Union[str, Any] = pd_i_all / (self.size_poolinga * self.size_poolinga) __lowerCAmelCase: str = pd_conva_pooled.T.getA().tolist() __lowerCAmelCase: str = self._calculate_gradient_from_pool( UpperCamelCase__ , UpperCamelCase__ , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1]): __lowerCAmelCase: List[Any] = self._expand_mat(pd_conva_all[k_conv]) __lowerCAmelCase: int = self.rate_weight * np.dot(UpperCamelCase__ , UpperCamelCase__) __lowerCAmelCase: Tuple = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0])) __lowerCAmelCase: Tuple = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv]) * self.rate_thre ) # all connected layer __lowerCAmelCase: List[Any] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight __lowerCAmelCase: Union[str, Any] = self.vji + pd_j_all.T * bp_outa * self.rate_weight __lowerCAmelCase: Tuple = self.thre_bpa - pd_k_all * self.rate_thre __lowerCAmelCase: Optional[int] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image __lowerCAmelCase: List[str] = np.sum(abs(data_teach - bp_outa)) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) __lowerCAmelCase: Tuple = rp + 1 __lowerCAmelCase: Optional[Any] = error_count / patterns all_mse.append(UpperCamelCase__) def draw_error(): __lowerCAmelCase: Dict = [error_accuracy for i in range(int(n_repeat * 1.2))] plt.plot(UpperCamelCase__ , "+-") plt.plot(UpperCamelCase__ , "r--") plt.xlabel("Learning Times") plt.ylabel("All_mse") plt.grid(UpperCamelCase__ , alpha=0.5) plt.show() print("------------------Training Complished---------------------") print((" - - Training epoch: ", rp, f" - - Mse: {mse:.6f}")) if draw_e: draw_error() return mse def lowercase_ ( self : Union[str, Any] , UpperCamelCase__ : Tuple)-> List[str]: '''simple docstring''' __lowerCAmelCase: int = [] print("-------------------Start Testing-------------------------") print((" - - Shape: Test_Data ", np.shape(UpperCamelCase__))) for p in range(len(UpperCamelCase__)): __lowerCAmelCase: Dict = np.asmatrix(datas_test[p]) __lowerCAmelCase , __lowerCAmelCase: Optional[int] = self.convolute( UpperCamelCase__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) __lowerCAmelCase: Tuple = self.pooling(UpperCamelCase__ , self.size_poolinga) __lowerCAmelCase: List[str] = self._expand(UpperCamelCase__) __lowerCAmelCase: int = data_bp_input __lowerCAmelCase: List[Any] = bp_outa * self.vji.T - self.thre_bpa __lowerCAmelCase: Any = self.sig(UpperCamelCase__) __lowerCAmelCase: Union[str, Any] = bp_outa * self.wkj.T - self.thre_bpa __lowerCAmelCase: List[str] = self.sig(UpperCamelCase__) produce_out.extend(bp_outa.getA().tolist()) __lowerCAmelCase: Tuple = [list(map(self.do_round , UpperCamelCase__)) for each in produce_out] return np.asarray(UpperCamelCase__) def lowercase_ ( self : int , UpperCamelCase__ : Any)-> Any: '''simple docstring''' __lowerCAmelCase: Union[str, Any] = np.asmatrix(UpperCamelCase__) __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = self.convolute( UpperCamelCase__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) __lowerCAmelCase: Any = self.pooling(UpperCamelCase__ , self.size_poolinga) return data_conveda, data_pooleda if __name__ == "__main__": pass
217
1
"""simple docstring""" def lowerCamelCase__ ( __snake_case, __snake_case ) -> float: """simple docstring""" _validate_point(__snake_case ) _validate_point(__snake_case ) if len(__snake_case ) != len(__snake_case ): raise ValueError('''Both points must be in the same n-dimensional space''' ) return float(sum(abs(a - b ) for a, b in zip(__snake_case, __snake_case ) ) ) def lowerCamelCase__ ( __snake_case ) -> None: """simple docstring""" if point: if isinstance(__snake_case, __snake_case ): for item in point: if not isinstance(__snake_case, (int, float) ): _UpperCamelCase = ( '''Expected a list of numbers as input, found ''' F'''{type(__snake_case ).__name__}''' ) raise TypeError(__snake_case ) else: _UpperCamelCase = F'''Expected a list of numbers as input, found {type(__snake_case ).__name__}''' raise TypeError(__snake_case ) else: raise ValueError('''Missing an input''' ) def lowerCamelCase__ ( __snake_case, __snake_case ) -> float: """simple docstring""" _validate_point(__snake_case ) _validate_point(__snake_case ) if len(__snake_case ) != len(__snake_case ): raise ValueError('''Both points must be in the same n-dimensional space''' ) return float(sum(abs(x - y ) for x, y in zip(__snake_case, __snake_case ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
100
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _UpperCAmelCase( lowerCamelCase ): def __init__( self , __a , __a , __a , __a = None , ) -> List[str]: '''simple docstring''' super().__init__() self.register_modules(transformer=__a , vae=__a , scheduler=__a) # create a imagenet -> id dictionary for easier use _UpperCamelCase = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(''','''): _UpperCamelCase = int(__a) _UpperCamelCase = dict(sorted(self.labels.items())) def UpperCAmelCase ( self , __a) -> List[int]: '''simple docstring''' if not isinstance(__a , __a): _UpperCamelCase = list(__a) for l in label: if l not in self.labels: raise ValueError( F'''{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.''') return [self.labels[l] for l in label] @torch.no_grad() def __call__( self , __a , __a = 4.0 , __a = None , __a = 50 , __a = "pil" , __a = True , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' _UpperCamelCase = len(__a) _UpperCamelCase = self.transformer.config.sample_size _UpperCamelCase = self.transformer.config.in_channels _UpperCamelCase = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=__a , device=self.device , dtype=self.transformer.dtype , ) _UpperCamelCase = torch.cat([latents] * 2) if guidance_scale > 1 else latents _UpperCamelCase = torch.tensor(__a , device=self.device).reshape(-1) _UpperCamelCase = torch.tensor([10_00] * batch_size , device=self.device) _UpperCamelCase = torch.cat([class_labels, class_null] , 0) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(__a) for t in self.progress_bar(self.scheduler.timesteps): if guidance_scale > 1: _UpperCamelCase = latent_model_input[: len(__a) // 2] _UpperCamelCase = torch.cat([half, half] , dim=0) _UpperCamelCase = self.scheduler.scale_model_input(__a , __a) _UpperCamelCase = t if not torch.is_tensor(__a): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) _UpperCamelCase = latent_model_input.device.type == '''mps''' if isinstance(__a , __a): _UpperCamelCase = torch.floataa if is_mps else torch.floataa else: _UpperCamelCase = torch.intaa if is_mps else torch.intaa _UpperCamelCase = torch.tensor([timesteps] , dtype=__a , device=latent_model_input.device) elif len(timesteps.shape) == 0: _UpperCamelCase = timesteps[None].to(latent_model_input.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _UpperCamelCase = timesteps.expand(latent_model_input.shape[0]) # predict noise model_output _UpperCamelCase = self.transformer( __a , timestep=__a , class_labels=__a).sample # perform guidance if guidance_scale > 1: _UpperCamelCase , _UpperCamelCase = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] _UpperCamelCase , _UpperCamelCase = torch.split(__a , len(__a) // 2 , dim=0) _UpperCamelCase = uncond_eps + guidance_scale * (cond_eps - uncond_eps) _UpperCamelCase = torch.cat([half_eps, half_eps] , dim=0) _UpperCamelCase = torch.cat([eps, rest] , dim=1) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: _UpperCamelCase , _UpperCamelCase = torch.split(__a , __a , dim=1) else: _UpperCamelCase = noise_pred # compute previous image: x_t -> x_t-1 _UpperCamelCase = self.scheduler.step(__a , __a , __a).prev_sample if guidance_scale > 1: _UpperCamelCase , _UpperCamelCase = latent_model_input.chunk(2 , dim=0) else: _UpperCamelCase = latent_model_input _UpperCamelCase = 1 / self.vae.config.scaling_factor * latents _UpperCamelCase = self.vae.decode(__a).sample _UpperCamelCase = (samples / 2 + 0.5).clamp(0 , 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _UpperCamelCase = samples.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": _UpperCamelCase = self.numpy_to_pil(__a) if not return_dict: return (samples,) return ImagePipelineOutput(images=__a)
100
1
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def lowerCamelCase__ ( ) -> Dict: raise RuntimeError('''CUDA out of memory.''' ) class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__(self : List[Any] ): """simple docstring""" super().__init__() __snake_case = nn.Linear(3 , 4 ) __snake_case = nn.BatchNormad(4 ) __snake_case = nn.Linear(4 , 5 ) def a (self : Optional[Any] , a__ : List[str] ): """simple docstring""" return self.lineara(self.batchnorm(self.lineara(a__ ) ) ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def a (self : Any ): """simple docstring""" __snake_case = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(a__ : Any ): nonlocal batch_sizes batch_sizes.append(a__ ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(a__ , [128, 64, 32, 16, 8] ) def a (self : Tuple ): """simple docstring""" __snake_case = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(a__ : str , a__ : Tuple ): nonlocal batch_sizes batch_sizes.append(a__ ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga __snake_case , __snake_case = mock_training_loop_function('''hello''' ) self.assertListEqual(a__ , [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, '''hello'''] ) def a (self : List[Any] ): """simple docstring""" @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(a__ : Optional[int] ): pass with self.assertRaises(a__ ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def a (self : Tuple ): """simple docstring""" @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(a__ : str ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(a__ ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def a (self : int ): """simple docstring""" @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(a__ : int , a__ : Tuple , a__ : int ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(a__ ) as cm: mock_training_loop_function(128 , '''hello''' , '''world''' ) self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] ) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] ) def a (self : Optional[Any] ): """simple docstring""" @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(a__ : Optional[Any] ): raise ValueError('''Oops, we had an error!''' ) with self.assertRaises(a__ ) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] ) @require_cuda def a (self : Union[str, Any] ): """simple docstring""" __snake_case = torch.cuda.memory_allocated() __snake_case = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , a__ ) __snake_case = release_memory(a__ ) self.assertEqual(torch.cuda.memory_allocated() , a__ )
24
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def a ( *_UpperCAmelCase : List[str] ): '''simple docstring''' with open(_UpperCAmelCase , '''r''' ) as fh: fcntl.flock(_UpperCAmelCase , fcntl.LOCK_EX ) try: print(*_UpperCAmelCase ) finally: fcntl.flock(_UpperCAmelCase , fcntl.LOCK_UN ) __A =int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) __A =torch.device("cuda", local_rank) __A =socket.gethostname() __A =f'''[{hostname}-{local_rank}]''' try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank __A =dist.get_rank() __A =dist.get_world_size() printflock(f'''{gpu} is OK (global rank: {rank}/{world_size})''') dist.barrier() if rank == 0: printflock(f'''pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}''') except Exception: printflock(f'''{gpu} is broken''') raise
226
0
'''simple docstring''' def lowerCamelCase__ ( A : list ): '''simple docstring''' if len(A ) < 2: return collection def circle_sort_util(A : list , A : int , A : int ) -> bool: UpperCAmelCase = False if low == high: return swapped UpperCAmelCase = low UpperCAmelCase = high while left < right: if collection[left] > collection[right]: UpperCAmelCase , UpperCAmelCase = ( collection[right], collection[left], ) UpperCAmelCase = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: UpperCAmelCase , UpperCAmelCase = ( collection[right + 1], collection[left], ) UpperCAmelCase = True UpperCAmelCase = low + int((high - low) / 2 ) UpperCAmelCase = circle_sort_util(A , A , A ) UpperCAmelCase = circle_sort_util(A , mid + 1 , A ) return swapped or left_swap or right_swap UpperCAmelCase = True while is_not_sorted is True: UpperCAmelCase = circle_sort_util(A , 0 , len(A ) - 1 ) return collection if __name__ == "__main__": _lowercase : Tuple = input("""Enter numbers separated by a comma:\n""").strip() _lowercase : Dict = [int(item) for item in user_input.split(""",""")] print(circle_sort(unsorted))
91
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class UpperCamelCase__( lowerCAmelCase , unittest.TestCase ): __magic_name__ : Any = ShapEPipeline __magic_name__ : Tuple = ["prompt"] __magic_name__ : Optional[int] = ["prompt"] __magic_name__ : Dict = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] __magic_name__ : Optional[int] = False @property def a__( self : Optional[Any] )-> Dict: """simple docstring""" return 32 @property def a__( self : Dict )-> Dict: """simple docstring""" return 32 @property def a__( self : Optional[Any] )-> List[str]: """simple docstring""" return self.time_input_dim * 4 @property def a__( self : List[str] )-> str: """simple docstring""" return 8 @property def a__( self : int )-> Optional[int]: """simple docstring""" UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def a__( self : Tuple )-> Optional[int]: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(lowerCAmelCase ) @property def a__( self : str )-> List[str]: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } UpperCAmelCase = PriorTransformer(**lowerCAmelCase ) return model @property def a__( self : List[Any] )-> List[Any]: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } UpperCAmelCase = ShapERenderer(**lowerCAmelCase ) return model def a__( self : Any )-> Tuple: """simple docstring""" UpperCAmelCase = self.dummy_prior UpperCAmelCase = self.dummy_text_encoder UpperCAmelCase = self.dummy_tokenizer UpperCAmelCase = self.dummy_renderer UpperCAmelCase = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1024 , prediction_type='''sample''' , use_karras_sigmas=lowerCAmelCase , clip_sample=lowerCAmelCase , clip_sample_range=1.0 , ) UpperCAmelCase = { '''prior''': prior, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''renderer''': renderer, '''scheduler''': scheduler, } return components def a__( self : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any]=0 )-> Optional[Any]: """simple docstring""" if str(lowerCAmelCase ).startswith('''mps''' ): UpperCAmelCase = torch.manual_seed(lowerCAmelCase ) else: UpperCAmelCase = torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) UpperCAmelCase = { '''prompt''': '''horse''', '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def a__( self : int )-> Dict: """simple docstring""" UpperCAmelCase = '''cpu''' UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = self.pipeline_class(**lowerCAmelCase ) UpperCAmelCase = pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) UpperCAmelCase = pipe(**self.get_dummy_inputs(lowerCAmelCase ) ) UpperCAmelCase = output.images[0] UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) UpperCAmelCase = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def a__( self : Union[str, Any] )-> Optional[int]: """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def a__( self : Optional[int] )-> str: """simple docstring""" UpperCAmelCase = torch_device == '''cpu''' UpperCAmelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=lowerCAmelCase , relax_max_difference=lowerCAmelCase , ) def a__( self : int )-> List[str]: """simple docstring""" UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = self.pipeline_class(**lowerCAmelCase ) UpperCAmelCase = pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) UpperCAmelCase = 1 UpperCAmelCase = 2 UpperCAmelCase = self.get_dummy_inputs(lowerCAmelCase ) for key in inputs.keys(): if key in self.batch_params: UpperCAmelCase = batch_size * [inputs[key]] UpperCAmelCase = pipe(**lowerCAmelCase , num_images_per_prompt=lowerCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class UpperCamelCase__( unittest.TestCase ): def a__( self : Dict )-> Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def a__( self : Optional[Any] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_np_out.npy''' ) UpperCAmelCase = ShapEPipeline.from_pretrained('''openai/shap-e''' ) UpperCAmelCase = pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) UpperCAmelCase = torch.Generator(device=lowerCAmelCase ).manual_seed(0 ) UpperCAmelCase = pipe( '''a shark''' , generator=lowerCAmelCase , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowerCAmelCase , lowerCAmelCase )
91
1
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType __SCREAMING_SNAKE_CASE :Optional[int] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE :Dict = { '''microsoft/layoutlmv3-base''': '''https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json''', } class A_ ( lowerCAmelCase_ ): _lowerCamelCase : Optional[int] = """layoutlmv3""" def __init__( self : int , snake_case_ : List[Any]=5_0_2_6_5 , snake_case_ : int=7_6_8 , snake_case_ : Optional[int]=1_2 , snake_case_ : Dict=1_2 , snake_case_ : Union[str, Any]=3_0_7_2 , snake_case_ : Optional[Any]="gelu" , snake_case_ : Union[str, Any]=0.1 , snake_case_ : Optional[Any]=0.1 , snake_case_ : List[Any]=5_1_2 , snake_case_ : Any=2 , snake_case_ : Any=0.0_2 , snake_case_ : Union[str, Any]=1e-5 , snake_case_ : Tuple=1 , snake_case_ : Any=0 , snake_case_ : Optional[int]=2 , snake_case_ : List[str]=1_0_2_4 , snake_case_ : int=1_2_8 , snake_case_ : List[Any]=1_2_8 , snake_case_ : List[str]=True , snake_case_ : int=3_2 , snake_case_ : Union[str, Any]=1_2_8 , snake_case_ : Dict=6_4 , snake_case_ : int=2_5_6 , snake_case_ : Tuple=True , snake_case_ : str=True , snake_case_ : Tuple=True , snake_case_ : Optional[Any]=2_2_4 , snake_case_ : List[str]=3 , snake_case_ : Tuple=1_6 , snake_case_ : Any=None , **snake_case_ : Union[str, Any] , ): super().__init__( vocab_size=snake_case_ , hidden_size=snake_case_ , num_hidden_layers=snake_case_ , num_attention_heads=snake_case_ , intermediate_size=snake_case_ , hidden_act=snake_case_ , hidden_dropout_prob=snake_case_ , attention_probs_dropout_prob=snake_case_ , max_position_embeddings=snake_case_ , type_vocab_size=snake_case_ , initializer_range=snake_case_ , layer_norm_eps=snake_case_ , pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ , ) _UpperCAmelCase = max_ad_position_embeddings _UpperCAmelCase = coordinate_size _UpperCAmelCase = shape_size _UpperCAmelCase = has_relative_attention_bias _UpperCAmelCase = rel_pos_bins _UpperCAmelCase = max_rel_pos _UpperCAmelCase = has_spatial_attention_bias _UpperCAmelCase = rel_ad_pos_bins _UpperCAmelCase = max_rel_ad_pos _UpperCAmelCase = text_embed _UpperCAmelCase = visual_embed _UpperCAmelCase = input_size _UpperCAmelCase = num_channels _UpperCAmelCase = patch_size _UpperCAmelCase = classifier_dropout class A_ ( lowerCAmelCase_ ): _lowerCamelCase : Tuple = version.parse("""1.12""" ) @property def lowercase ( self : List[str] ): # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("attention_mask", {0: "batch", 1: "sequence"}), ("bbox", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) else: return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("bbox", {0: "batch", 1: "sequence"}), ("attention_mask", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels"}), ] ) @property def lowercase ( self : Union[str, Any] ): return 1e-5 @property def lowercase ( self : Dict ): return 1_2 def lowercase ( self : Optional[Any] , snake_case_ : "ProcessorMixin" , snake_case_ : int = -1 , snake_case_ : int = -1 , snake_case_ : bool = False , snake_case_ : Optional["TensorType"] = None , snake_case_ : int = 3 , snake_case_ : int = 4_0 , snake_case_ : int = 4_0 , ): setattr(processor.image_processor , "apply_ocr" , snake_case_ ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _UpperCAmelCase = compute_effective_axis_dimension( snake_case_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _UpperCAmelCase = processor.tokenizer.num_special_tokens_to_add(snake_case_ ) _UpperCAmelCase = compute_effective_axis_dimension( snake_case_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=snake_case_ ) # Generate dummy inputs according to compute batch and sequence _UpperCAmelCase = [[" ".join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes _UpperCAmelCase = [[[4_8, 8_4, 7_3, 1_2_8]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) _UpperCAmelCase = self._generate_dummy_images(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) _UpperCAmelCase = dict( processor( snake_case_ , text=snake_case_ , boxes=snake_case_ , return_tensors=snake_case_ , ) ) return inputs
22
'''simple docstring''' def __UpperCAmelCase ( A : int = 1_0_0_0 ) -> int: UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = 1, 1 UpperCAmelCase_ : Dict = [] for i in range(1 , n + 1 ): UpperCAmelCase_ : Optional[int] = prev_numerator + 2 * prev_denominator UpperCAmelCase_ : Tuple = prev_numerator + prev_denominator if len(str(A ) ) > len(str(A ) ): result.append(A ) UpperCAmelCase_ : Optional[Any] = numerator UpperCAmelCase_ : Optional[int] = denominator return len(A ) if __name__ == "__main__": print(f'''{solution() = }''')
304
0
'''simple docstring''' from pathlib import Path import fire def __lowercase ( __lowercase , __lowercase , __lowercase ) -> List[Any]: '''simple docstring''' _A = Path(__lowercase ) _A = Path(__lowercase ) dest_dir.mkdir(exist_ok=__lowercase ) for path in src_dir.iterdir(): _A = [x.rstrip() for x in list(path.open().readlines() )][:n] _A = dest_dir.joinpath(path.name ) print(__lowercase ) dest_path.open("w" ).write("\n".join(__lowercase ) ) if __name__ == "__main__": fire.Fire(minify)
361
'''simple docstring''' import os lowerCamelCase_ = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 1_00, '''D''': 5_00, '''M''': 10_00} def __lowercase ( __lowercase ) -> int: '''simple docstring''' _A = 0 _A = 0 while index < len(__lowercase ) - 1: _A = SYMBOLS[numerals[index]] _A = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def __lowercase ( __lowercase ) -> str: '''simple docstring''' _A = "" _A = num // 1000 numerals += m_count * "M" num %= 1000 _A = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 _A = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def __lowercase ( __lowercase = "/p089_roman.txt" ) -> int: '''simple docstring''' _A = 0 with open(os.path.dirname(__lowercase ) + roman_numerals_filename ) as filea: _A = filea.readlines() for line in lines: _A = line.strip() _A = parse_roman_numerals(__lowercase ) _A = generate_roman_numerals(__lowercase ) savings += len(__lowercase ) - len(__lowercase ) return savings if __name__ == "__main__": print(F"""{solution() = }""")
174
0
from __future__ import annotations class lowerCamelCase_ : '''simple docstring''' def __init__( self , __lowercase) -> None: __UpperCamelCase :str = data __UpperCamelCase :Any = None __UpperCamelCase :Optional[int] = None def lowerCamelCase ( SCREAMING_SNAKE_CASE ): # In Order traversal of the tree '''simple docstring''' if tree: display(tree.left ) print(tree.data ) display(tree.right ) def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def lowerCamelCase ( ): # Main function for testing. '''simple docstring''' __UpperCamelCase :List[Any] = Node(1 ) __UpperCamelCase :List[Any] = Node(2 ) __UpperCamelCase :List[str] = Node(3 ) __UpperCamelCase :int = Node(4 ) __UpperCamelCase :Optional[Any] = Node(5 ) __UpperCamelCase :int = Node(6 ) __UpperCamelCase :int = Node(7 ) __UpperCamelCase :Any = Node(8 ) __UpperCamelCase :str = Node(9 ) print(is_full_binary_tree(SCREAMING_SNAKE_CASE__ ) ) print(depth_of_tree(SCREAMING_SNAKE_CASE__ ) ) print('''Tree is: ''' ) display(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
43
_A = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} _A = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : dict[int, list[int]] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list[bool] ): __UpperCamelCase =True __UpperCamelCase =[] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) order.append(SCREAMING_SNAKE_CASE__ ) return order def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : dict[int, list[int]] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list[bool] ): __UpperCamelCase =True __UpperCamelCase =[vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return component def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : dict[int, list[int]] ): __UpperCamelCase =len(SCREAMING_SNAKE_CASE__ ) * [False] __UpperCamelCase ={vert: [] for vert in range(len(SCREAMING_SNAKE_CASE__ ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[] for i, was_visited in enumerate(SCREAMING_SNAKE_CASE__ ): if not was_visited: order += topology_sort(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[] __UpperCamelCase =len(SCREAMING_SNAKE_CASE__ ) * [False] for i in range(len(SCREAMING_SNAKE_CASE__ ) ): __UpperCamelCase =order[len(SCREAMING_SNAKE_CASE__ ) - i - 1] if not visited[vert]: __UpperCamelCase =find_components(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) components_list.append(SCREAMING_SNAKE_CASE__ ) return components_list
62
0
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class a__( unittest.TestCase ): def lowercase_ ( self : List[Any] ): a : List[Any] = tempfile.mkdtemp() # fmt: off a : int = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on a : int = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) a : List[str] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] a : Optional[Any] = {'unk_token': '<unk>'} a : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) a : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__snake_case ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__snake_case ) ) a : Optional[int] = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48145466, 0.4578275, 0.40821073], 'image_std': [0.26862954, 0.26130258, 0.27577711], } a : Union[str, Any] = os.path.join(self.tmpdirname , __snake_case ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(__snake_case , __snake_case ) def lowercase_ ( self : Union[str, Any] , **__snake_case : Optional[Any] ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **__snake_case ) def lowercase_ ( self : Any , **__snake_case : List[str] ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__snake_case ) def lowercase_ ( self : int , **__snake_case : Any ): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **__snake_case ) def lowercase_ ( self : List[Any] ): shutil.rmtree(self.tmpdirname ) def lowercase_ ( self : int ): a : List[Any] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] a : Optional[Any] = [Image.fromarray(np.moveaxis(__snake_case , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase_ ( self : Union[str, Any] ): a : Any = self.get_tokenizer() a : List[str] = self.get_rust_tokenizer() a : str = self.get_image_processor() a : Tuple = CLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case ) processor_slow.save_pretrained(self.tmpdirname ) a : str = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__snake_case ) a : List[str] = CLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case ) processor_fast.save_pretrained(self.tmpdirname ) a : List[Any] = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __snake_case ) self.assertIsInstance(processor_fast.tokenizer , __snake_case ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __snake_case ) self.assertIsInstance(processor_fast.image_processor , __snake_case ) def lowercase_ ( self : Union[str, Any] ): a : Optional[Any] = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) a : List[str] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) a : Dict = self.get_image_processor(do_normalize=__snake_case , padding_value=1.0 ) a : List[Any] = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=__snake_case , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __snake_case ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __snake_case ) def lowercase_ ( self : Tuple ): a : int = self.get_image_processor() a : int = self.get_tokenizer() a : Dict = CLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case ) a : Any = self.prepare_image_inputs() a : str = image_processor(__snake_case , return_tensors='np' ) a : Tuple = processor(images=__snake_case , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowercase_ ( self : Tuple ): a : Optional[int] = self.get_image_processor() a : str = self.get_tokenizer() a : Dict = CLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case ) a : List[Any] = 'lower newer' a : Union[str, Any] = processor(text=__snake_case ) a : Dict = tokenizer(__snake_case ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase_ ( self : Optional[Any] ): a : Optional[Any] = self.get_image_processor() a : Any = self.get_tokenizer() a : List[Any] = CLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case ) a : List[Any] = 'lower newer' a : Optional[Any] = self.prepare_image_inputs() a : Union[str, Any] = processor(text=__snake_case , images=__snake_case ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(__snake_case ): processor() def lowercase_ ( self : Optional[int] ): a : Union[str, Any] = self.get_image_processor() a : int = self.get_tokenizer() a : Union[str, Any] = CLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case ) a : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] a : str = processor.batch_decode(__snake_case ) a : Optional[Any] = tokenizer.batch_decode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) def lowercase_ ( self : str ): a : List[Any] = self.get_image_processor() a : Tuple = self.get_tokenizer() a : Any = CLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case ) a : Any = 'lower newer' a : str = self.prepare_image_inputs() a : List[str] = processor(text=__snake_case , images=__snake_case ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
356
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class a__( lowerCamelCase__ ): lowercase__ = 42 @flax_register_to_config class a__( nn.Module , lowerCamelCase__ , lowerCamelCase__ ): lowercase__ = 32 lowercase__ = 4 lowercase__ = 4 lowercase__ = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) lowercase__ = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") lowercase__ = False lowercase__ = (3_20, 6_40, 12_80, 12_80) lowercase__ = 2 lowercase__ = 8 lowercase__ = None lowercase__ = 12_80 lowercase__ = 0.0 lowercase__ = False lowercase__ = jnp.floataa lowercase__ = True lowercase__ = 0 lowercase__ = False def lowercase_ ( self : List[Any] , __snake_case : jax.random.KeyArray ): # init input tensors a : Dict = (1, self.in_channels, self.sample_size, self.sample_size) a : str = jnp.zeros(__snake_case , dtype=jnp.floataa ) a : Union[str, Any] = jnp.ones((1,) , dtype=jnp.intaa ) a : List[Any] = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) a , a : Optional[int] = jax.random.split(__snake_case ) a : Any = {'params': params_rng, 'dropout': dropout_rng} return self.init(__snake_case , __snake_case , __snake_case , __snake_case )["params"] def lowercase_ ( self : Union[str, Any] ): a : int = self.block_out_channels a : Tuple = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( 'At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.' ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. a : str = self.num_attention_heads or self.attention_head_dim # input a : List[Any] = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time a : List[str] = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) a : Optional[int] = FlaxTimestepEmbedding(__snake_case , dtype=self.dtype ) a : Optional[Any] = self.only_cross_attention if isinstance(__snake_case , __snake_case ): a : int = (only_cross_attention,) * len(self.down_block_types ) if isinstance(__snake_case , __snake_case ): a : str = (num_attention_heads,) * len(self.down_block_types ) # down a : int = [] a : Dict = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): a : List[Any] = output_channel a : Dict = block_out_channels[i] a : Union[str, Any] = i == len(__snake_case ) - 1 if down_block_type == "CrossAttnDownBlock2D": a : Dict = FlaxCrossAttnDownBlockaD( in_channels=__snake_case , out_channels=__snake_case , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: a : List[str] = FlaxDownBlockaD( in_channels=__snake_case , out_channels=__snake_case , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(__snake_case ) a : Dict = down_blocks # mid a : Union[str, Any] = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up a : List[Any] = [] a : Dict = list(reversed(__snake_case ) ) a : List[str] = list(reversed(__snake_case ) ) a : List[str] = list(reversed(__snake_case ) ) a : Optional[int] = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): a : Dict = output_channel a : Dict = reversed_block_out_channels[i] a : Dict = reversed_block_out_channels[min(i + 1 , len(__snake_case ) - 1 )] a : List[Any] = i == len(__snake_case ) - 1 if up_block_type == "CrossAttnUpBlock2D": a : List[Any] = FlaxCrossAttnUpBlockaD( in_channels=__snake_case , out_channels=__snake_case , prev_output_channel=__snake_case , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: a : Dict = FlaxUpBlockaD( in_channels=__snake_case , out_channels=__snake_case , prev_output_channel=__snake_case , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(__snake_case ) a : Dict = output_channel a : int = up_blocks # out a : int = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) a : Any = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Optional[Any] , __snake_case : Dict , __snake_case : List[str] , __snake_case : Tuple , __snake_case : Dict=None , __snake_case : Any=None , __snake_case : bool = True , __snake_case : bool = False , ): # 1. time if not isinstance(__snake_case , jnp.ndarray ): a : Tuple = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(__snake_case , jnp.ndarray ) and len(timesteps.shape ) == 0: a : Tuple = timesteps.astype(dtype=jnp.floataa ) a : Optional[int] = jnp.expand_dims(__snake_case , 0 ) a : Optional[Any] = self.time_proj(__snake_case ) a : Optional[int] = self.time_embedding(__snake_case ) # 2. pre-process a : str = jnp.transpose(__snake_case , (0, 2, 3, 1) ) a : Optional[int] = self.conv_in(__snake_case ) # 3. down a : Optional[Any] = (sample,) for down_block in self.down_blocks: if isinstance(__snake_case , __snake_case ): a , a : Any = down_block(__snake_case , __snake_case , __snake_case , deterministic=not train ) else: a , a : Optional[Any] = down_block(__snake_case , __snake_case , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: a : Tuple = () for down_block_res_sample, down_block_additional_residual in zip( __snake_case , __snake_case ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) a : Tuple = new_down_block_res_samples # 4. mid a : int = self.mid_block(__snake_case , __snake_case , __snake_case , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: a : int = down_block_res_samples[-(self.layers_per_block + 1) :] a : List[Any] = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(__snake_case , __snake_case ): a : Optional[int] = up_block( __snake_case , temb=__snake_case , encoder_hidden_states=__snake_case , res_hidden_states_tuple=__snake_case , deterministic=not train , ) else: a : Optional[Any] = up_block(__snake_case , temb=__snake_case , res_hidden_states_tuple=__snake_case , deterministic=not train ) # 6. post-process a : Any = self.conv_norm_out(__snake_case ) a : List[str] = nn.silu(__snake_case ) a : Optional[int] = self.conv_out(__snake_case ) a : Any = jnp.transpose(__snake_case , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=__snake_case )
96
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowerCamelCase__ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""GPTSw3Tokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
302
from functools import lru_cache def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int ): """simple docstring""" __a = 2 __a = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(_SCREAMING_SNAKE_CASE ) if n > 1: factors.add(_SCREAMING_SNAKE_CASE ) return factors @lru_cache def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int ): """simple docstring""" return len(unique_prime_factors(_SCREAMING_SNAKE_CASE ) ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : list ): """simple docstring""" return len(set(_SCREAMING_SNAKE_CASE ) ) in (0, 1) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int ): """simple docstring""" __a = 2 while True: # Increment each value of a generated range __a = [base + i for i in range(_SCREAMING_SNAKE_CASE )] # Run elements through out unique_prime_factors function # Append our target number to the end. __a = [upf_len(_SCREAMING_SNAKE_CASE ) for x in group] checker.append(_SCREAMING_SNAKE_CASE ) # If all numbers in the list are equal, return the group variable. if equality(_SCREAMING_SNAKE_CASE ): return group # Increment our base variable by 1 base += 1 def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int = 4 ): """simple docstring""" __a = run(_SCREAMING_SNAKE_CASE ) return results[0] if len(_SCREAMING_SNAKE_CASE ) else None if __name__ == "__main__": print(solution())
302
1
