code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" from __future__ import annotations class UpperCamelCase : def __init__( self ,__UpperCamelCase ) -> None: '''simple docstring''' lowercase_ : Optional[Any] = order # a_{0} ... a_{k} lowercase_ : Tuple = [1.0] + [0.0] * order # b_{0} ... b_{k} lowercase_ : Optional[Any] = [1.0] + [0.0] * order # x[n-1] ... x[n-k] lowercase_ : str = [0.0] * self.order # y[n-1] ... y[n-k] lowercase_ : Optional[Any] = [0.0] * self.order def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> None: '''simple docstring''' if len(__UpperCamelCase ) < self.order: lowercase_ : int = [1.0, *a_coeffs] if len(__UpperCamelCase ) != self.order + 1: lowercase_ : Dict = ( f'''Expected a_coeffs to have {self.order + 1} elements ''' f'''for {self.order}-order filter, got {len(__UpperCamelCase )}''' ) raise ValueError(__UpperCamelCase ) if len(__UpperCamelCase ) != self.order + 1: lowercase_ : Dict = ( f'''Expected b_coeffs to have {self.order + 1} elements ''' f'''for {self.order}-order filter, got {len(__UpperCamelCase )}''' ) raise ValueError(__UpperCamelCase ) lowercase_ : int = a_coeffs lowercase_ : Tuple = b_coeffs def _UpperCAmelCase ( self ,__UpperCamelCase ) -> float: '''simple docstring''' lowercase_ : Tuple = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 ,self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) lowercase_ : int = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] lowercase_ : Tuple = self.input_history[:-1] lowercase_ : Optional[Any] = self.output_history[:-1] lowercase_ : Union[str, Any] = sample lowercase_ : Dict = result return result
213
"""simple docstring""" from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def lowercase__( __SCREAMING_SNAKE_CASE : Optional[int] ): return {key.lstrip('-' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def lowercase__( ): lowercase_ : Any = ArgumentParser( 'HuggingFace Datasets CLI tool' , usage='datasets-cli <command> [<args>]' , allow_abbrev=__SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = parser.add_subparsers(help='datasets-cli command helpers' ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(__SCREAMING_SNAKE_CASE ) EnvironmentCommand.register_subcommand(__SCREAMING_SNAKE_CASE ) TestCommand.register_subcommand(__SCREAMING_SNAKE_CASE ) RunBeamCommand.register_subcommand(__SCREAMING_SNAKE_CASE ) DummyDataCommand.register_subcommand(__SCREAMING_SNAKE_CASE ) # Parse args lowercase_ , lowercase_ : Dict = parser.parse_known_args() if not hasattr(__SCREAMING_SNAKE_CASE , 'func' ): parser.print_help() exit(1 ) lowercase_ : int = parse_unknown_args(__SCREAMING_SNAKE_CASE ) # Run lowercase_ : List[Any] = args.func(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) service.run() if __name__ == "__main__": main()
213
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowercase__ : Union[str, Any] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE (a__ ): def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase)
190
'''simple docstring''' from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class SCREAMING_SNAKE_CASE (a__ ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = SMALL_MODEL_IDENTIFIER __A : Any = 'pt' __A : str = 'tf' def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Any = AutoModel.from_pretrained(self.test_model) model_pt.save_pretrained(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Union[str, Any] = TFAutoModel.from_pretrained(self.test_model , from_pt=_UpperCAmelCase) model_tf.save_pretrained(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = 'mock_framework' # Framework provided - return whatever the user provides __A : Union[str, Any] = FeaturesManager.determine_framework(self.test_model , _UpperCAmelCase) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_UpperCAmelCase) __A : List[str] = FeaturesManager.determine_framework(_UpperCAmelCase , _UpperCAmelCase) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_UpperCAmelCase) __A : Tuple = FeaturesManager.determine_framework(_UpperCAmelCase , _UpperCAmelCase) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_UpperCAmelCase) __A : Optional[int] = FeaturesManager.determine_framework(_UpperCAmelCase) self.assertEqual(_UpperCAmelCase , self.framework_pt) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_UpperCAmelCase) __A : List[str] = FeaturesManager.determine_framework(_UpperCAmelCase) self.assertEqual(_UpperCAmelCase , self.framework_tf) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(_UpperCAmelCase): __A : Tuple = FeaturesManager.determine_framework(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = MagicMock(return_value=_UpperCAmelCase) with patch('transformers.onnx.features.is_tf_available' , _UpperCAmelCase): __A : Union[str, Any] = FeaturesManager.determine_framework(self.test_model) self.assertEqual(_UpperCAmelCase , self.framework_pt) # PyTorch not in environment -> use TensorFlow __A : List[str] = MagicMock(return_value=_UpperCAmelCase) with patch('transformers.onnx.features.is_torch_available' , _UpperCAmelCase): __A : List[Any] = FeaturesManager.determine_framework(self.test_model) self.assertEqual(_UpperCAmelCase , self.framework_tf) # Both in environment -> use PyTorch __A : Any = MagicMock(return_value=_UpperCAmelCase) __A : Dict = MagicMock(return_value=_UpperCAmelCase) with patch('transformers.onnx.features.is_tf_available' , _UpperCAmelCase), patch( 'transformers.onnx.features.is_torch_available' , _UpperCAmelCase): __A : int = FeaturesManager.determine_framework(self.test_model) self.assertEqual(_UpperCAmelCase , self.framework_pt) # Both not in environment -> raise error __A : List[str] = MagicMock(return_value=_UpperCAmelCase) __A : Tuple = MagicMock(return_value=_UpperCAmelCase) with patch('transformers.onnx.features.is_tf_available' , _UpperCAmelCase), patch( 'transformers.onnx.features.is_torch_available' , _UpperCAmelCase): with self.assertRaises(_UpperCAmelCase): __A : int = FeaturesManager.determine_framework(self.test_model)
190
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def lowerCAmelCase__ ( a__: int , a__: Union[str, Any]=False ) -> Dict: '''simple docstring''' _UpperCAmelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''module.blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''module.blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''module.blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''module.blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''module.blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ('module.cls_token', 'vit.embeddings.cls_token'), ('module.patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('module.patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('module.pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('module.norm.weight', 'layernorm.weight'), ('module.norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _UpperCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def lowerCAmelCase__ ( a__: Any , a__: Any , a__: Dict=False ) -> int: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _UpperCAmelCase = '' else: _UpperCAmelCase = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _UpperCAmelCase = state_dict.pop(F'''module.blocks.{i}.attn.qkv.weight''' ) _UpperCAmelCase = state_dict.pop(F'''module.blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase = in_proj_weight[ : config.hidden_size, : ] _UpperCAmelCase = in_proj_bias[: config.hidden_size] _UpperCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _UpperCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _UpperCAmelCase = in_proj_weight[ -config.hidden_size :, : ] _UpperCAmelCase = in_proj_bias[-config.hidden_size :] def lowerCAmelCase__ ( a__: Optional[int] ) -> Any: '''simple docstring''' _UpperCAmelCase = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(a__ , a__ ) def lowerCAmelCase__ ( a__: List[str] ) -> str: '''simple docstring''' _UpperCAmelCase = [ 'module.fc.fc1.weight', 'module.fc.fc1.bias', 'module.fc.bn1.weight', 'module.fc.bn1.bias', 'module.fc.bn1.running_mean', 'module.fc.bn1.running_var', 'module.fc.bn1.num_batches_tracked', 'module.fc.fc2.weight', 'module.fc.fc2.bias', 'module.fc.bn2.weight', 'module.fc.bn2.bias', 'module.fc.bn2.running_mean', 'module.fc.bn2.running_var', 'module.fc.bn2.num_batches_tracked', 'module.fc.fc3.weight', 'module.fc.fc3.bias', ] for k in ignore_keys: state_dict.pop(a__ , a__ ) def lowerCAmelCase__ ( a__: str , a__: Optional[Any] , a__: Optional[Any] ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = dct.pop(a__ ) _UpperCAmelCase = val def lowerCAmelCase__ ( a__: Tuple , a__: List[str] ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = ViTMSNConfig() _UpperCAmelCase = 1_0_0_0 _UpperCAmelCase = 'datasets/huggingface/label-files' _UpperCAmelCase = 'imagenet-1k-id2label.json' _UpperCAmelCase = json.load(open(hf_hub_download(a__ , a__ ) , 'r' ) ) _UpperCAmelCase = {int(a__ ): v for k, v in idalabel.items()} _UpperCAmelCase = idalabel _UpperCAmelCase = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: _UpperCAmelCase = 3_8_4 _UpperCAmelCase = 1_5_3_6 _UpperCAmelCase = 6 elif "l16" in checkpoint_url: _UpperCAmelCase = 1_0_2_4 _UpperCAmelCase = 4_0_9_6 _UpperCAmelCase = 2_4 _UpperCAmelCase = 1_6 _UpperCAmelCase = 0.1 elif "b4" in checkpoint_url: _UpperCAmelCase = 4 elif "l7" in checkpoint_url: _UpperCAmelCase = 7 _UpperCAmelCase = 1_0_2_4 _UpperCAmelCase = 4_0_9_6 _UpperCAmelCase = 2_4 _UpperCAmelCase = 1_6 _UpperCAmelCase = 0.1 _UpperCAmelCase = ViTMSNModel(a__ ) _UpperCAmelCase = torch.hub.load_state_dict_from_url(a__ , map_location='cpu' )['target_encoder'] _UpperCAmelCase = ViTImageProcessor(size=config.image_size ) remove_projection_head(a__ ) _UpperCAmelCase = create_rename_keys(a__ , base_model=a__ ) for src, dest in rename_keys: rename_key(a__ , a__ , a__ ) read_in_q_k_v(a__ , a__ , base_model=a__ ) model.load_state_dict(a__ ) model.eval() _UpperCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' _UpperCAmelCase = Image.open(requests.get(a__ , stream=a__ ).raw ) _UpperCAmelCase = ViTImageProcessor( size=config.image_size , image_mean=a__ , image_std=a__ ) _UpperCAmelCase = image_processor(images=a__ , return_tensors='pt' ) # forward pass torch.manual_seed(2 ) _UpperCAmelCase = model(**a__ ) _UpperCAmelCase = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: _UpperCAmelCase = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] ) elif "b16" in checkpoint_url: _UpperCAmelCase = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] ) elif "l16" in checkpoint_url: _UpperCAmelCase = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] ) elif "b4" in checkpoint_url: _UpperCAmelCase = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] ) else: _UpperCAmelCase = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , a__ , atol=1e-4 ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(a__ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(a__ ) if __name__ == "__main__": lowerCAmelCase__ :List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) lowerCAmelCase__ :int = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
329
import math lowerCAmelCase__ :Optional[int] = 1_0 lowerCAmelCase__ :Optional[Any] = 7 lowerCAmelCase__ :Union[str, Any] = BALLS_PER_COLOUR * NUM_COLOURS def lowerCAmelCase__ ( a__: int = 2_0 ) -> str: '''simple docstring''' _UpperCAmelCase = math.comb(a__ , a__ ) _UpperCAmelCase = math.comb(NUM_BALLS - BALLS_PER_COLOUR , a__ ) _UpperCAmelCase = NUM_COLOURS * (1 - missing_colour / total) return F'''{result:.9f}''' if __name__ == "__main__": print(solution(2_0))
329
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case_ = { 'configuration_time_series_transformer': [ 'TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimeSeriesTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ 'TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimeSeriesTransformerForPrediction', 'TimeSeriesTransformerModel', 'TimeSeriesTransformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
238
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING snake_case_ = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def __init__(self : int , *a__ : List[Any] , **a__ : Dict ): """simple docstring""" super().__init__(*a__ , **a__ ) requires_backends(self , '''vision''' ) self.check_model_type(a__ ) def __call__(self : Optional[Any] , a__ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **a__ : List[str] ): """simple docstring""" return super().__call__(a__ , **a__ ) def a (self : int , **a__ : int ): """simple docstring""" return {}, {}, {} def a (self : Optional[int] , a__ : Optional[int] ): """simple docstring""" __snake_case = load_image(a__ ) __snake_case = image.size __snake_case = self.image_processor(images=a__ , return_tensors=self.framework ) return model_inputs def a (self : List[Any] , a__ : Union[str, Any] ): """simple docstring""" __snake_case = self.model(**a__ ) return model_outputs def a (self : int , a__ : str ): """simple docstring""" __snake_case = model_outputs.predicted_depth __snake_case = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode='''bicubic''' , align_corners=a__ ) __snake_case = prediction.squeeze().cpu().numpy() __snake_case = (output * 255 / np.max(a__ )).astype('''uint8''' ) __snake_case = Image.fromarray(a__ ) __snake_case = {} __snake_case = predicted_depth __snake_case = depth return output_dict
238
1
'''simple docstring''' import os import pytest from attr import dataclass UpperCAmelCase = '''us-east-1''' # defaults region @dataclass class lowerCAmelCase : lowerCAmelCase_ = 42 lowerCAmelCase_ = "arn:aws:iam::558105141721:role/sagemaker_execution_role" lowerCAmelCase_ = { "task_name": "mnli", "per_device_train_batch_size": 1_6, "per_device_eval_batch_size": 1_6, "do_train": True, "do_eval": True, "do_predict": True, "output_dir": "/opt/ml/model", "overwrite_output_dir": True, "max_steps": 5_0_0, "save_steps": 5_5_0_0, } lowerCAmelCase_ = {**hyperparameters, "max_steps": 1_0_0_0} @property def snake_case ( self : str ): """simple docstring""" if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def snake_case ( self : Optional[Any] ): """simple docstring""" return f'''{self.framework}-transfromers-test''' @property def snake_case ( self : List[str] ): """simple docstring""" return f'''./tests/sagemaker/scripts/{self.framework}''' @property def snake_case ( self : Dict ): """simple docstring""" if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope='class' ) def __UpperCamelCase ( lowercase__ : str ): '''simple docstring''' __lowercase =SageMakerTestEnvironment(framework=request.cls.framework )
141
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL UpperCAmelCase = logging.get_logger(__name__) def __UpperCamelCase ( lowercase__ : List[Any] ): '''simple docstring''' if isinstance(lowercase__, (list, tuple) ) and isinstance(videos[0], (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowercase__, (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowercase__ ): return [[videos]] raise ValueError(F'''Could not make batched video from {videos}''' ) class lowerCAmelCase ( A ): lowerCAmelCase_ = ["pixel_values"] def __init__( self : Union[str, Any] , __lowercase : bool = True , __lowercase : Dict[str, int] = None , __lowercase : PILImageResampling = PILImageResampling.BILINEAR , __lowercase : bool = True , __lowercase : Dict[str, int] = None , __lowercase : bool = True , __lowercase : Union[int, float] = 1 / 255 , __lowercase : bool = True , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[float, List[float]]] = None , **__lowercase : Optional[Any] , ): """simple docstring""" super().__init__(**__lowercase ) __lowercase =size if size is not None else {'shortest_edge': 224} __lowercase =get_size_dict(__lowercase , default_to_square=__lowercase ) __lowercase =crop_size if crop_size is not None else {'height': 224, 'width': 224} __lowercase =get_size_dict(__lowercase , param_name='crop_size' ) __lowercase =do_resize __lowercase =size __lowercase =do_center_crop __lowercase =crop_size __lowercase =resample __lowercase =do_rescale __lowercase =rescale_factor __lowercase =do_normalize __lowercase =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __lowercase =image_std if image_std is not None else IMAGENET_STANDARD_STD def snake_case ( self : int , __lowercase : np.ndarray , __lowercase : Dict[str, int] , __lowercase : PILImageResampling = PILImageResampling.BILINEAR , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : Optional[Any] , ): """simple docstring""" __lowercase =get_size_dict(__lowercase , default_to_square=__lowercase ) if "shortest_edge" in size: __lowercase =get_resize_output_image_size(__lowercase , size['shortest_edge'] , default_to_square=__lowercase ) elif "height" in size and "width" in size: __lowercase =(size['height'], size['width']) else: raise ValueError(f'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(__lowercase , size=__lowercase , resample=__lowercase , data_format=__lowercase , **__lowercase ) def snake_case ( self : Dict , __lowercase : np.ndarray , __lowercase : Dict[str, int] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : List[Any] , ): """simple docstring""" __lowercase =get_size_dict(__lowercase ) if "height" not in size or "width" not in size: raise ValueError(f'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(__lowercase , size=(size['height'], size['width']) , data_format=__lowercase , **__lowercase ) def snake_case ( self : str , __lowercase : np.ndarray , __lowercase : Union[int, float] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : Any , ): """simple docstring""" return rescale(__lowercase , scale=__lowercase , data_format=__lowercase , **__lowercase ) def snake_case ( self : Dict , __lowercase : np.ndarray , __lowercase : Union[float, List[float]] , __lowercase : Union[float, List[float]] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : Optional[Any] , ): """simple docstring""" return normalize(__lowercase , mean=__lowercase , std=__lowercase , data_format=__lowercase , **__lowercase ) def snake_case ( self : Optional[Any] , __lowercase : ImageInput , __lowercase : bool = None , __lowercase : Dict[str, int] = None , __lowercase : PILImageResampling = None , __lowercase : bool = None , __lowercase : Dict[str, int] = None , __lowercase : bool = None , __lowercase : float = None , __lowercase : bool = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[ChannelDimension] = ChannelDimension.FIRST , ): """simple docstring""" if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __lowercase =to_numpy_array(__lowercase ) if do_resize: __lowercase =self.resize(image=__lowercase , size=__lowercase , resample=__lowercase ) if do_center_crop: __lowercase =self.center_crop(__lowercase , size=__lowercase ) if do_rescale: __lowercase =self.rescale(image=__lowercase , scale=__lowercase ) if do_normalize: __lowercase =self.normalize(image=__lowercase , mean=__lowercase , std=__lowercase ) __lowercase =to_channel_dimension_format(__lowercase , __lowercase ) return image def snake_case ( self : Union[str, Any] , __lowercase : ImageInput , __lowercase : bool = None , __lowercase : Dict[str, int] = None , __lowercase : PILImageResampling = None , __lowercase : bool = None , __lowercase : Dict[str, int] = None , __lowercase : bool = None , __lowercase : float = None , __lowercase : bool = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[str, TensorType]] = None , __lowercase : ChannelDimension = ChannelDimension.FIRST , **__lowercase : Tuple , ): """simple docstring""" __lowercase =do_resize if do_resize is not None else self.do_resize __lowercase =resample if resample is not None else self.resample __lowercase =do_center_crop if do_center_crop is not None else self.do_center_crop __lowercase =do_rescale if do_rescale is not None else self.do_rescale __lowercase =rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase =do_normalize if do_normalize is not None else self.do_normalize __lowercase =image_mean if image_mean is not None else self.image_mean __lowercase =image_std if image_std is not None else self.image_std __lowercase =size if size is not None else self.size __lowercase =get_size_dict(__lowercase , default_to_square=__lowercase ) __lowercase =crop_size if crop_size is not None else self.crop_size __lowercase =get_size_dict(__lowercase , param_name='crop_size' ) if not valid_images(__lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) __lowercase =make_batched(__lowercase ) __lowercase =[ [ self._preprocess_image( image=__lowercase , do_resize=__lowercase , size=__lowercase , resample=__lowercase , do_center_crop=__lowercase , crop_size=__lowercase , do_rescale=__lowercase , rescale_factor=__lowercase , do_normalize=__lowercase , image_mean=__lowercase , image_std=__lowercase , data_format=__lowercase , ) for img in video ] for video in videos ] __lowercase ={'pixel_values': videos} return BatchFeature(data=__lowercase , tensor_type=__lowercase )
141
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a ( _lowerCamelCase , unittest.TestCase ): snake_case_ = KandinskyVaaImgaImgPipeline snake_case_ = ["image_embeds", "negative_image_embeds", "image"] snake_case_ = [ "image_embeds", "negative_image_embeds", "image", ] snake_case_ = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] snake_case_ = False @property def A_ ( self : Any ): return 32 @property def A_ ( self : List[str] ): return 32 @property def A_ ( self : List[Any] ): return self.time_input_dim @property def A_ ( self : List[Any] ): return self.time_input_dim * 4 @property def A_ ( self : str ): return 100 @property def A_ ( self : Dict ): torch.manual_seed(0 ) snake_case_ = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } snake_case_ = UNetaDConditionModel(**lowercase_ ) return model @property def A_ ( self : Any ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A_ ( self : Tuple ): torch.manual_seed(0 ) snake_case_ = VQModel(**self.dummy_movq_kwargs ) return model def A_ ( self : str ): snake_case_ = self.dummy_unet snake_case_ = self.dummy_movq snake_case_ = { '''num_train_timesteps''': 1000, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_0085, '''beta_end''': 0.012, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } snake_case_ = DDIMScheduler(**lowercase_ ) snake_case_ = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def A_ ( self : int , lowercase_ : Dict , lowercase_ : Tuple=0 ): snake_case_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) snake_case_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( lowercase_ ) # create init_image snake_case_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) snake_case_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case_ = Image.fromarray(np.uinta(lowercase_ ) ).convert('''RGB''' ).resize((256, 256) ) if str(lowercase_ ).startswith('''mps''' ): snake_case_ = torch.manual_seed(lowercase_ ) else: snake_case_ = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) snake_case_ = { '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def A_ ( self : List[Any] ): snake_case_ = '''cpu''' snake_case_ = self.get_dummy_components() snake_case_ = self.pipeline_class(**lowercase_ ) snake_case_ = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) snake_case_ = pipe(**self.get_dummy_inputs(lowercase_ ) ) snake_case_ = output.images snake_case_ = pipe( **self.get_dummy_inputs(lowercase_ ) , return_dict=lowercase_ , )[0] snake_case_ = image[0, -3:, -3:, -1] snake_case_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ = np.array( [0.619_9778, 0.6398_4406, 0.4614_5785, 0.6294_4984, 0.562_2215, 0.4730_6132, 0.4744_1456, 0.460_7606, 0.4871_9263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class a ( unittest.TestCase ): def A_ ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A_ ( self : List[Any] ): snake_case_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_img2img_frog.npy''' ) snake_case_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) snake_case_ = '''A red cartoon frog, 4k''' snake_case_ = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(lowercase_ ) snake_case_ = KandinskyVaaImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder''' , torch_dtype=torch.floataa ) snake_case_ = pipeline.to(lowercase_ ) pipeline.set_progress_bar_config(disable=lowercase_ ) snake_case_ = torch.Generator(device='''cpu''' ).manual_seed(0 ) snake_case_ ,snake_case_ = pipe_prior( lowercase_ , generator=lowercase_ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() snake_case_ = pipeline( image=lowercase_ , image_embeds=lowercase_ , negative_image_embeds=lowercase_ , generator=lowercase_ , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='''np''' , ) snake_case_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowercase_ , lowercase_ )
72
'''simple docstring''' import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class a ( _lowerCamelCase , unittest.TestCase ): snake_case_ = FlaxAutoencoderKL @property def A_ ( self : List[Any] ): snake_case_ = 4 snake_case_ = 3 snake_case_ = (32, 32) snake_case_ = jax.random.PRNGKey(0 ) snake_case_ = jax.random.uniform(lowercase_ , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def A_ ( self : Tuple ): snake_case_ = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } snake_case_ = self.dummy_input return init_dict, inputs_dict
72
1
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) lowerCAmelCase = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv'] ) def _lowerCamelCase( lowercase__ , lowercase__ ) -> List[str]: '''simple docstring''' inspect_dataset(lowercase__ , lowercase__ ) __lowercase= path + '.py' assert script_name in os.listdir(lowercase__ ) assert "__pycache__" not in os.listdir(lowercase__ ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' , ['accuracy'] ) def _lowerCamelCase( lowercase__ , lowercase__ ) -> Union[str, Any]: '''simple docstring''' inspect_metric(lowercase__ , lowercase__ ) __lowercase= path + '.py' assert script_name in os.listdir(lowercase__ ) assert "__pycache__" not in os.listdir(lowercase__ ) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ ) -> str: '''simple docstring''' __lowercase= get_dataset_config_info(lowercase__ , config_name=lowercase__ ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ ) -> str: '''simple docstring''' with pytest.raises(lowercase__ ): get_dataset_config_info(lowercase__ , config_name=lowercase__ ) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def _lowerCamelCase( lowercase__ , lowercase__ ) -> Tuple: '''simple docstring''' __lowercase= get_dataset_config_names(lowercase__ ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ ) -> Union[str, Any]: '''simple docstring''' __lowercase= get_dataset_infos(lowercase__ ) assert list(infos.keys() ) == expected_configs __lowercase= expected_configs[0] assert expected_config in infos __lowercase= infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ ) -> Any: '''simple docstring''' __lowercase= get_dataset_infos(lowercase__ ) assert expected_config in infos __lowercase= infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ ) -> str: '''simple docstring''' with pytest.raises(lowercase__ ): get_dataset_split_names(lowercase__ , config_name=lowercase__ )
295
def _lowerCamelCase( lowercase__ , lowercase__ = " " ) -> list: '''simple docstring''' __lowercase= [] __lowercase= 0 for index, char in enumerate(lowercase__ ): if char == separator: split_words.append(string[last_index:index] ) __lowercase= index + 1 elif index + 1 == len(lowercase__ ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
295
1
"""simple docstring""" import math from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { """facebook/data2vec-base-960h""": """https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json""", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class lowerCAmelCase_ ( lowerCamelCase__ ): '''simple docstring''' __snake_case = "data2vec-audio" def __init__( self , _UpperCAmelCase=32 , _UpperCAmelCase=7_68 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=30_72 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-5 , _UpperCAmelCase="gelu" , _UpperCAmelCase=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , _UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , _UpperCAmelCase=(10, 3, 3, 3, 3, 2, 2) , _UpperCAmelCase=False , _UpperCAmelCase=16 , _UpperCAmelCase=19 , _UpperCAmelCase=5 , _UpperCAmelCase=0.05 , _UpperCAmelCase=10 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0 , _UpperCAmelCase=10 , _UpperCAmelCase=0 , _UpperCAmelCase="sum" , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=2_56 , _UpperCAmelCase=(5_12, 5_12, 5_12, 5_12, 15_00) , _UpperCAmelCase=(5, 3, 3, 1, 1) , _UpperCAmelCase=(1, 2, 3, 1, 1) , _UpperCAmelCase=5_12 , _UpperCAmelCase=0 , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=False , _UpperCAmelCase=3 , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=None , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase ) snake_case_ = hidden_size snake_case_ = feat_extract_activation snake_case_ = list(_UpperCAmelCase ) snake_case_ = list(_UpperCAmelCase ) snake_case_ = list(_UpperCAmelCase ) snake_case_ = conv_bias snake_case_ = num_conv_pos_embeddings snake_case_ = num_conv_pos_embedding_groups snake_case_ = conv_pos_kernel_size snake_case_ = len(self.conv_dim ) snake_case_ = num_hidden_layers snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = num_attention_heads snake_case_ = hidden_dropout snake_case_ = attention_dropout snake_case_ = activation_dropout snake_case_ = feat_proj_dropout snake_case_ = final_dropout snake_case_ = layerdrop snake_case_ = layer_norm_eps snake_case_ = initializer_range snake_case_ = vocab_size snake_case_ = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 snake_case_ = mask_time_prob snake_case_ = mask_time_length snake_case_ = mask_time_min_masks snake_case_ = mask_feature_prob snake_case_ = mask_feature_length snake_case_ = mask_feature_min_masks # ctc loss snake_case_ = ctc_loss_reduction snake_case_ = ctc_zero_infinity # adapter snake_case_ = add_adapter snake_case_ = adapter_kernel_size snake_case_ = adapter_stride snake_case_ = num_adapter_layers snake_case_ = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. snake_case_ = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. snake_case_ = list(_UpperCAmelCase ) snake_case_ = list(_UpperCAmelCase ) snake_case_ = list(_UpperCAmelCase ) snake_case_ = xvector_output_dim @property def UpperCamelCase__ ( self ): return math.prod(self.conv_stride )
352
from __future__ import annotations import time UpperCAmelCase = list[tuple[int, int]] UpperCAmelCase = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] UpperCAmelCase = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class lowerCAmelCase_ : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = pos_x snake_case_ = pos_y snake_case_ = (pos_y, pos_x) snake_case_ = goal_x snake_case_ = goal_y snake_case_ = parent class lowerCAmelCase_ : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = Node(start[1] , start[0] , goal[1] , goal[0] , _UpperCAmelCase ) snake_case_ = Node(goal[1] , goal[0] , goal[1] , goal[0] , _UpperCAmelCase ) snake_case_ = [self.start] snake_case_ = False def UpperCamelCase__ ( self ): while self.node_queue: snake_case_ = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: snake_case_ = True return self.retrace_path(_UpperCAmelCase ) snake_case_ = self.get_successors(_UpperCAmelCase ) for node in successors: self.node_queue.append(_UpperCAmelCase ) if not self.reached: return [self.start.pos] return None def UpperCamelCase__ ( self , _UpperCAmelCase ): snake_case_ = [] for action in delta: snake_case_ = parent.pos_x + action[1] snake_case_ = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_UpperCAmelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(_UpperCAmelCase , _UpperCAmelCase , self.target.pos_y , self.target.pos_x , _UpperCAmelCase ) ) return successors def UpperCamelCase__ ( self , _UpperCAmelCase ): snake_case_ = node snake_case_ = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) snake_case_ = current_node.parent path.reverse() return path class lowerCAmelCase_ : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = BreadthFirstSearch(_UpperCAmelCase , _UpperCAmelCase ) snake_case_ = BreadthFirstSearch(_UpperCAmelCase , _UpperCAmelCase ) snake_case_ = False def UpperCamelCase__ ( self ): while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: snake_case_ = self.fwd_bfs.node_queue.pop(0 ) snake_case_ = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: snake_case_ = True return self.retrace_bidirectional_path( _UpperCAmelCase , _UpperCAmelCase ) snake_case_ = current_bwd_node snake_case_ = current_fwd_node snake_case_ = { self.fwd_bfs: self.fwd_bfs.get_successors(_UpperCAmelCase ), self.bwd_bfs: self.bwd_bfs.get_successors(_UpperCAmelCase ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(_UpperCAmelCase ) if not self.reached: return [self.fwd_bfs.start.pos] return None def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = self.fwd_bfs.retrace_path(_UpperCAmelCase ) snake_case_ = self.bwd_bfs.retrace_path(_UpperCAmelCase ) bwd_path.pop() bwd_path.reverse() snake_case_ = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() UpperCAmelCase = (0, 0) UpperCAmelCase = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) UpperCAmelCase = time.time() UpperCAmelCase = BreadthFirstSearch(init, goal) UpperCAmelCase = bfs.search() UpperCAmelCase = time.time() - start_bfs_time print("""Unidirectional BFS computation time : """, bfs_time) UpperCAmelCase = time.time() UpperCAmelCase = BidirectionalBreadthFirstSearch(init, goal) UpperCAmelCase = bd_bfs.search() UpperCAmelCase = time.time() - start_bd_bfs_time print("""Bidirectional BFS computation time : """, bd_bfs_time)
267
0
import math import tensorflow as tf from packaging import version def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = tf.convert_to_tensor(snake_case ) _lowerCAmelCase = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = tf.convert_to_tensor(snake_case ) _lowerCAmelCase = tf.cast(math.pi , x.dtype ) _lowerCAmelCase = tf.cast(0.044_715 , x.dtype ) _lowerCAmelCase = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(snake_case , 3 )) )) return x * cdf def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = tf.convert_to_tensor(snake_case ) return x * tf.tanh(tf.math.softplus(snake_case ) ) def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = tf.convert_to_tensor(snake_case ) _lowerCAmelCase = tf.cast(0.044_715 , x.dtype ) _lowerCAmelCase = tf.cast(0.7_978_845_608 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = tf.convert_to_tensor(snake_case ) _lowerCAmelCase = tf.cast(1.702 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def _UpperCAmelCase ( snake_case ): """simple docstring""" return tf.clip_by_value(_gelu(snake_case ) , -10 , 10 ) def _UpperCAmelCase ( snake_case , snake_case=-1 ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = tf.split(snake_case , 2 , axis=snake_case ) return a * tf.math.sigmoid(snake_case ) if version.parse(tf.version.VERSION) >= version.parse("""2.4"""): def _UpperCAmelCase ( snake_case ): """simple docstring""" return tf.keras.activations.gelu(snake_case , approximate=snake_case ) A__ = tf.keras.activations.gelu A__ = approximate_gelu_wrap else: A__ = _gelu A__ = _gelu_new A__ = { """gelu""": gelu, """gelu_10""": gelu_aa, """gelu_fast""": gelu_fast, """gelu_new""": gelu_new, """glu""": glu, """mish""": mish, """quick_gelu""": quick_gelu, """relu""": tf.keras.activations.relu, """sigmoid""": tf.keras.activations.sigmoid, """silu""": tf.keras.activations.swish, """swish""": tf.keras.activations.swish, """tanh""": tf.keras.activations.tanh, } def _UpperCAmelCase ( snake_case ): """simple docstring""" if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F'function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}' )
82
import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class __lowerCAmelCase ( lowerCamelCase__ ): # to overwrite at feature extractactor specific tests __lowerCamelCase = None __lowerCamelCase = None @property def snake_case ( self ): """simple docstring""" return self.feat_extract_tester.prepare_feat_extract_dict() def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_snake_case , """feature_size""" ) ) self.assertTrue(hasattr(_snake_case , """sampling_rate""" ) ) self.assertTrue(hasattr(_snake_case , """padding_value""" ) ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common() _lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) _lowerCAmelCase = feat_extract.model_input_names[0] _lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_snake_case ) == len(_snake_case ) for x, y in zip(_snake_case , processed_features[input_name] ) ) ) _lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_snake_case ) _lowerCAmelCase = BatchFeature({input_name: speech_inputs} , tensor_type="""np""" ) _lowerCAmelCase = processed_features[input_name] if len(batch_features_input.shape ) < 3: _lowerCAmelCase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_snake_case ) _lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) _lowerCAmelCase = feat_extract.model_input_names[0] _lowerCAmelCase = BatchFeature({input_name: speech_inputs} , tensor_type="""pt""" ) _lowerCAmelCase = processed_features[input_name] if len(batch_features_input.shape ) < 3: _lowerCAmelCase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_snake_case ) _lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) _lowerCAmelCase = feat_extract.model_input_names[0] _lowerCAmelCase = BatchFeature({input_name: speech_inputs} , tensor_type="""tf""" ) _lowerCAmelCase = processed_features[input_name] if len(batch_features_input.shape ) < 3: _lowerCAmelCase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def snake_case ( self , _snake_case=False ): """simple docstring""" def _inputs_have_equal_length(_snake_case ): _lowerCAmelCase = len(input[0] ) for input_slice in input[1:]: if len(_snake_case ) != length: return False return True def _inputs_are_equal(_snake_case , _snake_case ): if len(_snake_case ) != len(_snake_case ): return False for input_slice_a, input_slice_a in zip(_snake_case , _snake_case ): if not np.allclose(np.asarray(_snake_case ) , np.asarray(_snake_case ) , atol=1e-3 ): return False return True _lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) _lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(numpify=_snake_case ) _lowerCAmelCase = feat_extract.model_input_names[0] _lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) _lowerCAmelCase = self.feat_extract_tester.seq_length_diff _lowerCAmelCase = self.feat_extract_tester.max_seq_length + pad_diff _lowerCAmelCase = self.feat_extract_tester.min_seq_length _lowerCAmelCase = self.feat_extract_tester.batch_size _lowerCAmelCase = self.feat_extract_tester.feature_size # test padding for List[int] + numpy _lowerCAmelCase = feat_extract.pad(_snake_case , padding=_snake_case ) _lowerCAmelCase = input_a[input_name] _lowerCAmelCase = feat_extract.pad(_snake_case , padding="""longest""" ) _lowerCAmelCase = input_a[input_name] _lowerCAmelCase = feat_extract.pad(_snake_case , padding="""max_length""" , max_length=len(speech_inputs[-1] ) ) _lowerCAmelCase = input_a[input_name] _lowerCAmelCase = feat_extract.pad(_snake_case , padding="""longest""" , return_tensors="""np""" ) _lowerCAmelCase = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(_snake_case ): feat_extract.pad(_snake_case , padding="""max_length""" )[input_name] _lowerCAmelCase = feat_extract.pad( _snake_case , padding="""max_length""" , max_length=_snake_case , return_tensors="""np""" ) _lowerCAmelCase = input_a[input_name] self.assertFalse(_inputs_have_equal_length(_snake_case ) ) self.assertTrue(_inputs_have_equal_length(_snake_case ) ) self.assertTrue(_inputs_have_equal_length(_snake_case ) ) self.assertTrue(_inputs_are_equal(_snake_case , _snake_case ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy _lowerCAmelCase = feat_extract.pad(_snake_case , pad_to_multiple_of=10 ) _lowerCAmelCase = input_a[input_name] _lowerCAmelCase = feat_extract.pad(_snake_case , padding="""longest""" , pad_to_multiple_of=10 ) _lowerCAmelCase = input_a[input_name] _lowerCAmelCase = feat_extract.pad( _snake_case , padding="""max_length""" , pad_to_multiple_of=10 , max_length=_snake_case ) _lowerCAmelCase = input_a[input_name] _lowerCAmelCase = feat_extract.pad( _snake_case , padding="""max_length""" , pad_to_multiple_of=10 , max_length=_snake_case , return_tensors="""np""" , ) _lowerCAmelCase = input_a[input_name] self.assertTrue(all(len(_snake_case ) % 10 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(_snake_case , _snake_case ) ) _lowerCAmelCase = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(_snake_case ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct _lowerCAmelCase = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1e-3 ) def snake_case ( self , _snake_case=False ): """simple docstring""" def _inputs_have_equal_length(_snake_case ): _lowerCAmelCase = len(input[0] ) for input_slice in input[1:]: if len(_snake_case ) != length: return False return True def _inputs_are_equal(_snake_case , _snake_case ): if len(_snake_case ) != len(_snake_case ): return False for input_slice_a, input_slice_a in zip(_snake_case , _snake_case ): if not np.allclose(np.asarray(_snake_case ) , np.asarray(_snake_case ) , atol=1e-3 ): return False return True _lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) _lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(numpify=_snake_case ) _lowerCAmelCase = feat_extract.model_input_names[0] _lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) # truncate to smallest _lowerCAmelCase = feat_extract.pad( _snake_case , padding="""max_length""" , max_length=len(speech_inputs[0] ) , truncation=_snake_case ) _lowerCAmelCase = input_a[input_name] _lowerCAmelCase = feat_extract.pad(_snake_case , padding="""max_length""" , max_length=len(speech_inputs[0] ) ) _lowerCAmelCase = input_a[input_name] self.assertTrue(_inputs_have_equal_length(_snake_case ) ) self.assertFalse(_inputs_have_equal_length(_snake_case ) ) # truncate to smallest with np _lowerCAmelCase = feat_extract.pad( _snake_case , padding="""max_length""" , max_length=len(speech_inputs[0] ) , return_tensors="""np""" , truncation=_snake_case , ) _lowerCAmelCase = input_a[input_name] _lowerCAmelCase = feat_extract.pad( _snake_case , padding="""max_length""" , max_length=len(speech_inputs[0] ) , return_tensors="""np""" ) _lowerCAmelCase = input_a[input_name] self.assertTrue(_inputs_have_equal_length(_snake_case ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(_snake_case ) ) # truncate to middle _lowerCAmelCase = feat_extract.pad( _snake_case , padding="""max_length""" , max_length=len(speech_inputs[1] ) , truncation=_snake_case , return_tensors="""np""" , ) _lowerCAmelCase = input_a[input_name] _lowerCAmelCase = feat_extract.pad( _snake_case , padding="""max_length""" , max_length=len(speech_inputs[1] ) , truncation=_snake_case ) _lowerCAmelCase = input_a[input_name] _lowerCAmelCase = feat_extract.pad( _snake_case , padding="""max_length""" , max_length=len(speech_inputs[1] ) , return_tensors="""np""" ) _lowerCAmelCase = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(_snake_case ) ) self.assertTrue(_inputs_have_equal_length(_snake_case ) ) self.assertTrue(_inputs_are_equal(_snake_case , _snake_case ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(_snake_case ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(_snake_case ): feat_extract.pad(_snake_case , truncation=_snake_case )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(_snake_case ): feat_extract.pad(_snake_case , padding="""longest""" , truncation=_snake_case )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(_snake_case ): feat_extract.pad(_snake_case , padding="""longest""" , truncation=_snake_case )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(_snake_case ): feat_extract.pad(_snake_case , padding="""max_length""" , truncation=_snake_case )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy _lowerCAmelCase = 12 _lowerCAmelCase = feat_extract.pad( _snake_case , padding="""max_length""" , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=_snake_case , truncation=_snake_case , ) _lowerCAmelCase = input_a[input_name] _lowerCAmelCase = feat_extract.pad( _snake_case , padding="""max_length""" , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=_snake_case , ) _lowerCAmelCase = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of _lowerCAmelCase = len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: _lowerCAmelCase = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(_snake_case ) ) self.assertFalse(_inputs_have_equal_length(_snake_case ) ) def snake_case ( self ): """simple docstring""" self._check_padding(numpify=_snake_case ) def snake_case ( self ): """simple docstring""" self._check_padding(numpify=_snake_case ) def snake_case ( self ): """simple docstring""" self._check_truncation(numpify=_snake_case ) def snake_case ( self ): """simple docstring""" self._check_truncation(numpify=_snake_case ) @require_torch def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) _lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common() _lowerCAmelCase = feat_extract.model_input_names[0] _lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) _lowerCAmelCase = feat_extract.pad(_snake_case , padding="""longest""" , return_tensors="""np""" )[input_name] _lowerCAmelCase = feat_extract.pad(_snake_case , padding="""longest""" , return_tensors="""pt""" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) @require_tf def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) _lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common() _lowerCAmelCase = feat_extract.model_input_names[0] _lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) _lowerCAmelCase = feat_extract.pad(_snake_case , padding="""longest""" , return_tensors="""np""" )[input_name] _lowerCAmelCase = feat_extract.pad(_snake_case , padding="""longest""" , return_tensors="""tf""" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.feat_extract_dict _lowerCAmelCase = True _lowerCAmelCase = self.feature_extraction_class(**_snake_case ) _lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common() _lowerCAmelCase = [len(_snake_case ) for x in speech_inputs] _lowerCAmelCase = feat_extract.model_input_names[0] _lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) _lowerCAmelCase = feat_extract.pad(_snake_case , padding="""longest""" , return_tensors="""np""" ) self.assertIn("""attention_mask""" , _snake_case ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _snake_case ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.feat_extract_dict _lowerCAmelCase = True _lowerCAmelCase = self.feature_extraction_class(**_snake_case ) _lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common() _lowerCAmelCase = [len(_snake_case ) for x in speech_inputs] _lowerCAmelCase = feat_extract.model_input_names[0] _lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) _lowerCAmelCase = min(_snake_case ) _lowerCAmelCase = feat_extract.pad( _snake_case , padding="""max_length""" , max_length=_snake_case , truncation=_snake_case , return_tensors="""np""" ) self.assertIn("""attention_mask""" , _snake_case ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
82
1
import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( a_ : Optional[int] , a_ : Any , a_ : Optional[Any] , a_ : Tuple ) -> str: # Initialise PyTorch model __SCREAMING_SNAKE_CASE :Union[str, Any] = FunnelConfig.from_json_file(a_ ) print(f'''Building PyTorch model from configuration: {config}''' ) __SCREAMING_SNAKE_CASE :str = FunnelBaseModel(a_ ) if base_model else FunnelModel(a_ ) # Load weights from tf checkpoint load_tf_weights_in_funnel(a_ , a_ , a_ ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , a_ ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not." ) lowerCamelCase_ = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
357
"""simple docstring""" def __lowerCamelCase ( a_ : str ) -> list: return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(a_ ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__("doctest").testmod()
239
0
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , ) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue_model_parallelism.py''', '''model_name_or_path''': '''roberta-large''', '''instance_type''': '''ml.p3dn.24xlarge''', '''results''': {'''train_runtime''': 1_600, '''eval_accuracy''': 0.3, '''eval_loss''': 1.2}, }, { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''roberta-large''', '''instance_type''': '''ml.p3dn.24xlarge''', '''results''': {'''train_runtime''': 1_600, '''eval_accuracy''': 0.3, '''eval_loss''': 1.2}, }, ] ) class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : List[Any] ): if self.framework == "pytorch": subprocess.run( F'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding='''utf-8''' , check=UpperCamelCase_ , ) assert hasattr(self , '''env''' ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : List[Any] ): # configuration for running training on smdistributed Model Parallel lowerCAmelCase : List[Any] = { '''enabled''': True, '''processes_per_host''': 8, } lowerCAmelCase : Optional[int] = { '''enabled''': True, '''parameters''': { '''microbatches''': 4, '''placement_strategy''': '''spread''', '''pipeline''': '''interleaved''', '''optimize''': '''speed''', '''partitions''': 4, '''ddp''': True, }, } lowerCAmelCase : str = {'''smdistributed''': {'''modelparallel''': smp_options}, '''mpi''': mpi_options} lowerCAmelCase : Any = '''trainer''' if self.script == '''run_glue.py''' else '''smtrainer''' # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F'''{self.env.base_job_name}-{instance_count}-smp-{name_extension}''' , instance_count=UpperCamelCase_ , instance_type=self.instance_type , debugger_hook_config=UpperCamelCase_ , hyperparameters={ **self.env.hyperparameters, '''model_name_or_path''': self.model_name_or_path, '''max_steps''': 5_0_0, } , metric_definitions=self.env.metric_definitions , distribution=UpperCamelCase_ , py_version='''py36''' , ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : str ): TrainingJobAnalytics(UpperCamelCase_ ).export_csv(F'''{self.env.test_path}/{job_name}_metrics.csv''' ) @parameterized.expand([(1,)] ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : Union[str, Any] ): # create estimator lowerCAmelCase : Any = self.create_estimator(UpperCamelCase_ ) # run training estimator.fit() # result dataframe lowerCAmelCase : Tuple = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowerCAmelCase : Any = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) lowerCAmelCase : List[str] = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowerCAmelCase : int = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 9_9_9_9_9_9 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(F'''{estimator.latest_training_job.name}.json''' , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , UpperCamelCase_ )
60
"""simple docstring""" from __future__ import annotations from decimal import Decimal from numpy import array def _snake_case ( _snake_case : list[list[float]] ): lowerCAmelCase : str = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(_snake_case ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix lowerCAmelCase : int = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError('''This matrix has no inverse.''' ) # Creates a copy of the matrix with swapped positions of the elements lowerCAmelCase : Optional[int] = [[0.0, 0.0], [0.0, 0.0]] lowerCAmelCase, lowerCAmelCase : List[Any] = matrix[1][1], matrix[0][0] lowerCAmelCase, lowerCAmelCase : Union[str, Any] = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(_snake_case ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(_snake_case ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule lowerCAmelCase : int = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError('''This matrix has no inverse.''' ) # Creating cofactor matrix lowerCAmelCase : Dict = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] lowerCAmelCase : List[str] = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) lowerCAmelCase : Dict = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) lowerCAmelCase : str = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) lowerCAmelCase : Any = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) lowerCAmelCase : Any = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) lowerCAmelCase : Optional[int] = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) lowerCAmelCase : Optional[int] = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) lowerCAmelCase : Dict = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) lowerCAmelCase : List[Any] = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) lowerCAmelCase : str = array(_snake_case ) for i in range(3 ): for j in range(3 ): lowerCAmelCase : Optional[Any] = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix lowerCAmelCase : Tuple = array(_snake_case ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(_snake_case ) # Calculate the inverse of the matrix return [[float(d(_snake_case ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError('''Please provide a matrix of size 2x2 or 3x3.''' )
60
1
'''simple docstring''' from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class _SCREAMING_SNAKE_CASE ( __a ): __SCREAMING_SNAKE_CASE :"DiagonalGaussianDistribution" class _SCREAMING_SNAKE_CASE ( __a ,__a ): __SCREAMING_SNAKE_CASE :List[Any] = True @register_to_config def __init__( self : str , a__ : int = 3 , a__ : int = 3 , a__ : Tuple[str] = ("DownEncoderBlock2D",) , a__ : Tuple[str] = ("UpDecoderBlock2D",) , a__ : Tuple[int] = (64,) , a__ : int = 1 , a__ : str = "silu" , a__ : int = 4 , a__ : int = 32 , a__ : int = 32 , a__ : float = 0.18_215 , ): super().__init__() # pass init params to Encoder __magic_name__ = Encoder( in_channels=a__ , out_channels=a__ , down_block_types=a__ , block_out_channels=a__ , layers_per_block=a__ , act_fn=a__ , norm_num_groups=a__ , double_z=a__ , ) # pass init params to Decoder __magic_name__ = Decoder( in_channels=a__ , out_channels=a__ , up_block_types=a__ , block_out_channels=a__ , layers_per_block=a__ , norm_num_groups=a__ , act_fn=a__ , ) __magic_name__ = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) __magic_name__ = nn.Convad(a__ , a__ , 1 ) __magic_name__ = False __magic_name__ = False # only relevant if vae tiling is enabled __magic_name__ = self.config.sample_size __magic_name__ = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) __magic_name__ = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) __magic_name__ = 0.25 def snake_case__ ( self : Any , a__ : int , a__ : List[Any]=False ): if isinstance(a__ , (Encoder, Decoder) ): __magic_name__ = value def snake_case__ ( self : int , a__ : bool = True ): __magic_name__ = use_tiling def snake_case__ ( self : Optional[Any] ): self.enable_tiling(a__ ) def snake_case__ ( self : List[Any] ): __magic_name__ = True def snake_case__ ( self : Optional[int] ): __magic_name__ = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def snake_case__ ( self : int ): __magic_name__ = {} def fn_recursive_add_processors(a__ : str , a__ : torch.nn.Module , a__ : Dict[str, AttentionProcessor] ): if hasattr(a__ , '''set_processor''' ): __magic_name__ = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F'''{name}.{sub_name}''' , a__ , a__ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(a__ , a__ , a__ ) return processors def snake_case__ ( self : List[str] , a__ : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): __magic_name__ = len(self.attn_processors.keys() ) if isinstance(a__ , a__ ) and len(a__ ) != count: raise ValueError( F'''A dict of processors was passed, but the number of processors {len(a__ )} does not match the''' F''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(a__ : str , a__ : torch.nn.Module , a__ : List[Any] ): if hasattr(a__ , '''set_processor''' ): if not isinstance(a__ , a__ ): module.set_processor(a__ ) else: module.set_processor(processor.pop(F'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F'''{name}.{sub_name}''' , a__ , a__ ) for name, module in self.named_children(): fn_recursive_attn_processor(a__ , a__ , a__ ) def snake_case__ ( self : Dict ): self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def snake_case__ ( self : Optional[Any] , a__ : torch.FloatTensor , a__ : bool = True ): if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(a__ , return_dict=a__ ) if self.use_slicing and x.shape[0] > 1: __magic_name__ = [self.encoder(a__ ) for x_slice in x.split(1 )] __magic_name__ = torch.cat(a__ ) else: __magic_name__ = self.encoder(a__ ) __magic_name__ = self.quant_conv(a__ ) __magic_name__ = DiagonalGaussianDistribution(a__ ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=a__ ) def snake_case__ ( self : Union[str, Any] , a__ : torch.FloatTensor , a__ : bool = True ): if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(a__ , return_dict=a__ ) __magic_name__ = self.post_quant_conv(a__ ) __magic_name__ = self.decoder(a__ ) if not return_dict: return (dec,) return DecoderOutput(sample=a__ ) @apply_forward_hook def snake_case__ ( self : str , a__ : torch.FloatTensor , a__ : bool = True ): if self.use_slicing and z.shape[0] > 1: __magic_name__ = [self._decode(a__ ).sample for z_slice in z.split(1 )] __magic_name__ = torch.cat(a__ ) else: __magic_name__ = self._decode(a__ ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=a__ ) def snake_case__ ( self : List[Any] , a__ : List[str] , a__ : Optional[Any] , a__ : Dict ): __magic_name__ = min(a.shape[2] , b.shape[2] , a__ ) for y in range(a__ ): __magic_name__ = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def snake_case__ ( self : List[Any] , a__ : int , a__ : Optional[int] , a__ : Any ): __magic_name__ = min(a.shape[3] , b.shape[3] , a__ ) for x in range(a__ ): __magic_name__ = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def snake_case__ ( self : int , a__ : torch.FloatTensor , a__ : bool = True ): __magic_name__ = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) __magic_name__ = int(self.tile_latent_min_size * self.tile_overlap_factor ) __magic_name__ = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. __magic_name__ = [] for i in range(0 , x.shape[2] , a__ ): __magic_name__ = [] for j in range(0 , x.shape[3] , a__ ): __magic_name__ = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] __magic_name__ = self.encoder(a__ ) __magic_name__ = self.quant_conv(a__ ) row.append(a__ ) rows.append(a__ ) __magic_name__ = [] for i, row in enumerate(a__ ): __magic_name__ = [] for j, tile in enumerate(a__ ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __magic_name__ = self.blend_v(rows[i - 1][j] , a__ , a__ ) if j > 0: __magic_name__ = self.blend_h(row[j - 1] , a__ , a__ ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(a__ , dim=3 ) ) __magic_name__ = torch.cat(a__ , dim=2 ) __magic_name__ = DiagonalGaussianDistribution(a__ ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=a__ ) def snake_case__ ( self : Union[str, Any] , a__ : torch.FloatTensor , a__ : bool = True ): __magic_name__ = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) __magic_name__ = int(self.tile_sample_min_size * self.tile_overlap_factor ) __magic_name__ = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. __magic_name__ = [] for i in range(0 , z.shape[2] , a__ ): __magic_name__ = [] for j in range(0 , z.shape[3] , a__ ): __magic_name__ = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] __magic_name__ = self.post_quant_conv(a__ ) __magic_name__ = self.decoder(a__ ) row.append(a__ ) rows.append(a__ ) __magic_name__ = [] for i, row in enumerate(a__ ): __magic_name__ = [] for j, tile in enumerate(a__ ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __magic_name__ = self.blend_v(rows[i - 1][j] , a__ , a__ ) if j > 0: __magic_name__ = self.blend_h(row[j - 1] , a__ , a__ ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(a__ , dim=3 ) ) __magic_name__ = torch.cat(a__ , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=a__ ) def snake_case__ ( self : Dict , a__ : torch.FloatTensor , a__ : bool = False , a__ : bool = True , a__ : Optional[torch.Generator] = None , ): __magic_name__ = sample __magic_name__ = self.encode(a__ ).latent_dist if sample_posterior: __magic_name__ = posterior.sample(generator=a__ ) else: __magic_name__ = posterior.mode() __magic_name__ = self.decode(a__ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=a__ )
98
'''simple docstring''' import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging _lowerCAmelCase = "\\n\n" _lowerCAmelCase = "\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n" _lowerCAmelCase = "\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to 'cuda' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric(\"perplexity\")\n >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"]\n >>> results = perplexity.compute(model_id='gpt2',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n ['perplexities', 'mean_perplexity']\n >>> print(round(results[\"mean_perplexity\"], 2))\n 78.22\n >>> print(round(results[\"perplexities\"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric(\"perplexity\")\n >>> input_texts = datasets.load_dataset(\"wikitext\",\n ... \"wikitext-2-raw-v1\",\n ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!='']\n >>> results = perplexity.compute(model_id='gpt2',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n ['perplexities', 'mean_perplexity']\n >>> print(round(results[\"mean_perplexity\"], 2))\n 60.35\n >>> print(round(results[\"perplexities\"][0], 2))\n 81.12\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class _SCREAMING_SNAKE_CASE ( datasets.Metric ): def snake_case__ ( self : Dict ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''input_texts''': datasets.Value('''string''' ), } ) , reference_urls=['''https://huggingface.co/docs/transformers/perplexity'''] , ) def snake_case__ ( self : Optional[int] , a__ : int , a__ : Dict , a__ : int = 16 , a__ : bool = True , a__ : Any=None ): if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": __magic_name__ = '''cuda''' else: __magic_name__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' __magic_name__ = AutoModelForCausalLM.from_pretrained(a__ ) __magic_name__ = model.to(a__ ) __magic_name__ = AutoTokenizer.from_pretrained(a__ ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: __magic_name__ = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(a__ ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'''pad_token''': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" __magic_name__ = model.config.max_length - 1 else: __magic_name__ = model.config.max_length __magic_name__ = tokenizer( a__ , add_special_tokens=a__ , padding=a__ , truncation=a__ , max_length=a__ , return_tensors='''pt''' , return_attention_mask=a__ , ).to(a__ ) __magic_name__ = encodings['''input_ids'''] __magic_name__ = encodings['''attention_mask'''] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." __magic_name__ = [] __magic_name__ = CrossEntropyLoss(reduction='''none''' ) for start_index in logging.tqdm(range(0 , len(a__ ) , a__ ) ): __magic_name__ = min(start_index + batch_size , len(a__ ) ) __magic_name__ = encoded_texts[start_index:end_index] __magic_name__ = attn_masks[start_index:end_index] if add_start_token: __magic_name__ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(a__ ) __magic_name__ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) __magic_name__ = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(a__ ), attn_mask] , dim=1 ) __magic_name__ = encoded_batch with torch.no_grad(): __magic_name__ = model(a__ , attention_mask=a__ ).logits __magic_name__ = out_logits[..., :-1, :].contiguous() __magic_name__ = labels[..., 1:].contiguous() __magic_name__ = attn_mask[..., 1:].contiguous() __magic_name__ = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , a__ ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(a__ )}
98
1
'''simple docstring''' import os from pathlib import Path def lowerCamelCase ( ) -> Dict: from torch.utils.cpp_extension import load lowercase_ : int = Path(UpperCAmelCase__ ).resolve().parent.parent.parent / """kernels""" / """deformable_detr""" lowercase_ : List[str] = [ root / filename for filename in [ """vision.cpp""", os.path.join("""cpu""" , """ms_deform_attn_cpu.cpp""" ), os.path.join("""cuda""" , """ms_deform_attn_cuda.cu""" ), ] ] load( """MultiScaleDeformableAttention""" , UpperCAmelCase__ , with_cuda=UpperCAmelCase__ , extra_include_paths=[str(UpperCAmelCase__ )] , extra_cflags=["""-DWITH_CUDA=1"""] , extra_cuda_cflags=[ """-DCUDA_HAS_FP16=1""", """-D__CUDA_NO_HALF_OPERATORS__""", """-D__CUDA_NO_HALF_CONVERSIONS__""", """-D__CUDA_NO_HALF2_OPERATORS__""", ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
239
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : Dict = {"configuration_mmbt": ["MMBTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Dict = ["MMBTForClassification", "MMBTModel", "ModalEmbeddings"] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys _lowercase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
239
1
"""simple docstring""" from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING __UpperCamelCase : Dict = logging.get_logger(__name__) @add_end_docstrings(a__ ) class a ( a__ ): def __init__( self , *_snake_case , **_snake_case ): """simple docstring""" super().__init__(*_snake_case , **_snake_case ) requires_backends(self , 'vision' ) self.check_model_type(_snake_case ) def __call__( self , _snake_case , **_snake_case ): """simple docstring""" return super().__call__(_snake_case , **_snake_case ) def UpperCamelCase__ ( self , **_snake_case ): """simple docstring""" return {}, {}, {} def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = load_image(_snake_case ) lowerCAmelCase = image.size lowerCAmelCase = self.image_processor(images=_snake_case , return_tensors=self.framework ) return model_inputs def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = self.model(**_snake_case ) return model_outputs def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = model_outputs.predicted_depth lowerCAmelCase = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode='bicubic' , align_corners=_snake_case ) lowerCAmelCase = prediction.squeeze().cpu().numpy() lowerCAmelCase = (output * 2_55 / np.max(_snake_case )).astype('uint8' ) lowerCAmelCase = Image.fromarray(_snake_case ) lowerCAmelCase = {} lowerCAmelCase = predicted_depth lowerCAmelCase = depth return output_dict
309
"""simple docstring""" import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class a ( unittest.TestCase ): def UpperCamelCase__ ( self ): """simple docstring""" debug_launcher(test_script.main ) def UpperCamelCase__ ( self ): """simple docstring""" debug_launcher(test_ops.main )
309
1