import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def UpperCamelCase (lowercase_: List[Any] ) -> Dict: A__ : List[Any] = SwinConfig(image_size=192 ) if "base" in model_name: A__ : Any = 6 A__ : List[Any] = 128 A__ : Tuple = (2, 2, 18, 2) A__ : Optional[int] = (4, 8, 16, 32) elif "large" in model_name: A__ : Dict = 12 A__ : int = 192 A__ : Dict = (2, 2, 18, 2) A__ : Any = (6, 12, 24, 48) else: raise ValueError("""Model not supported, only supports base and large variants""" ) A__ : Tuple = window_size A__ : int = embed_dim A__ : str = depths A__ : Any = num_heads return config def UpperCamelCase (lowercase_: Tuple ) -> Union[str, Any]: if "encoder.mask_token" in name: A__ : Optional[Any] = name.replace("""encoder.mask_token""" , """embeddings.mask_token""" ) if "encoder.patch_embed.proj" in name: A__ : Optional[Any] = name.replace("""encoder.patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "encoder.patch_embed.norm" in name: A__ : Union[str, Any] = name.replace("""encoder.patch_embed.norm""" , """embeddings.norm""" ) if "attn.proj" in name: A__ : Optional[Any] = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: A__ : List[Any] = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: A__ : Tuple = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: A__ : List[Any] = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: A__ : Union[str, Any] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: A__ : int = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "encoder.norm.weight": A__ : Dict = """layernorm.weight""" if name == "encoder.norm.bias": A__ : Optional[int] = """layernorm.bias""" if "decoder" in name: pass else: A__ : str = """swin.""" + name return name def UpperCamelCase (lowercase_: Optional[Any] , lowercase_: int ) -> Optional[Any]: for key in orig_state_dict.copy().keys(): A__ : int = orig_state_dict.pop(lowercase_ ) if "attn_mask" in key: pass elif "qkv" in key: A__ : Union[str, Any] = key.split(""".""" ) A__ : Optional[Any] = int(key_split[2] ) A__ : str = int(key_split[4] ) A__ : str = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: A__ : int = val[:dim, :] A__ : List[str] = val[ dim : dim * 2, : ] A__ : Any = val[-dim:, :] else: A__ : Union[str, Any] = val[ :dim ] A__ : Any = val[ dim : dim * 2 ] A__ : Union[str, Any] = val[ -dim: ] else: A__ : Union[str, Any] = val return orig_state_dict def UpperCamelCase (lowercase_: Optional[int] , lowercase_: Any , lowercase_: Optional[int] , lowercase_: Any ) -> int: A__ : Optional[Any] = torch.load(lowercase_ , map_location="""cpu""" )["""model"""] A__ : str = get_swin_config(lowercase_ ) A__ : Union[str, Any] = SwinForMaskedImageModeling(lowercase_ ) model.eval() A__ : Any = convert_state_dict(lowercase_ , lowercase_ ) model.load_state_dict(lowercase_ ) A__ : str = """http://images.cocodataset.org/val2017/000000039769.jpg""" A__ : Optional[Any] = ViTImageProcessor(size={"""height""": 192, """width""": 192} ) A__ : List[Any] = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) A__ : List[str] = image_processor(images=lowercase_ , return_tensors="""pt""" ) with torch.no_grad(): A__ : Union[str, Any] = model(**lowercase_ ).logits print(outputs.keys() ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase_ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowercase_ ) if push_to_hub: print(f"""Pushing model and image processor for {model_name} to hub""" ) model.push_to_hub(f"""microsoft/{model_name}""" ) image_processor.push_to_hub(f"""microsoft/{model_name}""" ) if __name__ == "__main__": A_ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='swin-base-simmim-window6-192', type=str, choices=['swin-base-simmim-window6-192', 'swin-large-simmim-window12-192'], help='Name of the Swin SimMIM model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth', type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) A_ : Optional[int] = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
141
import requests A_ : List[Any] = 'YOUR API KEY' def UpperCamelCase (lowercase_: str , lowercase_: str = giphy_api_key ) -> list: A__ : Dict = """+""".join(query.split() ) A__ : Optional[int] = f"""https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}""" A__ : Any = requests.get(lowercase_ ).json()["""data"""] return [gif["url"] for gif in gifs] if __name__ == "__main__": print('\n'.join(get_gifs('space ship')))
141
1
"""simple docstring""" import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowerCAmelCase_ (a__ ): """simple docstring""" def __magic_name__ (self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , """hidden_sizes""" ) ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , """neck_hidden_sizes""" ) ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , """num_attention_heads""" ) ) class lowerCAmelCase_ : """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=13 , SCREAMING_SNAKE_CASE__=32 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=6_40 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__="silu" , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=32 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=10 , SCREAMING_SNAKE_CASE__=None , ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = parent SCREAMING_SNAKE_CASE__ : int = batch_size SCREAMING_SNAKE_CASE__ : List[str] = image_size SCREAMING_SNAKE_CASE__ : Optional[int] = patch_size SCREAMING_SNAKE_CASE__ : int = num_channels SCREAMING_SNAKE_CASE__ : Union[str, Any] = last_hidden_size SCREAMING_SNAKE_CASE__ : int = num_attention_heads SCREAMING_SNAKE_CASE__ : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE__ : Dict = conv_kernel_size SCREAMING_SNAKE_CASE__ : int = output_stride SCREAMING_SNAKE_CASE__ : str = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Any = classifier_dropout_prob SCREAMING_SNAKE_CASE__ : Tuple = use_labels SCREAMING_SNAKE_CASE__ : str = is_training SCREAMING_SNAKE_CASE__ : str = num_labels SCREAMING_SNAKE_CASE__ : Dict = initializer_range SCREAMING_SNAKE_CASE__ : str = scope def __magic_name__ (self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ : Optional[int] = None SCREAMING_SNAKE_CASE__ : List[Any] = None if self.use_labels: SCREAMING_SNAKE_CASE__ : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE__ : str = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) SCREAMING_SNAKE_CASE__ : List[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def __magic_name__ (self ) -> str: """simple docstring""" return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = MobileViTModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.num_labels SCREAMING_SNAKE_CASE__ : Dict = MobileViTForImageClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() SCREAMING_SNAKE_CASE__ : Any = model(SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self.num_labels SCREAMING_SNAKE_CASE__ : int = MobileViTForSemanticSegmentation(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __magic_name__ (self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = config_and_inputs SCREAMING_SNAKE_CASE__ : Dict = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ (a__ , a__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Dict = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) __UpperCamelCase : List[str] = ( { '''feature-extraction''': MobileViTModel, '''image-classification''': MobileViTForImageClassification, '''image-segmentation''': MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCamelCase : str = False __UpperCamelCase : List[Any] = False __UpperCamelCase : Any = False __UpperCamelCase : int = False def __magic_name__ (self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = MobileViTModelTester(self ) SCREAMING_SNAKE_CASE__ : Dict = MobileViTConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , has_text_modality=SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""MobileViT does not use inputs_embeds""" ) def __magic_name__ (self ) -> Any: """simple docstring""" pass @unittest.skip(reason="""MobileViT does not support input and output embeddings""" ) def __magic_name__ (self ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason="""MobileViT does not output attentions""" ) def __magic_name__ (self ) -> Any: """simple docstring""" pass def __magic_name__ (self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Optional[int] = model_class(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE__ : Union[str, Any] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE__ : Union[str, Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE__ ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def __magic_name__ (self ) -> int: """simple docstring""" pass def __magic_name__ (self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Any: """simple docstring""" def check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE__ : List[Any] = model_class(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Tuple = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) SCREAMING_SNAKE_CASE__ : Dict = outputs.hidden_states SCREAMING_SNAKE_CASE__ : str = 5 self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. SCREAMING_SNAKE_CASE__ : Tuple = 2 for i in range(len(SCREAMING_SNAKE_CASE__ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Optional[int] = True check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE__ : Any = True check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*SCREAMING_SNAKE_CASE__ ) @slow def __magic_name__ (self ) -> List[str]: """simple docstring""" for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ : Optional[Any] = MobileViTModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) def lowercase_ ( ): SCREAMING_SNAKE_CASE__ : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCAmelCase_ (unittest.TestCase ): """simple docstring""" @cached_property def __magic_name__ (self ) -> Dict: """simple docstring""" return MobileViTImageProcessor.from_pretrained("""apple/mobilevit-xx-small""" ) if is_vision_available() else None @slow def __magic_name__ (self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = MobileViTForImageClassification.from_pretrained("""apple/mobilevit-xx-small""" ).to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self.default_image_processor SCREAMING_SNAKE_CASE__ : List[str] = prepare_img() SCREAMING_SNAKE_CASE__ : int = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).to(SCREAMING_SNAKE_CASE__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(**SCREAMING_SNAKE_CASE__ ) # verify the logits SCREAMING_SNAKE_CASE__ : Dict = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = torch.tensor([-1.9364, -1.2327, -0.4653] ).to(SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) ) @slow def __magic_name__ (self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = MobileViTForSemanticSegmentation.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) SCREAMING_SNAKE_CASE__ : Tuple = model.to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Dict = MobileViTImageProcessor.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = prepare_img() SCREAMING_SNAKE_CASE__ : str = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).to(SCREAMING_SNAKE_CASE__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Tuple = model(**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = outputs.logits # verify the logits SCREAMING_SNAKE_CASE__ : Tuple = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = torch.tensor( [ [[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]], [[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]], [[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]], ] , device=SCREAMING_SNAKE_CASE__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) ) @slow def __magic_name__ (self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = MobileViTForSemanticSegmentation.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) SCREAMING_SNAKE_CASE__ : Optional[int] = model.to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = MobileViTImageProcessor.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) SCREAMING_SNAKE_CASE__ : List[Any] = prepare_img() SCREAMING_SNAKE_CASE__ : List[Any] = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).to(SCREAMING_SNAKE_CASE__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Optional[Any] = model(**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = outputs.logits.detach().cpu() SCREAMING_SNAKE_CASE__ : Optional[Any] = image_processor.post_process_semantic_segmentation(outputs=SCREAMING_SNAKE_CASE__ , target_sizes=[(50, 60)] ) SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Dict = image_processor.post_process_semantic_segmentation(outputs=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , SCREAMING_SNAKE_CASE__ )
25
'''simple docstring''' import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor _A : Optional[int] = logging.get_logger(__name__) class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : Dict , *SCREAMING_SNAKE_CASE__ : Optional[int] , **SCREAMING_SNAKE_CASE__ : List[str] ) -> None: warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""" , SCREAMING_SNAKE_CASE__ , ) super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
229
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCAmelCase = { 'configuration_resnet': ['RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ResNetConfig', 'ResNetOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'ResNetForImageClassification', 'ResNetModel', 'ResNetPreTrainedModel', 'ResNetBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFResNetForImageClassification', 'TFResNetModel', 'TFResNetPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'FlaxResNetForImageClassification', 'FlaxResNetModel', 'FlaxResNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure)
270
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if not (isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )): raise ValueError("""longest_common_substring() takes two strings for inputs""" ) _snake_case = len(_SCREAMING_SNAKE_CASE ) _snake_case = len(_SCREAMING_SNAKE_CASE ) _snake_case = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )] _snake_case = 0 _snake_case = 0 for i in range(1 , texta_length + 1 ): for j in range(1 , texta_length + 1 ): if texta[i - 1] == texta[j - 1]: _snake_case = 1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: _snake_case = i _snake_case = dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
270
1
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __UpperCamelCase : """simple docstring""" def __init__( self : Optional[Any] , _A : Tuple , _A : int=3 , _A : Tuple=32 , _A : Dict=3 , _A : Dict=10 , _A : Optional[int]=[10, 20, 30, 40] , _A : Optional[int]=[1, 1, 2, 1] , _A : Optional[Any]=True , _A : Optional[Any]=True , _A : Any="relu" , _A : str=3 , _A : Optional[Any]=None , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = parent __SCREAMING_SNAKE_CASE : str = batch_size __SCREAMING_SNAKE_CASE : int = image_size __SCREAMING_SNAKE_CASE : List[str] = num_channels __SCREAMING_SNAKE_CASE : Dict = embeddings_size __SCREAMING_SNAKE_CASE : Optional[int] = hidden_sizes __SCREAMING_SNAKE_CASE : Dict = depths __SCREAMING_SNAKE_CASE : int = is_training __SCREAMING_SNAKE_CASE : Optional[int] = use_labels __SCREAMING_SNAKE_CASE : Dict = hidden_act __SCREAMING_SNAKE_CASE : int = num_labels __SCREAMING_SNAKE_CASE : str = scope __SCREAMING_SNAKE_CASE : Union[str, Any] = len(_A ) def UpperCAmelCase__ ( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE : List[Any] = None if self.use_labels: __SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __SCREAMING_SNAKE_CASE : List[Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def UpperCAmelCase__ ( self : int , _A : Tuple , _A : str , _A : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = TFResNetModel(config=_A ) __SCREAMING_SNAKE_CASE : int = model(_A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCAmelCase__ ( self : str , _A : Dict , _A : str , _A : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = self.num_labels __SCREAMING_SNAKE_CASE : List[str] = TFResNetForImageClassification(_A ) __SCREAMING_SNAKE_CASE : List[Any] = model(_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Union[str, Any] = config_and_inputs __SCREAMING_SNAKE_CASE : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class __UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" lowerCAmelCase_ = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () lowerCAmelCase_ = ( {'''feature-extraction''': TFResNetModel, '''image-classification''': TFResNetForImageClassification} if is_tf_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = TFResNetModelTester(self ) __SCREAMING_SNAKE_CASE : str = ConfigTester(self , config_class=_A , has_text_modality=_A ) def UpperCAmelCase__ ( self : Dict ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase__ ( self : str ): """simple docstring""" return @unittest.skip(reason='''ResNet does not use inputs_embeds''' ) def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" pass @unittest.skip(reason='''ResNet does not support input and output embeddings''' ) def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" pass def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE : Tuple = model_class(_A ) __SCREAMING_SNAKE_CASE : Optional[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE : Dict = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE : List[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" def check_hidden_states_output(_A : List[Any] , _A : Optional[Any] , _A : str ): __SCREAMING_SNAKE_CASE : str = model_class(_A ) __SCREAMING_SNAKE_CASE : Any = model(**self._prepare_for_class(_A , _A ) ) __SCREAMING_SNAKE_CASE : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __SCREAMING_SNAKE_CASE : Dict = self.model_tester.num_stages self.assertEqual(len(_A ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE : List[str] = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: __SCREAMING_SNAKE_CASE : List[str] = layer_type __SCREAMING_SNAKE_CASE : Any = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __SCREAMING_SNAKE_CASE : Any = True check_hidden_states_output(_A , _A , _A ) def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @slow def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE : Dict = TFResNetModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class __UpperCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCAmelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) __SCREAMING_SNAKE_CASE : Optional[int] = self.default_image_processor __SCREAMING_SNAKE_CASE : Any = prepare_img() __SCREAMING_SNAKE_CASE : str = image_processor(images=_A , return_tensors='''tf''' ) # forward pass __SCREAMING_SNAKE_CASE : Union[str, Any] = model(**_A ) # verify the logits __SCREAMING_SNAKE_CASE : Optional[int] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _A ) __SCREAMING_SNAKE_CASE : List[str] = tf.constant([-11.10_69, -9.78_77, -8.37_77] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _A , atol=1e-4 ) )
303
import os import sys lowercase_ = os.path.join(os.path.dirname(__file__), """src""") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) lowercase_ = [ """torch""", """numpy""", """tokenizers""", """filelock""", """requests""", """tqdm""", """regex""", """sentencepiece""", """sacremoses""", """importlib_metadata""", """huggingface_hub""", ] @add_start_docstrings(AutoConfig.__doc__ ) def a__ ( *snake_case , **snake_case ): """simple docstring""" return AutoConfig.from_pretrained(*snake_case , **snake_case ) @add_start_docstrings(AutoTokenizer.__doc__ ) def a__ ( *snake_case , **snake_case ): """simple docstring""" return AutoTokenizer.from_pretrained(*snake_case , **snake_case ) @add_start_docstrings(AutoModel.__doc__ ) def a__ ( *snake_case , **snake_case ): """simple docstring""" return AutoModel.from_pretrained(*snake_case , **snake_case ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def a__ ( *snake_case , **snake_case ): """simple docstring""" return AutoModelForCausalLM.from_pretrained(*snake_case , **snake_case ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def a__ ( *snake_case , **snake_case ): """simple docstring""" return AutoModelForMaskedLM.from_pretrained(*snake_case , **snake_case ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def a__ ( *snake_case , **snake_case ): """simple docstring""" return AutoModelForSequenceClassification.from_pretrained(*snake_case , **snake_case ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def a__ ( *snake_case , **snake_case ): """simple docstring""" return AutoModelForQuestionAnswering.from_pretrained(*snake_case , **snake_case )
303
1
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> float: """simple docstring""" snake_case_ : str = np.array([[1, item, train_mtch[i]] for i, item in enumerate(_UpperCamelCase )] ) snake_case_ : List[str] = np.array(_UpperCamelCase ) snake_case_ : Union[str, Any] = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , _UpperCamelCase ) ) , x.transpose() ) , _UpperCamelCase ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> float: """simple docstring""" snake_case_ : List[str] = (1, 2, 1) snake_case_ : List[Any] = (1, 1, 0, 7) snake_case_ : Any = SARIMAX( _UpperCamelCase , exog=_UpperCamelCase , order=_UpperCamelCase , seasonal_order=_UpperCamelCase ) snake_case_ : Dict = model.fit(disp=_UpperCamelCase , maxiter=600 , method='''nm''' ) snake_case_ : str = model_fit.predict(1 , len(_UpperCamelCase ) , exog=[test_match] ) return result[0] def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> float: """simple docstring""" snake_case_ : Optional[Any] = SVR(kernel='''rbf''' , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(_UpperCamelCase , _UpperCamelCase ) snake_case_ : str = regressor.predict(_UpperCamelCase ) return y_pred[0] def lowerCamelCase_ ( _UpperCamelCase ) -> float: """simple docstring""" train_user.sort() snake_case_ : Optional[Any] = np.percentile(_UpperCamelCase , 25 ) snake_case_ : List[str] = np.percentile(_UpperCamelCase , 75 ) snake_case_ : int = qa - qa snake_case_ : List[str] = qa - (iqr * 0.1) return low_lim def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> bool: """simple docstring""" snake_case_ : Union[str, Any] = 0 snake_case_ : Tuple = 0 for i in list_vote: if i > actual_result: snake_case_ : Dict = not_safe + 1 else: if abs(abs(_UpperCamelCase ) - abs(_UpperCamelCase ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) lowerCAmelCase_ = [[1_8_2_3_1, 0.0, 1], [2_2_6_2_1, 1.0, 2], [1_5_6_7_5, 0.0, 3], [2_3_5_8_3, 1.0, 4]] lowerCAmelCase_ = pd.DataFrame( data_input, columns=['''total_user''', '''total_even''', '''days'''] ) lowerCAmelCase_ = Normalizer().fit_transform(data_input_df.values) # split data lowerCAmelCase_ = normalize_df[:, 2].tolist() lowerCAmelCase_ = normalize_df[:, 0].tolist() lowerCAmelCase_ = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) lowerCAmelCase_ = normalize_df[:, [1, 2]].tolist() lowerCAmelCase_ = x[: len(x) - 1] lowerCAmelCase_ = x[len(x) - 1 :] # for linear regression & sarimax lowerCAmelCase_ = total_date[: len(total_date) - 1] lowerCAmelCase_ = total_user[: len(total_user) - 1] lowerCAmelCase_ = total_match[: len(total_match) - 1] lowerCAmelCase_ = total_date[len(total_date) - 1 :] lowerCAmelCase_ = total_user[len(total_user) - 1 :] lowerCAmelCase_ = total_match[len(total_match) - 1 :] # voting system with forecasting lowerCAmelCase_ = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data lowerCAmelCase_ = '''''' if data_safety_checker(res_vote, tst_user) else '''not ''' print('''Today\'s data is {not_str}safe.''')
367
from math import isclose, sqrt def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> tuple[float, float, float]: """simple docstring""" snake_case_ : Dict = point_y / 4 / point_x snake_case_ : List[str] = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) snake_case_ : Union[str, Any] = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) snake_case_ : Tuple = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 snake_case_ : Union[str, Any] = outgoing_gradient**2 + 4 snake_case_ : Tuple = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) snake_case_ : Optional[Any] = (point_y - outgoing_gradient * point_x) ** 2 - 100 snake_case_ : Dict = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) snake_case_ : Optional[int] = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point snake_case_ : Any = x_minus if isclose(_UpperCamelCase , _UpperCamelCase ) else x_plus snake_case_ : int = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def lowerCamelCase_ ( _UpperCamelCase = 1.4 , _UpperCamelCase = -9.6 ) -> int: """simple docstring""" snake_case_ : int = 0 snake_case_ : float = first_x_coord snake_case_ : float = first_y_coord snake_case_ : float = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): snake_case_ , snake_case_ , snake_case_ : str = next_point(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(F'''{solution() = }''')
279
0
from __future__ import annotations def _UpperCAmelCase (UpperCamelCase__ : tuple[int, int] , UpperCamelCase__ : int ): _A , _A : Union[str, Any] = position _A : str = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] _A : Dict = [] for position in positions: _A , _A : List[str] = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(UpperCamelCase__ ) return permissible_positions def _UpperCAmelCase (UpperCamelCase__ : list[list[int]] ): return not any(elem == 0 for row in board for elem in row ) def _UpperCAmelCase (UpperCamelCase__ : list[list[int]] , UpperCamelCase__ : tuple[int, int] , UpperCamelCase__ : int ): if is_complete(UpperCamelCase__ ): return True for position in get_valid_pos(UpperCamelCase__ , len(UpperCamelCase__ ) ): _A , _A : Union[str, Any] = position if board[y][x] == 0: _A : Optional[Any] = curr + 1 if open_knight_tour_helper(UpperCamelCase__ , UpperCamelCase__ , curr + 1 ): return True _A : Union[str, Any] = 0 return False def _UpperCAmelCase (UpperCamelCase__ : int ): _A : Tuple = [[0 for i in range(UpperCamelCase__ )] for j in range(UpperCamelCase__ )] for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): _A : Union[str, Any] = 1 if open_knight_tour_helper(UpperCamelCase__ , (i, j) , 1 ): return board _A : Any = 0 _A : Union[str, Any] = f"Open Kight Tour cannot be performed on a board of size {n}" raise ValueError(UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
11
'''simple docstring''' import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class a_ ( lowerCamelCase ): lowercase = (DDPMParallelScheduler,) def A__ ( self , **_SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" UpperCamelCase = { """num_train_timesteps""": 1000, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**_SCREAMING_SNAKE_CASE ) return config def A__ ( self ) -> List[str]: """simple docstring""" for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Optional[int]: """simple docstring""" for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=_SCREAMING_SNAKE_CASE , beta_end=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Optional[Any]: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Tuple: """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> List[Any]: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> str: """simple docstring""" self.check_over_configs(thresholding=_SCREAMING_SNAKE_CASE ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_SCREAMING_SNAKE_CASE , prediction_type=_SCREAMING_SNAKE_CASE , sample_max_value=_SCREAMING_SNAKE_CASE , ) def A__ ( self ) -> Optional[Any]: """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Union[str, Any]: """simple docstring""" for t in [0, 500, 999]: self.check_over_forward(time_step=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> int: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1e-5 def A__ ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = len(_SCREAMING_SNAKE_CASE ) UpperCamelCase = self.dummy_model() UpperCamelCase = self.dummy_sample_deter UpperCamelCase = self.dummy_sample_deter + 0.1 UpperCamelCase = self.dummy_sample_deter - 0.1 UpperCamelCase = samplea.shape[0] UpperCamelCase = torch.stack([samplea, samplea, samplea] , dim=0 ) UpperCamelCase = torch.arange(_SCREAMING_SNAKE_CASE )[0:3, None].repeat(1 , _SCREAMING_SNAKE_CASE ) UpperCamelCase = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) UpperCamelCase = scheduler.batch_step_no_noise(_SCREAMING_SNAKE_CASE , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) UpperCamelCase = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) UpperCamelCase = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 1_1_5_3.1_8_3_3 ) < 1e-2 assert abs(result_mean.item() - 0.5_0_0_5 ) < 1e-3 def A__ ( self ) -> List[str]: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = len(_SCREAMING_SNAKE_CASE ) UpperCamelCase = self.dummy_model() UpperCamelCase = self.dummy_sample_deter UpperCamelCase = torch.manual_seed(0 ) for t in reversed(range(_SCREAMING_SNAKE_CASE ) ): # 1. predict noise residual UpperCamelCase = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # 2. predict previous mean of sample x_t-1 UpperCamelCase = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE ).prev_sample UpperCamelCase = pred_prev_sample UpperCamelCase = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) UpperCamelCase = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3 def A__ ( self ) -> Tuple: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config(prediction_type="""v_prediction""" ) UpperCamelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = len(_SCREAMING_SNAKE_CASE ) UpperCamelCase = self.dummy_model() UpperCamelCase = self.dummy_sample_deter UpperCamelCase = torch.manual_seed(0 ) for t in reversed(range(_SCREAMING_SNAKE_CASE ) ): # 1. predict noise residual UpperCamelCase = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # 2. predict previous mean of sample x_t-1 UpperCamelCase = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE ).prev_sample UpperCamelCase = pred_prev_sample UpperCamelCase = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) UpperCamelCase = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3 def A__ ( self ) -> Any: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_SCREAMING_SNAKE_CASE ) UpperCamelCase = scheduler.timesteps for i, timestep in enumerate(_SCREAMING_SNAKE_CASE ): if i == len(_SCREAMING_SNAKE_CASE ) - 1: UpperCamelCase = -1 else: UpperCamelCase = timesteps[i + 1] UpperCamelCase = scheduler.previous_timestep(_SCREAMING_SNAKE_CASE ) UpperCamelCase = prev_t.item() self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = [100, 87, 50, 51, 0] with self.assertRaises(_SCREAMING_SNAKE_CASE , msg="""`custom_timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = [100, 87, 50, 1, 0] UpperCamelCase = len(_SCREAMING_SNAKE_CASE ) with self.assertRaises(_SCREAMING_SNAKE_CASE , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=_SCREAMING_SNAKE_CASE , timesteps=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Any: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( _SCREAMING_SNAKE_CASE , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=_SCREAMING_SNAKE_CASE )
321
0
"""simple docstring""" def __snake_case ( SCREAMING_SNAKE_CASE__ : Dict=28_123 ) -> List[str]: '''simple docstring''' _UpperCAmelCase : List[Any] = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i _UpperCAmelCase : Any = set() _UpperCAmelCase : List[str] = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(SCREAMING_SNAKE_CASE__ ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
358
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore _lowerCAmelCase : Any = "\nHuman: <<task>>\n\nAssistant: " _lowerCAmelCase : str = "huggingface-tools/default-prompts" _lowerCAmelCase : Union[str, Any] = {"chat": "chat_prompt_template.txt", "run": "run_prompt_template.txt"} def __snake_case ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int="run" ) -> int: '''simple docstring''' if prompt_or_repo_id is None: _UpperCAmelCase : Optional[int] = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("\\s" , SCREAMING_SNAKE_CASE__ ) is not None: return prompt_or_repo_id _UpperCAmelCase : Dict = cached_file( SCREAMING_SNAKE_CASE__ , PROMPT_FILES[mode] , repo_type="dataset" , user_agent={"agent": agent_name} ) with open(SCREAMING_SNAKE_CASE__ , "r" , encoding="utf-8" ) as f: return f.read()
202
0
"""simple docstring""" import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase__ ( lowerCAmelCase__ :Dict , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Any=None ) -> Tuple: '''simple docstring''' assert torch_layer.weight.shape == weight.shape, f'{torch_layer} layer.weight does not match' lowercase = nn.Parameter(lowerCAmelCase__ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f'{torch_layer} layer.bias does not match' lowercase = nn.Parameter(lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :int ) -> List[Any]: '''simple docstring''' lowercase = np.asarray(weights[0] ) lowercase = np.asarray(weights[1] ) lowercase = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(lowerCAmelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCAmelCase__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCAmelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCAmelCase__ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCAmelCase__ ).view(-1 , lowerCAmelCase__ ).contiguous().transpose(0 , 1 ) , ) def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :str , lowerCAmelCase__ :Dict ) -> int: '''simple docstring''' lowercase = np.asarray(weights[0] ) lowercase = np.asarray(weights[1] ) lowercase = np.asarray(weights[2] ) lowercase = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(lowerCAmelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCAmelCase__ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(lowerCAmelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCAmelCase__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCAmelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCAmelCase__ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCAmelCase__ ).view(-1 , lowerCAmelCase__ ).contiguous().transpose(0 , 1 ) , ) def UpperCAmelCase__ ( lowerCAmelCase__ :Any , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :str ) -> Dict: '''simple docstring''' lowercase = weights[0][0][0] lowercase = np.asarray(layer_norm_a[0] ) lowercase = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(lowerCAmelCase__ ) , torch.tensor(lowerCAmelCase__ ) , ) # lsh weights + output lowercase = weights[0][1] if len(lowerCAmelCase__ ) < 4: set_layer_weights_in_torch_lsh(lowerCAmelCase__ , torch_block.attention , lowerCAmelCase__ ) else: set_layer_weights_in_torch_local(lowerCAmelCase__ , torch_block.attention , lowerCAmelCase__ ) # intermediate weighs lowercase = weights[2][0][1][2] # Chunked Feed Forward if len(lowerCAmelCase__ ) == 4: lowercase = intermediate_weights[2] # layernorm 2 lowercase = np.asarray(intermediate_weights[0][0] ) lowercase = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(lowerCAmelCase__ ) , torch.tensor(lowerCAmelCase__ ) , ) # intermediate dense lowercase = np.asarray(intermediate_weights[1][0] ) lowercase = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(lowerCAmelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCAmelCase__ ) , ) # intermediate out lowercase = np.asarray(intermediate_weights[4][0] ) lowercase = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(lowerCAmelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCAmelCase__ ) , ) def UpperCAmelCase__ ( lowerCAmelCase__ :Any , lowerCAmelCase__ :Any , lowerCAmelCase__ :Any ) -> Union[str, Any]: '''simple docstring''' lowercase = torch_model.reformer # word embeds lowercase = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(lowerCAmelCase__ ) , ) if isinstance(weights[3] , lowerCAmelCase__ ): lowercase = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): lowercase = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f'{position_embeddings[emb_idx]} emb does not match' lowercase = nn.Parameter(torch.tensor(lowerCAmelCase__ ) ) lowercase = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( lowerCAmelCase__ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): lowercase = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # output layer norm lowercase = np.asarray(weights[7][0] ) lowercase = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(lowerCAmelCase__ ) , torch.tensor(lowerCAmelCase__ ) , ) # output embeddings lowercase = np.asarray(weights[9][0] ) lowercase = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(lowerCAmelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCAmelCase__ ) , ) def UpperCAmelCase__ ( lowerCAmelCase__ :Dict , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :str ) -> Tuple: '''simple docstring''' lowercase = ReformerConfig.from_json_file(lowerCAmelCase__ ) print(f'Building PyTorch model from configuration: {config}' ) lowercase = ReformerModelWithLMHead(lowerCAmelCase__ ) with open(lowerCAmelCase__ , """rb""" ) as f: lowercase = pickle.load(lowerCAmelCase__ )["""weights"""] set_model_weights_in_torch(lowerCAmelCase__ , lowerCAmelCase__ , config.hidden_size ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , lowerCAmelCase__ ) if __name__ == "__main__": __lowerCAmelCase : str =argparse.ArgumentParser() # Required parameters parser.add_argument( """--trax_model_pkl_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained Reformer model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __lowerCAmelCase : Tuple =parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
197
import argparse import importlib from pathlib import Path # Test all the extensions added in the setup lowerCamelCase : Any = [ 'kernels/rwkv/wkv_cuda.cu', 'kernels/rwkv/wkv_op.cpp', 'kernels/deformable_detr/ms_deform_attn.h', 'kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh', 'models/graphormer/algos_graphormer.pyx', ] def SCREAMING_SNAKE_CASE__ ( lowercase ) -> str: # Test all the extensions added in the setup for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument('--check_lib', action='store_true', help='Whether to check the build or the actual package.') lowerCamelCase : int = parser.parse_args() if args.check_lib: lowerCamelCase : Optional[int] = importlib.import_module('transformers') lowerCamelCase : List[str] = Path(transformers_module.__file__).parent else: lowerCamelCase : Optional[int] = Path.cwd() / 'build/lib/transformers' if not test_custom_files_are_present(transformers_path): raise ValueError('The built release does not contain the custom files. Fix this before going further!')