"""simple docstring""" def UpperCamelCase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : str ) -> bool: """simple docstring""" lowerCAmelCase_ : Tuple = len(lowerCAmelCase__ ) + 1 lowerCAmelCase_ : List[Any] = len(lowerCAmelCase__ ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. lowerCAmelCase_ : Optional[Any] = [[0 for i in range(lowerCAmelCase__ )] for j in range(lowerCAmelCase__ )] # since string of zero length match pattern of zero length lowerCAmelCase_ : List[str] = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , lowerCAmelCase__ ): lowerCAmelCase_ : Optional[int] = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , lowerCAmelCase__ ): lowerCAmelCase_ : Union[str, Any] = dp[0][j - 2] if pattern[j - 1] == '*' else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , lowerCAmelCase__ ): for j in range(1 , lowerCAmelCase__ ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": lowerCAmelCase_ : Dict = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: lowerCAmelCase_ : str = 1 elif pattern[j - 2] in (input_string[i - 1], "."): lowerCAmelCase_ : Tuple = dp[i - 1][j] else: lowerCAmelCase_ : Dict = 0 else: lowerCAmelCase_ : Union[str, Any] = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") lowercase__ : Optional[int] = """aab""" lowercase__ : Tuple = """c*a*b""" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(f'{input_string} matches the given pattern {pattern}') else: print(f'{input_string} does not match with the given pattern {pattern}')
224
"""simple docstring""" def UpperCamelCase_ ( lowerCAmelCase__ : Optional[Any] ) -> Optional[int]: """simple docstring""" lowerCAmelCase_ : Tuple = [0] * len(lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = [] lowerCAmelCase_ : Tuple = [1] * len(lowerCAmelCase__ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(lowerCAmelCase__ ) ): if indegree[i] == 0: queue.append(lowerCAmelCase__ ) while queue: lowerCAmelCase_ : Union[str, Any] = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: lowerCAmelCase_ : Any = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(lowerCAmelCase__ ) print(max(lowerCAmelCase__ ) ) # Adjacency list of Graph lowercase__ : Any = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
224
1
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) lowerCamelCase_ = logging.getLogger(__name__) lowerCamelCase_ = '''Hello world! cécé herlolip''' lowerCamelCase_ = namedtuple( '''BertAbsConfig''', [ '''temp_dir''', '''large''', '''use_bert_emb''', '''finetune_bert''', '''encoder''', '''share_emb''', '''max_pos''', '''enc_layers''', '''enc_hidden_size''', '''enc_heads''', '''enc_ff_size''', '''enc_dropout''', '''dec_layers''', '''dec_hidden_size''', '''dec_heads''', '''dec_ff_size''', '''dec_dropout''', ], ) def UpperCamelCase( lowercase_ , lowercase_ ) -> List[str]: '''simple docstring''' snake_case_ = BertAbsConfig( temp_dir=""".""" , finetune_bert=lowercase_ , large=lowercase_ , share_emb=lowercase_ , use_bert_emb=lowercase_ , encoder="""bert""" , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) snake_case_ = torch.load(lowercase_ , lambda lowercase_ , lowercase_ : storage ) snake_case_ = AbsSummarizer(lowercase_ , torch.device("""cpu""" ) , lowercase_ ) original.eval() snake_case_ = BertAbsSummarizer(lowercase_ , torch.device("""cpu""" ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("""convert the model""" ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("""Make sure that the models' outputs are identical""" ) snake_case_ = BertTokenizer.from_pretrained("""bert-base-uncased""" ) # prepare the model inputs snake_case_ = tokenizer.encode("""This is sample éàalj'-.""" ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(lowercase_ )) ) snake_case_ = torch.tensor(lowercase_ ).unsqueeze(0 ) snake_case_ = tokenizer.encode("""This is sample 3 éàalj'-.""" ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(lowercase_ )) ) snake_case_ = torch.tensor(lowercase_ ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass snake_case_ = encoder_input_ids snake_case_ = decoder_input_ids snake_case_ = snake_case_ = None snake_case_ = None snake_case_ = snake_case_ = None snake_case_ = snake_case_ = None snake_case_ = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical snake_case_ = original(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )[0] snake_case_ = original.generator(lowercase_ ) snake_case_ = new_model( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )[0] snake_case_ = new_model.generator(lowercase_ ) snake_case_ = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print("""Maximum absolute difference beween weights: {:.2f}""".format(lowercase_ ) ) snake_case_ = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print("""Maximum absolute difference beween weights: {:.2f}""".format(lowercase_ ) ) snake_case_ = torch.allclose(lowercase_ , lowercase_ , atol=1e-3 ) if are_identical: logging.info("""all weights are equal up to 1e-3""" ) else: raise ValueError("""the weights are different. The new model is likely different from the original one.""" ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("""saving the model's state dictionary""" ) torch.save( new_model.state_dict() , """./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin""" ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument( '''--bertabs_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''', ) lowerCamelCase_ = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
34
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCamelCase_ = { '''vocab_file''': { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json''' ), }, } lowerCamelCase_ = { '''yjernite/retribert-base-uncased''': 512, } lowerCamelCase_ = { '''yjernite/retribert-base-uncased''': {'''do_lower_case''': True}, } class __lowerCamelCase ( __snake_case ): lowerCamelCase_ : Union[str, Any] = VOCAB_FILES_NAMES lowerCamelCase_ : str = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ : Optional[int] = PRETRAINED_INIT_CONFIGURATION lowerCamelCase_ : Union[str, Any] = RetriBertTokenizer lowerCamelCase_ : str = ['input_ids', 'attention_mask'] def __init__( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=True , lowerCamelCase="[UNK]" , lowerCamelCase="[SEP]" , lowerCamelCase="[PAD]" , lowerCamelCase="[CLS]" , lowerCamelCase="[MASK]" , lowerCamelCase=True , lowerCamelCase=None , **lowerCamelCase , ) -> List[Any]: super().__init__( lowerCamelCase , tokenizer_file=lowerCamelCase , do_lower_case=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , pad_token=lowerCamelCase , cls_token=lowerCamelCase , mask_token=lowerCamelCase , tokenize_chinese_chars=lowerCamelCase , strip_accents=lowerCamelCase , **lowerCamelCase , ) snake_case_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , lowerCamelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , lowerCamelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , lowerCamelCase ) != tokenize_chinese_chars ): snake_case_ = getattr(lowerCamelCase , normalizer_state.pop("""type""" ) ) snake_case_ = do_lower_case snake_case_ = strip_accents snake_case_ = tokenize_chinese_chars snake_case_ = normalizer_class(**lowerCamelCase ) snake_case_ = do_lower_case def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase=None ) -> str: snake_case_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase = None ) -> List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase = None ) -> Tuple[str]: snake_case_ = self._tokenizer.model.save(lowerCamelCase , name=lowerCamelCase ) return tuple(lowerCamelCase )
34
1
'''simple docstring''' import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def snake_case__ ( ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase = torch.nn.Linear(2 , 4 ) lowerCAmelCase = torch.optim.AdamW(model.parameters() , lr=1.0 ) lowerCAmelCase = torch.optim.lr_scheduler.OneCycleLR(_A , max_lr=0.01 , steps_per_epoch=2 , epochs=1 ) lowerCAmelCase = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) lowerCAmelCase = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def snake_case__ ( _A: Any ) -> Any: '''simple docstring''' return (model.weight.abs().sum() + model.bias.abs().sum()).item() def snake_case__ ( _A: str ) -> Any: '''simple docstring''' lowerCAmelCase = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(_A ) class a__( lowerCAmelCase__ ): '''simple docstring''' @require_cuda def a_ ( self): """simple docstring""" lowerCAmelCase = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(__lowerCAmelCase): lowerCAmelCase = Accelerator(cpu=__lowerCAmelCase) def a_ ( self): """simple docstring""" lowerCAmelCase = Accelerator() lowerCAmelCase = GradientState() assert state.num_steps == 1 lowerCAmelCase = 4 assert state.num_steps == 4 assert state.sync_gradients is True lowerCAmelCase = False assert state.sync_gradients is False GradientState._reset_state() def a_ ( self): """simple docstring""" lowerCAmelCase = Accelerator() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = create_components() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) = accelerator.prepare(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase) self.assertTrue(prepared_model in accelerator._models) self.assertTrue(prepared_optimizer in accelerator._optimizers) self.assertTrue(prepared_scheduler in accelerator._schedulers) self.assertTrue(prepared_train_dl in accelerator._dataloaders) self.assertTrue(prepared_valid_dl in accelerator._dataloaders) def a_ ( self): """simple docstring""" lowerCAmelCase = Accelerator() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = create_components() accelerator.prepare(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase) accelerator.free_memory() self.assertTrue(len(accelerator._models) == 0) self.assertTrue(len(accelerator._optimizers) == 0) self.assertTrue(len(accelerator._schedulers) == 0) self.assertTrue(len(accelerator._dataloaders) == 0) def a_ ( self): """simple docstring""" PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*__lowerCAmelCase , **__lowerCAmelCase): pass with patch("""torch.cuda.set_device""" , __lowerCAmelCase), patch_environment(ACCELERATE_TORCH_DEVICE="""cuda:64"""): lowerCAmelCase = Accelerator() self.assertEqual(str(accelerator.state.device) , """cuda:64""") def a_ ( self): """simple docstring""" lowerCAmelCase = Accelerator() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = create_components() accelerator.prepare(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase) lowerCAmelCase = get_signature(__lowerCAmelCase) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__lowerCAmelCase) # make sure random weights don't match load_random_weights(__lowerCAmelCase) self.assertTrue(abs(model_signature - get_signature(__lowerCAmelCase)) > 1E-3) # make sure loaded weights match accelerator.load_state(__lowerCAmelCase) self.assertTrue(abs(model_signature - get_signature(__lowerCAmelCase)) < 1E-3) def a_ ( self): """simple docstring""" lowerCAmelCase = Accelerator() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = create_components() accelerator.prepare(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase) lowerCAmelCase = get_signature(__lowerCAmelCase) # saving hook def save_config(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase): lowerCAmelCase = {"""class_name""": models[0].__class__.__name__} with open(os.path.join(__lowerCAmelCase , """data.json""") , """w""") as f: json.dump(__lowerCAmelCase , __lowerCAmelCase) # loading hook def load_config(__lowerCAmelCase , __lowerCAmelCase): with open(os.path.join(__lowerCAmelCase , """data.json""") , """r""") as f: lowerCAmelCase = json.load(__lowerCAmelCase) lowerCAmelCase = config["""class_name"""] lowerCAmelCase = accelerator.register_save_state_pre_hook(__lowerCAmelCase) lowerCAmelCase = accelerator.register_load_state_pre_hook(__lowerCAmelCase) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__lowerCAmelCase) # make sure random weights don't match with hooks load_random_weights(__lowerCAmelCase) self.assertTrue(abs(model_signature - get_signature(__lowerCAmelCase)) > 1E-3) # random class name to verify correct one is loaded lowerCAmelCase = """random""" # make sure loaded weights match with hooks accelerator.load_state(__lowerCAmelCase) self.assertTrue(abs(model_signature - get_signature(__lowerCAmelCase)) < 1E-3) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__lowerCAmelCase) # make sure random weights don't match with hooks removed load_random_weights(__lowerCAmelCase) self.assertTrue(abs(model_signature - get_signature(__lowerCAmelCase)) > 1E-3) # random class name to verify correct one is loaded lowerCAmelCase = """random""" # make sure loaded weights match with hooks removed accelerator.load_state(__lowerCAmelCase) self.assertTrue(abs(model_signature - get_signature(__lowerCAmelCase)) < 1E-3) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__) def a_ ( self): """simple docstring""" lowerCAmelCase = Accelerator() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = create_components() lowerCAmelCase = None # This should work lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = accelerator.prepare( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase) self.assertTrue(dummy_obj is None) def a_ ( self): """simple docstring""" lowerCAmelCase = Accelerator() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = create_components() lowerCAmelCase = [1, 2, 3] # This should work lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = accelerator.prepare( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase) self.assertEqual( getattr(__lowerCAmelCase , """_is_accelerate_prepared""" , __lowerCAmelCase) , __lowerCAmelCase , """Dummy object should have `_is_accelerate_prepared` set to `True`""" , ) self.assertEqual( getattr(__lowerCAmelCase , """_is_accelerate_prepared""" , __lowerCAmelCase) , __lowerCAmelCase , """Model is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(__lowerCAmelCase , """_is_accelerate_prepared""" , __lowerCAmelCase) , __lowerCAmelCase , """Optimizer is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(__lowerCAmelCase , """_is_accelerate_prepared""" , __lowerCAmelCase) , __lowerCAmelCase , """Scheduler is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(__lowerCAmelCase , """_is_accelerate_prepared""" , __lowerCAmelCase) , __lowerCAmelCase , """Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(__lowerCAmelCase , """_is_accelerate_prepared""" , __lowerCAmelCase) , __lowerCAmelCase , """Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`""" , ) @slow @require_bnb def a_ ( self): """simple docstring""" from transformers import AutoModelForCausalLM lowerCAmelCase = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , load_in_abit=__lowerCAmelCase , device_map={"""""": 0} , ) lowerCAmelCase = Accelerator() # This should work lowerCAmelCase = accelerator.prepare(__lowerCAmelCase) @slow @require_bnb def a_ ( self): """simple docstring""" from transformers import AutoModelForCausalLM lowerCAmelCase = Accelerator() with init_empty_weights(): lowerCAmelCase = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , ) model.tie_weights() lowerCAmelCase = infer_auto_device_map(__lowerCAmelCase) lowerCAmelCase = """cpu""" lowerCAmelCase = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , device_map=__lowerCAmelCase , load_in_abit=__lowerCAmelCase , llm_inta_enable_fpaa_cpu_offload=__lowerCAmelCase) # This should not work and get value error with self.assertRaises(__lowerCAmelCase): lowerCAmelCase = accelerator.prepare(__lowerCAmelCase) @slow @require_bnb @require_multi_gpu def a_ ( self): """simple docstring""" from transformers import AutoModelForCausalLM lowerCAmelCase = {"""distributed_type""": DistributedType.MULTI_GPU} with init_empty_weights(): lowerCAmelCase = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , ) model.tie_weights() lowerCAmelCase = infer_auto_device_map(__lowerCAmelCase) lowerCAmelCase = 1 lowerCAmelCase = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , load_in_abit=__lowerCAmelCase , device_map=__lowerCAmelCase , ) lowerCAmelCase = Accelerator() # This should not work and get value error with self.assertRaises(__lowerCAmelCase): lowerCAmelCase = accelerator.prepare(__lowerCAmelCase) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def a_ ( self): """simple docstring""" from transformers import AutoModelForCausalLM with init_empty_weights(): lowerCAmelCase = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , ) lowerCAmelCase = infer_auto_device_map(__lowerCAmelCase) lowerCAmelCase = 1 lowerCAmelCase = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , load_in_abit=__lowerCAmelCase , device_map=__lowerCAmelCase , ) lowerCAmelCase = Accelerator() # This should work lowerCAmelCase = accelerator.prepare(__lowerCAmelCase) @require_cuda def a_ ( self): """simple docstring""" lowerCAmelCase = torch.nn.Linear(10 , 10) lowerCAmelCase = torch.optim.SGD(model.parameters() , lr=0.01) lowerCAmelCase = Accelerator(cpu=__lowerCAmelCase) lowerCAmelCase = accelerator.prepare(__lowerCAmelCase)
272
'''simple docstring''' import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class a__( unittest.TestCase ): '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase=7 , __lowerCAmelCase=3 , __lowerCAmelCase=18 , __lowerCAmelCase=30 , __lowerCAmelCase=400 , __lowerCAmelCase=True , __lowerCAmelCase=None , __lowerCAmelCase=True , __lowerCAmelCase=[0.5, 0.5, 0.5] , __lowerCAmelCase=[0.5, 0.5, 0.5] , ): """simple docstring""" lowerCAmelCase = size if size is not None else {"""height""": 18, """width""": 18} lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = num_channels lowerCAmelCase = image_size lowerCAmelCase = min_resolution lowerCAmelCase = max_resolution lowerCAmelCase = do_resize lowerCAmelCase = size lowerCAmelCase = do_normalize lowerCAmelCase = image_mean lowerCAmelCase = image_std def a_ ( self): """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class a__( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Tuple = DPTImageProcessor if is_vision_available() else None def a_ ( self): """simple docstring""" lowerCAmelCase = DPTImageProcessingTester(self) @property def a_ ( self): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a_ ( self): """simple docstring""" lowerCAmelCase = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(__lowerCAmelCase , """image_mean""")) self.assertTrue(hasattr(__lowerCAmelCase , """image_std""")) self.assertTrue(hasattr(__lowerCAmelCase , """do_normalize""")) self.assertTrue(hasattr(__lowerCAmelCase , """do_resize""")) self.assertTrue(hasattr(__lowerCAmelCase , """size""")) def a_ ( self): """simple docstring""" lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18}) lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42}) def a_ ( self): """simple docstring""" lowerCAmelCase = self.image_processing_class(**self.image_processor_dict) # create random PIL images lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , Image.Image) # Test not batched input lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched lowerCAmelCase = image_processing(__lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def a_ ( self): """simple docstring""" lowerCAmelCase = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , numpify=__lowerCAmelCase) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , np.ndarray) # Test not batched input lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched lowerCAmelCase = image_processing(__lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def a_ ( self): """simple docstring""" lowerCAmelCase = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , torchify=__lowerCAmelCase) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , torch.Tensor) # Test not batched input lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched lowerCAmelCase = image_processing(__lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
272
1
from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class __lowerCamelCase : """simple docstring""" def __init__( self : int , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Dict=13 , SCREAMING_SNAKE_CASE : List[Any]=30 , SCREAMING_SNAKE_CASE : Any=2 , SCREAMING_SNAKE_CASE : Dict=3 , SCREAMING_SNAKE_CASE : Optional[int]=True , SCREAMING_SNAKE_CASE : Union[str, Any]=True , SCREAMING_SNAKE_CASE : Dict=32 , SCREAMING_SNAKE_CASE : str=2 , SCREAMING_SNAKE_CASE : Tuple=4 , SCREAMING_SNAKE_CASE : Union[str, Any]=37 , SCREAMING_SNAKE_CASE : Dict="gelu" , SCREAMING_SNAKE_CASE : str=0.1 , SCREAMING_SNAKE_CASE : List[str]=0.1 , SCREAMING_SNAKE_CASE : Tuple=10 , SCREAMING_SNAKE_CASE : Union[str, Any]=0.02 , SCREAMING_SNAKE_CASE : Dict=3 , SCREAMING_SNAKE_CASE : str=None , SCREAMING_SNAKE_CASE : Optional[int]=2 , ): _A : Tuple = parent _A : str = batch_size _A : int = image_size _A : List[Any] = patch_size _A : Dict = num_channels _A : int = is_training _A : Optional[int] = use_labels _A : List[str] = hidden_size _A : Dict = num_hidden_layers _A : Tuple = num_attention_heads _A : List[Any] = intermediate_size _A : Optional[int] = hidden_act _A : Optional[int] = hidden_dropout_prob _A : Optional[int] = attention_probs_dropout_prob _A : Any = type_sequence_label_size _A : str = initializer_range _A : List[Any] = scope _A : Optional[int] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) _A : Union[str, Any] = (image_size // patch_size) ** 2 _A : List[str] = num_patches + 2 def A ( self : Any): _A : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _A : List[str] = None if self.use_labels: _A : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) _A : Union[str, Any] = self.get_config() return config, pixel_values, labels def A ( self : Optional[int]): return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def A ( self : Optional[Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Any): _A : Optional[int] = TFDeiTModel(config=SCREAMING_SNAKE_CASE) _A : Any = model(SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Dict): _A : int = TFDeiTForMaskedImageModeling(config=SCREAMING_SNAKE_CASE) _A : Any = model(SCREAMING_SNAKE_CASE) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images _A : List[Any] = 1 _A : Optional[Any] = TFDeiTForMaskedImageModeling(SCREAMING_SNAKE_CASE) _A : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) _A : Optional[int] = model(SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size)) def A ( self : Optional[int] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[Any]): _A : Any = self.type_sequence_label_size _A : int = TFDeiTForImageClassification(SCREAMING_SNAKE_CASE) _A : Dict = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images _A : List[Any] = 1 _A : List[str] = TFDeiTForImageClassification(SCREAMING_SNAKE_CASE) _A : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) _A : Dict = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def A ( self : Any): _A : Dict = self.prepare_config_and_inputs() _A : List[str] = config_and_inputs _A : List[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class __lowerCamelCase ( a_ , a_ , unittest.TestCase ): """simple docstring""" a = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) a = ( { "feature-extraction": TFDeiTModel, "image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) a = False a = False a = False a = False def A ( self : Optional[int]): _A : Any = TFDeiTModelTester(self) _A : Optional[int] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE , hidden_size=37) def A ( self : Optional[Any]): self.config_tester.run_common_tests() @unittest.skip(reason='DeiT does not use inputs_embeds') def A ( self : List[Any]): pass def A ( self : Union[str, Any]): _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : Optional[Any] = model_class(SCREAMING_SNAKE_CASE) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer)) _A : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE , tf.keras.layers.Dense)) def A ( self : Dict): _A : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : Optional[int] = model_class(SCREAMING_SNAKE_CASE) _A : Union[str, Any] = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A : Optional[int] = [*signature.parameters.keys()] _A : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE) def A ( self : int): _A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE) def A ( self : str): _A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*SCREAMING_SNAKE_CASE) def A ( self : int): _A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE) def A ( self : List[str] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : List[str]=False): _A : Optional[int] = super()._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call).parameters: del inputs_dict["labels"] return inputs_dict @slow def A ( self : List[str]): for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A : Tuple = TFDeiTModel.from_pretrained(SCREAMING_SNAKE_CASE) self.assertIsNotNone(SCREAMING_SNAKE_CASE) def lowerCAmelCase__ ( ): _A : str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def A ( self : Tuple): return ( DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224') if is_vision_available() else None ) @slow def A ( self : List[Any]): _A : Any = TFDeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224') _A : Any = self.default_image_processor _A : List[Any] = prepare_img() _A : Optional[int] = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='tf') # forward pass _A : Dict = model(**SCREAMING_SNAKE_CASE) # verify the logits _A : Union[str, Any] = tf.TensorShape((1, 1000)) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE) _A : Tuple = tf.constant([-1.0266, 0.1912, -1.2861]) self.assertTrue(np.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1e-4))
360
'''simple docstring''' from __future__ import annotations class __lowerCamelCase : """simple docstring""" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE : Tuple=None): _A : Any = data _A : Optional[Any] = None def __repr__( self : List[str]): _A : List[Any] = [] _A : Any = self while temp: string_rep.append(F'{temp.data}') _A : List[Any] = temp.next return "->".join(SCREAMING_SNAKE_CASE) def lowerCAmelCase__ ( lowerCamelCase : list ): if not elements_list: raise Exception('The Elements List is empty' ) _A : Union[str, Any] = Node(elements_list[0] ) for i in range(1 ,len(lowerCamelCase ) ): _A : Dict = Node(elements_list[i] ) _A : int = current.next return head def lowerCAmelCase__ ( lowerCamelCase : Node ): if head_node is not None and isinstance(lowerCamelCase ,lowerCamelCase ): print_reverse(head_node.next ) print(head_node.data ) def lowerCAmelCase__ ( ): from doctest import testmod testmod() _A : List[str] = make_linked_list([14, 52, 14, 12, 43] ) print('Linked List:' ) print(lowerCamelCase ) print('Elements in Reverse:' ) print_reverse(lowerCamelCase ) if __name__ == "__main__": main()
227
0
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): a__ : List[str] = 'pt' elif is_tf_available(): a__ : Union[str, Any] = 'tf' else: a__ : Dict = 'jax' class lowercase_ ( a__ , unittest.TestCase ): __UpperCAmelCase = ByTaTokenizer __UpperCAmelCase = False def __a ( self ): super().setUp() UpperCamelCase__ = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __a ( self ): return ByTaTokenizer.from_pretrained("google/byt5-small" ) def __a ( self , **a ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **a ) def __a ( self , a , a=False , a=20 , a=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. UpperCamelCase__ = [] for i in range(len(a ) ): try: UpperCamelCase__ = tokenizer.decode([i] , clean_up_tokenization_spaces=a ) except UnicodeDecodeError: pass toks.append((i, tok) ) UpperCamelCase__ = list(filter(lambda a : re.match(r"^[ a-zA-Z]+$" , t[1] ) , a ) ) UpperCamelCase__ = list(filter(lambda a : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=a ) , a ) ) if max_length is not None and len(a ) > max_length: UpperCamelCase__ = toks[:max_length] if min_length is not None and len(a ) < min_length and len(a ) > 0: while len(a ) < min_length: UpperCamelCase__ = toks + toks # toks_str = [t[1] for t in toks] UpperCamelCase__ = [t[0] for t in toks] # Ensure consistency UpperCamelCase__ = tokenizer.decode(a , clean_up_tokenization_spaces=a ) if " " not in output_txt and len(a ) > 1: UpperCamelCase__ = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=a ) + " " + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=a ) ) if with_prefix_space: UpperCamelCase__ = " " + output_txt UpperCamelCase__ = tokenizer.encode(a , add_special_tokens=a ) return output_txt, output_ids def __a ( self ): UpperCamelCase__ = self.ta_base_tokenizer UpperCamelCase__ = tokenizer(["hi</s>", "I went to the gym</s>", "</s>"] ) UpperCamelCase__ = tokenizer(["hi", "I went to the gym", ""] ) self.assertListEqual(batch_with_eos_added["input_ids"] , batch_without_eos_added["input_ids"] ) def __a ( self ): UpperCamelCase__ = self.ta_base_tokenizer UpperCamelCase__ = "Unicode €." UpperCamelCase__ = tokenizer(a ) UpperCamelCase__ = [88, 1_13, 1_08, 1_02, 1_14, 1_03, 1_04, 35, 2_29, 1_33, 1_75, 49, 1] self.assertEqual(encoded["input_ids"] , a ) # decoding UpperCamelCase__ = tokenizer.decode(a ) self.assertEqual(a , "Unicode €.</s>" ) UpperCamelCase__ = tokenizer("e è é ê ë" ) UpperCamelCase__ = [1_04, 35, 1_98, 1_71, 35, 1_98, 1_72, 35, 1_98, 1_73, 35, 1_98, 1_74, 1] self.assertEqual(encoded["input_ids"] , a ) # decoding UpperCamelCase__ = tokenizer.decode(a ) self.assertEqual(a , "e è é ê ë</s>" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë" ) ) , "e è é ê ë</s>" ) def __a ( self ): UpperCamelCase__ = self.ta_base_tokenizer UpperCamelCase__ = ["A long paragraph for summarization.", "Another paragraph for summarization."] # fmt: off UpperCamelCase__ = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 1, 0] # fmt: on UpperCamelCase__ = tokenizer(a , padding=a , return_tensors=a ) self.assertIsInstance(a , a ) if FRAMEWORK != "jax": UpperCamelCase__ = list(batch.input_ids.numpy()[0] ) else: UpperCamelCase__ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(a , a ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def __a ( self ): UpperCamelCase__ = self.ta_base_tokenizer UpperCamelCase__ = ["A long paragraph for summarization.", "Another paragraph for summarization."] UpperCamelCase__ = tokenizer(a , padding=a , return_tensors=a ) # check if input_ids are returned and no decoder_input_ids self.assertIn("input_ids" , a ) self.assertIn("attention_mask" , a ) self.assertNotIn("decoder_input_ids" , a ) self.assertNotIn("decoder_attention_mask" , a ) def __a ( self ): UpperCamelCase__ = self.ta_base_tokenizer UpperCamelCase__ = [ "Summary of the text.", "Another summary.", ] UpperCamelCase__ = tokenizer( text_target=a , max_length=32 , padding="max_length" , truncation=a , return_tensors=a ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def __a ( self ): UpperCamelCase__ = self.ta_base_tokenizer UpperCamelCase__ = ["A long paragraph for summarization. </s>"] UpperCamelCase__ = ["Summary of the text. </s>"] # fmt: off UpperCamelCase__ = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 35, 1] UpperCamelCase__ = [86, 1_20, 1_12, 1_12, 1_00, 1_17, 1_24, 35, 1_14, 1_05, 35, 1_19, 1_07, 1_04, 35, 1_19, 1_04, 1_23, 1_19, 49, 35, 1] # fmt: on UpperCamelCase__ = tokenizer(a , text_target=a ) self.assertEqual(a , batch["input_ids"][0] ) self.assertEqual(a , batch["labels"][0] ) def __a ( self ): # safety check on max_len default value so we are sure the test works UpperCamelCase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test UpperCamelCase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc UpperCamelCase__ = tempfile.mkdtemp() UpperCamelCase__ = " He is very happy, UNwant\u00E9d,running" UpperCamelCase__ = tokenizer.encode(a , add_special_tokens=a ) tokenizer.save_pretrained(a ) UpperCamelCase__ = tokenizer.__class__.from_pretrained(a ) UpperCamelCase__ = after_tokenizer.encode(a , add_special_tokens=a ) self.assertListEqual(a , a ) shutil.rmtree(a ) UpperCamelCase__ = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc UpperCamelCase__ = tempfile.mkdtemp() UpperCamelCase__ = " He is very happy, UNwant\u00E9d,running" tokenizer.add_tokens(["bim", "bambam"] ) UpperCamelCase__ = tokenizer.additional_special_tokens additional_special_tokens.append("new_additional_special_token" ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) UpperCamelCase__ = tokenizer.encode(a , add_special_tokens=a ) tokenizer.save_pretrained(a ) UpperCamelCase__ = tokenizer.__class__.from_pretrained(a ) UpperCamelCase__ = after_tokenizer.encode(a , add_special_tokens=a ) self.assertListEqual(a , a ) self.assertIn("new_additional_special_token" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) UpperCamelCase__ = tokenizer.__class__.from_pretrained(a , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(a ) def __a ( self ): UpperCamelCase__ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(a ) with open(os.path.join(a , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: UpperCamelCase__ = json.load(a ) with open(os.path.join(a , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: UpperCamelCase__ = json.load(a ) UpperCamelCase__ = [f'''<extra_id_{i}>''' for i in range(1_25 )] UpperCamelCase__ = added_tokens_extra_ids + [ "an_additional_special_token" ] UpperCamelCase__ = added_tokens_extra_ids + [ "an_additional_special_token" ] with open(os.path.join(a , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(a , a ) with open(os.path.join(a , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(a , a ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files UpperCamelCase__ = tokenizer_class.from_pretrained( a , ) self.assertIn( "an_additional_special_token" , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["an_additional_special_token"] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained UpperCamelCase__ = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token" , lstrip=a )] UpperCamelCase__ = tokenizer_class.from_pretrained( a , additional_special_tokens=a , ) self.assertIn("a_new_additional_special_token" , tokenizer.additional_special_tokens ) self.assertEqual( ["a_new_additional_special_token"] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"] ) ) , ) def __a ( self ): UpperCamelCase__ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(a ) UpperCamelCase__ = tokenizer_class.from_pretrained(a ) self.assertTrue(tokenizer.decode([2_55] ) == "" ) def __a ( self ): pass def __a ( self ): pass def __a ( self ): pass def __a ( self ): pass def __a ( self ): # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens UpperCamelCase__ = self.get_tokenizers(fast=a , do_lower_case=a ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): UpperCamelCase__ = ["t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "x", "t", "</s>"] UpperCamelCase__ = tokenizer.convert_tokens_to_string(a ) self.assertIsInstance(a , a ) def __a ( self ): UpperCamelCase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): UpperCamelCase__ = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] UpperCamelCase__ = 0 UpperCamelCase__ = tokenizer.convert_ids_to_tokens( a , skip_special_tokens=a ) for attr in attributes_list: setattr(a , attr + "_id" , a ) self.assertEqual(getattr(a , a ) , a ) self.assertEqual(getattr(a , attr + "_id" ) , a ) setattr(a , attr + "_id" , a ) self.assertEqual(getattr(a , a ) , a ) self.assertEqual(getattr(a , attr + "_id" ) , a ) setattr(a , "additional_special_tokens_ids" , [] ) self.assertListEqual(getattr(a , "additional_special_tokens" ) , [] ) self.assertListEqual(getattr(a , "additional_special_tokens_ids" ) , [] ) setattr(a , "additional_special_tokens_ids" , [token_id_to_test_setters] ) self.assertListEqual(getattr(a , "additional_special_tokens" ) , [token_to_test_setters] ) self.assertListEqual(getattr(a , "additional_special_tokens_ids" ) , [token_id_to_test_setters] )
80
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : Any = logging.get_logger(__name__) a__ : str = { 'SCUT-DLVCLab/lilt-roberta-en-base': ( 'https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json' ), } class lowercase_ ( a__ ): __UpperCAmelCase = 'lilt' def __init__( self , a=3_05_22 , a=7_68 , a=12 , a=12 , a=30_72 , a="gelu" , a=0.1 , a=0.1 , a=5_12 , a=2 , a=0.02 , a=1e-12 , a=0 , a="absolute" , a=None , a=4 , a=10_24 , **a , ): super().__init__(pad_token_id=a , **a ) UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = hidden_act UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = position_embedding_type UpperCamelCase__ = classifier_dropout UpperCamelCase__ = channel_shrink_ratio UpperCamelCase__ = max_ad_position_embeddings
80
1
'''simple docstring''' import argparse import os import re import packaging.version _SCREAMING_SNAKE_CASE = '''examples/''' _SCREAMING_SNAKE_CASE = { '''examples''': (re.compile(R'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(R'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(R'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), R'''\1version="VERSION",'''), '''doc''': (re.compile(R'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } _SCREAMING_SNAKE_CASE = { '''init''': '''src/diffusers/__init__.py''', '''setup''': '''setup.py''', } _SCREAMING_SNAKE_CASE = '''README.md''' def _lowerCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : Tuple , lowerCamelCase_ : Union[str, Any] ): with open(lowerCamelCase_ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __lowercase = f.read() __lowercase , __lowercase = REPLACE_PATTERNS[pattern] __lowercase = replace.replace('''VERSION''' , lowerCamelCase_ ) __lowercase = re_pattern.sub(lowerCamelCase_ , lowerCamelCase_ ) with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(lowerCamelCase_ ) def _lowerCAmelCase ( lowerCamelCase_ : int ): for folder, directories, fnames in os.walk(lowerCamelCase_ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) , lowerCamelCase_ , pattern='''examples''' ) def _lowerCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : Optional[int]=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if not patch: update_version_in_examples(lowerCamelCase_ ) def _lowerCAmelCase ( ): __lowercase = '''🤗 Transformers currently provides the following architectures''' __lowercase = '''1. Want to contribute a new model?''' with open(lowerCamelCase_ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __lowercase = f.readlines() # Find the start of the list. __lowercase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __lowercase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): __lowercase = lines[index].replace( '''https://huggingface.co/docs/diffusers/main/model_doc''' , '''https://huggingface.co/docs/diffusers/model_doc''' , ) index += 1 with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(lowerCamelCase_ ) def _lowerCAmelCase ( ): with open(REPLACE_FILES['''init'''] , '''r''' ) as f: __lowercase = f.read() __lowercase = REPLACE_PATTERNS['''init'''][0].search(lowerCamelCase_ ).groups()[0] return packaging.version.parse(lowerCamelCase_ ) def _lowerCAmelCase ( lowerCamelCase_ : List[str]=False ): __lowercase = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: __lowercase = default_version.base_version elif patch: __lowercase = f"{default_version.major}.{default_version.minor}.{default_version.micro + 1}" else: __lowercase = f"{default_version.major}.{default_version.minor + 1}.0" # Now let's ask nicely if that's the right one. __lowercase = input(f"Which version are you releasing? [{default_version}]" ) if len(lowerCamelCase_ ) == 0: __lowercase = default_version print(f"Updating version to {version}." ) global_version_update(lowerCamelCase_ , patch=lowerCamelCase_ ) def _lowerCAmelCase ( ): __lowercase = get_version() __lowercase = f"{current_version.major}.{current_version.minor + 1}.0.dev0" __lowercase = current_version.base_version # Check with the user we got that right. __lowercase = input(f"Which version are we developing now? [{dev_version}]" ) if len(lowerCamelCase_ ) == 0: __lowercase = dev_version print(f"Updating version to {version}." ) global_version_update(lowerCamelCase_ ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') _SCREAMING_SNAKE_CASE = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
217
'''simple docstring''' import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class __lowercase ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' a : List[Any] = CanineTokenizer a : Union[str, Any] = False def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' super().setUp() __lowercase = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' return CanineTokenizer.from_pretrained('''google/canine-s''' ) def _UpperCAmelCase (self ,**_lowerCamelCase ) -> CanineTokenizer: '''simple docstring''' __lowercase = self.tokenizer_class.from_pretrained(self.tmpdirname ,**_lowerCamelCase ) __lowercase = 1024 return tokenizer @require_torch def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = self.canine_tokenizer __lowercase = ['''Life is like a box of chocolates.''', '''You never know what you\'re gonna get.'''] # fmt: off __lowercase = [57344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 57345, 0, 0, 0, 0] # fmt: on __lowercase = tokenizer(_lowerCamelCase ,padding=_lowerCamelCase ,return_tensors='''pt''' ) self.assertIsInstance(_lowerCamelCase ,_lowerCamelCase ) __lowercase = list(batch.input_ids.numpy()[0] ) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) self.assertEqual((2, 39) ,batch.input_ids.shape ) self.assertEqual((2, 39) ,batch.attention_mask.shape ) @require_torch def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = self.canine_tokenizer __lowercase = ['''Once there was a man.''', '''He wrote a test in HuggingFace Tranformers.'''] __lowercase = tokenizer(_lowerCamelCase ,padding=_lowerCamelCase ,return_tensors='''pt''' ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn('''input_ids''' ,_lowerCamelCase ) self.assertIn('''attention_mask''' ,_lowerCamelCase ) self.assertIn('''token_type_ids''' ,_lowerCamelCase ) @require_torch def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = self.canine_tokenizer __lowercase = [ '''What\'s the weater?''', '''It\'s about 25 degrees.''', ] __lowercase = tokenizer( text_target=_lowerCamelCase ,max_length=32 ,padding='''max_length''' ,truncation=_lowerCamelCase ,return_tensors='''pt''' ) self.assertEqual(32 ,targets['''input_ids'''].shape[1] ) def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length ,42 ) # Now let's start the test __lowercase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc __lowercase = tempfile.mkdtemp() __lowercase = ''' He is very happy, UNwant\u00E9d,running''' __lowercase = tokenizer.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) tokenizer.save_pretrained(_lowerCamelCase ) __lowercase = tokenizer.__class__.from_pretrained(_lowerCamelCase ) __lowercase = after_tokenizer.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) shutil.rmtree(_lowerCamelCase ) __lowercase = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc __lowercase = tempfile.mkdtemp() __lowercase = ''' He is very happy, UNwant\u00E9d,running''' __lowercase = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: __lowercase = chr(0xe_0_0_7 ) additional_special_tokens.append(_lowerCamelCase ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) __lowercase = tokenizer.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) tokenizer.save_pretrained(_lowerCamelCase ) __lowercase = tokenizer.__class__.from_pretrained(_lowerCamelCase ) __lowercase = after_tokenizer.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) self.assertIn(_lowerCamelCase ,after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length ,42 ) __lowercase = tokenizer.__class__.from_pretrained(_lowerCamelCase ,model_max_length=43 ) self.assertEqual(tokenizer.model_max_length ,43 ) shutil.rmtree(_lowerCamelCase ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = self.get_tokenizers(do_lower_case=_lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): __lowercase , __lowercase = self.get_clean_sequence(_lowerCamelCase ) # a special token for Canine can be defined as follows: __lowercase = 0xe_0_0_5 __lowercase = chr(_lowerCamelCase ) tokenizer.add_special_tokens({'''cls_token''': special_token} ) __lowercase = tokenizer.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) self.assertEqual(len(_lowerCamelCase ) ,1 ) __lowercase = tokenizer.decode(ids + encoded_special_token ,clean_up_tokenization_spaces=_lowerCamelCase ) __lowercase = tokenizer.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) __lowercase = tokenizer.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) __lowercase = tokenizer.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) self.assertEqual(_lowerCamelCase ,input_encoded + special_token_id ) __lowercase = tokenizer.decode(_lowerCamelCase ,skip_special_tokens=_lowerCamelCase ) self.assertTrue(special_token not in decoded ) def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = self.get_tokenizers(do_lower_case=_lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): __lowercase = chr(0xe_0_0_5 ) __lowercase = chr(0xe_0_0_6 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] ,special_tokens=_lowerCamelCase ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({'''additional_special_tokens''': [SPECIAL_TOKEN_2]} ) __lowercase = tokenizer.tokenize(_lowerCamelCase ) __lowercase = tokenizer.tokenize(_lowerCamelCase ) self.assertEqual(len(_lowerCamelCase ) ,1 ) self.assertEqual(len(_lowerCamelCase ) ,1 ) self.assertEqual(token_a[0] ,_lowerCamelCase ) self.assertEqual(token_a[0] ,_lowerCamelCase ) @require_tokenizers def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = self.get_tokenizers(do_lower_case=_lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # a special token for Canine can be defined as follows: __lowercase = 0xe_0_0_6 __lowercase = chr(_lowerCamelCase ) __lowercase = AddedToken(_lowerCamelCase ,lstrip=_lowerCamelCase ) tokenizer.add_special_tokens({'''additional_special_tokens''': [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(_lowerCamelCase ) tokenizer.from_pretrained(_lowerCamelCase ) def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_lowerCamelCase ) with open(os.path.join(_lowerCamelCase ,'''special_tokens_map.json''' ) ,encoding='''utf-8''' ) as json_file: __lowercase = json.load(_lowerCamelCase ) with open(os.path.join(_lowerCamelCase ,'''tokenizer_config.json''' ) ,encoding='''utf-8''' ) as json_file: __lowercase = json.load(_lowerCamelCase ) # a special token for Canine can be defined as follows: __lowercase = 0xe_0_0_6 __lowercase = chr(_lowerCamelCase ) __lowercase = [new_token_a] __lowercase = [new_token_a] with open(os.path.join(_lowerCamelCase ,'''special_tokens_map.json''' ) ,'''w''' ,encoding='''utf-8''' ) as outfile: json.dump(_lowerCamelCase ,_lowerCamelCase ) with open(os.path.join(_lowerCamelCase ,'''tokenizer_config.json''' ) ,'''w''' ,encoding='''utf-8''' ) as outfile: json.dump(_lowerCamelCase ,_lowerCamelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __lowercase = tokenizer_class.from_pretrained(_lowerCamelCase ,extra_ids=0 ) self.assertIn(_lowerCamelCase ,tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] ,tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) ,) __lowercase = 0xe_0_0_7 __lowercase = chr(_lowerCamelCase ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __lowercase = [AddedToken(_lowerCamelCase ,lstrip=_lowerCamelCase )] __lowercase = tokenizer_class.from_pretrained( _lowerCamelCase ,additional_special_tokens=_lowerCamelCase ,extra_ids=0 ) self.assertIn(_lowerCamelCase ,tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] ,tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.get_tokenizers(do_lower_case=_lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): __lowercase = '''hello world''' if self.space_between_special_tokens: __lowercase = '''[CLS] hello world [SEP]''' else: __lowercase = input __lowercase = tokenizer.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) __lowercase = tokenizer.decode(_lowerCamelCase ,spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(_lowerCamelCase ,[output, output.lower()] ) def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): __lowercase = [ '''bos_token''', '''eos_token''', '''unk_token''', '''sep_token''', '''pad_token''', '''cls_token''', '''mask_token''', ] __lowercase = '''a''' __lowercase = ord(_lowerCamelCase ) for attr in attributes_list: setattr(_lowerCamelCase ,attr + '''_id''' ,_lowerCamelCase ) self.assertEqual(getattr(_lowerCamelCase ,_lowerCamelCase ) ,_lowerCamelCase ) self.assertEqual(getattr(_lowerCamelCase ,attr + '''_id''' ) ,_lowerCamelCase ) setattr(_lowerCamelCase ,attr + '''_id''' ,_lowerCamelCase ) self.assertEqual(getattr(_lowerCamelCase ,_lowerCamelCase ) ,_lowerCamelCase ) self.assertEqual(getattr(_lowerCamelCase ,attr + '''_id''' ) ,_lowerCamelCase ) setattr(_lowerCamelCase ,'''additional_special_tokens_ids''' ,[] ) self.assertListEqual(getattr(_lowerCamelCase ,'''additional_special_tokens''' ) ,[] ) self.assertListEqual(getattr(_lowerCamelCase ,'''additional_special_tokens_ids''' ) ,[] ) __lowercase = 0xe_0_0_6 __lowercase = chr(_lowerCamelCase ) setattr(_lowerCamelCase ,'''additional_special_tokens_ids''' ,[additional_special_token_id] ) self.assertListEqual(getattr(_lowerCamelCase ,'''additional_special_tokens''' ) ,[additional_special_token] ) self.assertListEqual(getattr(_lowerCamelCase ,'''additional_special_tokens_ids''' ) ,[additional_special_token_id] ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' pass def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' pass def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' pass def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' pass def _UpperCAmelCase (self ) -> int: '''simple docstring''' pass def _UpperCAmelCase (self ) -> Any: '''simple docstring''' pass def _UpperCAmelCase (self ) -> int: '''simple docstring''' pass def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' pass
217
1
"""simple docstring""" import os from datetime import datetime as dt from github import Github _A = [ """good first issue""", """feature request""", """wip""", ] def lowercase_ ( ) -> List[str]: lowerCAmelCase__ : List[str] = Github(os.environ["""GITHUB_TOKEN"""] ) lowerCAmelCase__ : Any = g.get_repo("""huggingface/accelerate""" ) lowerCAmelCase__ : Optional[int] = repo.get_issues(state="""open""" ) for issue in open_issues: lowerCAmelCase__ : Optional[Any] = sorted([comment for comment in issue.get_comments()] , key=lambda __UpperCAmelCase : i.created_at , reverse=__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = comments[0] if len(__UpperCAmelCase ) > 0 else None lowerCAmelCase__ : Dict = dt.utcnow() lowerCAmelCase__ : Dict = (current_time - issue.updated_at).days lowerCAmelCase__ : Optional[Any] = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state="""closed""" ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
242
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _A = 1_6 _A = 3_2 def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase = 16 ) -> List[str]: lowerCAmelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowerCAmelCase__ : List[str] = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(__UpperCAmelCase ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase__ : Union[str, Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCAmelCase__ : str = datasets.map( __UpperCAmelCase , batched=__UpperCAmelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase__ : List[str] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__UpperCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCAmelCase__ : Union[str, Any] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCAmelCase__ : Optional[Any] = 16 elif accelerator.mixed_precision != "no": lowerCAmelCase__ : Any = 8 else: lowerCAmelCase__ : Any = None return tokenizer.pad( __UpperCAmelCase , padding="""longest""" , max_length=__UpperCAmelCase , pad_to_multiple_of=__UpperCAmelCase , return_tensors="""pt""" , ) # Instantiate dataloaders. lowerCAmelCase__ : Any = DataLoader( tokenized_datasets["""train"""] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = DataLoader( tokenized_datasets["""validation"""] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=__UpperCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _A = mocked_dataloaders # noqa: F811 def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , __UpperCAmelCase ) == "1": lowerCAmelCase__ : List[Any] = 2 # New Code # lowerCAmelCase__ : Tuple = int(args.gradient_accumulation_steps ) # Initialize accelerator lowerCAmelCase__ : Union[str, Any] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__UpperCAmelCase ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( """Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase__ : Tuple = config["""lr"""] lowerCAmelCase__ : int = int(config["""num_epochs"""] ) lowerCAmelCase__ : List[Any] = int(config["""seed"""] ) lowerCAmelCase__ : Tuple = int(config["""batch_size"""] ) lowerCAmelCase__ : Optional[int] = evaluate.load("""glue""" , """mrpc""" ) set_seed(__UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = get_dataloaders(__UpperCAmelCase , __UpperCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase__ : Tuple = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__UpperCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCAmelCase__ : Optional[Any] = model.to(accelerator.device ) # Instantiate optimizer lowerCAmelCase__ : Optional[int] = AdamW(params=model.parameters() , lr=__UpperCAmelCase ) # Instantiate scheduler lowerCAmelCase__ : Optional[Any] = get_linear_schedule_with_warmup( optimizer=__UpperCAmelCase , num_warmup_steps=100 , num_training_steps=(len(__UpperCAmelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : int = accelerator.prepare( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Now we train the model for epoch in range(__UpperCAmelCase ): model.train() for step, batch in enumerate(__UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__UpperCAmelCase ): lowerCAmelCase__ : str = model(**__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = output.loss accelerator.backward(__UpperCAmelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase__ : int = model(**__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = outputs.logits.argmax(dim=-1 ) lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=__UpperCAmelCase , references=__UpperCAmelCase , ) lowerCAmelCase__ : Any = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , __UpperCAmelCase ) def lowercase_ ( ) -> Any: lowerCAmelCase__ : Union[str, Any] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=__UpperCAmelCase , default=__UpperCAmelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=__UpperCAmelCase , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) lowerCAmelCase__ : List[str] = parser.parse_args() lowerCAmelCase__ : Any = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(__UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": main()
242
1
"""simple docstring""" def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->int: """simple docstring""" if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError('The length of profit and weight must be same.' ) if max_weight <= 0: raise ValueError('max_weight must greater than zero.' ) if any(p < 0 for p in profit ): raise ValueError('Profit can not be negative.' ) if any(w < 0 for w in weight ): raise ValueError('Weight can not be negative.' ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. lowerCAmelCase__ :Union[str, Any] = [p / w for p, w in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] # Creating a copy of the list and sorting profit/weight in ascending order lowerCAmelCase__ :Union[str, Any] = sorted(_SCREAMING_SNAKE_CASE ) # declaring useful variables lowerCAmelCase__ :str = len(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Optional[Any] = 0 lowerCAmelCase__ :Any = 0 lowerCAmelCase__ :Optional[Any] = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight lowerCAmelCase__ :Optional[int] = sorted_profit_by_weight[length - i - 1] lowerCAmelCase__ :Any = profit_by_weight.index(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :int = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( """Input profits, weights, and then max_weight (all positive ints) separated by """ """spaces.""" ) __A = [int(x) for x in input("""Input profits separated by spaces: """).split()] __A = [int(x) for x in input("""Input weights separated by spaces: """).split()] __A = int(input("""Max weight allowed: """)) # Function Call calc_profit(profit, weight, max_weight)
254
"""simple docstring""" import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class _lowerCAmelCase ( a ): """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase=1_3 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=9_9 , __UpperCAmelCase=3_2 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=3_7 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_1_2 , __UpperCAmelCase=1_6 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase="None" , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = parent lowerCAmelCase__ :int = batch_size lowerCAmelCase__ :List[str] = seq_length lowerCAmelCase__ :Tuple = is_training lowerCAmelCase__ :Tuple = use_input_mask lowerCAmelCase__ :Dict = use_token_type_ids lowerCAmelCase__ :Union[str, Any] = use_labels lowerCAmelCase__ :Tuple = vocab_size lowerCAmelCase__ :List[Any] = hidden_size lowerCAmelCase__ :Tuple = num_hidden_layers lowerCAmelCase__ :str = num_attention_heads lowerCAmelCase__ :List[str] = intermediate_size lowerCAmelCase__ :Optional[Any] = hidden_act lowerCAmelCase__ :Union[str, Any] = hidden_dropout_prob lowerCAmelCase__ :Any = attention_probs_dropout_prob lowerCAmelCase__ :Dict = max_position_embeddings lowerCAmelCase__ :Tuple = type_vocab_size lowerCAmelCase__ :List[str] = type_sequence_label_size lowerCAmelCase__ :Tuple = initializer_range lowerCAmelCase__ :Optional[Any] = num_labels lowerCAmelCase__ :int = num_choices lowerCAmelCase__ :Union[str, Any] = relative_attention lowerCAmelCase__ :int = position_biased_input lowerCAmelCase__ :Optional[int] = pos_att_type lowerCAmelCase__ :Dict = scope def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ :int = None if self.use_input_mask: lowerCAmelCase__ :int = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) lowerCAmelCase__ :Optional[Any] = None if self.use_token_type_ids: lowerCAmelCase__ :Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase__ :Dict = None lowerCAmelCase__ :Union[str, Any] = None lowerCAmelCase__ :Dict = None if self.use_labels: lowerCAmelCase__ :Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ :List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase__ :Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase__ :Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case ( self ): '''simple docstring''' return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = self.get_config() lowerCAmelCase__ :Optional[Any] = 3_0_0 return config def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' self.parent.assertListEqual(list(result.loss.size() ) , [] ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Dict = DebertaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ :Any = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase )[0] lowerCAmelCase__ :List[Any] = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase )[0] lowerCAmelCase__ :Dict = model(__UpperCAmelCase )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :str = DebertaForMaskedLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ :List[str] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Tuple = self.num_labels lowerCAmelCase__ :int = DebertaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ :Optional[int] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = self.num_labels lowerCAmelCase__ :Any = DebertaForTokenClassification(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ :List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :int = DebertaForQuestionAnswering(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ :str = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) :Tuple = config_and_inputs lowerCAmelCase__ :int = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _lowerCAmelCase ( a , a , unittest.TestCase ): """simple docstring""" __magic_name__ :List[str] = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) __magic_name__ :Optional[Any] = ( { """feature-extraction""": DebertaModel, """fill-mask""": DebertaForMaskedLM, """question-answering""": DebertaForQuestionAnswering, """text-classification""": DebertaForSequenceClassification, """token-classification""": DebertaForTokenClassification, """zero-shot""": DebertaForSequenceClassification, } if is_torch_available() else {} ) __magic_name__ :Tuple = True __magic_name__ :List[Any] = False __magic_name__ :Optional[Any] = False __magic_name__ :str = False __magic_name__ :int = False def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[str] = DebertaModelTester(self ) lowerCAmelCase__ :List[Any] = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=3_7 ) def snake_case ( self ): '''simple docstring''' self.config_tester.run_common_tests() def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__UpperCAmelCase ) @slow def snake_case ( self ): '''simple docstring''' for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ :int = DebertaModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @require_torch @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @unittest.skip(reason='Model not available yet' ) def snake_case ( self ): '''simple docstring''' pass @slow def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = DebertaModel.from_pretrained('microsoft/deberta-base' ) lowerCAmelCase__ :str = torch.tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) lowerCAmelCase__ :Tuple = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCAmelCase__ :int = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )[0] # compare the actual values for a slice. lowerCAmelCase__ :str = torch.tensor( [[[-0.59_86, -0.80_55, -0.84_62], [1.44_84, -0.93_48, -0.80_59], [0.31_23, 0.00_32, -1.41_31]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __UpperCAmelCase , atol=1E-4 ) , F"{output[:, 1:4, 1:4]}" )
254
1
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowerCAmelCase__ = logging.get_logger(__name__) @add_end_docstrings(__UpperCamelCase ) class a__ ( __UpperCamelCase ): """simple docstring""" def __init__( self , **lowercase ) -> List[str]: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self , lowercase , **lowercase ) -> Optional[Any]: '''simple docstring''' return super().__call__(lowerCAmelCase__ , **lowerCAmelCase__ ) def UpperCamelCase ( self , **lowercase ) -> Dict: '''simple docstring''' A__ = {} if "candidate_labels" in kwargs: A__ = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: A__ = kwargs['hypothesis_template'] return preprocess_params, {}, {} def UpperCamelCase ( self , lowercase , lowercase=None , lowercase="This is a photo of {}." ) -> int: '''simple docstring''' A__ = load_image(lowerCAmelCase__ ) A__ = self.image_processor(images=[image] , return_tensors=self.framework ) A__ = candidate_labels A__ = [hypothesis_template.format(lowerCAmelCase__ ) for x in candidate_labels] A__ = self.tokenizer(lowerCAmelCase__ , return_tensors=self.framework , padding=lowerCAmelCase__ ) A__ = [text_inputs] return inputs def UpperCamelCase ( self , lowercase ) -> int: '''simple docstring''' A__ = model_inputs.pop("candidate_labels" ) A__ = model_inputs.pop("text_inputs" ) if isinstance(text_inputs[0] , lowerCAmelCase__ ): A__ = text_inputs[0] else: # Batching case. A__ = text_inputs[0][0] A__ = self.model(**lowerCAmelCase__ , **lowerCAmelCase__ ) A__ = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def UpperCamelCase ( self , lowercase ) -> Union[str, Any]: '''simple docstring''' A__ = model_outputs.pop("candidate_labels" ) A__ = model_outputs['logits'][0] if self.framework == "pt": A__ = logits.softmax(dim=-1 ).squeeze(-1 ) A__ = probs.tolist() if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): A__ = [scores] elif self.framework == "tf": A__ = stable_softmax(lowerCAmelCase__ , axis=-1 ) A__ = probs.numpy().tolist() else: raise ValueError(F'Unsupported framework: {self.framework}' ) A__ = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(lowerCAmelCase__ , lowerCAmelCase__ ) , key=lambda lowercase : -x[0] ) ] return result
68
from __future__ import annotations def snake_case_ ( snake_case , snake_case ) -> list[int]: lowercase__: List[str] = 0 lowercase__: Dict = len(snake_case ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: lowercase__: Dict = i + 1 else: lowercase__: List[Any] = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F'''{two_pointer([2, 7, 11, 15], 9) = }''')
196
0
"""simple docstring""" import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class lowerCamelCase ( _UpperCAmelCase , unittest.TestCase ): lowercase : List[Any] = RoCBertTokenizer lowercase : Tuple = None lowercase : Tuple = False lowercase : Optional[Any] = True lowercase : Dict = filter_non_english def a_ ( self ): super().setUp() UpperCamelCase : Tuple = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """你""", """好""", """是""", """谁""", """a""", """b""", """c""", """d"""] UpperCamelCase : int = {} UpperCamelCase : Optional[Any] = {} for i, value in enumerate(SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Optional[Any] = i UpperCamelCase : List[str] = i UpperCamelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCamelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_shape_file"""] ) UpperCamelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_pronunciation_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) with open(self.word_shape_file , """w""" , encoding="""utf-8""" ) as word_shape_writer: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_ ) with open(self.word_pronunciation_file , """w""" , encoding="""utf-8""" ) as word_pronunciation_writer: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_ ) def a_ ( self ): UpperCamelCase : Union[str, Any] = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) UpperCamelCase : List[Any] = tokenizer.tokenize("""你好[SEP]你是谁""" ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , ["""你""", """好""", """[SEP]""", """你""", """是""", """谁"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE_ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE_ ) , [5, 6, 2, 5, 7, 8] ) def a_ ( self ): UpperCamelCase : int = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) , ["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def a_ ( self ): UpperCamelCase : str = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def a_ ( self ): UpperCamelCase : List[Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""h\u00E9llo"""] ) def a_ ( self ): UpperCamelCase : Optional[int] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def a_ ( self ): UpperCamelCase : List[Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def a_ ( self ): UpperCamelCase : Optional[int] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def a_ ( self ): UpperCamelCase : List[Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def a_ ( self ): UpperCamelCase : Optional[int] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def a_ ( self ): UpperCamelCase : Tuple = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def a_ ( self ): UpperCamelCase : Optional[int] = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] UpperCamelCase : str = {} for i, token in enumerate(SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Dict = i UpperCamelCase : Tuple = RoCBertWordpieceTokenizer(vocab=SCREAMING_SNAKE_CASE_ , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) , ["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) , ["""[UNK]""", """runn""", """##ing"""] ) def a_ ( self ): self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def a_ ( self ): self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def a_ ( self ): self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) def a_ ( self ): UpperCamelCase : List[str] = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) if self.test_rust_tokenizer: UpperCamelCase : Any = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) def a_ ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): UpperCamelCase : int = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = f'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.' UpperCamelCase : List[str] = tokenizer_r.encode_plus( SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase : Dict = tokenizer_r.do_lower_case if hasattr(SCREAMING_SNAKE_CASE_ , """do_lower_case""" ) else False UpperCamelCase : List[Any] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """Allen"""), ((21, 23), """##NL"""), ((23, 24), """##P"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """allen"""), ((21, 23), """##nl"""), ((23, 24), """##p"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""] ) def a_ ( self ): UpperCamelCase : Dict = ["""的""", """人""", """有"""] UpperCamelCase : Tuple = """""".join(SCREAMING_SNAKE_CASE_ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): UpperCamelCase : Optional[Any] = True UpperCamelCase : str = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = tokenizer_p.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = False UpperCamelCase : Dict = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = tokenizer_p.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) # it is expected that only the first Chinese character is not preceded by "##". UpperCamelCase : List[str] = [ f'##{token}' if idx != 0 else token for idx, token in enumerate(SCREAMING_SNAKE_CASE_ ) ] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def a_ ( self ): UpperCamelCase : Optional[Any] = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) UpperCamelCase : Tuple = tokenizer.encode("""你好""" , add_special_tokens=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = tokenizer.encode("""你是谁""" , add_special_tokens=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def a_ ( self ): UpperCamelCase : Optional[int] = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE_ ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): UpperCamelCase : str = """你好,你是谁""" UpperCamelCase : int = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = tokenizer.prepare_for_model( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = tokenizer.encode_plus(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
27
"""simple docstring""" import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class lowerCamelCase ( _UpperCAmelCase ): def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=1 , ): UpperCamelCase : Tuple = parent UpperCamelCase : Optional[int] = batch_size UpperCamelCase : Optional[Any] = seq_length UpperCamelCase : int = is_training UpperCamelCase : Union[str, Any] = use_input_mask UpperCamelCase : Union[str, Any] = use_token_type_ids UpperCamelCase : Dict = use_labels UpperCamelCase : Union[str, Any] = vocab_size UpperCamelCase : Union[str, Any] = hidden_size UpperCamelCase : Tuple = num_hidden_layers UpperCamelCase : Any = num_attention_heads UpperCamelCase : int = intermediate_size UpperCamelCase : str = hidden_act UpperCamelCase : Optional[Any] = hidden_dropout_prob UpperCamelCase : str = attention_probs_dropout_prob UpperCamelCase : List[Any] = max_position_embeddings UpperCamelCase : Optional[Any] = type_vocab_size UpperCamelCase : int = type_sequence_label_size UpperCamelCase : Dict = initializer_range UpperCamelCase : Dict = num_labels UpperCamelCase : Tuple = num_choices UpperCamelCase : Optional[int] = scope UpperCamelCase : List[Any] = q_groups UpperCamelCase : Tuple = k_groups UpperCamelCase : Any = v_groups UpperCamelCase : List[str] = post_attention_groups UpperCamelCase : Tuple = intermediate_groups UpperCamelCase : int = output_groups def a_ ( self ): UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase : Tuple = None if self.use_input_mask: UpperCamelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase : Optional[int] = None UpperCamelCase : List[Any] = None UpperCamelCase : Dict = None if self.use_labels: UpperCamelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase : Tuple = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase : Dict = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def a_ ( self ): return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : List[str] = SqueezeBertModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Any = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Union[str, Any] = SqueezeBertForMaskedLM(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : List[Any] = SqueezeBertForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : str = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : str = self.num_labels UpperCamelCase : Optional[Any] = SqueezeBertForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Any = self.num_labels UpperCamelCase : str = SqueezeBertForTokenClassification(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Optional[int] = self.num_choices UpperCamelCase : Tuple = SqueezeBertForMultipleChoice(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase : Tuple = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a_ ( self ): UpperCamelCase : Optional[int] = self.prepare_config_and_inputs() ((UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase)) : Optional[int] = config_and_inputs UpperCamelCase : Optional[int] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCamelCase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): lowercase : Dict = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) lowercase : Dict = ( { 'feature-extraction': SqueezeBertModel, 'fill-mask': SqueezeBertForMaskedLM, 'question-answering': SqueezeBertForQuestionAnswering, 'text-classification': SqueezeBertForSequenceClassification, 'token-classification': SqueezeBertForTokenClassification, 'zero-shot': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) lowercase : Dict = False lowercase : str = True lowercase : str = False def a_ ( self ): UpperCamelCase : Any = SqueezeBertModelTester(self ) UpperCamelCase : List[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , dim=37 ) def a_ ( self ): self.config_tester.run_common_tests() def a_ ( self ): UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*SCREAMING_SNAKE_CASE_ ) def a_ ( self ): UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*SCREAMING_SNAKE_CASE_ ) def a_ ( self ): UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*SCREAMING_SNAKE_CASE_ ) def a_ ( self ): UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*SCREAMING_SNAKE_CASE_ ) def a_ ( self ): UpperCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*SCREAMING_SNAKE_CASE_ ) def a_ ( self ): UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*SCREAMING_SNAKE_CASE_ ) @slow def a_ ( self ): for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : Optional[Any] = SqueezeBertModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @require_sentencepiece @require_tokenizers @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def a_ ( self ): UpperCamelCase : Optional[Any] = SqueezeBertForSequenceClassification.from_pretrained("""squeezebert/squeezebert-mnli""" ) UpperCamelCase : Dict = torch.tensor([[1, 2_9414, 232, 328, 740, 1140, 1_2695, 69, 13, 1588, 2]] ) UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_ )[0] UpperCamelCase : Optional[Any] = torch.Size((1, 3) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = torch.tensor([[0.6401, -0.0349, -0.6041]] ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) )
27
1
"""simple docstring""" from __future__ import annotations def a_ ( lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ , UpperCAmelCase__ = set(lowerCamelCase ), [start] while stack: UpperCAmelCase__ = stack.pop() explored.add(lowerCamelCase ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(lowerCamelCase ) return explored lowerCAmelCase__ : Any = { 'A': ['B', 'C', 'D'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F'], 'D': ['B', 'D'], 'E': ['B', 'F'], 'F': ['C', 'E', 'G'], 'G': ['F'], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, 'A'))
98
"""simple docstring""" import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class snake_case : """simple docstring""" @staticmethod def __lowerCAmelCase ( *lowerCamelCase__ : List[Any] ,**lowerCamelCase__ : Union[str, Any] ): pass def a_ ( lowerCamelCase ): UpperCAmelCase__ = hashlib.mda(image.tobytes() ) return m.hexdigest()[:1_0] def a_ ( lowerCamelCase ): UpperCAmelCase__ = np.array(lowerCamelCase ) UpperCAmelCase__ = npimg.shape return {"hash": hashimage(lowerCamelCase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class snake_case ( unittest.TestCase ): """simple docstring""" snake_case__ = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) snake_case__ = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def __lowerCAmelCase ( self : List[Any] ,lowerCamelCase__ : Dict ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : str ): UpperCAmelCase__ = MaskGenerationPipeline(model=lowerCamelCase__ ,image_processor=lowerCamelCase__ ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __lowerCAmelCase ( self : Union[str, Any] ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : str ): pass @require_tf @unittest.skip('Image segmentation not implemented in TF' ) def __lowerCAmelCase ( self : Optional[Any] ): pass @slow @require_torch def __lowerCAmelCase ( self : List[str] ): UpperCAmelCase__ = pipeline('mask-generation' ,model='facebook/sam-vit-huge' ) UpperCAmelCase__ = image_segmenter('http://images.cocodataset.org/val2017/000000039769.jpg' ,points_per_batch=256 ) # Shortening by hashing UpperCAmelCase__ = [] for i, o in enumerate(outputs['masks'] ): new_outupt += [{"mask": mask_to_test_readable(lowerCamelCase__ ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(lowerCamelCase__ ,decimals=4 ) ,[ {'mask': {'hash': '115ad19f5f', 'shape': (480, 640)}, 'scores': 1.0_4_4_4}, {'mask': {'hash': '6affa964c6', 'shape': (480, 640)}, 'scores': 1.0_2_1}, {'mask': {'hash': 'dfe28a0388', 'shape': (480, 640)}, 'scores': 1.0_1_6_7}, {'mask': {'hash': 'c0a5f4a318', 'shape': (480, 640)}, 'scores': 1.0_1_3_2}, {'mask': {'hash': 'fe8065c197', 'shape': (480, 640)}, 'scores': 1.0_0_5_3}, {'mask': {'hash': 'e2d0b7a0b7', 'shape': (480, 640)}, 'scores': 0.9_9_6_7}, {'mask': {'hash': '453c7844bd', 'shape': (480, 640)}, 'scores': 0.9_9_3}, {'mask': {'hash': '3d44f2926d', 'shape': (480, 640)}, 'scores': 0.9_9_0_9}, {'mask': {'hash': '64033ddc3f', 'shape': (480, 640)}, 'scores': 0.9_8_7_9}, {'mask': {'hash': '801064ff79', 'shape': (480, 640)}, 'scores': 0.9_8_3_4}, {'mask': {'hash': '6172f276ef', 'shape': (480, 640)}, 'scores': 0.9_7_1_6}, {'mask': {'hash': 'b49e60e084', 'shape': (480, 640)}, 'scores': 0.9_6_1_2}, {'mask': {'hash': 'a811e775fd', 'shape': (480, 640)}, 'scores': 0.9_5_9_9}, {'mask': {'hash': 'a6a8ebcf4b', 'shape': (480, 640)}, 'scores': 0.9_5_5_2}, {'mask': {'hash': '9d8257e080', 'shape': (480, 640)}, 'scores': 0.9_5_3_2}, {'mask': {'hash': '32de6454a8', 'shape': (480, 640)}, 'scores': 0.9_5_1_6}, {'mask': {'hash': 'af3d4af2c8', 'shape': (480, 640)}, 'scores': 0.9_4_9_9}, {'mask': {'hash': '3c6db475fb', 'shape': (480, 640)}, 'scores': 0.9_4_8_3}, {'mask': {'hash': 'c290813fb9', 'shape': (480, 640)}, 'scores': 0.9_4_6_4}, {'mask': {'hash': 'b6f0b8f606', 'shape': (480, 640)}, 'scores': 0.9_4_3}, {'mask': {'hash': '92ce16bfdf', 'shape': (480, 640)}, 'scores': 0.9_4_3}, {'mask': {'hash': 'c749b25868', 'shape': (480, 640)}, 'scores': 0.9_4_0_8}, {'mask': {'hash': 'efb6cab859', 'shape': (480, 640)}, 'scores': 0.9_3_3_5}, {'mask': {'hash': '1ff2eafb30', 'shape': (480, 640)}, 'scores': 0.9_3_2_6}, {'mask': {'hash': '788b798e24', 'shape': (480, 640)}, 'scores': 0.9_2_6_2}, {'mask': {'hash': 'abea804f0e', 'shape': (480, 640)}, 'scores': 0.8_9_9_9}, {'mask': {'hash': '7b9e8ddb73', 'shape': (480, 640)}, 'scores': 0.8_9_8_6}, {'mask': {'hash': 'cd24047c8a', 'shape': (480, 640)}, 'scores': 0.8_9_8_4}, {'mask': {'hash': '6943e6bcbd', 'shape': (480, 640)}, 'scores': 0.8_8_7_3}, {'mask': {'hash': 'b5f47c9191', 'shape': (480, 640)}, 'scores': 0.8_8_7_1} ] ,) # fmt: on @require_torch @slow def __lowerCAmelCase ( self : Optional[Any] ): UpperCAmelCase__ = 'facebook/sam-vit-huge' UpperCAmelCase__ = pipeline('mask-generation' ,model=lowerCamelCase__ ) UpperCAmelCase__ = image_segmenter( 'http://images.cocodataset.org/val2017/000000039769.jpg' ,pred_iou_thresh=1 ,points_per_batch=256 ) # Shortening by hashing UpperCAmelCase__ = [] for i, o in enumerate(outputs['masks'] ): new_outupt += [{"mask": mask_to_test_readable(lowerCamelCase__ ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(lowerCamelCase__ ,decimals=4 ) ,[ {'mask': {'hash': '115ad19f5f', 'shape': (480, 640)}, 'scores': 1.0_4_4_4}, {'mask': {'hash': '6affa964c6', 'shape': (480, 640)}, 'scores': 1.0_2_1_0}, {'mask': {'hash': 'dfe28a0388', 'shape': (480, 640)}, 'scores': 1.0_1_6_7}, {'mask': {'hash': 'c0a5f4a318', 'shape': (480, 640)}, 'scores': 1.0_1_3_2}, {'mask': {'hash': 'fe8065c197', 'shape': (480, 640)}, 'scores': 1.0_0_5_3}, ] ,)
98
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { "microsoft/cvt-13": "https://huggingface.co/microsoft/cvt-13/resolve/main/config.json", # See all Cvt models at https://huggingface.co/models?filter=cvt } class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="cvt" def __init__( self , _A=3 , _A=[7, 3, 3] , _A=[4, 2, 2] , _A=[2, 1, 1] , _A=[64, 192, 384] , _A=[1, 3, 6] , _A=[1, 2, 10] , _A=[4.0, 4.0, 4.0] , _A=[0.0, 0.0, 0.0] , _A=[0.0, 0.0, 0.0] , _A=[0.0, 0.0, 0.1] , _A=[True, True, True] , _A=[False, False, True] , _A=["dw_bn", "dw_bn", "dw_bn"] , _A=[3, 3, 3] , _A=[1, 1, 1] , _A=[2, 2, 2] , _A=[1, 1, 1] , _A=[1, 1, 1] , _A=0.02 , _A=1E-12 , **_A , ) -> Dict: super().__init__(**_A ) SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = patch_sizes SCREAMING_SNAKE_CASE_ = patch_stride SCREAMING_SNAKE_CASE_ = patch_padding SCREAMING_SNAKE_CASE_ = embed_dim SCREAMING_SNAKE_CASE_ = num_heads SCREAMING_SNAKE_CASE_ = depth SCREAMING_SNAKE_CASE_ = mlp_ratio SCREAMING_SNAKE_CASE_ = attention_drop_rate SCREAMING_SNAKE_CASE_ = drop_rate SCREAMING_SNAKE_CASE_ = drop_path_rate SCREAMING_SNAKE_CASE_ = qkv_bias SCREAMING_SNAKE_CASE_ = cls_token SCREAMING_SNAKE_CASE_ = qkv_projection_method SCREAMING_SNAKE_CASE_ = kernel_qkv SCREAMING_SNAKE_CASE_ = padding_kv SCREAMING_SNAKE_CASE_ = stride_kv SCREAMING_SNAKE_CASE_ = padding_q SCREAMING_SNAKE_CASE_ = stride_q SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = layer_norm_eps
257
__UpperCAmelCase = [ (10_00, "M"), (9_00, "CM"), (5_00, "D"), (4_00, "CD"), (1_00, "C"), (90, "XC"), (50, "L"), (40, "XL"), (10, "X"), (9, "IX"), (5, "V"), (4, "IV"), (1, "I"), ] def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 1_00, '''D''': 5_00, '''M''': 10_00} SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 while place < len(__lowerCamelCase ): if (place + 1 < len(__lowerCamelCase )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [] for arabic, roman in ROMAN: ((SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_)) = divmod(__lowerCamelCase, __lowerCamelCase ) result.append(roman * factor ) if number == 0: break return "".join(__lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
257
1
import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _snake_case = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.14.0", "To fix: pip install -r examples/pytorch/audio-classification/requirements.txt") def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 16_000 ): '''simple docstring''' _lowerCAmelCase : List[str] = int(round(sample_rate * max_length ) ) if len(_lowerCamelCase ) <= sample_length: return wav _lowerCAmelCase : Tuple = randint(0 , len(_lowerCamelCase ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field(default=a , metadata={'help': 'Name of a dataset from the datasets package'}) lowerCamelCase__ = field( default=a , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}) lowerCamelCase__ = field( default=a , metadata={'help': 'A file containing the training audio paths and labels.'}) lowerCamelCase__ = field( default=a , metadata={'help': 'A file containing the validation audio paths and labels.'}) lowerCamelCase__ = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) lowerCamelCase__ = field( default='validation' , metadata={ 'help': ( 'The name of the training data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) lowerCamelCase__ = field( default='audio' , metadata={'help': 'The name of the dataset column containing the audio data. Defaults to \'audio\''} , ) lowerCamelCase__ = field( default='label' , metadata={'help': 'The name of the dataset column containing the labels. Defaults to \'label\''}) lowerCamelCase__ = field( default=a , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) lowerCamelCase__ = field( default=a , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) lowerCamelCase__ = field( default=20 , metadata={'help': 'Audio clips will be randomly cut to this length during training if the value is set.'} , ) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field( default='facebook/wav2vec2-base' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Pretrained config name or path if not the same as model_name'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Where do you want to store the pretrained models downloaded from the Hub'}) lowerCamelCase__ = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Name or path of preprocessor config.'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to freeze the feature encoder layers of the model.'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to generate an attention mask in the feature extractor.'}) lowerCamelCase__ = field( default=a , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def snake_case__ ( self): '''simple docstring''' if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( "The argument `--freeze_feature_extractor` is deprecated and " "will be removed in a future version. Use `--freeze_feature_encoder`" "instead. Setting `freeze_feature_encoder==True`.", __a, ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( "The argument `--freeze_feature_extractor` is deprecated and " "should not be used in combination with `--freeze_feature_encoder`." "Only make use of `--freeze_feature_encoder`.") def A ( ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : List[Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_audio_classification" , _lowerCamelCase , _lowerCamelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _lowerCAmelCase : Tuple = training_args.get_process_log_level() logger.setLevel(_lowerCamelCase ) transformers.utils.logging.set_verbosity(_lowerCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} " + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. _lowerCAmelCase : Dict = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _lowerCAmelCase : Optional[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to train from scratch." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset and prepare it for the audio classification task. _lowerCAmelCase : Tuple = DatasetDict() _lowerCAmelCase : str = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) _lowerCAmelCase : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F"--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. " "Make sure to set `--audio_column_name` to the correct audio column - one of " F"{', '.join(raw_datasets['train'].column_names )}." ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F"--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. " "Make sure to set `--label_column_name` to the correct text column - one of " F"{', '.join(raw_datasets['train'].column_names )}." ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy _lowerCAmelCase : Any = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. _lowerCAmelCase : Any = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) _lowerCAmelCase : Union[str, Any] = feature_extractor.model_input_names[0] def train_transforms(_lowerCamelCase ): _lowerCAmelCase : Dict = [] for audio in batch[data_args.audio_column_name]: _lowerCAmelCase : Any = random_subsample( audio["array"] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(_lowerCamelCase ) _lowerCAmelCase : List[str] = feature_extractor(_lowerCamelCase , sampling_rate=feature_extractor.sampling_rate ) _lowerCAmelCase : Optional[int] = {model_input_name: inputs.get(_lowerCamelCase )} _lowerCAmelCase : List[str] = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = [audio["array"] for audio in batch[data_args.audio_column_name]] _lowerCAmelCase : Tuple = feature_extractor(_lowerCamelCase , sampling_rate=feature_extractor.sampling_rate ) _lowerCAmelCase : List[str] = {model_input_name: inputs.get(_lowerCamelCase )} _lowerCAmelCase : Union[str, Any] = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. _lowerCAmelCase : int = raw_datasets["train"].features[data_args.label_column_name].names _lowerCAmelCase , _lowerCAmelCase : str = {}, {} for i, label in enumerate(_lowerCamelCase ): _lowerCAmelCase : List[str] = str(_lowerCamelCase ) _lowerCAmelCase : Tuple = label # Load the accuracy metric from the datasets package _lowerCAmelCase : Dict = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(_lowerCamelCase ): _lowerCAmelCase : int = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=_lowerCamelCase , references=eval_pred.label_ids ) _lowerCAmelCase : Union[str, Any] = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(_lowerCamelCase ) , labelaid=_lowerCamelCase , idalabel=_lowerCamelCase , finetuning_task="audio-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _lowerCAmelCase : Optional[int] = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: _lowerCAmelCase : Union[str, Any] = ( raw_datasets["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(_lowerCamelCase , output_all_columns=_lowerCamelCase ) if training_args.do_eval: if data_args.max_eval_samples is not None: _lowerCAmelCase : int = ( raw_datasets["eval"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(_lowerCamelCase , output_all_columns=_lowerCamelCase ) # Initialize our trainer _lowerCAmelCase : Optional[Any] = Trainer( model=_lowerCamelCase , args=_lowerCamelCase , train_dataset=raw_datasets["train"] if training_args.do_train else None , eval_dataset=raw_datasets["eval"] if training_args.do_eval else None , compute_metrics=_lowerCamelCase , tokenizer=_lowerCamelCase , ) # Training if training_args.do_train: _lowerCAmelCase : Any = None if training_args.resume_from_checkpoint is not None: _lowerCAmelCase : Optional[int] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _lowerCAmelCase : Union[str, Any] = last_checkpoint _lowerCAmelCase : Optional[Any] = trainer.train(resume_from_checkpoint=_lowerCamelCase ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _lowerCAmelCase : Dict = trainer.evaluate() trainer.log_metrics("eval" , _lowerCamelCase ) trainer.save_metrics("eval" , _lowerCamelCase ) # Write model card and (optionally) push to hub _lowerCAmelCase : int = { "finetuned_from": model_args.model_name_or_path, "tasks": "audio-classification", "dataset": data_args.dataset_name, "tags": ["audio-classification"], } if training_args.push_to_hub: trainer.push_to_hub(**_lowerCamelCase ) else: trainer.create_model_card(**_lowerCamelCase ) if __name__ == "__main__": main()
36
"""simple docstring""" import copy import re class snake_case__ : _snake_case : Dict = """hp""" _snake_case : List[str] = {} _snake_case : int = None @classmethod def a__ ( cls , lowerCamelCase , lowerCamelCase ): __a = prefix __a = defaults cls.build_naming_info() @staticmethod def a__ ( lowerCamelCase , lowerCamelCase ): if len(lowerCamelCase ) == 0: return "" __a = None if any(char.isdigit() for char in word ): raise Exception(F"Parameters should not contain numbers: '{word}' contains a number" ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 , len(lowerCamelCase ) + 1 ): __a = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: __a = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(lowerCamelCase ): __a = "" while integer != 0: __a = chr(ord("A" ) + integer % 10 ) + s integer //= 10 return s __a = 0 while True: __a = word + "#" + int_to_alphabetic(lowerCamelCase ) if sword in info["reverse_short_word"]: continue else: __a = sword break __a = short_word __a = word return short_word @staticmethod def a__ ( lowerCamelCase , lowerCamelCase ): __a = param_name.split("_" ) __a = [TrialShortNamer.shortname_for_word(lowerCamelCase , lowerCamelCase ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name __a = ["", "_"] for separator in separators: __a = separator.join(lowerCamelCase ) if shortname not in info["reverse_short_param"]: __a = shortname __a = param_name return shortname return param_name @staticmethod def a__ ( lowerCamelCase , lowerCamelCase ): __a = TrialShortNamer.shortname_for_key(lowerCamelCase , lowerCamelCase ) __a = short_name __a = param_name @classmethod def a__ ( cls ): if cls.NAMING_INFO is not None: return __a = { "short_word": {}, "reverse_short_word": {}, "short_param": {}, "reverse_short_param": {}, } __a = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(lowerCamelCase , lowerCamelCase ) __a = info @classmethod def a__ ( cls , lowerCamelCase ): cls.build_naming_info() assert cls.PREFIX is not None __a = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(F"You should provide a default value for the param name {k} with value {v}" ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue __a = cls.NAMING_INFO["short_param"][k] if isinstance(lowerCamelCase , lowerCamelCase ): __a = 1 if v else 0 __a = "" if isinstance(lowerCamelCase , (int, float) ) else "-" __a = F"{key}{sep}{v}" name.append(lowerCamelCase ) return "_".join(lowerCamelCase ) @classmethod def a__ ( cls , lowerCamelCase ): __a = repr[len(cls.PREFIX ) + 1 :] if repr == "": __a = [] else: __a = repr.split("_" ) __a = {} for value in values: if "-" in value: __a , __a = value.split("-" ) else: __a = re.sub("[0-9.]" , "" , lowerCamelCase ) __a = float(re.sub("[^0-9.]" , "" , lowerCamelCase ) ) __a = cls.NAMING_INFO["reverse_short_param"][p_k] __a = p_v for k in cls.DEFAULTS: if k not in parameters: __a = cls.DEFAULTS[k] return parameters
261
0
import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig UpperCAmelCase_ : List[str] = logging.get_logger(__name__) # General docstring UpperCAmelCase_ : Optional[Any] = '''PoolFormerConfig''' # Base docstring UpperCAmelCase_ : List[str] = '''sail/poolformer_s12''' UpperCAmelCase_ : List[str] = [1, 5_12, 7, 7] # Image classification docstring UpperCAmelCase_ : Optional[int] = '''sail/poolformer_s12''' UpperCAmelCase_ : Optional[int] = '''tabby, tabby cat''' UpperCAmelCase_ : str = [ '''sail/poolformer_s12''', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def SCREAMING_SNAKE_CASE_ ( __magic_name__ : List[str] , __magic_name__ : Dict = 0.0 , __magic_name__ : Tuple = False ) -> Dict: """simple docstring""" if drop_prob == 0.0 or not training: return input UpperCamelCase :Union[str, Any] = 1 - drop_prob UpperCamelCase :Dict = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets UpperCamelCase :Dict = keep_prob + torch.rand(_lowercase , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize UpperCamelCase :List[Any] = input.div(_lowercase ) * random_tensor return output class _SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : Optional[Any] , __lowerCamelCase : Optional[float] = None ): super().__init__() UpperCamelCase :Optional[Any] = drop_prob def _A ( self : Tuple , __lowerCamelCase : torch.Tensor ): return drop_path(__A , self.drop_prob , self.training ) def _A ( self : Optional[Any] ): return "p={}".format(self.drop_prob ) class _SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : Tuple , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Tuple , __lowerCamelCase : Dict , __lowerCamelCase : Any=None ): super().__init__() UpperCamelCase :Optional[int] = patch_size if isinstance(__A , collections.abc.Iterable ) else (patch_size, patch_size) UpperCamelCase :List[str] = stride if isinstance(__A , collections.abc.Iterable ) else (stride, stride) UpperCamelCase :int = padding if isinstance(__A , collections.abc.Iterable ) else (padding, padding) UpperCamelCase :Optional[Any] = nn.Convad(__A , __A , kernel_size=__A , stride=__A , padding=__A ) UpperCamelCase :List[Any] = norm_layer(__A ) if norm_layer else nn.Identity() def _A ( self : Dict , __lowerCamelCase : Optional[Any] ): UpperCamelCase :List[Any] = self.projection(__A ) UpperCamelCase :Union[str, Any] = self.norm(__A ) return embeddings class _SCREAMING_SNAKE_CASE ( nn.GroupNorm ): def __init__( self : Union[str, Any] , __lowerCamelCase : List[str] , **__lowerCamelCase : str ): super().__init__(1 , __A , **__A ) class _SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : Tuple , __lowerCamelCase : Optional[Any] ): super().__init__() UpperCamelCase :str = nn.AvgPoolad(__A , stride=1 , padding=pool_size // 2 , count_include_pad=__A ) def _A ( self : Optional[int] , __lowerCamelCase : Union[str, Any] ): return self.pool(__A ) - hidden_states class _SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : List[str] , __lowerCamelCase : Tuple , __lowerCamelCase : str , __lowerCamelCase : Tuple , __lowerCamelCase : int ): super().__init__() UpperCamelCase :Dict = nn.Convad(__A , __A , 1 ) UpperCamelCase :Any = nn.Convad(__A , __A , 1 ) UpperCamelCase :str = PoolFormerDropPath(__A ) if isinstance(config.hidden_act , __A ): UpperCamelCase :List[str] = ACTaFN[config.hidden_act] else: UpperCamelCase :List[Any] = config.hidden_act def _A ( self : Optional[Any] , __lowerCamelCase : List[str] ): UpperCamelCase :List[str] = self.conva(__A ) UpperCamelCase :List[str] = self.act_fn(__A ) UpperCamelCase :Optional[Any] = self.drop(__A ) UpperCamelCase :Dict = self.conva(__A ) UpperCamelCase :Tuple = self.drop(__A ) return hidden_states class _SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] ): super().__init__() UpperCamelCase :str = PoolFormerPooling(__A ) UpperCamelCase :Optional[int] = PoolFormerOutput(__A , __A , __A , __A ) UpperCamelCase :List[str] = PoolFormerGroupNorm(__A ) UpperCamelCase :Tuple = PoolFormerGroupNorm(__A ) # Useful for training neural nets UpperCamelCase :Tuple = PoolFormerDropPath(__A ) if drop_path > 0.0 else nn.Identity() UpperCamelCase :List[Any] = config.use_layer_scale if config.use_layer_scale: UpperCamelCase :Tuple = nn.Parameter( config.layer_scale_init_value * torch.ones((__A) ) , requires_grad=__A ) UpperCamelCase :Tuple = nn.Parameter( config.layer_scale_init_value * torch.ones((__A) ) , requires_grad=__A ) def _A ( self : Any , __lowerCamelCase : Union[str, Any] ): if self.use_layer_scale: UpperCamelCase :Union[str, Any] = self.pooling(self.before_norm(__A ) ) UpperCamelCase :Optional[int] = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection UpperCamelCase :str = hidden_states + self.drop_path(__A ) UpperCamelCase :Optional[int] = () UpperCamelCase :int = self.output(self.after_norm(__A ) ) UpperCamelCase :Union[str, Any] = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection UpperCamelCase :Dict = hidden_states + self.drop_path(__A ) UpperCamelCase :Optional[Any] = (output,) + outputs return outputs else: UpperCamelCase :Dict = self.drop_path(self.pooling(self.before_norm(__A ) ) ) # First residual connection UpperCamelCase :List[Any] = pooling_output + hidden_states UpperCamelCase :List[Any] = () # Second residual connection inside the PoolFormerOutput block UpperCamelCase :Tuple = self.drop_path(self.output(self.after_norm(__A ) ) ) UpperCamelCase :Tuple = hidden_states + layer_output UpperCamelCase :Optional[Any] = (output,) + outputs return outputs class _SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : str , __lowerCamelCase : str ): super().__init__() UpperCamelCase :List[Any] = config # stochastic depth decay rule UpperCamelCase :Tuple = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings UpperCamelCase :List[Any] = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) UpperCamelCase :Optional[Any] = nn.ModuleList(__A ) # Transformer blocks UpperCamelCase :Optional[int] = [] UpperCamelCase :Optional[Any] = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers UpperCamelCase :Tuple = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( __A , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(__A ) ) UpperCamelCase :Any = nn.ModuleList(__A ) def _A ( self : Tuple , __lowerCamelCase : Any , __lowerCamelCase : Any=False , __lowerCamelCase : List[Any]=True ): UpperCamelCase :Any = () if output_hidden_states else None UpperCamelCase :Tuple = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): UpperCamelCase , UpperCamelCase :Union[str, Any] = layers # Get patch embeddings from hidden_states UpperCamelCase :Any = embedding_layer(__A ) # Send the embeddings through the blocks for _, blk in enumerate(__A ): UpperCamelCase :Dict = blk(__A ) UpperCamelCase :Optional[int] = layer_outputs[0] if output_hidden_states: UpperCamelCase :Union[str, Any] = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=__A , hidden_states=__A ) class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : Dict = PoolFormerConfig snake_case__ : Tuple = """poolformer""" snake_case__ : Tuple = """pixel_values""" snake_case__ : List[Any] = True def _A ( self : Dict , __lowerCamelCase : Any ): if isinstance(__A , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(__A , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def _A ( self : List[str] , __lowerCamelCase : Dict , __lowerCamelCase : List[Any]=False ): if isinstance(__A , __A ): UpperCamelCase :Any = value UpperCAmelCase_ : List[str] = R'''\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n''' UpperCAmelCase_ : Union[str, Any] = R'''\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n''' @add_start_docstrings( """The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.""" , _a , ) class _SCREAMING_SNAKE_CASE ( _a ): def __init__( self : Any , __lowerCamelCase : Tuple ): super().__init__(__A ) UpperCamelCase :Any = config UpperCamelCase :List[str] = PoolFormerEncoder(__A ) # Initialize weights and apply final processing self.post_init() def _A ( self : Any ): return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(__A ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__A , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _A ( self : List[str] , __lowerCamelCase : Optional[torch.FloatTensor] = None , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : Optional[bool] = None , ): UpperCamelCase :Optional[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase :int = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("""You have to specify pixel_values""" ) UpperCamelCase :str = self.encoder( __A , output_hidden_states=__A , return_dict=__A , ) UpperCamelCase :Any = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=__A , hidden_states=encoder_outputs.hidden_states , ) class _SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : Tuple , __lowerCamelCase : Optional[Any] ): super().__init__() UpperCamelCase :List[Any] = nn.Linear(config.hidden_size , config.hidden_size ) def _A ( self : str , __lowerCamelCase : List[str] ): UpperCamelCase :Optional[int] = self.dense(__A ) return output @add_start_docstrings( """\n PoolFormer Model transformer with an image classification head on top\n """ , _a , ) class _SCREAMING_SNAKE_CASE ( _a ): def __init__( self : int , __lowerCamelCase : int ): super().__init__(__A ) UpperCamelCase :Tuple = config.num_labels UpperCamelCase :Union[str, Any] = PoolFormerModel(__A ) # Final norm UpperCamelCase :Any = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head UpperCamelCase :Optional[int] = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__A ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__A , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _A ( self : List[str] , __lowerCamelCase : Optional[torch.FloatTensor] = None , __lowerCamelCase : Optional[torch.LongTensor] = None , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : Optional[bool] = None , ): UpperCamelCase :Any = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase :int = self.poolformer( __A , output_hidden_states=__A , return_dict=__A , ) UpperCamelCase :str = outputs[0] UpperCamelCase :Tuple = self.classifier(self.norm(__A ).mean([-2, -1] ) ) UpperCamelCase :Tuple = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: UpperCamelCase :Optional[Any] = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): UpperCamelCase :Union[str, Any] = """single_label_classification""" else: UpperCamelCase :Union[str, Any] = """multi_label_classification""" if self.config.problem_type == "regression": UpperCamelCase :List[Any] = MSELoss() if self.num_labels == 1: UpperCamelCase :List[str] = loss_fct(logits.squeeze() , labels.squeeze() ) else: UpperCamelCase :Optional[Any] = loss_fct(__A , __A ) elif self.config.problem_type == "single_label_classification": UpperCamelCase :Optional[int] = CrossEntropyLoss() UpperCamelCase :List[Any] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": UpperCamelCase :int = BCEWithLogitsLoss() UpperCamelCase :Any = loss_fct(__A , __A ) if not return_dict: UpperCamelCase :Union[str, Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__A , logits=__A , hidden_states=outputs.hidden_states )
358
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): snake_case__ : List[Any] = StableDiffusionLDMaDPipeline snake_case__ : Union[str, Any] = TEXT_TO_IMAGE_PARAMS snake_case__ : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS snake_case__ : Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS def _A ( self : List[str] ): torch.manual_seed(0 ) UpperCamelCase :Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) UpperCamelCase :Any = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__lowerCamelCase , set_alpha_to_one=__lowerCamelCase , ) torch.manual_seed(0 ) UpperCamelCase :Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=6 , out_channels=6 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCamelCase :Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) UpperCamelCase :Optional[int] = CLIPTextModel(__lowerCamelCase ) UpperCamelCase :Optional[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) UpperCamelCase :str = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _A ( self : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str]=0 ): if str(__lowerCamelCase ).startswith("""mps""" ): UpperCamelCase :List[str] = torch.manual_seed(__lowerCamelCase ) else: UpperCamelCase :Any = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) UpperCamelCase :Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def _A ( self : Union[str, Any] ): UpperCamelCase :str = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase :Optional[int] = self.get_dummy_components() UpperCamelCase :List[Any] = StableDiffusionLDMaDPipeline(**__lowerCamelCase ) UpperCamelCase :Optional[Any] = ldmad_pipe.to(__lowerCamelCase ) ldmad_pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCamelCase :Tuple = self.get_dummy_inputs(__lowerCamelCase ) UpperCamelCase :Any = ldmad_pipe(**__lowerCamelCase ) UpperCamelCase , UpperCamelCase :List[Any] = output.rgb, output.depth UpperCamelCase :int = rgb[0, -3:, -3:, -1] UpperCamelCase :int = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) UpperCamelCase :int = np.array( [0.37338176, 0.70247, 0.74203193, 0.51643604, 0.58256793, 0.60932136, 0.4181095, 0.48355877, 0.46535262] ) UpperCamelCase :Dict = np.array([103.46727, 85.812004, 87.849236] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1E-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1E-2 def _A ( self : str ): UpperCamelCase :Optional[int] = self.get_dummy_components() UpperCamelCase :int = StableDiffusionLDMaDPipeline(**__lowerCamelCase ) UpperCamelCase :Dict = ldmad_pipe.to(__lowerCamelCase ) ldmad_pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCamelCase :Tuple = self.get_dummy_inputs(__lowerCamelCase ) UpperCamelCase :int = 3 * [inputs["""prompt"""]] # forward UpperCamelCase :Dict = ldmad_pipe(**__lowerCamelCase ) UpperCamelCase , UpperCamelCase :List[str] = output.rgb, output.depth UpperCamelCase :Tuple = rgb_slice_a[0, -3:, -3:, -1] UpperCamelCase :List[Any] = depth_slice_a[0, -3:, -1] UpperCamelCase :Optional[Any] = self.get_dummy_inputs(__lowerCamelCase ) UpperCamelCase :int = 3 * [inputs.pop("""prompt""" )] UpperCamelCase :List[Any] = ldmad_pipe.tokenizer( __lowerCamelCase , padding="""max_length""" , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=__lowerCamelCase , return_tensors="""pt""" , ) UpperCamelCase :List[str] = text_inputs["""input_ids"""].to(__lowerCamelCase ) UpperCamelCase :List[Any] = ldmad_pipe.text_encoder(__lowerCamelCase )[0] UpperCamelCase :Dict = prompt_embeds # forward UpperCamelCase :str = ldmad_pipe(**__lowerCamelCase ) UpperCamelCase , UpperCamelCase :Optional[int] = output.rgb, output.depth UpperCamelCase :Union[str, Any] = rgb_slice_a[0, -3:, -3:, -1] UpperCamelCase :int = depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1E-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1E-4 def _A ( self : List[Any] ): UpperCamelCase :int = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase :Any = self.get_dummy_components() UpperCamelCase :Optional[int] = PNDMScheduler(skip_prk_steps=__lowerCamelCase ) UpperCamelCase :Tuple = StableDiffusionLDMaDPipeline(**__lowerCamelCase ) UpperCamelCase :Optional[int] = ldmad_pipe.to(__lowerCamelCase ) ldmad_pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCamelCase :int = self.get_dummy_inputs(__lowerCamelCase ) UpperCamelCase :str = """french fries""" UpperCamelCase :Optional[int] = ldmad_pipe(**__lowerCamelCase , negative_prompt=__lowerCamelCase ) UpperCamelCase , UpperCamelCase :List[Any] = output.rgb, output.depth UpperCamelCase :List[Any] = rgb[0, -3:, -3:, -1] UpperCamelCase :str = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) UpperCamelCase :Dict = np.array( [0.37044, 0.71811503, 0.7223251, 0.48603675, 0.5638391, 0.6364948, 0.42833704, 0.4901315, 0.47926217] ) UpperCamelCase :Any = np.array([107.84738, 84.62802, 89.962135] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1E-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1E-2 @slow @require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _A ( self : List[str] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _A ( self : Tuple , __lowerCamelCase : str , __lowerCamelCase : Tuple="cpu" , __lowerCamelCase : str=torch.floataa , __lowerCamelCase : Tuple=0 ): UpperCamelCase :str = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) UpperCamelCase :str = np.random.RandomState(__lowerCamelCase ).standard_normal((1, 4, 64, 64) ) UpperCamelCase :Tuple = torch.from_numpy(__lowerCamelCase ).to(device=__lowerCamelCase , dtype=__lowerCamelCase ) UpperCamelCase :List[str] = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _A ( self : Optional[Any] ): UpperCamelCase :Optional[int] = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d""" ) UpperCamelCase :Any = ldmad_pipe.to(__lowerCamelCase ) ldmad_pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCamelCase :Optional[int] = self.get_inputs(__lowerCamelCase ) UpperCamelCase :Optional[Any] = ldmad_pipe(**__lowerCamelCase ) UpperCamelCase , UpperCamelCase :List[str] = output.rgb, output.depth UpperCamelCase :int = rgb[0, -3:, -3:, -1].flatten() UpperCamelCase :Optional[Any] = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512) UpperCamelCase :Tuple = np.array( [0.53805465, 0.56707305, 0.5486515, 0.57012236, 0.5814511, 0.56253487, 0.54843014, 0.55092263, 0.6459706] ) UpperCamelCase :Optional[Any] = np.array( [0.9263781, 0.6678672, 0.5486515, 0.92202145, 0.67831135, 0.56253487, 0.9241694, 0.7551478, 0.6459706] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3E-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3E-3 @nightly @require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _A ( self : List[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _A ( self : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Dict="cpu" , __lowerCamelCase : int=torch.floataa , __lowerCamelCase : Union[str, Any]=0 ): UpperCamelCase :str = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) UpperCamelCase :Any = np.random.RandomState(__lowerCamelCase ).standard_normal((1, 4, 64, 64) ) UpperCamelCase :Optional[Any] = torch.from_numpy(__lowerCamelCase ).to(device=__lowerCamelCase , dtype=__lowerCamelCase ) UpperCamelCase :List[str] = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 50, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _A ( self : str ): UpperCamelCase :List[Any] = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d""" ).to(__lowerCamelCase ) ldmad_pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCamelCase :int = self.get_inputs(__lowerCamelCase ) UpperCamelCase :Dict = ldmad_pipe(**__lowerCamelCase ) UpperCamelCase , UpperCamelCase :Union[str, Any] = output.rgb, output.depth UpperCamelCase :Dict = 0.495586 UpperCamelCase :Dict = 0.33795515 UpperCamelCase :Union[str, Any] = 112.48518 UpperCamelCase :Any = 98.489746 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3 assert np.abs(expected_depth_std - depth.std() ) < 1E-3 def _A ( self : Union[str, Any] ): UpperCamelCase :List[str] = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d-4c""" ).to(__lowerCamelCase ) ldmad_pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCamelCase :Optional[Any] = self.get_inputs(__lowerCamelCase ) UpperCamelCase :Union[str, Any] = ldmad_pipe(**__lowerCamelCase ) UpperCamelCase , UpperCamelCase :int = output.rgb, output.depth UpperCamelCase :Optional[int] = 0.4194127 UpperCamelCase :str = 0.35375586 UpperCamelCase :Union[str, Any] = 0.5638502 UpperCamelCase :Union[str, Any] = 0.34686103 assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3 assert np.abs(expected_depth_std - depth.std() ) < 1E-3
62
0
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar A =TypeVar('T') A =TypeVar('U') class _a ( Generic[T, U] ): def __init__( self : str , lowercase : T | None , lowercase : U | None ): '''simple docstring''' UpperCAmelCase = key UpperCAmelCase = val UpperCAmelCase = None UpperCAmelCase = None def __repr__( self : Optional[int] ): '''simple docstring''' return ( f"Node: key: {self.key}, val: {self.val}, " f"has next: {bool(self.next )}, has prev: {bool(self.prev )}" ) class _a ( Generic[T, U] ): def __init__( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = DoubleLinkedListNode(lowercase , lowercase ) UpperCAmelCase = DoubleLinkedListNode(lowercase , lowercase ) UpperCAmelCase , UpperCAmelCase = self.rear, self.head def __repr__( self : Any ): '''simple docstring''' UpperCAmelCase = ['''DoubleLinkedList'''] UpperCAmelCase = self.head while node.next is not None: rep.append(str(lowercase ) ) UpperCAmelCase = node.next rep.append(str(self.rear ) ) return ",\n ".join(lowercase ) def A ( self : Any , lowercase : DoubleLinkedListNode[T, U] ): '''simple docstring''' UpperCAmelCase = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None UpperCAmelCase = node UpperCAmelCase = previous UpperCAmelCase = node UpperCAmelCase = self.rear def A ( self : Any , lowercase : DoubleLinkedListNode[T, U] ): '''simple docstring''' if node.prev is None or node.next is None: return None UpperCAmelCase = node.next UpperCAmelCase = node.prev UpperCAmelCase = None UpperCAmelCase = None return node class _a ( Generic[T, U] ): __a : dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__( self : int , lowercase : int ): '''simple docstring''' UpperCAmelCase = DoubleLinkedList() UpperCAmelCase = capacity UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = {} def __repr__( self : Optional[int] ): '''simple docstring''' return ( f"CacheInfo(hits={self.hits}, misses={self.miss}, " f"capacity={self.capacity}, current size={self.num_keys})" ) def __contains__( self : str , lowercase : T ): '''simple docstring''' return key in self.cache def A ( self : Union[str, Any] , lowercase : T ): '''simple docstring''' if key in self.cache: self.hits += 1 UpperCAmelCase = self.cache[key] UpperCAmelCase = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(lowercase ) return node.val self.miss += 1 return None def A ( self : str , lowercase : T , lowercase : U ): '''simple docstring''' if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity UpperCAmelCase = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(lowercase ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 UpperCAmelCase = DoubleLinkedListNode(lowercase , lowercase ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value UpperCAmelCase = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list UpperCAmelCase = value self.list.add(lowercase ) @classmethod def A ( cls : Any , lowercase : int = 128 ): '''simple docstring''' def cache_decorator_inner(lowercase : Callable[[T], U] ) -> Callable[..., U]: def cache_decorator_wrapper(*lowercase : T ) -> U: if func not in cls.decorator_function_to_instance_map: UpperCAmelCase = LRUCache(lowercase ) UpperCAmelCase = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: UpperCAmelCase = func(*lowercase ) cls.decorator_function_to_instance_map[func].put(args[0] , lowercase ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(lowercase , '''cache_info''' , lowercase ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
34
'''simple docstring''' from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def snake_case_ (_a : Tuple ): return {key.lstrip('''-''' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def snake_case_ (): UpperCAmelCase = ArgumentParser( '''HuggingFace Datasets CLI tool''' , usage='''datasets-cli <command> [<args>]''' , allow_abbrev=_a ) UpperCAmelCase = parser.add_subparsers(help='''datasets-cli command helpers''' ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(_a ) EnvironmentCommand.register_subcommand(_a ) TestCommand.register_subcommand(_a ) RunBeamCommand.register_subcommand(_a ) DummyDataCommand.register_subcommand(_a ) # Parse args UpperCAmelCase , UpperCAmelCase = parser.parse_known_args() if not hasattr(_a , '''func''' ): parser.print_help() exit(1 ) UpperCAmelCase = parse_unknown_args(_a ) # Run UpperCAmelCase = args.func(_a , **_a ) service.run() if __name__ == "__main__": main()
34
1
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig __A = logging.get_logger(__name__) # General docstring __A = '''ResNetConfig''' # Base docstring __A = '''microsoft/resnet-50''' __A = [1, 20_48, 7, 7] # Image classification docstring __A = '''microsoft/resnet-50''' __A = '''tiger cat''' __A = [ '''microsoft/resnet-50''', # See all resnet models at https://huggingface.co/models?filter=resnet ] class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 3 , lowerCamelCase__ = 1 , lowerCamelCase__ = "relu" ) -> Dict: '''simple docstring''' super().__init__() __lowerCamelCase = nn.Convad( lowerCamelCase__ , lowerCamelCase__ , kernel_size=lowerCamelCase__ , stride=lowerCamelCase__ , padding=kernel_size // 2 , bias=lowerCamelCase__ ) __lowerCamelCase = nn.BatchNormad(lowerCamelCase__ ) __lowerCamelCase = ACTaFN[activation] if activation is not None else nn.Identity() def lowercase_ ( self , lowerCamelCase__ ) -> List[str]: '''simple docstring''' __lowerCamelCase = self.convolution(lowerCamelCase__ ) __lowerCamelCase = self.normalization(lowerCamelCase__ ) __lowerCamelCase = self.activation(lowerCamelCase__ ) return hidden_state class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' super().__init__() __lowerCamelCase = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) __lowerCamelCase = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) __lowerCamelCase = config.num_channels def lowercase_ ( self , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) __lowerCamelCase = self.embedder(lowerCamelCase__ ) __lowerCamelCase = self.pooler(lowerCamelCase__ ) return embedding class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 2 ) -> Any: '''simple docstring''' super().__init__() __lowerCamelCase = nn.Convad(lowerCamelCase__ , lowerCamelCase__ , kernel_size=1 , stride=lowerCamelCase__ , bias=lowerCamelCase__ ) __lowerCamelCase = nn.BatchNormad(lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ ) -> List[Any]: '''simple docstring''' __lowerCamelCase = self.convolution(lowerCamelCase__ ) __lowerCamelCase = self.normalization(lowerCamelCase__ ) return hidden_state class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 1 , lowerCamelCase__ = "relu" ) -> Optional[Any]: '''simple docstring''' super().__init__() __lowerCamelCase = in_channels != out_channels or stride != 1 __lowerCamelCase = ( ResNetShortCut(lowerCamelCase__ , lowerCamelCase__ , stride=lowerCamelCase__ ) if should_apply_shortcut else nn.Identity() ) __lowerCamelCase = nn.Sequential( ResNetConvLayer(lowerCamelCase__ , lowerCamelCase__ , stride=lowerCamelCase__ ) , ResNetConvLayer(lowerCamelCase__ , lowerCamelCase__ , activation=lowerCamelCase__ ) , ) __lowerCamelCase = ACTaFN[activation] def lowercase_ ( self , lowerCamelCase__ ) -> List[str]: '''simple docstring''' __lowerCamelCase = hidden_state __lowerCamelCase = self.layer(lowerCamelCase__ ) __lowerCamelCase = self.shortcut(lowerCamelCase__ ) hidden_state += residual __lowerCamelCase = self.activation(lowerCamelCase__ ) return hidden_state class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 1 , lowerCamelCase__ = "relu" , lowerCamelCase__ = 4 ) -> List[Any]: '''simple docstring''' super().__init__() __lowerCamelCase = in_channels != out_channels or stride != 1 __lowerCamelCase = out_channels // reduction __lowerCamelCase = ( ResNetShortCut(lowerCamelCase__ , lowerCamelCase__ , stride=lowerCamelCase__ ) if should_apply_shortcut else nn.Identity() ) __lowerCamelCase = nn.Sequential( ResNetConvLayer(lowerCamelCase__ , lowerCamelCase__ , kernel_size=1 ) , ResNetConvLayer(lowerCamelCase__ , lowerCamelCase__ , stride=lowerCamelCase__ ) , ResNetConvLayer(lowerCamelCase__ , lowerCamelCase__ , kernel_size=1 , activation=lowerCamelCase__ ) , ) __lowerCamelCase = ACTaFN[activation] def lowercase_ ( self , lowerCamelCase__ ) -> Dict: '''simple docstring''' __lowerCamelCase = hidden_state __lowerCamelCase = self.layer(lowerCamelCase__ ) __lowerCamelCase = self.shortcut(lowerCamelCase__ ) hidden_state += residual __lowerCamelCase = self.activation(lowerCamelCase__ ) return hidden_state class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 2 , lowerCamelCase__ = 2 , ) -> Optional[int]: '''simple docstring''' super().__init__() __lowerCamelCase = ResNetBottleNeckLayer if config.layer_type == 'bottleneck' else ResNetBasicLayer __lowerCamelCase = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(lowerCamelCase__ , lowerCamelCase__ , stride=lowerCamelCase__ , activation=config.hidden_act ) , *[layer(lowerCamelCase__ , lowerCamelCase__ , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def lowercase_ ( self , lowerCamelCase__ ) -> List[str]: '''simple docstring''' __lowerCamelCase = input for layer in self.layers: __lowerCamelCase = layer(lowerCamelCase__ ) return hidden_state class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase__ ) -> List[str]: '''simple docstring''' super().__init__() __lowerCamelCase = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( lowerCamelCase__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) __lowerCamelCase = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowerCamelCase__ , config.depths[1:] ): self.stages.append(ResNetStage(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , depth=lowerCamelCase__ ) ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = False , lowerCamelCase__ = True ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __lowerCamelCase = hidden_states + (hidden_state,) __lowerCamelCase = stage_module(lowerCamelCase__ ) if output_hidden_states: __lowerCamelCase = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=lowerCamelCase__ , hidden_states=lowerCamelCase__ , ) class __lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = ResNetConfig snake_case_ = 'resnet' snake_case_ = 'pixel_values' snake_case_ = True def lowercase_ ( self , lowerCamelCase__ ) -> Dict: '''simple docstring''' if isinstance(lowerCamelCase__ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' ) elif isinstance(lowerCamelCase__ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__=False ) -> Optional[int]: '''simple docstring''' if isinstance(lowerCamelCase__ , lowerCamelCase__ ): __lowerCamelCase = value __A = R''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' __A = R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( '''The bare ResNet model outputting raw features without any specific head on top.''' , A__ , ) class __lowerCAmelCase ( A__ ): """simple docstring""" def __init__( self , lowerCamelCase__ ) -> Optional[Any]: '''simple docstring''' super().__init__(lowerCamelCase__ ) __lowerCamelCase = config __lowerCamelCase = ResNetEmbeddings(lowerCamelCase__ ) __lowerCamelCase = ResNetEncoder(lowerCamelCase__ ) __lowerCamelCase = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCamelCase__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCamelCase__ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None ) -> int: '''simple docstring''' __lowerCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCamelCase = return_dict if return_dict is not None else self.config.use_return_dict __lowerCamelCase = self.embedder(lowerCamelCase__ ) __lowerCamelCase = self.encoder( lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ ) __lowerCamelCase = encoder_outputs[0] __lowerCamelCase = self.pooler(lowerCamelCase__ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCamelCase__ , pooler_output=lowerCamelCase__ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( '''\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ''' , A__ , ) class __lowerCAmelCase ( A__ ): """simple docstring""" def __init__( self , lowerCamelCase__ ) -> List[Any]: '''simple docstring''' super().__init__(lowerCamelCase__ ) __lowerCamelCase = config.num_labels __lowerCamelCase = ResNetModel(lowerCamelCase__ ) # classification head __lowerCamelCase = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCamelCase__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCamelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowercase_ ( self , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , ) -> str: '''simple docstring''' __lowerCamelCase = return_dict if return_dict is not None else self.config.use_return_dict __lowerCamelCase = self.resnet(lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ ) __lowerCamelCase = outputs.pooler_output if return_dict else outputs[1] __lowerCamelCase = self.classifier(lowerCamelCase__ ) __lowerCamelCase = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __lowerCamelCase = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __lowerCamelCase = 'single_label_classification' else: __lowerCamelCase = 'multi_label_classification' if self.config.problem_type == "regression": __lowerCamelCase = MSELoss() if self.num_labels == 1: __lowerCamelCase = loss_fct(logits.squeeze() , labels.squeeze() ) else: __lowerCamelCase = loss_fct(lowerCamelCase__ , lowerCamelCase__ ) elif self.config.problem_type == "single_label_classification": __lowerCamelCase = CrossEntropyLoss() __lowerCamelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": __lowerCamelCase = BCEWithLogitsLoss() __lowerCamelCase = loss_fct(lowerCamelCase__ , lowerCamelCase__ ) if not return_dict: __lowerCamelCase = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowerCamelCase__ , logits=lowerCamelCase__ , hidden_states=outputs.hidden_states ) @add_start_docstrings( '''\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n ''' , A__ , ) class __lowerCAmelCase ( A__ , A__ ): """simple docstring""" def __init__( self , lowerCamelCase__ ) -> int: '''simple docstring''' super().__init__(lowerCamelCase__ ) super()._init_backbone(lowerCamelCase__ ) __lowerCamelCase = [config.embedding_size] + config.hidden_sizes __lowerCamelCase = ResNetEmbeddings(lowerCamelCase__ ) __lowerCamelCase = ResNetEncoder(lowerCamelCase__ ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCamelCase__ ) @replace_return_docstrings(output_type=lowerCamelCase__ , config_class=_CONFIG_FOR_DOC ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None ) -> Dict: '''simple docstring''' __lowerCamelCase = return_dict if return_dict is not None else self.config.use_return_dict __lowerCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCamelCase = self.embedder(lowerCamelCase__ ) __lowerCamelCase = self.encoder(lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , return_dict=lowerCamelCase__ ) __lowerCamelCase = outputs.hidden_states __lowerCamelCase = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: __lowerCamelCase = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=lowerCamelCase__ , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=lowerCamelCase__ , )
357
import sys from collections import defaultdict class __lowerCAmelCase : """simple docstring""" def __init__( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = [] def lowercase_ ( self , lowerCamelCase__ ) -> List[str]: '''simple docstring''' return self.node_position[vertex] def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = pos def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __lowerCamelCase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __lowerCamelCase = 2 * start + 1 else: __lowerCamelCase = 2 * start + 2 if heap[smallest_child] < heap[start]: __lowerCamelCase , __lowerCamelCase = heap[smallest_child], positions[smallest_child] __lowerCamelCase , __lowerCamelCase = ( heap[start], positions[start], ) __lowerCamelCase , __lowerCamelCase = temp, tempa __lowerCamelCase = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , lowerCamelCase__ ) self.top_to_bottom(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = position[index] while index != 0: __lowerCamelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: __lowerCamelCase = heap[parent] __lowerCamelCase = position[parent] self.set_position(position[parent] , lowerCamelCase__ ) else: __lowerCamelCase = val __lowerCamelCase = temp self.set_position(lowerCamelCase__ , lowerCamelCase__ ) break __lowerCamelCase = parent else: __lowerCamelCase = val __lowerCamelCase = temp self.set_position(lowerCamelCase__ , 0 ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> str: '''simple docstring''' __lowerCamelCase = len(lowerCamelCase__ ) // 2 - 1 for i in range(lowerCamelCase__ , -1 , -1 ): self.top_to_bottom(lowerCamelCase__ , lowerCamelCase__ , len(lowerCamelCase__ ) , lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = positions[0] __lowerCamelCase = sys.maxsize self.top_to_bottom(lowerCamelCase__ , 0 , len(lowerCamelCase__ ) , lowerCamelCase__ ) return temp def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowerCamelCase = Heap() __lowerCamelCase = [0] * len(UpperCamelCase__ ) __lowerCamelCase = [-1] * len(UpperCamelCase__ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __lowerCamelCase = [] # Heap of Distance of vertices from their neighboring vertex __lowerCamelCase = [] for vertex in range(len(UpperCamelCase__ ) ): distance_tv.append(sys.maxsize ) positions.append(UpperCamelCase__ ) heap.node_position.append(UpperCamelCase__ ) __lowerCamelCase = [] __lowerCamelCase = 1 __lowerCamelCase = sys.maxsize for neighbor, distance in adjacency_list[0]: __lowerCamelCase = 0 __lowerCamelCase = distance heap.heapify(UpperCamelCase__ , UpperCamelCase__ ) for _ in range(1 , len(UpperCamelCase__ ) ): __lowerCamelCase = heap.delete_minimum(UpperCamelCase__ , UpperCamelCase__ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) __lowerCamelCase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(UpperCamelCase__ )] ): __lowerCamelCase = distance heap.bottom_to_top( UpperCamelCase__ , heap.get_position(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > __A = int(input("Enter number of edges: ").strip()) __A = defaultdict(list) for _ in range(edges_number): __A = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
348
0
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class __snake_case ( _lowercase): snake_case__ : List[str] = "unispeech" def __init__( self : List[str] , __lowerCAmelCase : List[Any]=3_2 , __lowerCAmelCase : str=7_6_8 , __lowerCAmelCase : int=1_2 , __lowerCAmelCase : int=1_2 , __lowerCAmelCase : int=3_0_7_2 , __lowerCAmelCase : Tuple="gelu" , __lowerCAmelCase : Dict=0.1 , __lowerCAmelCase : Dict=0.1 , __lowerCAmelCase : str=0.1 , __lowerCAmelCase : Tuple=0.0 , __lowerCAmelCase : Optional[int]=0.0 , __lowerCAmelCase : List[Any]=0.1 , __lowerCAmelCase : Optional[int]=0.1 , __lowerCAmelCase : Tuple=0.02 , __lowerCAmelCase : Dict=1E-5 , __lowerCAmelCase : Optional[int]="group" , __lowerCAmelCase : Dict="gelu" , __lowerCAmelCase : int=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , __lowerCAmelCase : Optional[int]=(5, 2, 2, 2, 2, 2, 2) , __lowerCAmelCase : Union[str, Any]=(1_0, 3, 3, 3, 3, 2, 2) , __lowerCAmelCase : List[Any]=False , __lowerCAmelCase : List[str]=1_2_8 , __lowerCAmelCase : Any=1_6 , __lowerCAmelCase : Optional[int]=False , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : Union[str, Any]=0.05 , __lowerCAmelCase : Union[str, Any]=1_0 , __lowerCAmelCase : List[Any]=2 , __lowerCAmelCase : Dict=0.0 , __lowerCAmelCase : Optional[int]=1_0 , __lowerCAmelCase : Dict=0 , __lowerCAmelCase : List[str]=3_2_0 , __lowerCAmelCase : List[Any]=2 , __lowerCAmelCase : Dict=0.1 , __lowerCAmelCase : Tuple=1_0_0 , __lowerCAmelCase : Dict=2_5_6 , __lowerCAmelCase : str=2_5_6 , __lowerCAmelCase : List[Any]=0.1 , __lowerCAmelCase : Dict="mean" , __lowerCAmelCase : Union[str, Any]=False , __lowerCAmelCase : Dict=False , __lowerCAmelCase : Optional[Any]=2_5_6 , __lowerCAmelCase : Dict=8_0 , __lowerCAmelCase : int=0 , __lowerCAmelCase : Optional[int]=1 , __lowerCAmelCase : Dict=2 , __lowerCAmelCase : Any=0.5 , **__lowerCAmelCase : Optional[Any] , ): """simple docstring""" super().__init__(**__lowerCAmelCase , pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase ) _lowerCamelCase : Dict = hidden_size _lowerCamelCase : Any = feat_extract_norm _lowerCamelCase : List[Any] = feat_extract_activation _lowerCamelCase : Any = list(__lowerCAmelCase ) _lowerCamelCase : Tuple = list(__lowerCAmelCase ) _lowerCamelCase : int = list(__lowerCAmelCase ) _lowerCamelCase : List[str] = conv_bias _lowerCamelCase : List[str] = num_conv_pos_embeddings _lowerCamelCase : Tuple = num_conv_pos_embedding_groups _lowerCamelCase : List[str] = len(self.conv_dim ) _lowerCamelCase : Tuple = num_hidden_layers _lowerCamelCase : List[Any] = intermediate_size _lowerCamelCase : Dict = hidden_act _lowerCamelCase : Union[str, Any] = num_attention_heads _lowerCamelCase : Tuple = hidden_dropout _lowerCamelCase : List[Any] = attention_dropout _lowerCamelCase : Optional[int] = activation_dropout _lowerCamelCase : Optional[Any] = feat_proj_dropout _lowerCamelCase : Optional[int] = final_dropout _lowerCamelCase : Any = layerdrop _lowerCamelCase : Any = layer_norm_eps _lowerCamelCase : List[Any] = initializer_range _lowerCamelCase : List[str] = num_ctc_classes _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : Optional[Any] = do_stable_layer_norm _lowerCamelCase : Tuple = use_weighted_layer_sum _lowerCamelCase : List[Any] = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCamelCase : Any = apply_spec_augment _lowerCamelCase : Dict = mask_time_prob _lowerCamelCase : List[str] = mask_time_length _lowerCamelCase : Optional[Any] = mask_time_min_masks _lowerCamelCase : List[str] = mask_feature_prob _lowerCamelCase : int = mask_feature_length _lowerCamelCase : Dict = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _lowerCamelCase : Optional[Any] = num_codevectors_per_group _lowerCamelCase : int = num_codevector_groups _lowerCamelCase : List[Any] = contrastive_logits_temperature _lowerCamelCase : List[str] = feat_quantizer_dropout _lowerCamelCase : Dict = num_negatives _lowerCamelCase : Optional[int] = codevector_dim _lowerCamelCase : List[Any] = proj_codevector_dim _lowerCamelCase : List[Any] = diversity_loss_weight # ctc loss _lowerCamelCase : Union[str, Any] = ctc_loss_reduction _lowerCamelCase : Any = ctc_zero_infinity # pretraining loss _lowerCamelCase : str = replace_prob @property def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