124
0
'''simple docstring''' import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 __snake_case : Optional[int] = data_utils.TransfoXLTokenizer __snake_case : Any = data_utils.TransfoXLCorpus __snake_case : List[str] = data_utils __snake_case : List[Any] = data_utils def _UpperCAmelCase ( _UpperCamelCase : Optional[Any], _UpperCamelCase : int, _UpperCamelCase : Optional[Any], _UpperCamelCase : int ) -> Dict: if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(_UpperCamelCase, '''rb''' ) as fp: A_ = pickle.load(_UpperCamelCase, encoding='''latin1''' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) A_ = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''pretrained_vocab_file'''] print(F'''Save vocabulary to {pytorch_vocab_dump_path}''' ) A_ = corpus.vocab.__dict__ torch.save(_UpperCamelCase, _UpperCamelCase ) A_ = corpus.__dict__ corpus_dict_no_vocab.pop('''vocab''', _UpperCamelCase ) A_ = pytorch_dump_folder_path + '''/''' + CORPUS_NAME print(F'''Save dataset to {pytorch_dataset_dump_path}''' ) torch.save(_UpperCamelCase, _UpperCamelCase ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model A_ = os.path.abspath(_UpperCamelCase ) A_ = os.path.abspath(_UpperCamelCase ) print(F'''Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.''' ) # Initialise PyTorch model if transfo_xl_config_file == "": A_ = TransfoXLConfig() else: A_ = TransfoXLConfig.from_json_file(_UpperCamelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) A_ = TransfoXLLMHeadModel(_UpperCamelCase ) A_ = load_tf_weights_in_transfo_xl(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) # Save pytorch-model A_ = os.path.join(_UpperCamelCase, _UpperCamelCase ) A_ = os.path.join(_UpperCamelCase, _UpperCamelCase ) print(F'''Save PyTorch model to {os.path.abspath(_UpperCamelCase )}''' ) torch.save(model.state_dict(), _UpperCamelCase ) print(F'''Save configuration file to {os.path.abspath(_UpperCamelCase )}''' ) with open(_UpperCamelCase, '''w''', encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __snake_case : Dict = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--tf_checkpoint_path', default='', type=str, help='An optional path to a TensorFlow checkpoint path to be converted.', ) parser.add_argument( '--transfo_xl_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--transfo_xl_dataset_file', default='', type=str, help='An optional dataset file to be converted in a vocabulary.', ) __snake_case : Dict = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
18
'''simple docstring''' from collections import defaultdict def _UpperCAmelCase ( _UpperCamelCase : int ) -> int: A_ = 1 A_ = True for v in tree[start]: if v not in visited: ret += dfs(_UpperCamelCase ) if ret % 2 == 0: cuts.append(_UpperCamelCase ) return ret def _UpperCAmelCase ( ) -> Optional[Any]: dfs(1 ) if __name__ == "__main__": __snake_case , __snake_case : Union[str, Any] = 10, 9 __snake_case : int = defaultdict(list) __snake_case : dict[int, bool] = {} __snake_case : list[int] = [] __snake_case : Union[str, Any] = 0 __snake_case : int = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
18
1
def __magic_name__ ( A : list ): '''simple docstring''' if any(not isinstance(A, A ) or x < 0 for x in sequence ): raise TypeError("Sequence must be list of non-negative integers" ) for _ in range(len(A ) ): for i, (rod_upper, rod_lower) in enumerate(zip(A, sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
107
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig __lowerCAmelCase : int = { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/config.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/config.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/config.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/config.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/config.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/config.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json', } class snake_case__ (_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = """albert""" def __init__( self : List[str] , __lowerCamelCase : Union[str, Any]=3_00_00 , __lowerCamelCase : Union[str, Any]=1_28 , __lowerCamelCase : Any=40_96 , __lowerCamelCase : str=12 , __lowerCamelCase : Union[str, Any]=1 , __lowerCamelCase : Union[str, Any]=64 , __lowerCamelCase : Dict=1_63_84 , __lowerCamelCase : List[Any]=1 , __lowerCamelCase : Optional[Any]="gelu_new" , __lowerCamelCase : List[str]=0 , __lowerCamelCase : List[str]=0 , __lowerCamelCase : Tuple=5_12 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : Optional[Any]=0.02 , __lowerCamelCase : Optional[Any]=1e-12 , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : Any="absolute" , __lowerCamelCase : List[str]=0 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : Any=3 , **__lowerCamelCase : int , ) -> int: super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) a = vocab_size a = embedding_size a = hidden_size a = num_hidden_layers a = num_hidden_groups a = num_attention_heads a = inner_group_num a = hidden_act a = intermediate_size a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = initializer_range a = layer_norm_eps a = classifier_dropout_prob a = position_embedding_type class snake_case__ (_UpperCamelCase ): """simple docstring""" @property def __UpperCAmelCase ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": a = {0: "batch", 1: "choice", 2: "sequence"} else: a = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
107
1
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) __A : Dict = pytest.mark.integration @pytest.mark.parametrize('path', ['paws', 'csv'] ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Tuple: '''simple docstring''' inspect_dataset(__lowerCAmelCase, __lowerCAmelCase ) lowerCAmelCase : str = path + '''.py''' assert script_name in os.listdir(__lowerCAmelCase ) assert "__pycache__" not in os.listdir(__lowerCAmelCase ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path', ['accuracy'] ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> str: '''simple docstring''' inspect_metric(__lowerCAmelCase, __lowerCAmelCase ) lowerCAmelCase : str = path + '''.py''' assert script_name in os.listdir(__lowerCAmelCase ) assert "__pycache__" not in os.listdir(__lowerCAmelCase ) @pytest.mark.parametrize( 'path, config_name, expected_splits', [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ], ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Any: '''simple docstring''' lowerCAmelCase : List[str] = get_dataset_config_info(__lowerCAmelCase, config_name=__lowerCAmelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception', [ ('paws', None, ValueError), ], ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' with pytest.raises(__lowerCAmelCase ): get_dataset_config_info(__lowerCAmelCase, config_name=__lowerCAmelCase ) @pytest.mark.parametrize( 'path, expected', [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ], ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' lowerCAmelCase : List[str] = get_dataset_config_names(__lowerCAmelCase ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config', [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ], ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' lowerCAmelCase : str = get_dataset_infos(__lowerCAmelCase ) assert list(infos.keys() ) == expected_configs lowerCAmelCase : int = expected_configs[0] assert expected_config in infos lowerCAmelCase : Any = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits', [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ], ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' lowerCAmelCase : Union[str, Any] = get_dataset_infos(__lowerCAmelCase ) assert expected_config in infos lowerCAmelCase : List[str] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception', [ ('paws', None, ValueError), ], ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Dict: '''simple docstring''' with pytest.raises(__lowerCAmelCase ): get_dataset_split_names(__lowerCAmelCase, config_name=__lowerCAmelCase )
350
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class __A ( lowerCAmelCase ): lowerCAmelCase_ : Union[List[PIL.Image.Image], np.ndarray] lowerCAmelCase_ : Optional[List[bool]] lowerCAmelCase_ : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
323
0
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def __lowerCAmelCase ( lowercase : Any ) -> Dict: """simple docstring""" snake_case : Tuple = botoa.client("iam" ) snake_case : List[str] = { """Version""": """2012-10-17""", """Statement""": [ {"""Effect""": """Allow""", """Principal""": {"""Service""": """sagemaker.amazonaws.com"""}, """Action""": """sts:AssumeRole"""} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=_A , AssumeRolePolicyDocument=json.dumps(_A , indent=2 ) ) snake_case : str = { """Version""": """2012-10-17""", """Statement""": [ { """Effect""": """Allow""", """Action""": [ """sagemaker:*""", """ecr:GetDownloadUrlForLayer""", """ecr:BatchGetImage""", """ecr:BatchCheckLayerAvailability""", """ecr:GetAuthorizationToken""", """cloudwatch:PutMetricData""", """cloudwatch:GetMetricData""", """cloudwatch:GetMetricStatistics""", """cloudwatch:ListMetrics""", """logs:CreateLogGroup""", """logs:CreateLogStream""", """logs:DescribeLogStreams""", """logs:PutLogEvents""", """logs:GetLogEvents""", """s3:CreateBucket""", """s3:ListBucket""", """s3:GetBucketLocation""", """s3:GetObject""", """s3:PutObject""", ], """Resource""": """*""", } ], } # attach policy to role iam_client.put_role_policy( RoleName=_A , PolicyName=F'{role_name}_policy_permission' , PolicyDocument=json.dumps(_A , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(F'role {role_name} already exists. Using existing one' ) def __lowerCAmelCase ( lowercase : str ) -> List[str]: """simple docstring""" snake_case : int = botoa.client("iam" ) return iam_client.get_role(RoleName=_A )["Role"]["Arn"] def __lowerCAmelCase ( ) -> str: """simple docstring""" snake_case : Optional[int] = _ask_options( "How do you want to authorize?" , ["AWS Profile", "Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) "] , _A , ) snake_case : Tuple = None if credentials_configuration == 0: snake_case : Any = _ask_field("Enter your AWS Profile name: [default] " , default="default" ) snake_case : Optional[Any] = aws_profile else: print( "Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with," "`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`" ) snake_case : Any = _ask_field("AWS Access Key ID: " ) snake_case : int = aws_access_key_id snake_case : List[str] = _ask_field("AWS Secret Access Key: " ) snake_case : Dict = aws_secret_access_key snake_case : Dict = _ask_field("Enter your AWS Region: [us-east-1]" , default="us-east-1" ) snake_case : Dict = aws_region snake_case : Union[str, Any] = _ask_options( "Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?" , ["Provide IAM Role name", "Create new IAM role using credentials"] , _A , ) if role_management == 0: snake_case : List[Any] = _ask_field("Enter your IAM role name: " ) else: snake_case : Any = """accelerate_sagemaker_execution_role""" print(F'Accelerate will create an iam role \"{iam_role_name}\" using the provided credentials' ) _create_iam_role_for_sagemaker(_A ) snake_case : str = _ask_field( "Do you want to use custom Docker image? [yes/NO]: " , _convert_yes_no_to_bool , default=_A , error_message="Please enter yes or no." , ) snake_case : Dict = None if is_custom_docker_image: snake_case : List[str] = _ask_field("Enter your Docker image: " , lambda lowercase : str(_A ).lower() ) snake_case : Optional[Any] = _ask_field( "Do you want to provide SageMaker input channels with data locations? [yes/NO]: " , _convert_yes_no_to_bool , default=_A , error_message="Please enter yes or no." , ) snake_case : Dict = None if is_sagemaker_inputs_enabled: snake_case : Tuple = _ask_field( "Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): " , lambda lowercase : str(_A ).lower() , ) snake_case : int = _ask_field( "Do you want to enable SageMaker metrics? [yes/NO]: " , _convert_yes_no_to_bool , default=_A , error_message="Please enter yes or no." , ) snake_case : Optional[Any] = None if is_sagemaker_metrics_enabled: snake_case : Optional[int] = _ask_field( "Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): " , lambda lowercase : str(_A ).lower() , ) snake_case : List[Any] = _ask_options( "What is the distributed mode?" , ["No distributed training", "Data parallelism"] , _convert_sagemaker_distributed_mode , ) snake_case : int = {} snake_case : int = _ask_field( "Do you wish to optimize your script with torch dynamo?[yes/NO]:" , _convert_yes_no_to_bool , default=_A , error_message="Please enter yes or no." , ) if use_dynamo: snake_case : Any = """dynamo_""" snake_case : List[str] = _ask_options( "Which dynamo backend would you like to use?" , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) snake_case : List[str] = _ask_field( "Do you want to customize the defaults sent to torch.compile? [yes/NO]: " , _convert_yes_no_to_bool , default=_A , error_message="Please enter yes or no." , ) if use_custom_options: snake_case : str = _ask_options( "Which mode do you want to use?" , _A , lambda lowercase : TORCH_DYNAMO_MODES[int(_A )] , default="default" , ) snake_case : Dict = _ask_field( "Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: " , _convert_yes_no_to_bool , default=_A , error_message="Please enter yes or no." , ) snake_case : str = _ask_field( "Do you want to enable dynamic shape tracing? [yes/NO]: " , _convert_yes_no_to_bool , default=_A , error_message="Please enter yes or no." , ) snake_case : Union[str, Any] = """Which EC2 instance type you want to use for your training?""" if distributed_type != SageMakerDistributedType.NO: snake_case : Any = _ask_options( _A , _A , lambda lowercase : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(_A )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" snake_case : Dict = _ask_field(_A , lambda lowercase : str(_A ).lower() , default="ml.p3.2xlarge" ) snake_case : Any = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): snake_case : Tuple = _ask_field( "How many machines do you want use? [1]: " , _A , default=1 , ) snake_case : Optional[int] = _ask_options( "Do you wish to use FP16 or BF16 (mixed precision)?" , ["no", "fp16", "bf16", "fp8"] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( "Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts." ) return SageMakerConfig( image_uri=_A , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=_A , use_cpu=_A , dynamo_config=_A , eca_instance_type=_A , profile=_A , region=_A , iam_role_name=_A , mixed_precision=_A , num_machines=_A , sagemaker_inputs_file=_A , sagemaker_metrics_file=_A , )
203
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : Dict = logging.get_logger(__name__) UpperCAmelCase__ : str = { """facebook/nllb-moe-54B""": """https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json""", } class a__ ( UpperCAmelCase ): """simple docstring""" UpperCAmelCase__ : List[Any] ="""nllb-moe""" UpperCAmelCase__ : Any =["""past_key_values"""] UpperCAmelCase__ : Dict ={"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : Union[str, Any] , UpperCAmelCase__ : List[Any]=1_2_8_1_1_2 , UpperCAmelCase__ : Tuple=1_0_2_4 , UpperCAmelCase__ : str=1_2 , UpperCAmelCase__ : int=4_0_9_6 , UpperCAmelCase__ : Dict=1_6 , UpperCAmelCase__ : Union[str, Any]=1_2 , UpperCAmelCase__ : int=4_0_9_6 , UpperCAmelCase__ : Optional[Any]=1_6 , UpperCAmelCase__ : Union[str, Any]=0.05 , UpperCAmelCase__ : Any=0.05 , UpperCAmelCase__ : List[Any]=True , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : Union[str, Any]="relu" , UpperCAmelCase__ : Dict=1_0_2_4 , UpperCAmelCase__ : Any=0.1 , UpperCAmelCase__ : str=0.1 , UpperCAmelCase__ : List[Any]=0.0 , UpperCAmelCase__ : Tuple=0.02 , UpperCAmelCase__ : Optional[int]=2 , UpperCAmelCase__ : str=True , UpperCAmelCase__ : Union[str, Any]=False , UpperCAmelCase__ : Dict="float32" , UpperCAmelCase__ : Any=False , UpperCAmelCase__ : Union[str, Any]=1_2_8 , UpperCAmelCase__ : Any=6_4 , UpperCAmelCase__ : Dict=4 , UpperCAmelCase__ : List[Any]=4 , UpperCAmelCase__ : Optional[Any]=0.0_01 , UpperCAmelCase__ : Optional[Any]=0.0_01 , UpperCAmelCase__ : Dict="all" , UpperCAmelCase__ : Optional[int]=False , UpperCAmelCase__ : List[Any]=False , UpperCAmelCase__ : List[str]=1.0 , UpperCAmelCase__ : Optional[int]=0.2 , UpperCAmelCase__ : Dict=1 , UpperCAmelCase__ : List[Any]=0 , UpperCAmelCase__ : Any=2 , UpperCAmelCase__ : Tuple=False , **UpperCAmelCase__ : Union[str, Any] , ) ->int: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = vocab_size SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE : str = d_model SCREAMING_SNAKE_CASE : Dict = encoder_ffn_dim SCREAMING_SNAKE_CASE : Union[str, Any] = encoder_layers SCREAMING_SNAKE_CASE : str = encoder_attention_heads SCREAMING_SNAKE_CASE : List[str] = decoder_ffn_dim SCREAMING_SNAKE_CASE : str = decoder_layers SCREAMING_SNAKE_CASE : Optional[Any] = decoder_attention_heads SCREAMING_SNAKE_CASE : Optional[Any] = dropout SCREAMING_SNAKE_CASE : Optional[int] = attention_dropout SCREAMING_SNAKE_CASE : str = activation_dropout SCREAMING_SNAKE_CASE : Dict = activation_function SCREAMING_SNAKE_CASE : str = init_std SCREAMING_SNAKE_CASE : Tuple = encoder_layerdrop SCREAMING_SNAKE_CASE : Tuple = decoder_layerdrop SCREAMING_SNAKE_CASE : List[str] = use_cache SCREAMING_SNAKE_CASE : Optional[Any] = encoder_layers SCREAMING_SNAKE_CASE : List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE : Tuple = router_z_loss_coef SCREAMING_SNAKE_CASE : Tuple = router_aux_loss_coef SCREAMING_SNAKE_CASE : List[Any] = decoder_sparse_step SCREAMING_SNAKE_CASE : Any = encoder_sparse_step SCREAMING_SNAKE_CASE : Tuple = num_experts SCREAMING_SNAKE_CASE : Optional[int] = expert_capacity SCREAMING_SNAKE_CASE : int = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}" ) SCREAMING_SNAKE_CASE : Optional[int] = router_dtype SCREAMING_SNAKE_CASE : Any = router_ignore_padding_tokens SCREAMING_SNAKE_CASE : Any = batch_prioritized_routing SCREAMING_SNAKE_CASE : Optional[Any] = second_expert_policy SCREAMING_SNAKE_CASE : Any = normalize_router_prob_before_dropping SCREAMING_SNAKE_CASE : Tuple = moe_eval_capacity_token_fraction SCREAMING_SNAKE_CASE : int = moe_token_dropout SCREAMING_SNAKE_CASE : Optional[int] = output_router_logits super().__init__( pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , is_encoder_decoder=UpperCAmelCase__ , decoder_start_token_id=UpperCAmelCase__ , **UpperCAmelCase__ , )
245
0
"""simple docstring""" import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class lowercase( nn.Module ): '''simple docstring''' def __init__( self: Optional[int] ): '''simple docstring''' super().__init__() _snake_case : List[str] = nn.Linear(3, 4 ) _snake_case : int = nn.BatchNormad(4 ) _snake_case : List[str] = nn.Linear(4, 5 ) def UpperCamelCase_ ( self: Any, a_: Union[str, Any] ): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(a_ ) ) ) class lowercase( __a ): '''simple docstring''' def UpperCamelCase_ ( self: Any, a_: int, *a_: Dict, **a_: Dict ): '''simple docstring''' return (args[0] + 1,) + args[1:], kwargs class lowercase( __a ): '''simple docstring''' def UpperCamelCase_ ( self: str, a_: Tuple, a_: Union[str, Any] ): '''simple docstring''' return output + 1 class lowercase( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Tuple = ModelForTest() _snake_case : List[str] = ModelHook() add_hook_to_module(a_, a_ ) self.assertEqual(test_model._hf_hook, a_ ) self.assertTrue(hasattr(a_, """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__, """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ), ["""x"""] ) remove_hook_from_module(a_ ) self.assertFalse(hasattr(a_, """_hf_hook""" ) ) self.assertFalse(hasattr(a_, """_old_forward""" ) ) def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Dict = ModelForTest() _snake_case : List[Any] = ModelHook() add_hook_to_module(a_, a_ ) add_hook_to_module(a_, a_, append=a_ ) self.assertEqual(isinstance(test_model._hf_hook, a_ ), a_ ) self.assertEqual(len(test_model._hf_hook.hooks ), 2 ) self.assertTrue(hasattr(a_, """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__, """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ), ["""x"""] ) remove_hook_from_module(a_ ) self.assertFalse(hasattr(a_, """_hf_hook""" ) ) self.assertFalse(hasattr(a_, """_old_forward""" ) ) def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Optional[Any] = ModelForTest() _snake_case : Optional[Any] = torch.randn(2, 3 ) _snake_case : List[Any] = test_model(x + 1 ) _snake_case : List[str] = test_model(x + 2 ) _snake_case : Any = PreForwardHook() add_hook_to_module(a_, a_ ) _snake_case : List[Any] = test_model(a_ ) self.assertTrue(torch.allclose(a_, a_, atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain _snake_case : List[str] = PreForwardHook() add_hook_to_module(a_, a_ ) _snake_case : Tuple = test_model(a_ ) self.assertTrue(torch.allclose(a_, a_, atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks _snake_case : str = SequentialHook(PreForwardHook(), PreForwardHook() ) add_hook_to_module(a_, a_ ) _snake_case : str = test_model(a_ ) assert torch.allclose(a_, a_, atol=1E-5 ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : Optional[int] = ModelForTest() _snake_case : List[Any] = torch.randn(2, 3 ) _snake_case : List[str] = test_model(a_ ) _snake_case : List[Any] = PostForwardHook() add_hook_to_module(a_, a_ ) _snake_case : Union[str, Any] = test_model(a_ ) self.assertTrue(torch.allclose(a_, output + 1, atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain _snake_case : Tuple = PostForwardHook() add_hook_to_module(a_, a_ ) _snake_case : Optional[Any] = test_model(a_ ) self.assertTrue(torch.allclose(a_, output + 1, atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks _snake_case : Dict = SequentialHook(PostForwardHook(), PostForwardHook() ) add_hook_to_module(a_, a_ ) _snake_case : List[str] = test_model(a_ ) assert torch.allclose(a_, output + 2, atol=1E-5 ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : str = ModelForTest() _snake_case : Any = torch.randn(2, 3 ) _snake_case : List[str] = test_model(a_ ) _snake_case : List[Any] = PostForwardHook() add_hook_to_module(a_, a_ ) _snake_case : Dict = test_model(a_ ) self.assertTrue(torch.allclose(a_, output + 1 ) ) self.assertTrue(outputa.requires_grad ) _snake_case : Union[str, Any] = True _snake_case : Dict = test_model(a_ ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Dict = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara, AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm, AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara, AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device, torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device, torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device, torch.device(0 ) ) self.assertEqual(model.lineara.weight.device, torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device _snake_case : Any = torch.randn(2, 3 ) _snake_case : Any = model(a_ ) self.assertEqual(output.device, torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(a_, AlignDevicesHook(io_same_device=a_ ) ) _snake_case : int = torch.randn(2, 3 ).to(0 ) _snake_case : Optional[Any] = model(a_ ) self.assertEqual(output.device, torch.device(0 ) ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : int = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) # This will move each submodule on different devices _snake_case : Optional[int] = {"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True} add_hook_to_module(model.lineara, AlignDevicesHook(**a_ ) ) add_hook_to_module(model.batchnorm, AlignDevicesHook(**a_ ) ) add_hook_to_module(model.lineara, AlignDevicesHook(**a_ ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device, torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device _snake_case : Union[str, Any] = torch.device(hook_kwargs["""execution_device"""] ) self.assertEqual(model.batchnorm.running_mean.device, a_ ) _snake_case : str = torch.randn(2, 3 ) _snake_case : Optional[int] = model(a_ ) self.assertEqual(output.device, a_ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) # Now test with buffers included in the offload _snake_case : Any = { """execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True, """offload_buffers""": True, } add_hook_to_module(model.lineara, AlignDevicesHook(**a_ ) ) add_hook_to_module(model.batchnorm, AlignDevicesHook(**a_ ) ) add_hook_to_module(model.lineara, AlignDevicesHook(**a_ ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device, torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device, torch.device("""meta""" ) ) _snake_case : List[Any] = torch.randn(2, 3 ) _snake_case : Any = model(a_ ) self.assertEqual(output.device, a_ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case : Any = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) # This will move each submodule on different devices _snake_case : Tuple = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook(a_, execution_device=a_, offload=a_ ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device, torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device _snake_case : Optional[int] = torch.device(a_ ) self.assertEqual(model.batchnorm.running_mean.device, a_ ) _snake_case : List[Any] = torch.randn(2, 3 ) _snake_case : List[Any] = model(a_ ) self.assertEqual(output.device, a_ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(a_ ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook(a_, execution_device=a_, offload=a_, offload_buffers=a_ ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device, torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device, torch.device("""meta""" ) ) _snake_case : str = torch.randn(2, 3 ) _snake_case : List[Any] = model(a_ ) self.assertEqual(output.device, a_ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(a_ ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : List[str] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) # This will move each submodule on different devices _snake_case : Any = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook( a_, execution_device=a_, offload=a_, weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device, torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device _snake_case : Optional[Any] = torch.device(a_ ) self.assertEqual(model.batchnorm.running_mean.device, a_ ) _snake_case : int = torch.randn(2, 3 ) _snake_case : str = model(a_ ) self.assertEqual(output.device, a_ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(a_ ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook( a_, execution_device=a_, offload=a_, weights_map=model.state_dict(), offload_buffers=a_, ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device, torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device, torch.device("""meta""" ) ) _snake_case : Optional[int] = torch.randn(2, 3 ) _snake_case : Any = model(a_ ) self.assertEqual(output.device, a_ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(a_ ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device, torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device, torch.device("""cpu""" ) )
132
"""simple docstring""" from typing import Any class lowercase: '''simple docstring''' def __init__( self: Dict, a_: Any ): '''simple docstring''' _snake_case : Dict = data _snake_case : Optional[Any] = None class lowercase: '''simple docstring''' def __init__( self: str ): '''simple docstring''' _snake_case : Any = None def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : List[Any] = self.head while temp is not None: print(temp.data, end=""" """ ) _snake_case : int = temp.next print() def UpperCamelCase_ ( self: Union[str, Any], a_: Any ): '''simple docstring''' _snake_case : Optional[Any] = Node(a_ ) _snake_case : Union[str, Any] = self.head _snake_case : List[Any] = new_node def UpperCamelCase_ ( self: Tuple, a_: List[str], a_: Union[str, Any] ): '''simple docstring''' if node_data_a == node_data_a: return else: _snake_case : int = self.head while node_a is not None and node_a.data != node_data_a: _snake_case : List[Any] = node_a.next _snake_case : List[Any] = self.head while node_a is not None and node_a.data != node_data_a: _snake_case : List[Any] = node_a.next if node_a is None or node_a is None: return _snake_case , _snake_case : int = node_a.data, node_a.data if __name__ == "__main__": A_ = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('''After swapping''') ll.print_list()
132
1
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. a_ = abspath(join(dirname(dirname(__file__)), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def lowerCamelCase__ ( _a): from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(_a) def lowerCamelCase__ ( _a): from diffusers.utils.testing_utils import pytest_terminal_summary_main SCREAMING_SNAKE_CASE : Union[str, Any] = terminalreporter.config.getoption("--make-reports") if make_reports: pytest_terminal_summary_main(_a , id=_a)
76
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType lowercase : List[str] = logging.get_logger(__name__) lowercase : Any = { """openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""", } # fmt: off lowercase : List[str] = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5, 7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7, 1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1, 4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6, 1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1, 1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9, 3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1 ] lowercase : List[Any] = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3, 8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7, 3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7, 7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3, 1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5, 2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5, 4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2 ] class A__ ( __UpperCAmelCase ): """simple docstring""" __A : int = '''whisper''' __A : List[Any] = ['''past_key_values'''] __A : Optional[int] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , lowercase=5_1865 , lowercase=80 , lowercase=6 , lowercase=4 , lowercase=6 , lowercase=4 , lowercase=1536 , lowercase=1536 , lowercase=0.0 , lowercase=0.0 , lowercase=5_0257 , lowercase=True , lowercase=True , lowercase="gelu" , lowercase=256 , lowercase=0.0 , lowercase=0.0 , lowercase=0.0 , lowercase=0.02 , lowercase=False , lowercase=1500 , lowercase=448 , lowercase=5_0256 , lowercase=5_0256 , lowercase=5_0256 , lowercase=None , lowercase=[220, 5_0256] , lowercase=False , lowercase=256 , lowercase=False , lowercase=0.05 , lowercase=10 , lowercase=2 , lowercase=0.0 , lowercase=10 , lowercase=0 , lowercase=7 , **lowercase , ) -> str: '''simple docstring''' a__ : int = vocab_size a__ : int = num_mel_bins a__ : Optional[int] = d_model a__ : List[str] = encoder_layers a__ : Dict = encoder_attention_heads a__ : List[str] = decoder_layers a__ : Tuple = decoder_attention_heads a__ : List[str] = decoder_ffn_dim a__ : Optional[Any] = encoder_ffn_dim a__ : Tuple = dropout a__ : Optional[int] = attention_dropout a__ : Any = activation_dropout a__ : Any = activation_function a__ : List[Any] = init_std a__ : Optional[int] = encoder_layerdrop a__ : Union[str, Any] = decoder_layerdrop a__ : Tuple = use_cache a__ : List[str] = encoder_layers a__ : Dict = scale_embedding # scale factor will be sqrt(d_model) if True a__ : Dict = max_source_positions a__ : Dict = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. a__ : Optional[int] = classifier_proj_size a__ : List[Any] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 a__ : List[Any] = apply_spec_augment a__ : int = mask_time_prob a__ : int = mask_time_length a__ : List[Any] = mask_time_min_masks a__ : str = mask_feature_prob a__ : Optional[int] = mask_feature_length a__ : Union[str, Any] = mask_feature_min_masks a__ : Tuple = median_filter_width super().__init__( pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , is_encoder_decoder=lowercase , decoder_start_token_id=lowercase , suppress_tokens=lowercase , begin_suppress_tokens=lowercase , **lowercase , ) class A__ ( __UpperCAmelCase ): """simple docstring""" @property def __lowercase ( self) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' a__ : List[str] = OrderedDict( [ ('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}), ]) if self.use_past: a__ : Optional[Any] = {0: 'batch'} else: a__ : Optional[Any] = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowercase , direction='inputs') return common_inputs def __lowercase ( self , lowercase , lowercase = -1 , lowercase = -1 , lowercase = False , lowercase = None , lowercase = 2_2050 , lowercase = 5.0 , lowercase = 220 , ) -> Mapping[str, Any]: '''simple docstring''' a__ : Union[str, Any] = OrderedDict() a__ : int = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=lowercase , framework=lowercase , sampling_rate=lowercase , time_duration=lowercase , frequency=lowercase , ) a__ : List[Any] = encoder_inputs['input_features'].shape[2] a__ : Optional[int] = encoder_sequence_length // 2 if self.use_past else seq_length a__ : Any = super().generate_dummy_inputs( preprocessor.tokenizer , lowercase , lowercase , lowercase , lowercase) a__ : List[str] = encoder_inputs.pop('input_features') a__ : Optional[int] = decoder_inputs.pop('decoder_input_ids') if "past_key_values" in decoder_inputs: a__ : List[str] = decoder_inputs.pop('past_key_values') return dummy_inputs @property def __lowercase ( self) -> float: '''simple docstring''' return 1e-3
99
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : List[str] = { """configuration_time_series_transformer""": [ """TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TimeSeriesTransformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Dict = [ """TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TimeSeriesTransformerForPrediction""", """TimeSeriesTransformerModel""", """TimeSeriesTransformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys _lowercase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
91
'''simple docstring''' from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class UpperCamelCase__: __magic_name__ : List[str] __magic_name__ : Optional[str] = None # Automatically constructed __magic_name__ : ClassVar[str] = "dict" __magic_name__ : ClassVar[Any] = None __magic_name__ : str = field(default="Translation" , init=lowerCAmelCase , repr=lowerCAmelCase ) def __call__( self : Union[str, Any] )-> str: """simple docstring""" return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def a__( self : int )-> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class UpperCamelCase__: __magic_name__ : Optional[List] = None __magic_name__ : Optional[int] = None __magic_name__ : Optional[str] = None # Automatically constructed __magic_name__ : ClassVar[str] = "dict" __magic_name__ : ClassVar[Any] = None __magic_name__ : str = field(default="TranslationVariableLanguages" , init=lowerCAmelCase , repr=lowerCAmelCase ) def a__( self : Union[str, Any] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = sorted(set(self.languages ) ) if self.languages else None UpperCAmelCase = len(self.languages ) if self.languages else None def __call__( self : int )-> Optional[Any]: """simple docstring""" return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def a__( self : Optional[int] , lowerCAmelCase : Dict )-> Tuple: """simple docstring""" UpperCAmelCase = set(self.languages ) if self.languages and set(lowerCAmelCase ) - lang_set: raise ValueError( F"""Some languages in example ({", ".join(sorted(set(lowerCAmelCase ) - lang_set ) )}) are not in valid set ({", ".join(lowerCAmelCase )}).""" ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. UpperCAmelCase = [] for lang, text in translation_dict.items(): if isinstance(lowerCAmelCase , lowerCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. UpperCAmelCase , UpperCAmelCase = zip(*sorted(lowerCAmelCase ) ) return {"language": languages, "translation": translations} def a__( self : Any )-> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
91
1
'''simple docstring''' import requests __lowerCAmelCase = """""" # <-- Put your OpenWeatherMap appid here! __lowerCAmelCase = """https://api.openweathermap.org/data/2.5/""" def UpperCAmelCase_ (__a : str = "Chicago" , __a : str = APPID ): """simple docstring""" return requests.get(URL_BASE + 'weather' , params=locals() ).json() def UpperCAmelCase_ (__a : str = "Kolkata, India" , __a : str = APPID ): """simple docstring""" return requests.get(URL_BASE + 'forecast' , params=locals() ).json() def UpperCAmelCase_ (__a : float = 55.68 , __a : float = 12.57 , __a : str = APPID ): """simple docstring""" return requests.get(URL_BASE + 'onecall' , params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: __lowerCAmelCase = input("""Enter a location:""").strip() if location: pprint(current_weather(location)) else: break
271
'''simple docstring''' import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __lowerCAmelCase = 1_6 __lowerCAmelCase = 3_2 def UpperCAmelCase_ (__a : Accelerator , __a : DatasetDict , __a : List[int] , __a : List[int] , __a : int = 1_6 ): """simple docstring""" _a : Union[str, Any] = AutoTokenizer.from_pretrained('bert-base-cased' ) _a : str = DatasetDict( { 'train': dataset['train'].select(__a ), 'validation': dataset['train'].select(__a ), 'test': dataset['validation'], } ) def tokenize_function(__a : List[Any] ): # max_length=None => use the model max length (it's actually the default) _a : Optional[int] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=__a , max_length=__a ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _a : List[str] = datasets.map( __a , batched=__a , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _a : List[Any] = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(__a : int ): # On TPU it's best to pad everything to the same length or training will be very slow. _a : Dict = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _a : Tuple = 1_6 elif accelerator.mixed_precision != "no": _a : List[Any] = 8 else: _a : List[Any] = None return tokenizer.pad( __a , padding='longest' , max_length=__a , pad_to_multiple_of=__a , return_tensors='pt' , ) # Instantiate dataloaders. _a : Any = DataLoader( tokenized_datasets['train'] , shuffle=__a , collate_fn=__a , batch_size=__a ) _a : Optional[int] = DataLoader( tokenized_datasets['validation'] , shuffle=__a , collate_fn=__a , batch_size=__a ) _a : Optional[Any] = DataLoader( tokenized_datasets['test'] , shuffle=__a , collate_fn=__a , batch_size=__a ) return train_dataloader, eval_dataloader, test_dataloader def UpperCAmelCase_ (__a : Any , __a : Union[str, Any] ): """simple docstring""" _a : Dict = [] # Download the dataset _a : Tuple = load_dataset('glue' , 'mrpc' ) # Create our splits _a : Union[str, Any] = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator _a : Any = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _a : Optional[Any] = config['lr'] _a : Optional[int] = int(config['num_epochs'] ) _a : Dict = int(config['seed'] ) _a : Dict = int(config['batch_size'] ) _a : Optional[int] = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation _a : List[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _a : Any = batch_size // MAX_GPU_BATCH_SIZE _a : List[str] = MAX_GPU_BATCH_SIZE set_seed(__a ) # New Code # # Create our folds: _a : int = kfold.split(np.zeros(datasets['train'].num_rows ) , datasets['train']['label'] ) _a : Any = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(__a ): _a, _a, _a : Optional[Any] = get_fold_dataloaders( __a , __a , __a , __a , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _a : Dict = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=__a ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _a : List[Any] = model.to(accelerator.device ) # Instantiate optimizer _a : List[str] = AdamW(params=model.parameters() , lr=__a ) # Instantiate scheduler _a : List[Any] = get_linear_schedule_with_warmup( optimizer=__a , num_warmup_steps=1_0_0 , num_training_steps=(len(__a ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _a, _a, _a, _a, _a : Union[str, Any] = accelerator.prepare( __a , __a , __a , __a , __a ) # Now we train the model for epoch in range(__a ): model.train() for step, batch in enumerate(__a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _a : Dict = model(**__a ) _a : int = outputs.loss _a : Any = loss / gradient_accumulation_steps accelerator.backward(__a ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _a : Union[str, Any] = model(**__a ) _a : Tuple = outputs.logits.argmax(dim=-1 ) _a, _a : Any = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=__a , references=__a , ) _a : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , __a ) # New Code # # We also run predictions on the test set at the very end _a : Any = [] for step, batch in enumerate(__a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _a : Tuple = model(**__a ) _a : Dict = outputs.logits _a, _a : Optional[int] = accelerator.gather_for_metrics((predictions, batch['labels']) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(__a , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: _a : Dict = torch.cat(__a , dim=0 ) _a : Any = torch.stack(__a , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) _a : str = metric.compute(predictions=__a , references=__a ) accelerator.print('Average test metrics from all folds:' , __a ) def UpperCAmelCase_ (): """simple docstring""" _a : Any = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=__a , default=__a , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) # New Code # parser.add_argument('--num_folds' , type=__a , default=3 , help='The number of splits to perform across the dataset' ) _a : Any = parser.parse_args() _a : int = {'lr': 2e-5, 'num_epochs': 3, 'seed': 4_2, 'batch_size': 1_6} training_function(__a , __a ) if __name__ == "__main__": main()
271
1
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : Tuple = { 'configuration_informer': [ 'INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Any = [ 'INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'InformerForPrediction', 'InformerModel', 'InformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys _lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
366