72
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( _lowercase : float , _lowercase : float ) ->float: '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(F'''{price_plus_tax(100, 0.25) = }''') print(F'''{price_plus_tax(125.50, 0.05) = }''')
105
0
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase = {"""configuration_focalnet""": ["""FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FocalNetConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FocalNetForImageClassification""", """FocalNetForMaskedImageModeling""", """FocalNetBackbone""", """FocalNetModel""", """FocalNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
229
'''simple docstring''' from __future__ import annotations class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase ): """simple docstring""" _lowerCAmelCase = order # a_{0} ... a_{k} _lowerCAmelCase = [1.0] + [0.0] * order # b_{0} ... b_{k} _lowerCAmelCase = [1.0] + [0.0] * order # x[n-1] ... x[n-k] _lowerCAmelCase = [0.0] * self.order # y[n-1] ... y[n-k] _lowerCAmelCase = [0.0] * self.order def _lowercase ( self , _lowercase , _lowercase ): """simple docstring""" if len(_lowercase ) < self.order: _lowerCAmelCase = [1.0, *a_coeffs] if len(_lowercase ) != self.order + 1: _lowerCAmelCase = ( F'Expected a_coeffs to have {self.order + 1} elements ' F'for {self.order}-order filter, got {len(_lowercase )}' ) raise ValueError(_lowercase ) if len(_lowercase ) != self.order + 1: _lowerCAmelCase = ( F'Expected b_coeffs to have {self.order + 1} elements ' F'for {self.order}-order filter, got {len(_lowercase )}' ) raise ValueError(_lowercase ) _lowerCAmelCase = a_coeffs _lowerCAmelCase = b_coeffs def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) _lowerCAmelCase = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] _lowerCAmelCase = self.input_history[:-1] _lowerCAmelCase = self.output_history[:-1] _lowerCAmelCase = sample _lowerCAmelCase = result return result
229
1
"""simple docstring""" def A_ ( _lowerCAmelCase : int = 10_00 ): """simple docstring""" _a = -1 _a = 0 for a in range(1, n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c _a = (n * n - 2 * a * n) // (2 * n - 2 * a) _a = n - a - b if c * c == (a * a + b * b): _a = a * b * c if candidate >= product: _a = candidate return product if __name__ == "__main__": print(f'{solution() = }')
320
"""simple docstring""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''EleutherAI/gpt-j-6B''': '''https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json''', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : List[Any] = 'gptj' A_ : Optional[int] = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , __UpperCAmelCase=50400 , __UpperCAmelCase=2048 , __UpperCAmelCase=4096 , __UpperCAmelCase=28 , __UpperCAmelCase=16 , __UpperCAmelCase=64 , __UpperCAmelCase=None , __UpperCAmelCase="gelu_new" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=1e-5 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=50256 , __UpperCAmelCase=50256 , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> Union[str, Any]: _a = vocab_size _a = n_positions _a = n_embd _a = n_layer _a = n_head _a = n_inner _a = rotary_dim _a = activation_function _a = resid_pdrop _a = embd_pdrop _a = attn_pdrop _a = layer_norm_epsilon _a = initializer_range _a = use_cache _a = bos_token_id _a = eos_token_id super().__init__( bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , tie_word_embeddings=__UpperCAmelCase , **__UpperCAmelCase ) class __lowerCamelCase ( a__ ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase = "default" , __UpperCAmelCase = None , __UpperCAmelCase = False , ) -> Optional[Any]: super().__init__(__UpperCAmelCase , task=__UpperCAmelCase , patching_specs=__UpperCAmelCase , use_past=__UpperCAmelCase ) if not getattr(self._config , '''pad_token_id''' , __UpperCAmelCase ): # TODO: how to do that better? _a = 0 @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: _a = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(__UpperCAmelCase , direction='''inputs''' ) _a = {0: '''batch''', 1: '''past_sequence + sequence'''} else: _a = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def _UpperCAmelCase ( self ) -> int: return self._config.n_layer @property def _UpperCAmelCase ( self ) -> int: return self._config.n_head def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]: _a = super(__UpperCAmelCase , self ).generate_dummy_inputs( __UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase ) # We need to order the input in the way they appears in the forward() _a = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _a , _a = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values _a = seqlen + 2 _a = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _a = [ (torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) for _ in range(self.num_layers ) ] _a = common_inputs['''attention_mask'''] if self.use_past: _a = ordered_inputs['''attention_mask'''].dtype _a = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase , dtype=__UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def _UpperCAmelCase ( self ) -> int: return 13
320
1
"""simple docstring""" import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) __snake_case = logging.getLogger(__name__) __snake_case = """Hello world! cécé herlolip""" __snake_case = namedtuple( """BertAbsConfig""", [ """temp_dir""", """large""", """use_bert_emb""", """finetune_bert""", """encoder""", """share_emb""", """max_pos""", """enc_layers""", """enc_hidden_size""", """enc_heads""", """enc_ff_size""", """enc_dropout""", """dec_layers""", """dec_hidden_size""", """dec_heads""", """dec_ff_size""", """dec_dropout""", ], ) def __lowerCAmelCase ( lowercase : int , lowercase : Union[str, Any] ) -> List[Any]: """simple docstring""" snake_case : int = BertAbsConfig( temp_dir="." , finetune_bert=lowercase , large=lowercase , share_emb=lowercase , use_bert_emb=lowercase , encoder="bert" , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) snake_case : Dict = torch.load(lowercase , lambda lowercase , lowercase : storage ) snake_case : str = AbsSummarizer(lowercase , torch.device("cpu" ) , lowercase ) original.eval() snake_case : Dict = BertAbsSummarizer(lowercase , torch.device("cpu" ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("convert the model" ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("Make sure that the models' outputs are identical" ) snake_case : Dict = BertTokenizer.from_pretrained("bert-base-uncased" ) # prepare the model inputs snake_case : int = tokenizer.encode("This is sample éàalj'-." ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(lowercase )) ) snake_case : Any = torch.tensor(lowercase ).unsqueeze(0 ) snake_case : Union[str, Any] = tokenizer.encode("This is sample 3 éàalj'-." ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(lowercase )) ) snake_case : Dict = torch.tensor(lowercase ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass snake_case : Optional[Any] = encoder_input_ids snake_case : Union[str, Any] = decoder_input_ids snake_case : Optional[Any] = None snake_case : Any = None snake_case : List[Any] = None snake_case : Dict = None snake_case : Dict = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical snake_case : Optional[int] = original(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase )[0] snake_case : List[Any] = original.generator(lowercase ) snake_case : List[Any] = new_model( lowercase , lowercase , lowercase , lowercase , lowercase )[0] snake_case : List[Any] = new_model.generator(lowercase ) snake_case : List[Any] = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print("Maximum absolute difference beween weights: {:.2f}".format(lowercase ) ) snake_case : int = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print("Maximum absolute difference beween weights: {:.2f}".format(lowercase ) ) snake_case : List[Any] = torch.allclose(lowercase , lowercase , atol=1e-3 ) if are_identical: logging.info("all weights are equal up to 1e-3" ) else: raise ValueError("the weights are different. The new model is likely different from the original one." ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("saving the model's state dictionary" ) torch.save( new_model.state_dict() , "./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin" ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument( """--bertabs_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""", ) __snake_case = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
367
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __lowerCAmelCase ( lowercase : List[str] , lowercase : int , lowercase : Dict , lowercase : Dict , lowercase : int ) -> int: """simple docstring""" with open(lowercase ) as metadata_file: snake_case : str = json.load(lowercase ) snake_case : Optional[Any] = LukeConfig(use_entity_aware_attention=lowercase , **metadata["model_config"] ) # Load in the weights from the checkpoint_path snake_case : Tuple = torch.load(lowercase , map_location="cpu" )["module"] # Load the entity vocab file snake_case : Optional[Any] = load_original_entity_vocab(lowercase ) # add an entry for [MASK2] snake_case : Dict = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 snake_case : Union[str, Any] = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks snake_case : Tuple = AddedToken("<ent>" , lstrip=lowercase , rstrip=lowercase ) snake_case : str = AddedToken("<ent2>" , lstrip=lowercase , rstrip=lowercase ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(lowercase ) with open(os.path.join(lowercase , "tokenizer_config.json" ) , "r" ) as f: snake_case : str = json.load(lowercase ) snake_case : List[str] = "MLukeTokenizer" with open(os.path.join(lowercase , "tokenizer_config.json" ) , "w" ) as f: json.dump(lowercase , lowercase ) with open(os.path.join(lowercase , MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f: json.dump(lowercase , lowercase ) snake_case : Dict = MLukeTokenizer.from_pretrained(lowercase ) # Initialize the embeddings of the special tokens snake_case : Tuple = tokenizer.convert_tokens_to_ids(["@"] )[0] snake_case : str = tokenizer.convert_tokens_to_ids(["#"] )[0] snake_case : Union[str, Any] = state_dict["embeddings.word_embeddings.weight"] snake_case : str = word_emb[ent_init_index].unsqueeze(0 ) snake_case : Union[str, Any] = word_emb[enta_init_index].unsqueeze(0 ) snake_case : Union[str, Any] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: snake_case : Tuple = state_dict[bias_name] snake_case : Optional[Any] = decoder_bias[ent_init_index].unsqueeze(0 ) snake_case : Optional[Any] = decoder_bias[enta_init_index].unsqueeze(0 ) snake_case : Any = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: snake_case : Optional[int] = F'encoder.layer.{layer_index}.attention.self.' snake_case : Optional[Any] = state_dict[prefix + matrix_name] snake_case : Optional[Any] = state_dict[prefix + matrix_name] snake_case : Any = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks snake_case : List[Any] = state_dict["entity_embeddings.entity_embeddings.weight"] snake_case : str = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) snake_case : Tuple = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' snake_case : Optional[int] = state_dict["entity_predictions.bias"] snake_case : Optional[int] = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) snake_case : Union[str, Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) snake_case : Union[str, Any] = LukeForMaskedLM(config=lowercase ).eval() state_dict.pop("entity_predictions.decoder.weight" ) state_dict.pop("lm_head.decoder.weight" ) state_dict.pop("lm_head.decoder.bias" ) snake_case : Tuple = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )): snake_case : Any = state_dict[key] else: snake_case : Tuple = state_dict[key] snake_case ,snake_case : Optional[Any] = model.load_state_dict(lowercase , strict=lowercase ) if set(lowercase ) != {"luke.embeddings.position_ids"}: raise ValueError(F'Unexpected unexpected_keys: {unexpected_keys}' ) if set(lowercase ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'Unexpected missing_keys: {missing_keys}' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs snake_case : Optional[Any] = MLukeTokenizer.from_pretrained(lowercase , task="entity_classification" ) snake_case : List[str] = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." snake_case : str = (0, 9) snake_case : Union[str, Any] = tokenizer(lowercase , entity_spans=[span] , return_tensors="pt" ) snake_case : int = model(**lowercase ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base snake_case : int = torch.Size((1, 33, 768) ) snake_case : str = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowercase , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base snake_case : Any = torch.Size((1, 1, 768) ) snake_case : List[Any] = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' F' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowercase , atol=1e-4 ): raise ValueError # Verify masked word/entity prediction snake_case : List[str] = MLukeTokenizer.from_pretrained(lowercase ) snake_case : List[Any] = "Tokyo is the capital of <mask>." snake_case : Optional[Any] = (24, 30) snake_case : List[str] = tokenizer(lowercase , entity_spans=[span] , return_tensors="pt" ) snake_case : Any = model(**lowercase ) snake_case : int = encoding["input_ids"][0].tolist() snake_case : str = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) ) snake_case : Tuple = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(lowercase ) snake_case : Tuple = outputs.entity_logits[0][0].argmax().item() snake_case : Optional[int] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(lowercase ) ) model.save_pretrained(lowercase ) def __lowerCAmelCase ( lowercase : Union[str, Any] ) -> Dict: """simple docstring""" snake_case : Tuple = ["[MASK]", "[PAD]", "[UNK]"] snake_case : Optional[Any] = [json.loads(lowercase ) for line in open(lowercase )] snake_case : Any = {} for entry in data: snake_case : Union[str, Any] = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: snake_case : Union[str, Any] = entity_id break snake_case : Dict = F'{language}:{entity_name}' snake_case : str = entity_id return new_mapping if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Path to a pytorch_model.bin file.""") parser.add_argument( """--metadata_path""", default=None, type=str, help="""Path to a metadata.json file, defining the configuration.""" ) parser.add_argument( """--entity_vocab_path""", default=None, type=str, help="""Path to an entity_vocab.tsv file, containing the entity vocabulary.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to where to dump the output PyTorch model.""" ) parser.add_argument( """--model_size""", default="""base""", type=str, choices=["""base""", """large"""], help="""Size of the model to be converted.""" ) __snake_case = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
112
0
import random from .binary_exp_mod import bin_exp_mod def a ( lowerCamelCase_ , lowerCamelCase_=1000 ): '''simple docstring''' if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd lowercase__ = n - 1 lowercase__ = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) lowercase__ = 0 while count < prec: lowercase__ = random.randint(2 , n - 1 ) lowercase__ = bin_exp_mod(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if b != 1: lowercase__ = True for _ in range(lowerCamelCase_ ): if b == n - 1: lowercase__ = False break lowercase__ = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": A__ : List[str] = abs(int(input('Enter bound : ').strip())) print('Here\'s the list of primes:') print(', '.join(str(i) for i in range(n + 1) if is_prime_big(i)))
207
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() A__ : Optional[Any] = logging.get_logger(__name__) def a ( lowerCamelCase_ , lowerCamelCase_=False ): '''simple docstring''' lowercase__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowercase__ = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowercase__ = '''''' else: lowercase__ = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase__ = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) lowercase__ = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowercase__ = in_proj_weight[ : config.hidden_size, : ] lowercase__ = in_proj_bias[: config.hidden_size] lowercase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase__ = in_proj_weight[ -config.hidden_size :, : ] lowercase__ = in_proj_bias[-config.hidden_size :] def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(lowerCamelCase_ , lowerCamelCase_ ) def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = dct.pop(lowerCamelCase_ ) lowercase__ = val def a ( ): '''simple docstring''' lowercase__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__ = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ) return im @torch.no_grad() def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = ViTConfig() lowercase__ = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": lowercase__ = True lowercase__ = int(vit_name[-12:-10] ) lowercase__ = int(vit_name[-9:-6] ) else: lowercase__ = 1000 lowercase__ = '''huggingface/label-files''' lowercase__ = '''imagenet-1k-id2label.json''' lowercase__ = json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ = {int(lowerCamelCase_ ): v for k, v in idalabel.items()} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} lowercase__ = int(vit_name[-6:-4] ) lowercase__ = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('''tiny''' ): lowercase__ = 192 lowercase__ = 768 lowercase__ = 12 lowercase__ = 3 elif vit_name[9:].startswith('''small''' ): lowercase__ = 384 lowercase__ = 1536 lowercase__ = 12 lowercase__ = 6 else: pass else: if vit_name[4:].startswith('''small''' ): lowercase__ = 768 lowercase__ = 2304 lowercase__ = 8 lowercase__ = 8 elif vit_name[4:].startswith('''base''' ): pass elif vit_name[4:].startswith('''large''' ): lowercase__ = 1024 lowercase__ = 4096 lowercase__ = 24 lowercase__ = 16 elif vit_name[4:].startswith('''huge''' ): lowercase__ = 1280 lowercase__ = 5120 lowercase__ = 32 lowercase__ = 16 # load original model from timm lowercase__ = timm.create_model(lowerCamelCase_ , pretrained=lowerCamelCase_ ) timm_model.eval() # load state_dict of original model, remove and rename some keys lowercase__ = timm_model.state_dict() if base_model: remove_classification_head_(lowerCamelCase_ ) lowercase__ = create_rename_keys(lowerCamelCase_ , lowerCamelCase_ ) for src, dest in rename_keys: rename_key(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) read_in_q_k_v(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # load HuggingFace model if vit_name[-5:] == "in21k": lowercase__ = ViTModel(lowerCamelCase_ ).eval() else: lowercase__ = ViTForImageClassification(lowerCamelCase_ ).eval() model.load_state_dict(lowerCamelCase_ ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: lowercase__ = DeiTImageProcessor(size=config.image_size ) else: lowercase__ = ViTImageProcessor(size=config.image_size ) lowercase__ = image_processor(images=prepare_img() , return_tensors='''pt''' ) lowercase__ = encoding['''pixel_values'''] lowercase__ = model(lowerCamelCase_ ) if base_model: lowercase__ = timm_model.forward_features(lowerCamelCase_ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(lowerCamelCase_ , outputs.pooler_output , atol=1e-3 ) else: lowercase__ = timm_model(lowerCamelCase_ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowerCamelCase_ , outputs.logits , atol=1e-3 ) Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ ) print(F"""Saving model {vit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCamelCase_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": A__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_patch16_224', type=str, help='Name of the ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) A__ : str = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
207
1
from __future__ import annotations class __lowerCAmelCase : def __init__( self , lowerCAmelCase__ ) -> str: '''simple docstring''' a__ : int =TypeError( "Matrices must be formed from a list of zero or more lists containing at " "least one and the same number of values, each of which must be of type " "int or float." ) if len(lowerCAmelCase__ ) != 0: a__ : List[str] =len(rows[0] ) if cols == 0: raise error for row in rows: if len(lowerCAmelCase__ ) != cols: raise error for value in row: if not isinstance(lowerCAmelCase__ , (int, float) ): raise error a__ : List[Any] =rows else: a__ : str =[] def _lowercase ( self ) -> list[list[int]]: '''simple docstring''' return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def _lowercase ( self ) -> int: '''simple docstring''' return len(self.rows ) @property def _lowercase ( self ) -> int: '''simple docstring''' return len(self.rows[0] ) @property def _lowercase ( self ) -> tuple[int, int]: '''simple docstring''' return (self.num_rows, self.num_columns) @property def _lowercase ( self ) -> bool: '''simple docstring''' return self.order[0] == self.order[1] def _lowercase ( self ) -> Matrix: '''simple docstring''' a__ : str =[ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(lowerCAmelCase__ ) def _lowercase ( self ) -> int: '''simple docstring''' if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def _lowercase ( self ) -> bool: '''simple docstring''' return bool(self.determinant() ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: '''simple docstring''' a__ : List[str] =[ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(lowerCAmelCase__ ).determinant() def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: '''simple docstring''' if (row + column) % 2 == 0: return self.get_minor(lowerCAmelCase__ , lowerCAmelCase__ ) return -1 * self.get_minor(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowercase ( self ) -> Matrix: '''simple docstring''' return Matrix( [ [self.get_minor(lowerCAmelCase__ , lowerCAmelCase__ ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def _lowercase ( self ) -> Matrix: '''simple docstring''' return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def _lowercase ( self ) -> Matrix: '''simple docstring''' a__ : Dict =[ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(lowerCAmelCase__ ) def _lowercase ( self ) -> Matrix: '''simple docstring''' a__ : Union[str, Any] =self.determinant() if not determinant: raise TypeError("Only matrices with a non-zero determinant have an inverse" ) return self.adjugate() * (1 / determinant) def __repr__( self ) -> str: '''simple docstring''' return str(self.rows ) def __str__( self ) -> str: '''simple docstring''' if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ "[" + ". ".join([str(lowerCAmelCase__ ) for value in row] ) + ".]" for row in self.rows ] ) + "]" ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> None: '''simple docstring''' a__ : List[str] =TypeError("Row must be a list containing all ints and/or floats" ) if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise type_error for value in row: if not isinstance(lowerCAmelCase__ , (int, float) ): raise type_error if len(lowerCAmelCase__ ) != self.num_columns: raise ValueError( "Row must be equal in length to the other rows in the matrix" ) if position is None: self.rows.append(lowerCAmelCase__ ) else: a__ : Tuple =self.rows[0:position] + [row] + self.rows[position:] def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> None: '''simple docstring''' a__ : str =TypeError( "Column must be a list containing all ints and/or floats" ) if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise type_error for value in column: if not isinstance(lowerCAmelCase__ , (int, float) ): raise type_error if len(lowerCAmelCase__ ) != self.num_rows: raise ValueError( "Column must be equal in length to the other columns in the matrix" ) if position is None: a__ : Optional[Any] =[self.rows[i] + [column[i]] for i in range(self.num_rows )] else: a__ : Any =[ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self , lowerCAmelCase__ ) -> bool: '''simple docstring''' if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): return NotImplemented return self.rows == other.rows def __ne__( self , lowerCAmelCase__ ) -> bool: '''simple docstring''' return not self == other def __neg__( self ) -> Matrix: '''simple docstring''' return self * -1 def __add__( self , lowerCAmelCase__ ) -> Matrix: '''simple docstring''' if self.order != other.order: raise ValueError("Addition requires matrices of the same order" ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self , lowerCAmelCase__ ) -> Matrix: '''simple docstring''' if self.order != other.order: raise ValueError("Subtraction requires matrices of the same order" ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self , lowerCAmelCase__ ) -> Matrix: '''simple docstring''' if isinstance(lowerCAmelCase__ , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): if self.num_columns != other.num_rows: raise ValueError( "The number of columns in the first matrix must " "be equal to the number of rows in the second" ) return Matrix( [ [Matrix.dot_product(lowerCAmelCase__ , lowerCAmelCase__ ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( "A Matrix can only be multiplied by an int, float, or another matrix" ) def __pow__( self , lowerCAmelCase__ ) -> Matrix: '''simple docstring''' if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError("A Matrix can only be raised to the power of an int" ) if not self.is_square: raise ValueError("Only square matrices can be raised to a power" ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( "Only invertable matrices can be raised to a negative power" ) a__ : Tuple =self for _ in range(other - 1 ): result *= self return result @classmethod def _lowercase ( cls , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: '''simple docstring''' return sum(row[i] * column[i] for i in range(len(lowerCAmelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
148
def _A ( SCREAMING_SNAKE_CASE : int = 1 , SCREAMING_SNAKE_CASE : int = 1_000 ): """simple docstring""" a__ : Any =1 a__ : Any =0 for divide_by_number in range(SCREAMING_SNAKE_CASE , digit + 1 ): a__ : list[int] =[] a__ : int =numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(SCREAMING_SNAKE_CASE ): a__ : Optional[Any] =len(SCREAMING_SNAKE_CASE ) a__ : List[str] =divide_by_number else: has_been_divided.append(SCREAMING_SNAKE_CASE ) a__ : List[Any] =now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
148
1
'''simple docstring''' import requests from bsa import BeautifulSoup def lowerCamelCase (_SCREAMING_SNAKE_CASE : str = "https://www.worldometers.info/coronavirus" ): __a : List[Any] = BeautifulSoup(requests.get(_SCREAMING_SNAKE_CASE ).text , 'html.parser' ) __a : Union[str, Any] = soup.findAll('h1' ) __a : int = soup.findAll('div' , {'class': 'maincounter-number'} ) keys += soup.findAll('span' , {'class': 'panel-title'} ) values += soup.findAll('div' , {'class': 'number-table-main'} ) return {key.text.strip(): value.text.strip() for key, value in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} if __name__ == "__main__": print('\033[1m' + 'COVID-19 Status of the World' + '\033[0m\n') for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
27
'''simple docstring''' import torch from transformers import AutoModel class __UpperCamelCase ( torch.nn.Module ): def __init__( self , __a="sayef/fsner-bert-base-uncased" ): '''simple docstring''' super(__a , self ).__init__() __a : Tuple = AutoModel.from_pretrained(__a , return_dict=__a ) __a : int = torch.nn.CosineSimilarity(3 , 1E-0_8 ) __a : Union[str, Any] = torch.nn.Softmax(dim=1 ) def __UpperCAmelCase ( self , **__a ): '''simple docstring''' return self.bert(**__a ).last_hidden_state def __UpperCAmelCase ( self , __a ): '''simple docstring''' return token_embeddings.sum(2 , keepdim=__a ) def __UpperCAmelCase ( self , __a , __a , __a=1 ): '''simple docstring''' return self.softmax(T * self.cos(__a , __a ) ) def __UpperCAmelCase ( self , __a , __a ): '''simple docstring''' __a : str = W_supports['sizes'].tolist() __a : Union[str, Any] = W_supports['start_token_id'].item() __a : Any = W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] __a : Tuple = self.BERT(**__a ) __a : str = self.BERT(**__a ) __a : Any = None __a : Dict = None __a : Dict = W_supports['input_ids'] == start_token_id __a : Union[str, Any] = W_supports['input_ids'] == end_token_id for i, size in enumerate(__a ): if i == 0: __a : Optional[int] = 0 else: __a : Union[str, Any] = support_sizes[i - 1] __a : int = S[s : s + size][start_token_masks[s : s + size]] __a : Union[str, Any] = S[s : s + size][end_token_masks[s : s + size]] __a : Tuple = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) __a : Dict = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: __a : str = torch.vstack((p_starts, p_start) ) __a : str = torch.vstack((p_ends, p_end) ) else: __a : List[str] = p_start __a : int = p_end return p_starts, p_ends
27
1
'''simple docstring''' import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class __magic_name__ : def __init__( self , snake_case , snake_case=1_3 , snake_case=7 , snake_case=True , snake_case=True , snake_case=True , snake_case=True , snake_case=True , snake_case=False , snake_case=False , snake_case=False , snake_case=2 , snake_case=9_9 , snake_case=0 , snake_case=3_2 , snake_case=5 , snake_case=4 , snake_case=0.1 , snake_case=0.1 , snake_case=5_1_2 , snake_case=2 , snake_case=0.02 , snake_case=2 , snake_case=4 , snake_case="last" , snake_case=True , snake_case=None , snake_case=0 , ) -> Tuple: '''simple docstring''' _UpperCAmelCase : Optional[int] =parent _UpperCAmelCase : str =batch_size _UpperCAmelCase : Tuple =seq_length _UpperCAmelCase : Optional[Any] =is_training _UpperCAmelCase : List[str] =use_input_lengths _UpperCAmelCase : Any =use_token_type_ids _UpperCAmelCase : str =use_labels _UpperCAmelCase : str =gelu_activation _UpperCAmelCase : List[Any] =sinusoidal_embeddings _UpperCAmelCase : Dict =causal _UpperCAmelCase : List[str] =asm _UpperCAmelCase : Union[str, Any] =n_langs _UpperCAmelCase : Optional[int] =vocab_size _UpperCAmelCase : Any =n_special _UpperCAmelCase : str =hidden_size _UpperCAmelCase : Dict =num_hidden_layers _UpperCAmelCase : Tuple =num_attention_heads _UpperCAmelCase : str =hidden_dropout_prob _UpperCAmelCase : Any =attention_probs_dropout_prob _UpperCAmelCase : Optional[int] =max_position_embeddings _UpperCAmelCase : Any =type_sequence_label_size _UpperCAmelCase : Dict =initializer_range _UpperCAmelCase : Union[str, Any] =num_labels _UpperCAmelCase : str =num_choices _UpperCAmelCase : str =summary_type _UpperCAmelCase : Union[str, Any] =use_proj _UpperCAmelCase : str =scope _UpperCAmelCase : Any =bos_token_id def lowerCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : Optional[Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCAmelCase : str =random_attention_mask([self.batch_size, self.seq_length]) _UpperCAmelCase : Optional[int] =None if self.use_input_lengths: _UpperCAmelCase : Optional[Any] =( ids_tensor([self.batch_size] , vocab_size=2) + self.seq_length - 2 ) # small variation of seq_length _UpperCAmelCase : List[str] =None if self.use_token_type_ids: _UpperCAmelCase : List[Any] =ids_tensor([self.batch_size, self.seq_length] , self.n_langs) _UpperCAmelCase : Optional[int] =None _UpperCAmelCase : Dict =None _UpperCAmelCase : List[str] =None if self.use_labels: _UpperCAmelCase : int =ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCAmelCase : Any =ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _UpperCAmelCase : Tuple =ids_tensor([self.batch_size] , 2).float() _UpperCAmelCase : Union[str, Any] =ids_tensor([self.batch_size] , self.num_choices) _UpperCAmelCase : List[Any] =self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowerCAmelCase ( self) -> List[str]: '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def lowerCAmelCase ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] =XLMModel(config=snake_case) model.to(snake_case) model.eval() _UpperCAmelCase : Tuple =model(snake_case , lengths=snake_case , langs=snake_case) _UpperCAmelCase : Union[str, Any] =model(snake_case , langs=snake_case) _UpperCAmelCase : str =model(snake_case) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def lowerCAmelCase ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ) -> int: '''simple docstring''' _UpperCAmelCase : Optional[Any] =XLMWithLMHeadModel(snake_case) model.to(snake_case) model.eval() _UpperCAmelCase : Dict =model(snake_case , token_type_ids=snake_case , labels=snake_case) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def lowerCAmelCase ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ) -> Any: '''simple docstring''' _UpperCAmelCase : Optional[int] =XLMForQuestionAnsweringSimple(snake_case) model.to(snake_case) model.eval() _UpperCAmelCase : int =model(snake_case) _UpperCAmelCase : str =model(snake_case , start_positions=snake_case , end_positions=snake_case) _UpperCAmelCase : Optional[Any] =outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def lowerCAmelCase ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ) -> Any: '''simple docstring''' _UpperCAmelCase : Optional[int] =XLMForQuestionAnswering(snake_case) model.to(snake_case) model.eval() _UpperCAmelCase : int =model(snake_case) _UpperCAmelCase : Optional[Any] =model( snake_case , start_positions=snake_case , end_positions=snake_case , cls_index=snake_case , is_impossible=snake_case , p_mask=snake_case , ) _UpperCAmelCase : List[str] =model( snake_case , start_positions=snake_case , end_positions=snake_case , cls_index=snake_case , is_impossible=snake_case , ) ((_UpperCAmelCase) , ) : List[Any] =result_with_labels.to_tuple() _UpperCAmelCase : List[Any] =model(snake_case , start_positions=snake_case , end_positions=snake_case) ((_UpperCAmelCase) , ) : str =result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , ()) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,)) def lowerCAmelCase ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ) -> Any: '''simple docstring''' _UpperCAmelCase : Optional[Any] =XLMForSequenceClassification(snake_case) model.to(snake_case) model.eval() _UpperCAmelCase : Optional[int] =model(snake_case) _UpperCAmelCase : List[str] =model(snake_case , labels=snake_case) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def lowerCAmelCase ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ) -> Dict: '''simple docstring''' _UpperCAmelCase : Any =self.num_labels _UpperCAmelCase : int =XLMForTokenClassification(snake_case) model.to(snake_case) model.eval() _UpperCAmelCase : Any =model(snake_case , attention_mask=snake_case , labels=snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def lowerCAmelCase ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ) -> Tuple: '''simple docstring''' _UpperCAmelCase : Any =self.num_choices _UpperCAmelCase : List[str] =XLMForMultipleChoice(config=snake_case) model.to(snake_case) model.eval() _UpperCAmelCase : Any =input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCAmelCase : List[str] =token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCAmelCase : List[str] =input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCAmelCase : Union[str, Any] =model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def lowerCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] =self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : Tuple =config_and_inputs _UpperCAmelCase : Any ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class __magic_name__ ( lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,unittest.TestCase ): UpperCAmelCase =( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) UpperCAmelCase =( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable UpperCAmelCase =( { "feature-extraction": XLMModel, "fill-mask": XLMWithLMHeadModel, "question-answering": XLMForQuestionAnsweringSimple, "text-classification": XLMForSequenceClassification, "text-generation": XLMWithLMHeadModel, "token-classification": XLMForTokenClassification, "zero-shot": XLMForSequenceClassification, } if is_torch_available() else {} ) def lowerCAmelCase ( self , snake_case , snake_case , snake_case , snake_case , snake_case) -> int: '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast') ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowerCAmelCase ( self , snake_case , snake_case , snake_case=False) -> str: '''simple docstring''' _UpperCAmelCase : Union[str, Any] =super()._prepare_for_class(snake_case , snake_case , return_labels=snake_case) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": _UpperCAmelCase : Any =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case) _UpperCAmelCase : Dict =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case) return inputs_dict def lowerCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCAmelCase : Optional[Any] =XLMModelTester(self) _UpperCAmelCase : Optional[int] =ConfigTester(self , config_class=snake_case , emb_dim=3_7) def lowerCAmelCase ( self) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase ( self) -> int: '''simple docstring''' _UpperCAmelCase : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*snake_case) def lowerCAmelCase ( self) -> str: '''simple docstring''' _UpperCAmelCase : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*snake_case) def lowerCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCAmelCase : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*snake_case) def lowerCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCAmelCase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*snake_case) def lowerCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCAmelCase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*snake_case) def lowerCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*snake_case) def lowerCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*snake_case) def lowerCAmelCase ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case=False , snake_case=1) -> Dict: '''simple docstring''' self.assertIsInstance(snake_case , snake_case) self.assertListEqual( [isinstance(snake_case , snake_case) for iter_attentions in attentions] , [True] * len(snake_case)) self.assertEqual(len(snake_case) , (max_length - min_length) * num_beam_groups) for idx, iter_attentions in enumerate(snake_case): # adds PAD dummy token _UpperCAmelCase : List[Any] =min_length + idx + 1 _UpperCAmelCase : str =min_length + idx + 1 _UpperCAmelCase : Union[str, Any] =( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(snake_case)) def lowerCAmelCase ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case=False , snake_case=1) -> Dict: '''simple docstring''' self.assertIsInstance(snake_case , snake_case) self.assertListEqual( [isinstance(snake_case , snake_case) for iter_hidden_states in hidden_states] , [True] * len(snake_case) , ) self.assertEqual(len(snake_case) , (max_length - min_length) * num_beam_groups) for idx, iter_hidden_states in enumerate(snake_case): # adds PAD dummy token _UpperCAmelCase : Optional[Any] =min_length + idx + 1 _UpperCAmelCase : int =(batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(snake_case) , ) pass @slow def lowerCAmelCase ( self) -> int: '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : str =XLMModel.from_pretrained(snake_case) self.assertIsNotNone(snake_case) @require_torch class __magic_name__ ( unittest.TestCase ): @slow def lowerCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCAmelCase : Optional[Any] =XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048') model.to(snake_case) _UpperCAmelCase : str =torch.tensor([[1_4, 4_4_7]] , dtype=torch.long , device=snake_case) # the president _UpperCAmelCase : Union[str, Any] =[ 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference _UpperCAmelCase : List[Any] =model.generate(snake_case , do_sample=snake_case) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , snake_case)
242
'''simple docstring''' from __future__ import annotations def lowerCamelCase__ ( __lowerCamelCase : list[int] ): '''simple docstring''' if not nums: return 0 _UpperCAmelCase : Tuple =nums[0] _UpperCAmelCase : int =0 for num in nums[1:]: _UpperCAmelCase , _UpperCAmelCase : Optional[int] =( max_excluding + num, max(__lowerCamelCase , __lowerCamelCase ), ) return max(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
242
1
'''simple docstring''' from typing import Any import numpy as np def __snake_case( _lowerCAmelCase ) -> bool: return np.array_equal(_lowerCAmelCase , matrix.conjugate().T ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Any: snake_case__ : int = v.conjugate().T snake_case__ : Optional[Any] = v_star.dot(_lowerCAmelCase ) assert isinstance(_lowerCAmelCase , np.ndarray ) return (v_star_dot.dot(_lowerCAmelCase )) / (v_star.dot(_lowerCAmelCase )) def __snake_case( ) -> None: snake_case__ : int = np.array([[2, 2 + 1J, 4], [2 - 1J, 3, 1J], [4, -1J, 1]] ) snake_case__ : List[str] = np.array([[1], [2], [3]] ) assert is_hermitian(_lowerCAmelCase ), f"{a} is not hermitian." print(rayleigh_quotient(_lowerCAmelCase , _lowerCAmelCase ) ) snake_case__ : Optional[int] = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(_lowerCAmelCase ), f"{a} is not hermitian." assert rayleigh_quotient(_lowerCAmelCase , _lowerCAmelCase ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
35
import os # Precomputes a list of the 100 first triangular numbers lowerCAmelCase__ = [int(0.5 * n * (n + 1)) for n in range(1, 1_0_1)] def __lowerCamelCase ( ): """simple docstring""" lowercase__ : str = os.path.dirname(os.path.realpath(lowerCamelCase__ ) ) lowercase__ : Optional[Any] = os.path.join(lowerCamelCase__ , "words.txt" ) lowercase__ : int = "" with open(lowerCamelCase__ ) as f: lowercase__ : Any = f.readline() lowercase__ : Any = [word.strip("\"" ) for word in words.strip("\r\n" ).split("," )] lowercase__ : str = [ word for word in [sum(ord(lowerCamelCase__ ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(lowerCamelCase__ ) if __name__ == "__main__": print(solution())
130
0
"""simple docstring""" def UpperCAmelCase ( a_ = 400_0000 ): '''simple docstring''' lowerCamelCase : Optional[int] = [0, 1] lowerCamelCase : List[str] = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 lowerCamelCase : Any = 0 for j in range(len(a_ ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(F"""{solution() = }""")
360
"""simple docstring""" def UpperCAmelCase ( a_ ): '''simple docstring''' return str(a_ ) == str(a_ )[::-1] def UpperCAmelCase ( a_ ): '''simple docstring''' return int(a_ ) + int(str(a_ )[::-1] ) def UpperCAmelCase ( a_ = 1_0000 ): '''simple docstring''' lowerCamelCase : Optional[Any] = [] for num in range(1, a_ ): lowerCamelCase : List[str] = 0 lowerCamelCase : Union[str, Any] = num while iterations < 50: lowerCamelCase : Optional[int] = sum_reverse(a_ ) iterations += 1 if is_palindrome(a_ ): break else: lychrel_nums.append(a_ ) return len(a_ ) if __name__ == "__main__": print(F"""{solution() = }""")
205
0
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() __snake_case = logging.get_logger(__name__) def __lowerCAmelCase ( lowercase : Any ) -> List[str]: """simple docstring""" snake_case : int = OrderedDict() for key, value in state_dict.items(): if key.startswith("module.encoder" ): snake_case : Any = key.replace("module.encoder" , "glpn.encoder" ) if key.startswith("module.decoder" ): snake_case : Dict = key.replace("module.decoder" , "decoder.stages" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 snake_case : Tuple = key[key.find("patch_embed" ) + len("patch_embed" )] snake_case : List[Any] = key.replace(F'patch_embed{idx}' , F'patch_embeddings.{int(lowercase )-1}' ) if "norm" in key: snake_case : List[str] = key.replace("norm" , "layer_norm" ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 snake_case : List[Any] = key[key.find("glpn.encoder.layer_norm" ) + len("glpn.encoder.layer_norm" )] snake_case : Dict = key.replace(F'layer_norm{idx}' , F'layer_norm.{int(lowercase )-1}' ) if "layer_norm1" in key: snake_case : Union[str, Any] = key.replace("layer_norm1" , "layer_norm_1" ) if "layer_norm2" in key: snake_case : str = key.replace("layer_norm2" , "layer_norm_2" ) if "block" in key: # replace for example block1 by block.0 snake_case : List[str] = key[key.find("block" ) + len("block" )] snake_case : str = key.replace(F'block{idx}' , F'block.{int(lowercase )-1}' ) if "attn.q" in key: snake_case : Union[str, Any] = key.replace("attn.q" , "attention.self.query" ) if "attn.proj" in key: snake_case : List[Any] = key.replace("attn.proj" , "attention.output.dense" ) if "attn" in key: snake_case : str = key.replace("attn" , "attention.self" ) if "fc1" in key: snake_case : str = key.replace("fc1" , "dense1" ) if "fc2" in key: snake_case : str = key.replace("fc2" , "dense2" ) if "linear_pred" in key: snake_case : Union[str, Any] = key.replace("linear_pred" , "classifier" ) if "linear_fuse" in key: snake_case : List[str] = key.replace("linear_fuse.conv" , "linear_fuse" ) snake_case : Union[str, Any] = key.replace("linear_fuse.bn" , "batch_norm" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 snake_case : Tuple = key[key.find("linear_c" ) + len("linear_c" )] snake_case : Any = key.replace(F'linear_c{idx}' , F'linear_c.{int(lowercase )-1}' ) if "bot_conv" in key: snake_case : Optional[Any] = key.replace("bot_conv" , "0.convolution" ) if "skip_conv1" in key: snake_case : Optional[int] = key.replace("skip_conv1" , "1.convolution" ) if "skip_conv2" in key: snake_case : Dict = key.replace("skip_conv2" , "2.convolution" ) if "fusion1" in key: snake_case : Optional[Any] = key.replace("fusion1" , "1.fusion" ) if "fusion2" in key: snake_case : List[str] = key.replace("fusion2" , "2.fusion" ) if "fusion3" in key: snake_case : str = key.replace("fusion3" , "3.fusion" ) if "fusion" in key and "conv" in key: snake_case : Optional[Any] = key.replace("conv" , "convolutional_layer" ) if key.startswith("module.last_layer_depth" ): snake_case : str = key.replace("module.last_layer_depth" , "head.head" ) snake_case : Dict = value return new_state_dict def __lowerCAmelCase ( lowercase : int , lowercase : str ) -> Union[str, Any]: """simple docstring""" for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) snake_case : str = state_dict.pop(F'glpn.encoder.block.{i}.{j}.attention.self.kv.weight' ) snake_case : Dict = state_dict.pop(F'glpn.encoder.block.{i}.{j}.attention.self.kv.bias' ) # next, add keys and values (in that order) to the state dict snake_case : Optional[int] = kv_weight[ : config.hidden_sizes[i], : ] snake_case : Dict = kv_bias[: config.hidden_sizes[i]] snake_case : str = kv_weight[ config.hidden_sizes[i] :, : ] snake_case : List[str] = kv_bias[config.hidden_sizes[i] :] def __lowerCAmelCase ( ) -> int: """simple docstring""" snake_case : List[str] = "http://images.cocodataset.org/val2017/000000039769.jpg" snake_case : Dict = Image.open(requests.get(lowercase , stream=lowercase ).raw ) return image @torch.no_grad() def __lowerCAmelCase ( lowercase : List[str] , lowercase : Tuple , lowercase : List[str]=False , lowercase : Union[str, Any]=None ) -> str: """simple docstring""" snake_case : List[str] = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) snake_case : List[Any] = GLPNImageProcessor() # prepare image snake_case : Dict = prepare_img() snake_case : int = image_processor(images=lowercase , return_tensors="pt" ).pixel_values logger.info("Converting model..." ) # load original state dict snake_case : Dict = torch.load(lowercase , map_location=torch.device("cpu" ) ) # rename keys snake_case : Union[str, Any] = rename_keys(lowercase ) # key and value matrices need special treatment read_in_k_v(lowercase , lowercase ) # create HuggingFace model and load state dict snake_case : Dict = GLPNForDepthEstimation(lowercase ) model.load_state_dict(lowercase ) model.eval() # forward pass snake_case : int = model(lowercase ) snake_case : Dict = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: snake_case : str = torch.tensor( [[4.4147, 4.0873, 4.0673], [3.7890, 3.2881, 3.1525], [3.7674, 3.5423, 3.4913]] ) elif "kitti" in model_name: snake_case : Dict = torch.tensor( [[3.4291, 2.7865, 2.5151], [3.2841, 2.7021, 2.3502], [3.1147, 2.4625, 2.2481]] ) else: raise ValueError(F'Unknown model name: {model_name}' ) snake_case : Dict = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , lowercase , atol=1e-4 ) print("Looks ok!" ) # finally, push to hub if required if push_to_hub: logger.info("Pushing model and image processor to the hub..." ) model.push_to_hub( repo_path_or_name=Path(lowercase , lowercase ) , organization="nielsr" , commit_message="Add model" , use_temp_dir=lowercase , ) image_processor.push_to_hub( repo_path_or_name=Path(lowercase , lowercase ) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=lowercase , ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) parser.add_argument( """--model_name""", default="""glpn-kitti""", type=str, help="""Name of the model in case you're pushing to the hub.""", ) __snake_case = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
203
"""simple docstring""" def __lowerCAmelCase ( lowercase : Union[str, Any] ) -> List[str]: """simple docstring""" snake_case : List[str] = len(lowercase ) for i in range(length - 1 ): snake_case : List[str] = i for k in range(i + 1 , lowercase ): if collection[k] < collection[least]: snake_case : List[str] = k if least != i: snake_case ,snake_case : Union[str, Any] = (collection[i], collection[least]) return collection if __name__ == "__main__": __snake_case = input("""Enter numbers separated by a comma:\n""").strip() __snake_case = [int(item) for item in user_input.split(""",""")] print(selection_sort(unsorted))
203
1
import re import string import numpy as np import datasets _lowerCAmelCase :str = '\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n' _lowerCAmelCase :Tuple = '\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results["exact_match"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."]\n >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 33.3\n\n' _lowerCAmelCase :Any = '\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def __lowerCAmelCase ( self ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , reference_urls=[] , ) def __lowerCAmelCase ( self , A , A , A=None , A=False , A=False , A=False , ) -> List[str]: if regexes_to_ignore is not None: for s in regexes_to_ignore: _UpperCAmelCase : Union[str, Any] = np.array([re.sub(A , '''''' , A ) for x in predictions] ) _UpperCAmelCase : int = np.array([re.sub(A , '''''' , A ) for x in references] ) else: _UpperCAmelCase : int = np.asarray(A ) _UpperCAmelCase : Dict = np.asarray(A ) if ignore_case: _UpperCAmelCase : Any = np.char.lower(A ) _UpperCAmelCase : Optional[int] = np.char.lower(A ) if ignore_punctuation: _UpperCAmelCase : Dict = string.punctuation.maketrans('''''' , '''''' , string.punctuation ) _UpperCAmelCase : Union[str, Any] = np.char.translate(A , table=A ) _UpperCAmelCase : Union[str, Any] = np.char.translate(A , table=A ) if ignore_numbers: _UpperCAmelCase : str = string.digits.maketrans('''''' , '''''' , string.digits ) _UpperCAmelCase : Optional[int] = np.char.translate(A , table=A ) _UpperCAmelCase : Tuple = np.char.translate(A , table=A ) _UpperCAmelCase : Optional[int] = predictions == references return {"exact_match": np.mean(A ) * 1_0_0}
358
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowerCAmelCase :Optional[Any] = { 'configuration_efficientnet': [ 'EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientNetConfig', 'EfficientNetOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :str = ['EfficientNetImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :Any = [ 'EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientNetForImageClassification', 'EfficientNetModel', 'EfficientNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys _lowerCAmelCase :Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
68
0
from ....configuration_utils import PretrainedConfig from ....utils import logging A_ : Any = logging.get_logger(__name__) A_ : Dict = { 'CarlCochet/trajectory-transformer-halfcheetah-medium-v2': ( 'https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json' ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class A_ ( _a ): '''simple docstring''' a__ = "trajectory_transformer" a__ = ["past_key_values"] a__ = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__(self , lowercase__=100 , lowercase__=5 , lowercase__=1 , lowercase__=1 , lowercase__=249 , lowercase__=6 , lowercase__=17 , lowercase__=25 , lowercase__=4 , lowercase__=4 , lowercase__=128 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.0006 , lowercase__=512 , lowercase__=0.02 , lowercase__=1E-12 , lowercase__=1 , lowercase__=True , lowercase__=1 , lowercase__=50_256 , lowercase__=50_256 , **lowercase__ , ) -> Union[str, Any]: __UpperCAmelCase = vocab_size __UpperCAmelCase = action_weight __UpperCAmelCase = reward_weight __UpperCAmelCase = value_weight __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = block_size __UpperCAmelCase = action_dim __UpperCAmelCase = observation_dim __UpperCAmelCase = transition_dim __UpperCAmelCase = learning_rate __UpperCAmelCase = n_layer __UpperCAmelCase = n_head __UpperCAmelCase = n_embd __UpperCAmelCase = embd_pdrop __UpperCAmelCase = attn_pdrop __UpperCAmelCase = resid_pdrop __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = kaiming_initializer_range __UpperCAmelCase = use_cache super().__init__(pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__ )
333
import math import sys def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' if number != int(SCREAMING_SNAKE_CASE ): raise ValueError('''the value of input must be a natural number''' ) if number < 0: raise ValueError('''the value of input must not be a negative number''' ) if number == 0: return 1 __UpperCAmelCase = [-1] * (number + 1) __UpperCAmelCase = 0 for i in range(1 , number + 1 ): __UpperCAmelCase = sys.maxsize __UpperCAmelCase = int(math.sqrt(SCREAMING_SNAKE_CASE ) ) for j in range(1 , root + 1 ): __UpperCAmelCase = 1 + answers[i - (j**2)] __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
333
1
'''simple docstring''' from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class __magic_name__ ( nn.Module ): def __init__( self , snake_case , snake_case , snake_case , snake_case=0.0 , snake_case = None , snake_case = "geglu" , snake_case = None , snake_case = False , snake_case = False , snake_case = False , snake_case = False , snake_case = True , snake_case = "layer_norm" , snake_case = False , ) -> Tuple: '''simple docstring''' super().__init__() _UpperCAmelCase : List[str] =only_cross_attention _UpperCAmelCase : Tuple =(num_embeds_ada_norm is not None) and norm_type == 'ada_norm_zero' _UpperCAmelCase : Dict =(num_embeds_ada_norm is not None) and norm_type == 'ada_norm' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.") # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: _UpperCAmelCase : Optional[Any] =AdaLayerNorm(snake_case , snake_case) elif self.use_ada_layer_norm_zero: _UpperCAmelCase : List[str] =AdaLayerNormZero(snake_case , snake_case) else: _UpperCAmelCase : int =nn.LayerNorm(snake_case , elementwise_affine=snake_case) _UpperCAmelCase : Dict =Attention( query_dim=snake_case , heads=snake_case , dim_head=snake_case , dropout=snake_case , bias=snake_case , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=snake_case , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. _UpperCAmelCase : Tuple =( AdaLayerNorm(snake_case , snake_case) if self.use_ada_layer_norm else nn.LayerNorm(snake_case , elementwise_affine=snake_case) ) _UpperCAmelCase : str =Attention( query_dim=snake_case , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=snake_case , dim_head=snake_case , dropout=snake_case , bias=snake_case , upcast_attention=snake_case , ) # is self-attn if encoder_hidden_states is none else: _UpperCAmelCase : str =None _UpperCAmelCase : List[str] =None # 3. Feed-forward _UpperCAmelCase : str =nn.LayerNorm(snake_case , elementwise_affine=snake_case) _UpperCAmelCase : List[Any] =FeedForward(snake_case , dropout=snake_case , activation_fn=snake_case , final_dropout=snake_case) # let chunk size default to None _UpperCAmelCase : int =None _UpperCAmelCase : Tuple =0 def lowerCAmelCase ( self , snake_case , snake_case) -> Tuple: '''simple docstring''' # Sets chunk feed-forward _UpperCAmelCase : Tuple =chunk_size _UpperCAmelCase : Any =dim def lowerCAmelCase ( self , snake_case , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , ) -> Dict: '''simple docstring''' # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: _UpperCAmelCase : Optional[int] =self.norma(snake_case , snake_case) elif self.use_ada_layer_norm_zero: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Any =self.norma( snake_case , snake_case , snake_case , hidden_dtype=hidden_states.dtype) else: _UpperCAmelCase : Dict =self.norma(snake_case) _UpperCAmelCase : Union[str, Any] =cross_attention_kwargs if cross_attention_kwargs is not None else {} _UpperCAmelCase : Tuple =self.attna( snake_case , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=snake_case , **snake_case , ) if self.use_ada_layer_norm_zero: _UpperCAmelCase : Any =gate_msa.unsqueeze(1) * attn_output _UpperCAmelCase : Tuple =attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: _UpperCAmelCase : Optional[int] =( self.norma(snake_case , snake_case) if self.use_ada_layer_norm else self.norma(snake_case) ) _UpperCAmelCase : Dict =self.attna( snake_case , encoder_hidden_states=snake_case , attention_mask=snake_case , **snake_case , ) _UpperCAmelCase : Union[str, Any] =attn_output + hidden_states # 3. Feed-forward _UpperCAmelCase : Optional[Any] =self.norma(snake_case) if self.use_ada_layer_norm_zero: _UpperCAmelCase : Union[str, Any] =norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.") _UpperCAmelCase : Any =norm_hidden_states.shape[self._chunk_dim] // self._chunk_size _UpperCAmelCase : List[str] =torch.cat( [self.ff(snake_case) for hid_slice in norm_hidden_states.chunk(snake_case , dim=self._chunk_dim)] , dim=self._chunk_dim , ) else: _UpperCAmelCase : List[Any] =self.ff(snake_case) if self.use_ada_layer_norm_zero: _UpperCAmelCase : List[str] =gate_mlp.unsqueeze(1) * ff_output _UpperCAmelCase : Any =ff_output + hidden_states return hidden_states class __magic_name__ ( nn.Module ): def __init__( self , snake_case , snake_case = None , snake_case = 4 , snake_case = 0.0 , snake_case = "geglu" , snake_case = False , ) -> str: '''simple docstring''' super().__init__() _UpperCAmelCase : List[Any] =int(dim * mult) _UpperCAmelCase : Tuple =dim_out if dim_out is not None else dim if activation_fn == "gelu": _UpperCAmelCase : int =GELU(snake_case , snake_case) if activation_fn == "gelu-approximate": _UpperCAmelCase : List[str] =GELU(snake_case , snake_case , approximate='tanh') elif activation_fn == "geglu": _UpperCAmelCase : Optional[Any] =GEGLU(snake_case , snake_case) elif activation_fn == "geglu-approximate": _UpperCAmelCase : Union[str, Any] =ApproximateGELU(snake_case , snake_case) _UpperCAmelCase : Dict =nn.ModuleList([]) # project in self.net.append(snake_case) # project dropout self.net.append(nn.Dropout(snake_case)) # project out self.net.append(nn.Linear(snake_case , snake_case)) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(snake_case)) def lowerCAmelCase ( self , snake_case) -> Optional[int]: '''simple docstring''' for module in self.net: _UpperCAmelCase : Optional[Any] =module(snake_case) return hidden_states class __magic_name__ ( nn.Module ): def __init__( self , snake_case , snake_case , snake_case = "none") -> Union[str, Any]: '''simple docstring''' super().__init__() _UpperCAmelCase : Union[str, Any] =nn.Linear(snake_case , snake_case) _UpperCAmelCase : Dict =approximate def lowerCAmelCase ( self , snake_case) -> Optional[Any]: '''simple docstring''' if gate.device.type != "mps": return F.gelu(snake_case , approximate=self.approximate) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa) , approximate=self.approximate).to(dtype=gate.dtype) def lowerCAmelCase ( self , snake_case) -> Tuple: '''simple docstring''' _UpperCAmelCase : List[Any] =self.proj(snake_case) _UpperCAmelCase : Union[str, Any] =self.gelu(snake_case) return hidden_states class __magic_name__ ( nn.Module ): def __init__( self , snake_case , snake_case) -> Optional[Any]: '''simple docstring''' super().__init__() _UpperCAmelCase : List[str] =nn.Linear(snake_case , dim_out * 2) def lowerCAmelCase ( self , snake_case) -> int: '''simple docstring''' if gate.device.type != "mps": return F.gelu(snake_case) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa)).to(dtype=gate.dtype) def lowerCAmelCase ( self , snake_case) -> int: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Dict =self.proj(snake_case).chunk(2 , dim=-1) return hidden_states * self.gelu(snake_case) class __magic_name__ ( nn.Module ): def __init__( self , snake_case , snake_case) -> Any: '''simple docstring''' super().__init__() _UpperCAmelCase : List[Any] =nn.Linear(snake_case , snake_case) def lowerCAmelCase ( self , snake_case) -> List[str]: '''simple docstring''' _UpperCAmelCase : str =self.proj(snake_case) return x * torch.sigmoid(1.7_02 * x) class __magic_name__ ( nn.Module ): def __init__( self , snake_case , snake_case) -> Any: '''simple docstring''' super().__init__() _UpperCAmelCase : Optional[int] =nn.Embedding(snake_case , snake_case) _UpperCAmelCase : Optional[Any] =nn.SiLU() _UpperCAmelCase : Dict =nn.Linear(snake_case , embedding_dim * 2) _UpperCAmelCase : Any =nn.LayerNorm(snake_case , elementwise_affine=snake_case) def lowerCAmelCase ( self , snake_case , snake_case) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] =self.linear(self.silu(self.emb(snake_case))) _UpperCAmelCase , _UpperCAmelCase : List[Any] =torch.chunk(snake_case , 2) _UpperCAmelCase : str =self.norm(snake_case) * (1 + scale) + shift return x class __magic_name__ ( nn.Module ): def __init__( self , snake_case , snake_case) -> Any: '''simple docstring''' super().__init__() _UpperCAmelCase : List[Any] =CombinedTimestepLabelEmbeddings(snake_case , snake_case) _UpperCAmelCase : List[str] =nn.SiLU() _UpperCAmelCase : Optional[Any] =nn.Linear(snake_case , 6 * embedding_dim , bias=snake_case) _UpperCAmelCase : Optional[Any] =nn.LayerNorm(snake_case , elementwise_affine=snake_case , eps=1E-6) def lowerCAmelCase ( self , snake_case , snake_case , snake_case , snake_case=None) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Any =self.linear(self.silu(self.emb(snake_case , snake_case , hidden_dtype=snake_case))) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Tuple =emb.chunk(6 , dim=1) _UpperCAmelCase : Optional[int] =self.norm(snake_case) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class __magic_name__ ( nn.Module ): def __init__( self , snake_case , snake_case , snake_case , snake_case = None , snake_case = 1E-5) -> str: '''simple docstring''' super().__init__() _UpperCAmelCase : str =num_groups _UpperCAmelCase : int =eps if act_fn is None: _UpperCAmelCase : Tuple =None else: _UpperCAmelCase : Optional[int] =get_activation(snake_case) _UpperCAmelCase : List[str] =nn.Linear(snake_case , out_dim * 2) def lowerCAmelCase ( self , snake_case , snake_case) -> str: '''simple docstring''' if self.act: _UpperCAmelCase : Any =self.act(snake_case) _UpperCAmelCase : Optional[int] =self.linear(snake_case) _UpperCAmelCase : str =emb[:, :, None, None] _UpperCAmelCase , _UpperCAmelCase : str =emb.chunk(2 , dim=1) _UpperCAmelCase : Dict =F.group_norm(snake_case , self.num_groups , eps=self.eps) _UpperCAmelCase : Tuple =x * (1 + scale) + shift return x
242
'''simple docstring''' from __future__ import annotations import bisect def lowerCamelCase__ ( __lowerCamelCase : list[int] , __lowerCamelCase : int , __lowerCamelCase : int = 0 , __lowerCamelCase : int = -1 ): '''simple docstring''' if hi < 0: _UpperCAmelCase : int =len(__lowerCamelCase ) while lo < hi: _UpperCAmelCase : Dict =lo + (hi - lo) // 2 if sorted_collection[mid] < item: _UpperCAmelCase : int =mid + 1 else: _UpperCAmelCase : Union[str, Any] =mid return lo def lowerCamelCase__ ( __lowerCamelCase : list[int] , __lowerCamelCase : int , __lowerCamelCase : int = 0 , __lowerCamelCase : int = -1 ): '''simple docstring''' if hi < 0: _UpperCAmelCase : str =len(__lowerCamelCase ) while lo < hi: _UpperCAmelCase : List[Any] =lo + (hi - lo) // 2 if sorted_collection[mid] <= item: _UpperCAmelCase : Dict =mid + 1 else: _UpperCAmelCase : Tuple =mid return lo def lowerCamelCase__ ( __lowerCamelCase : list[int] , __lowerCamelCase : int , __lowerCamelCase : int = 0 , __lowerCamelCase : int = -1 ): '''simple docstring''' sorted_collection.insert(bisect_left(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) def lowerCamelCase__ ( __lowerCamelCase : list[int] , __lowerCamelCase : int , __lowerCamelCase : int = 0 , __lowerCamelCase : int = -1 ): '''simple docstring''' sorted_collection.insert(bisect_right(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) def lowerCamelCase__ ( __lowerCamelCase : list[int] , __lowerCamelCase : int ): '''simple docstring''' _UpperCAmelCase : Optional[int] =0 _UpperCAmelCase : Any =len(__lowerCamelCase ) - 1 while left <= right: _UpperCAmelCase : int =left + (right - left) // 2 _UpperCAmelCase : Union[str, Any] =sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: _UpperCAmelCase : Optional[Any] =midpoint - 1 else: _UpperCAmelCase : int =midpoint + 1 return None def lowerCamelCase__ ( __lowerCamelCase : list[int] , __lowerCamelCase : int ): '''simple docstring''' _UpperCAmelCase : Any =bisect.bisect_left(__lowerCamelCase , __lowerCamelCase ) if index != len(__lowerCamelCase ) and sorted_collection[index] == item: return index return None def lowerCamelCase__ ( __lowerCamelCase : list[int] , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int ): '''simple docstring''' if right < left: return None _UpperCAmelCase : str =left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , midpoint - 1 ) else: return binary_search_by_recursion(__lowerCamelCase , __lowerCamelCase , midpoint + 1 , __lowerCamelCase ) if __name__ == "__main__": lowercase =input('Enter numbers separated by comma:\n').strip() lowercase =sorted(int(item) for item in user_input.split(',')) lowercase =int(input('Enter a single number to be found in the list:\n')) lowercase =binary_search(collection, target) if result is None: print(F"""{target} was not found in {collection}.""") else: print(F"""{target} was found at position {result} in {collection}.""")