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging _lowerCamelCase : int = logging.get_logger(__name__) _lowerCamelCase : Any = { 'deepmind/language-perceiver': 'https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = '''perceiver''' def __init__(self : Dict , _lowerCAmelCase : List[str]=256 , _lowerCAmelCase : Any=1280 , _lowerCAmelCase : Dict=768 , _lowerCAmelCase : List[str]=1 , _lowerCAmelCase : Optional[int]=26 , _lowerCAmelCase : Any=8 , _lowerCAmelCase : Any=8 , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : List[Any]="kv" , _lowerCAmelCase : Optional[Any]=1 , _lowerCAmelCase : int=1 , _lowerCAmelCase : Dict="gelu" , _lowerCAmelCase : str=0.1 , _lowerCAmelCase : List[str]=0.02 , _lowerCAmelCase : Any=1e-12 , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : int=262 , _lowerCAmelCase : int=2048 , _lowerCAmelCase : int=56 , _lowerCAmelCase : List[Any]=[368, 496] , _lowerCAmelCase : List[Any]=16 , _lowerCAmelCase : Any=1920 , _lowerCAmelCase : Optional[int]=16 , _lowerCAmelCase : List[Any]=[1, 16, 224, 224] , **_lowerCAmelCase : Union[str, Any] , ): super().__init__(**_lowerCAmelCase ) A = num_latents A = d_latents A = d_model A = num_blocks A = num_self_attends_per_block A = num_self_attention_heads A = num_cross_attention_heads A = qk_channels A = v_channels A = cross_attention_shape_for_attention A = self_attention_widening_factor A = cross_attention_widening_factor A = hidden_act A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = use_query_residual # masked language modeling attributes A = vocab_size A = max_position_embeddings # image classification attributes A = image_size # flow attributes A = train_size # multimodal autoencoding attributes A = num_frames A = audio_samples_per_frame A = samples_per_patch A = output_shape class __UpperCAmelCase ( A__ ): '''simple docstring''' @property def A (self : List[str] ): if self.task == "multiple-choice": A = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""inputs""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] ) @property def A (self : Dict ): return 1e-4 def A (self : List[Any] , _lowerCAmelCase : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , _lowerCAmelCase : int = 3 , _lowerCAmelCase : int = 40 , _lowerCAmelCase : int = 40 , ): # copied from `transformers.onnx.config.OnnxConfig` and slightly altered/simplified if isinstance(_lowerCAmelCase , _lowerCAmelCase ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A = compute_effective_axis_dimension( _lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX A = preprocessor.num_special_tokens_to_add(_lowerCAmelCase ) A = compute_effective_axis_dimension( _lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowerCAmelCase ) # Generate dummy inputs according to compute batch and sequence A = [""" """.join(["""a"""] ) * seq_length] * batch_size A = dict(preprocessor(_lowerCAmelCase , return_tensors=_lowerCAmelCase ) ) A = inputs.pop("""input_ids""" ) return inputs elif isinstance(_lowerCAmelCase , _lowerCAmelCase ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A = compute_effective_axis_dimension(_lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch ) A = self._generate_dummy_images(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) A = dict(preprocessor(images=_lowerCAmelCase , return_tensors=_lowerCAmelCase ) ) A = inputs.pop("""pixel_values""" ) return inputs else: raise ValueError( """Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.""" )
337
0
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class _A : UpperCamelCase__ : Optional[Union[str, Path]] = None UpperCamelCase__ : bool = False UpperCamelCase__ : bool = False UpperCamelCase__ : bool = False UpperCamelCase__ : Optional[Dict] = None UpperCamelCase__ : Optional[str] = None UpperCamelCase__ : bool = False UpperCamelCase__ : bool = False UpperCamelCase__ : bool = False UpperCamelCase__ : bool = True UpperCamelCase__ : Optional[int] = None UpperCamelCase__ : int = 1 UpperCamelCase__ : Optional[Union[str, bool]] = None UpperCamelCase__ : bool = False UpperCamelCase__ : Optional[Dict] = None UpperCamelCase__ : Optional[str] = None def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' return self.__class__(**{k: copy.deepcopy(__SCREAMING_SNAKE_CASE) for k, v in self.__dict__.items()})
49
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __a = np.full((len(_UpperCAmelCase ), sequence_length, 2) , _UpperCAmelCase ) else: __a = np.full((len(_UpperCAmelCase ), sequence_length) , _UpperCAmelCase ) for i, tensor in enumerate(_UpperCAmelCase ): if padding_side == "right": if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __a = tensor[:sequence_length] else: __a = tensor[:sequence_length] else: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __a = tensor[:sequence_length] else: __a = tensor[:sequence_length] return out_tensor.tolist() def __snake_case ( _UpperCAmelCase ): __a = ord(_UpperCAmelCase ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True __a = unicodedata.category(_UpperCAmelCase ) if cat.startswith('''P''' ): return True return False @dataclass class _A ( __UpperCAmelCase ): UpperCamelCase__ : PreTrainedTokenizerBase UpperCamelCase__ : Union[bool, str, PaddingStrategy] = True UpperCamelCase__ : Optional[int] = None UpperCamelCase__ : Optional[int] = None UpperCamelCase__ : int = -100 UpperCamelCase__ : str = "pt" def _lowerCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any]): '''simple docstring''' import torch __a = '''label''' if '''label''' in features[0].keys() else '''labels''' __a = [feature[label_name] for feature in features] if label_name in features[0].keys() else None __a = self.tokenizer.pad( __SCREAMING_SNAKE_CASE , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , ) if labels is None: return batch __a = torch.tensor(batch['''entity_ids''']).shape[1] __a = self.tokenizer.padding_side if padding_side == "right": __a = [ list(__SCREAMING_SNAKE_CASE) + [self.label_pad_token_id] * (sequence_length - len(__SCREAMING_SNAKE_CASE)) for label in labels ] else: __a = [ [self.label_pad_token_id] * (sequence_length - len(__SCREAMING_SNAKE_CASE)) + list(__SCREAMING_SNAKE_CASE) for label in labels ] __a = [feature['''ner_tags'''] for feature in features] __a = padding_tensor(__SCREAMING_SNAKE_CASE , -1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = [feature['''original_entity_spans'''] for feature in features] __a = padding_tensor(__SCREAMING_SNAKE_CASE , (-1, -1) , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = {k: torch.tensor(__SCREAMING_SNAKE_CASE , dtype=torch.intaa) for k, v in batch.items()} return batch
49
1
def lowerCAmelCase__ ( lowerCamelCase_ : Union[str, Any]): '''simple docstring''' if num < 0: return False lowerCAmelCase__ : Optional[int] = num lowerCAmelCase__ : Dict = 0 while num > 0: lowerCAmelCase__ : Dict = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
369
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __snake_case : int =get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece class lowerCamelCase__ ( lowerCamelCase__ , unittest.TestCase): '''simple docstring''' snake_case_ =XLMProphetNetTokenizer snake_case_ =False snake_case_ =True def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase__ : int = XLMProphetNetTokenizer(__lowerCamelCase ,keep_accents=__lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase__ (self ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : str = '''[PAD]''' lowerCAmelCase__ : Tuple = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) ,__lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) ,__lowerCamelCase ) def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'''[PAD]''' ) self.assertEqual(vocab_keys[1] ,'''[CLS]''' ) self.assertEqual(vocab_keys[-1] ,'''j''' ) self.assertEqual(len(__lowerCamelCase ) ,10_12 ) def lowerCAmelCase__ (self ) -> Union[str, Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size ,10_12 ) def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Dict = XLMProphetNetTokenizer(__lowerCamelCase ,keep_accents=__lowerCamelCase ) lowerCAmelCase__ : Tuple = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__lowerCamelCase ,['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCamelCase ) ,[value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] ,) lowerCAmelCase__ : Dict = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __lowerCamelCase ,[ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] ,) lowerCAmelCase__ : Optional[Any] = tokenizer.convert_tokens_to_ids(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase ,[ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] ,) lowerCAmelCase__ : Optional[Any] = tokenizer.convert_ids_to_tokens(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase ,[ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''[UNK]''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''[UNK]''', '''.''', ] ,) @cached_property def lowerCAmelCase__ (self ) -> List[str]: """simple docstring""" return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' ) @slow def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Optional[int] = '''Hello World!''' lowerCAmelCase__ : str = [3_53_89, 66_72, 49, 2] self.assertListEqual(__lowerCamelCase ,self.big_tokenizer.encode(__lowerCamelCase ) ) @slow def lowerCAmelCase__ (self ) -> List[str]: """simple docstring""" lowerCAmelCase__ : Any = {'''input_ids''': [[1_10_73, 8_27_83, 18, 26, 8_27_83, 5_49, 5_15_40, 2_48, 1_72_09, 13_01, 2_17, 20, 21_51_86, 13_25, 1_47, 1_72_09, 13_01, 2_17, 20, 5_63_70, 53, 12_20_20, 20, 1_64_77, 27, 8_73_55, 45_48, 20, 47_28, 7_83_92, 17, 15_99_69, 18, 26, 2_44_91, 6_29, 15, 5_38, 2_27_04, 54_39, 15, 27_88, 2_44_91, 98_85, 15, 4_35_34, 6_05, 15, 8_14, 1_84_03, 3_32_00, 29, 15, 4_35_34, 2_44_58, 1_24_10, 1_11, 2_49_66, 8_36_69, 96_37, 14_40_68, 26, 8_50, 2_23_46, 27, 1_47, 2_49_66, 8_36_69, 8_34_90, 26, 3_91_13, 7_35, 27, 6_89, 6_56, 28_00, 13_39, 46_00, 53, 12_20_20, 11_57_85, 34, 8_16, 13_39, 4_68_87, 18, 1_47, 5_39_05, 19_51, 4_22_38, 4_11_70, 1_77_32, 8_34, 4_36, 15, 2_75_23, 9_87_33, 2_17, 1_47, 55_42, 49_81, 9_30, 1_73_47, 16, 2], [2_00_91, 6_29, 94, 8_27_86, 58, 4_90, 20, 15_28, 84, 5_39_05, 3_44, 8_05_92, 11_01_28, 1_88_22, 52_67, 13_06, 62, 15_25_37, 3_08, 79_97, 4_01, 12_44_27, 5_49, 3_54_42, 2_25, 1_09, 1_50_55, 2_57_48, 1_47, 71_19, 4_37_12, 34, 7_67, 13_53_66, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_92, 6_37_84, 11_94_66, 17, 14_78_08, 8_82_14, 18, 6_56, 81, 32, 32_96, 1_02_80, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCamelCase ,model_name='''microsoft/xprophetnet-large-wiki100-cased''' ,revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' ,)
94
0
"""simple docstring""" from typing import TYPE_CHECKING from ..utils import _LazyModule lowerCAmelCase : Any = { """config""": [ """EXTERNAL_DATA_FORMAT_SIZE_LIMIT""", """OnnxConfig""", """OnnxConfigWithPast""", """OnnxSeq2SeqConfigWithPast""", """PatchingSpec""", ], """convert""": ["""export""", """validate_model_outputs"""], """features""": ["""FeaturesManager"""], """utils""": ["""ParameterFormat""", """compute_serialized_parameters_size"""], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys lowerCAmelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
291
"""simple docstring""" import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def a__ ( ) -> Union[str, Any]: lowerCamelCase = ArgumentParser( description=( """PyTorch TPU distributed training launch """ """helper utility that will spawn up """ """multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=snake_case__ , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=snake_case__ , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=snake_case__ ) return parser.parse_args() def a__ ( ) -> List[str]: lowerCamelCase = parse_args() # Import training_script as a module. lowerCamelCase = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowerCamelCase = script_fpath.stem lowerCamelCase = importlib.import_module(snake_case__ ) # Patch sys.argv lowerCamelCase = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
291
1
from __future__ import annotations class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Union[str, Any] , __A : int = 0 ): snake_case__ : List[Any] = key def _lowercase ( self : Any , __A : str , __A : int ): assert isinstance(__A , __A ) and isinstance(__A , __A ) snake_case__ : List[Any] = key or self.__key or 1 # make sure key is an appropriate size key %= 2_5_5 return [chr(ord(__A ) ^ key ) for ch in content] def _lowercase ( self : str , __A : str , __A : int ): assert isinstance(__A , __A ) and isinstance(__A , __A ) snake_case__ : Tuple = key or self.__key or 1 # make sure key is an appropriate size key %= 2_5_5 return [chr(ord(__A ) ^ key ) for ch in content] def _lowercase ( self : Optional[int] , __A : str , __A : int = 0 ): assert isinstance(__A , __A ) and isinstance(__A , __A ) snake_case__ : int = key or self.__key or 1 # make sure key can be any size while key > 2_5_5: key -= 2_5_5 # This will be returned snake_case__ : List[str] = "" for ch in content: ans += chr(ord(__A ) ^ key ) return ans def _lowercase ( self : Any , __A : str , __A : int = 0 ): assert isinstance(__A , __A ) and isinstance(__A , __A ) snake_case__ : Optional[Any] = key or self.__key or 1 # make sure key can be any size while key > 2_5_5: key -= 2_5_5 # This will be returned snake_case__ : Dict = "" for ch in content: ans += chr(ord(__A ) ^ key ) return ans def _lowercase ( self : Dict , __A : str , __A : int = 0 ): assert isinstance(__A , __A ) and isinstance(__A , __A ) try: with open(__A ) as fin, open("encrypt.out" , "w+" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(__A , __A ) ) except OSError: return False return True def _lowercase ( self : int , __A : str , __A : int ): assert isinstance(__A , __A ) and isinstance(__A , __A ) try: with open(__A ) as fin, open("decrypt.out" , "w+" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(__A , __A ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
286
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE ( snake_case_ : Tuple , snake_case_ : str , snake_case_ : Union[str, Any] ): # Initialise PyTorch model snake_case__ : List[str] = MobileBertConfig.from_json_file(snake_case_ ) print(F'''Building PyTorch model from configuration: {config}''' ) snake_case__ : Dict = MobileBertForPreTraining(snake_case_ ) # Load weights from tf checkpoint snake_case__ : Any = load_tf_weights_in_mobilebert(snake_case_ , snake_case_ , snake_case_ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , snake_case_ ) if __name__ == "__main__": __lowerCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--mobilebert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained MobileBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __lowerCamelCase : int = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
286
1
import os from distutils.util import strtobool def _snake_case ( lowerCAmelCase : Dict , lowerCAmelCase : Tuple ): """simple docstring""" for e in env_keys: SCREAMING_SNAKE_CASE_ : Dict = int(os.environ.get(lowerCAmelCase , -1 ) ) if val >= 0: return val return default def _snake_case ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[str]=False ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = os.environ.get(lowerCAmelCase , str(lowerCAmelCase ) ) return strtobool(lowerCAmelCase ) == 1 # As its name indicates `strtobool` actually returns an int... def _snake_case ( lowerCAmelCase : Dict , lowerCAmelCase : Tuple="no" ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = os.environ.get(lowerCAmelCase , str(lowerCAmelCase ) ) return value
18
def _snake_case ( lowerCAmelCase : list ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = len(lowerCAmelCase ) for i in range(1 , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : int = collection[i] SCREAMING_SNAKE_CASE_ : Any = 0 SCREAMING_SNAKE_CASE_ : Tuple = i - 1 while low <= high: SCREAMING_SNAKE_CASE_ : int = (low + high) // 2 if val < collection[mid]: SCREAMING_SNAKE_CASE_ : Optional[Any] = mid - 1 else: SCREAMING_SNAKE_CASE_ : Tuple = mid + 1 for j in range(lowerCAmelCase , lowerCAmelCase , -1 ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = collection[j - 1] SCREAMING_SNAKE_CASE_ : int = val return collection if __name__ == "__main__": __lowerCamelCase : Dict = input('''Enter numbers separated by a comma:\n''').strip() __lowerCamelCase : List[str] = [int(item) for item in user_input.split(''',''')] print(binary_insertion_sort(unsorted))
18
1
from __future__ import annotations def lowerCAmelCase__ ( lowerCamelCase_ : list[int]): '''simple docstring''' lowerCAmelCase__ : List[str] = len(lowerCamelCase_) // 2 # choose the middle 3 elements lowerCAmelCase__ : Dict = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m]) == 2: m -= 1 return peak(lst[m:]) # decreasing else: if len(lst[:m]) == 2: m += 1 return peak(lst[:m]) if __name__ == "__main__": import doctest doctest.testmod()
357
from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration __snake_case : Dict =HfArgumentParser(InitializationArguments) __snake_case : Tuple =parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization __snake_case : Optional[int] =AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks __snake_case : List[str] ={ 'vocab_size': len(tokenizer), 'scale_attn_by_inverse_layer_idx': True, 'reorder_and_upcast_attn': True, } # Load model config (GPT-2 large in this case) __snake_case : List[Any] =AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config __snake_case : int =AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
94
0
'''simple docstring''' import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _snake_case = logging.get_logger(__name__) _snake_case = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } _snake_case = { """vocab_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"""}, """merges_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"""}, """tokenizer_config_file""": { """facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json""" }, } _snake_case = {"""facebook/blenderbot-3B""": 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _A ( ) -> Any: _lowercase : str = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) _lowercase : int = bs[:] _lowercase : int = 0 for b in range(2**8 ): if b not in bs: bs.append(snake_case ) cs.append(2**8 + n ) n += 1 _lowercase : int = [chr(snake_case ) for n in cs] return dict(zip(snake_case , snake_case ) ) def _A ( snake_case ) -> int: _lowercase : Any = set() _lowercase : int = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowercase : int = char return pairs class a__ ( _SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Dict = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : str = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : Optional[int] = ['input_ids', 'attention_mask'] def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase="replace" , _UpperCamelCase="<s>" , _UpperCamelCase="</s>" , _UpperCamelCase="</s>" , _UpperCamelCase="<s>" , _UpperCamelCase="<unk>" , _UpperCamelCase="<pad>" , _UpperCamelCase="<mask>" , _UpperCamelCase=False , **_UpperCamelCase , ): """simple docstring""" _lowercase : Union[str, Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else bos_token _lowercase : Optional[int] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else eos_token _lowercase : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else sep_token _lowercase : Tuple = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else cls_token _lowercase : Dict = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else unk_token _lowercase : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _lowercase : Optional[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token super().__init__( errors=__A , bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , cls_token=__A , pad_token=__A , mask_token=__A , add_prefix_space=__A , **__A , ) with open(__A , encoding="utf-8" ) as vocab_handle: _lowercase : Dict = json.load(__A ) _lowercase : int = {v: k for k, v in self.encoder.items()} _lowercase : Optional[Any] = errors # how to handle errors in decoding _lowercase : Optional[int] = bytes_to_unicode() _lowercase : Tuple = {v: k for k, v in self.byte_encoder.items()} with open(__A , encoding="utf-8" ) as merges_handle: _lowercase : str = merges_handle.read().split("\n" )[1:-1] _lowercase : Dict = [tuple(merge.split() ) for merge in bpe_merges] _lowercase : Dict = dict(zip(__A , range(len(__A ) ) ) ) _lowercase : Optional[Any] = {} _lowercase : Optional[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _lowercase : Optional[Any] = re.compile(R"\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def _lowerCamelCase ( self ): """simple docstring""" return len(self.encoder ) def _lowerCamelCase ( self ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" if token in self.cache: return self.cache[token] _lowercase : List[Any] = tuple(__A ) _lowercase : Optional[Any] = get_pairs(__A ) if not pairs: return token while True: _lowercase : Any = min(__A , key=lambda _UpperCamelCase : self.bpe_ranks.get(__A , float("inf" ) ) ) if bigram not in self.bpe_ranks: break _lowercase , _lowercase : Any = bigram _lowercase : Optional[int] = [] _lowercase : List[Any] = 0 while i < len(__A ): try: _lowercase : Optional[int] = word.index(__A , __A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _lowercase : int = j if word[i] == first and i < len(__A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowercase : List[str] = tuple(__A ) _lowercase : Tuple = new_word if len(__A ) == 1: break else: _lowercase : Dict = get_pairs(__A ) _lowercase : Union[str, Any] = " ".join(__A ) _lowercase : List[str] = word return word def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" _lowercase : int = [] for token in re.findall(self.pat , __A ): _lowercase : Optional[int] = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__A ).split(" " ) ) return bpe_tokens def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" return self.encoder.get(__A , self.encoder.get(self.unk_token ) ) def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" return self.decoder.get(__A ) def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" _lowercase : Any = "".join(__A ) _lowercase : Dict = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase = None ): """simple docstring""" if not os.path.isdir(__A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowercase : List[str] = os.path.join( __A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) _lowercase : int = os.path.join( __A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__A , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__A , ensure_ascii=__A ) + "\n" ) _lowercase : str = 0 with open(__A , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _UpperCamelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) _lowercase : List[str] = token_index writer.write(" ".join(__A ) + "\n" ) index += 1 return vocab_file, merge_file def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A ) if token_ids_a is None: return [1] + ([0] * len(__A )) + [1] return [1] + ([0] * len(__A )) + [1, 1] + ([0] * len(__A )) + [1] def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase = None ): """simple docstring""" _lowercase : Optional[int] = [self.sep_token_id] _lowercase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase=False , **_UpperCamelCase ): """simple docstring""" _lowercase : Tuple = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__A ) > 0 and not text[0].isspace()): _lowercase : str = " " + text return (text, kwargs) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase = None ): """simple docstring""" return token_ids_a + [self.eos_token_id] def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" _lowercase : int = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__A ) _lowercase : int = " ".join(__A ) _lowercase : Optional[Any] = self.encode(__A ) if len(__A ) > self.model_max_length: _lowercase : str = input_ids[-self.model_max_length :] logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
250
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCamelCase_ : Any = logging.get_logger(__name__) lowerCamelCase_ : Tuple = {"""vocab_file""": """sentencepiece.bpe.model"""} lowerCamelCase_ : str = { """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, } lowerCamelCase_ : Optional[int] = { """moussaKam/mbarthez""": 1_0_2_4, """moussaKam/barthez""": 1_0_2_4, """moussaKam/barthez-orangesum-title""": 1_0_2_4, } lowerCamelCase_ : Tuple = """▁""" class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = ["input_ids", "attention_mask"] def __init__( self , __A , __A="<s>" , __A="</s>" , __A="</s>" , __A="<s>" , __A="<unk>" , __A="<pad>" , __A="<mask>" , __A = None , **__A , ) -> None: # Mask token behave like a normal word, i.e. include the space before it a =AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token a ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , cls_token=__A , pad_token=__A , mask_token=__A , sp_model_kwargs=self.sp_model_kwargs , **__A , ) a =vocab_file a =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__A ) ) a ={'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} a =len(self.sp_model ) - 1 a ={v: k for k, v in self.fairseq_tokens_to_ids.items()} def SCREAMING_SNAKE_CASE ( self , __A , __A = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a =[self.cls_token_id] a =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self , __A , __A = None , __A = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A ) if token_ids_a is None: return [1] + ([0] * len(__A )) + [1] return [1] + ([0] * len(__A )) + [1, 1] + ([0] * len(__A )) + [1] def SCREAMING_SNAKE_CASE ( self , __A , __A = None ) -> List[int]: a =[self.sep_token_id] a =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE ( self ) -> Any: return len(self.sp_model ) def SCREAMING_SNAKE_CASE ( self ) -> int: a ={self.convert_ids_to_tokens(__A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE ( self , __A ) -> List[str]: return self.sp_model.encode(__A , out_type=__A ) def SCREAMING_SNAKE_CASE ( self , __A ) -> Dict: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] a =self.sp_model.PieceToId(__A ) return spm_id if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE ( self , __A ) -> Optional[Any]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(__A ) def SCREAMING_SNAKE_CASE ( self , __A ) -> Tuple: a =[] a ='''''' a =False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__A ) + token a =True a =[] else: current_sub_tokens.append(__A ) a =False out_string += self.sp_model.decode(__A ) return out_string.strip() def __getstate__( self ) -> Tuple: a =self.__dict__.copy() a =None return state def __setstate__( self , __A ) -> Tuple: a =d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): a ={} a =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE ( self , __A , __A = None ) -> Tuple[str]: if not os.path.isdir(__A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return a =os.path.join( __A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __A ) elif not os.path.isfile(self.vocab_file ): with open(__A , '''wb''' ) as fi: a =self.sp_model.serialized_model_proto() fi.write(__A ) return (out_vocab_file,)
81
0
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class a_ ( _snake_case ): UpperCamelCase__ : jnp.ndarray @flax_register_to_config class a_ ( nn.Module , _snake_case , _snake_case ): UpperCamelCase__ : int =32 UpperCamelCase__ : int =4 UpperCamelCase__ : int =4 UpperCamelCase__ : Tuple[str] =( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) UpperCamelCase__ : Tuple[str] =("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") UpperCamelCase__ : Union[bool, Tuple[bool]] =False UpperCamelCase__ : Tuple[int] =(3_20, 6_40, 12_80, 12_80) UpperCamelCase__ : int =2 UpperCamelCase__ : Union[int, Tuple[int]] =8 UpperCamelCase__ : Optional[Union[int, Tuple[int]]] =None UpperCamelCase__ : int =12_80 UpperCamelCase__ : float =0.0 UpperCamelCase__ : bool =False UpperCamelCase__ : jnp.dtype =jnp.floataa UpperCamelCase__ : bool =True UpperCamelCase__ : int =0 UpperCamelCase__ : bool =False def __a ( self :int , _lowercase :jax.random.KeyArray) -> FrozenDict: # init input tensors UpperCAmelCase_ = (1, self.in_channels, self.sample_size, self.sample_size) UpperCAmelCase_ = jnp.zeros(_lowercase , dtype=jnp.floataa) UpperCAmelCase_ = jnp.ones((1,) , dtype=jnp.intaa) UpperCAmelCase_ = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa) UpperCAmelCase_ , UpperCAmelCase_ = jax.random.split(_lowercase) UpperCAmelCase_ = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(_lowercase , _lowercase , _lowercase , _lowercase)["params"] def __a ( self :Optional[int]) -> str: UpperCAmelCase_ = self.block_out_channels UpperCAmelCase_ = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( '''At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.''') # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. UpperCAmelCase_ = self.num_attention_heads or self.attention_head_dim # input UpperCAmelCase_ = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time UpperCAmelCase_ = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift) UpperCAmelCase_ = FlaxTimestepEmbedding(_lowercase , dtype=self.dtype) UpperCAmelCase_ = self.only_cross_attention if isinstance(_lowercase , _lowercase): UpperCAmelCase_ = (only_cross_attention,) * len(self.down_block_types) if isinstance(_lowercase , _lowercase): UpperCAmelCase_ = (num_attention_heads,) * len(self.down_block_types) # down UpperCAmelCase_ = [] UpperCAmelCase_ = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types): UpperCAmelCase_ = output_channel UpperCAmelCase_ = block_out_channels[i] UpperCAmelCase_ = i == len(_lowercase) - 1 if down_block_type == "CrossAttnDownBlock2D": UpperCAmelCase_ = FlaxCrossAttnDownBlockaD( in_channels=_lowercase , out_channels=_lowercase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: UpperCAmelCase_ = FlaxDownBlockaD( in_channels=_lowercase , out_channels=_lowercase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(_lowercase) UpperCAmelCase_ = down_blocks # mid UpperCAmelCase_ = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up UpperCAmelCase_ = [] UpperCAmelCase_ = list(reversed(_lowercase)) UpperCAmelCase_ = list(reversed(_lowercase)) UpperCAmelCase_ = list(reversed(_lowercase)) UpperCAmelCase_ = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types): UpperCAmelCase_ = output_channel UpperCAmelCase_ = reversed_block_out_channels[i] UpperCAmelCase_ = reversed_block_out_channels[min(i + 1 , len(_lowercase) - 1)] UpperCAmelCase_ = i == len(_lowercase) - 1 if up_block_type == "CrossAttnUpBlock2D": UpperCAmelCase_ = FlaxCrossAttnUpBlockaD( in_channels=_lowercase , out_channels=_lowercase , prev_output_channel=_lowercase , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: UpperCAmelCase_ = FlaxUpBlockaD( in_channels=_lowercase , out_channels=_lowercase , prev_output_channel=_lowercase , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(_lowercase) UpperCAmelCase_ = output_channel UpperCAmelCase_ = up_blocks # out UpperCAmelCase_ = nn.GroupNorm(num_groups=32 , epsilon=1E-5) UpperCAmelCase_ = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self :Any , _lowercase :Optional[int] , _lowercase :Optional[int] , _lowercase :Tuple , _lowercase :List[str]=None , _lowercase :Union[str, Any]=None , _lowercase :bool = True , _lowercase :bool = False , ) -> Union[FlaxUNetaDConditionOutput, Tuple]: # 1. time if not isinstance(_lowercase , jnp.ndarray): UpperCAmelCase_ = jnp.array([timesteps] , dtype=jnp.intaa) elif isinstance(_lowercase , jnp.ndarray) and len(timesteps.shape) == 0: UpperCAmelCase_ = timesteps.astype(dtype=jnp.floataa) UpperCAmelCase_ = jnp.expand_dims(_lowercase , 0) UpperCAmelCase_ = self.time_proj(_lowercase) UpperCAmelCase_ = self.time_embedding(_lowercase) # 2. pre-process UpperCAmelCase_ = jnp.transpose(_lowercase , (0, 2, 3, 1)) UpperCAmelCase_ = self.conv_in(_lowercase) # 3. down UpperCAmelCase_ = (sample,) for down_block in self.down_blocks: if isinstance(_lowercase , _lowercase): UpperCAmelCase_ , UpperCAmelCase_ = down_block(_lowercase , _lowercase , _lowercase , deterministic=not train) else: UpperCAmelCase_ , UpperCAmelCase_ = down_block(_lowercase , _lowercase , deterministic=not train) down_block_res_samples += res_samples if down_block_additional_residuals is not None: UpperCAmelCase_ = () for down_block_res_sample, down_block_additional_residual in zip( _lowercase , _lowercase): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) UpperCAmelCase_ = new_down_block_res_samples # 4. mid UpperCAmelCase_ = self.mid_block(_lowercase , _lowercase , _lowercase , deterministic=not train) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: UpperCAmelCase_ = down_block_res_samples[-(self.layers_per_block + 1) :] UpperCAmelCase_ = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(_lowercase , _lowercase): UpperCAmelCase_ = up_block( _lowercase , temb=_lowercase , encoder_hidden_states=_lowercase , res_hidden_states_tuple=_lowercase , deterministic=not train , ) else: UpperCAmelCase_ = up_block(_lowercase , temb=_lowercase , res_hidden_states_tuple=_lowercase , deterministic=not train) # 6. post-process UpperCAmelCase_ = self.conv_norm_out(_lowercase) UpperCAmelCase_ = nn.silu(_lowercase) UpperCAmelCase_ = self.conv_out(_lowercase) UpperCAmelCase_ = jnp.transpose(_lowercase , (0, 3, 1, 2)) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=_lowercase)
363
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class a_ ( unittest.TestCase ): def __a ( self :Optional[Any]) -> int: UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = BlipImageProcessor() UpperCAmelCase_ = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''') UpperCAmelCase_ = BertTokenizerFast.from_pretrained('''hf-internal-testing/tiny-random-bert''') UpperCAmelCase_ = InstructBlipProcessor(_lowercase , _lowercase , _lowercase) processor.save_pretrained(self.tmpdirname) def __a ( self :List[Any] , **_lowercase :Dict) -> str: return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase).tokenizer def __a ( self :Optional[Any] , **_lowercase :Optional[Any]) -> Optional[int]: return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase).image_processor def __a ( self :Dict , **_lowercase :Tuple) -> str: return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase).qformer_tokenizer def __a ( self :Optional[int]) -> str: shutil.rmtree(self.tmpdirname) def __a ( self :Any) -> List[str]: UpperCAmelCase_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] UpperCAmelCase_ = [Image.fromarray(np.moveaxis(_lowercase , 0 , -1)) for x in image_inputs] return image_inputs def __a ( self :Tuple) -> int: UpperCAmelCase_ = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname) UpperCAmelCase_ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''') UpperCAmelCase_ = self.get_image_processor(do_normalize=_lowercase , padding_value=1.0) UpperCAmelCase_ = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_lowercase , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , _lowercase) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , _lowercase) self.assertIsInstance(processor.qformer_tokenizer , _lowercase) def __a ( self :Dict) -> Any: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = self.prepare_image_inputs() UpperCAmelCase_ = image_processor(_lowercase , return_tensors='''np''') UpperCAmelCase_ = processor(images=_lowercase , return_tensors='''np''') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2) def __a ( self :Union[str, Any]) -> Dict: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = '''lower newer''' UpperCAmelCase_ = processor(text=_lowercase) UpperCAmelCase_ = tokenizer(_lowercase , return_token_type_ids=_lowercase) UpperCAmelCase_ = qformer_tokenizer(_lowercase , return_token_type_ids=_lowercase) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key]) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['''qformer_''' + key]) def __a ( self :Dict) -> Optional[Any]: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = '''lower newer''' UpperCAmelCase_ = self.prepare_image_inputs() UpperCAmelCase_ = processor(text=_lowercase , images=_lowercase) self.assertListEqual( list(inputs.keys()) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , ) # test if it raises when no input is passed with pytest.raises(_lowercase): processor() def __a ( self :Optional[int]) -> Optional[Any]: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase_ = processor.batch_decode(_lowercase) UpperCAmelCase_ = tokenizer.batch_decode(_lowercase) self.assertListEqual(_lowercase , _lowercase) def __a ( self :str) -> int: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = '''lower newer''' UpperCAmelCase_ = self.prepare_image_inputs() UpperCAmelCase_ = processor(text=_lowercase , images=_lowercase) self.assertListEqual( list(inputs.keys()) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , )
344
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCamelCase_ : List[Any] = { """configuration_owlvit""": [ """OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """OwlViTConfig""", """OwlViTOnnxConfig""", """OwlViTTextConfig""", """OwlViTVisionConfig""", ], """processing_owlvit""": ["""OwlViTProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = ["""OwlViTFeatureExtractor"""] lowerCamelCase_ : List[Any] = ["""OwlViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[Any] = [ """OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """OwlViTModel""", """OwlViTPreTrainedModel""", """OwlViTTextModel""", """OwlViTVisionModel""", """OwlViTForObjectDetection""", ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys lowerCamelCase_ : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
81
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A_ : int = { 'configuration_graphormer': ['GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GraphormerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Dict = [ 'GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'GraphormerForGraphClassification', 'GraphormerModel', 'GraphormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys A_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
333
0
import torch from diffusers import StableDiffusionPipeline __snake_case = """path-to-your-trained-model""" __snake_case = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to("""cuda""") __snake_case = """A photo of sks dog in a bucket""" __snake_case = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] image.save("""dog-bucket.png""")
169
import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa __snake_case = logging.getLogger(__name__) class lowercase__ ( _UpperCAmelCase ): A__ : Tuple ="""summarization""" A__ : Optional[int] =["""loss"""] A__ : Optional[Any] =ROUGE_KEYS A__ : str ="""rouge2""" def __init__( self : List[str] , UpperCAmelCase_ : str , **UpperCAmelCase_ : Optional[Any] ): if hparams.sortish_sampler and hparams.gpus > 1: SCREAMING_SNAKE_CASE__ = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError('Dynamic Batch size does not work for multi-gpu training' ) if hparams.sortish_sampler: raise ValueError('--sortish_sampler and --max_tokens_per_batch may not be used simultaneously' ) super().__init__(UpperCAmelCase_ , num_labels=UpperCAmelCase_ , mode=self.mode , **UpperCAmelCase_ ) use_task_specific_params(self.model , 'summarization' ) save_git_info(self.hparams.output_dir ) SCREAMING_SNAKE_CASE__ = Path(self.output_dir ) / 'metrics.json' SCREAMING_SNAKE_CASE__ = Path(self.output_dir ) / 'hparams.pkl' pickle_save(self.hparams , self.hparams_save_path ) SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = defaultdict(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = self.config.model_type SCREAMING_SNAKE_CASE__ = self.config.tgt_vocab_size if self.model_type == 'fsmt' else self.config.vocab_size SCREAMING_SNAKE_CASE__ = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } SCREAMING_SNAKE_CASE__ = { 'train': self.hparams.n_train, 'val': self.hparams.n_val, 'test': self.hparams.n_test, } SCREAMING_SNAKE_CASE__ = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} SCREAMING_SNAKE_CASE__ = { 'train': self.hparams.max_target_length, 'val': self.hparams.val_max_target_length, 'test': self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F'target_lens: {self.target_lens}' assert self.target_lens["train"] <= self.target_lens["test"], F'target_lens: {self.target_lens}' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) SCREAMING_SNAKE_CASE__ = get_git_info()['repo_sha'] SCREAMING_SNAKE_CASE__ = hparams.num_workers SCREAMING_SNAKE_CASE__ = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ = self.tokenizer.lang_code_to_id[hparams.tgt_lang] SCREAMING_SNAKE_CASE__ = self.decoder_start_token_id SCREAMING_SNAKE_CASE__ = ( SeqaSeqDataset if hasattr(self.tokenizer , 'prepare_seq2seq_batch' ) else LegacySeqaSeqDataset ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: SCREAMING_SNAKE_CASE__ = self.hparams.eval_max_gen_length else: SCREAMING_SNAKE_CASE__ = self.model.config.max_length SCREAMING_SNAKE_CASE__ = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def A_ ( self : List[str] , UpperCAmelCase_ : Dict[str, torch.Tensor] ): SCREAMING_SNAKE_CASE__ = { k: self.tokenizer.batch_decode(v.tolist() ) if 'mask' not in k else v.shape for k, v in batch.items() } save_json(UpperCAmelCase_ , Path(self.output_dir ) / 'text_batch.json' ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / 'tok_batch.json' ) SCREAMING_SNAKE_CASE__ = True return readable_batch def A_ ( self : List[str] , UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : str ): return self.model(UpperCAmelCase_ , **UpperCAmelCase_ ) def A_ ( self : Dict , UpperCAmelCase_ : List[int] ): SCREAMING_SNAKE_CASE__ = self.tokenizer.batch_decode( UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_ ) return lmap(str.strip , UpperCAmelCase_ ) def A_ ( self : List[Any] , UpperCAmelCase_ : dict ): SCREAMING_SNAKE_CASE__ = self.tokenizer.pad_token_id SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = batch['input_ids'], batch['attention_mask'] SCREAMING_SNAKE_CASE__ = batch['labels'] if isinstance(self.model , UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ = self.model._shift_right(UpperCAmelCase_ ) else: SCREAMING_SNAKE_CASE__ = shift_tokens_right(UpperCAmelCase_ , UpperCAmelCase_ ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero SCREAMING_SNAKE_CASE__ = decoder_input_ids self.save_readable_batch(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = self(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , decoder_input_ids=UpperCAmelCase_ , use_cache=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = outputs['logits'] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id SCREAMING_SNAKE_CASE__ = nn.CrossEntropyLoss(ignore_index=UpperCAmelCase_ ) assert lm_logits.shape[-1] == self.vocab_size SCREAMING_SNAKE_CASE__ = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: SCREAMING_SNAKE_CASE__ = nn.functional.log_softmax(UpperCAmelCase_ , dim=-1 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = label_smoothed_nll_loss( UpperCAmelCase_ , UpperCAmelCase_ , self.hparams.label_smoothing , ignore_index=UpperCAmelCase_ ) return (loss,) @property def A_ ( self : Dict ): return self.tokenizer.pad_token_id def A_ ( self : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] ): SCREAMING_SNAKE_CASE__ = self._step(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = dict(zip(self.loss_names , UpperCAmelCase_ ) ) # tokens per batch SCREAMING_SNAKE_CASE__ = batch['input_ids'].ne(self.pad ).sum() + batch['labels'].ne(self.pad ).sum() SCREAMING_SNAKE_CASE__ = batch['input_ids'].shape[0] SCREAMING_SNAKE_CASE__ = batch['input_ids'].eq(self.pad ).sum() SCREAMING_SNAKE_CASE__ = batch['input_ids'].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def A_ ( self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple ): return self._generative_step(UpperCAmelCase_ ) def A_ ( self : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple="val" ): self.step_count += 1 SCREAMING_SNAKE_CASE__ = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} SCREAMING_SNAKE_CASE__ = losses['loss'] SCREAMING_SNAKE_CASE__ = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ['gen_time', 'gen_len'] } SCREAMING_SNAKE_CASE__ = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) SCREAMING_SNAKE_CASE__ = torch.tensor(UpperCAmelCase_ ).type_as(UpperCAmelCase_ ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = {F'{prefix}_avg_{k}': x for k, x in losses.items()} SCREAMING_SNAKE_CASE__ = self.step_count self.metrics[prefix].append(UpperCAmelCase_ ) # callback writes this to self.metrics_save_path SCREAMING_SNAKE_CASE__ = flatten_list([x['preds'] for x in outputs] ) return { "log": all_metrics, "preds": preds, F'{prefix}_loss': loss, F'{prefix}_{self.val_metric}': metric_tensor, } def A_ ( self : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict ): return calculate_rouge(UpperCAmelCase_ , UpperCAmelCase_ ) def A_ ( self : str , UpperCAmelCase_ : dict ): SCREAMING_SNAKE_CASE__ = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') SCREAMING_SNAKE_CASE__ = self.model.generate( batch['input_ids'] , attention_mask=batch['attention_mask'] , use_cache=UpperCAmelCase_ , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) SCREAMING_SNAKE_CASE__ = (time.time() - ta) / batch['input_ids'].shape[0] SCREAMING_SNAKE_CASE__ = self.ids_to_clean_text(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = self.ids_to_clean_text(batch['labels'] ) SCREAMING_SNAKE_CASE__ = self._step(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = dict(zip(self.loss_names , UpperCAmelCase_ ) ) SCREAMING_SNAKE_CASE__ = self.calc_generative_metrics(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = np.mean(lmap(UpperCAmelCase_ , UpperCAmelCase_ ) ) base_metrics.update(gen_time=UpperCAmelCase_ , gen_len=UpperCAmelCase_ , preds=UpperCAmelCase_ , target=UpperCAmelCase_ , **UpperCAmelCase_ ) return base_metrics def A_ ( self : List[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int ): return self._generative_step(UpperCAmelCase_ ) def A_ ( self : Any , UpperCAmelCase_ : List[str] ): return self.validation_epoch_end(UpperCAmelCase_ , prefix='test' ) def A_ ( self : Optional[int] , UpperCAmelCase_ : List[Any] ): SCREAMING_SNAKE_CASE__ = self.n_obs[type_path] SCREAMING_SNAKE_CASE__ = self.target_lens[type_path] SCREAMING_SNAKE_CASE__ = self.dataset_class( self.tokenizer , type_path=UpperCAmelCase_ , n_obs=UpperCAmelCase_ , max_target_length=UpperCAmelCase_ , **self.dataset_kwargs , ) return dataset def A_ ( self : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : bool = False ): SCREAMING_SNAKE_CASE__ = self.get_dataset(UpperCAmelCase_ ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": SCREAMING_SNAKE_CASE__ = dataset.make_sortish_sampler(UpperCAmelCase_ , distributed=self.hparams.gpus > 1 ) return DataLoader( UpperCAmelCase_ , batch_size=UpperCAmelCase_ , collate_fn=dataset.collate_fn , shuffle=UpperCAmelCase_ , num_workers=self.num_workers , sampler=UpperCAmelCase_ , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": SCREAMING_SNAKE_CASE__ = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( UpperCAmelCase_ , batch_sampler=UpperCAmelCase_ , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( UpperCAmelCase_ , batch_size=UpperCAmelCase_ , collate_fn=dataset.collate_fn , shuffle=UpperCAmelCase_ , num_workers=self.num_workers , sampler=UpperCAmelCase_ , ) def A_ ( self : Any ): SCREAMING_SNAKE_CASE__ = self.get_dataloader('train' , batch_size=self.hparams.train_batch_size , shuffle=UpperCAmelCase_ ) return dataloader def A_ ( self : str ): return self.get_dataloader('val' , batch_size=self.hparams.eval_batch_size ) def A_ ( self : int ): return self.get_dataloader('test' , batch_size=self.hparams.eval_batch_size ) @staticmethod def A_ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any ): BaseTransformer.add_model_specific_args(UpperCAmelCase_ , UpperCAmelCase_ ) add_generic_args(UpperCAmelCase_ , UpperCAmelCase_ ) parser.add_argument( '--max_source_length' , default=1024 , type=UpperCAmelCase_ , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--max_target_length' , default=56 , type=UpperCAmelCase_ , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--val_max_target_length' , default=142 , type=UpperCAmelCase_ , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--test_max_target_length' , default=142 , type=UpperCAmelCase_ , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument('--freeze_encoder' , action='store_true' ) parser.add_argument('--freeze_embeds' , action='store_true' ) parser.add_argument('--sortish_sampler' , action='store_true' , default=UpperCAmelCase_ ) parser.add_argument('--overwrite_output_dir' , action='store_true' , default=UpperCAmelCase_ ) parser.add_argument('--max_tokens_per_batch' , type=UpperCAmelCase_ , default=UpperCAmelCase_ ) parser.add_argument('--logger_name' , type=UpperCAmelCase_ , choices=['default', 'wandb', 'wandb_shared'] , default='default' ) parser.add_argument('--n_train' , type=UpperCAmelCase_ , default=-1 , required=UpperCAmelCase_ , help='# examples. -1 means use all.' ) parser.add_argument('--n_val' , type=UpperCAmelCase_ , default=500 , required=UpperCAmelCase_ , help='# examples. -1 means use all.' ) parser.add_argument('--n_test' , type=UpperCAmelCase_ , default=-1 , required=UpperCAmelCase_ , help='# examples. -1 means use all.' ) parser.add_argument( '--task' , type=UpperCAmelCase_ , default='summarization' , required=UpperCAmelCase_ , help='# examples. -1 means use all.' ) parser.add_argument('--label_smoothing' , type=UpperCAmelCase_ , default=0.0 , required=UpperCAmelCase_ ) parser.add_argument('--src_lang' , type=UpperCAmelCase_ , default='' , required=UpperCAmelCase_ ) parser.add_argument('--tgt_lang' , type=UpperCAmelCase_ , default='' , required=UpperCAmelCase_ ) parser.add_argument('--eval_beams' , type=UpperCAmelCase_ , default=UpperCAmelCase_ , required=UpperCAmelCase_ ) parser.add_argument( '--val_metric' , type=UpperCAmelCase_ , default=UpperCAmelCase_ , required=UpperCAmelCase_ , choices=['bleu', 'rouge2', 'loss', None] ) parser.add_argument('--eval_max_gen_length' , type=UpperCAmelCase_ , default=UpperCAmelCase_ , help='never generate more than n tokens' ) parser.add_argument('--save_top_k' , type=UpperCAmelCase_ , default=1 , required=UpperCAmelCase_ , help='How many checkpoints to save' ) parser.add_argument( '--early_stopping_patience' , type=UpperCAmelCase_ , default=-1 , required=UpperCAmelCase_ , help=( '-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So' ' val_check_interval will effect it.' ) , ) return parser class lowercase__ ( _UpperCAmelCase ): A__ : Optional[Any] ="""translation""" A__ : Dict =["""loss"""] A__ : Optional[int] =["""bleu"""] A__ : Union[str, Any] ="""bleu""" def __init__( self : Tuple , UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Optional[int] ): super().__init__(UpperCAmelCase_ , **UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = hparams.src_lang SCREAMING_SNAKE_CASE__ = hparams.tgt_lang def A_ ( self : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict ): return calculate_bleu(UpperCAmelCase_ , UpperCAmelCase_ ) def _lowercase ( UpperCamelCase_ , UpperCamelCase_=None ) -> SummarizationModule: '''simple docstring''' Path(args.output_dir ).mkdir(exist_ok=UpperCamelCase_ ) check_output_dir(UpperCamelCase_ , expected_items=3 ) if model is None: if "summarization" in args.task: SCREAMING_SNAKE_CASE__ = SummarizationModule(UpperCamelCase_ ) else: SCREAMING_SNAKE_CASE__ = TranslationModule(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith('/tmp' ) or str(args.output_dir ).startswith('/var' ) ): SCREAMING_SNAKE_CASE__ = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger SCREAMING_SNAKE_CASE__ = os.environ.get('WANDB_PROJECT' , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = WandbLogger(name=model.output_dir.name , project=UpperCamelCase_ ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger SCREAMING_SNAKE_CASE__ = WandbLogger(name=model.output_dir.name , project=F'hf_{dataset}' ) if args.early_stopping_patience >= 0: SCREAMING_SNAKE_CASE__ = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = args.val_metric == 'loss' SCREAMING_SNAKE_CASE__ = generic_train( UpperCamelCase_ , UpperCamelCase_ , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , UpperCamelCase_ ) , early_stopping_callback=UpperCamelCase_ , logger=UpperCamelCase_ , ) pickle_save(model.hparams , model.output_dir / 'hparams.pkl' ) if not args.do_predict: return model SCREAMING_SNAKE_CASE__ = '' SCREAMING_SNAKE_CASE__ = sorted(glob.glob(os.path.join(args.output_dir , '*.ckpt' ) , recursive=UpperCamelCase_ ) ) if checkpoints: SCREAMING_SNAKE_CASE__ = checkpoints[-1] SCREAMING_SNAKE_CASE__ = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": __snake_case = argparse.ArgumentParser() __snake_case = pl.Trainer.add_argparse_args(parser) __snake_case = SummarizationModule.add_model_specific_args(parser, os.getcwd()) __snake_case = parser.parse_args() main(args)
169
1
"""simple docstring""" from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) UpperCAmelCase_ : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase_ : Optional[Any] = """ Examples: ```py >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-prior\") >>> pipe_prior.to(\"cuda\") >>> prompt = \"red cat, 4k photo\" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> zero_image_emb = out.negative_image_embeds >>> pipe = KandinskyV22Pipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-decoder\") >>> pipe.to(\"cuda\") >>> image = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=50, ... ).images >>> image[0].save(\"cat.png\") ``` """ def _A (__a , __a , __a=8 ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 SCREAMING_SNAKE_CASE_ : Any = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : Optional[int] , lowercase_ : UNetaDConditionModel , lowercase_ : DDPMScheduler , lowercase_ : VQModel , ): '''simple docstring''' super().__init__() self.register_modules( unet=lowercase_ , scheduler=lowercase_ , movq=lowercase_ , ) SCREAMING_SNAKE_CASE_ : Tuple = 2 ** (len(self.movq.config.block_out_channels) - 1) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowercase_ : Optional[Any] , lowercase_ : str , lowercase_ : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : List[str] , lowercase_ : Tuple): '''simple docstring''' if latents is None: SCREAMING_SNAKE_CASE_ : Optional[Any] = randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}') SCREAMING_SNAKE_CASE_ : Optional[int] = latents.to(lowercase_) SCREAMING_SNAKE_CASE_ : Any = latents * scheduler.init_noise_sigma return latents def _SCREAMING_SNAKE_CASE ( self : Dict , lowercase_ : int=0): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''') SCREAMING_SNAKE_CASE_ : Dict = torch.device(F'cuda:{gpu_id}') SCREAMING_SNAKE_CASE_ : Optional[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase_ , lowercase_) def _SCREAMING_SNAKE_CASE ( self : Any , lowercase_ : Dict=0): '''simple docstring''' if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0'''): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''') SCREAMING_SNAKE_CASE_ : Tuple = torch.device(F'cuda:{gpu_id}') if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=lowercase_) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) SCREAMING_SNAKE_CASE_ : int = None for cpu_offloaded_model in [self.unet, self.movq]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = cpu_offload_with_hook(lowercase_ , lowercase_ , prev_module_hook=lowercase_) # We'll offload the last model manually. SCREAMING_SNAKE_CASE_ : List[str] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' if not hasattr(self.unet , '''_hf_hook'''): return self.device for module in self.unet.modules(): if ( hasattr(lowercase_ , '''_hf_hook''') and hasattr(module._hf_hook , '''execution_device''') and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device @torch.no_grad() @replace_example_docstring(lowercase_) def __call__( self : Tuple , lowercase_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowercase_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowercase_ : int = 512 , lowercase_ : int = 512 , lowercase_ : int = 100 , lowercase_ : float = 4.0 , lowercase_ : int = 1 , lowercase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowercase_ : Optional[torch.FloatTensor] = None , lowercase_ : Optional[str] = "pil" , lowercase_ : bool = True , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = self._execution_device SCREAMING_SNAKE_CASE_ : Optional[int] = guidance_scale > 1.0 if isinstance(lowercase_ , lowercase_): SCREAMING_SNAKE_CASE_ : List[str] = torch.cat(lowercase_ , dim=0) SCREAMING_SNAKE_CASE_ : int = image_embeds.shape[0] * num_images_per_prompt if isinstance(lowercase_ , lowercase_): SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.cat(lowercase_ , dim=0) if do_classifier_free_guidance: SCREAMING_SNAKE_CASE_ : Optional[int] = image_embeds.repeat_interleave(lowercase_ , dim=0) SCREAMING_SNAKE_CASE_ : Optional[Any] = negative_image_embeds.repeat_interleave(lowercase_ , dim=0) SCREAMING_SNAKE_CASE_ : Any = torch.cat([negative_image_embeds, image_embeds] , dim=0).to(dtype=self.unet.dtype , device=lowercase_) self.scheduler.set_timesteps(lowercase_ , device=lowercase_) SCREAMING_SNAKE_CASE_ : str = self.scheduler.timesteps SCREAMING_SNAKE_CASE_ : Any = self.unet.config.in_channels SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = downscale_height_and_width(lowercase_ , lowercase_ , self.movq_scale_factor) # create initial latent SCREAMING_SNAKE_CASE_ : Dict = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase_ , lowercase_ , lowercase_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowercase_)): # expand the latents if we are doing classifier free guidance SCREAMING_SNAKE_CASE_ : Optional[int] = torch.cat([latents] * 2) if do_classifier_free_guidance else latents SCREAMING_SNAKE_CASE_ : str = {'''image_embeds''': image_embeds} SCREAMING_SNAKE_CASE_ : Optional[Any] = self.unet( sample=lowercase_ , timestep=lowercase_ , encoder_hidden_states=lowercase_ , added_cond_kwargs=lowercase_ , return_dict=lowercase_ , )[0] if do_classifier_free_guidance: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = noise_pred.split(latents.shape[1] , dim=1) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = noise_pred.chunk(2) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = variance_pred.chunk(2) SCREAMING_SNAKE_CASE_ : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) SCREAMING_SNAKE_CASE_ : Tuple = torch.cat([noise_pred, variance_pred_text] , dim=1) if not ( hasattr(self.scheduler.config , '''variance_type''') and self.scheduler.config.variance_type in ["learned", "learned_range"] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = noise_pred.split(latents.shape[1] , dim=1) # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE_ : List[Any] = self.scheduler.step( lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ , )[0] # post-processing SCREAMING_SNAKE_CASE_ : Any = self.movq.decode(lowercase_ , force_not_quantize=lowercase_)['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}') if output_type in ["np", "pil"]: SCREAMING_SNAKE_CASE_ : Any = image * 0.5 + 0.5 SCREAMING_SNAKE_CASE_ : Optional[Any] = image.clamp(0 , 1) SCREAMING_SNAKE_CASE_ : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": SCREAMING_SNAKE_CASE_ : int = self.numpy_to_pil(lowercase_) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase_)
91
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL UpperCAmelCase_ : int = logging.get_logger(__name__) def _A (__a ) -> List[List[ImageInput]]: """simple docstring""" if isinstance(__a , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__a , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__a ): return [[videos]] raise ValueError(f'Could not make batched video from {videos}' ) class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = ["pixel_values"] def __init__( self : Dict , lowercase_ : bool = True , lowercase_ : Dict[str, int] = None , lowercase_ : PILImageResampling = PILImageResampling.BILINEAR , lowercase_ : bool = True , lowercase_ : Dict[str, int] = None , lowercase_ : bool = True , lowercase_ : Union[int, float] = 1 / 255 , lowercase_ : bool = True , lowercase_ : bool = True , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[float, List[float]]] = None , **lowercase_ : Dict , ): '''simple docstring''' super().__init__(**lowercase_) SCREAMING_SNAKE_CASE_ : str = size if size is not None else {'''shortest_edge''': 256} SCREAMING_SNAKE_CASE_ : Optional[int] = get_size_dict(lowercase_ , default_to_square=lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} SCREAMING_SNAKE_CASE_ : Dict = get_size_dict(lowercase_ , param_name='''crop_size''') SCREAMING_SNAKE_CASE_ : Optional[int] = do_resize SCREAMING_SNAKE_CASE_ : List[Any] = size SCREAMING_SNAKE_CASE_ : Tuple = do_center_crop SCREAMING_SNAKE_CASE_ : Dict = crop_size SCREAMING_SNAKE_CASE_ : List[Any] = resample SCREAMING_SNAKE_CASE_ : List[str] = do_rescale SCREAMING_SNAKE_CASE_ : List[str] = rescale_factor SCREAMING_SNAKE_CASE_ : List[Any] = offset SCREAMING_SNAKE_CASE_ : List[Any] = do_normalize SCREAMING_SNAKE_CASE_ : Tuple = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE_ : Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowercase_ : np.ndarray , lowercase_ : Dict[str, int] , lowercase_ : PILImageResampling = PILImageResampling.BILINEAR , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Any , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = get_size_dict(lowercase_ , default_to_square=lowercase_) if "shortest_edge" in size: SCREAMING_SNAKE_CASE_ : List[Any] = get_resize_output_image_size(lowercase_ , size['''shortest_edge'''] , default_to_square=lowercase_) elif "height" in size and "width" in size: SCREAMING_SNAKE_CASE_ : Union[str, Any] = (size['''height'''], size['''width''']) else: raise ValueError(F'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}') return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_) def _SCREAMING_SNAKE_CASE ( self : Any , lowercase_ : np.ndarray , lowercase_ : Dict[str, int] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : List[Any] , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = get_size_dict(lowercase_) if "height" not in size or "width" not in size: raise ValueError(F'Size must have \'height\' and \'width\' as keys. Got {size.keys()}') return center_crop(lowercase_ , size=(size['''height'''], size['''width''']) , data_format=lowercase_ , **lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowercase_ : np.ndarray , lowercase_ : Union[int, float] , lowercase_ : bool = True , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Optional[int] , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = image.astype(np.floataa) if offset: SCREAMING_SNAKE_CASE_ : Tuple = image - (scale / 2) return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowercase_ : np.ndarray , lowercase_ : Union[float, List[float]] , lowercase_ : Union[float, List[float]] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : List[str] , ): '''simple docstring''' return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowercase_ : ImageInput , lowercase_ : bool = None , lowercase_ : Dict[str, int] = None , lowercase_ : PILImageResampling = None , lowercase_ : bool = None , lowercase_ : Dict[str, int] = None , lowercase_ : bool = None , lowercase_ : float = None , lowercase_ : bool = None , lowercase_ : bool = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[ChannelDimension] = ChannelDimension.FIRST , ): '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''') if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''') if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''') if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''') if offset and not do_rescale: raise ValueError('''For offset, do_rescale must also be set to True.''') # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE_ : List[str] = to_numpy_array(lowercase_) if do_resize: SCREAMING_SNAKE_CASE_ : List[Any] = self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_) if do_center_crop: SCREAMING_SNAKE_CASE_ : Dict = self.center_crop(lowercase_ , size=lowercase_) if do_rescale: SCREAMING_SNAKE_CASE_ : int = self.rescale(image=lowercase_ , scale=lowercase_ , offset=lowercase_) if do_normalize: SCREAMING_SNAKE_CASE_ : Dict = self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = to_channel_dimension_format(lowercase_ , lowercase_) return image def _SCREAMING_SNAKE_CASE ( self : Dict , lowercase_ : ImageInput , lowercase_ : bool = None , lowercase_ : Dict[str, int] = None , lowercase_ : PILImageResampling = None , lowercase_ : bool = None , lowercase_ : Dict[str, int] = None , lowercase_ : bool = None , lowercase_ : float = None , lowercase_ : bool = None , lowercase_ : bool = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[str, TensorType]] = None , lowercase_ : ChannelDimension = ChannelDimension.FIRST , **lowercase_ : Optional[Any] , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE_ : int = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE_ : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE_ : Dict = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE_ : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE_ : Dict = offset if offset is not None else self.offset SCREAMING_SNAKE_CASE_ : str = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE_ : Dict = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE_ : List[str] = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE_ : Union[str, Any] = size if size is not None else self.size SCREAMING_SNAKE_CASE_ : Tuple = get_size_dict(lowercase_ , default_to_square=lowercase_) SCREAMING_SNAKE_CASE_ : Any = crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE_ : Dict = get_size_dict(lowercase_ , param_name='''crop_size''') if not valid_images(lowercase_): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''') SCREAMING_SNAKE_CASE_ : Tuple = make_batched(lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = [ [ self._preprocess_image( image=lowercase_ , do_resize=lowercase_ , size=lowercase_ , resample=lowercase_ , do_center_crop=lowercase_ , crop_size=lowercase_ , do_rescale=lowercase_ , rescale_factor=lowercase_ , offset=lowercase_ , do_normalize=lowercase_ , image_mean=lowercase_ , image_std=lowercase_ , data_format=lowercase_ , ) for img in video ] for video in videos ] SCREAMING_SNAKE_CASE_ : int = {'''pixel_values''': videos} return BatchFeature(data=lowercase_ , tensor_type=lowercase_)
91
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case_ : Any = { "configuration_mgp_str": ["MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP", "MgpstrConfig"], "processing_mgp_str": ["MgpstrProcessor"], "tokenization_mgp_str": ["MgpstrTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[int] = [ "MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST", "MgpstrModel", "MgpstrPreTrainedModel", "MgpstrForSceneTextRecognition", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys snake_case_ : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class __snake_case ( unittest.TestCase ): @slow def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = XLMRobertaModel.from_pretrained('''xlm-roberta-base''') UpperCAmelCase_ = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]]) # The dog is cute and lives in the garden house UpperCAmelCase_ = torch.Size((1, 12, 768)) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase_ = torch.tensor( [[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCAmelCase_ = model(_snake_case)['''last_hidden_state'''].detach() self.assertEqual(output.shape , _snake_case) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _snake_case , atol=1e-3)) @slow def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = XLMRobertaModel.from_pretrained('''xlm-roberta-large''') UpperCAmelCase_ = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]]) # The dog is cute and lives in the garden house UpperCAmelCase_ = torch.Size((1, 12, 1024)) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase_ = torch.tensor( [[-0.0_6_9_9, -0.0_3_1_8, 0.0_7_0_5, -0.1_2_4_1, 0.0_9_9_9, -0.0_5_2_0, 0.1_0_0_4, -0.1_8_3_8, -0.4_7_0_4, 0.1_4_3_7, 0.0_8_2_1, 0.0_1_2_6]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCAmelCase_ = model(_snake_case)['''last_hidden_state'''].detach() self.assertEqual(output.shape , _snake_case) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _snake_case , atol=1e-3))
7
1
'''simple docstring''' from __future__ import annotations from random import choice def __lowerCamelCase ( lowerCAmelCase_ ) -> Tuple: return choice(lowerCAmelCase_ ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> int: _a : Tuple = random_pivot(lowerCAmelCase_ ) # partition based on pivot # linear time _a : Union[str, Any] = [e for e in lst if e < pivot] _a : Tuple = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(lowerCAmelCase_ ) == k - 1: return pivot # pivot is in elements bigger than k elif len(lowerCAmelCase_ ) < k - 1: return kth_number(lowerCAmelCase_ , k - len(lowerCAmelCase_ ) - 1 ) # pivot is in elements smaller than k else: return kth_number(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
89
'''simple docstring''' import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class __magic_name__ ( _UpperCamelCase , unittest.TestCase ): lowerCAmelCase : Optional[int] = BarthezTokenizer lowerCAmelCase : int = BarthezTokenizerFast lowerCAmelCase : Dict = True lowerCAmelCase : str = True def __lowercase ( self : List[Any] ): super().setUp() _a : List[Any] = BarthezTokenizerFast.from_pretrained('moussaKam/mbarthez' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ,legacy_format=_UpperCAmelCase ) _a : Union[str, Any] = tokenizer def __lowercase ( self : Tuple ): _a : Optional[Any] = '<pad>' _a : List[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) ,_UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) ,_UpperCAmelCase ) def __lowercase ( self : str ): _a : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'<s>' ) self.assertEqual(vocab_keys[1] ,'<pad>' ) self.assertEqual(vocab_keys[-1] ,'<mask>' ) self.assertEqual(len(_UpperCAmelCase ) ,101122 ) def __lowercase ( self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size ,101122 ) @require_torch def __lowercase ( self : Dict ): _a : Any = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _a : Dict = [0, 57, 3018, 70307, 91, 2] _a : Dict = self.tokenizer( _UpperCAmelCase ,max_length=len(_UpperCAmelCase ) ,padding=_UpperCAmelCase ,truncation=_UpperCAmelCase ,return_tensors='pt' ) self.assertIsInstance(_UpperCAmelCase ,_UpperCAmelCase ) self.assertEqual((2, 6) ,batch.input_ids.shape ) self.assertEqual((2, 6) ,batch.attention_mask.shape ) _a : Tuple = batch.input_ids.tolist()[0] self.assertListEqual(_UpperCAmelCase ,_UpperCAmelCase ) def __lowercase ( self : Optional[Any] ): if not self.test_rust_tokenizer: return _a : str = self.get_tokenizer() _a : List[str] = self.get_rust_tokenizer() _a : Dict = 'I was born in 92000, and this is falsé.' _a : List[Any] = tokenizer.tokenize(_UpperCAmelCase ) _a : Tuple = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase ,_UpperCAmelCase ) _a : Optional[Any] = tokenizer.encode(_UpperCAmelCase ,add_special_tokens=_UpperCAmelCase ) _a : Optional[int] = rust_tokenizer.encode(_UpperCAmelCase ,add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase ,_UpperCAmelCase ) _a : Union[str, Any] = self.get_rust_tokenizer() _a : Any = tokenizer.encode(_UpperCAmelCase ) _a : Optional[int] = rust_tokenizer.encode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase ,_UpperCAmelCase ) @slow def __lowercase ( self : Optional[int] ): # fmt: off _a : Optional[int] = {'input_ids': [[0, 490, 14328, 4507, 354, 47, 43669, 95, 25, 78117, 20215, 19779, 190, 22, 400, 4, 35343, 80310, 603, 86, 24937, 105, 33438, 94762, 196, 39642, 7, 15, 15933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10534, 87, 25, 66, 3358, 196, 55289, 8, 82961, 81, 2204, 75203, 7, 15, 763, 12956, 216, 178, 14328, 9595, 1377, 69693, 7, 448, 71021, 196, 18106, 1437, 13974, 108, 9083, 4, 49315, 7, 39, 86, 1326, 2793, 46333, 4, 448, 196, 74588, 7, 49315, 7, 39, 21, 822, 38470, 74, 21, 66723, 62480, 8, 22050, 5, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. _a : Optional[Any] = [ 'Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ' 'utilisé principalement dans le domaine du traitement automatique des langues (TAL).', 'À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ' 'pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ' 'telles que la traduction et la synthèse de texte.', ] self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase ,model_name='moussaKam/mbarthez' ,revision='c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6' ,sequences=_UpperCAmelCase ,)
89
1
"""simple docstring""" import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel UpperCAmelCase_ : Union[str, Any] = { """text_branch""": """text_model""", """audio_branch""": """audio_model.audio_encoder""", """attn""": """attention.self""", """self.proj""": """output.dense""", """attention.self_mask""": """attn_mask""", """mlp.fc1""": """intermediate.dense""", """mlp.fc2""": """output.dense""", """norm1""": """layernorm_before""", """norm2""": """layernorm_after""", """bn0""": """batch_norm""", } UpperCAmelCase_ : Any = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""") def _A (__a , __a=False ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = create_model( '''HTSAT-tiny''' , '''roberta''' , _lowerCamelCase , precision='''fp32''' , device='''cuda:0''' if torch.cuda.is_available() else '''cpu''' , enable_fusion=_lowerCamelCase , fusion_type='''aff_2d''' if enable_fusion else None , ) return model, model_cfg def _A (__a ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = {} SCREAMING_SNAKE_CASE_ : Any = R""".*sequential.(\d+).*""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = R""".*_projection.(\d+).*""" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: SCREAMING_SNAKE_CASE_ : List[str] = key.replace(_lowerCamelCase , _lowerCamelCase ) if re.match(_lowerCamelCase , _lowerCamelCase ): # replace sequential layers with list SCREAMING_SNAKE_CASE_ : Optional[int] = re.match(_lowerCamelCase , _lowerCamelCase ).group(1 ) SCREAMING_SNAKE_CASE_ : List[str] = key.replace(f'sequential.{sequential_layer}.' , f'layers.{int(_lowerCamelCase )//3}.linear.' ) elif re.match(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE_ : Dict = int(re.match(_lowerCamelCase , _lowerCamelCase ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... SCREAMING_SNAKE_CASE_ : Tuple = 1 if projecton_layer == 0 else 2 SCREAMING_SNAKE_CASE_ : List[Any] = key.replace(f'_projection.{projecton_layer}.' , f'_projection.linear{transformers_projection_layer}.' ) if "audio" and "qkv" in key: # split qkv into query key and value SCREAMING_SNAKE_CASE_ : Any = value SCREAMING_SNAKE_CASE_ : Tuple = mixed_qkv.size(0 ) // 3 SCREAMING_SNAKE_CASE_ : Dict = mixed_qkv[:qkv_dim] SCREAMING_SNAKE_CASE_ : Optional[int] = mixed_qkv[qkv_dim : qkv_dim * 2] SCREAMING_SNAKE_CASE_ : Union[str, Any] = mixed_qkv[qkv_dim * 2 :] SCREAMING_SNAKE_CASE_ : Union[str, Any] = query_layer SCREAMING_SNAKE_CASE_ : Dict = key_layer SCREAMING_SNAKE_CASE_ : Optional[int] = value_layer else: SCREAMING_SNAKE_CASE_ : Dict = value return model_state_dict def _A (__a , __a , __a , __a=False ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = init_clap(_lowerCamelCase , enable_fusion=_lowerCamelCase ) clap_model.eval() SCREAMING_SNAKE_CASE_ : int = clap_model.state_dict() SCREAMING_SNAKE_CASE_ : Dict = rename_state_dict(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ : Any = ClapConfig() SCREAMING_SNAKE_CASE_ : Any = enable_fusion SCREAMING_SNAKE_CASE_ : Optional[Any] = ClapModel(_lowerCamelCase ) # ignore the spectrogram embedding layer model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) transformers_config.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": UpperCAmelCase_ : Tuple = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""") UpperCAmelCase_ : List[Any] = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
363
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
318
0
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename __UpperCAmelCase = "http://www.mocksite.com/file1.txt" __UpperCAmelCase = "\"text\": [\"foo\", \"foo\"]" __UpperCAmelCase = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8" class UpperCamelCase__ : """simple docstring""" UpperCAmelCase_ =200 UpperCAmelCase_ ={"Content-Length": "100"} UpperCAmelCase_ ={} def _UpperCamelCase ( self , **_A ) -> int: return [bytes(_A , '''utf-8''' )] def A__ ( *__lowerCamelCase, **__lowerCamelCase ): return MockResponse() @pytest.mark.parametrize('''urls_type''', [str, list, dict] ) def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): import requests monkeypatch.setattr(__lowerCamelCase, '''request''', __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = URL if issubclass(__lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = url elif issubclass(__lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [url] elif issubclass(__lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = {'''train''': url} SCREAMING_SNAKE_CASE_ = '''dummy''' SCREAMING_SNAKE_CASE_ = '''downloads''' SCREAMING_SNAKE_CASE_ = tmp_path SCREAMING_SNAKE_CASE_ = DownloadConfig( cache_dir=os.path.join(__lowerCamelCase, __lowerCamelCase ), use_etag=__lowerCamelCase, ) SCREAMING_SNAKE_CASE_ = DownloadManager(dataset_name=__lowerCamelCase, download_config=__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = dl_manager.download(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = urls for downloaded_paths in [downloaded_paths]: if isinstance(__lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [downloaded_paths] SCREAMING_SNAKE_CASE_ = [urls] elif isinstance(__lowerCamelCase, __lowerCamelCase ): assert "train" in downloaded_paths.keys() SCREAMING_SNAKE_CASE_ = downloaded_paths.values() SCREAMING_SNAKE_CASE_ = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(__lowerCamelCase, __lowerCamelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] SCREAMING_SNAKE_CASE_ = Path(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() SCREAMING_SNAKE_CASE_ = downloaded_path.read_text() assert content == CONTENT SCREAMING_SNAKE_CASE_ = downloaded_path.with_suffix('''.json''' ) assert metadata_downloaded_path.exists() SCREAMING_SNAKE_CASE_ = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('''paths_type''', [str, list, dict] ) def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = str(__lowerCamelCase ) if issubclass(__lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = filename elif issubclass(__lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [filename] elif issubclass(__lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = {'''train''': filename} SCREAMING_SNAKE_CASE_ = '''dummy''' SCREAMING_SNAKE_CASE_ = xz_file.parent SCREAMING_SNAKE_CASE_ = '''extracted''' SCREAMING_SNAKE_CASE_ = DownloadConfig( cache_dir=__lowerCamelCase, use_etag=__lowerCamelCase, ) SCREAMING_SNAKE_CASE_ = DownloadManager(dataset_name=__lowerCamelCase, download_config=__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = dl_manager.extract(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = paths for extracted_paths in [extracted_paths]: if isinstance(__lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [extracted_paths] SCREAMING_SNAKE_CASE_ = [paths] elif isinstance(__lowerCamelCase, __lowerCamelCase ): assert "train" in extracted_paths.keys() SCREAMING_SNAKE_CASE_ = extracted_paths.values() SCREAMING_SNAKE_CASE_ = paths.values() assert extracted_paths for extracted_path, input_path in zip(__lowerCamelCase, __lowerCamelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] SCREAMING_SNAKE_CASE_ = Path(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = extracted_path.parts assert parts[-1] == hash_url_to_filename(__lowerCamelCase, etag=__lowerCamelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() SCREAMING_SNAKE_CASE_ = extracted_path.read_text() SCREAMING_SNAKE_CASE_ = text_file.read_text() assert extracted_file_content == expected_file_content def A__ ( __lowerCamelCase, __lowerCamelCase ): assert path.endswith('''.jsonl''' ) for num_items, line in enumerate(__lowerCamelCase, start=1 ): SCREAMING_SNAKE_CASE_ = json.loads(line.decode('''utf-8''' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('''archive_jsonl''', ['''tar_jsonl_path''', '''zip_jsonl_path'''] ) def A__ ( __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = request.getfixturevalue(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(__lowerCamelCase ), start=1 ): _test_jsonl(__lowerCamelCase, __lowerCamelCase ) assert num_jsonl == 2 @pytest.mark.parametrize('''archive_nested_jsonl''', ['''tar_nested_jsonl_path''', '''zip_nested_jsonl_path'''] ) def A__ ( __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = request.getfixturevalue(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(__lowerCamelCase ), start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(__lowerCamelCase ), start=1 ): _test_jsonl(__lowerCamelCase, __lowerCamelCase ) assert num_tar == 1 assert num_jsonl == 2 def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(__lowerCamelCase ), start=1 ): assert os.path.basename(__lowerCamelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
299
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput __UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" @register_to_config def __init__( self , _A , _A = None , _A = None ) -> Optional[Any]: super().__init__() SCREAMING_SNAKE_CASE_ = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" SCREAMING_SNAKE_CASE_ = torch.zeros(_A , _A ) else: SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = torch.nn.Parameter(_A ) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 def __init__( self , _A , _A , _A , _A , _A , _A , ) -> Any: super().__init__() self.register_modules( vqvae=_A , transformer=_A , text_encoder=_A , tokenizer=_A , scheduler=_A , learned_classifier_free_sampling_embeddings=_A , ) def _UpperCamelCase ( self , _A , _A , _A ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = len(_A ) if isinstance(_A , _A ) else 1 # get prompt text embeddings SCREAMING_SNAKE_CASE_ = self.tokenizer( _A , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE_ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: SCREAMING_SNAKE_CASE_ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) SCREAMING_SNAKE_CASE_ = text_input_ids[:, : self.tokenizer.model_max_length] SCREAMING_SNAKE_CASE_ = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 SCREAMING_SNAKE_CASE_ = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=_A ) # duplicate text embeddings for each generation per prompt SCREAMING_SNAKE_CASE_ = prompt_embeds.repeat_interleave(_A , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: SCREAMING_SNAKE_CASE_ = self.learned_classifier_free_sampling_embeddings.embeddings SCREAMING_SNAKE_CASE_ = negative_prompt_embeds.unsqueeze(0 ).repeat(_A , 1 , 1 ) else: SCREAMING_SNAKE_CASE_ = [''''''] * batch_size SCREAMING_SNAKE_CASE_ = text_input_ids.shape[-1] SCREAMING_SNAKE_CASE_ = self.tokenizer( _A , padding='''max_length''' , max_length=_A , truncation=_A , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE_ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings SCREAMING_SNAKE_CASE_ = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=_A ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method SCREAMING_SNAKE_CASE_ = negative_prompt_embeds.shape[1] SCREAMING_SNAKE_CASE_ = negative_prompt_embeds.repeat(1 , _A , 1 ) SCREAMING_SNAKE_CASE_ = negative_prompt_embeds.view(batch_size * num_images_per_prompt , _A , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes SCREAMING_SNAKE_CASE_ = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self , _A , _A = 100 , _A = 5.0 , _A = 1.0 , _A = 1 , _A = None , _A = None , _A = "pil" , _A = True , _A = None , _A = 1 , ) -> Union[ImagePipelineOutput, Tuple]: if isinstance(_A , _A ): SCREAMING_SNAKE_CASE_ = 1 elif isinstance(_A , _A ): SCREAMING_SNAKE_CASE_ = len(_A ) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(_A )}''' ) SCREAMING_SNAKE_CASE_ = batch_size * num_images_per_prompt SCREAMING_SNAKE_CASE_ = guidance_scale > 1.0 SCREAMING_SNAKE_CASE_ = self._encode_prompt(_A , _A , _A ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_A , _A ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(_A )}.''' ) # get the initial completely masked latents unless the user supplied it SCREAMING_SNAKE_CASE_ = (batch_size, self.transformer.num_latent_pixels) if latents is None: SCREAMING_SNAKE_CASE_ = self.transformer.num_vector_embeds - 1 SCREAMING_SNAKE_CASE_ = torch.full(_A , _A ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( '''Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,''' F''' {self.transformer.num_vector_embeds - 1} (inclusive).''' ) SCREAMING_SNAKE_CASE_ = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_A , device=self.device ) SCREAMING_SNAKE_CASE_ = self.scheduler.timesteps.to(self.device ) SCREAMING_SNAKE_CASE_ = latents for i, t in enumerate(self.progress_bar(_A ) ): # expand the sample if we are doing classifier free guidance SCREAMING_SNAKE_CASE_ = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` SCREAMING_SNAKE_CASE_ = self.transformer(_A , encoder_hidden_states=_A , timestep=_A ).sample if do_classifier_free_guidance: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = model_output.chunk(2 ) SCREAMING_SNAKE_CASE_ = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(_A , dim=1 , keepdim=_A ) SCREAMING_SNAKE_CASE_ = self.truncate(_A , _A ) # remove `log(0)`'s (`-inf`s) SCREAMING_SNAKE_CASE_ = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE_ = self.scheduler.step(_A , timestep=_A , sample=_A , generator=_A ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_A , _A , _A ) SCREAMING_SNAKE_CASE_ = self.vqvae.config.vq_embed_dim SCREAMING_SNAKE_CASE_ = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) SCREAMING_SNAKE_CASE_ = self.vqvae.quantize.get_codebook_entry(_A , shape=_A ) SCREAMING_SNAKE_CASE_ = self.vqvae.decode(_A , force_not_quantize=_A ).sample SCREAMING_SNAKE_CASE_ = (image / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE_ = self.numpy_to_pil(_A ) if not return_dict: return (image,) return ImagePipelineOutput(images=_A ) def _UpperCamelCase ( self , _A , _A ) -> torch.FloatTensor: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = torch.sort(_A , 1 , descending=_A ) SCREAMING_SNAKE_CASE_ = torch.exp(_A ) SCREAMING_SNAKE_CASE_ = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out SCREAMING_SNAKE_CASE_ = torch.full_like(keep_mask[:, 0:1, :] , _A ) SCREAMING_SNAKE_CASE_ = torch.cat((all_true, keep_mask) , dim=1 ) SCREAMING_SNAKE_CASE_ = keep_mask[:, :-1, :] SCREAMING_SNAKE_CASE_ = keep_mask.gather(1 , indices.argsort(1 ) ) SCREAMING_SNAKE_CASE_ = log_p_x_0.clone() SCREAMING_SNAKE_CASE_ = -torch.inf # -inf = log(0) return rv