242
1
def lowerCamelCase__ ( a__ : str ) -> str: return "".join(chr(ord(a__ ) - 32 ) if """a""" <= char <= """z""" else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
122
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _A = logging.get_logger(__name__) _A = '''▁''' _A = {'''vocab_file''': '''sentencepiece.bpe.model''', '''monolingual_vocab_file''': '''dict.txt'''} _A = { '''vocab_file''': { '''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model''', }, '''monolingual_vocab_file''': { '''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt''', }, } _A = {'''vinai/bartpho-syllable''': 1_024} class lowercase_ ( __SCREAMING_SNAKE_CASE ): A__ : List[Any] = VOCAB_FILES_NAMES A__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP A__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Union[str, Any] = ["""input_ids""", """attention_mask"""] def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase="<s>" , __UpperCamelCase="</s>" , __UpperCamelCase="</s>" , __UpperCamelCase="<s>" , __UpperCamelCase="<unk>" , __UpperCamelCase="<pad>" , __UpperCamelCase="<mask>" , __UpperCamelCase = None , **__UpperCamelCase , ): """simple docstring""" UpperCamelCase_ = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else mask_token UpperCamelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , sep_token=__UpperCamelCase , cls_token=__UpperCamelCase , pad_token=__UpperCamelCase , mask_token=__UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCamelCase , ) UpperCamelCase_ = vocab_file UpperCamelCase_ = monolingual_vocab_file UpperCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__UpperCamelCase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility UpperCamelCase_ = {} UpperCamelCase_ = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(__UpperCamelCase ) not in self.fairseq_tokens_to_ids: UpperCamelCase_ = cnt cnt += 1 with open(__UpperCamelCase , """r""" , encoding="""utf-8""" ) as f: for line in f.readlines(): UpperCamelCase_ = line.strip().split()[0] UpperCamelCase_ = len(self.fairseq_tokens_to_ids ) if str(__UpperCamelCase ) not in self.fairseq_tokens_to_ids: UpperCamelCase_ = len(self.fairseq_tokens_to_ids ) UpperCamelCase_ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): """simple docstring""" UpperCamelCase_ = self.__dict__.copy() UpperCamelCase_ = None UpperCamelCase_ = self.sp_model.serialized_model_proto() return state def __setstate__( self , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): UpperCamelCase_ = {} UpperCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase_ = [self.cls_token_id] UpperCamelCase_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCamelCase , token_ids_a=__UpperCamelCase , already_has_special_tokens=__UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCamelCase )) + [1] return [1] + ([0] * len(__UpperCamelCase )) + [1, 1] + ([0] * len(__UpperCamelCase )) + [1] def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase = None ): """simple docstring""" UpperCamelCase_ = [self.sep_token_id] UpperCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCamelCase_ ( self ): """simple docstring""" return len(self.fairseq_ids_to_tokens ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = {self.convert_ids_to_tokens(__UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" return self.sp_model.encode(__UpperCamelCase , out_type=__UpperCamelCase ) def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" return self.fairseq_ids_to_tokens[index] def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = """""".join(__UpperCamelCase ).replace(__UpperCamelCase , """ """ ).strip() return out_string def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase = None ): """simple docstring""" if not os.path.isdir(__UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase_ = os.path.join( __UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCamelCase_ = os.path.join( __UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""monolingual_vocab_file"""] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCamelCase , """wb""" ) as fi: UpperCamelCase_ = self.sp_model.serialized_model_proto() fi.write(__UpperCamelCase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( __UpperCamelCase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , __UpperCamelCase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(__UpperCamelCase , """w""" , encoding="""utf-8""" ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f'''{str(__UpperCamelCase )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
122
1
"""simple docstring""" import math def A_ ( ): '''simple docstring''' UpperCamelCase : Dict = input("""Enter message: """ ) UpperCamelCase : Optional[int] = int(input(f'Enter key [2-{len(snake_case_ ) - 1}]: ' ) ) UpperCamelCase : Union[str, Any] = input("""Encryption/Decryption [e/d]: """ ) if mode.lower().startswith("""e""" ): UpperCamelCase : int = encrypt_message(snake_case_ ,snake_case_ ) elif mode.lower().startswith("""d""" ): UpperCamelCase : str = decrypt_message(snake_case_ ,snake_case_ ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(f'Output:\n{text + "|"}' ) def A_ ( snake_case_ : int ,snake_case_ : str ): '''simple docstring''' UpperCamelCase : List[str] = [""""""] * key for col in range(snake_case_ ): UpperCamelCase : Optional[Any] = col while pointer < len(snake_case_ ): cipher_text[col] += message[pointer] pointer += key return "".join(snake_case_ ) def A_ ( snake_case_ : int ,snake_case_ : str ): '''simple docstring''' UpperCamelCase : Any = math.ceil(len(snake_case_ ) / key ) UpperCamelCase : Tuple = key UpperCamelCase : Any = (num_cols * num_rows) - len(snake_case_ ) UpperCamelCase : List[str] = [""""""] * num_cols UpperCamelCase : Dict = 0 UpperCamelCase : Optional[int] = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): UpperCamelCase : Dict = 0 row += 1 return "".join(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
27
"""simple docstring""" import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class lowerCamelCase ( _UpperCAmelCase ): def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=1024 , SCREAMING_SNAKE_CASE_=1024 , SCREAMING_SNAKE_CASE_=3.6 ): UpperCamelCase : Dict = tokenizer UpperCamelCase : Optional[Any] = tokenizer.bos_token_id UpperCamelCase : Any = dataset UpperCamelCase : List[str] = seq_length UpperCamelCase : Optional[Any] = seq_length * chars_per_token * num_of_sequences def __iter__( self ): UpperCamelCase : Dict = iter(self.dataset ) UpperCamelCase : Union[str, Any] = True while more_examples: UpperCamelCase , UpperCamelCase : Tuple = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(SCREAMING_SNAKE_CASE_ )["""content"""] ) buffer_len += len(buffer[-1] ) except StopIteration: UpperCamelCase : Dict = False break UpperCamelCase : str = tokenizer(SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ )["""input_ids"""] UpperCamelCase : str = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , self.seq_length ): UpperCamelCase : List[str] = all_token_ids[i : i + self.seq_length] if len(SCREAMING_SNAKE_CASE_ ) == self.seq_length: yield torch.tensor(SCREAMING_SNAKE_CASE_ ) def A_ ( snake_case_ : List[Any] ): '''simple docstring''' UpperCamelCase : Dict = {"""streaming""": True} UpperCamelCase : Optional[int] = load_dataset(args.dataset_name ,split="""train""" ,**snake_case_ ) UpperCamelCase : Optional[int] = ConstantLengthDataset(snake_case_ ,snake_case_ ,seq_length=args.seq_length ) UpperCamelCase : List[Any] = DataLoader(snake_case_ ,batch_size=args.batch_size ) return eval_dataloader def A_ ( snake_case_ : Optional[Any] ): '''simple docstring''' model.eval() UpperCamelCase : Dict = [] for step, batch in enumerate(snake_case_ ): with torch.no_grad(): UpperCamelCase : List[Any] = model(snake_case_ ,labels=snake_case_ ) UpperCamelCase : Any = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(snake_case_ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break UpperCamelCase : Dict = torch.mean(torch.cat(snake_case_ ) ) try: UpperCamelCase : Dict = torch.exp(snake_case_ ) except OverflowError: UpperCamelCase : Optional[int] = float("""inf""" ) return loss.item(), perplexity.item() # Setup Accelerator __A : List[Any] = Accelerator() # Parse configuration __A : str = HfArgumentParser(EvaluationArguments) __A : List[Any] = parser.parse_args() set_seed(args.seed) # Logging __A : Any = logging.getLogger(__name__) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) # Load model and tokenizer __A : List[Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt) __A : List[Any] = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader __A : int = create_dataloader(args) # Prepare everything with our `accelerator`. __A , __A : Optional[Any] = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('''Evaluating and saving model after training''') __A , __A : Tuple = evaluate(args) logger.info(F'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
27
1
'''simple docstring''' from __future__ import annotations import collections import pprint from pathlib import Path def UpperCamelCase_( snake_case : str ): '''simple docstring''' return "".join(sorted(snake_case ) ) def UpperCamelCase_( snake_case : str ): '''simple docstring''' return word_by_signature[signature(snake_case )] _SCREAMING_SNAKE_CASE : str = Path(__file__).parent.joinpath("words.txt").read_text(encoding="utf-8") _SCREAMING_SNAKE_CASE : List[Any] = sorted({word.strip().lower() for word in data.splitlines()}) _SCREAMING_SNAKE_CASE : List[str] = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : List[str] = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open("anagrams.txt", "w") as file: file.write("all_anagrams = \n ") file.write(pprint.pformat(all_anagrams))
85
"""simple docstring""" import math def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): if initial_intensity < 0: raise ValueError('''The value of intensity cannot be negative''' ) # handling of negative values of initial intensity if angle < 0 or angle > 3_60: raise ValueError('''In Malus Law, the angle is in the range 0-360 degrees''' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(__UpperCamelCase ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name='malus_law')
249
0
"""simple docstring""" from __future__ import annotations import math def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): if depth < 0: raise ValueError('Depth cannot be less than 0' ) if len(_UpperCamelCase ) == 0: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) , ) return min( minimax(depth + 1 , node_index * 2 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) , ) def __lowerCAmelCase (): __lowerCAmelCase : str = [90, 23, 6, 33, 21, 65, 123, 3_4423] __lowerCAmelCase : int = math.log(len(_UpperCamelCase ) , 2 ) print('Optimal value : ' , end='' ) print(minimax(0 , 0 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
182
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class A__ ( _lowerCamelCase , unittest.TestCase): A_ : Optional[int] = ShapEPipeline A_ : str = ['prompt'] A_ : Any = ['prompt'] A_ : List[Any] = [ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] A_ : Optional[int] = False @property def __lowerCamelCase ( self ): return 32 @property def __lowerCamelCase ( self ): return 32 @property def __lowerCamelCase ( self ): return self.time_input_dim * 4 @property def __lowerCamelCase ( self ): return 8 @property def __lowerCamelCase ( self ): __lowerCAmelCase : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def __lowerCamelCase ( self ): torch.manual_seed(0 ) __lowerCAmelCase : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModelWithProjection(_SCREAMING_SNAKE_CASE ) @property def __lowerCamelCase ( self ): torch.manual_seed(0 ) __lowerCAmelCase : Optional[Any] = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } __lowerCAmelCase : int = PriorTransformer(**_SCREAMING_SNAKE_CASE ) return model @property def __lowerCamelCase ( self ): torch.manual_seed(0 ) __lowerCAmelCase : Dict = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } __lowerCAmelCase : Union[str, Any] = ShapERenderer(**_SCREAMING_SNAKE_CASE ) return model def __lowerCamelCase ( self ): __lowerCAmelCase : List[Any] = self.dummy_prior __lowerCAmelCase : str = self.dummy_text_encoder __lowerCAmelCase : List[Any] = self.dummy_tokenizer __lowerCAmelCase : str = self.dummy_renderer __lowerCAmelCase : List[Any] = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=10_24 , prediction_type='sample' , use_karras_sigmas=_SCREAMING_SNAKE_CASE , clip_sample=_SCREAMING_SNAKE_CASE , clip_sample_range=1.0 , ) __lowerCAmelCase : int = { 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 ): if str(_SCREAMING_SNAKE_CASE ).startswith('mps' ): __lowerCAmelCase : int = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase : Dict = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = { 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def __lowerCamelCase ( self ): __lowerCAmelCase : Any = 'cpu' __lowerCAmelCase : int = self.get_dummy_components() __lowerCAmelCase : Union[str, Any] = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = pipe(**self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase : Optional[Any] = output.images[0] __lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __lowerCAmelCase : str = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __lowerCamelCase ( self ): __lowerCAmelCase : str = torch_device == 'cpu' __lowerCAmelCase : str = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_SCREAMING_SNAKE_CASE , relax_max_difference=_SCREAMING_SNAKE_CASE , ) def __lowerCamelCase ( self ): __lowerCAmelCase : str = self.get_dummy_components() __lowerCAmelCase : List[Any] = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = 1 __lowerCAmelCase : List[Any] = 2 __lowerCAmelCase : int = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) for key in inputs.keys(): if key in self.batch_params: __lowerCAmelCase : Dict = batch_size * [inputs[key]] __lowerCAmelCase : Any = pipe(**_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class A__ ( unittest.TestCase): def __lowerCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ): __lowerCAmelCase : List[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy' ) __lowerCAmelCase : Dict = ShapEPipeline.from_pretrained('openai/shap-e' ) __lowerCAmelCase : int = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(0 ) __lowerCAmelCase : List[str] = pipe( 'a shark' , generator=_SCREAMING_SNAKE_CASE , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
182
1
"""simple docstring""" import fire from utils import calculate_rouge, save_json def lowercase ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str]=None , **lowerCAmelCase__ : Dict ) -> int: __a = [x.strip() for x in open(lowerCAmelCase__ ).readlines()] __a = [x.strip() for x in open(lowerCAmelCase__ ).readlines()][: len(lowerCAmelCase__ )] __a = calculate_rouge(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) if save_path is not None: save_json(lowerCAmelCase__ , lowerCAmelCase__ , indent=lowerCAmelCase__ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
45
"""simple docstring""" from __future__ import annotations import math def lowerCamelCase__ ( _lowerCamelCase : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_lowerCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCamelCase__ ( _lowerCamelCase : int ) -> list[int]: lowerCamelCase_ = str(_lowerCamelCase ) lowerCamelCase_ = [n] for i in range(1 , len(_lowerCamelCase ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def lowerCamelCase__ ( _lowerCamelCase : int ) -> bool: if len(str(_lowerCamelCase ) ) > 3: if not is_prime(int(str(_lowerCamelCase )[-3:] ) ) or not is_prime(int(str(_lowerCamelCase )[:3] ) ): return False return True def lowerCamelCase__ ( _lowerCamelCase : int = 11 ) -> list[int]: lowerCamelCase_ = [] lowerCamelCase_ = 13 while len(_lowerCamelCase ) != count: if validate(_lowerCamelCase ): lowerCamelCase_ = list_truncated_nums(_lowerCamelCase ) if all(is_prime(_lowerCamelCase ) for i in list_nums ): list_truncated_primes.append(_lowerCamelCase ) num += 2 return list_truncated_primes def lowerCamelCase__ ( ) -> int: return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(F'''{sum(compute_truncated_primes(11)) = }''')
183
0
'''simple docstring''' import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class UpperCAmelCase ( lowerCAmelCase__ , unittest.TestCase ): _lowercase: Optional[Any] = BertJapaneseTokenizer _lowercase: int = False _lowercase: Optional[int] = True def lowercase__ ( self : Union[str, Any] ) -> str: super().setUp() _lowerCAmelCase = [ """[UNK]""", """[CLS]""", """[SEP]""", """こんにちは""", """こん""", """にちは""", """ばんは""", """##こん""", """##にちは""", """##ばんは""", """世界""", """##世界""", """、""", """##、""", """。""", """##。""", ] _lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def lowercase__ ( self : Dict , __snake_case : Dict ) -> Any: _lowerCAmelCase = """こんにちは、世界。 \nこんばんは、世界。""" _lowerCAmelCase = """こんにちは 、 世界 。 こんばんは 、 世界 。""" return input_text, output_text def lowercase__ ( self : Any , __snake_case : Dict ) -> Dict: _lowerCAmelCase , _lowerCAmelCase = self.get_input_output_texts(a__ ) _lowerCAmelCase = tokenizer.encode(a__ , add_special_tokens=a__ ) _lowerCAmelCase = tokenizer.decode(a__ , clean_up_tokenization_spaces=a__ ) return text, ids def lowercase__ ( self : str ) -> Optional[Any]: pass # TODO add if relevant def lowercase__ ( self : Tuple ) -> Optional[int]: pass # TODO add if relevant def lowercase__ ( self : Dict ) -> Union[str, Any]: pass # TODO add if relevant def lowercase__ ( self : Dict ) -> Dict: _lowerCAmelCase = self.tokenizer_class(self.vocab_file ) _lowerCAmelCase = tokenizer.tokenize("""こんにちは、世界。\nこんばんは、世界。""" ) self.assertListEqual(a__ , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) def lowercase__ ( self : Tuple ) -> Optional[int]: _lowerCAmelCase = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""mecab""" ) self.assertIsNotNone(a__ ) _lowerCAmelCase = """こんにちは、世界。\nこんばんは、世界。""" _lowerCAmelCase = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) _lowerCAmelCase = os.path.join(self.tmpdirname , """tokenizer.bin""" ) with open(a__ , """wb""" ) as handle: pickle.dump(a__ , a__ ) with open(a__ , """rb""" ) as handle: _lowerCAmelCase = pickle.load(a__ ) _lowerCAmelCase = tokenizer_new.tokenize(a__ ) self.assertListEqual(a__ , a__ ) def lowercase__ ( self : Any ) -> Tuple: _lowerCAmelCase = MecabTokenizer(mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def lowercase__ ( self : List[Any] ) -> Optional[Any]: try: _lowerCAmelCase = MecabTokenizer(mecab_dic="""unidic_lite""" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def lowercase__ ( self : Optional[int] ) -> Optional[int]: try: _lowerCAmelCase = MecabTokenizer(mecab_dic="""unidic""" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def lowercase__ ( self : int ) -> Optional[int]: _lowerCAmelCase = MecabTokenizer(do_lower_case=a__ , mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iphone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def lowercase__ ( self : Optional[int] ) -> Optional[int]: try: _lowerCAmelCase = MecabTokenizer( do_lower_case=a__ , normalize_text=a__ , mecab_option="""-d /usr/local/lib/mecab/dic/jumandic""" ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) def lowercase__ ( self : Tuple ) -> Tuple: _lowerCAmelCase = MecabTokenizer(normalize_text=a__ , mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """ """, """。"""] , ) @require_sudachi def lowercase__ ( self : Any ) -> Optional[int]: _lowerCAmelCase = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""sudachi""" ) self.assertIsNotNone(a__ ) _lowerCAmelCase = """こんにちは、世界。\nこんばんは、世界。""" _lowerCAmelCase = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) _lowerCAmelCase = os.path.join(self.tmpdirname , """tokenizer.bin""" ) with open(a__ , """wb""" ) as handle: pickle.dump(a__ , a__ ) with open(a__ , """rb""" ) as handle: _lowerCAmelCase = pickle.load(a__ ) _lowerCAmelCase = tokenizer_new.tokenize(a__ ) self.assertListEqual(a__ , a__ ) @require_sudachi def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: _lowerCAmelCase = SudachiTokenizer(sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """] , ) @require_sudachi def lowercase__ ( self : Optional[Any] ) -> List[str]: _lowerCAmelCase = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""A""" ) self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国""", """人""", """参政""", """権"""] ) @require_sudachi def lowercase__ ( self : int ) -> int: _lowerCAmelCase = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""B""" ) self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国人""", """参政権"""] ) @require_sudachi def lowercase__ ( self : List[str] ) -> Optional[Any]: _lowerCAmelCase = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""C""" ) self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国人参政権"""] ) @require_sudachi def lowercase__ ( self : Optional[int] ) -> Tuple: _lowerCAmelCase = SudachiTokenizer(do_lower_case=a__ , sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iphone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """] , ) @require_sudachi def lowercase__ ( self : Tuple ) -> Tuple: _lowerCAmelCase = SudachiTokenizer(normalize_text=a__ , sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """\u3000""", """。""", """ """, """ """] , ) @require_sudachi def lowercase__ ( self : Any ) -> List[Any]: _lowerCAmelCase = SudachiTokenizer(trim_whitespace=a__ , sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) @require_jumanpp def lowercase__ ( self : Any ) -> str: _lowerCAmelCase = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""jumanpp""" ) self.assertIsNotNone(a__ ) _lowerCAmelCase = """こんにちは、世界。\nこんばんは、世界。""" _lowerCAmelCase = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) _lowerCAmelCase = os.path.join(self.tmpdirname , """tokenizer.bin""" ) with open(a__ , """wb""" ) as handle: pickle.dump(a__ , a__ ) with open(a__ , """rb""" ) as handle: _lowerCAmelCase = pickle.load(a__ ) _lowerCAmelCase = tokenizer_new.tokenize(a__ ) self.assertListEqual(a__ , a__ ) @require_jumanpp def lowercase__ ( self : Any ) -> int: _lowerCAmelCase = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def lowercase__ ( self : Any ) -> str: _lowerCAmelCase = JumanppTokenizer(do_lower_case=a__ ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iphone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def lowercase__ ( self : Tuple ) -> Tuple: _lowerCAmelCase = JumanppTokenizer(normalize_text=a__ ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""ア""", """ッ""", """フ""", """゚""", """ル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def lowercase__ ( self : Tuple ) -> Optional[int]: _lowerCAmelCase = JumanppTokenizer(trim_whitespace=a__ ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """。"""] , ) @require_jumanpp def lowercase__ ( self : Dict ) -> str: _lowerCAmelCase = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize("""ありがとうございますm(_ _)m見つけるのが大変です。""" ) , ["""ありがとう""", """ございます""", """m(_ _)m""", """見つける""", """の""", """が""", """大変です""", """。"""] , ) def lowercase__ ( self : Dict ) -> int: _lowerCAmelCase = ["""[UNK]""", """[CLS]""", """[SEP]""", """こんにちは""", """こん""", """にちは""", """ばんは""", """##こん""", """##にちは""", """##ばんは"""] _lowerCAmelCase = {} for i, token in enumerate(a__ ): _lowerCAmelCase = i _lowerCAmelCase = WordpieceTokenizer(vocab=a__ , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""こんにちは""" ) , ["""こんにちは"""] ) self.assertListEqual(tokenizer.tokenize("""こんばんは""" ) , ["""こん""", """##ばんは"""] ) self.assertListEqual(tokenizer.tokenize("""こんばんは こんばんにちは こんにちは""" ) , ["""こん""", """##ばんは""", """[UNK]""", """こんにちは"""] ) def lowercase__ ( self : Union[str, Any] ) -> str: _lowerCAmelCase = BertJapaneseTokenizer.from_pretrained("""nlp-waseda/roberta-base-japanese-with-auto-jumanpp""" ) _lowerCAmelCase = tokenizer.subword_tokenizer _lowerCAmelCase = subword_tokenizer.tokenize("""国境 の 長い トンネル を 抜ける と 雪国 であった 。""" ) self.assertListEqual(a__ , ["""▁国境""", """▁の""", """▁長い""", """▁トンネル""", """▁を""", """▁抜ける""", """▁と""", """▁雪""", """国""", """▁であった""", """▁。"""] ) _lowerCAmelCase = subword_tokenizer.tokenize("""こんばんは こんばん にち は こんにちは""" ) self.assertListEqual(a__ , ["""▁こん""", """ばん""", """は""", """▁こん""", """ばん""", """▁に""", """ち""", """▁は""", """▁こんにちは"""] ) def lowercase__ ( self : str ) -> Union[str, Any]: _lowerCAmelCase = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese""" ) _lowerCAmelCase = tokenizer.encode("""ありがとう。""" , add_special_tokens=a__ ) _lowerCAmelCase = tokenizer.encode("""どういたしまして。""" , add_special_tokens=a__ ) _lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(a__ ) _lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(a__ , a__ ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class UpperCAmelCase ( lowerCAmelCase__ , unittest.TestCase ): _lowercase: Tuple = BertJapaneseTokenizer _lowercase: str = False def lowercase__ ( self : Union[str, Any] ) -> str: super().setUp() _lowerCAmelCase = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""] _lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def lowercase__ ( self : Optional[Any] , **__snake_case : List[Any] ) -> Any: return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type="""character""" , **a__ ) def lowercase__ ( self : Optional[Any] , __snake_case : Dict ) -> List[str]: _lowerCAmelCase = """こんにちは、世界。 \nこんばんは、世界。""" _lowerCAmelCase = """こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。""" return input_text, output_text def lowercase__ ( self : List[str] ) -> str: pass # TODO add if relevant def lowercase__ ( self : Optional[Any] ) -> List[Any]: pass # TODO add if relevant def lowercase__ ( self : Any ) -> List[str]: pass # TODO add if relevant def lowercase__ ( self : int ) -> Optional[int]: _lowerCAmelCase = self.tokenizer_class(self.vocab_file , subword_tokenizer_type="""character""" ) _lowerCAmelCase = tokenizer.tokenize("""こんにちは、世界。 \nこんばんは、世界。""" ) self.assertListEqual( a__ , ["""こ""", """ん""", """に""", """ち""", """は""", """、""", """世""", """界""", """。""", """こ""", """ん""", """ば""", """ん""", """は""", """、""", """世""", """界""", """。"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a__ ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def lowercase__ ( self : Optional[int] ) -> List[Any]: _lowerCAmelCase = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""] _lowerCAmelCase = {} for i, token in enumerate(a__ ): _lowerCAmelCase = i _lowerCAmelCase = CharacterTokenizer(vocab=a__ , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""こんにちは""" ) , ["""こ""", """ん""", """に""", """ち""", """は"""] ) self.assertListEqual(tokenizer.tokenize("""こんにちほ""" ) , ["""こ""", """ん""", """に""", """ち""", """[UNK]"""] ) def lowercase__ ( self : List[Any] ) -> Tuple: _lowerCAmelCase = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese-char""" ) _lowerCAmelCase = tokenizer.encode("""ありがとう。""" , add_special_tokens=a__ ) _lowerCAmelCase = tokenizer.encode("""どういたしまして。""" , add_special_tokens=a__ ) _lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(a__ ) _lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(a__ , a__ ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class UpperCAmelCase ( unittest.TestCase ): def lowercase__ ( self : Dict ) -> Union[str, Any]: _lowerCAmelCase = """cl-tohoku/bert-base-japanese""" _lowerCAmelCase = AutoTokenizer.from_pretrained(a__ ) self.assertIsInstance(a__ , a__ ) class UpperCAmelCase ( unittest.TestCase ): def lowercase__ ( self : Optional[int] ) -> Tuple: _lowerCAmelCase = """cl-tohoku/bert-base-japanese""" with self.assertLogs("""transformers""" , level="""WARNING""" ) as cm: BertTokenizer.from_pretrained(a__ ) self.assertTrue( cm.records[0].message.startswith( """The tokenizer class you load from this checkpoint is not the same type as the class this function""" """ is called from.""" ) ) _lowerCAmelCase = """bert-base-cased""" with self.assertLogs("""transformers""" , level="""WARNING""" ) as cm: BertJapaneseTokenizer.from_pretrained(a__ ) self.assertTrue( cm.records[0].message.startswith( """The tokenizer class you load from this checkpoint is not the same type as the class this function""" """ is called from.""" ) )
364
'''simple docstring''' import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(snake_case_ ) , '''Tatoeba directory does not exist.''' ) class UpperCAmelCase ( unittest.TestCase ): @cached_property def lowercase__ ( self : int ) -> Any: _lowerCAmelCase = tempfile.mkdtemp() return TatoebaConverter(save_dir=__snake_case ) @slow def lowercase__ ( self : Dict ) -> int: self.resolver.convert_models(["""heb-eng"""] ) @slow def lowercase__ ( self : Optional[int] ) -> Tuple: _lowerCAmelCase , _lowerCAmelCase = self.resolver.write_model_card("""opus-mt-he-en""" , dry_run=__snake_case ) assert mmeta["long_pair"] == "heb-eng"
220
0
'''simple docstring''' import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller _lowercase : str = 3 def snake_case_ ( __SCREAMING_SNAKE_CASE : int ): """simple docstring""" print('''Generating primitive root of p''' ) while True: lowercase_ : Tuple = random.randrange(3 , __SCREAMING_SNAKE_CASE ) if pow(__SCREAMING_SNAKE_CASE , 2 , __SCREAMING_SNAKE_CASE ) == 1: continue if pow(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) == 1: continue return g def snake_case_ ( __SCREAMING_SNAKE_CASE : int ): """simple docstring""" print('''Generating prime p...''' ) lowercase_ : Union[str, Any] = rabin_miller.generate_large_prime(__SCREAMING_SNAKE_CASE ) # select large prime number. lowercase_ : Any = primitive_root(__SCREAMING_SNAKE_CASE ) # one primitive root on modulo p. lowercase_ : Any = random.randrange(3 , __SCREAMING_SNAKE_CASE ) # private_key -> have to be greater than 2 for safety. lowercase_ : List[Any] = cryptomath.find_mod_inverse(pow(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) lowercase_ : List[Any] = (key_size, e_a, e_a, p) lowercase_ : Optional[Any] = (key_size, d) return public_key, private_key def snake_case_ ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int ): """simple docstring""" if os.path.exists(F'''{name}_pubkey.txt''' ) or os.path.exists(F'''{name}_privkey.txt''' ): print('''\nWARNING:''' ) print( F'''"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n''' '''Use a different name or delete these files and re-run this program.''' ) sys.exit() lowercase_ , lowercase_ : Optional[Any] = generate_key(__SCREAMING_SNAKE_CASE ) print(F'''\nWriting public key to file {name}_pubkey.txt...''' ) with open(F'''{name}_pubkey.txt''' , '''w''' ) as fo: fo.write(F'''{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}''' ) print(F'''Writing private key to file {name}_privkey.txt...''' ) with open(F'''{name}_privkey.txt''' , '''w''' ) as fo: fo.write(F'''{private_key[0]},{private_key[1]}''' ) def snake_case_ ( ): """simple docstring""" print('''Making key files...''' ) make_key_files('''elgamal''' , 2048 ) print('''Key files generation successful''' ) if __name__ == "__main__": main()
93
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase ( unittest.TestCase ): @slow def lowercase__ ( self : List[Any] ) -> str: _lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained("""google/mt5-small""" , return_dict=__snake_case ).to(__snake_case ) _lowerCAmelCase = AutoTokenizer.from_pretrained("""google/mt5-small""" ) _lowerCAmelCase = tokenizer("""Hello there""" , return_tensors="""pt""" ).input_ids _lowerCAmelCase = tokenizer("""Hi I am""" , return_tensors="""pt""" ).input_ids _lowerCAmelCase = model(input_ids.to(__snake_case ) , labels=labels.to(__snake_case ) ).loss _lowerCAmelCase = -(labels.shape[-1] * loss.item()) _lowerCAmelCase = -84.91_27 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
70
0
'''simple docstring''' from __future__ import annotations def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): if len(UpperCAmelCase_ ) == 0: raise ValueError('find_max() arg is an empty sequence' ) if ( left >= len(UpperCAmelCase_ ) or left < -len(UpperCAmelCase_ ) or right >= len(UpperCAmelCase_ ) or right < -len(UpperCAmelCase_ ) ): raise IndexError('list index out of range' ) if left == right: return nums[left] UpperCAmelCase : Optional[int] = (left + right) >> 1 # the middle UpperCAmelCase : Any = find_max(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # find max in range[left, mid] UpperCAmelCase : Union[str, Any] = find_max(UpperCAmelCase_ , mid + 1 , UpperCAmelCase_ ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
280
'''simple docstring''' import argparse import json from tqdm import tqdm def UpperCamelCase( ): UpperCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--src_path' , type=UpperCAmelCase_ , default='biencoder-nq-dev.json' , help='Path to raw DPR training data' , ) parser.add_argument( '--evaluation_set' , type=UpperCAmelCase_ , help='where to store parsed evaluation_set file' , ) parser.add_argument( '--gold_data_path' , type=UpperCAmelCase_ , help='where to store parsed gold_data_path file' , ) UpperCAmelCase : int = parser.parse_args() with open(args.src_path , 'r' ) as src_file, open(args.evaluation_set , 'w' ) as eval_file, open( args.gold_data_path , 'w' ) as gold_file: UpperCAmelCase : int = json.load(UpperCAmelCase_ ) for dpr_record in tqdm(UpperCAmelCase_ ): UpperCAmelCase : Any = dpr_record['question'] UpperCAmelCase : List[str] = [context['title'] for context in dpr_record['positive_ctxs']] eval_file.write(question + '\n' ) gold_file.write('\t'.join(UpperCAmelCase_ ) + '\n' ) if __name__ == "__main__": main()
280
1
"""simple docstring""" from __future__ import annotations from typing import Any class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' pass class __magic_name__ : '''simple docstring''' def __init__( self , _a ): """simple docstring""" lowerCamelCase = data lowerCamelCase = None def __iter__( self ): """simple docstring""" lowerCamelCase = self lowerCamelCase = [] while node: if node in visited: raise ContainsLoopError visited.append(_a ) yield node.data lowerCamelCase = node.next_node @property def _lowerCAmelCase ( self ): """simple docstring""" try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": lowerCAmelCase : Tuple = Node(1) lowerCAmelCase : Optional[Any] = Node(2) lowerCAmelCase : int = Node(3) lowerCAmelCase : Union[str, Any] = Node(4) print(root_node.has_loop) # False lowerCAmelCase : Tuple = root_node.next_node print(root_node.has_loop) # True lowerCAmelCase : Optional[int] = Node(5) lowerCAmelCase : str = Node(6) lowerCAmelCase : List[Any] = Node(5) lowerCAmelCase : Dict = Node(6) print(root_node.has_loop) # False lowerCAmelCase : str = Node(1) print(root_node.has_loop) # False
291
"""simple docstring""" from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging lowerCAmelCase : Tuple = logging.get_logger(__name__) def a__ ( snake_case__ , snake_case__ ) -> Tuple: try: with open(snake_case__ , """rb""" ) as flax_state_f: lowerCamelCase = from_bytes(snake_case__ , flax_state_f.read() ) except UnpicklingError as e: try: with open(snake_case__ ) as f: if f.read().startswith("""version""" ): raise OSError( """You seem to have cloned a repository without having git-lfs installed. Please""" """ install git-lfs and run `git lfs install` followed by `git lfs pull` in the""" """ folder you cloned.""" ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(F'Unable to convert {model_file} to Flax deserializable object. ' ) return load_flax_weights_in_pytorch_model(snake_case__ , snake_case__ ) def a__ ( snake_case__ , snake_case__ ) -> Tuple: try: import torch # noqa: F401 except ImportError: logger.error( """Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise # check if we have bf16 weights lowerCamelCase = flatten_dict(jax.tree_util.tree_map(lambda snake_case__ : x.dtype == jnp.bfloataa , snake_case__ ) ).values() if any(snake_case__ ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( """Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """ """before loading those in PyTorch model.""" ) lowerCamelCase = jax.tree_util.tree_map( lambda snake_case__ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , snake_case__ ) lowerCamelCase = """""" lowerCamelCase = flatten_dict(snake_case__ , sep=""".""" ) lowerCamelCase = pt_model.state_dict() # keep track of unexpected & missing keys lowerCamelCase = [] lowerCamelCase = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): lowerCamelCase = flax_key_tuple.split(""".""" ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: lowerCamelCase = flax_key_tuple_array[:-1] + ["""weight"""] lowerCamelCase = jnp.transpose(snake_case__ , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": lowerCamelCase = flax_key_tuple_array[:-1] + ["""weight"""] lowerCamelCase = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": lowerCamelCase = flax_key_tuple_array[:-1] + ["""weight"""] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(snake_case__ ): lowerCamelCase = ( flax_key_tuple_string.replace("""_0""" , """.0""" ) .replace("""_1""" , """.1""" ) .replace("""_2""" , """.2""" ) .replace("""_3""" , """.3""" ) .replace("""_4""" , """.4""" ) .replace("""_5""" , """.5""" ) .replace("""_6""" , """.6""" ) .replace("""_7""" , """.7""" ) .replace("""_8""" , """.8""" ) .replace("""_9""" , """.9""" ) ) lowerCamelCase = """.""".join(snake_case__ ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ' F'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) else: # add weight to pytorch dict lowerCamelCase = np.asarray(snake_case__ ) if not isinstance(snake_case__ , np.ndarray ) else flax_tensor lowerCamelCase = torch.from_numpy(snake_case__ ) # remove from missing keys missing_keys.remove(snake_case__ ) else: # weight is not expected by PyTorch model unexpected_keys.append(snake_case__ ) pt_model.load_state_dict(snake_case__ ) # re-transform missing_keys to list lowerCamelCase = list(snake_case__ ) if len(snake_case__ ) > 0: logger.warning( """Some weights of the Flax model were not used when initializing the PyTorch model""" F' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing' F' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture' """ (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This""" F' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect' """ to be exactly identical (e.g. initializing a BertForSequenceClassification model from a""" """ FlaxBertForSequenceClassification model).""" ) if len(snake_case__ ) > 0: logger.warning( F'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly' F' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to' """ use it for predictions and inference.""" ) return pt_model
291
1
'''simple docstring''' import numpy as np class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = (0, 0) UpperCAmelCase__ = None UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 def __eq__( self : Dict , _UpperCAmelCase : Optional[Any] ): """simple docstring""" return self.position == cell.position def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" print(self.position ) class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Tuple , _UpperCAmelCase : List[Any]=(5, 5) ): """simple docstring""" UpperCAmelCase__ = np.zeros(_UpperCAmelCase ) UpperCAmelCase__ = world_size[0] UpperCAmelCase__ = world_size[1] def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" print(self.w ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : Dict ): """simple docstring""" UpperCAmelCase__ = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] UpperCAmelCase__ = cell.position[0] UpperCAmelCase__ = cell.position[1] UpperCAmelCase__ = [] for n in neughbour_cord: UpperCAmelCase__ = current_x + n[0] UpperCAmelCase__ = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: UpperCAmelCase__ = Cell() UpperCAmelCase__ = (x, y) UpperCAmelCase__ = cell neighbours.append(_UpperCAmelCase ) return neighbours def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[int] ): '''simple docstring''' UpperCAmelCase__ = [] UpperCAmelCase__ = [] _open.append(SCREAMING_SNAKE_CASE__ ) while _open: UpperCAmelCase__ = np.argmin([n.f for n in _open] ) UpperCAmelCase__ = _open[min_f] _closed.append(_open.pop(SCREAMING_SNAKE_CASE__ ) ) if current == goal: break for n in world.get_neigbours(SCREAMING_SNAKE_CASE__ ): for c in _closed: if c == n: continue UpperCAmelCase__ = current.g + 1 UpperCAmelCase__ , UpperCAmelCase__ = n.position UpperCAmelCase__ , UpperCAmelCase__ = goal.position UpperCAmelCase__ = (ya - ya) ** 2 + (xa - xa) ** 2 UpperCAmelCase__ = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = [] while current.parent is not None: path.append(current.position ) UpperCAmelCase__ = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": UpperCAmelCase_ = Gridworld() # Start position and goal UpperCAmelCase_ = Cell() UpperCAmelCase_ = (0, 0) UpperCAmelCase_ = Cell() UpperCAmelCase_ = (4, 4) print(f"path from {start.position} to {goal.position}") UpperCAmelCase_ = astar(world, start, goal) # Just for visual reasons. for i in s: UpperCAmelCase_ = 1 print(world.w)
61
'''simple docstring''' UpperCAmelCase_ = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)] def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' UpperCAmelCase__ = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 100000] number //= 100000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution UpperCAmelCase_ = [None] * 1_0_0_0_0_0_0_0 UpperCAmelCase_ = True UpperCAmelCase_ = False def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore UpperCAmelCase__ = chain(next_number(SCREAMING_SNAKE_CASE__ ) ) UpperCAmelCase__ = number_chain while number < 10000000: UpperCAmelCase__ = number_chain number *= 10 return number_chain def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int = 10000000 ): '''simple docstring''' for i in range(1 , SCREAMING_SNAKE_CASE__ ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod() print(f"{solution() = }")
61
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """uclanlp/visualbert-vqa""": """https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json""", """uclanlp/visualbert-vqa-pre""": """https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json""", """uclanlp/visualbert-vqa-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json""" ), """uclanlp/visualbert-vcr""": """https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json""", """uclanlp/visualbert-vcr-pre""": """https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json""", """uclanlp/visualbert-vcr-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json""" ), """uclanlp/visualbert-nlvr2""": """https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json""", """uclanlp/visualbert-nlvr2-pre""": """https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json""", """uclanlp/visualbert-nlvr2-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json""" ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class A_ ( A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = """visual_bert""" def __init__( self :int , lowerCamelCase_ :Dict=30_522 , lowerCamelCase_ :Any=768 , lowerCamelCase_ :Tuple=512 , lowerCamelCase_ :str=12 , lowerCamelCase_ :Any=12 , lowerCamelCase_ :int=3_072 , lowerCamelCase_ :Optional[int]="gelu" , lowerCamelCase_ :List[str]=0.1 , lowerCamelCase_ :Union[str, Any]=0.1 , lowerCamelCase_ :str=512 , lowerCamelCase_ :Optional[int]=2 , lowerCamelCase_ :Tuple=0.02 , lowerCamelCase_ :Any=1e-12 , lowerCamelCase_ :Any=False , lowerCamelCase_ :Optional[int]=True , lowerCamelCase_ :Dict=1 , lowerCamelCase_ :Union[str, Any]=0 , lowerCamelCase_ :str=2 , **lowerCamelCase_ :Dict , ): """simple docstring""" super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) lowerCamelCase__ : Any =vocab_size lowerCamelCase__ : Optional[Any] =max_position_embeddings lowerCamelCase__ : Dict =hidden_size lowerCamelCase__ : Tuple =visual_embedding_dim lowerCamelCase__ : Union[str, Any] =num_hidden_layers lowerCamelCase__ : Optional[Any] =num_attention_heads lowerCamelCase__ : List[str] =intermediate_size lowerCamelCase__ : Tuple =hidden_act lowerCamelCase__ : int =hidden_dropout_prob lowerCamelCase__ : Union[str, Any] =attention_probs_dropout_prob lowerCamelCase__ : int =initializer_range lowerCamelCase__ : Dict =type_vocab_size lowerCamelCase__ : str =layer_norm_eps lowerCamelCase__ : Dict =bypass_transformer lowerCamelCase__ : Dict =special_visual_initialize
126
"""simple docstring""" # Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar lowerCAmelCase = TypeVar("""T""") class A_ ( Generic[T] ): """simple docstring""" def __init__( self :Dict , lowerCamelCase_ :bool = True ): """simple docstring""" lowerCamelCase__ : dict[T, list[T]] ={} # dictionary of lists lowerCamelCase__ : int =directed def UpperCAmelCase__ ( self :str , lowerCamelCase_ :T , lowerCamelCase_ :T ): """simple docstring""" if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCamelCase_ ) self.adj_list[destination_vertex].append(lowerCamelCase_ ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCamelCase_ ) lowerCamelCase__ : Dict =[source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(lowerCamelCase_ ) lowerCamelCase__ : Dict =[destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: lowerCamelCase__ : Union[str, Any] =[destination_vertex] lowerCamelCase__ : Any =[source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCamelCase_ ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] =[] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: lowerCamelCase__ : Tuple =[destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: lowerCamelCase__ : str =[destination_vertex] lowerCamelCase__ : Optional[Any] =[] return self def __repr__( self :Optional[Any] ): """simple docstring""" return pformat(self.adj_list )
126
1
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =['image_processor', 'tokenizer'] __a ='LayoutLMv2ImageProcessor' __a =('LayoutXLMTokenizer', 'LayoutXLMTokenizerFast') def __init__( self : Dict , __a : int=None , __a : List[Any]=None , **__a : str ): if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __a , ) _a = kwargs.pop("feature_extractor" ) _a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__a , __a ) def __call__( self : Optional[int] , __a : Optional[Any] , __a : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __a : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , __a : Union[List[List[int]], List[List[List[int]]]] = None , __a : Optional[Union[List[int], List[List[int]]]] = None , __a : bool = True , __a : Union[bool, str, PaddingStrategy] = False , __a : Union[bool, str, TruncationStrategy] = None , __a : Optional[int] = None , __a : int = 0 , __a : Optional[int] = None , __a : Optional[bool] = None , __a : Optional[bool] = None , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = True , __a : Optional[Union[str, TensorType]] = None , **__a : Optional[Any] , ): # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes " "if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError("You cannot return overflowing tokens without returning the offsets mapping." ) # first, apply the image processor _a = self.image_processor(images=__a , return_tensors=__a ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__a , __a ): _a = [text] # add batch dimension (as the image processor always adds a batch dimension) _a = features["words"] _a = self.tokenizer( text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=__a , add_special_tokens=__a , padding=__a , truncation=__a , max_length=__a , stride=__a , pad_to_multiple_of=__a , return_token_type_ids=__a , return_attention_mask=__a , return_overflowing_tokens=__a , return_special_tokens_mask=__a , return_offsets_mapping=__a , return_length=__a , verbose=__a , return_tensors=__a , **__a , ) # add pixel values _a = features.pop("pixel_values" ) if return_overflowing_tokens is True: _a = self.get_overflowing_images(__a , encoded_inputs["overflow_to_sample_mapping"] ) _a = images return encoded_inputs def UpperCamelCase__ ( self : int , __a : List[Any] , __a : int ): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image _a = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__a ) != len(__a ): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" f' {len(__a )} and {len(__a )}' ) return images_with_overflow def UpperCamelCase__ ( self : Optional[Any] , *__a : Dict , **__a : Union[str, Any] ): return self.tokenizer.batch_decode(*__a , **__a ) def UpperCamelCase__ ( self : Union[str, Any] , *__a : Optional[int] , **__a : Optional[Any] ): return self.tokenizer.decode(*__a , **__a ) @property def UpperCamelCase__ ( self : int ): return ["input_ids", "bbox", "attention_mask", "image"] @property def UpperCamelCase__ ( self : List[Any] ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __a , ) return self.image_processor_class @property def UpperCamelCase__ ( self : int ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __a , ) return self.image_processor
346
'''simple docstring''' from random import randint, random def _lowerCamelCase ( lowercase : int , lowercase : int , lowercase : int , lowercase : bool = False , lowercase : bool = False , lowercase : int = 5 , ) -> list: _a = [[-1] * number_of_cells] # Create a highway without any car _a = 0 _a = max(lowercase , 0 ) while i < number_of_cells: _a = ( randint(0 , lowercase ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def _lowerCamelCase ( lowercase : list , lowercase : int ) -> int: _a = 0 _a = highway_now[car_index + 1 :] for cell in range(len(lowercase ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(lowercase , -1 ) def _lowerCamelCase ( lowercase : list , lowercase : float , lowercase : int ) -> list: _a = len(lowercase ) # Beforce calculations, the highway is empty _a = [-1] * number_of_cells for car_index in range(lowercase ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed _a = min(highway_now[car_index] + 1 , lowercase ) # Number of empty cell before the next car _a = get_distance(lowercase , lowercase ) - 1 # We can't have the car causing an accident _a = min(next_highway[car_index] , lowercase ) if random() < probability: # Randomly, a driver will slow down _a = max(next_highway[car_index] - 1 , 0 ) return next_highway def _lowerCamelCase ( lowercase : list , lowercase : int , lowercase : float , lowercase : int ) -> list: _a = len(highway[0] ) for i in range(lowercase ): _a = update(highway[i] , lowercase , lowercase ) _a = [-1] * number_of_cells for car_index in range(lowercase ): _a = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) _a = (car_index + speed) % number_of_cells # Commit the change of position _a = speed highway.append(lowercase ) return highway if __name__ == "__main__": import doctest doctest.testmod()
346
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) __A = { "configuration_speecht5": [ "SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP", "SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP", "SpeechT5Config", "SpeechT5HifiGanConfig", ], "feature_extraction_speecht5": ["SpeechT5FeatureExtractor"], "processing_speecht5": ["SpeechT5Processor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["SpeechT5Tokenizer"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST", "SpeechT5ForSpeechToText", "SpeechT5ForSpeechToSpeech", "SpeechT5ForTextToSpeech", "SpeechT5Model", "SpeechT5PreTrainedModel", "SpeechT5HifiGan", ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
177
"""simple docstring""" import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: # Initialise PyTorch model lowercase__: Optional[Any] = FunnelConfig.from_json_file(__UpperCAmelCase ) print(F"""Building PyTorch model from configuration: {config}""" ) lowercase__: List[Any] = FunnelBaseModel(__UpperCAmelCase ) if base_model else FunnelModel(__UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_funnel(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , __UpperCAmelCase ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not." ) __A = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
177
1
"""simple docstring""" import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class UpperCAmelCase_ ( datasets.BuilderConfig ): __SCREAMING_SNAKE_CASE : Optional[datasets.Features] = None class UpperCAmelCase_ ( datasets.ArrowBasedBuilder ): __SCREAMING_SNAKE_CASE : List[str] = PandasConfig def snake_case_ ( self : Tuple ): return datasets.DatasetInfo(features=self.config.features ) def snake_case_ ( self : str , A : Optional[Any] ): if not self.config.data_files: raise ValueError(f'At least one data file must be specified, but got data_files={self.config.data_files}' ) _UpperCAmelCase : Any = dl_manager.download_and_extract(self.config.data_files ) if isinstance(A , (str, list, tuple) ): _UpperCAmelCase : int = data_files if isinstance(A , A ): _UpperCAmelCase : Union[str, Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _UpperCAmelCase : Union[str, Any] = [dl_manager.iter_files(A ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] _UpperCAmelCase : int = [] for split_name, files in data_files.items(): if isinstance(A , A ): _UpperCAmelCase : Optional[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _UpperCAmelCase : Optional[Any] = [dl_manager.iter_files(A ) for file in files] splits.append(datasets.SplitGenerator(name=A , gen_kwargs={"files": files} ) ) return splits def snake_case_ ( self : int , A : pa.Table ): if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _UpperCAmelCase : List[str] = table_cast(A , self.config.features.arrow_schema ) return pa_table def snake_case_ ( self : Dict , A : Dict ): for i, file in enumerate(itertools.chain.from_iterable(A ) ): with open(A , "rb" ) as f: _UpperCAmelCase : List[str] = pa.Table.from_pandas(pd.read_pickle(A ) ) yield i, self._cast_table(A )
202
"""simple docstring""" import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py _lowerCAmelCase : Dict = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. _lowerCAmelCase : List[Any] = importlib.util.spec_from_file_location( "transformers", os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) _lowerCAmelCase : Tuple = spec.loader.load_module() _lowerCAmelCase : Tuple = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` _lowerCAmelCase : Optional[int] = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)") _lowerCAmelCase : Optional[int] = { "CLIPConfigMixin", "DecisionTransformerConfigMixin", "EncoderDecoderConfigMixin", "RagConfigMixin", "SpeechEncoderDecoderConfigMixin", "VisionEncoderDecoderConfigMixin", "VisionTextDualEncoderConfigMixin", } def __snake_case ( ) -> Dict: '''simple docstring''' _UpperCAmelCase : List[str] = [] for config_class in list(CONFIG_MAPPING.values() ): _UpperCAmelCase : Union[str, Any] = False # source code of `config_class` _UpperCAmelCase : Optional[int] = inspect.getsource(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : List[Any] = _re_checkpoint.findall(SCREAMING_SNAKE_CASE__ ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` _UpperCAmelCase , _UpperCAmelCase : List[Any] = checkpoint # verify the checkpoint name corresponds to the checkpoint link _UpperCAmelCase : Optional[Any] = f'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: _UpperCAmelCase : Optional[Any] = True break _UpperCAmelCase : int = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > 0: _UpperCAmelCase : List[str] = "\n".join(sorted(SCREAMING_SNAKE_CASE__ ) ) raise ValueError(f'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
202
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase : Union[str, Any] = logging.get_logger(__name__) __lowercase : Any = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class __UpperCamelCase ( lowerCAmelCase_ ): A_ = "audio-spectrogram-transformer" def __init__( self , __a=768 , __a=12 , __a=12 , __a=3072 , __a="gelu" , __a=0.0 , __a=0.0 , __a=0.02 , __a=1E-1_2 , __a=16 , __a=True , __a=10 , __a=10 , __a=1024 , __a=128 , **__a , ): '''simple docstring''' super().__init__(**__a ) __a : Union[str, Any] = hidden_size __a : str = num_hidden_layers __a : List[str] = num_attention_heads __a : int = intermediate_size __a : str = hidden_act __a : List[Any] = hidden_dropout_prob __a : Union[str, Any] = attention_probs_dropout_prob __a : int = initializer_range __a : str = layer_norm_eps __a : Tuple = patch_size __a : List[str] = qkv_bias __a : List[str] = frequency_stride __a : List[Any] = time_stride __a : Optional[int] = max_length __a : Any = num_mel_bins
27
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __lowercase : Tuple = logging.get_logger(__name__) __lowercase : List[Any] = torch.device('cpu') def lowerCamelCase (): __a : int = 'http://images.cocodataset.org/val2017/000000039769.jpg' __a : Tuple = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im def lowerCamelCase (_SCREAMING_SNAKE_CASE : Union[str, Any] ): if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0, 8.8_6_8_5e-0_1, 2.4_3_6_0e-0_1] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_6_3_6e-0_1, 2.3_4_7_8e-0_1, -1.6_9_6_3e0_0, -1.7_3_8_1e0_0, -8.6_3_3_7e-0_1] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_7_6_8e-0_1, -4.7_4_2_9e-0_1, -1.0_8_9_7e0_0, -1.0_2_4_8e0_0, 3.5_5_2_3e-0_2] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_3_3_0e-0_1, 2.4_2_1_1e-0_1, -6.0_1_8_5e-0_1, -8.2_7_8_9e-0_1, -6.0_4_4_6e-0_2] ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Union[str, Any] ): __a : int = dct.pop(_SCREAMING_SNAKE_CASE ) __a : Tuple = val def lowerCamelCase (_SCREAMING_SNAKE_CASE : str ): __a : Dict = [] for k in state_dict.keys(): __a : List[Any] = k if ".pwconv" in k: __a : List[Any] = k_new.replace('.pwconv' , '.point_wise_conv' ) if ".dwconv" in k: __a : Dict = k_new.replace('.dwconv' , '.depth_wise_conv' ) if ".Proj." in k: __a : Optional[int] = k_new.replace('.Proj.' , '.proj.' ) if "patch_embed" in k_new: __a : List[Any] = k_new.replace('patch_embed' , 'swiftformer.patch_embed.patch_embedding' ) if "network" in k_new: __a : Union[str, Any] = k_new.split('.' ) if ls[2].isdigit(): __a : Union[str, Any] = 'swiftformer.encoder.network.' + ls[1] + '.blocks.' + ls[2] + '.' + '.'.join(ls[3:] ) else: __a : Union[str, Any] = k_new.replace('network' , 'swiftformer.encoder.network' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def lowerCamelCase (_SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] ): __a : Union[str, Any] = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size __a : List[str] = 1_000 __a : Tuple = 'huggingface/label-files' __a : str = 'imagenet-1k-id2label.json' __a : Dict = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) __a : Optional[int] = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __a : Any = idalabel __a : str = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": __a : Dict = [3, 3, 6, 4] __a : int = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": __a : Dict = [3, 3, 9, 6] __a : List[str] = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": __a : Dict = [4, 3, 10, 5] __a : Optional[int] = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": __a : Tuple = [4, 4, 12, 6] __a : Dict = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('https' ): __a : List[Any] = torch.hub.load_state_dict_from_url(_SCREAMING_SNAKE_CASE , map_location='cpu' , check_hash=_SCREAMING_SNAKE_CASE ) else: __a : Union[str, Any] = torch.load(_SCREAMING_SNAKE_CASE , map_location='cpu' ) __a : Optional[Any] = checkpoint __a : Dict = create_rename_keys(_SCREAMING_SNAKE_CASE ) for rename_key_src, rename_key_dest in rename_keys: rename_key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # load HuggingFace model __a : Tuple = SwiftFormerForImageClassification(_SCREAMING_SNAKE_CASE ).eval() hf_model.load_state_dict(_SCREAMING_SNAKE_CASE ) # prepare test inputs __a : Tuple = prepare_img() __a : str = ViTImageProcessor.from_pretrained('preprocessor_config' ) __a : Tuple = processor(images=_SCREAMING_SNAKE_CASE , return_tensors='pt' ) # compare outputs from both models __a : List[Any] = get_expected_output(_SCREAMING_SNAKE_CASE ) __a : Dict = hf_model(inputs['pixel_values'] ).logits assert hf_logits.shape == torch.Size([1, 1_000] ) assert torch.allclose(hf_logits[0, 0:5] , _SCREAMING_SNAKE_CASE , atol=1e-3 ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) print(F"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowercase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swiftformer_name', default='swiftformer_xs', choices=['swiftformer_xs', 'swiftformer_s', 'swiftformer_l1', 'swiftformer_l3'], type=str, help='Name of the SwiftFormer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='./converted_outputs/', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--original_ckpt', default=None, type=str, help='Path to the original model checkpoint.') __lowercase : Tuple = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
27
1
'''simple docstring''' import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py lowerCamelCase_ = 'src/diffusers' lowerCamelCase_ = '.' # This is to make sure the diffusers module imported is the one in the repo. lowerCamelCase_ = importlib.util.spec_from_file_location( 'diffusers', os.path.join(DIFFUSERS_PATH, '__init__.py'), submodule_search_locations=[DIFFUSERS_PATH], ) lowerCamelCase_ = spec.loader.load_module() def SCREAMING_SNAKE_CASE_ ( __A : Dict , __A : Optional[int] ) -> List[str]: return line.startswith(_lowercase ) or len(_lowercase ) <= 1 or re.search(R"^\s*\)(\s*->.*:|:)\s*$" , _lowercase ) is not None def SCREAMING_SNAKE_CASE_ ( __A : List[Any] ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = object_name.split("." ) _SCREAMING_SNAKE_CASE = 0 # First let's find the module where our object lives. _SCREAMING_SNAKE_CASE = parts[i] while i < len(_lowercase ) and not os.path.isfile(os.path.join(_lowercase , f"""{module}.py""" ) ): i += 1 if i < len(_lowercase ): _SCREAMING_SNAKE_CASE = os.path.join(_lowercase , parts[i] ) if i >= len(_lowercase ): raise ValueError(f"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" ) with open(os.path.join(_lowercase , f"""{module}.py""" ) , "r" , encoding="utf-8" , newline="\n" ) as f: _SCREAMING_SNAKE_CASE = f.readlines() # Now let's find the class / func in the code! _SCREAMING_SNAKE_CASE = "" _SCREAMING_SNAKE_CASE = 0 for name in parts[i + 1 :]: while ( line_index < len(_lowercase ) and re.search(Rf"""^{indent}(class|def)\s+{name}(\(|\:)""" , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(_lowercase ): raise ValueError(f""" {object_name} does not match any function or class in {module}.""" ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). _SCREAMING_SNAKE_CASE = line_index while line_index < len(_lowercase ) and _should_continue(lines[line_index] , _lowercase ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _SCREAMING_SNAKE_CASE = lines[start_index:line_index] return "".join(_lowercase ) lowerCamelCase_ = re.compile(r'^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)') lowerCamelCase_ = re.compile(r'^\s*(\S+)->(\S+)(\s+.*|$)') lowerCamelCase_ = re.compile(r'<FILL\s+[^>]*>') def SCREAMING_SNAKE_CASE_ ( __A : Union[str, Any] ) -> str: _SCREAMING_SNAKE_CASE = code.split("\n" ) _SCREAMING_SNAKE_CASE = 0 while idx < len(_lowercase ) and len(lines[idx] ) == 0: idx += 1 if idx < len(_lowercase ): return re.search(R"^(\s*)\S" , lines[idx] ).groups()[0] return "" def SCREAMING_SNAKE_CASE_ ( __A : Union[str, Any] ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = len(get_indent(_lowercase ) ) > 0 if has_indent: _SCREAMING_SNAKE_CASE = f"""class Bla:\n{code}""" _SCREAMING_SNAKE_CASE = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 , preview=_lowercase ) _SCREAMING_SNAKE_CASE = black.format_str(_lowercase , mode=_lowercase ) _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = style_docstrings_in_code(_lowercase ) return result[len("class Bla:\n" ) :] if has_indent else result def SCREAMING_SNAKE_CASE_ ( __A : List[Any] , __A : List[str]=False ) -> Dict: with open(_lowercase , "r" , encoding="utf-8" , newline="\n" ) as f: _SCREAMING_SNAKE_CASE = f.readlines() _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(_lowercase ): _SCREAMING_SNAKE_CASE = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = search.groups() _SCREAMING_SNAKE_CASE = find_code_in_diffusers(_lowercase ) _SCREAMING_SNAKE_CASE = get_indent(_lowercase ) _SCREAMING_SNAKE_CASE = line_index + 1 if indent == theoretical_indent else line_index + 2 _SCREAMING_SNAKE_CASE = theoretical_indent _SCREAMING_SNAKE_CASE = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. _SCREAMING_SNAKE_CASE = True while line_index < len(_lowercase ) and should_continue: line_index += 1 if line_index >= len(_lowercase ): break _SCREAMING_SNAKE_CASE = lines[line_index] _SCREAMING_SNAKE_CASE = _should_continue(_lowercase , _lowercase ) and re.search(f"""^{indent}# End copy""" , _lowercase ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _SCREAMING_SNAKE_CASE = lines[start_index:line_index] _SCREAMING_SNAKE_CASE = "".join(_lowercase ) # Remove any nested `Copied from` comments to avoid circular copies _SCREAMING_SNAKE_CASE = [line for line in theoretical_code.split("\n" ) if _re_copy_warning.search(_lowercase ) is None] _SCREAMING_SNAKE_CASE = "\n".join(_lowercase ) # Before comparing, use the `replace_pattern` on the original code. if len(_lowercase ) > 0: _SCREAMING_SNAKE_CASE = replace_pattern.replace("with" , "" ).split("," ) _SCREAMING_SNAKE_CASE = [_re_replace_pattern.search(_lowercase ) for p in patterns] for pattern in patterns: if pattern is None: continue _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = pattern.groups() _SCREAMING_SNAKE_CASE = re.sub(_lowercase , _lowercase , _lowercase ) if option.strip() == "all-casing": _SCREAMING_SNAKE_CASE = re.sub(obja.lower() , obja.lower() , _lowercase ) _SCREAMING_SNAKE_CASE = re.sub(obja.upper() , obja.upper() , _lowercase ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line _SCREAMING_SNAKE_CASE = blackify(lines[start_index - 1] + theoretical_code ) _SCREAMING_SNAKE_CASE = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: _SCREAMING_SNAKE_CASE = lines[:start_index] + [theoretical_code] + lines[line_index:] _SCREAMING_SNAKE_CASE = start_index + 1 if overwrite and len(_lowercase ) > 0: # Warn the user a file has been modified. print(f"""Detected changes, rewriting {filename}.""" ) with open(_lowercase , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(_lowercase ) return diffs def SCREAMING_SNAKE_CASE_ ( __A : int = False ) -> Tuple: _SCREAMING_SNAKE_CASE = glob.glob(os.path.join(_lowercase , "**/*.py" ) , recursive=_lowercase ) _SCREAMING_SNAKE_CASE = [] for filename in all_files: _SCREAMING_SNAKE_CASE = is_copy_consistent(_lowercase , _lowercase ) diffs += [f"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(_lowercase ) > 0: _SCREAMING_SNAKE_CASE = "\n".join(_lowercase ) raise Exception( "Found the following copy inconsistencies:\n" + diff + "\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them." ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') lowerCamelCase_ = parser.parse_args() check_copies(args.fix_and_overwrite)
359
'''simple docstring''' from collections.abc import Sequence def SCREAMING_SNAKE_CASE_ ( __A : Sequence[int] | None = None ) -> int: if nums is None or not nums: raise ValueError("Input sequence should not be empty" ) _SCREAMING_SNAKE_CASE = nums[0] for i in range(1 , len(__A ) ): _SCREAMING_SNAKE_CASE = nums[i] _SCREAMING_SNAKE_CASE = max(__A , ans + num , __A ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user lowerCamelCase_ = int(input('Enter number of elements : ').strip()) lowerCamelCase_ = list(map(int, input('\nEnter the numbers : ').strip().split()))[:n] print(max_subsequence_sum(array))
111
0
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() __snake_case = logging.get_logger(__name__) __snake_case = [ ("""bert.bert""", """visual_bert"""), ("""bert.cls""", """cls"""), ("""bert.classifier""", """cls"""), ("""token_type_embeddings_visual""", """visual_token_type_embeddings"""), ("""position_embeddings_visual""", """visual_position_embeddings"""), ("""projection""", """visual_projection"""), ] __snake_case = [ """nlvr2_coco_pre_trained.th""", """nlvr2_fine_tuned.th""", """nlvr2_pre_trained.th""", """vcr_coco_pre_train.th""", """vcr_fine_tune.th""", """vcr_pre_train.th""", """vqa_coco_pre_trained.th""", """vqa_fine_tuned.th""", """vqa_pre_trained.th""", ] def __lowerCAmelCase ( lowercase : Union[str, Any] ) -> Optional[Any]: """simple docstring""" snake_case : Union[str, Any] = torch.load(__A , map_location="cpu" ) return sd def __lowerCAmelCase ( lowercase : str , lowercase : Any , lowercase : Dict=rename_keys_prefix ) -> Optional[Any]: """simple docstring""" snake_case : Tuple = OrderedDict() snake_case : Union[str, Any] = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue snake_case : Optional[Any] = key for name_pair in rename_keys_prefix: snake_case : Optional[Any] = new_key.replace(name_pair[0] , name_pair[1] ) snake_case : str = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately snake_case : Union[str, Any] = new_d["cls.predictions.bias"] return new_d @torch.no_grad() def __lowerCAmelCase ( lowercase : Optional[Any] , lowercase : List[Any] ) -> List[Any]: """simple docstring""" assert ( checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS ), F'The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.' # Get Config if "pre" in checkpoint_path: snake_case : Any = "pretraining" if "vcr" in checkpoint_path: snake_case : str = {"visual_embedding_dim": 512} elif "vqa_advanced" in checkpoint_path: snake_case : Optional[int] = {"visual_embedding_dim": 2048} elif "vqa" in checkpoint_path: snake_case : List[Any] = {"visual_embedding_dim": 2048} elif "nlvr" in checkpoint_path: snake_case : Any = {"visual_embedding_dim": 1024} else: raise NotImplementedError(F'No implementation found for `{checkpoint_path}`.' ) else: if "vcr" in checkpoint_path: snake_case : int = {"visual_embedding_dim": 512} snake_case : Dict = "multichoice" elif "vqa_advanced" in checkpoint_path: snake_case : List[str] = {"visual_embedding_dim": 2048} snake_case : Optional[Any] = "vqa_advanced" elif "vqa" in checkpoint_path: snake_case : Tuple = {"visual_embedding_dim": 2048, "num_labels": 3129} snake_case : str = "vqa" elif "nlvr" in checkpoint_path: snake_case : int = { "visual_embedding_dim": 1024, "num_labels": 2, } snake_case : Dict = "nlvr" snake_case : List[Any] = VisualBertConfig(**__A ) # Load State Dict snake_case : Tuple = load_state_dict(__A ) snake_case : List[str] = get_new_dict(__A , __A ) if model_type == "pretraining": snake_case : int = VisualBertForPreTraining(__A ) elif model_type == "vqa": snake_case : Any = VisualBertForQuestionAnswering(__A ) elif model_type == "nlvr": snake_case : str = VisualBertForVisualReasoning(__A ) elif model_type == "multichoice": snake_case : Dict = VisualBertForMultipleChoice(__A ) model.load_state_dict(__A ) # Save Checkpoints Path(__A ).mkdir(exist_ok=__A ) model.save_pretrained(__A ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument("""orig_checkpoint_path""", type=str, help="""A path to .th on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", type=str, help="""Path to the output PyTorch model.""") __snake_case = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
203
from manim import * class A ( UpperCAmelCase_ ): def lowercase_ (self : Union[str, Any] ) -> List[str]: """simple docstring""" UpperCAmelCase__ = Rectangle(height=0.5 , width=0.5 ) UpperCAmelCase__ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCAmelCase__ = Rectangle(height=0.25 , width=0.25 ) UpperCAmelCase__ = [mem.copy() for i in range(6 )] UpperCAmelCase__ = [mem.copy() for i in range(6 )] UpperCAmelCase__ = VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) UpperCAmelCase__ = VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) UpperCAmelCase__ = VGroup(__UpperCAmelCase , __UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) UpperCAmelCase__ = Text("CPU" , font_size=2_4 ) UpperCAmelCase__ = Group(__UpperCAmelCase , __UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0.5 , aligned_edge=__UpperCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__UpperCAmelCase ) UpperCAmelCase__ = [mem.copy() for i in range(4 )] UpperCAmelCase__ = VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) UpperCAmelCase__ = Text("GPU" , font_size=2_4 ) UpperCAmelCase__ = Group(__UpperCAmelCase , __UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0.5 , aligned_edge=__UpperCAmelCase ) gpu.move_to([-1, -1, 0] ) self.add(__UpperCAmelCase ) UpperCAmelCase__ = [mem.copy() for i in range(6 )] UpperCAmelCase__ = VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) UpperCAmelCase__ = Text("Model" , font_size=2_4 ) UpperCAmelCase__ = Group(__UpperCAmelCase , __UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0.5 , aligned_edge=__UpperCAmelCase ) model.move_to([3, -1.0, 0] ) self.add(__UpperCAmelCase ) UpperCAmelCase__ = [] UpperCAmelCase__ = [] for i, rect in enumerate(__UpperCAmelCase ): UpperCAmelCase__ = fill.copy().set_fill(__UpperCAmelCase , opacity=0.8 ) target.move_to(__UpperCAmelCase ) model_arr.append(__UpperCAmelCase ) UpperCAmelCase__ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(__UpperCAmelCase , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(__UpperCAmelCase ) self.add(*__UpperCAmelCase , *__UpperCAmelCase ) UpperCAmelCase__ = [meta_mem.copy() for i in range(6 )] UpperCAmelCase__ = [meta_mem.copy() for i in range(6 )] UpperCAmelCase__ = VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) UpperCAmelCase__ = VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) UpperCAmelCase__ = VGroup(__UpperCAmelCase , __UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) UpperCAmelCase__ = Text("Disk" , font_size=2_4 ) UpperCAmelCase__ = Group(__UpperCAmelCase , __UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0.5 , aligned_edge=__UpperCAmelCase ) disk.move_to([-4, -1.25, 0] ) self.add(__UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase__ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCAmelCase__ = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=1_8 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase__ = MarkupText( f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=1_8 , ) blue_text.next_to(__UpperCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(__UpperCAmelCase ) UpperCAmelCase__ = MarkupText( f"""Now watch as an input is passed through the model\nand how the memory is utilized and handled.""" , font_size=2_4 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__UpperCAmelCase ) ) UpperCAmelCase__ = Square(0.3 ) input.set_fill(__UpperCAmelCase , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , __UpperCAmelCase , buff=0.5 ) self.play(Write(__UpperCAmelCase ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=__UpperCAmelCase , buff=0.02 ) self.play(MoveToTarget(__UpperCAmelCase ) ) self.play(FadeOut(__UpperCAmelCase ) ) UpperCAmelCase__ = Arrow(start=__UpperCAmelCase , end=__UpperCAmelCase , color=__UpperCAmelCase , buff=0.5 ) a.next_to(model_arr[0].get_left() , __UpperCAmelCase , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) UpperCAmelCase__ = MarkupText( f"""As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.""" , font_size=2_4 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__UpperCAmelCase , run_time=3 ) ) UpperCAmelCase__ = {"run_time": 1, "fade_in": True, "fade_out": True, "buff": 0.02} self.play( Write(__UpperCAmelCase ) , Circumscribe(model_arr[0] , color=__UpperCAmelCase , **__UpperCAmelCase ) , Circumscribe(model_cpu_arr[0] , color=__UpperCAmelCase , **__UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=__UpperCAmelCase , **__UpperCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) UpperCAmelCase__ = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , __UpperCAmelCase , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) UpperCAmelCase__ = AnimationGroup( FadeOut(__UpperCAmelCase , run_time=0.5 ) , MoveToTarget(__UpperCAmelCase , run_time=0.5 ) , FadeIn(__UpperCAmelCase , run_time=0.5 ) , lag_ratio=0.2 ) self.play(__UpperCAmelCase ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: UpperCAmelCase__ = 0.7 self.play( Circumscribe(model_arr[i] , **__UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i] , **__UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i + 1] , color=__UpperCAmelCase , **__UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=__UpperCAmelCase , **__UpperCAmelCase ) , Circumscribe(model_arr[i + 1] , color=__UpperCAmelCase , **__UpperCAmelCase ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=__UpperCAmelCase , **__UpperCAmelCase ) , Circumscribe(cpu_left_col_base[-1] , color=__UpperCAmelCase , **__UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=__UpperCAmelCase , **__UpperCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) UpperCAmelCase__ = a_c UpperCAmelCase__ = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(__UpperCAmelCase ) , FadeOut(__UpperCAmelCase , run_time=0.5 ) , ) UpperCAmelCase__ = MarkupText(f"""Inference on a model too large for GPU memory\nis successfully completed.""" , font_size=2_4 ) step_a.move_to([2, 2, 0] ) self.play(Write(__UpperCAmelCase , run_time=3 ) , MoveToTarget(__UpperCAmelCase ) ) self.wait()