299
1
"""simple docstring""" from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def a__ ( __lowercase , __lowercase , __lowercase = None ) -> str: if version.parse(hfh.__version__ ).release < version.parse("0.11.0" ).release: # old versions of hfh don't url-encode the file path _A = quote(__lowercase ) return hfh.hf_hub_url(__lowercase , __lowercase , repo_type="dataset" , revision=__lowercase )
350
"""simple docstring""" import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version a_ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.14.0", "To fix: pip install -r examples/pytorch/audio-classification/requirements.txt") def a__ ( __lowercase , __lowercase , __lowercase = 1_6000 ) -> List[str]: _A = int(round(sample_rate * max_length ) ) if len(__lowercase ) <= sample_length: return wav _A = randint(0 , len(__lowercase ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class snake_case : __UpperCamelCase = field(default=_UpperCamelCase , metadata={'help': 'Name of a dataset from the datasets package'}) __UpperCamelCase = field( default=_UpperCamelCase , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}) __UpperCamelCase = field( default=_UpperCamelCase , metadata={'help': 'A file containing the training audio paths and labels.'}) __UpperCamelCase = field( default=_UpperCamelCase , metadata={'help': 'A file containing the validation audio paths and labels.'}) __UpperCamelCase = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) __UpperCamelCase = field( default='validation' , metadata={ 'help': ( 'The name of the training data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) __UpperCamelCase = field( default='audio' , metadata={'help': 'The name of the dataset column containing the audio data. Defaults to \'audio\''} , ) __UpperCamelCase = field( default='label' , metadata={'help': 'The name of the dataset column containing the labels. Defaults to \'label\''}) __UpperCamelCase = field( default=_UpperCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) __UpperCamelCase = field( default=_UpperCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) __UpperCamelCase = field( default=20 , metadata={'help': 'Audio clips will be randomly cut to this length during training if the value is set.'} , ) @dataclass class snake_case : __UpperCamelCase = field( default='facebook/wav2vec2-base' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) __UpperCamelCase = field( default=_UpperCamelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'}) __UpperCamelCase = field( default=_UpperCamelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from the Hub'}) __UpperCamelCase = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) __UpperCamelCase = field( default=_UpperCamelCase , metadata={'help': 'Name or path of preprocessor config.'}) __UpperCamelCase = field( default=_UpperCamelCase , metadata={'help': 'Whether to freeze the feature encoder layers of the model.'}) __UpperCamelCase = field( default=_UpperCamelCase , metadata={'help': 'Whether to generate an attention mask in the feature extractor.'}) __UpperCamelCase = field( default=_UpperCamelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) __UpperCamelCase = field( default=_UpperCamelCase , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'}) __UpperCamelCase = field( default=_UpperCamelCase , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def a_ ( self : List[str] ) -> List[str]: '''simple docstring''' if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( "The argument `--freeze_feature_extractor` is deprecated and " "will be removed in a future version. Use `--freeze_feature_encoder`" "instead. Setting `freeze_feature_encoder==True`." , a__ , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( "The argument `--freeze_feature_extractor` is deprecated and " "should not be used in combination with `--freeze_feature_encoder`." "Only make use of `--freeze_feature_encoder`." ) def a__ ( ) -> Tuple: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _A = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _A , _A , _A = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _A , _A , _A = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_audio_classification" , __lowercase , __lowercase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _A = training_args.get_process_log_level() logger.setLevel(__lowercase ) transformers.utils.logging.set_verbosity(__lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} """ + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. _A = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _A = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to train from scratch." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset and prepare it for the audio classification task. _A = DatasetDict() _A = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) _A = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( f"""--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. """ "Make sure to set `--audio_column_name` to the correct audio column - one of " f"""{', '.join(raw_datasets['train'].column_names )}.""" ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( f"""--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. """ "Make sure to set `--label_column_name` to the correct text column - one of " f"""{', '.join(raw_datasets['train'].column_names )}.""" ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy _A = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. _A = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) _A = feature_extractor.model_input_names[0] def train_transforms(__lowercase ): _A = [] for audio in batch[data_args.audio_column_name]: _A = random_subsample( audio["array"] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(__lowercase ) _A = feature_extractor(__lowercase , sampling_rate=feature_extractor.sampling_rate ) _A = {model_input_name: inputs.get(__lowercase )} _A = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(__lowercase ): _A = [audio["array"] for audio in batch[data_args.audio_column_name]] _A = feature_extractor(__lowercase , sampling_rate=feature_extractor.sampling_rate ) _A = {model_input_name: inputs.get(__lowercase )} _A = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. _A = raw_datasets["train"].features[data_args.label_column_name].names _A , _A = {}, {} for i, label in enumerate(__lowercase ): _A = str(__lowercase ) _A = label # Load the accuracy metric from the datasets package _A = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(__lowercase ): _A = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=__lowercase , references=eval_pred.label_ids ) _A = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(__lowercase ) , labelaid=__lowercase , idalabel=__lowercase , finetuning_task="audio-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _A = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=__lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: _A = ( raw_datasets["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(__lowercase , output_all_columns=__lowercase ) if training_args.do_eval: if data_args.max_eval_samples is not None: _A = ( raw_datasets["eval"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(__lowercase , output_all_columns=__lowercase ) # Initialize our trainer _A = Trainer( model=__lowercase , args=__lowercase , train_dataset=raw_datasets["train"] if training_args.do_train else None , eval_dataset=raw_datasets["eval"] if training_args.do_eval else None , compute_metrics=__lowercase , tokenizer=__lowercase , ) # Training if training_args.do_train: _A = None if training_args.resume_from_checkpoint is not None: _A = training_args.resume_from_checkpoint elif last_checkpoint is not None: _A = last_checkpoint _A = trainer.train(resume_from_checkpoint=__lowercase ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _A = trainer.evaluate() trainer.log_metrics("eval" , __lowercase ) trainer.save_metrics("eval" , __lowercase ) # Write model card and (optionally) push to hub _A = { "finetuned_from": model_args.model_name_or_path, "tasks": "audio-classification", "dataset": data_args.dataset_name, "tags": ["audio-classification"], } if training_args.push_to_hub: trainer.push_to_hub(**__lowercase ) else: trainer.create_model_card(**__lowercase ) if __name__ == "__main__": main()
163
0
"""simple docstring""" import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase_ : List[Any] = get_tests_dir('fixtures/test_sentencepiece_with_bytefallback.model') @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowercase_ : Optional[Any] = GPTSwaTokenizer lowercase_ : Any = False lowercase_ : int = True lowercase_ : Optional[int] = False def lowerCamelCase_ ( self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing A_ : Dict = GPTSwaTokenizer(snake_case_ , eos_token='<unk>' , bos_token='<unk>' , pad_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase_ ( self , snake_case_ ): """simple docstring""" A_ : Dict = 'This is a test' A_ : int = 'This is a test' return input_text, output_text def lowerCamelCase_ ( self ): """simple docstring""" A_ : str = '<s>' A_ : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def lowerCamelCase_ ( self ): """simple docstring""" A_ : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(snake_case_ ) , 2_0_0_0 ) def lowerCamelCase_ ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 2_0_0_0 ) def lowerCamelCase_ ( self ): """simple docstring""" A_ : str = GPTSwaTokenizer(snake_case_ ) A_ : Any = tokenizer.tokenize('This is a test' ) self.assertListEqual(snake_case_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case_ ) , [4_6_5, 2_8_7, 2_6_5, 6_3_1, 8_4_2] ) A_ : Tuple = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) # fmt: off self.assertListEqual( snake_case_ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] , ) # fmt: on A_ : Any = tokenizer.convert_tokens_to_ids(snake_case_ ) self.assertListEqual( snake_case_ , [2_6_2, 2_7_2, 1_5_2_5, 2_8_6, 2_7_1, 2_6_8, 6_0, 9_1_6, 6_3_3, 6_3_3, 6_3_3, 2_5_9, 2_6_6, 3_0_1, 2_8_7, 3_8_4, 3_6_7, 2_6_3, 1_9_8, 1_7_2, 2_6_0] , ) A_ : Optional[Any] = tokenizer.convert_ids_to_tokens(snake_case_ ) # fmt: off self.assertListEqual( snake_case_ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] ) # fmt: on def lowerCamelCase_ ( self ): """simple docstring""" A_ : List[Any] = GPTSwaTokenizer(snake_case_ ) A_ : Union[str, Any] = ['This is a test', 'I was born in 92000, and this is falsé.'] A_ : int = [ [4_6_5, 2_8_7, 2_6_5, 6_3_1, 8_4_2], [2_6_2, 2_7_2, 1_5_2_5, 2_8_6, 2_7_1, 2_6_8, 6_0, 9_1_6, 6_3_3, 6_3_3, 6_3_3, 2_5_9, 2_6_6, 3_0_1, 2_8_7, 3_8_4, 3_6_7, 2_6_3, 1_9_8, 1_7_2, 2_6_0], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(snake_case_ , snake_case_ ): self.assertListEqual(tokenizer.encode_fast(snake_case_ ) , snake_case_ ) # Test that decode_fast returns the input text for text, token_ids in zip(snake_case_ , snake_case_ ): self.assertEqual(tokenizer.decode_fast(snake_case_ ) , snake_case_ ) @slow def lowerCamelCase_ ( self ): """simple docstring""" A_ : Union[str, Any] = [ '<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')', 'Hey there, how are you doing this fine day?', 'This is a text with a trailing spaces followed by a dot .', 'Häj sväjs lillebrör! =)', 'Det är inget fel på Mr. Cool', ] # fmt: off A_ : Union[str, Any] = {'input_ids': [[6_3_4_2_3, 5, 6_8_1_1, 1_4_9_5_4, 2_8_2, 8_1_6, 3_8_2_1, 6_3_4_6_6, 6_3_4_2_5, 6_3_4_6_2, 1_8, 6_3_9_7_8, 6_7_8, 3_0_1, 1_3_2_0, 6_3_4_2_3, 6_3_4_5_5, 6_3_4_5_8, 1_8, 6_3_9_8_2, 4_2_4_6, 3_9_4_0, 1_9_0_1, 4_7_7_8_9, 5_5_4_7, 1_8_9_9_4], [1_9_6_3_0, 1_1_0_0, 6_3_4_4_6, 1_3_4_2, 6_3_3, 5_4_4, 4_4_8_8, 5_9_3, 5_1_0_2, 2_4_1_6, 6_3_4_9_5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_6_5_2, 4_2_8, 2_6_8, 1_9_3_6, 5_1_5, 2_6_8, 5_8_5_9_3, 2_2_4_1_3, 9_1_0_6, 5_4_6, 2_6_8, 3_3_2_1_3, 6_3_9_7_9, 6_9_8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_5_1_3_0, 6_3_4_5_0, 9_2_4, 6_3_4_4_9, 2_2_4_9, 4_0_6_2, 1_5_5_8, 3_1_8, 6_3_5_0_4, 2_1_4_9_8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_0_9, 3_7_7, 2_8_2_7, 2_5_5_9, 3_3_2, 6_5_7_5, 6_3_4_4_3, 2_6_8_0_1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name='AI-Sweden/gpt-sw3-126m' , sequences=snake_case_ , )
286
"""simple docstring""" import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging lowerCamelCase_ : Tuple = logging.get_logger(__name__) def UpperCAmelCase__ ( _UpperCAmelCase ): """simple docstring""" A_ : Optional[Any] = R'\w+[.]\d+' A_ : int = re.findall(_UpperCAmelCase , _UpperCAmelCase ) for pat in pats: A_ : Optional[int] = key.replace(_UpperCAmelCase , '_'.join(pat.split('.' ) ) ) return key def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" A_ : List[Any] = pt_tuple_key[:-1] + ('scale',) if ( any('norm' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): A_ : Union[str, Any] = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: A_ : List[str] = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: A_ : Optional[Any] = pt_tuple_key[:-1] + ('embedding',) return renamed_pt_tuple_key, pt_tensor # conv layer A_ : int = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: A_ : str = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer A_ : Optional[Any] = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight": A_ : Optional[Any] = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight A_ : Tuple = pt_tuple_key[:-1] + ('weight',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias A_ : Optional[int] = pt_tuple_key[:-1] + ('bias',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=42 ): """simple docstring""" A_ : int = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params A_ : Union[str, Any] = flax_model.init_weights(PRNGKey(_UpperCAmelCase ) ) A_ : Optional[Any] = flatten_dict(_UpperCAmelCase ) A_ : Tuple = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): A_ : Any = rename_key(_UpperCAmelCase ) A_ : List[str] = tuple(renamed_pt_key.split('.' ) ) # Correctly rename weight parameters A_ , A_ : Union[str, Any] = rename_key_and_reshape_tensor(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # also add unexpected weight so that warning is thrown A_ : str = jnp.asarray(_UpperCAmelCase ) return unflatten_dict(_UpperCAmelCase )
286
1
'''simple docstring''' import argparse import os import re a_ : Optional[Any] = "src/transformers" # Pattern that looks at the indentation in a line. a_ : List[Any] = re.compile(R"^(\s*)\S") # Pattern that matches `"key":" and puts `key` in group 0. a_ : List[str] = re.compile(R"^\s*\"([^\"]+)\":") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. a_ : Dict = re.compile(R"^\s*_import_structure\[\"([^\"]+)\"\]") # Pattern that matches `"key",` and puts `key` in group 0. a_ : Optional[int] = re.compile(R"^\s*\"([^\"]+)\",\s*$") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. a_ : Tuple = re.compile(R"\[([^\]]+)\]") def _A (lowerCAmelCase__ :int ) -> int: '''simple docstring''' _a = _re_indent.search(lowerCAmelCase__ ) return "" if search is None else search.groups()[0] def _A (lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :str="" , lowerCAmelCase__ :int=None , lowerCAmelCase__ :Dict=None ) -> Dict: '''simple docstring''' _a = 0 _a = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(lowerCAmelCase__ ): index += 1 _a = ['\n'.join(lines[:index] )] else: _a = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). _a = [lines[index]] index += 1 while index < len(lowerCAmelCase__ ) and (end_prompt is None or not lines[index].startswith(lowerCAmelCase__ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(lowerCAmelCase__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(lowerCAmelCase__ ) ) if index < len(lowerCAmelCase__ ) - 1: _a = [lines[index + 1]] index += 1 else: _a = [] else: blocks.append('\n'.join(lowerCAmelCase__ ) ) _a = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(lowerCAmelCase__ ) > 0: blocks.append('\n'.join(lowerCAmelCase__ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(lowerCAmelCase__ ): blocks.append('\n'.join(lines[index:] ) ) return blocks def _A (lowerCAmelCase__ :Union[str, Any] ) -> Optional[Any]: '''simple docstring''' def _inner(lowerCAmelCase__ :List[Any] ): return key(lowerCAmelCase__ ).lower().replace('_' , '' ) return _inner def _A (lowerCAmelCase__ :Any , lowerCAmelCase__ :Union[str, Any]=None ) -> Optional[Any]: '''simple docstring''' def noop(lowerCAmelCase__ :int ): return x if key is None: _a = noop # Constants are all uppercase, they go first. _a = [obj for obj in objects if key(lowerCAmelCase__ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. _a = [obj for obj in objects if key(lowerCAmelCase__ )[0].isupper() and not key(lowerCAmelCase__ ).isupper()] # Functions begin with a lowercase, they go last. _a = [obj for obj in objects if not key(lowerCAmelCase__ )[0].isupper()] _a = ignore_underscore(lowerCAmelCase__ ) return sorted(lowerCAmelCase__ , key=lowerCAmelCase__ ) + sorted(lowerCAmelCase__ , key=lowerCAmelCase__ ) + sorted(lowerCAmelCase__ , key=lowerCAmelCase__ ) def _A (lowerCAmelCase__ :List[Any] ) -> List[Any]: '''simple docstring''' def _replace(lowerCAmelCase__ :List[str] ): _a = match.groups()[0] if "," not in imports: return f'[{imports}]' _a = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _a = keys[:-1] return "[" + ", ".join([f'"{k}"' for k in sort_objects(lowerCAmelCase__ )] ) + "]" _a = import_statement.split('\n' ) if len(lowerCAmelCase__ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. _a = 2 if lines[1].strip() == '[' else 1 _a = [(i, _re_strip_line.search(lowerCAmelCase__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] _a = sort_objects(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : x[1] ) _a = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(lowerCAmelCase__ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: _a = _re_bracket_content.sub(_replace , lines[1] ) else: _a = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _a = keys[:-1] _a = get_indent(lines[1] ) + ', '.join([f'"{k}"' for k in sort_objects(lowerCAmelCase__ )] ) return "\n".join(lowerCAmelCase__ ) else: # Finally we have to deal with imports fitting on one line _a = _re_bracket_content.sub(_replace , lowerCAmelCase__ ) return import_statement def _A (lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Any=True ) -> Dict: '''simple docstring''' with open(lowerCAmelCase__ , encoding='utf-8' ) as f: _a = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 _a = split_code_in_indented_blocks( lowerCAmelCase__ , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(lowerCAmelCase__ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. _a = main_blocks[block_idx] _a = block.split('\n' ) # Get to the start of the imports. _a = 0 while line_idx < len(lowerCAmelCase__ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: _a = len(lowerCAmelCase__ ) else: line_idx += 1 if line_idx >= len(lowerCAmelCase__ ): continue # Ignore beginning and last line: they don't contain anything. _a = '\n'.join(block_lines[line_idx:-1] ) _a = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. _a = split_code_in_indented_blocks(lowerCAmelCase__ , indent_level=lowerCAmelCase__ ) # We have two categories of import key: list or _import_structure[key].append/extend _a = _re_direct_key if '_import_structure = {' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. _a = [(pattern.search(lowerCAmelCase__ ).groups()[0] if pattern.search(lowerCAmelCase__ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. _a = [(i, key) for i, key in enumerate(lowerCAmelCase__ ) if key is not None] _a = [x[0] for x in sorted(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. _a = 0 _a = [] for i in range(len(lowerCAmelCase__ ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: _a = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(lowerCAmelCase__ ) count += 1 # And we put our main block back together with its first and last line. _a = '\n'.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(lowerCAmelCase__ ): if check_only: return True else: print(f'Overwriting {file}.' ) with open(lowerCAmelCase__ , 'w' , encoding='utf-8' ) as f: f.write('\n'.join(lowerCAmelCase__ ) ) def _A (lowerCAmelCase__ :List[Any]=True ) -> Tuple: '''simple docstring''' _a = [] for root, _, files in os.walk(lowerCAmelCase__ ): if "__init__.py" in files: _a = sort_imports(os.path.join(lowerCAmelCase__ , '__init__.py' ) , check_only=lowerCAmelCase__ ) if result: _a = [os.path.join(lowerCAmelCase__ , '__init__.py' )] if len(lowerCAmelCase__ ) > 0: raise ValueError(f'Would overwrite {len(lowerCAmelCase__ )} files, run `make style`.' ) if __name__ == "__main__": a_ : List[str] = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") a_ : Optional[int] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
104
'''simple docstring''' import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class a ( unittest.TestCase ): def __UpperCAmelCase ( self ) -> int: _a = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(__magic_name__ ) ) def __UpperCAmelCase ( self ) -> Dict: _a = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(__magic_name__ ) ) def __UpperCAmelCase ( self ) -> Optional[int]: _a = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(__magic_name__ ) ) def __UpperCAmelCase ( self ) -> Optional[Any]: _a = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] self.assertTrue(is_safetensors_compatible(__magic_name__ ) ) def __UpperCAmelCase ( self ) -> str: _a = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', # Removed: 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(__magic_name__ ) ) def __UpperCAmelCase ( self ) -> List[Any]: _a = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] _a = 'fp16' self.assertTrue(is_safetensors_compatible(__magic_name__ , variant=__magic_name__ ) ) def __UpperCAmelCase ( self ) -> Any: _a = [ 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] _a = 'fp16' self.assertTrue(is_safetensors_compatible(__magic_name__ , variant=__magic_name__ ) ) def __UpperCAmelCase ( self ) -> int: # pass variant but use the non-variant filenames _a = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] _a = 'fp16' self.assertTrue(is_safetensors_compatible(__magic_name__ , variant=__magic_name__ ) ) def __UpperCAmelCase ( self ) -> List[str]: _a = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] _a = 'fp16' self.assertFalse(is_safetensors_compatible(__magic_name__ , variant=__magic_name__ ) ) def __UpperCAmelCase ( self ) -> Union[str, Any]: _a = [ 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', ] _a = 'fp16' self.assertTrue(is_safetensors_compatible(__magic_name__ , variant=__magic_name__ ) ) def __UpperCAmelCase ( self ) -> List[Any]: # pass variant but use the non-variant filenames _a = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] _a = 'fp16' self.assertTrue(is_safetensors_compatible(__magic_name__ , variant=__magic_name__ ) ) def __UpperCAmelCase ( self ) -> List[Any]: _a = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', # 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] _a = 'fp16' self.assertFalse(is_safetensors_compatible(__magic_name__ , variant=__magic_name__ ) )
104
1
'''simple docstring''' from collections import defaultdict def __lowerCamelCase ( _lowercase , _lowercase ) -> bool: UpperCAmelCase : int = first_str.lower().strip() UpperCAmelCase : Tuple = second_str.lower().strip() # Remove whitespace UpperCAmelCase : List[Any] = first_str.replace(""" """ , """""" ) UpperCAmelCase : Optional[Any] = second_str.replace(""" """ , """""" ) # Strings of different lengths are not anagrams if len(_lowercase ) != len(_lowercase ): return False # Default values for count should be 0 UpperCAmelCase : defaultdict[str, int] = defaultdict(_lowercase ) # For each character in input strings, # increment count in the corresponding for i in range(len(_lowercase ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() a : str = input("""Enter the first string """).strip() a : Union[str, Any] = input("""Enter the second string """).strip() a : Any = check_anagrams(input_a, input_b) print(F'''{input_a} and {input_b} are {'' if status else 'not '}anagrams.''')
265
'''simple docstring''' def __lowerCamelCase ( _lowercase , _lowercase ) -> int: if b == 0: return 1 if (b % 2) == 0: return actual_power(_lowercase , int(b / 2 ) ) * actual_power(_lowercase , int(b / 2 ) ) else: return a * actual_power(_lowercase , int(b / 2 ) ) * actual_power(_lowercase , int(b / 2 ) ) def __lowerCamelCase ( _lowercase , _lowercase ) -> float: if b < 0: return 1 / actual_power(_lowercase , _lowercase ) return actual_power(_lowercase , _lowercase ) if __name__ == "__main__": print(power(-2, -3))
265
1
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: _UpperCAmelCase : str = None _UpperCAmelCase : Optional[int] = logging.get_logger(__name__) _UpperCAmelCase : List[Any] = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} _UpperCAmelCase : Dict = { """vocab_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json""" ), }, } _UpperCAmelCase : Any = { """facebook/nllb-large-en-ro""": 1024, """facebook/nllb-200-distilled-600M""": 1024, } # fmt: off _UpperCAmelCase : Dict = ["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""] class lowercase ( lowercase_ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : str = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Optional[int] = ['''input_ids''', '''attention_mask'''] __SCREAMING_SNAKE_CASE : Tuple = NllbTokenizer __SCREAMING_SNAKE_CASE : List[int] = [] __SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self , snake_case=None , snake_case=None , snake_case="<s>" , snake_case="</s>" , snake_case="</s>" , snake_case="<s>" , snake_case="<unk>" , snake_case="<pad>" , snake_case="<mask>" , snake_case=None , snake_case=None , snake_case=None , snake_case=False , **snake_case , ): # Mask token behave like a normal word, i.e. include the space before it snake_case_ = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else mask_token snake_case_ = legacy_behaviour super().__init__( vocab_file=snake_case , tokenizer_file=snake_case , bos_token=snake_case , eos_token=snake_case , sep_token=snake_case , cls_token=snake_case , unk_token=snake_case , pad_token=snake_case , mask_token=snake_case , src_lang=snake_case , tgt_lang=snake_case , additional_special_tokens=snake_case , legacy_behaviour=snake_case , **snake_case , ) snake_case_ = vocab_file snake_case_ = False if not self.vocab_file else True snake_case_ = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) snake_case_ = { lang_code: self.convert_tokens_to_ids(snake_case ) for lang_code in FAIRSEQ_LANGUAGE_CODES } snake_case_ = src_lang if src_lang is not None else 'eng_Latn' snake_case_ = self.convert_tokens_to_ids(self._src_lang ) snake_case_ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def a ( self ): return self._src_lang @src_lang.setter def a ( self , snake_case ): snake_case_ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def a ( self , snake_case , snake_case = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a ( self , snake_case , snake_case = None ): snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a ( self , snake_case , snake_case , snake_case , snake_case , **snake_case ): if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) snake_case_ = src_lang snake_case_ = self(snake_case , add_special_tokens=snake_case , return_tensors=snake_case , **snake_case ) snake_case_ = self.convert_tokens_to_ids(snake_case ) snake_case_ = tgt_lang_id return inputs def a ( self , snake_case , snake_case = "eng_Latn" , snake_case = None , snake_case = "fra_Latn" , **snake_case , ): snake_case_ = src_lang snake_case_ = tgt_lang return super().prepare_seqaseq_batch(snake_case , snake_case , **snake_case ) def a ( self ): return self.set_src_lang_special_tokens(self.src_lang ) def a ( self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def a ( self , snake_case ): snake_case_ = self.convert_tokens_to_ids(snake_case ) if self.legacy_behaviour: snake_case_ = [] snake_case_ = [self.eos_token_id, self.cur_lang_code] else: snake_case_ = [self.cur_lang_code] snake_case_ = [self.eos_token_id] snake_case_ = self.convert_ids_to_tokens(self.prefix_tokens ) snake_case_ = self.convert_ids_to_tokens(self.suffix_tokens ) snake_case_ = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def a ( self , snake_case ): snake_case_ = self.convert_tokens_to_ids(snake_case ) if self.legacy_behaviour: snake_case_ = [] snake_case_ = [self.eos_token_id, self.cur_lang_code] else: snake_case_ = [self.cur_lang_code] snake_case_ = [self.eos_token_id] snake_case_ = self.convert_ids_to_tokens(self.prefix_tokens ) snake_case_ = self.convert_ids_to_tokens(self.suffix_tokens ) snake_case_ = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def a ( self , snake_case , snake_case = None ): if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(snake_case ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory.''' ) return snake_case_ = os.path.join( snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case ): copyfile(self.vocab_file , snake_case ) return (out_vocab_file,)
356
import requests _UpperCAmelCase : Union[str, Any] = """https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=""" def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page['articles'] , 1 ): print(F'''{i}.) {article["title"]}''' ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key="""<Your BBC News API key goes here>""")
200
0
'''simple docstring''' import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient __lowerCAmelCase = WebClient(token=os.environ["""CI_SLACK_BOT_TOKEN"""]) def UpperCAmelCase_ (__a : Optional[int] ): """simple docstring""" _a : List[str] = test_results.split(' ' ) _a : Any = 0 _a : Union[str, Any] = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. _a : Any = expressions[-2] if '=' in expressions[-1] else expressions[-1] for i, expression in enumerate(__a ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def UpperCAmelCase_ (__a : Any ): """simple docstring""" _a : Optional[Any] = {} _a : Tuple = None _a : str = False for line in failures_short_lines.split('\n' ): if re.search(R'_ \[doctest\]' , __a ): _a : Tuple = True _a : str = line.split(' ' )[2] elif in_error and not line.split(' ' )[0].isdigit(): _a : Dict = line _a : List[Any] = False return failures class UpperCAmelCase__ : """simple docstring""" def __init__( self : Tuple ,_a : str ,_a : Dict ): '''simple docstring''' _a : Tuple = title _a : Tuple = doc_test_results['time_spent'].split(',' )[0] _a : List[str] = doc_test_results['success'] _a : List[Any] = doc_test_results['failures'] _a : str = self.n_success + self.n_failures # Failures and success of the modeling tests _a : Union[str, Any] = doc_test_results @property def __lowercase ( self : str ): '''simple docstring''' _a : Any = [self._time_spent] _a : Union[str, Any] = 0 for time in time_spent: _a : Any = time.split(':' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(_a ) == 1: _a : Optional[int] = [0, 0, time_parts[0]] _a, _a, _a : Union[str, Any] = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds _a, _a, _a : List[str] = total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return F"""{int(_a )}h{int(_a )}m{int(_a )}s""" @property def __lowercase ( self : Any ): '''simple docstring''' return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def __lowercase ( self : List[str] ): '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": F"""🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.""", "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F"""https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}""", }, } @property def __lowercase ( self : int ): '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": ( F"""There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in""" F""" {self.time}.""" ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F"""https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}""", }, } @property def __lowercase ( self : Tuple ): '''simple docstring''' _a : Any = 40 _a : List[Any] = {k: v['failed'] for k, v in doc_test_results.items() if isinstance(_a ,_a )} _a : Any = '' for category, failures in category_failures.items(): if len(_a ) == 0: continue if report != "": report += "\n\n" report += F"""*{category} failures*:""".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(_a ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F"""The following examples had failures:\n\n\n{report}\n""", }, } @property def __lowercase ( self : Any ): '''simple docstring''' _a : Tuple = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(_a ) @staticmethod def __lowercase ( ): '''simple docstring''' _a : Optional[int] = [ { 'type': 'section', 'text': { 'type': 'plain_text', 'text': 'There was an issue running the tests.', }, 'accessory': { 'type': 'button', 'text': {'type': 'plain_text', 'text': 'Check Action results', 'emoji': True}, 'url': F"""https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}""", }, } ] print('Sending the following payload' ) print(json.dumps({'blocks': json.loads(_a )} ) ) client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] ,text='There was an issue running the tests.' ,blocks=_a ,) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' print('Sending the following payload' ) print(json.dumps({'blocks': json.loads(self.payload )} ) ) _a : Optional[int] = F"""{self.n_failures} failures out of {self.n_tests} tests,""" if self.n_failures else 'All tests passed.' _a : Union[str, Any] = client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] ,blocks=self.payload ,text=_a ,) def __lowercase ( self : Dict ,_a : List[Any] ,_a : Any ,_a : List[Any] ,_a : Tuple ): '''simple docstring''' _a : List[Any] = '' for key, value in failures.items(): _a : Dict = value[:200] + ' [Truncated]' if len(_a ) > 250 else value failures_text += F"""*{key}*\n_{value}_\n\n""" _a : Optional[int] = job_name _a : Optional[Any] = {'type': 'section', 'text': {'type': 'mrkdwn', 'text': text}} if job_link is not None: _a : str = { 'type': 'button', 'text': {'type': 'plain_text', 'text': 'GitHub Action job', 'emoji': True}, 'url': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def __lowercase ( self : Any ): '''simple docstring''' if self.thread_ts is None: raise ValueError('Can only post reply if a post has been made.' ) _a : int = self.doc_test_results.pop('job_link' ) self.doc_test_results.pop('failures' ) self.doc_test_results.pop('success' ) self.doc_test_results.pop('time_spent' ) _a : Tuple = sorted(self.doc_test_results.items() ,key=lambda _a : t[0] ) for job, job_result in sorted_dict: if len(job_result['failures'] ): _a : Optional[Any] = F"""*Num failures* :{len(job_result['failed'] )} \n""" _a : str = job_result['failures'] _a : str = self.get_reply_blocks(_a ,_a ,_a ,text=_a ) print('Sending the following reply' ) print(json.dumps({'blocks': blocks} ) ) client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] ,text=F"""Results for {job}""" ,blocks=_a ,thread_ts=self.thread_ts['ts'] ,) time.sleep(1 ) def UpperCAmelCase_ (): """simple docstring""" _a : Dict = os.environ['GITHUB_RUN_ID'] _a : List[Any] = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100""" _a : Union[str, Any] = requests.get(__a ).json() _a : Union[str, Any] = {} try: jobs.update({job['name']: job['html_url'] for job in result['jobs']} ) _a : Tuple = math.ceil((result['total_count'] - 1_0_0) / 1_0_0 ) for i in range(__a ): _a : Optional[Any] = requests.get(url + f"""&page={i + 2}""" ).json() jobs.update({job['name']: job['html_url'] for job in result['jobs']} ) return jobs except Exception as e: print('Unknown error, could not fetch links.' , __a ) return {} def UpperCAmelCase_ (__a : str ): """simple docstring""" _a : Optional[int] = {} if os.path.exists(__a ): _a : List[Any] = os.listdir(__a ) for file in files: try: with open(os.path.join(__a , __a ) , encoding='utf-8' ) as f: _a : int = f.read() except UnicodeDecodeError as e: raise ValueError(f"""Could not open {os.path.join(__a , __a )}.""" ) from e return _artifact def UpperCAmelCase_ (): """simple docstring""" class UpperCAmelCase__ : """simple docstring""" def __init__( self : Optional[Any] ,_a : str ): '''simple docstring''' _a : Union[str, Any] = name _a : str = [] def __str__( self : Tuple ): '''simple docstring''' return self.name def __lowercase ( self : Dict ,_a : str ): '''simple docstring''' self.paths.append({'name': self.name, 'path': path} ) _a : Dict[str, Artifact] = {} _a : Any = filter(os.path.isdir , os.listdir() ) for directory in directories: _a : Dict = directory if artifact_name not in _available_artifacts: _a : int = Artifact(__a ) _available_artifacts[artifact_name].add_path(__a ) return _available_artifacts if __name__ == "__main__": __lowerCAmelCase = get_job_links() __lowerCAmelCase = retrieve_available_artifacts() __lowerCAmelCase = collections.OrderedDict( [ ("""*.py""", """API Examples"""), ("""*.md""", """MD Examples"""), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' __lowerCAmelCase = { v: { """failed""": [], """failures""": {}, } for v in docs.values() } # Link to the GitHub Action job __lowerCAmelCase = github_actions_job_links.get("""run_doctests""") __lowerCAmelCase = available_artifacts["""doc_tests_gpu_test_reports"""].paths[0] __lowerCAmelCase = retrieve_artifact(artifact_path["""name"""]) if "stats" in artifact: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = handle_test_results(artifact["""stats"""]) __lowerCAmelCase = failed __lowerCAmelCase = success __lowerCAmelCase = time_spent[1:-1] + """, """ __lowerCAmelCase = extract_first_line_failure(artifact["""failures_short"""]) for line in artifact["summary_short"].split("""\n"""): if re.search("""FAILED""", line): __lowerCAmelCase = line.replace("""FAILED """, """""") __lowerCAmelCase = line.split()[0].replace("""\n""", """""") if "::" in line: __lowerCAmelCase , __lowerCAmelCase = line.split("""::""") else: __lowerCAmelCase , __lowerCAmelCase = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): __lowerCAmelCase = docs[file_regex] doc_test_results[category]["failed"].append(test) __lowerCAmelCase = all_failures[test] if test in all_failures else """N/A""" __lowerCAmelCase = failure break __lowerCAmelCase = Message("""🤗 Results of the doc tests.""", doc_test_results) message.post() message.post_reply()
271
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @property def __lowercase ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) _a : Any = UNetaDModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=3 ,out_channels=3 ,down_block_types=('DownBlock2D', 'AttnDownBlock2D') ,up_block_types=('AttnUpBlock2D', 'UpBlock2D') ,) return model @property def __lowercase ( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) _a : Union[str, Any] = VQModel( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] ,up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] ,latent_channels=3 ,) return model @property def __lowercase ( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) _a : Any = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) return CLIPTextModel(_a ) def __lowercase ( self : Tuple ): '''simple docstring''' _a : Dict = self.dummy_uncond_unet _a : List[Any] = DDIMScheduler() _a : List[Any] = self.dummy_vq_model _a : str = LDMPipeline(unet=_a ,vqvae=_a ,scheduler=_a ) ldm.to(_a ) ldm.set_progress_bar_config(disable=_a ) _a : List[str] = torch.manual_seed(0 ) _a : List[str] = ldm(generator=_a ,num_inference_steps=2 ,output_type='numpy' ).images _a : List[str] = torch.manual_seed(0 ) _a : Union[str, Any] = ldm(generator=_a ,num_inference_steps=2 ,output_type='numpy' ,return_dict=_a )[0] _a : Tuple = image[0, -3:, -3:, -1] _a : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _a : int = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) _a : Any = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : List[str] = LDMPipeline.from_pretrained('CompVis/ldm-celebahq-256' ) ldm.to(_a ) ldm.set_progress_bar_config(disable=_a ) _a : Optional[int] = torch.manual_seed(0 ) _a : Dict = ldm(generator=_a ,num_inference_steps=5 ,output_type='numpy' ).images _a : str = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _a : Optional[int] = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447] ) _a : int = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
271
1