65
0
"""simple docstring""" import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": __A = argparse.ArgumentParser( description=( '''Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned''' ''' Distillation''' ) ) parser.add_argument('''--model_type''', default='''roberta''', choices=['''roberta''', '''gpt2''']) parser.add_argument('''--model_name''', default='''roberta-large''', type=str) parser.add_argument('''--dump_checkpoint''', default='''serialization_dir/tf_roberta_048131723.pth''', type=str) parser.add_argument('''--vocab_transform''', action='''store_true''') __A = parser.parse_args() if args.model_type == "roberta": __A = RobertaForMaskedLM.from_pretrained(args.model_name) __A = """roberta""" elif args.model_type == "gpt2": __A = GPTaLMHeadModel.from_pretrained(args.model_name) __A = """transformer""" __A = model.state_dict() __A = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: __A = state_dict[f'{prefix}.{param_name}'] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: __A = f'{prefix}.embeddings.{w}.weight' __A = state_dict[param_name] for w in ["weight", "bias"]: __A = f'{prefix}.embeddings.LayerNorm.{w}' __A = state_dict[param_name] # Transformer Blocks # __A = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: __A = state_dict[ f'{prefix}.h.{teacher_idx}.{layer}.{w}' ] __A = state_dict[f'{prefix}.h.{teacher_idx}.attn.bias'] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: __A = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}' ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: __A = state_dict[f'{layer}'] if args.vocab_transform: for w in ["weight", "bias"]: __A = state_dict[f'lm_head.dense.{w}'] __A = state_dict[f'lm_head.layer_norm.{w}'] elif args.model_type == "gpt2": for w in ["weight", "bias"]: __A = state_dict[f'{prefix}.ln_f.{w}'] __A = state_dict["""lm_head.weight"""] print(f'N layers selected for distillation: {std_idx}') print(f'Number of params transferred for distillation: {len(compressed_sd.keys())}') print(f'Save transferred checkpoint to {args.dump_checkpoint}.') torch.save(compressed_sd, args.dump_checkpoint)
352
import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class lowercase : """simple docstring""" def __init__( self : Any , __UpperCAmelCase : str , __UpperCAmelCase : List[Any]=13 , __UpperCAmelCase : Dict=7 , __UpperCAmelCase : Optional[Any]=True , __UpperCAmelCase : Union[str, Any]=True , __UpperCAmelCase : Any=True , __UpperCAmelCase : Dict=True , __UpperCAmelCase : Dict=99 , __UpperCAmelCase : Union[str, Any]=64 , __UpperCAmelCase : Dict=5 , __UpperCAmelCase : int=4 , __UpperCAmelCase : int=37 , __UpperCAmelCase : Dict="gelu" , __UpperCAmelCase : List[Any]=0.1 , __UpperCAmelCase : int=0.1 , __UpperCAmelCase : Union[str, Any]=512 , __UpperCAmelCase : Any=16 , __UpperCAmelCase : Union[str, Any]=2 , __UpperCAmelCase : List[str]=0.02 , __UpperCAmelCase : Union[str, Any]=3 , __UpperCAmelCase : Tuple=4 , __UpperCAmelCase : str=None , ) -> str: UpperCAmelCase_= parent UpperCAmelCase_= batch_size UpperCAmelCase_= seq_length UpperCAmelCase_= is_training UpperCAmelCase_= use_input_mask UpperCAmelCase_= use_token_type_ids UpperCAmelCase_= use_labels UpperCAmelCase_= vocab_size UpperCAmelCase_= hidden_size UpperCAmelCase_= num_hidden_layers UpperCAmelCase_= num_attention_heads UpperCAmelCase_= intermediate_size UpperCAmelCase_= hidden_act UpperCAmelCase_= hidden_dropout_prob UpperCAmelCase_= attention_probs_dropout_prob UpperCAmelCase_= max_position_embeddings UpperCAmelCase_= type_vocab_size UpperCAmelCase_= type_sequence_label_size UpperCAmelCase_= initializer_range UpperCAmelCase_= num_labels UpperCAmelCase_= num_choices UpperCAmelCase_= scope UpperCAmelCase_= vocab_size - 1 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: UpperCAmelCase_= ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_= None if self.use_input_mask: UpperCAmelCase_= random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_= None if self.use_labels: UpperCAmelCase_= ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_= self.get_config() return config, input_ids, input_mask, token_labels def _SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_= self.prepare_config_and_inputs() UpperCAmelCase_= True return config, input_ids, input_mask, token_labels def _SCREAMING_SNAKE_CASE ( self : Tuple , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any] ) -> Optional[int]: UpperCAmelCase_= GPTNeoXModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() UpperCAmelCase_= model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) UpperCAmelCase_= model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : Any , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Tuple ) -> Dict: UpperCAmelCase_= True UpperCAmelCase_= GPTNeoXModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() UpperCAmelCase_= model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : Tuple , __UpperCAmelCase : List[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Dict ) -> int: UpperCAmelCase_= GPTNeoXForCausalLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() UpperCAmelCase_= model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : List[Any] ) -> Union[str, Any]: UpperCAmelCase_= self.num_labels UpperCAmelCase_= GPTNeoXForQuestionAnswering(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() UpperCAmelCase_= model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[str] ) -> Union[str, Any]: UpperCAmelCase_= self.num_labels UpperCAmelCase_= GPTNeoXForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() UpperCAmelCase_= ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_= model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Dict ) -> Dict: UpperCAmelCase_= self.num_labels UpperCAmelCase_= GPTNeoXForTokenClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() UpperCAmelCase_= model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : int ) -> Optional[int]: UpperCAmelCase_= True UpperCAmelCase_= GPTNeoXForCausalLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() # first forward pass UpperCAmelCase_= model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase ) UpperCAmelCase_= outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase_= ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase_= ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase_= torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase_= torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase_= model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase ) UpperCAmelCase_= output_from_no_past["""hidden_states"""][0] UpperCAmelCase_= model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["""hidden_states"""][0] # select random slice UpperCAmelCase_= ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase_= output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase_= output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) ) def _SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: UpperCAmelCase_= self.prepare_config_and_inputs() UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_= config_and_inputs UpperCAmelCase_= {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowercase ( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase): """simple docstring""" a__ : Union[str, Any] = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) a__ : Any = (GPTNeoXForCausalLM,) if is_torch_available() else () a__ : str = ( { "feature-extraction": GPTNeoXModel, "question-answering": GPTNeoXForQuestionAnswering, "text-classification": GPTNeoXForSequenceClassification, "text-generation": GPTNeoXForCausalLM, "token-classification": GPTNeoXForTokenClassification, "zero-shot": GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) a__ : Optional[int] = False a__ : Tuple = False a__ : int = False a__ : List[Any] = False def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: UpperCAmelCase_= GPTNeoXModelTester(self ) UpperCAmelCase_= ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=64 , num_attention_heads=8 ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_= self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: # This regression test was failing with PyTorch < 1.3 UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_= self.model_tester.prepare_config_and_inputs_for_decoder() UpperCAmelCase_= None self.model_tester.create_and_check_model_as_decoder(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Any: UpperCAmelCase_= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*__UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: UpperCAmelCase_= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: UpperCAmelCase_= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: UpperCAmelCase_= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase ) @unittest.skip(reason="""Feed forward chunking is not implemented""" ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def _SCREAMING_SNAKE_CASE ( self : str , __UpperCAmelCase : Any ) -> Dict: UpperCAmelCase_, UpperCAmelCase_= self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_= ids_tensor([1, 10] , config.vocab_size ) UpperCAmelCase_= ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase_= GPTNeoXModel(__UpperCAmelCase ) original_model.to(__UpperCAmelCase ) original_model.eval() UpperCAmelCase_= original_model(__UpperCAmelCase ).last_hidden_state UpperCAmelCase_= original_model(__UpperCAmelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase_= {"""type""": scaling_type, """factor""": 10.0} UpperCAmelCase_= GPTNeoXModel(__UpperCAmelCase ) scaled_model.to(__UpperCAmelCase ) scaled_model.eval() UpperCAmelCase_= scaled_model(__UpperCAmelCase ).last_hidden_state UpperCAmelCase_= scaled_model(__UpperCAmelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) ) @require_torch class lowercase ( unittest.TestCase): """simple docstring""" @slow def _SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: UpperCAmelCase_= AutoTokenizer.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) for checkpointing in [True, False]: UpperCAmelCase_= GPTNeoXForCausalLM.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(__UpperCAmelCase ) UpperCAmelCase_= tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(__UpperCAmelCase ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 UpperCAmelCase_= """My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI'm not sure""" UpperCAmelCase_= model.generate(**__UpperCAmelCase , do_sample=__UpperCAmelCase , max_new_tokens=20 ) UpperCAmelCase_= tokenizer.batch_decode(__UpperCAmelCase )[0] self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
277
0
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): snake_case__ : Any = BlenderbotSmallTokenizer snake_case__ : str = False def _A ( self : Any ): super().setUp() UpperCamelCase :int = ["""__start__""", """adapt""", """act""", """ap@@""", """te""", """__end__""", """__unk__"""] UpperCamelCase :Any = dict(zip(A__ , range(len(A__ ) ) ) ) UpperCamelCase :int = ["""#version: 0.2""", """a p""", """t e</w>""", """ap t</w>""", """a d""", """ad apt</w>""", """a c""", """ac t</w>""", """"""] UpperCamelCase :Any = {"""unk_token""": """__unk__""", """bos_token""": """__start__""", """eos_token""": """__end__"""} UpperCamelCase :Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCamelCase :str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(A__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(A__ ) ) def _A ( self : Optional[Any] , **__lowerCamelCase : Tuple ): kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **A__ ) def _A ( self : Union[str, Any] , __lowerCamelCase : Optional[int] ): UpperCamelCase :Optional[int] = """adapt act apte""" UpperCamelCase :str = """adapt act apte""" return input_text, output_text def _A ( self : str ): UpperCamelCase :str = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCamelCase :Dict = """adapt act apte""" UpperCamelCase :List[Any] = ["""adapt""", """act""", """ap@@""", """te"""] UpperCamelCase :Union[str, Any] = tokenizer.tokenize(A__ ) self.assertListEqual(A__ , A__ ) UpperCamelCase :Optional[int] = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] UpperCamelCase :str = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(A__ ) , A__ ) def _A ( self : Any ): UpperCamelCase :Optional[Any] = BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" ) assert tok("""sam""" ).input_ids == [1_384] UpperCamelCase :Optional[int] = """I am a small frog.""" UpperCamelCase :List[Any] = tok([src_text] , padding=A__ , truncation=A__ )["""input_ids"""] UpperCamelCase :Any = tok.batch_decode(A__ , skip_special_tokens=A__ , clean_up_tokenization_spaces=A__ )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def _A ( self : Union[str, Any] ): UpperCamelCase :Union[str, Any] = BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" ) UpperCamelCase :str = """I am a small frog .""" UpperCamelCase :str = """.""" UpperCamelCase :Tuple = tok(A__ )["""input_ids"""] UpperCamelCase :str = tok(A__ )["""input_ids"""] assert encoded[-1] == encoded_dot[0]
38
def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' if edge <= 0 or not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError('''Length must be a positive.''' ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' if edge <= 0 or not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError('''Length must be a positive.''' ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
101
0
"""simple docstring""" import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration a__ : List[Any] = { '''tiny.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt''', '''tiny''': '''https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt''', '''base.en''': '''https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt''', '''base''': '''https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt''', '''small.en''': '''https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt''', '''small''': '''https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt''', '''medium.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt''', '''medium''': '''https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt''', '''large''': '''https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt''', '''large-v2''': '''https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt''', } def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["layers", "blocks"] for k in ignore_keys: state_dict.pop(lowerCAmelCase_ , lowerCAmelCase_ ) a__ : Any = { '''blocks''': '''layers''', '''mlp.0''': '''fc1''', '''mlp.2''': '''fc2''', '''mlp_ln''': '''final_layer_norm''', '''.attn.query''': '''.self_attn.q_proj''', '''.attn.key''': '''.self_attn.k_proj''', '''.attn.value''': '''.self_attn.v_proj''', '''.attn_ln''': '''.self_attn_layer_norm''', '''.attn.out''': '''.self_attn.out_proj''', '''.cross_attn.query''': '''.encoder_attn.q_proj''', '''.cross_attn.key''': '''.encoder_attn.k_proj''', '''.cross_attn.value''': '''.encoder_attn.v_proj''', '''.cross_attn_ln''': '''.encoder_attn_layer_norm''', '''.cross_attn.out''': '''.encoder_attn.out_proj''', '''decoder.ln.''': '''decoder.layer_norm.''', '''encoder.ln.''': '''encoder.layer_norm.''', '''token_embedding''': '''embed_tokens''', '''encoder.positional_embedding''': '''encoder.embed_positions.weight''', '''decoder.positional_embedding''': '''decoder.embed_positions.weight''', '''ln_post''': '''layer_norm''', } def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = list(s_dict.keys() ) for key in keys: __SCREAMING_SNAKE_CASE = key for k, v in WHISPER_MAPPING.items(): if k in key: __SCREAMING_SNAKE_CASE = new_key.replace(lowerCAmelCase_ , lowerCAmelCase_ ) print(f"""{key} -> {new_key}""" ) __SCREAMING_SNAKE_CASE = s_dict.pop(lowerCAmelCase_ ) return s_dict def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = emb.weight.shape __SCREAMING_SNAKE_CASE = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ , bias=lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = emb.weight.data return lin_layer def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = os.path.basename(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = url.split("/" )[-2] __SCREAMING_SNAKE_CASE = os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) if os.path.exists(lowerCAmelCase_ ) and not os.path.isfile(lowerCAmelCase_ ): raise RuntimeError(f"""{download_target} exists and is not a regular file""" ) if os.path.isfile(lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = open(lowerCAmelCase_ , "rb" ).read() if hashlib.shaaaa(lowerCAmelCase_ ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(f"""{download_target} exists, but the SHA256 checksum does not match; re-downloading the file""" ) with urllib.request.urlopen(lowerCAmelCase_ ) as source, open(lowerCAmelCase_ , "wb" ) as output: with tqdm( total=int(source.info().get("Content-Length" ) ) , ncols=80 , unit="iB" , unit_scale=lowerCAmelCase_ , unit_divisor=1024 ) as loop: while True: __SCREAMING_SNAKE_CASE = source.read(8192 ) if not buffer: break output.write(lowerCAmelCase_ ) loop.update(len(lowerCAmelCase_ ) ) __SCREAMING_SNAKE_CASE = open(lowerCAmelCase_ , "rb" ).read() if hashlib.shaaaa(lowerCAmelCase_ ).hexdigest() != expected_shaaaa: raise RuntimeError( "Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model." ) return model_bytes def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' if ".pt" not in checkpoint_path: __SCREAMING_SNAKE_CASE = _download(_MODELS[checkpoint_path] ) else: __SCREAMING_SNAKE_CASE = torch.load(lowerCAmelCase_ , map_location="cpu" ) __SCREAMING_SNAKE_CASE = original_checkpoint["dims"] __SCREAMING_SNAKE_CASE = original_checkpoint["model_state_dict"] __SCREAMING_SNAKE_CASE = state_dict["decoder.token_embedding.weight"] remove_ignore_keys_(lowerCAmelCase_ ) rename_keys(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = state_dict["decoder.layers.0.fc1.weight"].shape[0] __SCREAMING_SNAKE_CASE = WhisperConfig( vocab_size=dimensions["n_vocab"] , encoder_ffn_dim=lowerCAmelCase_ , decoder_ffn_dim=lowerCAmelCase_ , num_mel_bins=dimensions["n_mels"] , d_model=dimensions["n_audio_state"] , max_target_positions=dimensions["n_text_ctx"] , encoder_layers=dimensions["n_audio_layer"] , encoder_attention_heads=dimensions["n_audio_head"] , decoder_layers=dimensions["n_text_layer"] , decoder_attention_heads=dimensions["n_text_state"] , max_source_positions=dimensions["n_audio_ctx"] , ) __SCREAMING_SNAKE_CASE = WhisperForConditionalGeneration(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = model.model.load_state_dict(lowerCAmelCase_ , strict=lowerCAmelCase_ ) if len(lowerCAmelCase_ ) > 0 and not set(lowerCAmelCase_ ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( "Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing," f""" but all the following weights are missing {missing}""" ) if tie_embeds: __SCREAMING_SNAKE_CASE = make_linear_from_emb(model.model.decoder.embed_tokens ) else: __SCREAMING_SNAKE_CASE = proj_out_weights model.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": a__ : Optional[int] = argparse.ArgumentParser() # # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Patht to the downloaded checkpoints''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') a__ : int = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
195
"""simple docstring""" import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging a__ : Optional[Any] = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" snake_case__ : int = CLIPConfig snake_case__ : str = ["CLIPEncoderLayer"] def __init__( self : Optional[int] , UpperCAmelCase__ : CLIPConfig ) -> Dict: super().__init__(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = CLIPVisionModelWithProjection(config.vision_config ) __SCREAMING_SNAKE_CASE = nn.Linear(config.vision_config.projection_dim , 1 ) __SCREAMING_SNAKE_CASE = nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def UpperCAmelCase_ ( self : str , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : int=0.5 , UpperCAmelCase__ : Optional[int]=0.5 ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = self.vision_model(UpperCAmelCase__ )[0] __SCREAMING_SNAKE_CASE = self.p_head(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = nsfw_detected.flatten() __SCREAMING_SNAKE_CASE = nsfw_detected > p_threshold __SCREAMING_SNAKE_CASE = nsfw_detected.tolist() if any(UpperCAmelCase__ ): logger.warning( "Potential NSFW content was detected in one or more images. A black image will be returned instead." " Try again with a different prompt and/or seed." ) for idx, nsfw_detected_ in enumerate(UpperCAmelCase__ ): if nsfw_detected_: __SCREAMING_SNAKE_CASE = np.zeros(images[idx].shape ) __SCREAMING_SNAKE_CASE = self.w_head(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = watermark_detected.flatten() __SCREAMING_SNAKE_CASE = watermark_detected > w_threshold __SCREAMING_SNAKE_CASE = watermark_detected.tolist() if any(UpperCAmelCase__ ): logger.warning( "Potential watermarked content was detected in one or more images. A black image will be returned instead." " Try again with a different prompt and/or seed." ) for idx, watermark_detected_ in enumerate(UpperCAmelCase__ ): if watermark_detected_: __SCREAMING_SNAKE_CASE = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
195
1
"""simple docstring""" from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=30 , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=10 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=3 , _UpperCAmelCase=None , ): __a : Optional[Any] = parent __a : List[str] = batch_size __a : Optional[int] = image_size __a : Any = patch_size __a : List[str] = num_channels __a : int = is_training __a : List[str] = use_labels __a : Dict = hidden_size __a : Union[str, Any] = num_hidden_layers __a : int = num_attention_heads __a : Dict = intermediate_size __a : List[Any] = hidden_act __a : Any = hidden_dropout_prob __a : Any = attention_probs_dropout_prob __a : List[Any] = type_sequence_label_size __a : Optional[int] = initializer_range __a : Union[str, Any] = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __a : Optional[Any] = (image_size // patch_size) ** 2 __a : Dict = num_patches + 1 def _lowerCamelCase ( self ): __a : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a : List[Any] = None if self.use_labels: __a : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a : List[str] = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self ): return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : Optional[Any] = TFViTModel(config=_UpperCAmelCase ) __a : Tuple = model(_UpperCAmelCase , training=_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. __a : int = self.image_size // 2 __a : str = pixel_values[:, :, :image_size, :image_size] __a : str = model(_UpperCAmelCase , interpolate_pos_encoding=_UpperCAmelCase , training=_UpperCAmelCase ) __a : Any = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : Optional[int] = self.type_sequence_label_size __a : Optional[int] = TFViTForImageClassification(_UpperCAmelCase ) __a : Optional[int] = model(_UpperCAmelCase , labels=_UpperCAmelCase , training=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. __a : List[str] = self.image_size // 2 __a : Any = pixel_values[:, :, :image_size, :image_size] __a : Any = model(_UpperCAmelCase , interpolate_pos_encoding=_UpperCAmelCase , training=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __a : str = 1 __a : Any = TFViTForImageClassification(_UpperCAmelCase ) __a : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __a : List[Any] = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCamelCase ( self ): __a : List[str] = self.prepare_config_and_inputs() __a , __a , __a : List[str] = config_and_inputs __a : List[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class __lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () __lowerCAmelCase = ( {'''feature-extraction''': TFViTModel, '''image-classification''': TFViTForImageClassification} if is_tf_available() else {} ) __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def _lowerCamelCase ( self ): __a : int = TFViTModelTester(self ) __a : int = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 ) def _lowerCamelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def _lowerCamelCase ( self ): pass @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def _lowerCamelCase ( self ): pass def _lowerCamelCase ( self ): __a , __a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : Union[str, Any] = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) __a : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , tf.keras.layers.Layer ) ) def _lowerCamelCase ( self ): __a , __a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : Optional[Any] = model_class(_UpperCAmelCase ) __a : Optional[int] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a : Optional[Any] = [*signature.parameters.keys()] __a : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @slow def _lowerCamelCase ( self ): __a : str = TFViTModel.from_pretrained('''google/vit-base-patch16-224''' ) self.assertIsNotNone(_UpperCAmelCase ) def __A ( ) -> Tuple: __a : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') return image @require_tf @require_vision class __lowercase ( unittest.TestCase ): '''simple docstring''' @cached_property def _lowerCamelCase ( self ): return ViTImageProcessor.from_pretrained('''google/vit-base-patch16-224''' ) if is_vision_available() else None @slow def _lowerCamelCase ( self ): __a : str = TFViTForImageClassification.from_pretrained('''google/vit-base-patch16-224''' ) __a : Any = self.default_image_processor __a : Any = prepare_img() __a : Dict = image_processor(images=_UpperCAmelCase , return_tensors='''tf''' ) # forward pass __a : List[Any] = model(**_UpperCAmelCase ) # verify the logits __a : Union[str, Any] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) __a : List[str] = tf.constant([-0.2_7_4_4, 0.8_2_1_5, -0.0_8_3_6] ) tf.debugging.assert_near(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 )
160
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A = { '''configuration_luke''': ['''LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LukeConfig'''], '''tokenization_luke''': ['''LukeTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''LUKE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LukeForEntityClassification''', '''LukeForEntityPairClassification''', '''LukeForEntitySpanClassification''', '''LukeForMultipleChoice''', '''LukeForQuestionAnswering''', '''LukeForSequenceClassification''', '''LukeForTokenClassification''', '''LukeForMaskedLM''', '''LukeModel''', '''LukePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
160
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class UpperCAmelCase_ ( _UpperCAmelCase ): lowercase__ = "markuplm" def __init__( self : Union[str, Any] , snake_case_ : List[str]=30_522 , snake_case_ : Union[str, Any]=768 , snake_case_ : Dict=12 , snake_case_ : Union[str, Any]=12 , snake_case_ : Optional[Any]=3_072 , snake_case_ : str="gelu" , snake_case_ : List[str]=0.1 , snake_case_ : str=0.1 , snake_case_ : Optional[int]=512 , snake_case_ : Any=2 , snake_case_ : Tuple=0.02 , snake_case_ : int=1e-12 , snake_case_ : List[str]=0 , snake_case_ : Union[str, Any]=0 , snake_case_ : int=2 , snake_case_ : Union[str, Any]=256 , snake_case_ : Optional[int]=1_024 , snake_case_ : Dict=216 , snake_case_ : Optional[Any]=1_001 , snake_case_ : int=32 , snake_case_ : List[Any]=50 , snake_case_ : Optional[int]="absolute" , snake_case_ : Tuple=True , snake_case_ : Any=None , **snake_case_ : Tuple , ) -> int: '''simple docstring''' super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = initializer_range A__ = layer_norm_eps A__ = position_embedding_type A__ = use_cache A__ = classifier_dropout # additional properties A__ = max_depth A__ = max_xpath_tag_unit_embeddings A__ = max_xpath_subs_unit_embeddings A__ = tag_pad_id A__ = subs_pad_id A__ = xpath_unit_hidden_size
352
"""simple docstring""" from __future__ import annotations SCREAMING_SNAKE_CASE = "#" class UpperCAmelCase_ : def __init__( self : Dict ) -> None: '''simple docstring''' A__ = {} def __magic_name__ ( self : Optional[Any] , snake_case_ : str ) -> None: '''simple docstring''' A__ = self._trie for char in text: if char not in trie: A__ = {} A__ = trie[char] A__ = True def __magic_name__ ( self : List[Any] , snake_case_ : str ) -> tuple | list: '''simple docstring''' A__ = self._trie for char in prefix: if char in trie: A__ = trie[char] else: return [] return self._elements(snake_case_ ) def __magic_name__ ( self : Union[str, Any] , snake_case_ : dict ) -> tuple: '''simple docstring''' A__ = [] for c, v in d.items(): A__ = [" "] if c == END else [(c + s) for s in self._elements(snake_case_ )] result.extend(snake_case_ ) return tuple(snake_case_ ) SCREAMING_SNAKE_CASE = Trie() SCREAMING_SNAKE_CASE = ("depart", "detergent", "daring", "dog", "deer", "deal") for word in words: trie.insert_word(word) def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> tuple: A__ = trie.find_word(lowercase_ ) return tuple(string + word for word in suffixes ) def _SCREAMING_SNAKE_CASE ( ) -> None: print(autocomplete_using_trie("de" ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
230
0
"""simple docstring""" from __future__ import annotations import math def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Any = u for i in range(1, __lowerCamelCase ): UpperCAmelCase_ : int = temp * (u - i) return temp def __a ( ): UpperCAmelCase_ : str = int(input("enter the numbers of values: " ) ) UpperCAmelCase_ : list[list[float]] = [] for _ in range(__lowerCamelCase ): y.append([] ) for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): y[i].append(__lowerCamelCase ) UpperCAmelCase_ : Tuple = 0 print("enter the values of parameters in a list: " ) UpperCAmelCase_ : Union[str, Any] = list(map(__lowerCamelCase, input().split() ) ) print("enter the values of corresponding parameters: " ) for i in range(__lowerCamelCase ): UpperCAmelCase_ : int = float(input() ) UpperCAmelCase_ : Tuple = int(input("enter the value to interpolate: " ) ) UpperCAmelCase_ : Tuple = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1, __lowerCamelCase ): for j in range(n - i ): UpperCAmelCase_ : Union[str, Any] = y[j + 1][i - 1] - y[j][i - 1] UpperCAmelCase_ : Optional[int] = y[0][0] for i in range(1, __lowerCamelCase ): summ += (ucal(__lowerCamelCase, __lowerCamelCase ) * y[0][i]) / math.factorial(__lowerCamelCase ) print(f"""the value at {value} is {summ}""" ) if __name__ == "__main__": main()
61
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig _a = { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/config.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/config.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/config.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/config.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/config.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/config.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json', } class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = """albert""" def __init__( self , lowercase_=3_0000 , lowercase_=128 , lowercase_=4096 , lowercase_=12 , lowercase_=1 , lowercase_=64 , lowercase_=1_6384 , lowercase_=1 , lowercase_="gelu_new" , lowercase_=0 , lowercase_=0 , lowercase_=512 , lowercase_=2 , lowercase_=0.02 , lowercase_=1E-1_2 , lowercase_=0.1 , lowercase_="absolute" , lowercase_=0 , lowercase_=2 , lowercase_=3 , **lowercase_ , ): """simple docstring""" super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ ) UpperCAmelCase_ : int = vocab_size UpperCAmelCase_ : Optional[int] = embedding_size UpperCAmelCase_ : List[str] = hidden_size UpperCAmelCase_ : Optional[int] = num_hidden_layers UpperCAmelCase_ : Union[str, Any] = num_hidden_groups UpperCAmelCase_ : Dict = num_attention_heads UpperCAmelCase_ : Any = inner_group_num UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : Union[str, Any] = intermediate_size UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase_ : Optional[Any] = max_position_embeddings UpperCAmelCase_ : Any = type_vocab_size UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : Optional[int] = layer_norm_eps UpperCAmelCase_ : List[Any] = classifier_dropout_prob UpperCAmelCase_ : Tuple = position_embedding_type class A_ (lowercase__ ): '''simple docstring''' @property def UpperCamelCase__ ( self ): """simple docstring""" if self.task == "multiple-choice": UpperCAmelCase_ : int = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase_ : Optional[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
61
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class lowerCAmelCase ( _snake_case ): __lowerCamelCase = 'megatron-bert' def __init__( self :str , _lowercase :Any=2_90_56 , _lowercase :Union[str, Any]=10_24 , _lowercase :str=24 , _lowercase :Any=16 , _lowercase :Union[str, Any]=40_96 , _lowercase :List[str]="gelu" , _lowercase :Union[str, Any]=0.1 , _lowercase :List[str]=0.1 , _lowercase :Dict=5_12 , _lowercase :Optional[Any]=2 , _lowercase :List[str]=0.02 , _lowercase :Optional[int]=1e-12 , _lowercase :List[Any]=0 , _lowercase :Optional[int]="absolute" , _lowercase :int=True , **_lowercase :List[Any] , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase__ , **UpperCamelCase__ ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = use_cache
363
import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def _A ( __magic_name__ ): # picklable for multiprocessing return x.sum() def _A ( __magic_name__ ): # picklable for multiprocessing return i + 1 @dataclass class lowerCAmelCase : __lowerCamelCase = 42 __lowerCamelCase = 42 class lowerCAmelCase ( lowercase_ ): def UpperCAmelCase ( self :Optional[Any] ): '''simple docstring''' lowercase__ = {} lowercase__ = [] lowercase__ = 1 lowercase__ = [1, 2] lowercase__ = {"a": 1, "b": 2} lowercase__ = {"a": [1, 2], "b": [3, 4]} lowercase__ = {"a": {"1": 1}, "b": 2} lowercase__ = {"a": 1, "b": 2, "c": 3, "d": 4} lowercase__ = {} lowercase__ = [] lowercase__ = 2 lowercase__ = [2, 3] lowercase__ = {"a": 2, "b": 3} lowercase__ = {"a": [2, 3], "b": [4, 5]} lowercase__ = {"a": {"1": 2}, "b": 3} lowercase__ = {"a": 2, "b": 3, "c": 4, "d": 5} self.assertEqual(map_nested(_lowercase , _lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase ) , _lowercase ) lowercase__ = 2 self.assertEqual(map_nested(_lowercase , _lowercase , num_proc=_lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase , num_proc=_lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase , num_proc=_lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase , num_proc=_lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase , num_proc=_lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase , num_proc=_lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase , num_proc=_lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase , num_proc=_lowercase ) , _lowercase ) lowercase__ = {"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )} lowercase__ = {"a": 2, "b": 0, "c": 2} lowercase__ = { "a": np.eye(2 ).astype(_lowercase ), "b": np.zeros(3 ).astype(_lowercase ), "c": np.ones(2 ).astype(_lowercase ), } self.assertEqual(map_nested(_lowercase , _lowercase , map_numpy=_lowercase ) , _lowercase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(_lowercase , _lowercase , map_numpy=_lowercase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(_lowercase , _lowercase , map_numpy=_lowercase , num_proc=_lowercase ) , _lowercase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(_lowercase , _lowercase , map_numpy=_lowercase , num_proc=_lowercase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(_lowercase ): # can't pickle a local lambda map_nested(lambda _lowercase : x + 1 , _lowercase , num_proc=_lowercase ) def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' lowercase__ = {"a": 1, "b": 2} lowercase__ = {"a": 3, "b": 4} lowercase__ = {"a": 5, "b": 6} lowercase__ = sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(_lowercase , _lowercase , _lowercase ) ) , _lowercase ) def UpperCAmelCase ( self :Union[str, Any] ): '''simple docstring''' class lowerCAmelCase : __lowerCamelCase = 'bar' lowercase__ = Foo() self.assertEqual(foo.my_attr , "bar" ) with temporary_assignment(_lowercase , "my_attr" , "BAR" ): self.assertEqual(foo.my_attr , "BAR" ) self.assertEqual(foo.my_attr , "bar" ) @pytest.mark.parametrize( "iterable_length, num_proc, expected_num_proc" , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def _A ( __magic_name__ , __magic_name__ , __magic_name__ ): with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch( "datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool: lowercase__ = {f'''{i}''': i for i in range(__magic_name__ )} lowercase__ = map_nested(lambda __magic_name__ : x + 10 , __magic_name__ , num_proc=__magic_name__ , parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class lowerCAmelCase ( lowercase_ ): @require_tf def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' import tensorflow as tf from tensorflow.keras import layers lowercase__ = layers.Dense(2 ) def gen_random_output(): lowercase__ = tf.random.uniform((1, 3) ) return model(_lowercase ).numpy() with temp_seed(42 , set_tensorflow=_lowercase ): lowercase__ = gen_random_output() with temp_seed(42 , set_tensorflow=_lowercase ): lowercase__ = gen_random_output() lowercase__ = gen_random_output() np.testing.assert_equal(_lowercase , _lowercase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def UpperCAmelCase ( self :Optional[int] ): '''simple docstring''' import torch def gen_random_output(): lowercase__ = torch.nn.Linear(3 , 2 ) lowercase__ = torch.rand(1 , 3 ) return model(_lowercase ).detach().numpy() with temp_seed(42 , set_pytorch=_lowercase ): lowercase__ = gen_random_output() with temp_seed(42 , set_pytorch=_lowercase ): lowercase__ = gen_random_output() lowercase__ = gen_random_output() np.testing.assert_equal(_lowercase , _lowercase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def UpperCAmelCase ( self :str ): '''simple docstring''' def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(42 ): lowercase__ = gen_random_output() with temp_seed(42 ): lowercase__ = gen_random_output() lowercase__ = gen_random_output() np.testing.assert_equal(_lowercase , _lowercase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("input_data" , [{}] ) def _A ( __magic_name__ ): lowercase__ = NestedDataStructure(__magic_name__ ).data assert output_data == input_data @pytest.mark.parametrize( "data, expected_output" , [ ({}, []), ([], []), ("foo", ["foo"]), (["foo", "bar"], ["foo", "bar"]), ([["foo", "bar"]], ["foo", "bar"]), ([[["foo"], ["bar"]]], ["foo", "bar"]), ([[["foo"], "bar"]], ["foo", "bar"]), ({"a": 1, "b": 2}, [1, 2]), ({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]), ({"a": {"1": 1}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": [2]}, [1, 2]), ] , ) def _A ( __magic_name__ , __magic_name__ ): lowercase__ = NestedDataStructure(__magic_name__ ).flatten() assert output == expected_output def _A ( ): lowercase__ = A(x=1 , y="foobar" ) lowercase__ = {"x": 1, "y": "foobar"} assert asdict(__magic_name__ ) == expected_output lowercase__ = {"a": {"b": A(x=10 , y="foo" )}, "c": [A(x=20 , y="bar" )]} lowercase__ = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]} assert asdict(__magic_name__ ) == expected_output with pytest.raises(__magic_name__ ): asdict([1, A(x=10 , y="foo" )] ) def _A ( __magic_name__ ): return text.split() def _A ( __magic_name__ ): yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def _A ( ): with Pool(2 ) as pool: lowercase__ = list(iflatmap_unordered(__magic_name__ , _split_text , kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(__magic_name__ ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: lowercase__ = list(iflatmap_unordered(__magic_name__ , _split_text , kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(__magic_name__ ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: lowercase__ = [] for yield_time, content in iflatmap_unordered( __magic_name__ , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{"content": "a"}, {"content": "b"}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(__magic_name__ ) assert out.count("a" ) == 2 assert out.count("b" ) == 2 assert len(__magic_name__ ) == 4
201
0
"""simple docstring""" import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device a_ = False class UpperCAmelCase_ ( unittest.TestCase ): pass @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): def _lowerCamelCase ( self ) -> List[str]: __lowercase : int = VersatileDiffusionImageVariationPipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowercase : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) __lowercase : Tuple = torch.manual_seed(0 ) __lowercase : Union[str, Any] = pipe( image=UpperCamelCase_ , generator=UpperCamelCase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images __lowercase : List[Any] = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) __lowercase : List[Any] = np.array([0.0_4_4_1, 0.0_4_6_9, 0.0_5_0_7, 0.0_5_7_5, 0.0_6_3_2, 0.0_6_5_0, 0.0_8_6_5, 0.0_9_0_9, 0.0_9_4_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
249
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class UpperCAmelCase_ ( unittest.TestCase ): def _lowerCamelCase ( self ) -> Union[str, Any]: __lowercase : Dict = tempfile.mkdtemp() __lowercase : Any = BlipImageProcessor() __lowercase : Optional[int] = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''' ) __lowercase : str = BertTokenizerFast.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) __lowercase : str = InstructBlipProcessor(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) processor.save_pretrained(self.tmpdirname ) def _lowerCamelCase ( self , **UpperCamelCase_ ) -> Any: return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase_ ).tokenizer def _lowerCamelCase ( self , **UpperCamelCase_ ) -> List[str]: return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase_ ).image_processor def _lowerCamelCase ( self , **UpperCamelCase_ ) -> List[Any]: return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase_ ).qformer_tokenizer def _lowerCamelCase ( self ) -> Tuple: shutil.rmtree(self.tmpdirname ) def _lowerCamelCase ( self ) -> Any: __lowercase : Optional[int] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowercase : Any = [Image.fromarray(np.moveaxis(UpperCamelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _lowerCamelCase ( self ) -> str: __lowercase : Any = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) __lowercase : List[str] = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowercase : Dict = self.get_image_processor(do_normalize=UpperCamelCase_ , padding_value=1.0 ) __lowercase : int = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=UpperCamelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCamelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase_ ) self.assertIsInstance(processor.qformer_tokenizer , UpperCamelCase_ ) def _lowerCamelCase ( self ) -> Any: __lowercase : Any = self.get_image_processor() __lowercase : str = self.get_tokenizer() __lowercase : Any = self.get_qformer_tokenizer() __lowercase : List[str] = InstructBlipProcessor( tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ , qformer_tokenizer=UpperCamelCase_ ) __lowercase : int = self.prepare_image_inputs() __lowercase : Union[str, Any] = image_processor(UpperCamelCase_ , return_tensors='''np''' ) __lowercase : Tuple = processor(images=UpperCamelCase_ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _lowerCamelCase ( self ) -> str: __lowercase : str = self.get_image_processor() __lowercase : Dict = self.get_tokenizer() __lowercase : Optional[Any] = self.get_qformer_tokenizer() __lowercase : List[str] = InstructBlipProcessor( tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ , qformer_tokenizer=UpperCamelCase_ ) __lowercase : Dict = '''lower newer''' __lowercase : int = processor(text=UpperCamelCase_ ) __lowercase : List[str] = tokenizer(UpperCamelCase_ , return_token_type_ids=UpperCamelCase_ ) __lowercase : Union[str, Any] = qformer_tokenizer(UpperCamelCase_ , return_token_type_ids=UpperCamelCase_ ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['''qformer_''' + key] ) def _lowerCamelCase ( self ) -> List[str]: __lowercase : Union[str, Any] = self.get_image_processor() __lowercase : Union[str, Any] = self.get_tokenizer() __lowercase : Optional[int] = self.get_qformer_tokenizer() __lowercase : List[str] = InstructBlipProcessor( tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ , qformer_tokenizer=UpperCamelCase_ ) __lowercase : Optional[int] = '''lower newer''' __lowercase : Any = self.prepare_image_inputs() __lowercase : List[Any] = processor(text=UpperCamelCase_ , images=UpperCamelCase_ ) self.assertListEqual( list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase_ ): processor() def _lowerCamelCase ( self ) -> Dict: __lowercase : Any = self.get_image_processor() __lowercase : List[str] = self.get_tokenizer() __lowercase : Any = self.get_qformer_tokenizer() __lowercase : Tuple = InstructBlipProcessor( tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ , qformer_tokenizer=UpperCamelCase_ ) __lowercase : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowercase : List[str] = processor.batch_decode(UpperCamelCase_ ) __lowercase : Union[str, Any] = tokenizer.batch_decode(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) def _lowerCamelCase ( self ) -> List[str]: __lowercase : List[str] = self.get_image_processor() __lowercase : List[str] = self.get_tokenizer() __lowercase : List[Any] = self.get_qformer_tokenizer() __lowercase : Optional[Any] = InstructBlipProcessor( tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ , qformer_tokenizer=UpperCamelCase_ ) __lowercase : Any = '''lower newer''' __lowercase : Union[str, Any] = self.prepare_image_inputs() __lowercase : Union[str, Any] = processor(text=UpperCamelCase_ , images=UpperCamelCase_ ) self.assertListEqual( list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , )
249
1
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename lowercase_ = 'http://www.mocksite.com/file1.txt' lowercase_ = '"text": ["foo", "foo"]' lowercase_ = '6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8' class A_ : __snake_case = 200 __snake_case = {"""Content-Length""": """100"""} __snake_case = {} def _snake_case ( self: Optional[int] , **a: Union[str, Any] ): return [bytes(a , 'utf-8' )] def UpperCamelCase__ ( *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): return MockResponse() @pytest.mark.parametrize('urls_type' , [str, list, dict] ) def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): import requests monkeypatch.setattr(SCREAMING_SNAKE_CASE__ , 'request' , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : Any = URL if issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : Tuple = url elif issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : str = [url] elif issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : str = {'train': url} __lowerCamelCase : List[str] = 'dummy' __lowerCamelCase : str = 'downloads' __lowerCamelCase : str = tmp_path __lowerCamelCase : List[str] = DownloadConfig( cache_dir=os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , use_etag=SCREAMING_SNAKE_CASE__ , ) __lowerCamelCase : List[Any] = DownloadManager(dataset_name=SCREAMING_SNAKE_CASE__ , download_config=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : int = dl_manager.download(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : List[str] = urls for downloaded_paths in [downloaded_paths]: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : Dict = [downloaded_paths] __lowerCamelCase : List[Any] = [urls] elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): assert "train" in downloaded_paths.keys() __lowerCamelCase : int = downloaded_paths.values() __lowerCamelCase : Optional[int] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): assert downloaded_path == dl_manager.downloaded_paths[input_url] __lowerCamelCase : int = Path(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : Optional[int] = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() __lowerCamelCase : List[Any] = downloaded_path.read_text() assert content == CONTENT __lowerCamelCase : Tuple = downloaded_path.with_suffix('.json' ) assert metadata_downloaded_path.exists() __lowerCamelCase : Optional[Any] = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('paths_type' , [str, list, dict] ) def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : Optional[Any] = str(SCREAMING_SNAKE_CASE__ ) if issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : Dict = filename elif issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : str = [filename] elif issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : List[str] = {'train': filename} __lowerCamelCase : Any = 'dummy' __lowerCamelCase : int = xz_file.parent __lowerCamelCase : List[str] = 'extracted' __lowerCamelCase : Any = DownloadConfig( cache_dir=SCREAMING_SNAKE_CASE__ , use_etag=SCREAMING_SNAKE_CASE__ , ) __lowerCamelCase : Tuple = DownloadManager(dataset_name=SCREAMING_SNAKE_CASE__ , download_config=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : Optional[Any] = dl_manager.extract(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : int = paths for extracted_paths in [extracted_paths]: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : Tuple = [extracted_paths] __lowerCamelCase : Tuple = [paths] elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): assert "train" in extracted_paths.keys() __lowerCamelCase : Union[str, Any] = extracted_paths.values() __lowerCamelCase : Optional[Any] = paths.values() assert extracted_paths for extracted_path, input_path in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): assert extracted_path == dl_manager.extracted_paths[input_path] __lowerCamelCase : Union[str, Any] = Path(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : List[str] = extracted_path.parts assert parts[-1] == hash_url_to_filename(SCREAMING_SNAKE_CASE__ , etag=SCREAMING_SNAKE_CASE__ ) assert parts[-2] == extracted_subdir assert extracted_path.exists() __lowerCamelCase : List[Any] = extracted_path.read_text() __lowerCamelCase : Union[str, Any] = text_file.read_text() assert extracted_file_content == expected_file_content def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): assert path.endswith('.jsonl' ) for num_items, line in enumerate(SCREAMING_SNAKE_CASE__ , start=1 ): __lowerCamelCase : Optional[int] = json.loads(line.decode('utf-8' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('archive_jsonl' , ['tar_jsonl_path', 'zip_jsonl_path'] ) def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : List[str] = request.getfixturevalue(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : Optional[Any] = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(SCREAMING_SNAKE_CASE__ ) , start=1 ): _test_jsonl(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert num_jsonl == 2 @pytest.mark.parametrize('archive_nested_jsonl' , ['tar_nested_jsonl_path', 'zip_nested_jsonl_path'] ) def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : Any = request.getfixturevalue(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : Optional[Any] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(SCREAMING_SNAKE_CASE__ ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(SCREAMING_SNAKE_CASE__ ) , start=1 ): _test_jsonl(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert num_tar == 1 assert num_jsonl == 2 def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : Optional[Any] = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(SCREAMING_SNAKE_CASE__ ) , start=1 ): assert os.path.basename(SCREAMING_SNAKE_CASE__ ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
368
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A_ ( unittest.TestCase ): '''simple docstring''' def __init__( self: int , a: Optional[Any] , a: Optional[Any]=3 , a: List[str]=32 , a: Optional[int]=3 , a: Any=10 , a: List[str]=[10, 20, 30, 40] , a: Any=[1, 1, 2, 1] , a: Optional[int]=True , a: List[str]=True , a: Tuple="relu" , a: List[Any]=3 , a: List[Any]=None , ): __lowerCamelCase : Union[str, Any] = parent __lowerCamelCase : Any = batch_size __lowerCamelCase : List[str] = image_size __lowerCamelCase : Tuple = num_channels __lowerCamelCase : int = embeddings_size __lowerCamelCase : Optional[int] = hidden_sizes __lowerCamelCase : Optional[Any] = depths __lowerCamelCase : Optional[int] = is_training __lowerCamelCase : List[str] = use_labels __lowerCamelCase : Dict = hidden_act __lowerCamelCase : Union[str, Any] = num_labels __lowerCamelCase : Tuple = scope __lowerCamelCase : Union[str, Any] = len(a ) def _snake_case ( self: int ): __lowerCamelCase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase : List[str] = self.get_config() return config, pixel_values def _snake_case ( self: List[str] ): return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def _snake_case ( self: Tuple , a: Optional[int] , a: int ): __lowerCamelCase : Optional[Any] = FlaxRegNetModel(config=a ) __lowerCamelCase : List[str] = model(a ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _snake_case ( self: Optional[int] , a: List[Any] , a: List[Any] ): __lowerCamelCase : Tuple = self.num_labels __lowerCamelCase : Union[str, Any] = FlaxRegNetForImageClassification(config=a ) __lowerCamelCase : List[Any] = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self: Optional[Any] ): __lowerCamelCase : Union[str, Any] = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase : str = config_and_inputs __lowerCamelCase : Tuple = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class A_ ( __UpperCamelCase , unittest.TestCase ): '''simple docstring''' __snake_case = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __snake_case = False __snake_case = False __snake_case = False def _snake_case ( self: Tuple ): __lowerCamelCase : Dict = FlaxRegNetModelTester(self ) __lowerCamelCase : List[str] = ConfigTester(self , config_class=a , has_text_modality=a ) def _snake_case ( self: Union[str, Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _snake_case ( self: List[Any] ): return def _snake_case ( self: Dict ): __lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _snake_case ( self: Optional[int] ): __lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a ) @unittest.skip(reason='RegNet does not use inputs_embeds' ) def _snake_case ( self: Tuple ): pass @unittest.skip(reason='RegNet does not support input and output embeddings' ) def _snake_case ( self: str ): pass def _snake_case ( self: List[Any] ): __lowerCamelCase , __lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : Optional[Any] = model_class(a ) __lowerCamelCase : Dict = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase : Union[str, Any] = [*signature.parameters.keys()] __lowerCamelCase : Union[str, Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , a ) def _snake_case ( self: List[str] ): def check_hidden_states_output(a: List[Any] , a: List[Any] , a: Union[str, Any] ): __lowerCamelCase : str = model_class(a ) __lowerCamelCase : Optional[Any] = model(**self._prepare_for_class(a , a ) ) __lowerCamelCase : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCamelCase : List[str] = self.model_tester.num_stages self.assertEqual(len(a ) , expected_num_stages + 1 ) __lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : int = True check_hidden_states_output(a , a , a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase : List[Any] = True check_hidden_states_output(a , a , a ) def _snake_case ( self: Dict ): __lowerCamelCase , __lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCamelCase : str = self._prepare_for_class(a , a ) __lowerCamelCase : List[str] = model_class(a ) @jax.jit def model_jitted(a: Optional[int] , **a: str ): return model(pixel_values=a , **a ) with self.subTest('JIT Enabled' ): __lowerCamelCase : List[str] = model_jitted(**a ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): __lowerCamelCase : Optional[int] = model_jitted(**a ).to_tuple() self.assertEqual(len(a ) , len(a ) ) for jitted_output, output in zip(a , a ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCamelCase__ ( ): __lowerCamelCase : List[str] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_flax class A_ ( unittest.TestCase ): '''simple docstring''' @cached_property def _snake_case ( self: Tuple ): return AutoImageProcessor.from_pretrained('facebook/regnet-y-040' ) if is_vision_available() else None @slow def _snake_case ( self: Optional[Any] ): __lowerCamelCase : Optional[Any] = FlaxRegNetForImageClassification.from_pretrained('facebook/regnet-y-040' ) __lowerCamelCase : Tuple = self.default_image_processor __lowerCamelCase : int = prepare_img() __lowerCamelCase : Tuple = image_processor(images=a , return_tensors='np' ) __lowerCamelCase : List[Any] = model(**a ) # verify the logits __lowerCamelCase : str = (1, 1000) self.assertEqual(outputs.logits.shape , a ) __lowerCamelCase : int = jnp.array([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) )
194
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available a_ = { 'configuration_gpt_neo': ['GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTNeoConfig', 'GPTNeoOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST', 'GPTNeoForCausalLM', 'GPTNeoForQuestionAnswering', 'GPTNeoForSequenceClassification', 'GPTNeoForTokenClassification', 'GPTNeoModel', 'GPTNeoPreTrainedModel', 'load_tf_weights_in_gpt_neo', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'FlaxGPTNeoForCausalLM', 'FlaxGPTNeoModel', 'FlaxGPTNeoPreTrainedModel', ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
76
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available snake_case : str = { '''configuration_rag''': ['''RagConfig'''], '''retrieval_rag''': ['''RagRetriever'''], '''tokenization_rag''': ['''RagTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Any = [ '''RagModel''', '''RagPreTrainedModel''', '''RagSequenceForGeneration''', '''RagTokenForGeneration''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Optional[int] = [ '''TFRagModel''', '''TFRagPreTrainedModel''', '''TFRagSequenceForGeneration''', '''TFRagTokenForGeneration''', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys snake_case : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
240
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: __UpperCAmelCase : Any = None __UpperCAmelCase : Dict = logging.get_logger(__name__) __UpperCAmelCase : List[str] = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} __UpperCAmelCase : Optional[int] = { "vocab_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json" ), }, } __UpperCAmelCase : Optional[int] = { "moussaKam/mbarthez": 1024, "moussaKam/barthez": 1024, "moussaKam/barthez-orangesum-title": 1024, } __UpperCAmelCase : Optional[int] = "▁" class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : str = VOCAB_FILES_NAMES __UpperCamelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : str = ["input_ids", "attention_mask"] __UpperCamelCase : int = BarthezTokenizer def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE="<mask>" , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : Union[str, Any] = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else mask_token super().__init__( __SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) UpperCamelCase : Optional[Any] = vocab_file UpperCamelCase : Tuple = False if not self.vocab_file else True def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase : int = [self.cls_token_id] UpperCamelCase : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" UpperCamelCase : Tuple = [self.sep_token_id] UpperCamelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCamelCase : str = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
362
__UpperCAmelCase : str = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" __UpperCAmelCase : Dict = [{"type": "code", "content": INSTALL_CONTENT}] __UpperCAmelCase : Union[str, Any] = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
315
0
'''simple docstring''' import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed UpperCAmelCase_ = logging.getLogger(__name__) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int=2 , SCREAMING_SNAKE_CASE__ : List[Any]=3 , SCREAMING_SNAKE_CASE__ : Any=16 , SCREAMING_SNAKE_CASE__ : Optional[Any] = 10 , SCREAMING_SNAKE_CASE__ : int = 2 ): '''simple docstring''' def get_dataset(SCREAMING_SNAKE_CASE__ : Any ): UpperCAmelCase__ = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(a__ , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) UpperCAmelCase__ = get_dataset(a__ ) UpperCAmelCase__ = get_dataset(a__ ) UpperCAmelCase__ = DataLoader(a__ , shuffle=a__ , batch_size=a__ , num_workers=4 ) UpperCAmelCase__ = DataLoader(a__ , shuffle=a__ , batch_size=a__ , num_workers=4 ) return (train_dataloader, valid_dataloader) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any]=None ): '''simple docstring''' UpperCAmelCase__ = [] for epoch in range(a__ ): # Train quickly model.train() for batch in dataloader: UpperCAmelCase__ = batch UpperCAmelCase__ = model(a__ ) UpperCAmelCase__ = torch.nn.functional.mse_loss(a__ , a__ ) accelerator.backward(a__ ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : str ): """simple docstring""" super().__init__() UpperCAmelCase__ = nn.Parameter(torch.randn(1 ) ) UpperCAmelCase__ = nn.Parameter(torch.randn(1 ) ) def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : Optional[int] ): """simple docstring""" return x * self.a + self.b class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCAmelCase__ = DummyModel() UpperCAmelCase__ = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase__ = dummy_dataloaders() UpperCAmelCase__ = ProjectConfiguration(total_limit=1 , project_dir=_lowerCamelCase , automatic_checkpoint_naming=_lowerCamelCase ) # Train baseline UpperCAmelCase__ = Accelerator(project_config=_lowerCamelCase ) UpperCAmelCase__ = accelerator.prepare( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCAmelCase__ = DummyModel() UpperCAmelCase__ = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase__ = dummy_dataloaders() # Train baseline UpperCAmelCase__ = Accelerator() UpperCAmelCase__ = accelerator.prepare( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Save initial UpperCAmelCase__ = os.path.join(_lowerCamelCase , """initial""" ) accelerator.save_state(_lowerCamelCase ) (UpperCAmelCase__) = model.a.item(), model.b.item() UpperCAmelCase__ = optimizer.state_dict() UpperCAmelCase__ = train(3 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) (UpperCAmelCase__) = model.a.item(), model.b.item() UpperCAmelCase__ = optimizer.state_dict() # Train partially set_seed(42 ) UpperCAmelCase__ = DummyModel() UpperCAmelCase__ = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase__ = dummy_dataloaders() UpperCAmelCase__ = Accelerator() UpperCAmelCase__ = accelerator.prepare( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) accelerator.load_state(_lowerCamelCase ) (UpperCAmelCase__) = model.a.item(), model.b.item() UpperCAmelCase__ = optimizer.state_dict() self.assertEqual(_lowerCamelCase , _lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ = train(2 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Save everything UpperCAmelCase__ = os.path.join(_lowerCamelCase , """checkpoint""" ) accelerator.save_state(_lowerCamelCase ) # Load everything back in and make sure all states work accelerator.load_state(_lowerCamelCase ) test_rands += train(1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) (UpperCAmelCase__) = model.a.item(), model.b.item() UpperCAmelCase__ = optimizer.state_dict() self.assertEqual(_lowerCamelCase , _lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCAmelCase__ = DummyModel() UpperCAmelCase__ = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase__ = dummy_dataloaders() UpperCAmelCase__ = ProjectConfiguration(automatic_checkpoint_naming=_lowerCamelCase ) # Train baseline UpperCAmelCase__ = Accelerator(project_dir=_lowerCamelCase , project_config=_lowerCamelCase ) UpperCAmelCase__ = accelerator.prepare( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Save initial accelerator.save_state() (UpperCAmelCase__) = model.a.item(), model.b.item() UpperCAmelCase__ = optimizer.state_dict() UpperCAmelCase__ = train(3 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) (UpperCAmelCase__) = model.a.item(), model.b.item() UpperCAmelCase__ = optimizer.state_dict() # Train partially set_seed(42 ) UpperCAmelCase__ = DummyModel() UpperCAmelCase__ = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase__ = dummy_dataloaders() UpperCAmelCase__ = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=_lowerCamelCase ) UpperCAmelCase__ = Accelerator(project_dir=_lowerCamelCase , project_config=_lowerCamelCase ) UpperCAmelCase__ = accelerator.prepare( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) accelerator.load_state(os.path.join(_lowerCamelCase , """checkpoints""" , """checkpoint_0""" ) ) (UpperCAmelCase__) = model.a.item(), model.b.item() UpperCAmelCase__ = optimizer.state_dict() self.assertEqual(_lowerCamelCase , _lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ = train(2 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(_lowerCamelCase , """checkpoints""" , """checkpoint_1""" ) ) test_rands += train(1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) (UpperCAmelCase__) = model.a.item(), model.b.item() UpperCAmelCase__ = optimizer.state_dict() self.assertEqual(_lowerCamelCase , _lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" UpperCAmelCase__ = torch.tensor([1, 2, 3] ) UpperCAmelCase__ = torch.tensor([2, 3, 4] ) UpperCAmelCase__ = DummyModel() UpperCAmelCase__ = torch.optim.Adam(net.parameters() ) UpperCAmelCase__ = Accelerator() with self.assertRaises(_lowerCamelCase ) as ve: accelerator.register_for_checkpointing(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ = str(ve.exception ) self.assertTrue("""Item at index 0""" in message ) self.assertTrue("""Item at index 1""" in message ) self.assertFalse("""Item at index 2""" in message ) self.assertFalse("""Item at index 3""" in message ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCAmelCase__ = DummyModel() UpperCAmelCase__ = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase__ = torch.optim.lr_scheduler.StepLR(_lowerCamelCase , step_size=1 , gamma=0.99 ) UpperCAmelCase__ = dummy_dataloaders() UpperCAmelCase__ = ProjectConfiguration(automatic_checkpoint_naming=_lowerCamelCase ) # Train baseline UpperCAmelCase__ = Accelerator(project_dir=_lowerCamelCase , project_config=_lowerCamelCase ) UpperCAmelCase__ = accelerator.prepare( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Save initial accelerator.save_state() UpperCAmelCase__ = scheduler.state_dict() train(3 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) self.assertNotEqual(_lowerCamelCase , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(_lowerCamelCase , """checkpoints""" , """checkpoint_0""" ) ) self.assertEqual(_lowerCamelCase , scheduler.state_dict() ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCAmelCase__ = DummyModel() UpperCAmelCase__ = ProjectConfiguration(automatic_checkpoint_naming=_lowerCamelCase , total_limit=2 ) # Train baseline UpperCAmelCase__ = Accelerator(project_dir=_lowerCamelCase , project_config=_lowerCamelCase ) UpperCAmelCase__ = accelerator.prepare(_lowerCamelCase ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(_lowerCamelCase , """checkpoints""" , """checkpoint_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_lowerCamelCase , """checkpoints""" , """checkpoint_9""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_lowerCamelCase , """checkpoints""" , """checkpoint_10""" ) ) ) @require_cuda def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" UpperCAmelCase__ = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(_lowerCamelCase , env=os.environ.copy() ) if __name__ == "__main__": UpperCAmelCase_ = '''/tmp/accelerate/state_checkpointing''' UpperCAmelCase_ = DummyModel() UpperCAmelCase_ = torch.optim.Adam(params=model.parameters(), lr=1E-3) UpperCAmelCase_ = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) UpperCAmelCase_ = dummy_dataloaders() UpperCAmelCase_ = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline UpperCAmelCase_ = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision='no') if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) UpperCAmelCase_ = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) UpperCAmelCase_ = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: UpperCAmelCase_ = group['''params'''][0].device break assert param_device.type == accelerator.device.type UpperCAmelCase_ = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='cpu') for group in optimizer.param_groups: UpperCAmelCase_ = group['''params'''][0].device break assert ( param_device.type == torch.device('cpu').type ), f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='on_device') for group in optimizer.param_groups: UpperCAmelCase_ = group['''params'''][0].device break assert ( param_device.type == accelerator.device.type ), f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match='Unsupported optimizer map location passed'): accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='invalid') accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
346
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def UpperCAmelCase_( a__ , a__=False ): """simple docstring""" SCREAMING_SNAKE_CASE : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""module.blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""module.blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''module.cls_token''', '''vit.embeddings.cls_token'''), ('''module.patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''module.patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''module.pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''module.norm.weight''', '''layernorm.weight'''), ('''module.norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" SCREAMING_SNAKE_CASE : Any = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def UpperCAmelCase_( a__ , a__ , a__=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: SCREAMING_SNAKE_CASE : Any = '''''' else: SCREAMING_SNAKE_CASE : Optional[int] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) SCREAMING_SNAKE_CASE : Optional[Any] = state_dict.pop(F"""module.blocks.{i}.attn.qkv.weight""" ) SCREAMING_SNAKE_CASE : List[str] = state_dict.pop(F"""module.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE : List[str] = in_proj_weight[ : config.hidden_size, : ] SCREAMING_SNAKE_CASE : Any = in_proj_bias[: config.hidden_size] SCREAMING_SNAKE_CASE : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] SCREAMING_SNAKE_CASE : List[str] = in_proj_weight[ -config.hidden_size :, : ] SCREAMING_SNAKE_CASE : Optional[Any] = in_proj_bias[-config.hidden_size :] def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(a__ , a__ ) def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = [ '''module.fc.fc1.weight''', '''module.fc.fc1.bias''', '''module.fc.bn1.weight''', '''module.fc.bn1.bias''', '''module.fc.bn1.running_mean''', '''module.fc.bn1.running_var''', '''module.fc.bn1.num_batches_tracked''', '''module.fc.fc2.weight''', '''module.fc.fc2.bias''', '''module.fc.bn2.weight''', '''module.fc.bn2.bias''', '''module.fc.bn2.running_mean''', '''module.fc.bn2.running_var''', '''module.fc.bn2.num_batches_tracked''', '''module.fc.fc3.weight''', '''module.fc.fc3.bias''', ] for k in ignore_keys: state_dict.pop(a__ , a__ ) def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : int = dct.pop(a__ ) SCREAMING_SNAKE_CASE : Optional[Any] = val def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = ViTMSNConfig() SCREAMING_SNAKE_CASE : Optional[int] = 1_000 SCREAMING_SNAKE_CASE : str = '''datasets/huggingface/label-files''' SCREAMING_SNAKE_CASE : List[str] = '''imagenet-1k-id2label.json''' SCREAMING_SNAKE_CASE : Union[str, Any] = json.load(open(hf_hub_download(a__ , a__ ) , '''r''' ) ) SCREAMING_SNAKE_CASE : List[Any] = {int(a__ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : str = idalabel SCREAMING_SNAKE_CASE : int = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: SCREAMING_SNAKE_CASE : Tuple = 384 SCREAMING_SNAKE_CASE : Any = 1_536 SCREAMING_SNAKE_CASE : List[str] = 6 elif "l16" in checkpoint_url: SCREAMING_SNAKE_CASE : Optional[int] = 1_024 SCREAMING_SNAKE_CASE : Optional[int] = 4_096 SCREAMING_SNAKE_CASE : Tuple = 24 SCREAMING_SNAKE_CASE : Union[str, Any] = 16 SCREAMING_SNAKE_CASE : Dict = 0.1 elif "b4" in checkpoint_url: SCREAMING_SNAKE_CASE : str = 4 elif "l7" in checkpoint_url: SCREAMING_SNAKE_CASE : Union[str, Any] = 7 SCREAMING_SNAKE_CASE : Union[str, Any] = 1_024 SCREAMING_SNAKE_CASE : List[Any] = 4_096 SCREAMING_SNAKE_CASE : List[Any] = 24 SCREAMING_SNAKE_CASE : Tuple = 16 SCREAMING_SNAKE_CASE : Union[str, Any] = 0.1 SCREAMING_SNAKE_CASE : Union[str, Any] = ViTMSNModel(a__ ) SCREAMING_SNAKE_CASE : Optional[int] = torch.hub.load_state_dict_from_url(a__ , map_location='''cpu''' )['''target_encoder'''] SCREAMING_SNAKE_CASE : Any = ViTImageProcessor(size=config.image_size ) remove_projection_head(a__ ) SCREAMING_SNAKE_CASE : Any = create_rename_keys(a__ , base_model=a__ ) for src, dest in rename_keys: rename_key(a__ , a__ , a__ ) read_in_q_k_v(a__ , a__ , base_model=a__ ) model.load_state_dict(a__ ) model.eval() SCREAMING_SNAKE_CASE : Any = '''http://images.cocodataset.org/val2017/000000039769.jpg''' SCREAMING_SNAKE_CASE : Dict = Image.open(requests.get(a__ , stream=a__ ).raw ) SCREAMING_SNAKE_CASE : Optional[int] = ViTImageProcessor( size=config.image_size , image_mean=a__ , image_std=a__ ) SCREAMING_SNAKE_CASE : int = image_processor(images=a__ , return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) SCREAMING_SNAKE_CASE : Tuple = model(**a__ ) SCREAMING_SNAKE_CASE : str = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: SCREAMING_SNAKE_CASE : Tuple = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] ) elif "b16" in checkpoint_url: SCREAMING_SNAKE_CASE : Tuple = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] ) elif "l16" in checkpoint_url: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] ) elif "b4" in checkpoint_url: SCREAMING_SNAKE_CASE : str = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] ) else: SCREAMING_SNAKE_CASE : List[str] = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , a__ , atol=1e-4 ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(a__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(a__ ) if __name__ == "__main__": a__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) a__ : Any = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