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=99 , lowerCamelCase__=32 , lowerCamelCase__=2 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=16 , lowerCamelCase__=2 , lowerCamelCase__=0.02 , lowerCamelCase__=False , lowerCamelCase__=True , lowerCamelCase__="None" , lowerCamelCase__=3 , lowerCamelCase__=4 , lowerCamelCase__=None , ) -> str: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_input_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = num_labels __lowerCamelCase = num_choices __lowerCamelCase = relative_attention __lowerCamelCase = position_biased_input __lowerCamelCase = pos_att_type __lowerCamelCase = scope def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_input_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = None if self.use_token_type_ids: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCamelCase = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=lowerCamelCase__ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = TFDebertaVaModel(config=lowerCamelCase__ ) __lowerCamelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __lowerCamelCase = [input_ids, input_mask] __lowerCamelCase = model(lowerCamelCase__ ) __lowerCamelCase = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: '''simple docstring''' __lowerCamelCase = TFDebertaVaForMaskedLM(config=lowerCamelCase__ ) __lowerCamelCase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __lowerCamelCase = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = self.num_labels __lowerCamelCase = TFDebertaVaForSequenceClassification(config=lowerCamelCase__ ) __lowerCamelCase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __lowerCamelCase = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = self.num_labels __lowerCamelCase = TFDebertaVaForTokenClassification(config=lowerCamelCase__ ) __lowerCamelCase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __lowerCamelCase = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = TFDebertaVaForQuestionAnswering(config=lowerCamelCase__ ) __lowerCamelCase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __lowerCamelCase = model(lowerCamelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() ( ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ) = config_and_inputs __lowerCamelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) snake_case_ = ( { '''feature-extraction''': TFDebertaVaModel, '''fill-mask''': TFDebertaVaForMaskedLM, '''question-answering''': TFDebertaVaForQuestionAnswering, '''text-classification''': TFDebertaVaForSequenceClassification, '''token-classification''': TFDebertaVaForTokenClassification, '''zero-shot''': TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) snake_case_ = False snake_case_ = False def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = TFDebertaVaModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=37 ) def lowercase_ ( self ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase__ ) def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase__ ) def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase__ ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase__ ) @slow def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = TFDebertaVaModel.from_pretrained('kamalkraj/deberta-v2-xlarge' ) self.assertIsNotNone(lowerCamelCase__ ) @require_tf class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @unittest.skip(reason='Model not available yet' ) def lowercase_ ( self ) -> List[Any]: '''simple docstring''' pass @slow def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = TFDebertaVaModel.from_pretrained('kamalkraj/deberta-v2-xlarge' ) __lowerCamelCase = tf.constant([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) __lowerCamelCase = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __lowerCamelCase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ )[0] __lowerCamelCase = tf.constant( [[[0.23_56, 0.19_48, 0.03_69], [-0.10_63, 0.35_86, -0.51_52], [-0.63_99, -0.02_59, -0.25_25]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , lowerCamelCase__ , atol=1e-4 )
348
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __A = { "facebook/mask2former-swin-small-coco-instance": ( "https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } __A = logging.get_logger(__name__) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''mask2former''' snake_case_ = ['''swin'''] snake_case_ = {'''hidden_size''': '''hidden_dim'''} def __init__( self , lowerCamelCase__ = None , lowerCamelCase__ = 256 , lowerCamelCase__ = 256 , lowerCamelCase__ = 256 , lowerCamelCase__ = 1_024 , lowerCamelCase__ = "relu" , lowerCamelCase__ = 6 , lowerCamelCase__ = 10 , lowerCamelCase__ = 8 , lowerCamelCase__ = 0.0 , lowerCamelCase__ = 2_048 , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = 4 , lowerCamelCase__ = 255 , lowerCamelCase__ = 100 , lowerCamelCase__ = 0.1 , lowerCamelCase__ = 2.0 , lowerCamelCase__ = 5.0 , lowerCamelCase__ = 5.0 , lowerCamelCase__ = 12_544 , lowerCamelCase__ = 3.0 , lowerCamelCase__ = 0.75 , lowerCamelCase__ = 0.02 , lowerCamelCase__ = 1.0 , lowerCamelCase__ = True , lowerCamelCase__ = [4, 8, 16, 32] , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> Tuple: '''simple docstring''' if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.' ) __lowerCamelCase = CONFIG_MAPPING['swin']( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=lowerCamelCase__ , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ): __lowerCamelCase = backbone_config.pop('model_type' ) __lowerCamelCase = CONFIG_MAPPING[backbone_model_type] __lowerCamelCase = config_class.from_dict(lowerCamelCase__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """ f"""Supported model types: {','.join(self.backbones_supported )}""" ) __lowerCamelCase = backbone_config __lowerCamelCase = feature_size __lowerCamelCase = mask_feature_size __lowerCamelCase = hidden_dim __lowerCamelCase = encoder_feedforward_dim __lowerCamelCase = activation_function __lowerCamelCase = encoder_layers __lowerCamelCase = decoder_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = dropout __lowerCamelCase = dim_feedforward __lowerCamelCase = pre_norm __lowerCamelCase = enforce_input_projection __lowerCamelCase = common_stride __lowerCamelCase = ignore_value __lowerCamelCase = num_queries __lowerCamelCase = no_object_weight __lowerCamelCase = class_weight __lowerCamelCase = mask_weight __lowerCamelCase = dice_weight __lowerCamelCase = train_num_points __lowerCamelCase = oversample_ratio __lowerCamelCase = importance_sample_ratio __lowerCamelCase = init_std __lowerCamelCase = init_xavier_std __lowerCamelCase = use_auxiliary_loss __lowerCamelCase = feature_strides __lowerCamelCase = output_auxiliary_logits __lowerCamelCase = decoder_layers super().__init__(**lowerCamelCase__ ) @classmethod def lowercase_ ( cls , lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' return cls( backbone_config=lowerCamelCase__ , **lowerCamelCase__ , ) def lowercase_ ( self ) -> Dict[str, any]: '''simple docstring''' __lowerCamelCase = copy.deepcopy(self.__dict__ ) __lowerCamelCase = self.backbone_config.to_dict() __lowerCamelCase = self.__class__.model_type return output
348
1
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowerCAmelCase : List[str] = 1_6 _lowerCAmelCase : List[Any] = 3_2 def lowerCAmelCase ( _lowerCAmelCase : Accelerator , _lowerCAmelCase : int = 16 ): """simple docstring""" UpperCAmelCase__ = AutoTokenizer.from_pretrained("bert-base-cased" ) UpperCAmelCase__ = load_dataset("glue" , "mrpc" ) def tokenize_function(_lowerCAmelCase : List[Any] ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase__ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase__ = datasets.map( _lowerCAmelCase , batched=_lowerCAmelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase__ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_lowerCAmelCase : str ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase__ = 16 elif accelerator.mixed_precision != "no": UpperCAmelCase__ = 8 else: UpperCAmelCase__ = None return tokenizer.pad( _lowerCAmelCase , padding="longest" , max_length=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_tensors="pt" , ) # Instantiate dataloaders. UpperCAmelCase__ = DataLoader( tokenized_datasets["train"] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) UpperCAmelCase__ = DataLoader( tokenized_datasets["validation"] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _lowerCAmelCase : int = mocked_dataloaders # noqa: F811 def lowerCAmelCase ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] ): """simple docstring""" if os.environ.get("TESTING_MOCKED_DATALOADERS" , _lowerCAmelCase ) == "1": UpperCAmelCase__ = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: UpperCAmelCase__ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir ) else: UpperCAmelCase__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase__ = config["lr"] UpperCAmelCase__ = int(config["num_epochs"] ) UpperCAmelCase__ = int(config["seed"] ) UpperCAmelCase__ = int(config["batch_size"] ) set_seed(_lowerCAmelCase ) UpperCAmelCase__ , UpperCAmelCase__ = get_dataloaders(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase__ = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation UpperCAmelCase__ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCAmelCase__ = batch_size // MAX_GPU_BATCH_SIZE UpperCAmelCase__ = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase__ = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=_lowerCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase__ = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase__ = AdamW(params=model.parameters() , lr=_lowerCAmelCase ) # Instantiate scheduler UpperCAmelCase__ = get_linear_schedule_with_warmup( optimizer=_lowerCAmelCase , num_warmup_steps=100 , num_training_steps=(len(_lowerCAmelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: UpperCAmelCase__ = os.path.split(_lowerCAmelCase )[-1].split("." )[0] accelerator.init_trackers(_lowerCAmelCase , _lowerCAmelCase ) # Now we train the model for epoch in range(_lowerCAmelCase ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: UpperCAmelCase__ = 0 for step, batch in enumerate(_lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCAmelCase__ = model(**_lowerCAmelCase ) UpperCAmelCase__ = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() UpperCAmelCase__ = loss / gradient_accumulation_steps accelerator.backward(_lowerCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase__ = model(**_lowerCAmelCase ) UpperCAmelCase__ = outputs.logits.argmax(dim=-1 ) UpperCAmelCase__ , UpperCAmelCase__ = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=_lowerCAmelCase , references=_lowerCAmelCase , ) UpperCAmelCase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , _lowerCAmelCase ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { "accuracy": eval_metric["accuracy"], "f1": eval_metric["f1"], "train_loss": total_loss.item() / len(_lowerCAmelCase ), "epoch": epoch, } , step=_lowerCAmelCase , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def lowerCAmelCase ( ): """simple docstring""" UpperCAmelCase__ = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=_lowerCAmelCase , default=_lowerCAmelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) parser.add_argument( "--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , ) parser.add_argument( "--project_dir" , type=_lowerCAmelCase , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , ) UpperCAmelCase__ = parser.parse_args() UpperCAmelCase__ = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": main()
169
import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger _lowerCAmelCase : int = get_logger(__name__) _lowerCAmelCase : Any = r"\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n" class _UpperCamelCase : @add_start_docstrings(lowerCamelCase ) def __call__( self :Tuple , lowerCamelCase :jnp.ndarray , lowerCamelCase :jnp.ndarray ) -> jnp.ndarray: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class _UpperCamelCase : @add_start_docstrings(lowerCamelCase ) def __call__( self :Union[str, Any] , lowerCamelCase :jnp.ndarray , lowerCamelCase :jnp.ndarray ) -> jnp.ndarray: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class _UpperCamelCase ( lowerCAmelCase ): @add_start_docstrings(lowerCamelCase ) def __call__( self :List[Any] , lowerCamelCase :jnp.ndarray , lowerCamelCase :jnp.ndarray , lowerCamelCase :int , **lowerCamelCase :str ) -> jnp.ndarray: for processor in self: UpperCAmelCase__ = inspect.signature(processor.__call__ ).parameters if len(lowerCamelCase ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( f'''Make sure that all the required parameters: {list(function_args.keys() )} for ''' f'''{processor.__class__} are passed to the logits processor.''' ) UpperCAmelCase__ = processor(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ) else: UpperCAmelCase__ = processor(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return scores class _UpperCamelCase ( lowerCAmelCase ): def __init__( self :str , lowerCamelCase :float ) -> Tuple: if not isinstance(lowerCamelCase , lowerCamelCase ) or not (temperature > 0): raise ValueError(f'''`temperature` has to be a strictly positive float, but is {temperature}''' ) UpperCAmelCase__ = temperature def __call__( self :int , lowerCamelCase :jnp.ndarray , lowerCamelCase :jnp.ndarray , lowerCamelCase :int ) -> jnp.ndarray: UpperCAmelCase__ = scores / self.temperature return scores class _UpperCamelCase ( lowerCAmelCase ): def __init__( self :Optional[int] , lowerCamelCase :float , lowerCamelCase :float = -float("Inf" ) , lowerCamelCase :int = 1 ) -> Union[str, Any]: if not isinstance(lowerCamelCase , lowerCamelCase ) or (top_p < 0 or top_p > 1.0): raise ValueError(f'''`top_p` has to be a float > 0 and < 1, but is {top_p}''' ) if not isinstance(lowerCamelCase , lowerCamelCase ) or (min_tokens_to_keep < 1): raise ValueError(f'''`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}''' ) UpperCAmelCase__ = top_p UpperCAmelCase__ = filter_value UpperCAmelCase__ = min_tokens_to_keep def __call__( self :Tuple , lowerCamelCase :jnp.ndarray , lowerCamelCase :jnp.ndarray , lowerCamelCase :int ) -> jnp.ndarray: UpperCAmelCase__ , UpperCAmelCase__ = lax.top_k(lowerCamelCase , scores.shape[-1] ) UpperCAmelCase__ = jnp.full_like(lowerCamelCase , self.filter_value ) UpperCAmelCase__ = jax.nn.softmax(lowerCamelCase , axis=-1 ).cumsum(axis=-1 ) UpperCAmelCase__ = cumulative_probs < self.top_p # include the token that is higher than top_p as well UpperCAmelCase__ = jnp.roll(lowerCamelCase , 1 ) score_mask |= score_mask.at[:, 0].set(lowerCamelCase ) # min tokens to keep UpperCAmelCase__ = score_mask.at[:, : self.min_tokens_to_keep].set(lowerCamelCase ) UpperCAmelCase__ = jnp.where(lowerCamelCase , lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = jax.lax.sort_key_val(lowerCamelCase , lowerCamelCase )[-1] return next_scores class _UpperCamelCase ( lowerCAmelCase ): def __init__( self :Union[str, Any] , lowerCamelCase :int , lowerCamelCase :float = -float("Inf" ) , lowerCamelCase :int = 1 ) -> List[str]: if not isinstance(lowerCamelCase , lowerCamelCase ) or top_k <= 0: raise ValueError(f'''`top_k` has to be a strictly positive integer, but is {top_k}''' ) UpperCAmelCase__ = max(lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = filter_value def __call__( self :Optional[int] , lowerCamelCase :jnp.ndarray , lowerCamelCase :jnp.ndarray , lowerCamelCase :int ) -> jnp.ndarray: UpperCAmelCase__ , UpperCAmelCase__ = scores.shape UpperCAmelCase__ = jnp.full(batch_size * vocab_size , self.filter_value ) UpperCAmelCase__ = min(self.top_k , scores.shape[-1] ) # Safety check UpperCAmelCase__ , UpperCAmelCase__ = lax.top_k(lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = jnp.broadcast_to((jnp.arange(lowerCamelCase ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() UpperCAmelCase__ = topk_scores.flatten() UpperCAmelCase__ = topk_indices.flatten() + shift UpperCAmelCase__ = next_scores_flat.at[topk_indices_flat].set(lowerCamelCase ) UpperCAmelCase__ = next_scores_flat.reshape(lowerCamelCase , lowerCamelCase ) return next_scores class _UpperCamelCase ( lowerCAmelCase ): def __init__( self :Any , lowerCamelCase :int ) -> List[Any]: UpperCAmelCase__ = bos_token_id def __call__( self :Optional[int] , lowerCamelCase :jnp.ndarray , lowerCamelCase :jnp.ndarray , lowerCamelCase :int ) -> jnp.ndarray: UpperCAmelCase__ = jnp.full(scores.shape , -float("inf" ) ) UpperCAmelCase__ = 1 - jnp.bool_(cur_len - 1 ) UpperCAmelCase__ = jnp.where(lowerCamelCase , new_scores.at[:, self.bos_token_id].set(0 ) , lowerCamelCase ) return scores class _UpperCamelCase ( lowerCAmelCase ): def __init__( self :Tuple , lowerCamelCase :int , lowerCamelCase :int ) -> List[Any]: UpperCAmelCase__ = max_length UpperCAmelCase__ = eos_token_id def __call__( self :Union[str, Any] , lowerCamelCase :jnp.ndarray , lowerCamelCase :jnp.ndarray , lowerCamelCase :int ) -> jnp.ndarray: UpperCAmelCase__ = jnp.full(scores.shape , -float("inf" ) ) UpperCAmelCase__ = 1 - jnp.bool_(cur_len - self.max_length + 1 ) UpperCAmelCase__ = jnp.where(lowerCamelCase , new_scores.at[:, self.eos_token_id].set(0 ) , lowerCamelCase ) return scores class _UpperCamelCase ( lowerCAmelCase ): def __init__( self :Optional[Any] , lowerCamelCase :int , lowerCamelCase :int ) -> Tuple: if not isinstance(lowerCamelCase , lowerCamelCase ) or min_length < 0: raise ValueError(f'''`min_length` has to be a positive integer, but is {min_length}''' ) if not isinstance(lowerCamelCase , lowerCamelCase ) or eos_token_id < 0: raise ValueError(f'''`eos_token_id` has to be a positive integer, but is {eos_token_id}''' ) UpperCAmelCase__ = min_length UpperCAmelCase__ = eos_token_id def __call__( self :int , lowerCamelCase :jnp.ndarray , lowerCamelCase :jnp.ndarray , lowerCamelCase :int ) -> jnp.ndarray: # create boolean flag to decide if min length penalty should be applied UpperCAmelCase__ = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) UpperCAmelCase__ = jnp.where(lowerCamelCase , scores.at[:, self.eos_token_id].set(-float("inf" ) ) , lowerCamelCase ) return scores class _UpperCamelCase ( lowerCAmelCase ): def __init__( self :int , lowerCamelCase :List[str] , lowerCamelCase :str ) -> Any: UpperCAmelCase__ = list(lowerCamelCase ) UpperCAmelCase__ = begin_index def __call__( self :Union[str, Any] , lowerCamelCase :Union[str, Any] , lowerCamelCase :List[str] , lowerCamelCase :int ) -> List[Any]: UpperCAmelCase__ = 1 - jnp.bool_(cur_len - self.begin_index ) UpperCAmelCase__ = jnp.where(lowerCamelCase , scores.at[:, self.begin_suppress_tokens].set(-float("inf" ) ) , lowerCamelCase ) return scores class _UpperCamelCase ( lowerCAmelCase ): def __init__( self :List[Any] , lowerCamelCase :list ) -> Tuple: UpperCAmelCase__ = list(lowerCamelCase ) def __call__( self :Optional[Any] , lowerCamelCase :jnp.ndarray , lowerCamelCase :jnp.ndarray , lowerCamelCase :int ) -> jnp.ndarray: UpperCAmelCase__ = scores.at[..., self.suppress_tokens].set(-float("inf" ) ) return scores class _UpperCamelCase ( lowerCAmelCase ): def __init__( self :List[Any] , lowerCamelCase :List[str] ) -> Union[str, Any]: UpperCAmelCase__ = dict(lowerCamelCase ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. UpperCAmelCase__ = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: UpperCAmelCase__ = force_token_array.at[index].set(lowerCamelCase ) UpperCAmelCase__ = jnp.intaa(lowerCamelCase ) def __call__( self :Optional[int] , lowerCamelCase :jnp.ndarray , lowerCamelCase :jnp.ndarray , lowerCamelCase :int ) -> jnp.ndarray: def _force_token(lowerCamelCase :str ): UpperCAmelCase__ = scores.shape[0] UpperCAmelCase__ = self.force_token_array[generation_idx] UpperCAmelCase__ = jnp.ones_like(lowerCamelCase , dtype=scores.dtype ) * -float("inf" ) UpperCAmelCase__ = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) UpperCAmelCase__ = lax.dynamic_update_slice(lowerCamelCase , lowerCamelCase , (0, current_token) ) return new_scores UpperCAmelCase__ = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(lowerCamelCase ) , lambda: scores , ) , ) return scores class _UpperCamelCase ( lowerCAmelCase ): def __init__( self :Optional[Any] , lowerCamelCase :List[Any] , lowerCamelCase :Optional[int] , lowerCamelCase :Tuple ) -> Dict: UpperCAmelCase__ = generate_config.eos_token_id UpperCAmelCase__ = generate_config.no_timestamps_token_id UpperCAmelCase__ = generate_config.no_timestamps_token_id + 1 UpperCAmelCase__ = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(lowerCamelCase , "max_initial_timestamp_index" ): UpperCAmelCase__ = generate_config.max_initial_timestamp_index else: UpperCAmelCase__ = model_config.vocab_size if self.max_initial_timestamp_index is None: UpperCAmelCase__ = model_config.vocab_size def __call__( self :List[str] , lowerCamelCase :str , lowerCamelCase :int , lowerCamelCase :Any ) -> Union[str, Any]: # suppress <|notimestamps|> which is handled by without_timestamps UpperCAmelCase__ = scores.at[:, self.no_timestamps_token_id].set(-float("inf" ) ) def handle_pairs(lowerCamelCase :int , lowerCamelCase :Union[str, Any] ): UpperCAmelCase__ = jnp.where((cur_len - self.begin_index) >= 1 , lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , lowerCamelCase , ) UpperCAmelCase__ = jnp.where((cur_len - self.begin_index) < 2 , lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , lowerCamelCase , lowerCamelCase , ) return jnp.where( lowerCamelCase , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float("inf" ) ) , scores_k.at[: self.eos_token_id].set(-float("inf" ) ) , ) , lowerCamelCase , ) UpperCAmelCase__ = jax.vmap(lowerCamelCase )(lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = jnp.where(cur_len == self.begin_index , lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , lowerCamelCase , ) UpperCAmelCase__ = self.timestamp_begin + self.max_initial_timestamp_index UpperCAmelCase__ = jnp.where( lowerCamelCase , scores.at[:, last_allowed + 1 :].set(-float("inf" ) ) , lowerCamelCase , ) # if sum of probability over timestamps is above any other token, sample timestamp UpperCAmelCase__ = jax.nn.log_softmax(lowerCamelCase , axis=-1 ) def handle_cumulative_probs(lowerCamelCase :Optional[int] , lowerCamelCase :Optional[Any] ): UpperCAmelCase__ = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) UpperCAmelCase__ = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float("inf" ) ) , lowerCamelCase , ) UpperCAmelCase__ = jax.vmap(lowerCamelCase )(lowerCamelCase , lowerCamelCase ) return scores
169
1
'''simple docstring''' import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer _lowercase : Tuple = logging.get_logger(__name__) _lowercase : Tuple = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowercase : Dict = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowercase : Any = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowercase : Optional[int] = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowercase : Dict = { """facebook/dpr-ctx_encoder-single-nq-base""": 512, """facebook/dpr-ctx_encoder-multiset-base""": 512, } _lowercase : str = { """facebook/dpr-question_encoder-single-nq-base""": 512, """facebook/dpr-question_encoder-multiset-base""": 512, } _lowercase : Optional[int] = { """facebook/dpr-reader-single-nq-base""": 512, """facebook/dpr-reader-multiset-base""": 512, } _lowercase : Optional[Any] = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowercase : List[Any] = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowercase : Optional[int] = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Any = VOCAB_FILES_NAMES __magic_name__ : Optional[Any] = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP __magic_name__ : Optional[int] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : Union[str, Any] = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION __magic_name__ : Any = DPRContextEncoderTokenizer class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : List[str] = VOCAB_FILES_NAMES __magic_name__ : Union[str, Any] = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP __magic_name__ : Optional[int] = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : Tuple = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION __magic_name__ : Union[str, Any] = DPRQuestionEncoderTokenizer _lowercase : List[Any] = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) _lowercase : List[str] = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) _lowercase : int = r""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(lowerCAmelCase ) class UpperCamelCase__: def __call__( self : Dict , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : Union[bool, str] = False , lowerCAmelCase : Union[bool, str] = False , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : Optional[Union[str, TensorType]] = None , lowerCAmelCase : Optional[bool] = None , **lowerCAmelCase : Union[str, Any] , )-> BatchEncoding: """simple docstring""" if titles is None and texts is None: return super().__call__( lowerCAmelCase , padding=lowerCAmelCase , truncation=lowerCAmelCase , max_length=lowerCAmelCase , return_tensors=lowerCAmelCase , return_attention_mask=lowerCAmelCase , **lowerCAmelCase , ) elif titles is None or texts is None: UpperCAmelCase = titles if texts is None else texts return super().__call__( lowerCAmelCase , lowerCAmelCase , padding=lowerCAmelCase , truncation=lowerCAmelCase , max_length=lowerCAmelCase , return_tensors=lowerCAmelCase , return_attention_mask=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase = titles if not isinstance(lowerCAmelCase , lowerCAmelCase ) else [titles] UpperCAmelCase = texts if not isinstance(lowerCAmelCase , lowerCAmelCase ) else [texts] UpperCAmelCase = len(lowerCAmelCase ) UpperCAmelCase = questions if not isinstance(lowerCAmelCase , lowerCAmelCase ) else [questions] * n_passages assert len(lowerCAmelCase ) == len( lowerCAmelCase ), F"""There should be as many titles than texts but got {len(lowerCAmelCase )} titles and {len(lowerCAmelCase )} texts.""" UpperCAmelCase = super().__call__(lowerCAmelCase , lowerCAmelCase , padding=lowerCAmelCase , truncation=lowerCAmelCase )['''input_ids'''] UpperCAmelCase = super().__call__(lowerCAmelCase , add_special_tokens=lowerCAmelCase , padding=lowerCAmelCase , truncation=lowerCAmelCase )['''input_ids'''] UpperCAmelCase = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowerCAmelCase , lowerCAmelCase ) ] } if return_attention_mask is not False: UpperCAmelCase = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) UpperCAmelCase = attention_mask return self.pad(lowerCAmelCase , padding=lowerCAmelCase , max_length=lowerCAmelCase , return_tensors=lowerCAmelCase ) def a__( self : Optional[int] , lowerCAmelCase : BatchEncoding , lowerCAmelCase : DPRReaderOutput , lowerCAmelCase : int = 16 , lowerCAmelCase : int = 64 , lowerCAmelCase : int = 4 , )-> List[DPRSpanPrediction]: """simple docstring""" UpperCAmelCase = reader_input['''input_ids'''] UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = reader_output[:3] UpperCAmelCase = len(lowerCAmelCase ) UpperCAmelCase = sorted(range(lowerCAmelCase ) , reverse=lowerCAmelCase , key=relevance_logits.__getitem__ ) UpperCAmelCase = [] for doc_id in sorted_docs: UpperCAmelCase = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence UpperCAmelCase = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: UpperCAmelCase = sequence_ids.index(self.pad_token_id ) else: UpperCAmelCase = len(lowerCAmelCase ) UpperCAmelCase = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=lowerCAmelCase , top_spans=lowerCAmelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=lowerCAmelCase , start_index=lowerCAmelCase , end_index=lowerCAmelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(lowerCAmelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def a__( self : Any , lowerCAmelCase : List[int] , lowerCAmelCase : List[int] , lowerCAmelCase : int , lowerCAmelCase : int , )-> List[DPRSpanPrediction]: """simple docstring""" UpperCAmelCase = [] for start_index, start_score in enumerate(lowerCAmelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) UpperCAmelCase = sorted(lowerCAmelCase , key=lambda lowerCAmelCase : x[1] , reverse=lowerCAmelCase ) UpperCAmelCase = [] for (start_index, end_index), score in scores: assert start_index <= end_index, F"""Wrong span indices: [{start_index}:{end_index}]""" UpperCAmelCase = end_index - start_index + 1 assert length <= max_answer_length, F"""Span is too long: {length} > {max_answer_length}""" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(lowerCAmelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(lowerCAmelCase ) class UpperCamelCase__( lowerCAmelCase , lowerCAmelCase ): __magic_name__ : Tuple = VOCAB_FILES_NAMES __magic_name__ : List[Any] = READER_PRETRAINED_VOCAB_FILES_MAP __magic_name__ : Tuple = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : Any = READER_PRETRAINED_INIT_CONFIGURATION __magic_name__ : List[str] = ["input_ids", "attention_mask"] __magic_name__ : str = DPRReaderTokenizer
91
'''simple docstring''' _lowercase : Any = range(2, 20 + 1) _lowercase : str = [10**k for k in range(ks[-1] + 1)] _lowercase : dict[int, dict[int, list[list[int]]]] = {} def lowerCamelCase__ ( A : int , A : str , A : List[Any] , A : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = sum(a_i[j] for j in range(A , len(A ) ) ) UpperCAmelCase = sum(a_i[j] * base[j] for j in range(min(len(A ) , A ) ) ) UpperCAmelCase , UpperCAmelCase = 0, 0 UpperCAmelCase = n - i UpperCAmelCase = memo.get(A ) if sub_memo is not None: UpperCAmelCase = sub_memo.get(A ) if jumps is not None and len(A ) > 0: # find and make the largest jump without going over UpperCAmelCase = -1 for _k in range(len(A ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: UpperCAmelCase = _k break if max_jump >= 0: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = jumps[max_jump] # since the difference between jumps is cached, add c UpperCAmelCase = diff + c for j in range(min(A , len(A ) ) ): UpperCAmelCase , UpperCAmelCase = divmod(A , 10 ) if new_c > 0: add(A , A , A ) else: UpperCAmelCase = [] else: UpperCAmelCase = {c: []} UpperCAmelCase = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps UpperCAmelCase , UpperCAmelCase = next_term(A , k - 1 , i + dn , A ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead UpperCAmelCase , UpperCAmelCase = compute(A , A , i + dn , A ) diff += _diff dn += terms_jumped UpperCAmelCase = sub_memo[c] # keep jumps sorted by # of terms skipped UpperCAmelCase = 0 while j < len(A ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(A , (diff, dn, k) ) return (diff, dn) def lowerCamelCase__ ( A : Dict , A : Optional[int] , A : List[Any] , A : int ): '''simple docstring''' if i >= n: return 0, i if k > len(A ): a_i.extend([0 for _ in range(k - len(A ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) UpperCAmelCase = i UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 0, 0, 0 for j in range(len(A ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 UpperCAmelCase = ds_c + ds_b diff += addend UpperCAmelCase = 0 for j in range(A ): UpperCAmelCase = a_i[j] + addend UpperCAmelCase , UpperCAmelCase = divmod(A , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(A , A , A ) return diff, i - start_i def lowerCamelCase__ ( A : List[str] , A : Optional[int] , A : Optional[Any] ): '''simple docstring''' for j in range(A , len(A ) ): UpperCAmelCase = digits[j] + addend if s >= 10: UpperCAmelCase , UpperCAmelCase = divmod(A , 10 ) UpperCAmelCase = addend // 10 + quotient else: UpperCAmelCase = s UpperCAmelCase = addend // 10 if addend == 0: break while addend > 0: UpperCAmelCase , UpperCAmelCase = divmod(A , 10 ) digits.append(A ) def lowerCamelCase__ ( A : int = 10**15 ): '''simple docstring''' UpperCAmelCase = [1] UpperCAmelCase = 1 UpperCAmelCase = 0 while True: UpperCAmelCase , UpperCAmelCase = next_term(A , 20 , i + dn , A ) dn += terms_jumped if dn == n - i: break UpperCAmelCase = 0 for j in range(len(A ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F"""{solution() = }""")
91
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = { "configuration_mgp_str": ["MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP", "MgpstrConfig"], "processing_mgp_str": ["MgpstrProcessor"], "tokenization_mgp_str": ["MgpstrTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST", "MgpstrModel", "MgpstrPreTrainedModel", "MgpstrForSceneTextRecognition", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
from timeit import timeit def _snake_case( SCREAMING_SNAKE_CASE__ : int ) -> int: '''simple docstring''' if number < 0: raise ValueError('the value of input must not be negative' ) A__ = 0 while number: number &= number - 1 result += 1 return result def _snake_case( SCREAMING_SNAKE_CASE__ : int ) -> int: '''simple docstring''' if number < 0: raise ValueError('the value of input must not be negative' ) A__ = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def _snake_case( ) -> None: '''simple docstring''' def do_benchmark(SCREAMING_SNAKE_CASE__ : int ) -> None: A__ = 'import __main__ as z' print(f'Benchmark when {number = }:' ) print(f'{get_set_bits_count_using_modulo_operator(SCREAMING_SNAKE_CASE__ ) = }' ) A__ = timeit('z.get_set_bits_count_using_modulo_operator(25)' , setup=SCREAMING_SNAKE_CASE__ ) print(f'timeit() runs in {timing} seconds' ) print(f'{get_set_bits_count_using_brian_kernighans_algorithm(SCREAMING_SNAKE_CASE__ ) = }' ) A__ = timeit( 'z.get_set_bits_count_using_brian_kernighans_algorithm(25)' , setup=SCREAMING_SNAKE_CASE__ , ) print(f'timeit() runs in {timing} seconds' ) for number in (25, 37, 58, 0): do_benchmark(SCREAMING_SNAKE_CASE__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
7
1
"""simple docstring""" import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[Any], UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[Any]=1_3, UpperCAmelCase__ : Tuple=7, UpperCAmelCase__ : List[Any]=True, UpperCAmelCase__ : str=True, UpperCAmelCase__ : Union[str, Any]=True, UpperCAmelCase__ : Dict=True, UpperCAmelCase__ : Union[str, Any]=9_9, UpperCAmelCase__ : Dict=3_2, UpperCAmelCase__ : Tuple=5, UpperCAmelCase__ : Union[str, Any]=4, UpperCAmelCase__ : int=3_7, UpperCAmelCase__ : Optional[int]="gelu", UpperCAmelCase__ : Tuple=0.1, UpperCAmelCase__ : Union[str, Any]=0.1, UpperCAmelCase__ : Any=5_1_2, UpperCAmelCase__ : Dict=1_6, UpperCAmelCase__ : List[Any]=2, UpperCAmelCase__ : str=0.02, UpperCAmelCase__ : Tuple=4, ): __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_attention_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_choices def _lowercase ( self : Tuple ): __lowercase = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) __lowercase = None if self.use_attention_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) __lowercase = RobertaPreLayerNormConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=_snake_case, initializer_range=self.initializer_range, ) return config, input_ids, token_type_ids, attention_mask def _lowercase ( self : List[Any] ): __lowercase = self.prepare_config_and_inputs() __lowercase = config_and_inputs __lowercase = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def _lowercase ( self : Union[str, Any] ): __lowercase = self.prepare_config_and_inputs() __lowercase = config_and_inputs __lowercase = True __lowercase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowercase = ids_tensor([self.batch_size, self.seq_length], vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Any = True __UpperCAmelCase : Any = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def _lowercase ( self : List[Any] ): __lowercase = FlaxRobertaPreLayerNormModelTester(self ) @slow def _lowercase ( self : Any ): for model_class_name in self.all_model_classes: __lowercase = model_class_name.from_pretrained("andreasmadsen/efficient_mlm_m0.40", from_pt=_snake_case ) __lowercase = model(np.ones((1, 1) ) ) self.assertIsNotNone(_snake_case ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def _lowercase ( self : int ): __lowercase = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("andreasmadsen/efficient_mlm_m0.40", from_pt=_snake_case ) __lowercase = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]], dtype=jnp.intaa ) __lowercase = model(_snake_case )[0] __lowercase = [1, 1_1, 5_0_2_6_5] self.assertEqual(list(output.shape ), _snake_case ) # compare the actual values for a slice. __lowercase = np.array( [[[40.4_880, 18.0_199, -5.2_367], [-1.8_877, -4.0_885, 10.7_085], [-2.2_613, -5.6_110, 7.2_665]]], dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3], _snake_case, atol=1E-4 ) ) @slow def _lowercase ( self : int ): __lowercase = FlaxRobertaPreLayerNormModel.from_pretrained("andreasmadsen/efficient_mlm_m0.40", from_pt=_snake_case ) __lowercase = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]], dtype=jnp.intaa ) __lowercase = model(_snake_case )[0] # compare the actual values for a slice. __lowercase = np.array( [[[0.0_208, -0.0_356, 0.0_237], [-0.1_569, -0.0_411, -0.2_626], [0.1_879, 0.0_125, -0.0_089]]], dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3], _snake_case, atol=1E-4 ) )
351
"""simple docstring""" import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def _A ( ) -> None: '''simple docstring''' print("Making key files...") make_key_files("rsa", 1024) print("Key files generation successful.") def _A ( UpperCamelCase_ : int) -> tuple[tuple[int, int], tuple[int, int]]: '''simple docstring''' print("Generating prime p...") __lowercase = rabinMiller.generate_large_prime(UpperCamelCase_) print("Generating prime q...") __lowercase = rabinMiller.generate_large_prime(UpperCamelCase_) __lowercase = p * q print("Generating e that is relatively prime to (p - 1) * (q - 1)...") while True: __lowercase = random.randrange(2 ** (key_size - 1), 2 ** (key_size)) if cryptoMath.gcd(UpperCamelCase_, (p - 1) * (q - 1)) == 1: break print("Calculating d that is mod inverse of e...") __lowercase = cryptoMath.find_mod_inverse(UpperCamelCase_, (p - 1) * (q - 1)) __lowercase = (n, e) __lowercase = (n, d) return (public_key, private_key) def _A ( UpperCamelCase_ : str, UpperCamelCase_ : int) -> None: '''simple docstring''' if os.path.exists(F"""{name}_pubkey.txt""") or os.path.exists(F"""{name}_privkey.txt"""): print("\nWARNING:") print( F"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" "Use a different name or delete these files and re-run this program.") sys.exit() __lowercase ,__lowercase = generate_key(UpperCamelCase_) print(F"""\nWriting public key to file {name}_pubkey.txt...""") with open(F"""{name}_pubkey.txt""", "w") as out_file: out_file.write(F"""{key_size},{public_key[0]},{public_key[1]}""") print(F"""Writing private key to file {name}_privkey.txt...""") with open(F"""{name}_privkey.txt""", "w") as out_file: out_file.write(F"""{key_size},{private_key[0]},{private_key[1]}""") if __name__ == "__main__": main()
144
0
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class __magic_name__ : """simple docstring""" def __init__( self :int , snake_case :Dict , snake_case :Optional[Any]=13 , snake_case :Any=2 , snake_case :int=24 , snake_case :Optional[int]=16 , snake_case :Tuple=True , snake_case :int=True , snake_case :str=32 , snake_case :Any=5 , snake_case :Tuple=4 , snake_case :int=37 , snake_case :List[str]="gelu" , snake_case :Union[str, Any]=0.1 , snake_case :Optional[int]=0.1 , snake_case :List[str]=10 , snake_case :Optional[int]=0.02 , snake_case :Optional[int]=None , snake_case :str=2 , snake_case :str=2 , ): '''simple docstring''' A_ : Dict = parent A_ : Optional[Any] = batch_size A_ : Any = patch_size A_ : int = max_length A_ : List[str] = num_mel_bins A_ : Tuple = is_training A_ : Tuple = use_labels A_ : Optional[Any] = hidden_size A_ : Optional[int] = num_hidden_layers A_ : Any = num_attention_heads A_ : List[str] = intermediate_size A_ : Dict = hidden_act A_ : str = hidden_dropout_prob A_ : Union[str, Any] = attention_probs_dropout_prob A_ : Tuple = type_sequence_label_size A_ : List[str] = initializer_range A_ : Any = scope A_ : Dict = frequency_stride A_ : str = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) A_ : Dict = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 A_ : Optional[int] = (self.max_length - self.patch_size) // self.time_stride + 1 A_ : List[Any] = frequency_out_dimension * time_out_dimension A_ : str = num_patches + 2 def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ : Optional[Any] = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) A_ : Optional[Any] = None if self.use_labels: A_ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Optional[int] = self.get_config() return config, input_values, labels def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_a , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def SCREAMING_SNAKE_CASE ( self :Dict , snake_case :Optional[int] , snake_case :List[str] , snake_case :Any ): '''simple docstring''' A_ : Union[str, Any] = ASTModel(config=_a ) model.to(_a ) model.eval() A_ : Optional[int] = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' A_ : List[Any] = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ) : int = config_and_inputs A_ : Any = {"input_values": input_values} return config, inputs_dict @require_torch class __magic_name__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" __UpperCamelCase = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) __UpperCamelCase = ( {'audio-classification': ASTForAudioClassification, 'feature-extraction': ASTModel} if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def SCREAMING_SNAKE_CASE ( self :Any , snake_case :str , snake_case :List[Any] , snake_case :Optional[int] , snake_case :Tuple , snake_case :Optional[int] ): '''simple docstring''' if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : Any = ASTModelTester(self ) A_ : Any = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="AST does not use inputs_embeds" ) def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ , A_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : List[str] = model_class(_a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a , nn.Linear ) ) def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' A_ , A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : List[Any] = model_class(_a ) A_ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : Union[str, Any] = [*signature.parameters.keys()] A_ : Any = ["input_values"] self.assertListEqual(arg_names[:1] , _a ) def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' A_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) @slow def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Optional[Any] = ASTModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def __snake_case ( ) -> int: A_ : str = hf_hub_download( repo_id="nielsr/audio-spectogram-transformer-checkpoint" , filename="sample_audio.flac" , repo_type="dataset" ) A_ , A_ : str = torchaudio.load(lowerCAmelCase__ ) return audio, sampling_rate @require_torch @require_torchaudio class __magic_name__ ( unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' return ( ASTFeatureExtractor.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593" ) if is_torchaudio_available() else None ) @slow def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : Union[str, Any] = self.default_feature_extractor A_ : List[Any] = ASTForAudioClassification.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593" ).to(_a ) A_ : List[str] = self.default_feature_extractor A_ , A_ : Any = prepare_audio() A_ : int = audio.squeeze().numpy() A_ : Dict = feature_extractor(_a , sampling_rate=_a , return_tensors="pt" ).to(_a ) # forward pass with torch.no_grad(): A_ : Tuple = model(**_a ) # verify the logits A_ : int = torch.Size((1, 527) ) self.assertEqual(outputs.logits.shape , _a ) A_ : int = torch.tensor([-0.8760, -7.0042, -8.6602] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