313
0
'''simple docstring''' import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : str = logging.get_logger(__name__) lowercase : Dict = { "facebook/encodec_24khz": "https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json", "facebook/encodec_48khz": "https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json", } class __UpperCAmelCase ( __UpperCamelCase ): __lowercase = "encodec" def __init__( self , lowerCAmelCase_=[1.5, 3.0, 6.0, 12.0, 24.0] , lowerCAmelCase_=2_40_00 , lowerCAmelCase_=1 , lowerCAmelCase_=False , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=1_28 , lowerCAmelCase_=32 , lowerCAmelCase_=1 , lowerCAmelCase_=[8, 5, 4, 2] , lowerCAmelCase_="weight_norm" , lowerCAmelCase_=7 , lowerCAmelCase_=7 , lowerCAmelCase_=3 , lowerCAmelCase_=2 , lowerCAmelCase_=True , lowerCAmelCase_="reflect" , lowerCAmelCase_=2 , lowerCAmelCase_=2 , lowerCAmelCase_=1.0 , lowerCAmelCase_=10_24 , lowerCAmelCase_=None , lowerCAmelCase_=True , **lowerCAmelCase_ , ): """simple docstring""" _snake_case = target_bandwidths _snake_case = sampling_rate _snake_case = audio_channels _snake_case = normalize _snake_case = chunk_length_s _snake_case = overlap _snake_case = hidden_size _snake_case = num_filters _snake_case = num_residual_layers _snake_case = upsampling_ratios _snake_case = norm_type _snake_case = kernel_size _snake_case = last_kernel_size _snake_case = residual_kernel_size _snake_case = dilation_growth_rate _snake_case = use_causal_conv _snake_case = pad_mode _snake_case = compress _snake_case = num_lstm_layers _snake_case = trim_right_ratio _snake_case = codebook_size _snake_case = codebook_dim if codebook_dim is not None else hidden_size _snake_case = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( F'self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}' ) super().__init__(**_lowerCAmelCase ) @property def lowerCamelCase ( self ): """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def lowerCamelCase ( self ): """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def lowerCamelCase ( self ): """simple docstring""" _snake_case = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def lowerCamelCase ( self ): """simple docstring""" return int(10_00 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
370
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def SCREAMING_SNAKE_CASE__ ( __A ) -> Dict: _snake_case = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class __UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): __lowercase = StableDiffusionLatentUpscalePipeline __lowercase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { """height""", """width""", """cross_attention_kwargs""", """negative_prompt_embeds""", """prompt_embeds""", } __lowercase = PipelineTesterMixin.required_optional_params - {"""num_images_per_prompt"""} __lowercase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __lowercase = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __lowercase = frozenset([] ) __lowercase = True @property def lowerCamelCase ( self ): """simple docstring""" _snake_case = 1 _snake_case = 4 _snake_case = (16, 16) _snake_case = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCAmelCase_ ) return image def lowerCamelCase ( self ): """simple docstring""" torch.manual_seed(0 ) _snake_case = UNetaDConditionModel( act_fn='gelu' , attention_head_dim=8 , norm_num_groups=lowerCAmelCase_ , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( 'KDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', ) , in_channels=8 , mid_block_type=lowerCAmelCase_ , only_cross_attention=lowerCAmelCase_ , out_channels=5 , resnet_time_scale_shift='scale_shift' , time_embedding_type='fourier' , timestep_post_act='gelu' , up_block_types=('KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KUpBlock2D') , ) _snake_case = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', ] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) _snake_case = EulerDiscreteScheduler(prediction_type='sample' ) _snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='quick_gelu' , projection_dim=5_12 , ) _snake_case = CLIPTextModel(lowerCAmelCase_ ) _snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _snake_case = { 'unet': model.eval(), 'vae': vae.eval(), 'scheduler': scheduler, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=0 ): """simple docstring""" if str(lowerCAmelCase_ ).startswith('mps' ): _snake_case = torch.manual_seed(lowerCAmelCase_ ) else: _snake_case = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) _snake_case = { 'prompt': 'A painting of a squirrel eating a burger', 'image': self.dummy_image.cpu(), 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def lowerCamelCase ( self ): """simple docstring""" _snake_case = 'cpu' _snake_case = self.get_dummy_components() _snake_case = self.pipeline_class(**lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = self.get_dummy_inputs(lowerCAmelCase_ ) _snake_case = pipe(**lowerCAmelCase_ ).images _snake_case = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_56, 2_56, 3) ) _snake_case = np.array( [0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055] ) _snake_case = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCAmelCase_ , 1E-3 ) def lowerCamelCase ( self ): """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def lowerCamelCase ( self ): """simple docstring""" super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def lowerCamelCase ( self ): """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def lowerCamelCase ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def lowerCamelCase ( self ): """simple docstring""" super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def lowerCamelCase ( self ): """simple docstring""" super().test_save_load_local(expected_max_difference=3E-3 ) def lowerCamelCase ( self ): """simple docstring""" super().test_save_load_optional_components(expected_max_difference=3E-3 ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = [ 'DDIMScheduler', 'DDPMScheduler', 'PNDMScheduler', 'HeunDiscreteScheduler', 'EulerAncestralDiscreteScheduler', 'KDPM2DiscreteScheduler', 'KDPM2AncestralDiscreteScheduler', 'DPMSolverSDEScheduler', ] _snake_case = self.get_dummy_components() _snake_case = self.pipeline_class(**lowerCAmelCase_ ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = self.get_dummy_inputs(lowerCAmelCase_ ) _snake_case = 2 _snake_case = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue _snake_case = getattr(lowerCAmelCase_ , scheduler_enum.name ) _snake_case = scheduler_cls.from_config(pipe.scheduler.config ) _snake_case = pipe(**lowerCAmelCase_ )[0] outputs.append(lowerCAmelCase_ ) assert check_same_shape(lowerCAmelCase_ ) @require_torch_gpu @slow class __UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self ): """simple docstring""" _snake_case = torch.manual_seed(33 ) _snake_case = StableDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' , torch_dtype=torch.floataa ) pipe.to('cuda' ) _snake_case = StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler' , torch_dtype=torch.floataa ) upscaler.to('cuda' ) _snake_case = 'a photo of an astronaut high resolution, unreal engine, ultra realistic' _snake_case = pipe(lowerCAmelCase_ , generator=lowerCAmelCase_ , output_type='latent' ).images _snake_case = upscaler( prompt=lowerCAmelCase_ , image=lowerCAmelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=lowerCAmelCase_ , output_type='np' , ).images[0] _snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy' ) assert np.abs((expected_image - image).mean() ) < 5E-2 def lowerCamelCase ( self ): """simple docstring""" _snake_case = torch.manual_seed(33 ) _snake_case = StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler' , torch_dtype=torch.floataa ) upscaler.to('cuda' ) _snake_case = 'the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas' _snake_case = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png' ) _snake_case = upscaler( prompt=lowerCAmelCase_ , image=lowerCAmelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=lowerCAmelCase_ , output_type='np' , ).images[0] _snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy' ) assert np.abs((expected_image - image).max() ) < 5E-2
160
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : Tuple = { "configuration_luke": ["LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP", "LukeConfig"], "tokenization_luke": ["LukeTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Union[str, Any] = [ "LUKE_PRETRAINED_MODEL_ARCHIVE_LIST", "LukeForEntityClassification", "LukeForEntityPairClassification", "LukeForEntitySpanClassification", "LukeForMultipleChoice", "LukeForQuestionAnswering", "LukeForSequenceClassification", "LukeForTokenClassification", "LukeForMaskedLM", "LukeModel", "LukePreTrainedModel", ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys _lowercase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
93
'''simple docstring''' # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class lowerCAmelCase__ : lowerCAmelCase_ = 42 # setable values lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = None @classmethod def _snake_case ( cls , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" return cls(common=__SCREAMING_SNAKE_CASE , init_noise_sigma=__SCREAMING_SNAKE_CASE , timesteps=__SCREAMING_SNAKE_CASE ) @dataclass class lowerCAmelCase__ ( lowerCamelCase_ ): lowerCAmelCase_ = 42 class lowerCAmelCase__ ( lowerCamelCase_ , lowerCamelCase_ ): lowerCAmelCase_ = [e.name for e in FlaxKarrasDiffusionSchedulers] lowerCAmelCase_ = 42 @property def _snake_case ( self ): """simple docstring""" return True @register_to_config def __init__( self , __SCREAMING_SNAKE_CASE = 10_00 , __SCREAMING_SNAKE_CASE = 0.0_001 , __SCREAMING_SNAKE_CASE = 0.02 , __SCREAMING_SNAKE_CASE = "linear" , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "fixed_small" , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = "epsilon" , __SCREAMING_SNAKE_CASE = jnp.floataa , ): """simple docstring""" lowercase_ : Dict = dtype def _snake_case ( self , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if common is None: lowercase_ : Tuple = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution lowercase_ : Union[str, Any] = jnp.array(1.0 , dtype=self.dtype ) lowercase_ : List[Any] = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=__SCREAMING_SNAKE_CASE , init_noise_sigma=__SCREAMING_SNAKE_CASE , timesteps=__SCREAMING_SNAKE_CASE , ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" return sample def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = () ): """simple docstring""" lowercase_ : Optional[Any] = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 lowercase_ : int = (jnp.arange(0 , __SCREAMING_SNAKE_CASE ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=__SCREAMING_SNAKE_CASE , timesteps=__SCREAMING_SNAKE_CASE , ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None ): """simple docstring""" lowercase_ : List[Any] = state.common.alphas_cumprod[t] lowercase_ : str = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowercase_ : int = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: lowercase_ : str = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": lowercase_ : int = jnp.clip(__SCREAMING_SNAKE_CASE , a_min=1E-2_0 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": lowercase_ : List[str] = jnp.log(jnp.clip(__SCREAMING_SNAKE_CASE , a_min=1E-2_0 ) ) elif variance_type == "fixed_large": lowercase_ : List[Any] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log lowercase_ : List[Any] = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": lowercase_ : Optional[Any] = variance lowercase_ : Union[str, Any] = state.common.betas[t] lowercase_ : Union[str, Any] = (predicted_variance + 1) / 2 lowercase_ : Any = frac * max_log + (1 - frac) * min_log return variance def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = True , ): """simple docstring""" lowercase_ : Optional[int] = timestep if key is None: lowercase_ : int = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: lowercase_ , lowercase_ : Optional[Any] = jnp.split(__SCREAMING_SNAKE_CASE , sample.shape[1] , axis=1 ) else: lowercase_ : int = None # 1. compute alphas, betas lowercase_ : Any = state.common.alphas_cumprod[t] lowercase_ : Optional[int] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) lowercase_ : int = 1 - alpha_prod_t lowercase_ : str = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowercase_ : Tuple = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowercase_ : Any = model_output elif self.config.prediction_type == "v_prediction": lowercase_ : List[Any] = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ''' ''' for the FlaxDDPMScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowercase_ : Optional[Any] = jnp.clip(__SCREAMING_SNAKE_CASE , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase_ : List[Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t lowercase_ : Optional[Any] = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase_ : Optional[Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): lowercase_ : str = jax.random.split(__SCREAMING_SNAKE_CASE , num=1 ) lowercase_ : List[Any] = jax.random.normal(__SCREAMING_SNAKE_CASE , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , predicted_variance=__SCREAMING_SNAKE_CASE ) ** 0.5) * noise lowercase_ : Optional[Any] = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) lowercase_ : Any = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=__SCREAMING_SNAKE_CASE , state=__SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ): """simple docstring""" return add_noise_common(state.common , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ): """simple docstring""" return get_velocity_common(state.common , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __len__( self ): """simple docstring""" return self.config.num_train_timesteps
93
1
def _SCREAMING_SNAKE_CASE ( lowercase : int | float | str ): '''simple docstring''' try: lowerCamelCase_ = float(lowercase ) except ValueError: raise ValueError('Please enter a valid number' ) lowerCamelCase_ = decimal - int(lowercase ) if fractional_part == 0: return int(lowercase ), 1 else: lowerCamelCase_ = len(str(lowercase ).split('.' )[1] ) lowerCamelCase_ = int(decimal * (10**number_of_frac_digits) ) lowerCamelCase_ = 10**number_of_frac_digits lowerCamelCase_ , lowerCamelCase_ = denominator, numerator while True: lowerCamelCase_ = dividend % divisor if remainder == 0: break lowerCamelCase_ , lowerCamelCase_ = divisor, remainder lowerCamelCase_ , lowerCamelCase_ = numerator / divisor, denominator / divisor return int(lowercase ), int(lowercase ) if __name__ == "__main__": print(F"""{decimal_to_fraction(2) = }""") print(F"""{decimal_to_fraction(89.0) = }""") print(F"""{decimal_to_fraction('67') = }""") print(F"""{decimal_to_fraction('45.0') = }""") print(F"""{decimal_to_fraction(1.5) = }""") print(F"""{decimal_to_fraction('6.25') = }""") print(F"""{decimal_to_fraction('78td') = }""")
208
def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' if not all(char in '01' for char in bin_string ): raise ValueError('Non-binary value was passed to the function' ) if not bin_string: raise ValueError('Empty string was passed to the function' ) lowerCamelCase_ = '' while len(lowercase ) % 3 != 0: lowerCamelCase_ = '0' + bin_string lowerCamelCase_ = [ bin_string[index : index + 3] for index in range(len(lowercase ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: lowerCamelCase_ = 0 for index, val in enumerate(lowercase ): oct_val += int(2 ** (2 - index) * int(lowercase ) ) oct_string += str(lowercase ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
208
1
from manim import * class lowerCamelCase_ ( A_ ): '''simple docstring''' def UpperCamelCase__ ( self) -> Optional[int]: __UpperCamelCase :Dict = Rectangle(height=0.5 , width=0.5) __UpperCamelCase :Optional[Any] = Rectangle(height=0.46 , width=0.46).set_stroke(width=0) __UpperCamelCase :List[str] = [mem.copy() for i in range(6)] __UpperCamelCase :Any = [mem.copy() for i in range(6)] __UpperCamelCase :Dict = VGroup(*snake_case__).arrange(snake_case__ , buff=0) __UpperCamelCase :Union[str, Any] = VGroup(*snake_case__).arrange(snake_case__ , buff=0) __UpperCamelCase :Any = VGroup(snake_case__ , snake_case__).arrange(snake_case__ , buff=0) __UpperCamelCase :Dict = Text('''CPU''' , font_size=24) __UpperCamelCase :Optional[Any] = Group(snake_case__ , snake_case__).arrange(snake_case__ , buff=0.5 , aligned_edge=snake_case__) cpu.move_to([-2.5, -0.5, 0]) self.add(snake_case__) __UpperCamelCase :Any = [mem.copy() for i in range(1)] __UpperCamelCase :str = VGroup(*snake_case__).arrange(snake_case__ , buff=0) __UpperCamelCase :Tuple = Text('''GPU''' , font_size=24) __UpperCamelCase :List[Any] = Group(snake_case__ , snake_case__).arrange(snake_case__ , buff=0.5 , aligned_edge=snake_case__) gpu.align_to(snake_case__ , snake_case__) gpu.set_x(gpu.get_x() - 1) self.add(snake_case__) __UpperCamelCase :Any = [mem.copy() for i in range(6)] __UpperCamelCase :Tuple = VGroup(*snake_case__).arrange(snake_case__ , buff=0) __UpperCamelCase :int = Text('''Model''' , font_size=24) __UpperCamelCase :List[str] = Group(snake_case__ , snake_case__).arrange(snake_case__ , buff=0.5 , aligned_edge=snake_case__) model.move_to([3, -1.0, 0]) self.play( Create(snake_case__ , run_time=1) , Create(snake_case__ , run_time=1) , Create(snake_case__ , run_time=1) , ) __UpperCamelCase :List[str] = MarkupText( f"""First, an empty model skeleton is loaded\ninto <span fgcolor='{YELLOW}'>memory</span> without using much RAM.""" , font_size=24 , ) __UpperCamelCase :List[str] = Square(side_length=2.2) key.move_to([-5, 2, 0]) __UpperCamelCase :Optional[int] = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0]) step_a.move_to([2, 2, 0]) self.play(Write(snake_case__ , run_time=2.5) , Write(snake_case__) , Write(snake_case__)) self.add(snake_case__) __UpperCamelCase :str = [] __UpperCamelCase :str = [] __UpperCamelCase :Dict = [] for i, rect in enumerate(snake_case__): __UpperCamelCase :int = Rectangle(height=0.46 , width=0.46).set_stroke(width=0.0).set_fill(snake_case__ , opacity=0.7) cpu_target.move_to(snake_case__) cpu_target.generate_target() __UpperCamelCase :Optional[int] = 0.46 / 4 __UpperCamelCase :int = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT) , buff=0.02 , direction=snake_case__) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=snake_case__ , buff=0.0) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=snake_case__ , buff=0.0) cpu_targs.append(snake_case__) first_animations.append(rect.animate(run_time=0.5).set_stroke(snake_case__)) second_animations.append(MoveToTarget(snake_case__ , run_time=1.5)) self.play(*snake_case__) self.play(*snake_case__) self.wait()
43
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def UpperCamelCase ( __lowerCamelCase : Dict[str, torch.Tensor] ): snake_case : List[str] = [] snake_case : Optional[int] = [] snake_case : Any = [] for rt in rc.restypes: snake_case : List[Any] = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) snake_case : str = {name: i for i, name in enumerate(__lowerCamelCase )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) snake_case : Optional[Any] = torch.tensor( __lowerCamelCase , dtype=torch.intaa , device=protein["aatype"].device , ) snake_case : List[Any] = torch.tensor( __lowerCamelCase , dtype=torch.intaa , device=protein["aatype"].device , ) snake_case : int = torch.tensor( __lowerCamelCase , dtype=torch.floataa , device=protein["aatype"].device , ) snake_case : int = protein["aatype"].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein snake_case : List[Any] = restype_atomaa_to_atomaa[protein_aatype] snake_case : str = restype_atomaa_mask[protein_aatype] snake_case : str = residx_atomaa_mask snake_case : Any = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back snake_case : List[str] = restype_atomaa_to_atomaa[protein_aatype] snake_case : List[Any] = residx_atomaa_to_atomaa.long() # create the corresponding mask snake_case : Union[str, Any] = torch.zeros([21, 37] , dtype=torch.floataa , device=protein["aatype"].device ) for restype, restype_letter in enumerate(rc.restypes ): snake_case : Optional[int] = rc.restype_atoa[restype_letter] snake_case : Any = rc.residue_atoms[restype_name] for atom_name in atom_names: snake_case : List[Any] = rc.atom_order[atom_name] snake_case : Optional[Any] = 1 snake_case : List[Any] = restype_atomaa_mask[protein_aatype] snake_case : int = residx_atomaa_mask return protein def UpperCamelCase ( __lowerCamelCase : Dict[str, torch.Tensor] ): snake_case : Dict = tree_map(lambda __lowerCamelCase : torch.tensor(__lowerCamelCase , device=batch["aatype"].device ) , __lowerCamelCase , np.ndarray ) snake_case : List[str] = tensor_tree_map(lambda __lowerCamelCase : np.array(__lowerCamelCase ) , make_atomaa_masks(__lowerCamelCase ) ) return out
59
0
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _snake_case ( unittest.TestCase ): @property def SCREAMING_SNAKE_CASE__ ( self ): torch.manual_seed(0 ) a :List[str] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model @property def SCREAMING_SNAKE_CASE__ ( self ): torch.manual_seed(0 ) a :List[Any] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=3 , ) return model @property def SCREAMING_SNAKE_CASE__ ( self ): torch.manual_seed(0 ) a :int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): a :str = self.dummy_uncond_unet a :Optional[int] = DDIMScheduler() a :Union[str, Any] = self.dummy_vq_model a :int = LDMPipeline(unet=_lowerCamelCase , vqvae=_lowerCamelCase , scheduler=_lowerCamelCase ) ldm.to(_lowerCamelCase ) ldm.set_progress_bar_config(disable=_lowerCamelCase ) a :Union[str, Any] = torch.manual_seed(0 ) a :Optional[Any] = ldm(generator=_lowerCamelCase , num_inference_steps=2 , output_type='''numpy''' ).images a :Optional[int] = torch.manual_seed(0 ) a :Any = ldm(generator=_lowerCamelCase , num_inference_steps=2 , output_type='''numpy''' , return_dict=_lowerCamelCase )[0] a :str = image[0, -3:, -3:, -1] a :Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) a :int = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) a :Optional[Any] = 1e-2 if torch_device != '''mps''' else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class _snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ): a :List[str] = LDMPipeline.from_pretrained('''CompVis/ldm-celebahq-256''' ) ldm.to(_lowerCamelCase ) ldm.set_progress_bar_config(disable=_lowerCamelCase ) a :str = torch.manual_seed(0 ) a :Dict = ldm(generator=_lowerCamelCase , num_inference_steps=5 , output_type='''numpy''' ).images a :Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) a :Any = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447] ) a :Dict = 1e-2 if torch_device != '''mps''' else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
281
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin snake_case : List[Any] = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''') class _snake_case ( _snake_case , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = BartphoTokenizer SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = True def SCREAMING_SNAKE_CASE__ ( self ): super().setUp() a :Dict = ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] a :Optional[Any] = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) a :Tuple = {'''unk_token''': '''<unk>'''} a :Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''monolingual_vocab_file'''] ) with open(self.monolingual_vocab_file , '''w''' , encoding='''utf-8''' ) as fp: for token in vocab_tokens: fp.write(F'''{token} {vocab_tokens[token]}\n''' ) a :Any = BartphoTokenizer(_lowerCamelCase , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self , **_lowerCamelCase ): kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): a :int = '''This is a là test''' a :str = '''This is a<unk><unk> test''' return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self ): a :List[str] = BartphoTokenizer(_lowerCamelCase , self.monolingual_vocab_file , **self.special_tokens_map ) a :Optional[Any] = '''This is a là test''' a :Tuple = '''▁This ▁is ▁a ▁l à ▁t est'''.split() a :int = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) a :Union[str, Any] = tokens + [tokenizer.unk_token] a :str = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , _lowerCamelCase )
281
1
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ : Optional[int] = { """configuration_mctct""": ["""MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MCTCTConfig"""], """feature_extraction_mctct""": ["""MCTCTFeatureExtractor"""], """processing_mctct""": ["""MCTCTProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Dict = [ """MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MCTCTForCTC""", """MCTCTModel""", """MCTCTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys lowercase_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
133
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = LongformerTokenizer lowercase = True lowercase = LongformerTokenizerFast lowercase = True def _lowercase( self ) -> List[Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase : List[str] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] UpperCAmelCase : int = dict(zip(A , range(len(A ) ) ) ) UpperCAmelCase : Any = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] UpperCAmelCase : Dict = {"""unk_token""": """<unk>"""} UpperCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(A ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(A ) ) def _lowercase( self , **A ) -> Optional[Any]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **A ) def _lowercase( self , **A ) -> int: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **A ) def _lowercase( self , A ) -> Optional[int]: UpperCAmelCase : Optional[Any] = """lower newer""" UpperCAmelCase : Optional[int] = """lower newer""" return input_text, output_text def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Tuple = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCAmelCase : Dict = """lower newer""" UpperCAmelCase : int = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] UpperCAmelCase : Tuple = tokenizer.tokenize(A ) # , add_prefix_space=True) self.assertListEqual(A , A ) UpperCAmelCase : Any = tokens + [tokenizer.unk_token] UpperCAmelCase : Tuple = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : str = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=A ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=A ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Any = self.tokenizer_class.from_pretrained("""allenai/longformer-base-4096""" ) UpperCAmelCase : List[Any] = tokenizer.encode("""sequence builders""" , add_special_tokens=A ) UpperCAmelCase : Optional[Any] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=A ) UpperCAmelCase : List[str] = tokenizer.encode( """sequence builders""" , add_special_tokens=A , add_prefix_space=A ) UpperCAmelCase : List[str] = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=A , add_prefix_space=A ) UpperCAmelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(A ) UpperCAmelCase : Any = tokenizer.build_inputs_with_special_tokens(A , A ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def _lowercase( self ) -> List[Any]: UpperCAmelCase : str = self.get_tokenizer() UpperCAmelCase : List[Any] = """Encode this sequence.""" UpperCAmelCase : List[str] = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]] # Testing encoder arguments UpperCAmelCase : Union[str, Any] = tokenizer.encode(A , add_special_tokens=A , add_prefix_space=A ) UpperCAmelCase : Dict = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(A , A ) UpperCAmelCase : Tuple = tokenizer.encode(A , add_special_tokens=A , add_prefix_space=A ) UpperCAmelCase : int = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(A , A ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) UpperCAmelCase : int = tokenizer.encode(A , add_special_tokens=A ) UpperCAmelCase : List[Any] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(A , A ) # Testing spaces after special tokens UpperCAmelCase : Union[str, Any] = """<mask>""" tokenizer.add_special_tokens( {"""mask_token""": AddedToken(A , lstrip=A , rstrip=A )} ) # mask token has a left space UpperCAmelCase : str = tokenizer.convert_tokens_to_ids(A ) UpperCAmelCase : Union[str, Any] = """Encode <mask> sequence""" UpperCAmelCase : Union[str, Any] = """Encode <mask>sequence""" UpperCAmelCase : Union[str, Any] = tokenizer.encode(A ) UpperCAmelCase : Union[str, Any] = encoded.index(A ) UpperCAmelCase : List[str] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(A , A ) UpperCAmelCase : Tuple = tokenizer.encode(A ) UpperCAmelCase : Optional[int] = encoded.index(A ) UpperCAmelCase : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(A , A ) def _lowercase( self ) -> Optional[int]: pass def _lowercase( self ) -> Any: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCAmelCase : str = self.rust_tokenizer_class.from_pretrained(A , **A ) UpperCAmelCase : int = self.tokenizer_class.from_pretrained(A , **A ) UpperCAmelCase : Dict = """A, <mask> AllenNLP sentence.""" UpperCAmelCase : Dict = tokenizer_r.encode_plus(A , add_special_tokens=A , return_token_type_ids=A ) UpperCAmelCase : Tuple = tokenizer_p.encode_plus(A , add_special_tokens=A , return_token_type_ids=A ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) UpperCAmelCase : List[Any] = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) UpperCAmelCase : int = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( A , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( A , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def _lowercase( self ) -> List[Any]: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): UpperCAmelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=A , add_prefix_space=A , trim_offsets=A ) UpperCAmelCase : Optional[int] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) UpperCAmelCase : Optional[int] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , A ) self.assertEqual(post_processor_state["""add_prefix_space"""] , A ) self.assertEqual(post_processor_state["""trim_offsets"""] , A ) def _lowercase( self ) -> Optional[Any]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCAmelCase : Union[str, Any] = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` UpperCAmelCase : int = f'''{text_of_1_token} {text_of_1_token}''' UpperCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , add_prefix_space=A , trim_offsets=A ) UpperCAmelCase : str = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] , (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1] , (len(A ) + 1, len(A ) + 1 + len(A )) , ) UpperCAmelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , add_prefix_space=A , trim_offsets=A ) UpperCAmelCase : Dict = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] , (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1] , (len(A ) + 1, len(A ) + 1 + len(A )) , ) UpperCAmelCase : int = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , add_prefix_space=A , trim_offsets=A ) UpperCAmelCase : List[Any] = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] , (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1] , (len(A ), len(A ) + 1 + len(A )) , ) UpperCAmelCase : Any = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , add_prefix_space=A , trim_offsets=A ) UpperCAmelCase : str = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] , (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1] , (len(A ), len(A ) + 1 + len(A )) , ) UpperCAmelCase : Optional[Any] = f''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) UpperCAmelCase : Any = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , add_prefix_space=A , trim_offsets=A ) UpperCAmelCase : str = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(A )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(A ) + 1, 1 + len(A ) + 1 + len(A )) , ) UpperCAmelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , add_prefix_space=A , trim_offsets=A ) UpperCAmelCase : Union[str, Any] = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(A )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(A ), 1 + len(A ) + 1 + len(A )) , ) UpperCAmelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , add_prefix_space=A , trim_offsets=A ) UpperCAmelCase : Optional[int] = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(A )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(A ), 1 + len(A ) + 1 + len(A )) , )
265
0
"""simple docstring""" import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A: Union[str, Any] = "▁" A: Tuple = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ , unittest.TestCase ): __lowerCAmelCase : Optional[int] = BigBirdTokenizer __lowerCAmelCase : Optional[int] = BigBirdTokenizerFast __lowerCAmelCase : int = True __lowerCAmelCase : Dict = True def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' super().setUp() UpperCAmelCase : Union[str, Any] = self.tokenizer_class(_SCREAMING_SNAKE_CASE , keep_accents=_SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : int = """<s>""" UpperCAmelCase : List[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """[MASK]""" ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , 1004 ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' if not self.test_rust_tokenizer: return UpperCAmelCase : Optional[Any] = self.get_tokenizer() UpperCAmelCase : int = self.get_rust_tokenizer() UpperCAmelCase : Union[str, Any] = """I was born in 92000, and this is falsé.""" UpperCAmelCase : Union[str, Any] = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Union[str, Any] = rust_tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Tuple = tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : int = rust_tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : int = self.get_rust_tokenizer() UpperCAmelCase : Dict = tokenizer.encode(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Tuple = rust_tokenizer.encode(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Optional[Any] = BigBirdTokenizer(_SCREAMING_SNAKE_CASE , keep_accents=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[Any] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_SCREAMING_SNAKE_CASE , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , [285, 46, 10, 170, 382] , ) UpperCAmelCase : List[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) UpperCAmelCase : int = tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) self.assertListEqual( _SCREAMING_SNAKE_CASE , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) UpperCAmelCase : Any = tokenizer.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ) self.assertListEqual( _SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' return BigBirdTokenizer.from_pretrained("""google/bigbird-roberta-base""" ) @slow def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Union[str, Any] = """Hello World!""" UpperCAmelCase : Dict = [65, 18536, 2260, 101, 66] self.assertListEqual(_SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(_SCREAMING_SNAKE_CASE ) ) @slow def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : Any = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) # fmt: off UpperCAmelCase : int = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(_SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(_SCREAMING_SNAKE_CASE ) ) @require_torch @slow def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence UpperCAmelCase : Dict = list(self.big_tokenizer.get_vocab().keys() )[:10] UpperCAmelCase : Any = """ """.join(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : int = self.big_tokenizer.encode_plus(_SCREAMING_SNAKE_CASE , return_tensors="""pt""" , return_token_type_ids=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : int = self.big_tokenizer.batch_encode_plus( [sequence + """ """ + sequence] , return_tensors="""pt""" , return_token_type_ids=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Any = BigBirdConfig(attention_type="""original_full""" ) UpperCAmelCase : Dict = BigBirdModel(_SCREAMING_SNAKE_CASE ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_SCREAMING_SNAKE_CASE ) model(**_SCREAMING_SNAKE_CASE ) @slow def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' UpperCAmelCase : Any = BigBirdTokenizer.from_pretrained("""google/bigbird-roberta-base""" ) UpperCAmelCase : Any = tokenizer.decode(tokenizer("""Paris is the [MASK].""" ).input_ids ) self.assertTrue(decoded_text == """[CLS] Paris is the[MASK].[SEP]""" ) @slow def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Optional[int] = {"""input_ids""": [[65, 39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114, 66], [65, 448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_SCREAMING_SNAKE_CASE , model_name="""google/bigbird-roberta-base""" , revision="""215c99f1600e06f83acce68422f2035b2b5c3510""" , )
76
"""simple docstring""" import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> List[Any]: '''simple docstring''' super().__init__() UpperCAmelCase : Tuple = value_function UpperCAmelCase : Dict = unet UpperCAmelCase : Union[str, Any] = scheduler UpperCAmelCase : List[Any] = env UpperCAmelCase : int = env.get_dataset() UpperCAmelCase : Optional[int] = {} for key in self.data.keys(): try: UpperCAmelCase : Dict = self.data[key].mean() except: # noqa: E722 pass UpperCAmelCase : int = {} for key in self.data.keys(): try: UpperCAmelCase : Optional[Any] = self.data[key].std() except: # noqa: E722 pass UpperCAmelCase : Any = env.observation_space.shape[0] UpperCAmelCase : str = env.action_space.shape[0] def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' return (x_in - self.means[key]) / self.stds[key] def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' return x_in * self.stds[key] + self.means[key] def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' if type(_SCREAMING_SNAKE_CASE ) is dict: return {k: self.to_torch(_SCREAMING_SNAKE_CASE ) for k, v in x_in.items()} elif torch.is_tensor(_SCREAMING_SNAKE_CASE ): return x_in.to(self.unet.device ) return torch.tensor(_SCREAMING_SNAKE_CASE , device=self.unet.device ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' for key, val in cond.items(): UpperCAmelCase : Optional[Any] = val.clone() return x_in def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' UpperCAmelCase : Dict = x.shape[0] UpperCAmelCase : Optional[int] = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model UpperCAmelCase : Tuple = torch.full((batch_size,) , _SCREAMING_SNAKE_CASE , device=self.unet.device , dtype=torch.long ) for _ in range(_SCREAMING_SNAKE_CASE ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models UpperCAmelCase : Dict = self.value_function(x.permute(0 , 2 , 1 ) , _SCREAMING_SNAKE_CASE ).sample UpperCAmelCase : Optional[int] = torch.autograd.grad([y.sum()] , [x] )[0] UpperCAmelCase : List[Any] = self.scheduler._get_variance(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[str] = torch.exp(0.5 * posterior_variance ) UpperCAmelCase : str = model_std * grad UpperCAmelCase : str = 0 UpperCAmelCase : Any = x.detach() UpperCAmelCase : int = x + scale * grad UpperCAmelCase : Any = self.reset_xa(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.action_dim ) UpperCAmelCase : Optional[int] = self.unet(x.permute(0 , 2 , 1 ) , _SCREAMING_SNAKE_CASE ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg UpperCAmelCase : Any = self.scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , predict_epsilon=_SCREAMING_SNAKE_CASE )["""prev_sample"""] # apply conditions to the trajectory (set the initial state) UpperCAmelCase : Dict = self.reset_xa(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.action_dim ) UpperCAmelCase : int = self.to_torch(_SCREAMING_SNAKE_CASE ) return x, y def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=64 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.1 ) -> Tuple: '''simple docstring''' UpperCAmelCase : int = self.normalize(_SCREAMING_SNAKE_CASE , """observations""" ) UpperCAmelCase : int = obs[None].repeat(_SCREAMING_SNAKE_CASE , axis=0 ) UpperCAmelCase : Dict = {0: self.to_torch(_SCREAMING_SNAKE_CASE )} UpperCAmelCase : Dict = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) UpperCAmelCase : str = randn_tensor(_SCREAMING_SNAKE_CASE , device=self.unet.device ) UpperCAmelCase : Any = self.reset_xa(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.action_dim ) UpperCAmelCase : str = self.to_torch(_SCREAMING_SNAKE_CASE ) # run the diffusion process UpperCAmelCase , UpperCAmelCase : Any = self.run_diffusion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # sort output trajectories by value UpperCAmelCase : List[str] = y.argsort(0 , descending=_SCREAMING_SNAKE_CASE ).squeeze() UpperCAmelCase : Any = x[sorted_idx] UpperCAmelCase : Dict = sorted_values[:, :, : self.action_dim] UpperCAmelCase : int = actions.detach().cpu().numpy() UpperCAmelCase : List[str] = self.de_normalize(_SCREAMING_SNAKE_CASE , key="""actions""" ) # select the action with the highest value if y is not None: UpperCAmelCase : Any = 0 else: # if we didn't run value guiding, select a random action UpperCAmelCase : Optional[int] = np.random.randint(0 , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Any = denorm_actions[selected_index, 0] return denorm_actions
76
1
def _lowerCAmelCase ( __lowerCAmelCase ) -> int: """simple docstring""" return 1 if digit in (0, 1) else (digit * factorial(digit - 1 )) def _lowerCAmelCase ( __lowerCAmelCase ) -> bool: """simple docstring""" snake_case__ : List[str] = 0 snake_case__ : List[Any] = number while duplicate > 0: snake_case__ , snake_case__ : int = divmod(__lowerCAmelCase , 10 ) fact_sum += factorial(__lowerCAmelCase ) return fact_sum == number if __name__ == "__main__": print('''Program to check whether a number is a Krisnamurthy Number or not.''') A__ = int(input('''Enter number: ''').strip()) print( f"""{number} is {'' if krishnamurthy(number) else 'not '}a Krishnamurthy Number.""" )
230
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ = logging.get_logger(__name__) A__ = { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/config.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/config.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json''' ), '''distilbert-base-uncased-finetuned-sst-2-english''': ( '''https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json''' ), } class a ( __lowerCamelCase ): __lowerCAmelCase : str = """distilbert""" __lowerCAmelCase : str = { """hidden_size""": """dim""", """num_attention_heads""": """n_heads""", """num_hidden_layers""": """n_layers""", } def __init__( self :Dict ,__lowercase :Tuple=3_0_5_2_2 ,__lowercase :Optional[Any]=5_1_2 ,__lowercase :List[str]=False ,__lowercase :List[str]=6 ,__lowercase :Optional[Any]=1_2 ,__lowercase :Tuple=7_6_8 ,__lowercase :int=4 * 7_6_8 ,__lowercase :List[Any]=0.1 ,__lowercase :List[str]=0.1 ,__lowercase :Union[str, Any]="gelu" ,__lowercase :List[str]=0.02 ,__lowercase :Optional[int]=0.1 ,__lowercase :Dict=0.2 ,__lowercase :Union[str, Any]=0 ,**__lowercase :Optional[Any] ,): snake_case__ : List[str] = vocab_size snake_case__ : Tuple = max_position_embeddings snake_case__ : Optional[int] = sinusoidal_pos_embds snake_case__ : str = n_layers snake_case__ : List[Any] = n_heads snake_case__ : Tuple = dim snake_case__ : str = hidden_dim snake_case__ : int = dropout snake_case__ : Dict = attention_dropout snake_case__ : Tuple = activation snake_case__ : int = initializer_range snake_case__ : Optional[Any] = qa_dropout snake_case__ : Union[str, Any] = seq_classif_dropout super().__init__(**__lowercase ,pad_token_id=__lowercase ) class a ( __lowerCamelCase ): @property def __lowerCamelCase ( self :Union[str, Any] ): if self.task == "multiple-choice": snake_case__ : str = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: snake_case__ : Optional[int] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
230
1
'''simple docstring''' from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class snake_case__ ( SCREAMING_SNAKE_CASE_ ): def __init__( self : List[str] , __a : Callable , __a : Optional[Features] = None , __a : str = None , __a : bool = False , __a : bool = False , __a : Optional[dict] = None , __a : Optional[int] = None , **__a : Optional[int] , ) -> str: '''simple docstring''' super().__init__( features=__a , cache_dir=__a , keep_in_memory=__a , streaming=__a , num_proc=__a , **__a , ) __snake_case : List[str] = Generator( cache_dir=__a , features=__a , generator=__a , gen_kwargs=__a , **__a , ) def A_ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' # Build iterable dataset if self.streaming: __snake_case : Tuple = self.builder.as_streaming_dataset(split='train' ) # Build regular (map-style) dataset else: __snake_case : Dict = None __snake_case : Tuple = None __snake_case : List[str] = None __snake_case : List[Any] = None self.builder.download_and_prepare( download_config=__a , download_mode=__a , verification_mode=__a , base_path=__a , num_proc=self.num_proc , ) __snake_case : List[str] = self.builder.as_dataset( split='train' , verification_mode=__a , in_memory=self.keep_in_memory ) return dataset
0
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging A__ : List[Any] = logging.get_logger(__name__) A__ : Tuple = { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/config.json''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/config.json''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/config.json''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/config.json''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/config.json''', } class snake_case__ ( SCREAMING_SNAKE_CASE_ ): A__ = '''t5''' A__ = ['''past_key_values'''] A__ = {'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self : str , __a : Dict=32128 , __a : Dict=512 , __a : Union[str, Any]=64 , __a : str=2048 , __a : Union[str, Any]=6 , __a : Any=None , __a : Any=8 , __a : List[Any]=32 , __a : Any=128 , __a : Tuple=0.1 , __a : str=1e-6 , __a : Dict=1.0 , __a : Tuple="relu" , __a : Dict=True , __a : Union[str, Any]=True , __a : Any=0 , __a : Dict=1 , **__a : Union[str, Any] , ) -> Union[str, Any]: '''simple docstring''' __snake_case : int = vocab_size __snake_case : str = d_model __snake_case : str = d_kv __snake_case : List[Any] = d_ff __snake_case : List[str] = num_layers __snake_case : Tuple = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __snake_case : Union[str, Any] = num_heads __snake_case : Tuple = relative_attention_num_buckets __snake_case : Optional[int] = relative_attention_max_distance __snake_case : Optional[Any] = dropout_rate __snake_case : str = layer_norm_epsilon __snake_case : List[str] = initializer_factor __snake_case : int = feed_forward_proj __snake_case : Optional[Any] = use_cache __snake_case : Optional[Any] = self.feed_forward_proj.split('-' ) __snake_case : Dict = act_info[-1] __snake_case : List[str] = act_info[0] == 'gated' if len(__a ) > 1 and act_info[0] != "gated" or len(__a ) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": __snake_case : Dict = 'gelu_new' super().__init__( pad_token_id=__a , eos_token_id=__a , is_encoder_decoder=__a , **__a , ) class snake_case__ ( SCREAMING_SNAKE_CASE_ ): @property def A_ ( self : str ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' __snake_case : Union[str, Any] = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: __snake_case : Tuple = 'past_encoder_sequence + sequence' __snake_case : Dict = {0: 'batch'} __snake_case : Dict = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: __snake_case : Tuple = {0: 'batch', 1: 'decoder_sequence'} __snake_case : int = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(__a , direction='inputs' ) return common_inputs @property def A_ ( self : List[Any] ) -> int: '''simple docstring''' return 13
0
1
"""simple docstring""" from __future__ import annotations def _lowerCamelCase( a ): __a = [True] * limit __a = False __a = False __a = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): __a = i * 2 while index < limit: __a = False __a = index + i __a = [2] for i in range(3 , a , 2 ): if is_prime[i]: primes.append(a ) return primes def _lowerCamelCase( a = 1_0_0_0_0_0_0 ): __a = prime_sieve(a ) __a = 0 __a = 0 for i in range(len(a ) ): for j in range(i + length , len(a ) ): __a = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: __a = j - i __a = sol return largest if __name__ == "__main__": print(F'''{solution() = }''')
261
"""simple docstring""" from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def _lowerCamelCase( a ): return getitem, k def _lowerCamelCase( a , a ): return setitem, k, v def _lowerCamelCase( a ): return delitem, k def _lowerCamelCase( a , a , *a ): try: return fun(a , *a ), None except Exception as e: return None, e SCREAMING_SNAKE_CASE__:List[Any] = ( _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), ) SCREAMING_SNAKE_CASE__:List[Any] = [ _set("""key_a""", """val_a"""), _set("""key_a""", """val_b"""), ] SCREAMING_SNAKE_CASE__:List[Any] = [ _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), _del("""key_a"""), _del("""key_b"""), _set("""key_a""", """val_a"""), _del("""key_a"""), ] SCREAMING_SNAKE_CASE__:Any = [ _get("""key_a"""), _del("""key_a"""), _set("""key_a""", """val_a"""), _del("""key_a"""), _del("""key_a"""), _get("""key_a"""), ] SCREAMING_SNAKE_CASE__:int = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] SCREAMING_SNAKE_CASE__:Any = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("""key_a""", """val_b"""), ] @pytest.mark.parametrize( "operations" , ( pytest.param(_add_items , id="add items" ), pytest.param(_overwrite_items , id="overwrite items" ), pytest.param(_delete_items , id="delete items" ), pytest.param(_access_absent_items , id="access absent items" ), pytest.param(_add_with_resize_up , id="add with resize up" ), pytest.param(_add_with_resize_down , id="add with resize down" ), ) , ) def _lowerCamelCase( a ): __a = HashMap(initial_block_size=4 ) __a = {} for _, (fun, *args) in enumerate(a ): __a , __a = _run_operation(a , a , *a ) __a , __a = _run_operation(a , a , *a ) assert my_res == py_res assert str(a ) == str(a ) assert set(a ) == set(a ) assert len(a ) == len(a ) assert set(my.items() ) == set(py.items() ) def _lowerCamelCase( ): def is_public(a ) -> bool: return not name.startswith("_" ) __a = {name for name in dir({} ) if is_public(a )} __a = {name for name in dir(HashMap() ) if is_public(a )} assert dict_public_names > hash_public_names
261
1
'''simple docstring''' from __future__ import annotations def lowerCAmelCase_ ( snake_case_ : list , snake_case_ : int | None = None , snake_case_ : int | None = None ) -> None: '''simple docstring''' if start is None: UpperCAmelCase_ = 0 if end is None: UpperCAmelCase_ = len(a__ ) - 1 if start >= end: return UpperCAmelCase_ = (start + end) // 2 slowsort(a__ , a__ , a__ ) slowsort(a__ , mid + 1 , a__ ) if sequence[end] < sequence[mid]: UpperCAmelCase_ , UpperCAmelCase_ = sequence[mid], sequence[end] slowsort(a__ , a__ , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
360
'''simple docstring''' def lowerCAmelCase_ ( snake_case_ : int = 1_00_00_00 ) -> int: '''simple docstring''' UpperCAmelCase_ = limit + 1 UpperCAmelCase_ = [0] * limit for first_term in range(1 , snake_case_ ): for n in range(snake_case_ , snake_case_ , snake_case_ ): UpperCAmelCase_ = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a UpperCAmelCase_ = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f"{solution() = }")
106
0
'''simple docstring''' def __lowercase ( __lowercase ) -> float: '''simple docstring''' if edge <= 0 or not isinstance(__lowercase , __lowercase ): raise ValueError("Length must be a positive." ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def __lowercase ( __lowercase ) -> float: '''simple docstring''' if edge <= 0 or not isinstance(__lowercase , __lowercase ): raise ValueError("Length must be a positive." ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
79
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _UpperCAmelCase ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" snake_case = CycleDiffusionPipeline snake_case = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { '''negative_prompt''', '''height''', '''width''', '''negative_prompt_embeds''', } snake_case = PipelineTesterMixin.required_optional_params - {'''latents'''} snake_case = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''source_prompt'''} ) snake_case = IMAGE_TO_IMAGE_IMAGE_PARAMS snake_case = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) _A = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) _A = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , num_train_timesteps=1000 , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , ) torch.manual_seed(0 ) _A = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) _A = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) _A = CLIPTextModel(__UpperCAmelCase ) _A = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _A = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[Any]=0 ): '''simple docstring''' _A = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) _A = image / 2 + 0.5 if str(__UpperCAmelCase ).startswith("mps" ): _A = torch.manual_seed(__UpperCAmelCase ) else: _A = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) _A = { "prompt": "An astronaut riding an elephant", "source_prompt": "An astronaut riding a horse", "image": image, "generator": generator, "num_inference_steps": 2, "eta": 0.1, "strength": 0.8, "guidance_scale": 3, "source_guidance_scale": 1, "output_type": "numpy", } return inputs def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' _A = "cpu" # ensure determinism for the device-dependent torch.Generator _A = self.get_dummy_components() _A = CycleDiffusionPipeline(**__UpperCAmelCase ) _A = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _A = self.get_dummy_inputs(__UpperCAmelCase ) _A = pipe(**__UpperCAmelCase ) _A = output.images _A = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) _A = np.array([0.4459, 0.4943, 0.4544, 0.6643, 0.5474, 0.4327, 0.5701, 0.5959, 0.5179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' _A = self.get_dummy_components() for name, module in components.items(): if hasattr(__UpperCAmelCase , "half" ): _A = module.half() _A = CycleDiffusionPipeline(**__UpperCAmelCase ) _A = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _A = self.get_dummy_inputs(__UpperCAmelCase ) _A = pipe(**__UpperCAmelCase ) _A = output.images _A = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) _A = np.array([0.3506, 0.4543, 0.446, 0.4575, 0.5195, 0.4155, 0.5273, 0.518, 0.4116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def lowerCAmelCase ( self : Any ): '''simple docstring''' return super().test_save_load_local() @unittest.skip("non-deterministic pipeline" ) def lowerCAmelCase ( self : str ): '''simple docstring''' return super().test_inference_batch_single_identical() @skip_mps def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent() @skip_mps def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def lowerCAmelCase ( self : str ): '''simple docstring''' return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _A = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/cycle-diffusion/black_colored_car.png" ) _A = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy" ) _A = init_image.resize((512, 512) ) _A = "CompVis/stable-diffusion-v1-4" _A = DDIMScheduler.from_pretrained(__UpperCAmelCase , subfolder="scheduler" ) _A = CycleDiffusionPipeline.from_pretrained( __UpperCAmelCase , scheduler=__UpperCAmelCase , safety_checker=__UpperCAmelCase , torch_dtype=torch.floataa , revision="fp16" ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) pipe.enable_attention_slicing() _A = "A black colored car" _A = "A blue colored car" _A = torch.manual_seed(0 ) _A = pipe( prompt=__UpperCAmelCase , source_prompt=__UpperCAmelCase , image=__UpperCAmelCase , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=__UpperCAmelCase , output_type="np" , ) _A = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5E-1 def lowerCAmelCase ( self : List[str] ): '''simple docstring''' _A = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/cycle-diffusion/black_colored_car.png" ) _A = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy" ) _A = init_image.resize((512, 512) ) _A = "CompVis/stable-diffusion-v1-4" _A = DDIMScheduler.from_pretrained(__UpperCAmelCase , subfolder="scheduler" ) _A = CycleDiffusionPipeline.from_pretrained(__UpperCAmelCase , scheduler=__UpperCAmelCase , safety_checker=__UpperCAmelCase ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) pipe.enable_attention_slicing() _A = "A black colored car" _A = "A blue colored car" _A = torch.manual_seed(0 ) _A = pipe( prompt=__UpperCAmelCase , source_prompt=__UpperCAmelCase , image=__UpperCAmelCase , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=__UpperCAmelCase , output_type="np" , ) _A = output.images assert np.abs(image - expected_image ).max() < 2E-2
79
1
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class __A : def __init__( self , UpperCAmelCase_ , UpperCAmelCase_=12 , UpperCAmelCase_=7 , UpperCAmelCase_=True , UpperCAmelCase_=True , UpperCAmelCase_=True , UpperCAmelCase_=99 , UpperCAmelCase_=32 , UpperCAmelCase_=32 , UpperCAmelCase_=2 , UpperCAmelCase_=4 , UpperCAmelCase_=37 , UpperCAmelCase_=0.1 , UpperCAmelCase_=0.1 , UpperCAmelCase_=512 , UpperCAmelCase_=0.0_2 , UpperCAmelCase_=0 , UpperCAmelCase_=None , ): lowerCamelCase =parent lowerCamelCase =batch_size lowerCamelCase =seq_length lowerCamelCase =is_training lowerCamelCase =use_input_mask lowerCamelCase =use_labels lowerCamelCase =vocab_size lowerCamelCase =hidden_size lowerCamelCase =projection_dim lowerCamelCase =num_hidden_layers lowerCamelCase =num_attention_heads lowerCamelCase =intermediate_size lowerCamelCase =dropout lowerCamelCase =attention_dropout lowerCamelCase =max_position_embeddings lowerCamelCase =initializer_range lowerCamelCase =scope lowerCamelCase =bos_token_id def _snake_case ( self ): lowerCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase =None if self.use_input_mask: lowerCamelCase =random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: lowerCamelCase =input_mask.numpy() lowerCamelCase , lowerCamelCase =input_mask.shape lowerCamelCase =np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(UpperCAmelCase_ ): lowerCamelCase =1 lowerCamelCase =0 lowerCamelCase =self.get_config() return config, input_ids, tf.convert_to_tensor(UpperCAmelCase_ ) def _snake_case ( self ): return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): lowerCamelCase =TFBlipTextModel(config=UpperCAmelCase_ ) lowerCamelCase =model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , training=UpperCAmelCase_ ) lowerCamelCase =model(UpperCAmelCase_ , training=UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _snake_case ( self ): lowerCamelCase =self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase =config_and_inputs lowerCamelCase ={"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __A ( a , unittest.TestCase ): __A = (TFBlipTextModel,) if is_tf_available() else () __A = False __A = False __A = False def _snake_case ( self ): lowerCamelCase =BlipTextModelTester(self ) lowerCamelCase =ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def _snake_case ( self ): self.config_tester.run_common_tests() def _snake_case ( self ): lowerCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def _snake_case ( self ): pass def _snake_case ( self ): pass @unittest.skip(reason="""Blip does not use inputs_embeds""" ) def _snake_case ( self ): pass @unittest.skip(reason="""BlipTextModel has no base class and is not available in MODEL_MAPPING""" ) def _snake_case ( self ): pass @unittest.skip(reason="""BlipTextModel has no base class and is not available in MODEL_MAPPING""" ) def _snake_case ( self ): pass @slow def _snake_case ( self ): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase =TFBlipTextModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def _snake_case ( self , UpperCAmelCase_=True ): super().test_pt_tf_model_equivalence(allow_missing_keys=UpperCAmelCase_ )
262
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys UpperCAmelCase__ : Union[str, Any] =subprocess.check_output('''git merge-base main HEAD'''.split()).decode('''utf-8''') UpperCAmelCase__ : List[str] =( subprocess.check_output(F"git diff --diff-filter=d --name-only {fork_point_sha}".split()).decode('''utf-8''').split() ) UpperCAmelCase__ : Tuple ='''|'''.join(sys.argv[1:]) UpperCAmelCase__ : List[str] =re.compile(rF"^({joined_dirs}).*?\.py$") UpperCAmelCase__ : Any =[x for x in modified_files if regex.match(x)] print(''' '''.join(relevant_modified_files), end='''''')
262
1
import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging __lowerCamelCase = ( """https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py""" ) __lowerCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name def UpperCamelCase ( ): snake_case : Optional[Any] = "https://pypi.org/pypi/diffusers/json" snake_case : List[str] = json.loads(request.urlopen(__lowerCamelCase ).read() )["releases"].keys() return sorted(__lowerCamelCase , key=lambda __lowerCamelCase : version.Version(__lowerCamelCase ) ) def UpperCamelCase ( ): # This function has already been executed if HF_MODULES_CACHE already is in the Python path. if HF_MODULES_CACHE in sys.path: return sys.path.append(__lowerCamelCase ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) snake_case : int = Path(__lowerCamelCase ) / "__init__.py" if not init_path.exists(): init_path.touch() def UpperCamelCase ( __lowerCamelCase : Union[str, os.PathLike] ): init_hf_modules() snake_case : Union[str, Any] = Path(__lowerCamelCase ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) snake_case : Dict = dynamic_module_path / "__init__.py" if not init_path.exists(): init_path.touch() def UpperCamelCase ( __lowerCamelCase : Union[str, Any] ): with open(__lowerCamelCase , "r" , encoding="utf-8" ) as f: snake_case : Tuple = f.read() # Imports of the form `import .xxx` snake_case : Any = re.findall("^\s*import\s+\.(\S+)\s*$" , __lowerCamelCase , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall("^\s*from\s+\.(\S+)\s+import" , __lowerCamelCase , flags=re.MULTILINE ) # Unique-ify return list(set(__lowerCamelCase ) ) def UpperCamelCase ( __lowerCamelCase : int ): snake_case : Union[str, Any] = False snake_case : str = [module_file] snake_case : str = [] # Let's recurse through all relative imports while not no_change: snake_case : int = [] for f in files_to_check: new_imports.extend(get_relative_imports(__lowerCamelCase ) ) snake_case : Any = Path(__lowerCamelCase ).parent snake_case : str = [str(module_path / m ) for m in new_imports] snake_case : Tuple = [f for f in new_import_files if f not in all_relative_imports] snake_case : Optional[int] = [f"""{f}.py""" for f in new_import_files] snake_case : Optional[Any] = len(__lowerCamelCase ) == 0 all_relative_imports.extend(__lowerCamelCase ) return all_relative_imports def UpperCamelCase ( __lowerCamelCase : Union[str, Any] ): with open(__lowerCamelCase , "r" , encoding="utf-8" ) as f: snake_case : int = f.read() # Imports of the form `import xxx` snake_case : Union[str, Any] = re.findall("^\s*import\s+(\S+)\s*$" , __lowerCamelCase , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall("^\s*from\s+(\S+)\s+import" , __lowerCamelCase , flags=re.MULTILINE ) # Only keep the top-level module snake_case : Dict = [imp.split("." )[0] for imp in imports if not imp.startswith("." )] # Unique-ify and test we got them all snake_case : Optional[Any] = list(set(__lowerCamelCase ) ) snake_case : Union[str, Any] = [] for imp in imports: try: importlib.import_module(__lowerCamelCase ) except ImportError: missing_packages.append(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: raise ImportError( "This modeling file requires the following packages that were not found in your environment: " f"""{', '.join(__lowerCamelCase )}. Run `pip install {' '.join(__lowerCamelCase )}`""" ) return get_relative_imports(__lowerCamelCase ) def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : Any ): snake_case : List[str] = module_path.replace(os.path.sep , "." ) snake_case : List[Any] = importlib.import_module(__lowerCamelCase ) if class_name is None: return find_pipeline_class(__lowerCamelCase ) return getattr(__lowerCamelCase , __lowerCamelCase ) def UpperCamelCase ( __lowerCamelCase : List[str] ): from ..pipelines import DiffusionPipeline snake_case : List[str] = dict(inspect.getmembers(__lowerCamelCase , inspect.isclass ) ) snake_case : str = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , __lowerCamelCase ) and cls.__module__.split("." )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( f"""Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:""" f""" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in""" f""" {loaded_module}.""" ) snake_case : Dict = cls return pipeline_class def UpperCamelCase ( __lowerCamelCase : Union[str, os.PathLike] , __lowerCamelCase : str , __lowerCamelCase : Optional[Union[str, os.PathLike]] = None , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[Dict[str, str]] = None , __lowerCamelCase : Optional[Union[bool, str]] = None , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : bool = False , ): snake_case : List[str] = str(__lowerCamelCase ) snake_case : Optional[Any] = os.path.join(__lowerCamelCase , __lowerCamelCase ) if os.path.isfile(__lowerCamelCase ): snake_case : Optional[int] = module_file_or_url snake_case : List[str] = "local" elif pretrained_model_name_or_path.count("/" ) == 0: snake_case : Optional[Any] = get_diffusers_versions() # cut ".dev0" snake_case : str = "v" + ".".join(__version__.split("." )[:3] ) # retrieve github version that matches if revision is None: snake_case : Dict = latest_version if latest_version[1:] in available_versions else "main" logger.info(f"""Defaulting to latest_version: {revision}.""" ) elif revision in available_versions: snake_case : Dict = f"""v{revision}""" elif revision == "main": snake_case : str = revision else: raise ValueError( f"""`custom_revision`: {revision} does not exist. Please make sure to choose one of""" f""" {', '.join(available_versions + ['main'] )}.""" ) # community pipeline on GitHub snake_case : Any = COMMUNITY_PIPELINES_URL.format(revision=__lowerCamelCase , pipeline=__lowerCamelCase ) try: snake_case : List[Any] = cached_download( __lowerCamelCase , cache_dir=__lowerCamelCase , force_download=__lowerCamelCase , proxies=__lowerCamelCase , resume_download=__lowerCamelCase , local_files_only=__lowerCamelCase , use_auth_token=__lowerCamelCase , ) snake_case : Tuple = "git" snake_case : Optional[int] = pretrained_model_name_or_path + ".py" except EnvironmentError: logger.error(f"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" ) raise else: try: # Load from URL or cache if already cached snake_case : List[Any] = hf_hub_download( __lowerCamelCase , __lowerCamelCase , cache_dir=__lowerCamelCase , force_download=__lowerCamelCase , proxies=__lowerCamelCase , resume_download=__lowerCamelCase , local_files_only=__lowerCamelCase , use_auth_token=__lowerCamelCase , ) snake_case : Union[str, Any] = os.path.join("local" , "--".join(pretrained_model_name_or_path.split("/" ) ) ) except EnvironmentError: logger.error(f"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" ) raise # Check we have all the requirements in our environment snake_case : List[str] = check_imports(__lowerCamelCase ) # Now we move the module inside our cached dynamic modules. snake_case : Tuple = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(__lowerCamelCase ) snake_case : Union[str, Any] = Path(__lowerCamelCase ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(__lowerCamelCase , submodule_path / module_file ) for module_needed in modules_needed: snake_case : str = f"""{module_needed}.py""" shutil.copy(os.path.join(__lowerCamelCase , __lowerCamelCase ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(__lowerCamelCase , __lowerCamelCase ): snake_case : Any = use_auth_token elif use_auth_token is True: snake_case : Dict = HfFolder.get_token() else: snake_case : Optional[Any] = None snake_case : Optional[Any] = model_info(__lowerCamelCase , revision=__lowerCamelCase , token=__lowerCamelCase ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. snake_case : Any = submodule_path / commit_hash snake_case : List[Any] = full_submodule + os.path.sep + commit_hash create_dynamic_module(__lowerCamelCase ) if not (submodule_path / module_file).exists(): shutil.copy(__lowerCamelCase , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( __lowerCamelCase , f"""{module_needed}.py""" , cache_dir=__lowerCamelCase , force_download=__lowerCamelCase , resume_download=__lowerCamelCase , proxies=__lowerCamelCase , use_auth_token=__lowerCamelCase , revision=__lowerCamelCase , local_files_only=__lowerCamelCase , ) return os.path.join(__lowerCamelCase , __lowerCamelCase ) def UpperCamelCase ( __lowerCamelCase : Union[str, os.PathLike] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[Union[str, os.PathLike]] = None , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[Dict[str, str]] = None , __lowerCamelCase : Optional[Union[bool, str]] = None , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : bool = False , **__lowerCamelCase : Tuple , ): snake_case : int = get_cached_module_file( __lowerCamelCase , __lowerCamelCase , cache_dir=__lowerCamelCase , force_download=__lowerCamelCase , resume_download=__lowerCamelCase , proxies=__lowerCamelCase , use_auth_token=__lowerCamelCase , revision=__lowerCamelCase , local_files_only=__lowerCamelCase , ) return get_class_in_module(__lowerCamelCase , final_module.replace(".py" , "" ) )
59
from ..utils import DummyObject, requires_backends class _a ( metaclass=UpperCamelCase__): """simple docstring""" UpperCamelCase__ = ["""flax""", """transformers"""] def __init__( self: Optional[int] , *__lowerCamelCase: Union[str, Any] , **__lowerCamelCase: List[str] ): '''simple docstring''' requires_backends(self , ["flax", "transformers"] ) @classmethod def UpperCAmelCase_ ( cls: Optional[int] , *__lowerCamelCase: str , **__lowerCamelCase: Any ): '''simple docstring''' requires_backends(cls , ["flax", "transformers"] ) @classmethod def UpperCAmelCase_ ( cls: Any , *__lowerCamelCase: List[str] , **__lowerCamelCase: Any ): '''simple docstring''' requires_backends(cls , ["flax", "transformers"] ) class _a ( metaclass=UpperCamelCase__): """simple docstring""" UpperCamelCase__ = ["""flax""", """transformers"""] def __init__( self: List[str] , *__lowerCamelCase: str , **__lowerCamelCase: int ): '''simple docstring''' requires_backends(self , ["flax", "transformers"] ) @classmethod def UpperCAmelCase_ ( cls: Any , *__lowerCamelCase: Union[str, Any] , **__lowerCamelCase: Optional[int] ): '''simple docstring''' requires_backends(cls , ["flax", "transformers"] ) @classmethod def UpperCAmelCase_ ( cls: str , *__lowerCamelCase: List[str] , **__lowerCamelCase: str ): '''simple docstring''' requires_backends(cls , ["flax", "transformers"] ) class _a ( metaclass=UpperCamelCase__): """simple docstring""" UpperCamelCase__ = ["""flax""", """transformers"""] def __init__( self: List[Any] , *__lowerCamelCase: Optional[int] , **__lowerCamelCase: Union[str, Any] ): '''simple docstring''' requires_backends(self , ["flax", "transformers"] ) @classmethod def UpperCAmelCase_ ( cls: Optional[Any] , *__lowerCamelCase: Dict , **__lowerCamelCase: Union[str, Any] ): '''simple docstring''' requires_backends(cls , ["flax", "transformers"] ) @classmethod def UpperCAmelCase_ ( cls: Any , *__lowerCamelCase: Dict , **__lowerCamelCase: str ): '''simple docstring''' requires_backends(cls , ["flax", "transformers"] ) class _a ( metaclass=UpperCamelCase__): """simple docstring""" UpperCamelCase__ = ["""flax""", """transformers"""] def __init__( self: Any , *__lowerCamelCase: Any , **__lowerCamelCase: List[Any] ): '''simple docstring''' requires_backends(self , ["flax", "transformers"] ) @classmethod def UpperCAmelCase_ ( cls: List[Any] , *__lowerCamelCase: Optional[int] , **__lowerCamelCase: Any ): '''simple docstring''' requires_backends(cls , ["flax", "transformers"] ) @classmethod def UpperCAmelCase_ ( cls: Tuple , *__lowerCamelCase: int , **__lowerCamelCase: Any ): '''simple docstring''' requires_backends(cls , ["flax", "transformers"] )
149
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = """▁""" _UpperCAmelCase = {"""vocab_file""": """sentencepiece.bpe.model"""} _UpperCAmelCase = { """vocab_file""": { """facebook/mbart-large-50-one-to-many-mmt""": ( """https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model""" ), } } _UpperCAmelCase = { """facebook/mbart-large-50-one-to-many-mmt""": 1024, } # fmt: off _UpperCAmelCase = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN""", """af_ZA""", """az_AZ""", """bn_IN""", """fa_IR""", """he_IL""", """hr_HR""", """id_ID""", """ka_GE""", """km_KH""", """mk_MK""", """ml_IN""", """mn_MN""", """mr_IN""", """pl_PL""", """ps_AF""", """pt_XX""", """sv_SE""", """sw_KE""", """ta_IN""", """te_IN""", """th_TH""", """tl_XX""", """uk_UA""", """ur_PK""", """xh_ZA""", """gl_ES""", """sl_SI"""] class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = VOCAB_FILES_NAMES lowerCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ = ['''input_ids''', '''attention_mask'''] lowerCamelCase_ = [] lowerCamelCase_ = [] def __init__( self , lowercase , lowercase=None , lowercase=None , lowercase="</s>" , lowercase="</s>" , lowercase="<s>" , lowercase="<unk>" , lowercase="<pad>" , lowercase="<mask>" , lowercase = None , **lowercase , ): """simple docstring""" A_ : List[str] = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else mask_token A_ : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs A_ : Dict = kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=lowercase , tgt_lang=lowercase , eos_token=lowercase , unk_token=lowercase , sep_token=lowercase , cls_token=lowercase , pad_token=lowercase , mask_token=lowercase , sp_model_kwargs=self.sp_model_kwargs , **lowercase , ) A_ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowercase ) ) A_ : Dict = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token A_ : int = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab A_ : List[Any] = 1 A_ : Union[str, Any] = len(self.sp_model ) A_ : List[str] = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowercase ) } A_ : Tuple = {v: k for k, v in self.lang_code_to_id.items()} A_ : int = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) A_ : Optional[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} A_ : List[Any] = src_lang if src_lang is not None else 'en_XX' A_ : Tuple = self.lang_code_to_id[self._src_lang] A_ : Dict = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def lowerCAmelCase_ ( self ): """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def lowerCAmelCase_ ( self ): """simple docstring""" return self._src_lang @src_lang.setter def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : Dict = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ): """simple docstring""" A_ : Dict = self.__dict__.copy() A_ : Any = None return state def __setstate__( self , lowercase ): """simple docstring""" A_ : Dict = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): A_ : Dict = {} A_ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Optional[Any] = {self.convert_ids_to_tokens(lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" return self.sp_model.encode(lowercase , out_type=lowercase ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] A_ : Union[str, Any] = self.sp_model.PieceToId(lowercase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : str = [] A_ : Optional[Any] = '' A_ : Any = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowercase ) + token A_ : Any = True A_ : int = [] else: current_sub_tokens.append(lowercase ) A_ : Dict = False out_string += self.sp_model.decode(lowercase ) return out_string.strip() def lowerCAmelCase_ ( self , lowercase , lowercase = None ): """simple docstring""" if not os.path.isdir(lowercase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return A_ : int = os.path.join( lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase ) elif not os.path.isfile(self.vocab_file ): with open(lowercase , 'wb' ) as fi: A_ : Any = self.sp_model.serialized_model_proto() fi.write(lowercase ) return (out_vocab_file,) def lowerCAmelCase_ ( self , lowercase , lowercase = None , lowercase = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase , token_ids_a=lowercase , already_has_special_tokens=lowercase ) A_ : str = [1] * len(self.prefix_tokens ) A_ : Any = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowercase )) + suffix_ones return prefix_ones + ([0] * len(lowercase )) + ([0] * len(lowercase )) + suffix_ones def lowerCAmelCase_ ( self , lowercase , lowercase = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCAmelCase_ ( self , lowercase , lowercase , lowercase , lowercase , **lowercase ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) A_ : str = src_lang A_ : Dict = self(lowercase , add_special_tokens=lowercase , return_tensors=lowercase , **lowercase ) A_ : str = self.convert_tokens_to_ids(lowercase ) A_ : Optional[int] = tgt_lang_id return inputs def lowerCAmelCase_ ( self , lowercase , lowercase = "en_XX" , lowercase = None , lowercase = "ro_RO" , **lowercase , ): """simple docstring""" A_ : str = src_lang A_ : Dict = tgt_lang return super().prepare_seqaseq_batch(lowercase , lowercase , **lowercase ) def lowerCAmelCase_ ( self ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def lowerCAmelCase_ ( self ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : List[Any] = self.lang_code_to_id[src_lang] A_ : Tuple = [self.cur_lang_code_id] A_ : int = [self.eos_token_id] def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : Any = self.lang_code_to_id[tgt_lang] A_ : List[Any] = [self.cur_lang_code_id] A_ : Dict = [self.eos_token_id]
192
from math import isqrt def UpperCamelCase ( __lowercase : int ): '''simple docstring''' return all(number % divisor != 0 for divisor in range(2 ,isqrt(__lowercase ) + 1 ) ) def UpperCamelCase ( __lowercase : int = 10**6 ): '''simple docstring''' A_ : Optional[Any] = 0 A_ : List[str] = 1 A_ : Dict = 7 while prime_candidate < max_prime: primes_count += is_prime(__lowercase ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F"""{solution() = }""")
192
1
from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class __lowerCAmelCase : def __init__( self , _snake_case , ): """simple docstring""" _lowerCAmelCase = parent _lowerCAmelCase = 13 _lowerCAmelCase = 7 _lowerCAmelCase = 30 _lowerCAmelCase = self.seq_length + self.mem_len _lowerCAmelCase = 15 _lowerCAmelCase = True _lowerCAmelCase = True _lowerCAmelCase = 99 _lowerCAmelCase = [10, 50, 80] _lowerCAmelCase = 32 _lowerCAmelCase = 32 _lowerCAmelCase = 4 _lowerCAmelCase = 8 _lowerCAmelCase = 128 _lowerCAmelCase = 2 _lowerCAmelCase = 2 _lowerCAmelCase = None _lowerCAmelCase = 1 _lowerCAmelCase = 0 _lowerCAmelCase = 3 _lowerCAmelCase = self.vocab_size - 1 _lowerCAmelCase = 0.01 def snake_case ( self ): """simple docstring""" _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def snake_case ( self ): """simple docstring""" random.seed(self.seed ) tf.random.set_seed(self.seed ) def snake_case ( self , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" _lowerCAmelCase = TFTransfoXLModel(_snake_case ) _lowerCAmelCase , _lowerCAmelCase = model(_snake_case ).to_tuple() _lowerCAmelCase = {"""input_ids""": input_ids_a, """mems""": mems_a} _lowerCAmelCase , _lowerCAmelCase = model(_snake_case ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def snake_case ( self , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" _lowerCAmelCase = TFTransfoXLLMHeadModel(_snake_case ) _lowerCAmelCase , _lowerCAmelCase = model(_snake_case ).to_tuple() _lowerCAmelCase = {"""input_ids""": input_ids_a, """labels""": lm_labels} _lowerCAmelCase , _lowerCAmelCase = model(_snake_case ).to_tuple() _lowerCAmelCase , _lowerCAmelCase = model([input_ids_a, mems_a] ).to_tuple() _lowerCAmelCase = {"""input_ids""": input_ids_a, """mems""": mems_a, """labels""": lm_labels} _lowerCAmelCase , _lowerCAmelCase = model(_snake_case ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def snake_case ( self , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" _lowerCAmelCase = TFTransfoXLForSequenceClassification(_snake_case ) _lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = config_and_inputs _lowerCAmelCase = {"""input_ids""": input_ids_a} return config, inputs_dict @require_tf class __lowerCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) __lowerCamelCase = () if is_tf_available() else () __lowerCamelCase = ( { '''feature-extraction''': TFTransfoXLModel, '''text-classification''': TFTransfoXLForSequenceClassification, '''text-generation''': TFTransfoXLLMHeadModel, '''zero-shot''': TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False def snake_case ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def snake_case ( self ): """simple docstring""" _lowerCAmelCase = TFTransfoXLModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=_snake_case , d_embed=37 ) def snake_case ( self ): """simple docstring""" self.config_tester.run_common_tests() def snake_case ( self ): """simple docstring""" self.model_tester.set_seed() _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*_snake_case ) def snake_case ( self ): """simple docstring""" self.model_tester.set_seed() _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*_snake_case ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*_snake_case ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: _lowerCAmelCase = model_class(_snake_case ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: _lowerCAmelCase = model.get_output_embeddings() assert isinstance(_snake_case , tf.keras.layers.Layer ) _lowerCAmelCase = model.get_bias() assert name is None else: _lowerCAmelCase = model.get_output_embeddings() assert x is None _lowerCAmelCase = model.get_bias() assert name is None def snake_case ( self ): """simple docstring""" pass @slow def snake_case ( self ): """simple docstring""" for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = TFTransfoXLModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @unittest.skip(reason="""This model doesn't play well with fit() due to not returning a single loss.""" ) def snake_case ( self ): """simple docstring""" pass @require_tf class __lowerCAmelCase ( unittest.TestCase ): @unittest.skip("""Skip test until #12651 is resolved.""" ) @slow def snake_case ( self ): """simple docstring""" _lowerCAmelCase = TFTransfoXLLMHeadModel.from_pretrained("""transfo-xl-wt103""" ) # fmt: off _lowerCAmelCase = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off _lowerCAmelCase = [33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0,33,1,1857,2,1,1009,4,1109,11739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> _lowerCAmelCase = model.generate(_snake_case , max_length=200 , do_sample=_snake_case ) self.assertListEqual(output_ids[0].numpy().tolist() , _snake_case )
82
'''simple docstring''' from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class lowercase ( A__ ): """simple docstring""" def __init__( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = False , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = None , **UpperCamelCase_ , ): '''simple docstring''' super().__init__( features=UpperCamelCase_ , cache_dir=UpperCamelCase_ , keep_in_memory=UpperCamelCase_ , streaming=UpperCamelCase_ , num_proc=UpperCamelCase_ , **UpperCamelCase_ , ) UpperCamelCase__ :Any = Generator( cache_dir=UpperCamelCase_ , features=UpperCamelCase_ , generator=UpperCamelCase_ , gen_kwargs=UpperCamelCase_ , **UpperCamelCase_ , ) def lowerCAmelCase__ ( self ): '''simple docstring''' if self.streaming: UpperCamelCase__ :Optional[Any] = self.builder.as_streaming_dataset(split='''train''' ) # Build regular (map-style) dataset else: UpperCamelCase__ :Optional[int] = None UpperCamelCase__ :int = None UpperCamelCase__ :Any = None UpperCamelCase__ :Any = None self.builder.download_and_prepare( download_config=UpperCamelCase_ , download_mode=UpperCamelCase_ , verification_mode=UpperCamelCase_ , base_path=UpperCamelCase_ , num_proc=self.num_proc , ) UpperCamelCase__ :List[Any] = self.builder.as_dataset( split='''train''' , verification_mode=UpperCamelCase_ , in_memory=self.keep_in_memory ) return dataset
97
0
"""simple docstring""" import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class lowerCamelCase__ ( a_ ): def __init__( self : Optional[int] , _a : Optional[Any] = "▁" , _a : int = True , _a : Dict = "<unk>" , _a : Tuple = "</s>" , _a : List[str] = "<pad>" , ): a__: List[str] ={ "pad": {"id": 0, "token": pad_token}, "eos": {"id": 1, "token": eos_token}, "unk": {"id": 2, "token": unk_token}, } a__: Tuple =[None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): a__: Optional[Any] =token_dict["token"] a__: str =Tokenizer(Unigram() ) a__: List[Any] =normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(" {2,}" ) , " " ), normalizers.Lowercase(), ] ) a__: int =pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=_a , add_prefix_space=_a ), pre_tokenizers.Digits(individual_digits=_a ), pre_tokenizers.Punctuation(), ] ) a__: Union[str, Any] =decoders.Metaspace(replacement=_a , add_prefix_space=_a ) a__: Union[str, Any] =TemplateProcessing( single=F"$A {self.special_tokens['eos']['token']}" , special_tokens=[(self.special_tokens["eos"]["token"], self.special_tokens["eos"]["id"])] , ) a__: List[str] ={ "model": "SentencePieceUnigram", "replacement": replacement, "add_prefix_space": add_prefix_space, } super().__init__(_a , _a ) def _lowerCamelCase ( self : Optional[int] , _a : Any , _a : int = 8_0_0_0 , _a : Tuple = True , ): a__: str =trainers.UnigramTrainer( vocab_size=_a , special_tokens=self.special_tokens_list , show_progress=_a , ) if isinstance(_a , _a ): a__: Union[str, Any] =[files] self._tokenizer.train(_a , trainer=_a ) self.add_unk_id() def _lowerCamelCase ( self : str , _a : List[Any] , _a : List[str] = 8_0_0_0 , _a : Optional[int] = True , ): a__: Dict =trainers.UnigramTrainer( vocab_size=_a , special_tokens=self.special_tokens_list , show_progress=_a , ) self._tokenizer.train_from_iterator(_a , trainer=_a ) self.add_unk_id() def _lowerCamelCase ( self : Tuple ): a__: List[str] =json.loads(self._tokenizer.to_str() ) a__: List[Any] =self.special_tokens["unk"]["id"] a__: Tuple =Tokenizer.from_str(json.dumps(_a ) )
371
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): def _lowerCamelCase ( self : Optional[int] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : List[Any] ): a__: Any =StableDiffusionKDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" ) a__: List[str] =sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) sd_pipe.set_scheduler("sample_euler" ) a__: Dict ="A painting of a squirrel eating a burger" a__: List[Any] =torch.manual_seed(0 ) a__: int =sd_pipe([prompt] , generator=_a , guidance_scale=9.0 , num_inference_steps=2_0 , output_type="np" ) a__: int =output.images a__: Optional[Any] =image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) a__: Any =np.array([0.0_4_4_7, 0.0_4_9_2, 0.0_4_6_8, 0.0_4_0_8, 0.0_3_8_3, 0.0_4_0_8, 0.0_3_5_4, 0.0_3_8_0, 0.0_3_3_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowerCamelCase ( self : Optional[Any] ): a__: List[Any] =StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) a__: List[str] =sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) sd_pipe.set_scheduler("sample_euler" ) a__: int ="A painting of a squirrel eating a burger" a__: List[Any] =torch.manual_seed(0 ) a__: Optional[int] =sd_pipe([prompt] , generator=_a , guidance_scale=9.0 , num_inference_steps=2_0 , output_type="np" ) a__: List[str] =output.images a__: List[str] =image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) a__: Any =np.array([0.1_2_3_7, 0.1_3_2_0, 0.1_4_3_8, 0.1_3_5_9, 0.1_3_9_0, 0.1_1_3_2, 0.1_2_7_7, 0.1_1_7_5, 0.1_1_1_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def _lowerCamelCase ( self : List[str] ): a__: Optional[Any] =StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) a__: Optional[Any] =sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) sd_pipe.set_scheduler("sample_dpmpp_2m" ) a__: Tuple ="A painting of a squirrel eating a burger" a__: Tuple =torch.manual_seed(0 ) a__: Optional[int] =sd_pipe( [prompt] , generator=_a , guidance_scale=7.5 , num_inference_steps=1_5 , output_type="np" , use_karras_sigmas=_a , ) a__: str =output.images a__: str =image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) a__: List[Any] =np.array( [0.1_1_3_8_1_6_8_9, 0.1_2_1_1_2_9_2_1, 0.1_3_8_9_4_5_7, 0.1_2_5_4_9_6_0_6, 0.1_2_4_4_9_6_4, 0.1_0_8_3_1_5_1_7, 0.1_1_5_6_2_8_6_6, 0.1_0_8_6_7_8_1_6, 0.1_0_4_9_9_0_4_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
42
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available snake_case__ : str = { '''configuration_ctrl''': ['''CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CTRLConfig'''], '''tokenization_ctrl''': ['''CTRLTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Tuple = [ '''CTRL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CTRLForSequenceClassification''', '''CTRLLMHeadModel''', '''CTRLModel''', '''CTRLPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : List[Any] = [ '''TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFCTRLForSequenceClassification''', '''TFCTRLLMHeadModel''', '''TFCTRLModel''', '''TFCTRLPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys snake_case__ : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
60
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() snake_case__ : int = logging.get_logger(__name__) def _snake_case ( _snake_case : Union[str, Any] ): lowerCAmelCase : Dict = OrderedDict() for key, value in state_dict.items(): if key.startswith('''module.encoder''' ): lowerCAmelCase : Union[str, Any] = key.replace('''module.encoder''' , '''glpn.encoder''' ) if key.startswith('''module.decoder''' ): lowerCAmelCase : str = key.replace('''module.decoder''' , '''decoder.stages''' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCAmelCase : Union[str, Any] = key[key.find('''patch_embed''' ) + len('''patch_embed''' )] lowerCAmelCase : str = key.replace(f'''patch_embed{idx}''' , f'''patch_embeddings.{int(_snake_case )-1}''' ) if "norm" in key: lowerCAmelCase : str = key.replace('''norm''' , '''layer_norm''' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCAmelCase : Optional[int] = key[key.find('''glpn.encoder.layer_norm''' ) + len('''glpn.encoder.layer_norm''' )] lowerCAmelCase : List[str] = key.replace(f'''layer_norm{idx}''' , f'''layer_norm.{int(_snake_case )-1}''' ) if "layer_norm1" in key: lowerCAmelCase : Union[str, Any] = key.replace('''layer_norm1''' , '''layer_norm_1''' ) if "layer_norm2" in key: lowerCAmelCase : Any = key.replace('''layer_norm2''' , '''layer_norm_2''' ) if "block" in key: # replace for example block1 by block.0 lowerCAmelCase : Tuple = key[key.find('''block''' ) + len('''block''' )] lowerCAmelCase : Tuple = key.replace(f'''block{idx}''' , f'''block.{int(_snake_case )-1}''' ) if "attn.q" in key: lowerCAmelCase : Optional[Any] = key.replace('''attn.q''' , '''attention.self.query''' ) if "attn.proj" in key: lowerCAmelCase : Dict = key.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in key: lowerCAmelCase : List[str] = key.replace('''attn''' , '''attention.self''' ) if "fc1" in key: lowerCAmelCase : List[Any] = key.replace('''fc1''' , '''dense1''' ) if "fc2" in key: lowerCAmelCase : Optional[Any] = key.replace('''fc2''' , '''dense2''' ) if "linear_pred" in key: lowerCAmelCase : List[Any] = key.replace('''linear_pred''' , '''classifier''' ) if "linear_fuse" in key: lowerCAmelCase : Optional[Any] = key.replace('''linear_fuse.conv''' , '''linear_fuse''' ) lowerCAmelCase : int = key.replace('''linear_fuse.bn''' , '''batch_norm''' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCAmelCase : Optional[Any] = key[key.find('''linear_c''' ) + len('''linear_c''' )] lowerCAmelCase : int = key.replace(f'''linear_c{idx}''' , f'''linear_c.{int(_snake_case )-1}''' ) if "bot_conv" in key: lowerCAmelCase : str = key.replace('''bot_conv''' , '''0.convolution''' ) if "skip_conv1" in key: lowerCAmelCase : int = key.replace('''skip_conv1''' , '''1.convolution''' ) if "skip_conv2" in key: lowerCAmelCase : str = key.replace('''skip_conv2''' , '''2.convolution''' ) if "fusion1" in key: lowerCAmelCase : Union[str, Any] = key.replace('''fusion1''' , '''1.fusion''' ) if "fusion2" in key: lowerCAmelCase : Any = key.replace('''fusion2''' , '''2.fusion''' ) if "fusion3" in key: lowerCAmelCase : List[Any] = key.replace('''fusion3''' , '''3.fusion''' ) if "fusion" in key and "conv" in key: lowerCAmelCase : Union[str, Any] = key.replace('''conv''' , '''convolutional_layer''' ) if key.startswith('''module.last_layer_depth''' ): lowerCAmelCase : Optional[Any] = key.replace('''module.last_layer_depth''' , '''head.head''' ) lowerCAmelCase : Union[str, Any] = value return new_state_dict def _snake_case ( _snake_case : Optional[Any] , _snake_case : str ): # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCAmelCase : int = state_dict.pop(f'''glpn.encoder.block.{i}.{j}.attention.self.kv.weight''' ) lowerCAmelCase : Optional[int] = state_dict.pop(f'''glpn.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict lowerCAmelCase : str = kv_weight[ : config.hidden_sizes[i], : ] lowerCAmelCase : Union[str, Any] = kv_bias[: config.hidden_sizes[i]] lowerCAmelCase : Dict = kv_weight[ config.hidden_sizes[i] :, : ] lowerCAmelCase : List[str] = kv_bias[config.hidden_sizes[i] :] def _snake_case ( ): lowerCAmelCase : int = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase : str = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) return image @torch.no_grad() def _snake_case ( _snake_case : Dict , _snake_case : Dict , _snake_case : Union[str, Any]=False , _snake_case : List[str]=None ): lowerCAmelCase : Optional[int] = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) lowerCAmelCase : Union[str, Any] = GLPNImageProcessor() # prepare image lowerCAmelCase : Tuple = prepare_img() lowerCAmelCase : Dict = image_processor(images=_snake_case , return_tensors='''pt''' ).pixel_values logger.info('''Converting model...''' ) # load original state dict lowerCAmelCase : List[str] = torch.load(_snake_case , map_location=torch.device('''cpu''' ) ) # rename keys lowerCAmelCase : Tuple = rename_keys(_snake_case ) # key and value matrices need special treatment read_in_k_v(_snake_case , _snake_case ) # create HuggingFace model and load state dict lowerCAmelCase : str = GLPNForDepthEstimation(_snake_case ) model.load_state_dict(_snake_case ) model.eval() # forward pass lowerCAmelCase : Union[str, Any] = model(_snake_case ) lowerCAmelCase : int = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: lowerCAmelCase : str = torch.tensor( [[4.4147, 4.0873, 4.0673], [3.7890, 3.2881, 3.1525], [3.7674, 3.5423, 3.4913]] ) elif "kitti" in model_name: lowerCAmelCase : str = torch.tensor( [[3.4291, 2.7865, 2.5151], [3.2841, 2.7021, 2.3502], [3.1147, 2.4625, 2.2481]] ) else: raise ValueError(f'''Unknown model name: {model_name}''' ) lowerCAmelCase : List[Any] = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , _snake_case , atol=1E-4 ) print('''Looks ok!''' ) # finally, push to hub if required if push_to_hub: logger.info('''Pushing model and image processor to the hub...''' ) model.push_to_hub( repo_path_or_name=Path(_snake_case , _snake_case ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=_snake_case , ) image_processor.push_to_hub( repo_path_or_name=Path(_snake_case , _snake_case ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=_snake_case , ) if __name__ == "__main__": snake_case__ : Tuple = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to upload the model to the HuggingFace hub.''' ) parser.add_argument( '''--model_name''', default='''glpn-kitti''', type=str, help='''Name of the model in case you\'re pushing to the hub.''', ) snake_case__ : List[str] = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
60
1
"""simple docstring""" def lowerCamelCase__ ( __snake_case ) -> Tuple: """simple docstring""" _UpperCamelCase = [] _UpperCamelCase = [] _UpperCamelCase = { '''^''': 3, '''*''': 2, '''/''': 2, '''%''': 2, '''+''': 1, '''-''': 1, } # Priority of each operator _UpperCamelCase = len(__snake_case ) if (len(__snake_case ) > 7) else 7 # Print table header for output print( '''Symbol'''.center(8 ), '''Stack'''.center(__snake_case ), '''Postfix'''.center(__snake_case ), sep=''' | ''', ) print('''-''' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(__snake_case ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(__snake_case ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(__snake_case ) == 0: stack.append(__snake_case ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(__snake_case ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(__snake_case ) # push x to stack print( x.center(8 ), (''''''.join(__snake_case )).ljust(__snake_case ), (''''''.join(__snake_case )).ljust(__snake_case ), sep=''' | ''', ) # Output in tabular format while len(__snake_case ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ''' '''.center(8 ), (''''''.join(__snake_case )).ljust(__snake_case ), (''''''.join(__snake_case )).ljust(__snake_case ), sep=''' | ''', ) # Output in tabular format return "".join(__snake_case ) # return Postfix as str def lowerCamelCase__ ( __snake_case ) -> Optional[int]: """simple docstring""" _UpperCamelCase = list(infix[::-1] ) # reverse the infix equation for i in range(len(__snake_case ) ): if infix[i] == "(": _UpperCamelCase = ''')''' # change "(" to ")" elif infix[i] == ")": _UpperCamelCase = '''(''' # change ")" to "(" return (infix_2_postfix(''''''.join(__snake_case ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": _a = input("""\nEnter an Infix Equation = """) # Input an Infix equation _a = """""".join(Infix.split()) # Remove spaces from the input print("""\n\t""", Infix, """(Infix) -> """, infix_2_prefix(Infix), """(Prefix)""")
353
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { """facebook/xlm-roberta-xl""": """https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json""", """facebook/xlm-roberta-xxl""": """https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json""", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'xlm-roberta-xl' def __init__( self , __a=25_08_80 , __a=25_60 , __a=36 , __a=32 , __a=1_02_40 , __a="gelu" , __a=0.1 , __a=0.1 , __a=5_14 , __a=1 , __a=0.02 , __a=1e-05 , __a=1 , __a=0 , __a=2 , __a="absolute" , __a=True , __a=None , **__a , ) -> Tuple: '''simple docstring''' super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a) _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_act _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = initializer_range _UpperCamelCase = layer_norm_eps _UpperCamelCase = position_embedding_type _UpperCamelCase = use_cache _UpperCamelCase = classifier_dropout class _UpperCAmelCase( lowerCamelCase ): @property def UpperCAmelCase ( self) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": _UpperCamelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _UpperCamelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ])
100
0
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : Any = "https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg" SCREAMING_SNAKE_CASE : Optional[Any] = Image.open(requests.get(_a , stream=_a).raw).convert("RGB") return image def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Union[str, Any] = [] # fmt: off # vision encoder rename_keys.append(("visual_encoder.cls_token", "vision_model.embeddings.class_embedding")) rename_keys.append(("visual_encoder.pos_embed", "vision_model.embeddings.position_embedding")) rename_keys.append(("visual_encoder.patch_embed.proj.weight", "vision_model.embeddings.patch_embedding.weight")) rename_keys.append(("visual_encoder.patch_embed.proj.bias", "vision_model.embeddings.patch_embedding.bias")) rename_keys.append(("ln_vision.weight", "vision_model.post_layernorm.weight")) rename_keys.append(("ln_vision.bias", "vision_model.post_layernorm.bias")) for i in range(config.vision_config.num_hidden_layers): rename_keys.append((f"visual_encoder.blocks.{i}.norm1.weight", f"vision_model.encoder.layers.{i}.layer_norm1.weight")) rename_keys.append((f"visual_encoder.blocks.{i}.norm1.bias", f"vision_model.encoder.layers.{i}.layer_norm1.bias")) rename_keys.append((f"visual_encoder.blocks.{i}.norm2.weight", f"vision_model.encoder.layers.{i}.layer_norm2.weight")) rename_keys.append((f"visual_encoder.blocks.{i}.norm2.bias", f"vision_model.encoder.layers.{i}.layer_norm2.bias")) rename_keys.append((f"visual_encoder.blocks.{i}.attn.qkv.weight", f"vision_model.encoder.layers.{i}.self_attn.qkv.weight")) rename_keys.append((f"visual_encoder.blocks.{i}.attn.proj.weight", f"vision_model.encoder.layers.{i}.self_attn.projection.weight",)) rename_keys.append((f"visual_encoder.blocks.{i}.attn.proj.bias", f"vision_model.encoder.layers.{i}.self_attn.projection.bias")) rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc1.weight", f"vision_model.encoder.layers.{i}.mlp.fc1.weight")) rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc1.bias", f"vision_model.encoder.layers.{i}.mlp.fc1.bias")) rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc2.weight", f"vision_model.encoder.layers.{i}.mlp.fc2.weight")) rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc2.bias", f"vision_model.encoder.layers.{i}.mlp.fc2.bias")) # QFormer rename_keys.append(("Qformer.bert.embeddings.LayerNorm.weight", "qformer.embeddings.layernorm.weight")) rename_keys.append(("Qformer.bert.embeddings.LayerNorm.bias", "qformer.embeddings.layernorm.bias")) # fmt: on return rename_keys def lowerCamelCase__ ( _a , _a , _a): SCREAMING_SNAKE_CASE : int = dct.pop(_a) SCREAMING_SNAKE_CASE : Union[str, Any] = val def lowerCamelCase__ ( _a , _a): for i in range(config.vision_config.num_hidden_layers): # read in original q and v biases SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict.pop(f"visual_encoder.blocks.{i}.attn.q_bias") SCREAMING_SNAKE_CASE : Any = state_dict.pop(f"visual_encoder.blocks.{i}.attn.v_bias") # next, set bias in the state dict SCREAMING_SNAKE_CASE : List[Any] = torch.cat((q_bias, torch.zeros_like(_a , requires_grad=_a), v_bias)) SCREAMING_SNAKE_CASE : Union[str, Any] = qkv_bias def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Tuple = 364 if "coco" in model_name else 224 SCREAMING_SNAKE_CASE : Any = InstructBlipVisionConfig(image_size=_a).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: SCREAMING_SNAKE_CASE : Union[str, Any] = TaConfig.from_pretrained("google/flan-t5-xl" , dense_act_fn="gelu" , bos_token_id=1).to_dict() elif "t5-xxl" in model_name: SCREAMING_SNAKE_CASE : str = TaConfig.from_pretrained("google/flan-t5-xxl" , dense_act_fn="gelu" , bos_token_id=1).to_dict() elif "vicuna-7b" in model_name: SCREAMING_SNAKE_CASE : Dict = LlamaConfig.from_pretrained("decapoda-research/llama-7b-hf" , vocab_size=32001).to_dict() elif "vicuna-13b" in model_name: SCREAMING_SNAKE_CASE : int = LlamaConfig.from_pretrained("decapoda-research/llama-13b-hf" , vocab_size=32001).to_dict() else: raise ValueError("Model name not supported") # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 SCREAMING_SNAKE_CASE : List[str] = InstructBlipQFormerConfig(vocab_size=30523).to_dict() SCREAMING_SNAKE_CASE : Dict = InstructBlipConfig(vision_config=_a , text_config=_a , qformer_config=_a) return config, image_size @torch.no_grad() def lowerCamelCase__ ( _a , _a=None , _a=False): SCREAMING_SNAKE_CASE : Optional[int] = AutoTokenizer.from_pretrained("bert-base-uncased" , truncation_side="left") qformer_tokenizer.add_special_tokens({"bos_token": "[DEC]"}) if "t5" in model_name: SCREAMING_SNAKE_CASE : Union[str, Any] = TaTokenizerFast.from_pretrained("google/flan-t5-xl" , truncation_side="left") elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) SCREAMING_SNAKE_CASE : List[str] = LlamaTokenizerFast.from_pretrained( "huggyllama/llama-7b" , truncation_side="left" , bos_token="</s>" , unk_token="</s>") tokenizer.add_special_tokens({"pad_token": "[PAD]"}) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[Any] = get_blipa_config(_a) SCREAMING_SNAKE_CASE : int = InstructBlipForConditionalGeneration(_a).eval() SCREAMING_SNAKE_CASE : Dict = { "instructblip-vicuna-7b": ("blip2_vicuna_instruct", "vicuna7b"), "instructblip-vicuna-13b": ("blip2_vicuna_instruct", "vicuna13b"), "instructblip-flan-t5-xl": ("blip2_t5_instruct", "flant5xl"), "instructblip-flan-t5-xxl": ("blip2_t5_instruct", "flant5xxl"), } SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[Any] = model_name_to_original[model_name] # load original model print("Loading original model...") SCREAMING_SNAKE_CASE : List[str] = "cuda:1" if torch.cuda.is_available() else "cpu" SCREAMING_SNAKE_CASE : List[str] = "cuda:2" if torch.cuda.is_available() else "cpu" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[Any] = load_model_and_preprocess( name=_a , model_type=_a , is_eval=_a , device=_a) original_model.eval() print("Done!") # update state dict keys SCREAMING_SNAKE_CASE : Optional[int] = original_model.state_dict() SCREAMING_SNAKE_CASE : str = create_rename_keys(_a) for src, dest in rename_keys: rename_key(_a , _a , _a) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict.pop(_a) if key.startswith("Qformer.bert"): SCREAMING_SNAKE_CASE : str = key.replace("Qformer.bert" , "qformer") if "attention.self" in key: SCREAMING_SNAKE_CASE : Any = key.replace("self" , "attention") if "llm_proj" in key: SCREAMING_SNAKE_CASE : List[str] = key.replace("llm_proj" , "language_projection") if "t5_proj" in key: SCREAMING_SNAKE_CASE : Optional[int] = key.replace("t5_proj" , "language_projection") if key.startswith("llm_model"): SCREAMING_SNAKE_CASE : Optional[int] = key.replace("llm_model" , "language_model") if key.startswith("t5"): SCREAMING_SNAKE_CASE : int = key.replace("t5" , "language") SCREAMING_SNAKE_CASE : int = val # read in qv biases read_in_q_v_bias(_a , _a) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(_a , strict=_a) SCREAMING_SNAKE_CASE : List[str] = load_demo_image() SCREAMING_SNAKE_CASE : int = "What is unusual about this image?" # create processor SCREAMING_SNAKE_CASE : Optional[int] = BlipImageProcessor( size={"height": image_size, "width": image_size} , image_mean=_a , image_std=_a) SCREAMING_SNAKE_CASE : Dict = InstructBlipProcessor( image_processor=_a , tokenizer=_a , qformer_tokenizer=_a , ) SCREAMING_SNAKE_CASE : List[Any] = processor(images=_a , text=_a , return_tensors="pt").to(_a) # make sure processor creates exact same pixel values SCREAMING_SNAKE_CASE : Optional[int] = vis_processors["eval"](_a).unsqueeze(0).to(_a) SCREAMING_SNAKE_CASE : Dict = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device) , _a) original_model.to(_a) hf_model.to(_a) with torch.no_grad(): if "vicuna" in model_name: SCREAMING_SNAKE_CASE : Any = original_model({"image": original_pixel_values, "text_input": [prompt]}).logits SCREAMING_SNAKE_CASE : List[str] = hf_model(**_a).logits else: SCREAMING_SNAKE_CASE : Any = original_model( {"image": original_pixel_values, "text_input": [prompt], "text_output": ["\n"]}).logits SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer("\n" , return_tensors="pt").input_ids.to(_a) SCREAMING_SNAKE_CASE : List[Any] = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -100) SCREAMING_SNAKE_CASE : List[Any] = hf_model(**_a , labels=_a).logits print("First values of original logits:" , original_logits[0, :3, :3]) print("First values of HF logits:" , logits[0, :3, :3]) # assert values assert original_logits.shape == logits.shape SCREAMING_SNAKE_CASE : Optional[int] = 1E-4 if "vicuna" in model_name else 1E-5 assert torch.allclose(original_logits.to(logits.device) , _a , atol=_a) print("Looks ok!") print("Generating with original model...") SCREAMING_SNAKE_CASE : List[Any] = original_model.generate({"image": original_pixel_values, "prompt": prompt} , num_beams=5) # important: we need to cast the weights of the HF model to the appropriate type print("Generating with HF model...") SCREAMING_SNAKE_CASE : int = hf_model.generate( **_a , do_sample=_a , num_beams=5 , max_length=256 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? SCREAMING_SNAKE_CASE : Optional[int] = 2 print("Original generation:" , _a) SCREAMING_SNAKE_CASE : List[str] = processor.batch_decode(_a , skip_special_tokens=_a) SCREAMING_SNAKE_CASE : Optional[int] = [text.strip() for text in output_text] print("HF generation:" , _a) if pytorch_dump_folder_path is not None: processor.save_pretrained(_a) hf_model.save_pretrained(_a) if push_to_hub: processor.push_to_hub(f"Salesforce/{model_name}") hf_model.push_to_hub(f"Salesforce/{model_name}") if __name__ == "__main__": a_ = argparse.ArgumentParser() a_ = [ 'instructblip-vicuna-7b', 'instructblip-vicuna-13b', 'instructblip-flan-t5-xl', 'instructblip-flan-t5-xxl', ] parser.add_argument( '--model_name', default='instructblip-flan-t5-xl', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) a_ = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
76
def lowerCamelCase__ ( _a , _a): return int((input_a, input_a).count(1) != 0) def lowerCamelCase__ ( ): assert or_gate(0 , 0) == 0 assert or_gate(0 , 1) == 1 assert or_gate(1 , 0) == 1 assert or_gate(1 , 1) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
76
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { '''google/pegasus-large''': '''https://huggingface.co/google/pegasus-large/resolve/main/config.json''', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class lowerCamelCase_ ( __a ): lowerCAmelCase__ = 'pegasus' lowerCAmelCase__ = ['past_key_values'] lowerCAmelCase__ = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Optional[Any] , _A : int=50_265 , _A : Union[str, Any]=1_024 , _A : Tuple=12 , _A : List[str]=4_096 , _A : str=16 , _A : str=12 , _A : Optional[int]=4_096 , _A : int=16 , _A : Union[str, Any]=0.0 , _A : Tuple=0.0 , _A : str=True , _A : List[Any]=True , _A : Union[str, Any]="gelu" , _A : Union[str, Any]=1_024 , _A : Dict=0.1 , _A : Union[str, Any]=0.0 , _A : Dict=0.0 , _A : List[Any]=0.0_2 , _A : Dict=0 , _A : str=False , _A : str=0 , _A : Tuple=1 , _A : Optional[Any]=1 , **_A : Union[str, Any] , ): '''simple docstring''' UpperCAmelCase__ : List[str] = vocab_size UpperCAmelCase__ : List[Any] = max_position_embeddings UpperCAmelCase__ : Optional[Any] = d_model UpperCAmelCase__ : List[str] = encoder_ffn_dim UpperCAmelCase__ : Dict = encoder_layers UpperCAmelCase__ : List[str] = encoder_attention_heads UpperCAmelCase__ : Optional[Any] = decoder_ffn_dim UpperCAmelCase__ : Tuple = decoder_layers UpperCAmelCase__ : Optional[int] = decoder_attention_heads UpperCAmelCase__ : List[str] = dropout UpperCAmelCase__ : int = attention_dropout UpperCAmelCase__ : List[Any] = activation_dropout UpperCAmelCase__ : Tuple = activation_function UpperCAmelCase__ : str = init_std UpperCAmelCase__ : Optional[Any] = encoder_layerdrop UpperCAmelCase__ : Dict = decoder_layerdrop UpperCAmelCase__ : int = use_cache UpperCAmelCase__ : Optional[int] = encoder_layers UpperCAmelCase__ : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=_A , eos_token_id=_A , is_encoder_decoder=_A , decoder_start_token_id=_A , forced_eos_token_id=_A , **_A , ) @property def lowercase_ ( self : Any ): '''simple docstring''' return self.encoder_attention_heads @property def lowercase_ ( self : int ): '''simple docstring''' return self.d_model
354
'''simple docstring''' from collections.abc import Iterable from typing import Any class lowerCamelCase_ : def __init__( self : List[Any] , _A : int | None = None ): '''simple docstring''' UpperCAmelCase__ : List[Any] = value UpperCAmelCase__ : Node | None = None # Added in order to delete a node easier UpperCAmelCase__ : Node | None = None UpperCAmelCase__ : Node | None = None def __repr__( self : Optional[Any] ): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({f"""{self.value}""": (self.left, self.right)} , indent=1 ) class lowerCamelCase_ : def __init__( self : Optional[Any] , _A : Node | None = None ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = root def __str__( self : Union[str, Any] ): '''simple docstring''' return str(self.root ) def lowercase_ ( self : str , _A : Node , _A : Node | None ): '''simple docstring''' if new_children is not None: # reset its kids UpperCAmelCase__ : Dict = node.parent if node.parent is not None: # reset its parent if self.is_right(_A ): # If it is the right children UpperCAmelCase__ : str = new_children else: UpperCAmelCase__ : Optional[int] = new_children else: UpperCAmelCase__ : Union[str, Any] = new_children def lowercase_ ( self : Union[str, Any] , _A : Node ): '''simple docstring''' if node.parent and node.parent.right: return node == node.parent.right return False def lowercase_ ( self : int ): '''simple docstring''' return self.root is None def lowercase_ ( self : List[str] , _A : Any ): '''simple docstring''' UpperCAmelCase__ : Dict = Node(_A ) # create a new Node if self.empty(): # if Tree is empty UpperCAmelCase__ : List[Any] = new_node # set its root else: # Tree is not empty UpperCAmelCase__ : str = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: UpperCAmelCase__ : Optional[Any] = new_node # We insert the new node in a leaf break else: UpperCAmelCase__ : Any = parent_node.left else: if parent_node.right is None: UpperCAmelCase__ : str = new_node break else: UpperCAmelCase__ : List[str] = parent_node.right UpperCAmelCase__ : Tuple = parent_node def lowercase_ ( self : Optional[Any] , *_A : Tuple ): '''simple docstring''' for value in values: self.__insert(_A ) def lowercase_ ( self : Union[str, Any] , _A : int ): '''simple docstring''' if self.empty(): raise IndexError('''Warning: Tree is empty! please use another.''' ) else: UpperCAmelCase__ : List[Any] = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: UpperCAmelCase__ : str = node.left if value < node.value else node.right return node def lowercase_ ( self : List[Any] , _A : Node | None = None ): '''simple docstring''' if node is None: if self.root is None: return None UpperCAmelCase__ : int = self.root if not self.empty(): while node.right is not None: UpperCAmelCase__ : Tuple = node.right return node def lowercase_ ( self : List[Any] , _A : Node | None = None ): '''simple docstring''' if node is None: UpperCAmelCase__ : Optional[int] = self.root if self.root is None: return None if not self.empty(): UpperCAmelCase__ : Optional[int] = self.root while node.left is not None: UpperCAmelCase__ : Tuple = node.left return node def lowercase_ ( self : List[Any] , _A : int ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.search(_A ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(_A , _A ) elif node.left is None: # Has only right children self.__reassign_nodes(_A , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(_A , node.left ) else: UpperCAmelCase__ : Union[str, Any] = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore UpperCAmelCase__ : Optional[Any] = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def lowercase_ ( self : List[str] , _A : Node | None ): '''simple docstring''' if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def lowercase_ ( self : str , _A : Any=None ): '''simple docstring''' if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def lowercase_ ( self : Dict , _A : list , _A : Node | None ): '''simple docstring''' if node: self.inorder(_A , node.left ) arr.append(node.value ) self.inorder(_A , node.right ) def lowercase_ ( self : Optional[Any] , _A : int , _A : Node ): '''simple docstring''' UpperCAmelCase__ : list[int] = [] self.inorder(_A , _A ) # append all values to list using inorder traversal return arr[k - 1] def a__ ( lowerCAmelCase__ ) -> list[Node]: UpperCAmelCase__ : Union[str, Any] = [] if curr_node is not None: UpperCAmelCase__ : str = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def a__ ( ) -> None: UpperCAmelCase__ : List[Any] = (8, 3, 6, 1, 10, 14, 13, 4, 7) UpperCAmelCase__ : str = BinarySearchTree() for i in testlist: t.insert(lowerCAmelCase__ ) # Prints all the elements of the list in order traversal print(lowerCAmelCase__ ) if t.search(6 ) is not None: print('''The value 6 exists''' ) else: print('''The value 6 doesn\'t exist''' ) if t.search(-1 ) is not None: print('''The value -1 exists''' ) else: print('''The value -1 doesn\'t exist''' ) if not t.empty(): print('''Max Value: ''' , t.get_max().value ) # type: ignore print('''Min Value: ''' , t.get_min().value ) # type: ignore for i in testlist: t.remove(lowerCAmelCase__ ) print(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
299
0
from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class lowercase_ ( lowercase ): '''simple docstring''' def __init__( self : Optional[Any] , __UpperCAmelCase : Callable , __UpperCAmelCase : Optional[Features] = None , __UpperCAmelCase : str = None , __UpperCAmelCase : bool = False , __UpperCAmelCase : bool = False , __UpperCAmelCase : Optional[dict] = None , __UpperCAmelCase : Optional[int] = None , **__UpperCAmelCase : Dict , ) ->List[Any]: """simple docstring""" super().__init__( features=__UpperCAmelCase , cache_dir=__UpperCAmelCase , keep_in_memory=__UpperCAmelCase , streaming=__UpperCAmelCase , num_proc=__UpperCAmelCase , **__UpperCAmelCase , ) a = Generator( cache_dir=__UpperCAmelCase , features=__UpperCAmelCase , generator=__UpperCAmelCase , gen_kwargs=__UpperCAmelCase , **__UpperCAmelCase , ) def __lowerCAmelCase ( self : List[Any] ) ->Tuple: """simple docstring""" if self.streaming: a = self.builder.as_streaming_dataset(split='''train''' ) # Build regular (map-style) dataset else: a = None a = None a = None a = None self.builder.download_and_prepare( download_config=__UpperCAmelCase , download_mode=__UpperCAmelCase , verification_mode=__UpperCAmelCase , base_path=__UpperCAmelCase , num_proc=self.num_proc , ) a = self.builder.as_dataset( split='''train''' , verification_mode=__UpperCAmelCase , in_memory=self.keep_in_memory ) return dataset
0
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "t5-small": "https://huggingface.co/t5-small/resolve/main/config.json", "t5-base": "https://huggingface.co/t5-base/resolve/main/config.json", "t5-large": "https://huggingface.co/t5-large/resolve/main/config.json", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/config.json", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/config.json", } class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = '''t5''' __snake_case = ['''past_key_values'''] __snake_case = {'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self : Optional[Any] , __UpperCAmelCase : Optional[Any]=32_128 , __UpperCAmelCase : List[Any]=512 , __UpperCAmelCase : Dict=64 , __UpperCAmelCase : Tuple=2_048 , __UpperCAmelCase : int=6 , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Optional[int]=8 , __UpperCAmelCase : str=32 , __UpperCAmelCase : Tuple=128 , __UpperCAmelCase : Optional[Any]=0.1 , __UpperCAmelCase : int=1e-6 , __UpperCAmelCase : int=1.0 , __UpperCAmelCase : List[str]="relu" , __UpperCAmelCase : int=True , __UpperCAmelCase : int=True , __UpperCAmelCase : List[Any]=0 , __UpperCAmelCase : int=1 , **__UpperCAmelCase : str , ) ->Optional[Any]: """simple docstring""" a = vocab_size a = d_model a = d_kv a = d_ff a = num_layers a = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry a = num_heads a = relative_attention_num_buckets a = relative_attention_max_distance a = dropout_rate a = layer_norm_epsilon a = initializer_factor a = feed_forward_proj a = use_cache a = self.feed_forward_proj.split('''-''' ) a = act_info[-1] a = act_info[0] == '''gated''' if len(__UpperCAmelCase ) > 1 and act_info[0] != "gated" or len(__UpperCAmelCase ) > 2: raise ValueError( F"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": a = '''gelu_new''' super().__init__( pad_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , **__UpperCAmelCase , ) class lowercase_ ( lowercase ): '''simple docstring''' @property def __lowerCAmelCase ( self : Optional[Any] ) ->Mapping[str, Mapping[int, str]]: """simple docstring""" a = { '''input_ids''': {0: '''batch''', 1: '''encoder_sequence'''}, '''attention_mask''': {0: '''batch''', 1: '''encoder_sequence'''}, } if self.use_past: a = '''past_encoder_sequence + sequence''' a = {0: '''batch'''} a = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: a = {0: '''batch''', 1: '''decoder_sequence'''} a = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(__UpperCAmelCase , direction='''inputs''' ) return common_inputs @property def __lowerCAmelCase ( self : Union[str, Any] ) ->int: """simple docstring""" return 13
0
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available _lowercase : Optional[int] = {"tokenization_herbert": ["HerbertTokenizer"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[Any] = ["HerbertTokenizerFast"] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys _lowercase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
365
"""simple docstring""" import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy _lowercase : Tuple = logging.getLogger(__name__) def snake_case__ ( __lowerCamelCase : torch.nn.Module , __lowerCamelCase : BnbQuantizationConfig , __lowerCamelCase : Union[str, os.PathLike] = None , __lowerCamelCase : Optional[Dict[str, Union[int, str, torch.device]]] = None , __lowerCamelCase : Optional[List[str]] = None , __lowerCamelCase : Optional[Dict[Union[int, str], Union[int, str]]] = None , __lowerCamelCase : Optional[Union[str, os.PathLike]] = None , __lowerCamelCase : bool = False , ): """simple docstring""" lowerCamelCase__ : str =bnb_quantization_config.load_in_abit lowerCamelCase__ : str =bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( '''You have a version of `bitsandbytes` that is not compatible with 8bit quantization,''' ''' make sure you have the latest version of `bitsandbytes` installed.''' ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( '''You have a version of `bitsandbytes` that is not compatible with 4bit quantization,''' '''make sure you have the latest version of `bitsandbytes` installed.''' ) lowerCamelCase__ : str =[] # custom device map if isinstance(__lowerCamelCase , __lowerCamelCase ) and len(device_map.keys() ) > 1: lowerCamelCase__ : Union[str, Any] =[key for key, value in device_map.items() if value in ['''disk''', '''cpu''']] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: lowerCamelCase__ : Any =get_keys_to_not_convert(__lowerCamelCase ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(__lowerCamelCase ) lowerCamelCase__ : Tuple =bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: lowerCamelCase__ : Optional[Any] =[] lowerCamelCase__ : List[Any] =bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(__lowerCamelCase ) # compatibility with peft lowerCamelCase__ : List[str] =load_in_abit lowerCamelCase__ : List[str] =load_in_abit lowerCamelCase__ : Union[str, Any] =get_parameter_device(__lowerCamelCase ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( '''It is not recommended to quantize a loaded model. ''' '''The model should be instantiated under the `init_empty_weights` context manager.''' ) lowerCamelCase__ : str =replace_with_bnb_layers(__lowerCamelCase , __lowerCamelCase , modules_to_not_convert=__lowerCamelCase ) # convert param to the right dtype lowerCamelCase__ : Union[str, Any] =bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: lowerCamelCase__ : Optional[int] =name.replace('''.weight''' , '''''' ).replace('''.bias''' , '''''' ) lowerCamelCase__ : Dict =getattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(__lowerCamelCase ): param.to(__lowerCamelCase ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' ) logger.info( f'''The model device type is {model_device.type}. However, cuda is needed for quantization.''' '''We move the model to cuda.''' ) return model elif weights_location is None: raise RuntimeError( f'''`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ''' ) else: with init_empty_weights(): lowerCamelCase__ : Dict =replace_with_bnb_layers( __lowerCamelCase , __lowerCamelCase , modules_to_not_convert=__lowerCamelCase ) lowerCamelCase__ : Optional[int] =get_quantized_model_device_map( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , max_memory=__lowerCamelCase , no_split_module_classes=__lowerCamelCase , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): lowerCamelCase__ : List[str] =True lowerCamelCase__ : Dict =any(x in list(device_map.values() ) for x in ['''cpu''', '''disk'''] ) load_checkpoint_in_model( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , dtype=bnb_quantization_config.torch_dtype , offload_folder=__lowerCamelCase , offload_state_dict=__lowerCamelCase , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(__lowerCamelCase , device_map=__lowerCamelCase , offload_dir=__lowerCamelCase ) def snake_case__ ( __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : Tuple=None , __lowerCamelCase : Optional[int]=None ): """simple docstring""" if device_map is None: if torch.cuda.is_available(): lowerCamelCase__ : List[Any] ={'''''': torch.cuda.current_device()} else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' ) logger.info('''The device_map was not initialized.''' '''Setting device_map to `{\'\':torch.cuda.current_device()}`.''' ) if isinstance(__lowerCamelCase , __lowerCamelCase ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( '''If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or ''' '''\'sequential\'.''' ) lowerCamelCase__ : List[Any] ={} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) lowerCamelCase__ : int ={} lowerCamelCase__ : Optional[int] =special_dtypes lowerCamelCase__ : List[str] =no_split_module_classes lowerCamelCase__ : Tuple =bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": lowerCamelCase__ : List[str] =get_balanced_memory( __lowerCamelCase , low_zero=(device_map == '''balanced_low_0''') , max_memory=__lowerCamelCase , **__lowerCamelCase , ) lowerCamelCase__ : str =max_memory lowerCamelCase__ : Any =infer_auto_device_map(__lowerCamelCase , **__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ): # check if don't have any quantized module on the cpu lowerCamelCase__ : List[str] =bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules lowerCamelCase__ : List[str] ={ key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( ''' Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in `torch_dtype`, you need to pass a custom `device_map` to `load_and_quantize_model`. Check https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk for more details. ''' ) else: logger.info( '''Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit''' ) del device_map_without_some_modules return device_map def snake_case__ ( __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : str=None ): """simple docstring""" if modules_to_not_convert is None: lowerCamelCase__ : Dict =[] lowerCamelCase__ , lowerCamelCase__ : List[Any] =_replace_with_bnb_layers( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def snake_case__ ( __lowerCamelCase : List[Any] , __lowerCamelCase : int , __lowerCamelCase : int=None , __lowerCamelCase : Optional[Any]=None , ): """simple docstring""" lowerCamelCase__ : Tuple =False for name, module in model.named_children(): if current_key_name is None: lowerCamelCase__ : Optional[Any] =[] current_key_name.append(__lowerCamelCase ) if isinstance(__lowerCamelCase , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` lowerCamelCase__ : Optional[Any] ='''.'''.join(__lowerCamelCase ) lowerCamelCase__ : Tuple =True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: lowerCamelCase__ : Any =False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: lowerCamelCase__ : List[str] =bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=__lowerCamelCase , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: lowerCamelCase__ : str =bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError('''load_in_8bit and load_in_4bit can\'t be both False''' ) lowerCamelCase__ : Any =module.weight.data if module.bias is not None: lowerCamelCase__ : Any =module.bias.data bnb_module.requires_grad_(__lowerCamelCase ) setattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : str =True if len(list(module.children() ) ) > 0: lowerCamelCase__ , lowerCamelCase__ : Optional[int] =_replace_with_bnb_layers( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : Any =has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def snake_case__ ( __lowerCamelCase : Union[str, Any] ): """simple docstring""" # Create a copy of the model with init_empty_weights(): lowerCamelCase__ : Optional[Any] =deepcopy(__lowerCamelCase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` lowerCamelCase__ : Union[str, Any] =find_tied_parameters(__lowerCamelCase ) # For compatibility with Accelerate < 0.18 if isinstance(__lowerCamelCase , __lowerCamelCase ): lowerCamelCase__ : List[str] =sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: lowerCamelCase__ : Any =sum(__lowerCamelCase , [] ) lowerCamelCase__ : Any =len(__lowerCamelCase ) > 0 # Check if it is a base model lowerCamelCase__ : Optional[Any] =False if hasattr(__lowerCamelCase , '''base_model_prefix''' ): lowerCamelCase__ : Dict =not hasattr(__lowerCamelCase , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head lowerCamelCase__ : List[str] =list(model.named_children() ) lowerCamelCase__ : Any =[list_modules[-1][0]] # add last module together with tied weights lowerCamelCase__ : Optional[Any] =set(__lowerCamelCase ) - set(__lowerCamelCase ) lowerCamelCase__ : List[str] =list(set(__lowerCamelCase ) ) + list(__lowerCamelCase ) # remove ".weight" from the keys lowerCamelCase__ : Optional[Any] =['''.weight''', '''.bias'''] lowerCamelCase__ : List[Any] =[] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: lowerCamelCase__ : Union[str, Any] =name.replace(__lowerCamelCase , '''''' ) filtered_module_names.append(__lowerCamelCase ) return filtered_module_names def snake_case__ ( __lowerCamelCase : Tuple ): """simple docstring""" for m in model.modules(): if isinstance(__lowerCamelCase , bnb.nn.Linearabit ): return True return False def snake_case__ ( __lowerCamelCase : nn.Module ): """simple docstring""" return next(parameter.parameters() ).device def snake_case__ ( __lowerCamelCase : List[str] , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : int , __lowerCamelCase : Optional[int] ): """simple docstring""" # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(__lowerCamelCase , __lowerCamelCase , 0 , dtype=__lowerCamelCase , value=__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] =param_name lowerCamelCase__ : Dict =model if "." in tensor_name: lowerCamelCase__ : Optional[int] =tensor_name.split('''.''' ) for split in splits[:-1]: lowerCamelCase__ : Union[str, Any] =getattr(__lowerCamelCase , __lowerCamelCase ) if new_module is None: raise ValueError(f'''{module} has no attribute {split}.''' ) lowerCamelCase__ : Union[str, Any] =new_module lowerCamelCase__ : List[Any] =splits[-1] # offload weights lowerCamelCase__ : Optional[Any] =False offload_weight(module._parameters[tensor_name] , __lowerCamelCase , __lowerCamelCase , index=__lowerCamelCase ) if hasattr(module._parameters[tensor_name] , '''SCB''' ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace('''weight''' , '''SCB''' ) , __lowerCamelCase , index=__lowerCamelCase , ) else: offload_weight(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , index=__lowerCamelCase ) offload_weight(__lowerCamelCase , param_name.replace('''weight''' , '''SCB''' ) , __lowerCamelCase , index=__lowerCamelCase ) set_module_tensor_to_device(__lowerCamelCase , __lowerCamelCase , '''meta''' , dtype=__lowerCamelCase , value=torch.empty(*param.size() ) )
272
0
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase = { '''configuration_mctct''': ['''MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MCTCTConfig'''], '''feature_extraction_mctct''': ['''MCTCTFeatureExtractor'''], '''processing_mctct''': ['''MCTCTProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MCTCTForCTC''', '''MCTCTModel''', '''MCTCTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
69
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __UpperCamelCase : Optional[Any] = { '''configuration_rag''': ['''RagConfig'''], '''retrieval_rag''': ['''RagRetriever'''], '''tokenization_rag''': ['''RagTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = [ '''RagModel''', '''RagPreTrainedModel''', '''RagSequenceForGeneration''', '''RagTokenForGeneration''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Union[str, Any] = [ '''TFRagModel''', '''TFRagPreTrainedModel''', '''TFRagSequenceForGeneration''', '''TFRagTokenForGeneration''', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys __UpperCamelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
106
0
from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. lowercase : List[Any] = 10 def UpperCAmelCase_ (_lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : list[int] , _lowerCAmelCase : int ): for i in range(_lowerCAmelCase , _lowerCAmelCase ): if array[i] == target: return i return -1 def UpperCAmelCase_ (_lowerCAmelCase : list[int] , _lowerCAmelCase : int ): __UpperCamelCase : List[Any] = 0 __UpperCamelCase : Union[str, Any] = len(_lowerCAmelCase ) while left <= right: if right - left < precision: return lin_search(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __UpperCamelCase : Union[str, Any] = (left + right) // 3 + 1 __UpperCamelCase : int = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: __UpperCamelCase : Any = one_third - 1 elif array[two_third] < target: __UpperCamelCase : List[Any] = two_third + 1 else: __UpperCamelCase : Any = one_third + 1 __UpperCamelCase : Any = two_third - 1 else: return -1 def UpperCAmelCase_ (_lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : list[int] , _lowerCAmelCase : int ): if left < right: if right - left < precision: return lin_search(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __UpperCamelCase : List[Any] = (left + right) // 3 + 1 __UpperCamelCase : str = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(_lowerCAmelCase , one_third - 1 , _lowerCAmelCase , _lowerCAmelCase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , _lowerCAmelCase , _lowerCAmelCase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() lowercase : Optional[int] = input("Enter numbers separated by comma:\n").strip() lowercase : Union[str, Any] = [int(item.strip()) for item in user_input.split(",")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." lowercase : List[str] = int(input("Enter the number to be found in the list:\n").strip()) lowercase : Optional[Any] = ite_ternary_search(collection, target) lowercase : Any = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F"""Iterative search: {target} found at positions: {resulta}""") print(F"""Recursive search: {target} found at positions: {resulta}""") else: print("Not found")
363
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowercase : int = logging.get_logger(__name__) lowercase : Optional[int] = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def UpperCAmelCase_ (_lowerCAmelCase : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Dict ): for attribute in key.split("." ): __UpperCamelCase : Any = getattr(_lowerCAmelCase , _lowerCAmelCase ) if weight_type is not None: __UpperCamelCase : Union[str, Any] = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape else: __UpperCamelCase : Any = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": __UpperCamelCase : Dict = value elif weight_type == "weight_g": __UpperCamelCase : Union[str, Any] = value elif weight_type == "weight_v": __UpperCamelCase : Union[str, Any] = value elif weight_type == "bias": __UpperCamelCase : str = value else: __UpperCamelCase : Union[str, Any] = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def UpperCAmelCase_ (_lowerCAmelCase : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int] ): __UpperCamelCase : Optional[int] = [] __UpperCamelCase : List[Any] = fairseq_model.state_dict() __UpperCamelCase : List[str] = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): __UpperCamelCase : Any = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == "group" , ) __UpperCamelCase : Any = True else: for key, mapped_key in MAPPING.items(): __UpperCamelCase : Tuple = "hubert." + mapped_key if (is_finetuned and mapped_key != "lm_head") else mapped_key if key in name or (key.split("w2v_model." )[-1] == name.split("." )[0] and not is_finetuned): __UpperCamelCase : Dict = True if "*" in mapped_key: __UpperCamelCase : str = name.split(_lowerCAmelCase )[0].split("." )[-2] __UpperCamelCase : Optional[Any] = mapped_key.replace("*" , _lowerCAmelCase ) if "weight_g" in name: __UpperCamelCase : Any = "weight_g" elif "weight_v" in name: __UpperCamelCase : Optional[int] = "weight_v" elif "weight" in name: __UpperCamelCase : str = "weight" elif "bias" in name: __UpperCamelCase : List[str] = "bias" else: __UpperCamelCase : Optional[Any] = None set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) continue if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def UpperCAmelCase_ (_lowerCAmelCase : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : str ): __UpperCamelCase : Tuple = full_name.split("conv_layers." )[-1] __UpperCamelCase : Dict = name.split("." ) __UpperCamelCase : Optional[int] = int(items[0] ) __UpperCamelCase : Tuple = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __UpperCamelCase : int = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __UpperCamelCase : Any = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) __UpperCamelCase : Optional[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) __UpperCamelCase : Optional[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_lowerCAmelCase ) @torch.no_grad() def UpperCAmelCase_ (_lowerCAmelCase : Dict , _lowerCAmelCase : int , _lowerCAmelCase : int=None , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : str=True ): if config_path is not None: __UpperCamelCase : Dict = HubertConfig.from_pretrained(_lowerCAmelCase ) else: __UpperCamelCase : List[Any] = HubertConfig() if is_finetuned: if dict_path: __UpperCamelCase : int = Dictionary.load(_lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __UpperCamelCase : Optional[Any] = target_dict.pad_index __UpperCamelCase : Any = target_dict.bos_index __UpperCamelCase : List[str] = target_dict.eos_index __UpperCamelCase : Tuple = len(target_dict.symbols ) __UpperCamelCase : str = os.path.join(_lowerCAmelCase , "vocab.json" ) if not os.path.isdir(_lowerCAmelCase ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(_lowerCAmelCase ) ) return os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) with open(_lowerCAmelCase , "w" , encoding="utf-8" ) as vocab_handle: json.dump(target_dict.indices , _lowerCAmelCase ) __UpperCamelCase : int = WavaVecaCTCTokenizer( _lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=_lowerCAmelCase , ) __UpperCamelCase : List[Any] = True if config.feat_extract_norm == "layer" else False __UpperCamelCase : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ) __UpperCamelCase : int = WavaVecaProcessor(feature_extractor=_lowerCAmelCase , tokenizer=_lowerCAmelCase ) processor.save_pretrained(_lowerCAmelCase ) __UpperCamelCase : Optional[Any] = HubertForCTC(_lowerCAmelCase ) else: __UpperCamelCase : Union[str, Any] = HubertModel(_lowerCAmelCase ) if is_finetuned: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) __UpperCamelCase : Optional[Any] = model[0].eval() recursively_load_weights(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) hf_wavavec.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": lowercase : Tuple = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) lowercase : List[str] = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
171
0
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( a_: int, a_: int ): _UpperCAmelCase : list[list[int]] = [] create_all_state(1, a_, a_, [], a_ ) return result def __UpperCAmelCase ( a_: int, a_: int, a_: int, a_: list[int], a_: list[list[int]], ): if level == 0: total_list.append(current_list[:] ) return for i in range(a_, total_number - level + 2 ): current_list.append(a_ ) create_all_state(i + 1, a_, level - 1, a_, a_ ) current_list.pop() def __UpperCAmelCase ( a_: list[list[int]] ): for i in total_list: print(*a_ ) if __name__ == "__main__": __a = 4 __a = 2 __a = generate_all_combinations(n, k) print_all_state(total_list)
145
'''simple docstring''' from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 __a = { # 1536-bit 5: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 2048-bit 14: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AACAA68FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 3072-bit 15: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 4096-bit 16: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199' + 'FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 6144-bit 17: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08' + '8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B' + '302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9' + 'A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6' + '49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8' + 'FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C' + '180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718' + '3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D' + '04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D' + 'B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226' + '1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC' + 'E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26' + '99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB' + '04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2' + '233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127' + 'D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406' + 'AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918' + 'DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151' + '2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03' + 'F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F' + 'BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B' + 'B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632' + '387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E' + '6DCC4024FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 8192-bit 18: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD' + 'F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831' + '179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B' + 'DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF' + '5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6' + 'D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3' + '23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328' + '06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C' + 'DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE' + '12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4' + '38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300' + '741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568' + '3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9' + '22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B' + '4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A' + '062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36' + '4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1' + 'B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92' + '4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47' + '9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71' + '60C980DD98EDD3DFFFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, } class A__ : """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : int = 1_4 ) -> None: """simple docstring""" if group not in primes: raise ValueError("Unsupported Group" ) _UpperCAmelCase : Union[str, Any] = primes[group]["prime"] _UpperCAmelCase : List[Any] = primes[group]["generator"] _UpperCAmelCase : str = int(hexlify(urandom(3_2 ) ) , base=1_6 ) def _lowerCAmelCase ( self : str ) -> str: """simple docstring""" return hex(self.__private_key )[2:] def _lowerCAmelCase ( self : int ) -> str: """simple docstring""" _UpperCAmelCase : Dict = pow(self.generator , self.__private_key , self.prime ) return hex(lowerCAmelCase__ )[2:] def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : int ) -> bool: """simple docstring""" return ( 2 <= key <= self.prime - 2 and pow(lowerCAmelCase__ , (self.prime - 1) // 2 , self.prime ) == 1 ) def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : str ) -> str: """simple docstring""" _UpperCAmelCase : List[str] = int(lowerCAmelCase__ , base=1_6 ) if not self.is_valid_public_key(lowerCAmelCase__ ): raise ValueError("Invalid public key" ) _UpperCAmelCase : Optional[Any] = pow(lowerCAmelCase__ , self.__private_key , self.prime ) return shaaaa(str(lowerCAmelCase__ ).encode() ).hexdigest() @staticmethod def _lowerCAmelCase ( lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> bool: """simple docstring""" return ( 2 <= remote_public_key_str <= prime - 2 and pow(lowerCAmelCase__ , (prime - 1) // 2 , lowerCAmelCase__ ) == 1 ) @staticmethod def _lowerCAmelCase ( lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : int = 1_4 ) -> str: """simple docstring""" _UpperCAmelCase : Any = int(lowerCAmelCase__ , base=1_6 ) _UpperCAmelCase : List[Any] = int(lowerCAmelCase__ , base=1_6 ) _UpperCAmelCase : str = primes[group]["prime"] if not DiffieHellman.is_valid_public_key_static(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError("Invalid public key" ) _UpperCAmelCase : Tuple = pow(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return shaaaa(str(lowerCAmelCase__ ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
145
1
"""simple docstring""" def lowercase__ ( snake_case_ :Optional[int] ): if not head: return True # split the list to two parts __UpperCAmelCase , __UpperCAmelCase = head.next, head while fast and fast.next: __UpperCAmelCase = fast.next.next __UpperCAmelCase = slow.next __UpperCAmelCase = slow.next __UpperCAmelCase = None # Don't forget here! But forget still works! # reverse the second part __UpperCAmelCase = None while second: __UpperCAmelCase = second.next __UpperCAmelCase = node __UpperCAmelCase = second __UpperCAmelCase = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False __UpperCAmelCase = node.next __UpperCAmelCase = head.next return True def lowercase__ ( snake_case_ :int ): if not head or not head.next: return True # 1. Get the midpoint (slow) __UpperCAmelCase = __UpperCAmelCase = __UpperCAmelCase = head while fast and fast.next: __UpperCAmelCase , __UpperCAmelCase = fast.next.next, slow.next # 2. Push the second half into the stack __UpperCAmelCase = [slow.val] while slow.next: __UpperCAmelCase = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False __UpperCAmelCase = cur.next return True def lowercase__ ( snake_case_ :Dict ): if not head or not head.next: return True __UpperCAmelCase = {} __UpperCAmelCase = 0 while head: if head.val in d: d[head.val].append(snake_case_ ) else: __UpperCAmelCase = [pos] __UpperCAmelCase = head.next pos += 1 __UpperCAmelCase = pos - 1 __UpperCAmelCase = 0 for v in d.values(): if len(snake_case_ ) % 2 != 0: middle += 1 else: __UpperCAmelCase = 0 for i in range(0 , len(snake_case_ ) ): if v[i] + v[len(snake_case_ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
86
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging _lowercase : List[Any] = logging.get_logger(__name__) _lowercase : int = { 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/resolve/main/config.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/config.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/config.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json', } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Optional[Any] = "bloom" a__ : List[Any] = ["past_key_values"] a__ : Optional[Any] = { "num_hidden_layers": "n_layer", "num_attention_heads": "n_head", } def __init__( self : Union[str, Any] , _lowercase : Dict=25_08_80 , _lowercase : str=64 , _lowercase : int=2 , _lowercase : Union[str, Any]=8 , _lowercase : Optional[Any]=1E-5 , _lowercase : Dict=0.02 , _lowercase : Optional[int]=True , _lowercase : Any=1 , _lowercase : Dict=2 , _lowercase : Optional[Any]=False , _lowercase : Union[str, Any]=0.0 , _lowercase : str=0.0 , _lowercase : str=1 , _lowercase : int=False , **_lowercase : List[str] , ): __UpperCAmelCase = vocab_size # Backward compatibility with n_embed kwarg __UpperCAmelCase = kwargs.pop('''n_embed''' , _lowercase ) __UpperCAmelCase = hidden_size if n_embed is None else n_embed __UpperCAmelCase = n_layer __UpperCAmelCase = n_head __UpperCAmelCase = layer_norm_epsilon __UpperCAmelCase = initializer_range __UpperCAmelCase = use_cache __UpperCAmelCase = pretraining_tp __UpperCAmelCase = apply_residual_connection_post_layernorm __UpperCAmelCase = hidden_dropout __UpperCAmelCase = attention_dropout __UpperCAmelCase = bos_token_id __UpperCAmelCase = eos_token_id __UpperCAmelCase = slow_but_exact super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) class _UpperCAmelCase ( _lowerCAmelCase ): a__ : List[str] = version.parse("1.12" ) def __init__( self : Optional[int] , _lowercase : PretrainedConfig , _lowercase : str = "default" , _lowercase : List[PatchingSpec] = None , _lowercase : bool = False , ): super().__init__(_lowercase , task=_lowercase , patching_specs=_lowercase , use_past=_lowercase ) if not getattr(self._config , '''pad_token_id''' , _lowercase ): # TODO: how to do that better? __UpperCAmelCase = 0 @property def a ( self : Optional[int] ): __UpperCAmelCase = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(_lowercase , direction='''inputs''' , inverted_values_shape=_lowercase ) __UpperCAmelCase = {0: '''batch''', 1: '''past_sequence + sequence'''} else: __UpperCAmelCase = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def a ( self : Any ): return self._config.n_layer @property def a ( self : Tuple ): return self._config.n_head @property def a ( self : Dict ): return 1E-3 def a ( self : List[str] , _lowercase : "PreTrainedTokenizer" , _lowercase : int = -1 , _lowercase : int = -1 , _lowercase : bool = False , _lowercase : Optional["TensorType"] = None , ): __UpperCAmelCase = super(_lowercase , self ).generate_dummy_inputs( _lowercase , batch_size=_lowercase , seq_length=_lowercase , is_pair=_lowercase , framework=_lowercase ) # We need to order the input in the way they appears in the forward() __UpperCAmelCase = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __UpperCAmelCase , __UpperCAmelCase = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __UpperCAmelCase = seqlen + 2 __UpperCAmelCase = self._config.hidden_size // self.num_attention_heads __UpperCAmelCase = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) __UpperCAmelCase = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) __UpperCAmelCase = [ (torch.zeros(_lowercase ), torch.zeros(_lowercase )) for _ in range(self.num_layers ) ] __UpperCAmelCase = common_inputs['''attention_mask'''] if self.use_past: __UpperCAmelCase = ordered_inputs['''attention_mask'''].dtype __UpperCAmelCase = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(_lowercase , _lowercase , dtype=_lowercase )] , dim=1 ) return ordered_inputs @property def a ( self : Any ): return 13
86
1