300
"""simple docstring""" def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : list[str] ) -> str: __a = '''''' for word_or_phrase in separated: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise Exception('''join() accepts only strings to be joined''' ) joined += word_or_phrase + separator return joined.strip(lowerCAmelCase__ ) if __name__ == "__main__": from doctest import testmod testmod()
45
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : str = logging.get_logger(__name__) snake_case_ : List[str] = { "google/pix2struct-textcaps-base": ( "https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json" ), } class __snake_case ( a ): UpperCAmelCase__ : str = '''pix2struct_text_model''' UpperCAmelCase__ : Optional[Any] = ['''past_key_values'''] UpperCAmelCase__ : List[str] = { '''hidden_size''': '''hidden_size''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : List[Any] , _snake_case : Optional[Any]=50244 , _snake_case : List[str]=768 , _snake_case : Tuple=64 , _snake_case : Tuple=2048 , _snake_case : Any=12 , _snake_case : int=12 , _snake_case : Dict=32 , _snake_case : Union[str, Any]=128 , _snake_case : Optional[int]=0.1 , _snake_case : str=1e-6 , _snake_case : int=1.0 , _snake_case : List[Any]="gelu_new" , _snake_case : Optional[int]=0 , _snake_case : Union[str, Any]=False , _snake_case : int=0 , _snake_case : Optional[int]=1 , _snake_case : int=False , _snake_case : Any=True , **_snake_case : str , ): """simple docstring""" UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = d_kv UpperCAmelCase_ = d_ff UpperCAmelCase_ = num_layers UpperCAmelCase_ = num_heads UpperCAmelCase_ = relative_attention_num_buckets UpperCAmelCase_ = relative_attention_max_distance UpperCAmelCase_ = dropout_rate UpperCAmelCase_ = layer_norm_epsilon UpperCAmelCase_ = initializer_factor UpperCAmelCase_ = use_cache UpperCAmelCase_ = eos_token_id UpperCAmelCase_ = decoder_start_token_id # for backwards compatibility UpperCAmelCase_ = dense_act_fn super().__init__( pad_token_id=_snake_case , eos_token_id=_snake_case , decoder_start_token_id=_snake_case , tie_word_embeddings=_snake_case , is_decoder=_snake_case , **_snake_case , ) @classmethod def lowerCamelCase ( cls : Optional[Any] , _snake_case : Union[str, os.PathLike] , **_snake_case : Union[str, Any]): """simple docstring""" cls._set_token_in_kwargs(_snake_case) UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_snake_case , **_snake_case) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''') == "pix2struct": UpperCAmelCase_ = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""") return cls.from_dict(_snake_case , **_snake_case) class __snake_case ( a ): UpperCAmelCase__ : str = '''pix2struct_vision_model''' def __init__( self : Any , _snake_case : List[str]=768 , _snake_case : str=768 , _snake_case : List[Any]=2048 , _snake_case : Optional[Any]=64 , _snake_case : Union[str, Any]=12 , _snake_case : Optional[int]=12 , _snake_case : List[str]="gelu_new" , _snake_case : Any=1e-6 , _snake_case : Dict=0.0 , _snake_case : Dict=0.0 , _snake_case : Optional[Any]=1e-10 , _snake_case : List[Any]=1.0 , _snake_case : int=4096 , _snake_case : List[str]=32 , _snake_case : List[str]=128 , **_snake_case : List[str] , ): """simple docstring""" super().__init__(**_snake_case) UpperCAmelCase_ = hidden_size UpperCAmelCase_ = patch_embed_hidden_size UpperCAmelCase_ = d_ff UpperCAmelCase_ = dropout_rate UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = initializer_range UpperCAmelCase_ = initializer_factor UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = dense_act_fn UpperCAmelCase_ = seq_len UpperCAmelCase_ = relative_attention_num_buckets UpperCAmelCase_ = relative_attention_max_distance UpperCAmelCase_ = d_kv @classmethod def lowerCamelCase ( cls : Tuple , _snake_case : Union[str, os.PathLike] , **_snake_case : str): """simple docstring""" cls._set_token_in_kwargs(_snake_case) UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_snake_case , **_snake_case) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''') == "pix2struct": UpperCAmelCase_ = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""") return cls.from_dict(_snake_case , **_snake_case) class __snake_case ( a ): UpperCAmelCase__ : Optional[Any] = '''pix2struct''' UpperCAmelCase__ : int = True def __init__( self : Any , _snake_case : Any=None , _snake_case : Union[str, Any]=None , _snake_case : Union[str, Any]=1.0 , _snake_case : List[str]=0.0_2 , _snake_case : str=False , _snake_case : str=False , _snake_case : str=True , **_snake_case : str , ): """simple docstring""" super().__init__(tie_word_embeddings=_snake_case , is_encoder_decoder=_snake_case , **_snake_case) if text_config is None: UpperCAmelCase_ = {} logger.info('''text_config is None. Initializing the Pix2StructTextConfig with default values.''') if vision_config is None: UpperCAmelCase_ = {} logger.info('''vision_config is None. Initializing the Pix2StructVisionConfig with default values.''') UpperCAmelCase_ = PixaStructTextConfig(**_snake_case) UpperCAmelCase_ = PixaStructVisionConfig(**_snake_case) UpperCAmelCase_ = self.text_config.decoder_start_token_id UpperCAmelCase_ = self.text_config.pad_token_id UpperCAmelCase_ = self.text_config.eos_token_id UpperCAmelCase_ = initializer_factor UpperCAmelCase_ = initializer_range UpperCAmelCase_ = self.initializer_range UpperCAmelCase_ = self.initializer_range UpperCAmelCase_ = is_vqa @classmethod def lowerCamelCase ( cls : List[Any] , _snake_case : PixaStructTextConfig , _snake_case : PixaStructVisionConfig , **_snake_case : Optional[int]): """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_snake_case) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = copy.deepcopy(self.__dict__) UpperCAmelCase_ = self.text_config.to_dict() UpperCAmelCase_ = self.vision_config.to_dict() UpperCAmelCase_ = self.__class__.model_type return output
7
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Optional[int] , _snake_case : Union[str, Any]): """simple docstring""" for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss''']): UpperCAmelCase_ = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(_snake_case) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = '''sgugger/tiny-distilbert-classification''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , only_pretrain_model=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , torchscript=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''') def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , fpaa=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) # set architectures equal to `None` UpperCAmelCase_ = None UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config]) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) @unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''') def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_snake_case , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config]) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tinier_bart''' UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config]) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config]) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tinier_bart''' UpperCAmelCase_ = AutoConfig.from_pretrained(_snake_case) UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case , configs=[config]) UpperCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , save_to_csv=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_snake_case , '''inf_time.csv''') , train_memory_csv_file=os.path.join(_snake_case , '''train_mem.csv''') , inference_memory_csv_file=os.path.join(_snake_case , '''inf_mem.csv''') , train_time_csv_file=os.path.join(_snake_case , '''train_time.csv''') , env_info_csv_file=os.path.join(_snake_case , '''env.csv''') , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) benchmark.run() self.assertTrue(Path(os.path.join(_snake_case , '''inf_time.csv''')).exists()) self.assertTrue(Path(os.path.join(_snake_case , '''train_time.csv''')).exists()) self.assertTrue(Path(os.path.join(_snake_case , '''inf_mem.csv''')).exists()) self.assertTrue(Path(os.path.join(_snake_case , '''train_mem.csv''')).exists()) self.assertTrue(Path(os.path.join(_snake_case , '''env.csv''')).exists()) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(_snake_case : Tuple): self.assertTrue(hasattr(_snake_case , '''sequential''')) self.assertTrue(hasattr(_snake_case , '''cumulative''')) self.assertTrue(hasattr(_snake_case , '''current''')) self.assertTrue(hasattr(_snake_case , '''total''')) with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_snake_case , inference=_snake_case , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_snake_case , '''log.txt''') , log_print=_snake_case , trace_memory_line_by_line=_snake_case , multi_process=_snake_case , ) UpperCAmelCase_ = PyTorchBenchmark(_snake_case) UpperCAmelCase_ = benchmark.run() _check_summary_is_not_empty(result.inference_summary) _check_summary_is_not_empty(result.train_summary) self.assertTrue(Path(os.path.join(_snake_case , '''log.txt''')).exists())
7
1
"""simple docstring""" def lowerCAmelCase__ ( ): '''simple docstring''' return [list(range(1_0_0_0 - i , -1_0_0_0 - i , -1 ) ) for i in range(1_0_0_0 )] _snake_case = generate_large_matrix() _snake_case = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' assert all(row == sorted(__snake_case , reverse=__snake_case ) for row in grid ) assert all(list(__snake_case ) == sorted(__snake_case , reverse=__snake_case ) for col in zip(*__snake_case ) ) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : int = 0 _a : List[Any] = len(__snake_case ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: _a : Any = (left + right) // 2 _a : Union[str, Any] = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: _a : List[Any] = mid + 1 else: _a : Tuple = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__snake_case ) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : List[Any] = 0 _a : Union[str, Any] = len(grid[0] ) for i in range(len(__snake_case ) ): _a : Optional[int] = find_negative_index(grid[i][:bound] ) total += bound return (len(__snake_case ) * len(grid[0] )) - total def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : List[Any] = 0 for row in grid: for i, number in enumerate(__snake_case ): if number < 0: total += len(__snake_case ) - i break return total def lowerCAmelCase__ ( ): '''simple docstring''' from timeit import timeit print("""Running benchmarks""" ) _a : int = ( "from __main__ import count_negatives_binary_search, " "count_negatives_brute_force, count_negatives_brute_force_with_break, grid" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): _a : Optional[int] = timeit(F"""{func}(grid=grid)""" , setup=__snake_case , number=5_0_0 ) print(F"""{func}() took {time:0.4f} seconds""" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
294
"""simple docstring""" from __future__ import annotations import time import numpy as np __snake_case : Optional[Any] = [8, 5, 9, 7] __snake_case : List[Any] = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] __snake_case : Optional[int] = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class A__ : '''simple docstring''' def __init__( self: Any , _SCREAMING_SNAKE_CASE: list[int] , _SCREAMING_SNAKE_CASE: list[list[int]] , _SCREAMING_SNAKE_CASE: list[list[int]] , ) -> None: """simple docstring""" __lowerCAmelCase : Any = claim_vector __lowerCAmelCase : Tuple = allocated_resources_table __lowerCAmelCase : Tuple = maximum_claim_table def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> list[int]: """simple docstring""" return [ sum(p_item[i] for p_item in self.__allocated_resources_table) for i in range(len(self.__allocated_resources_table[0])) ] def _SCREAMING_SNAKE_CASE ( self: int) -> list[int]: """simple docstring""" return np.array(self.__claim_vector) - np.array( self.__processes_resource_summation()) def _SCREAMING_SNAKE_CASE ( self: int) -> list[list[int]]: """simple docstring""" return [ list(np.array(self.__maximum_claim_table[i]) - np.array(_SCREAMING_SNAKE_CASE)) for i, allocated_resource in enumerate(self.__allocated_resources_table) ] def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> dict[int, list[int]]: """simple docstring""" return {self.__need().index(_SCREAMING_SNAKE_CASE): i for i in self.__need()} def _SCREAMING_SNAKE_CASE ( self: Optional[Any] , **_SCREAMING_SNAKE_CASE: List[Any]) -> None: """simple docstring""" __lowerCAmelCase : Optional[int] = self.__need() __lowerCAmelCase : int = self.__allocated_resources_table __lowerCAmelCase : Dict = self.__available_resources() __lowerCAmelCase : str = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print("_" * 50 + "\n") while need_list: __lowerCAmelCase : int = False for each_need in need_list: __lowerCAmelCase : Dict = True for index, need in enumerate(_SCREAMING_SNAKE_CASE): if need > available_resources[index]: __lowerCAmelCase : Dict = False break if execution: __lowerCAmelCase : Any = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: __lowerCAmelCase : Union[str, Any] = original_need_index print(F"""Process {process_number + 1} is executing.""") # remove the process run from stack need_list.remove(_SCREAMING_SNAKE_CASE) # update available/freed resources stack __lowerCAmelCase : Dict = np.array(_SCREAMING_SNAKE_CASE) + np.array( alloc_resources_table[process_number]) print( "Updated available resource stack for processes: " + " ".join([str(_SCREAMING_SNAKE_CASE) for x in available_resources])) break if safe: print("The process is in a safe state.\n") else: print("System in unsafe state. Aborting...\n") break def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> List[Any]: """simple docstring""" print(" " * 9 + "Allocated Resource Table") for item in self.__allocated_resources_table: print( F"""P{self.__allocated_resources_table.index(_SCREAMING_SNAKE_CASE) + 1}""" + " ".join(F"""{it:>8}""" for it in item) + "\n") print(" " * 9 + "System Resource Table") for item in self.__maximum_claim_table: print( F"""P{self.__maximum_claim_table.index(_SCREAMING_SNAKE_CASE) + 1}""" + " ".join(F"""{it:>8}""" for it in item) + "\n") print( "Current Usage by Active Processes: " + " ".join(str(_SCREAMING_SNAKE_CASE) for x in self.__claim_vector)) print( "Initial Available Resources: " + " ".join(str(_SCREAMING_SNAKE_CASE) for x in self.__available_resources())) time.sleep(1) if __name__ == "__main__": import doctest doctest.testmod()
269
0
import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] = SwinConfig() SCREAMING_SNAKE_CASE_: Optional[Any] = swin_name.split("_" ) SCREAMING_SNAKE_CASE_: str = name_split[1] SCREAMING_SNAKE_CASE_: int = int(name_split[4] ) SCREAMING_SNAKE_CASE_: Optional[Any] = int(name_split[3][-1] ) if model_size == "tiny": SCREAMING_SNAKE_CASE_: Dict = 96 SCREAMING_SNAKE_CASE_: List[str] = (2, 2, 6, 2) SCREAMING_SNAKE_CASE_: Union[str, Any] = (3, 6, 12, 24) elif model_size == "small": SCREAMING_SNAKE_CASE_: str = 96 SCREAMING_SNAKE_CASE_: Any = (2, 2, 18, 2) SCREAMING_SNAKE_CASE_: Union[str, Any] = (3, 6, 12, 24) elif model_size == "base": SCREAMING_SNAKE_CASE_: Optional[Any] = 1_28 SCREAMING_SNAKE_CASE_: List[Any] = (2, 2, 18, 2) SCREAMING_SNAKE_CASE_: Optional[Any] = (4, 8, 16, 32) else: SCREAMING_SNAKE_CASE_: Union[str, Any] = 1_92 SCREAMING_SNAKE_CASE_: Any = (2, 2, 18, 2) SCREAMING_SNAKE_CASE_: List[str] = (6, 12, 24, 48) if "in22k" in swin_name: SCREAMING_SNAKE_CASE_: Dict = 2_18_41 else: SCREAMING_SNAKE_CASE_: Tuple = 10_00 SCREAMING_SNAKE_CASE_: Dict = "huggingface/label-files" SCREAMING_SNAKE_CASE_: Any = "imagenet-1k-id2label.json" SCREAMING_SNAKE_CASE_: Tuple = json.load(open(hf_hub_download(_UpperCAmelCase , _UpperCAmelCase , repo_type="dataset" ) , "r" ) ) SCREAMING_SNAKE_CASE_: str = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_: Union[str, Any] = idalabel SCREAMING_SNAKE_CASE_: Dict = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_: List[Any] = img_size SCREAMING_SNAKE_CASE_: List[str] = num_classes SCREAMING_SNAKE_CASE_: List[str] = embed_dim SCREAMING_SNAKE_CASE_: Dict = depths SCREAMING_SNAKE_CASE_: Union[str, Any] = num_heads SCREAMING_SNAKE_CASE_: List[str] = window_size return config def A_ ( _UpperCAmelCase ): if "patch_embed.proj" in name: SCREAMING_SNAKE_CASE_: Union[str, Any] = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: SCREAMING_SNAKE_CASE_: List[Any] = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: SCREAMING_SNAKE_CASE_: Tuple = "encoder." + name if "attn.proj" in name: SCREAMING_SNAKE_CASE_: Optional[int] = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: SCREAMING_SNAKE_CASE_: List[Any] = name.replace("attn" , "attention.self" ) if "norm1" in name: SCREAMING_SNAKE_CASE_: List[str] = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: SCREAMING_SNAKE_CASE_: Optional[int] = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE_: List[str] = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE_: Optional[int] = name.replace("mlp.fc2" , "output.dense" ) if name == "norm.weight": SCREAMING_SNAKE_CASE_: Optional[int] = "layernorm.weight" if name == "norm.bias": SCREAMING_SNAKE_CASE_: Any = "layernorm.bias" if "head" in name: SCREAMING_SNAKE_CASE_: Any = name.replace("head" , "classifier" ) else: SCREAMING_SNAKE_CASE_: List[str] = "swin." + name return name def A_ ( _UpperCAmelCase , _UpperCAmelCase ): for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE_: Optional[int] = orig_state_dict.pop(_UpperCAmelCase ) if "mask" in key: continue elif "qkv" in key: SCREAMING_SNAKE_CASE_: List[Any] = key.split("." ) SCREAMING_SNAKE_CASE_: int = int(key_split[1] ) SCREAMING_SNAKE_CASE_: int = int(key_split[3] ) SCREAMING_SNAKE_CASE_: int = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: SCREAMING_SNAKE_CASE_: Union[str, Any] = val[:dim, :] SCREAMING_SNAKE_CASE_: Union[str, Any] = val[ dim : dim * 2, : ] SCREAMING_SNAKE_CASE_: Dict = val[-dim:, :] else: SCREAMING_SNAKE_CASE_: Optional[Any] = val[ :dim ] SCREAMING_SNAKE_CASE_: Any = val[ dim : dim * 2 ] SCREAMING_SNAKE_CASE_: Dict = val[ -dim: ] else: SCREAMING_SNAKE_CASE_: Optional[int] = val return orig_state_dict def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Union[str, Any] = timm.create_model(_UpperCAmelCase , pretrained=_UpperCAmelCase ) timm_model.eval() SCREAMING_SNAKE_CASE_: Any = get_swin_config(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: int = SwinForImageClassification(_UpperCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_: str = convert_state_dict(timm_model.state_dict() , _UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE_: Any = AutoImageProcessor.from_pretrained("microsoft/{}".format(swin_name.replace("_" , "-" ) ) ) SCREAMING_SNAKE_CASE_: Tuple = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ) SCREAMING_SNAKE_CASE_: Dict = image_processor(images=_UpperCAmelCase , return_tensors="pt" ) SCREAMING_SNAKE_CASE_: Union[str, Any] = timm_model(inputs["pixel_values"] ) SCREAMING_SNAKE_CASE_: Tuple = model(**_UpperCAmelCase ).logits assert torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-3 ) print(f"Saving model {swin_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swin_name""", default="""swin_tiny_patch4_window7_224""", type=str, help="""Name of the Swin timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowerCAmelCase : Dict = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
127
def A_ ( _UpperCAmelCase , _UpperCAmelCase ): if density <= 0: raise ValueError("Impossible fluid density" ) if bulk_modulus <= 0: raise ValueError("Impossible bulk modulus" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
127
1
import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets lowerCAmelCase__ : str = '''\ @inproceedings{popovic-2015-chrf, title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation", author = "Popovi{\'c}, Maja", booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation", month = sep, year = "2015", address = "Lisbon, Portugal", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W15-3049", doi = "10.18653/v1/W15-3049", pages = "392--395", } @inproceedings{popovic-2017-chrf, title = "chr{F}++: words helping character n-grams", author = "Popovi{\'c}, Maja", booktitle = "Proceedings of the Second Conference on Machine Translation", month = sep, year = "2017", address = "Copenhagen, Denmark", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W17-4770", doi = "10.18653/v1/W17-4770", pages = "612--618", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' lowerCAmelCase__ : Any = '''\ ChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches, and ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation that is already present in sacrebleu. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information. ''' lowerCAmelCase__ : List[Any] = ''' Produces ChrF(++) scores for hypotheses given reference translations. Args: predictions (list of str): The predicted sentences. references (list of list of str): The references. There should be one reference sub-list for each prediction sentence. char_order (int): Character n-gram order. Defaults to `6`. word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`. beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`. lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`. whitespace (bool): If `True`, include whitespaces when extracting character n-grams. eps_smoothing (bool): If `True`, applies epsilon smoothing similar to reference chrF++.py, NLTK and Moses implementations. If `False`, it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`. Returns: \'score\' (float): The chrF (chrF++) score, \'char_order\' (int): The character n-gram order, \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++, \'beta\' (int): Determine the importance of recall w.r.t precision Examples: Example 1--a simple example of calculating chrF: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, references=reference) >>> print(results) {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2} Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2) >>> print(results) {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2} Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2, ... lowercase=True) >>> print(results) {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): def __a ( self ) -> List[str]: '''simple docstring''' if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/mjpost/sacreBLEU#chrf--chrf' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#chrf--chrf'] , reference_urls=[ 'https://github.com/m-popovic/chrF', ] , ) def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = CHRF.CHAR_ORDER , __UpperCamelCase = CHRF.WORD_ORDER , __UpperCamelCase = CHRF.BETA , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = False , ) -> Dict: '''simple docstring''' snake_case__ : str = len(references[0] ) if any(len(__UpperCamelCase ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) snake_case__ : Optional[Any] = [[refs[i] for refs in references] for i in range(__UpperCamelCase )] snake_case__ : Optional[int] = CHRF(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) snake_case__ : int = sb_chrf.corpus_score(__UpperCamelCase , __UpperCamelCase ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
143
import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __snake_case ( _lowerCamelCase ,unittest.TestCase ): __lowerCamelCase = KandinskyVaaControlnetPipeline __lowerCamelCase = ["""image_embeds""", """negative_image_embeds""", """hint"""] __lowerCamelCase = ["""image_embeds""", """negative_image_embeds""", """hint"""] __lowerCamelCase = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] __lowerCamelCase = False @property def __a ( self ) -> List[Any]: '''simple docstring''' return 32 @property def __a ( self ) -> int: '''simple docstring''' return 32 @property def __a ( self ) -> List[str]: '''simple docstring''' return self.time_input_dim @property def __a ( self ) -> Any: '''simple docstring''' return self.time_input_dim * 4 @property def __a ( self ) -> List[Any]: '''simple docstring''' return 100 @property def __a ( self ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) snake_case__ : Tuple = { 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } snake_case__ : Tuple = UNetaDConditionModel(**__UpperCamelCase ) return model @property def __a ( self ) -> Tuple: '''simple docstring''' return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def __a ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) snake_case__ : Tuple = VQModel(**self.dummy_movq_kwargs ) return model def __a ( self ) -> Dict: '''simple docstring''' snake_case__ : int = self.dummy_unet snake_case__ : Tuple = self.dummy_movq snake_case__ : Union[str, Any] = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='linear' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=__UpperCamelCase , set_alpha_to_one=__UpperCamelCase , steps_offset=1 , prediction_type='epsilon' , thresholding=__UpperCamelCase , ) snake_case__ : str = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def __a ( self , __UpperCamelCase , __UpperCamelCase=0 ) -> int: '''simple docstring''' snake_case__ : Any = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) snake_case__ : List[str] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __UpperCamelCase ) # create hint snake_case__ : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) if str(__UpperCamelCase ).startswith('mps' ): snake_case__ : Any = torch.manual_seed(__UpperCamelCase ) else: snake_case__ : str = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) snake_case__ : int = { 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 64, 'width': 64, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def __a ( self ) -> List[Any]: '''simple docstring''' snake_case__ : List[Any] = 'cpu' snake_case__ : Any = self.get_dummy_components() snake_case__ : Optional[Any] = self.pipeline_class(**__UpperCamelCase ) snake_case__ : Dict = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) snake_case__ : Optional[Any] = pipe(**self.get_dummy_inputs(__UpperCamelCase ) ) snake_case__ : Dict = output.images snake_case__ : Any = pipe( **self.get_dummy_inputs(__UpperCamelCase ) , return_dict=__UpperCamelCase , )[0] snake_case__ : Optional[int] = image[0, -3:, -3:, -1] snake_case__ : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case__ : str = np.array( [0.6_9_5_9_8_2_6, 0.8_6_8_2_7_9, 0.7_5_5_8_0_9_2, 0.6_8_7_6_9_4_6_7, 0.8_5_8_0_5_8_0_4, 0.6_5_9_7_7_4_9_6, 0.4_4_8_8_5_3_0_2, 0.5_9_5_9_1_1_1, 0.4_2_5_1_5_9_5] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): def __a ( self ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self ) -> Optional[int]: '''simple docstring''' snake_case__ : List[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy' ) snake_case__ : Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png' ) snake_case__ : List[str] = torch.from_numpy(np.array(__UpperCamelCase ) ).float() / 2_5_5.0 snake_case__ : Dict = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) snake_case__ : int = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(__UpperCamelCase ) snake_case__ : int = KandinskyVaaControlnetPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth' , torch_dtype=torch.floataa ) snake_case__ : List[Any] = pipeline.to(__UpperCamelCase ) pipeline.set_progress_bar_config(disable=__UpperCamelCase ) snake_case__ : Optional[int] = 'A robot, 4k photo' snake_case__ : List[Any] = torch.Generator(device='cuda' ).manual_seed(0 ) snake_case__ , snake_case__ : Tuple = pipe_prior( __UpperCamelCase , generator=__UpperCamelCase , num_inference_steps=5 , negative_prompt='' , ).to_tuple() snake_case__ : List[Any] = torch.Generator(device='cuda' ).manual_seed(0 ) snake_case__ : Dict = pipeline( image_embeds=__UpperCamelCase , negative_image_embeds=__UpperCamelCase , hint=__UpperCamelCase , generator=__UpperCamelCase , num_inference_steps=100 , output_type='np' , ) snake_case__ : Union[str, Any] = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(__UpperCamelCase , __UpperCamelCase )
143
1
'''simple docstring''' import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : List[Any], __snake_case : Any, __snake_case : str, __snake_case : Union[str, Any]=True, __snake_case : str="pt" ) -> int: A__ : Dict ={"""add_prefix_space""": True} if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) and not line.startswith(""" """ ) else {} A__ : Any =padding_side return tokenizer( [line], max_length=SCREAMING_SNAKE_CASE_, padding="""max_length""" if pad_to_max_length else None, truncation=SCREAMING_SNAKE_CASE_, return_tensors=SCREAMING_SNAKE_CASE_, add_special_tokens=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) def __lowerCamelCase ( __snake_case : Tuple, __snake_case : Optional[Any], __snake_case : int=None, ) -> Optional[Any]: A__ : Optional[int] =input_ids.ne(SCREAMING_SNAKE_CASE_ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class lowerCamelCase ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any]="train" , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : List[Any]="" , ) -> List[Any]: '''simple docstring''' super().__init__() A__ : Union[str, Any] =Path(lowerCAmelCase__ ).joinpath(type_path + """.source""" ) A__ : Optional[Any] =Path(lowerCAmelCase__ ).joinpath(type_path + """.target""" ) A__ : List[Any] =self.get_char_lens(self.src_file ) A__ : Tuple =max_source_length A__ : Tuple =max_target_length assert min(self.src_lens ) > 0, f"found empty line in {self.src_file}" A__ : List[str] =tokenizer A__ : Any =prefix if n_obs is not None: A__ : List[Any] =self.src_lens[:n_obs] A__ : Optional[Any] =src_lang A__ : List[str] =tgt_lang def __len__( self : int ) -> int: '''simple docstring''' return len(self.src_lens ) def __getitem__( self : Tuple , lowerCAmelCase_ : List[Any] ) -> Dict[str, torch.Tensor]: '''simple docstring''' A__ : List[Any] =index + 1 # linecache starts at 1 A__ : List[str] =self.prefix + linecache.getline(str(self.src_file ) , lowerCAmelCase__ ).rstrip("""\n""" ) A__ : List[str] =linecache.getline(str(self.tgt_file ) , lowerCAmelCase__ ).rstrip("""\n""" ) assert source_line, f"empty source line for index {index}" assert tgt_line, f"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer , lowerCAmelCase__ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right A__ : Optional[int] =( self.tokenizer.question_encoder if isinstance(self.tokenizer , lowerCAmelCase__ ) else self.tokenizer ) A__ : Dict =self.tokenizer.generator if isinstance(self.tokenizer , lowerCAmelCase__ ) else self.tokenizer A__ : Dict =encode_line(lowerCAmelCase__ , lowerCAmelCase__ , self.max_source_length , """right""" ) A__ : int =encode_line(lowerCAmelCase__ , lowerCAmelCase__ , self.max_target_length , """right""" ) A__ : List[Any] =source_inputs["""input_ids"""].squeeze() A__ : int =target_inputs["""input_ids"""].squeeze() A__ : List[str] =source_inputs["""attention_mask"""].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def lowercase__ ( lowerCAmelCase_ : Union[str, Any] ) -> Tuple: '''simple docstring''' return [len(lowerCAmelCase__ ) for x in Path(lowerCAmelCase__ ).open().readlines()] def lowercase__ ( self : Dict , lowerCAmelCase_ : Dict ) -> Dict[str, torch.Tensor]: '''simple docstring''' A__ : Union[str, Any] =torch.stack([x["""input_ids"""] for x in batch] ) A__ : List[str] =torch.stack([x["""attention_mask"""] for x in batch] ) A__ : List[Any] =torch.stack([x["""decoder_input_ids"""] for x in batch] ) A__ : Tuple =( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , lowerCAmelCase__ ) else self.tokenizer.pad_token_id ) A__ : List[str] =( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , lowerCAmelCase__ ) else self.tokenizer.pad_token_id ) A__ : Union[str, Any] =trim_batch(lowerCAmelCase__ , lowerCAmelCase__ ) A__ , A__ : Tuple =trim_batch(lowerCAmelCase__ , lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) A__ : Any ={ """input_ids""": source_ids, """attention_mask""": source_mask, """decoder_input_ids""": y, } return batch __snake_case : Tuple = getLogger(__name__) def __lowerCamelCase ( __snake_case : List[List] ) -> Optional[Any]: return list(itertools.chain.from_iterable(SCREAMING_SNAKE_CASE_ ) ) def __lowerCamelCase ( __snake_case : str ) -> None: A__ : int =get_git_info() save_json(SCREAMING_SNAKE_CASE_, os.path.join(SCREAMING_SNAKE_CASE_, """git_log.json""" ) ) def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : Any, __snake_case : Optional[int]=4, **__snake_case : str ) -> Any: with open(SCREAMING_SNAKE_CASE_, """w""" ) as f: json.dump(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, indent=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def __lowerCamelCase ( __snake_case : Union[str, Any] ) -> List[Any]: with open(SCREAMING_SNAKE_CASE_ ) as f: return json.load(SCREAMING_SNAKE_CASE_ ) def __lowerCamelCase ( ) -> Any: A__ : str =git.Repo(search_parent_directories=SCREAMING_SNAKE_CASE_ ) A__ : Optional[Any] ={ """repo_id""": str(SCREAMING_SNAKE_CASE_ ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), """hostname""": str(socket.gethostname() ), } return repo_infos def __lowerCamelCase ( __snake_case : Callable, __snake_case : Iterable ) -> List: return list(map(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) ) def __lowerCamelCase ( __snake_case : List[Any], __snake_case : int ) -> List[Any]: with open(SCREAMING_SNAKE_CASE_, """wb""" ) as f: return pickle.dump(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def __lowerCamelCase ( __snake_case : List[Any] ) -> Optional[int]: def remove_articles(__snake_case : Tuple ): return re.sub(r"""\b(a|an|the)\b""", """ """, SCREAMING_SNAKE_CASE_ ) def white_space_fix(__snake_case : str ): return " ".join(text.split() ) def remove_punc(__snake_case : Dict ): A__ : Dict =set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__snake_case : Optional[Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(SCREAMING_SNAKE_CASE_ ) ) ) ) def __lowerCamelCase ( __snake_case : Tuple, __snake_case : str ) -> Tuple: A__ : List[Any] =normalize_answer(SCREAMING_SNAKE_CASE_ ).split() A__ : List[str] =normalize_answer(SCREAMING_SNAKE_CASE_ ).split() A__ : Dict =Counter(SCREAMING_SNAKE_CASE_ ) & Counter(SCREAMING_SNAKE_CASE_ ) A__ : Optional[Any] =sum(common.values() ) if num_same == 0: return 0 A__ : Tuple =1.0 * num_same / len(SCREAMING_SNAKE_CASE_ ) A__ : List[Any] =1.0 * num_same / len(SCREAMING_SNAKE_CASE_ ) A__ : Tuple =(2 * precision * recall) / (precision + recall) return fa def __lowerCamelCase ( __snake_case : str, __snake_case : List[str] ) -> str: return normalize_answer(SCREAMING_SNAKE_CASE_ ) == normalize_answer(SCREAMING_SNAKE_CASE_ ) def __lowerCamelCase ( __snake_case : List[str], __snake_case : List[str] ) -> Dict: assert len(SCREAMING_SNAKE_CASE_ ) == len(SCREAMING_SNAKE_CASE_ ) A__ : Optional[int] =0 for hypo, pred in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): em += exact_match_score(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) > 0: em /= len(SCREAMING_SNAKE_CASE_ ) return {"em": em} def __lowerCamelCase ( __snake_case : Tuple ) -> List[Any]: return model_prefix.startswith("""rag""" ) def __lowerCamelCase ( __snake_case : List[str], __snake_case : int, __snake_case : Dict ) -> Union[str, Any]: A__ : Optional[int] ={p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead A__ : List[Any] ="""dropout_rate""" for p in extra_params: if getattr(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): if not hasattr(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) and not hasattr(SCREAMING_SNAKE_CASE_, equivalent_param[p] ): logger.info("""config doesn\'t have a `{}` attribute""".format(SCREAMING_SNAKE_CASE_ ) ) delattr(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) continue A__ : Union[str, Any] =p if hasattr(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) else equivalent_param[p] setattr(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, getattr(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) ) delattr(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) return hparams, config
366
'''simple docstring''' import torch from torch import nn class lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__( self : Any , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int]=1 , lowerCAmelCase_ : str=False ) -> List[str]: '''simple docstring''' super().__init__() A__ : Any =n_token A__ : int =d_embed A__ : Any =d_proj A__ : Tuple =cutoffs + [n_token] A__ : Optional[Any] =[0] + self.cutoffs A__ : Dict =div_val A__ : str =self.cutoffs[0] A__ : Optional[Any] =len(self.cutoffs ) - 1 A__ : List[Any] =self.shortlist_size + self.n_clusters if self.n_clusters > 0: A__ : Any =nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) A__ : str =nn.Parameter(torch.zeros(self.n_clusters ) ) A__ : Union[str, Any] =nn.ModuleList() A__ : Optional[int] =nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase_ , lowerCAmelCase_ ) ) ) else: self.out_projs.append(lowerCAmelCase_ ) self.out_layers.append(nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ ) ) else: for i in range(len(self.cutoffs ) ): A__ , A__ : Optional[int] =self.cutoff_ends[i], self.cutoff_ends[i + 1] A__ : Tuple =d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase_ , lowerCAmelCase_ ) ) ) self.out_layers.append(nn.Linear(lowerCAmelCase_ , r_idx - l_idx ) ) A__ : Optional[int] =keep_order def lowercase__ ( self : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any ) -> Union[str, Any]: '''simple docstring''' if proj is None: A__ : Optional[int] =nn.functional.linear(lowerCAmelCase_ , lowerCAmelCase_ , bias=lowerCAmelCase_ ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: A__ : Optional[int] =nn.functional.linear(lowerCAmelCase_ , proj.t().contiguous() ) A__ : Union[str, Any] =nn.functional.linear(lowerCAmelCase_ , lowerCAmelCase_ , bias=lowerCAmelCase_ ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def lowercase__ ( self : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Dict=False ) -> Optional[int]: '''simple docstring''' if labels is not None: # Shift so that tokens < n predict n A__ : Optional[Any] =hidden[..., :-1, :].contiguous() A__ : List[Any] =labels[..., 1:].contiguous() A__ : Optional[int] =hidden.view(-1 , hidden.size(-1 ) ) A__ : str =labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError("""Input and labels should have the same size in the batch dimension.""" ) else: A__ : Optional[int] =hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: A__ : Optional[Any] =self._compute_logit(lowerCAmelCase_ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: A__ : Tuple =labels != -1_00 A__ : int =torch.zeros_like(lowerCAmelCase_ , dtype=hidden.dtype , device=hidden.device ) A__ : Union[str, Any] =( -nn.functional.log_softmax(lowerCAmelCase_ , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: A__ : List[Any] =nn.functional.log_softmax(lowerCAmelCase_ , dim=-1 ) else: # construct weights and biases A__ , A__ : Any =[], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: A__ , A__ : Optional[int] =self.cutoff_ends[i], self.cutoff_ends[i + 1] A__ : int =self.out_layers[0].weight[l_idx:r_idx] A__ : List[str] =self.out_layers[0].bias[l_idx:r_idx] else: A__ : List[str] =self.out_layers[i].weight A__ : Union[str, Any] =self.out_layers[i].bias if i == 0: A__ : Tuple =torch.cat([weight_i, self.cluster_weight] , dim=0 ) A__ : List[str] =torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(lowerCAmelCase_ ) biases.append(lowerCAmelCase_ ) A__ , A__ , A__ : Tuple =weights[0], biases[0], self.out_projs[0] A__ : List[Any] =self._compute_logit(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) A__ : int =nn.functional.log_softmax(lowerCAmelCase_ , dim=1 ) if labels is None: A__ : Union[str, Any] =hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: A__ : Union[str, Any] =torch.zeros_like(lowerCAmelCase_ , dtype=hidden.dtype , device=hidden.device ) A__ : Any =0 A__ : Tuple =[0] + self.cutoffs for i in range(len(lowerCAmelCase_ ) - 1 ): A__ , A__ : Tuple =cutoff_values[i], cutoff_values[i + 1] if labels is not None: A__ : Tuple =(labels >= l_idx) & (labels < r_idx) A__ : Any =mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue A__ : int =labels.index_select(0 , lowerCAmelCase_ ) - l_idx A__ : List[str] =head_logprob.index_select(0 , lowerCAmelCase_ ) A__ : str =hidden.index_select(0 , lowerCAmelCase_ ) else: A__ : Optional[Any] =hidden if i == 0: if labels is not None: A__ : Optional[Any] =head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: A__ : Union[str, Any] =head_logprob[:, : self.cutoffs[0]] else: A__ , A__ , A__ : Dict =weights[i], biases[i], self.out_projs[i] A__ : List[Any] =self._compute_logit(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) A__ : List[Any] =nn.functional.log_softmax(lowerCAmelCase_ , dim=1 ) A__ : Optional[Any] =self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: A__ : Union[str, Any] =head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: A__ : List[str] =head_logprob[:, cluster_prob_idx, None] + tail_logprob_i A__ : Tuple =logprob_i if labels is not None: if (hasattr(self , """keep_order""" ) and self.keep_order) or keep_order: out.index_copy_(0 , lowerCAmelCase_ , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def lowercase__ ( self : List[str] , lowerCAmelCase_ : Optional[Any] ) -> Any: '''simple docstring''' if self.n_clusters == 0: A__ : List[str] =self._compute_logit(lowerCAmelCase_ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(lowerCAmelCase_ , dim=-1 ) else: # construct weights and biases A__ , A__ : List[str] =[], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: A__ , A__ : int =self.cutoff_ends[i], self.cutoff_ends[i + 1] A__ : List[str] =self.out_layers[0].weight[l_idx:r_idx] A__ : List[Any] =self.out_layers[0].bias[l_idx:r_idx] else: A__ : Dict =self.out_layers[i].weight A__ : Any =self.out_layers[i].bias if i == 0: A__ : List[str] =torch.cat([weight_i, self.cluster_weight] , dim=0 ) A__ : Tuple =torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(lowerCAmelCase_ ) biases.append(lowerCAmelCase_ ) A__ , A__ , A__ : Optional[int] =weights[0], biases[0], self.out_projs[0] A__ : Any =self._compute_logit(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) A__ : Dict =hidden.new_empty((head_logit.size(0 ), self.n_token) ) A__ : Dict =nn.functional.log_softmax(lowerCAmelCase_ , dim=1 ) A__ : Tuple =[0] + self.cutoffs for i in range(len(lowerCAmelCase_ ) - 1 ): A__ , A__ : List[Any] =cutoff_values[i], cutoff_values[i + 1] if i == 0: A__ : Tuple =head_logprob[:, : self.cutoffs[0]] else: A__ , A__ , A__ : Any =weights[i], biases[i], self.out_projs[i] A__ : Dict =self._compute_logit(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) A__ : str =nn.functional.log_softmax(lowerCAmelCase_ , dim=1 ) A__ : str =head_logprob[:, -i] + tail_logprob_i A__ : List[Any] =logprob_i return out
136
0