code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class lowercase ( unittest.TestCase ): def A__ ( self): lowercase = tempfile.mkdtemp() # fmt: off lowercase = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on lowercase = dict(zip(A__ ,range(len(A__)))) lowercase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] lowercase = {'''unk_token''': '''<unk>'''} lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file''']) lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''merges_file''']) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''') as fp: fp.write(json.dumps(A__) + '''\n''') with open(self.merges_file ,'''w''' ,encoding='''utf-8''') as fp: fp.write('''\n'''.join(A__)) lowercase = { '''do_resize''': True, '''size''': 2_0, '''do_center_crop''': True, '''crop_size''': 1_8, '''do_normalize''': True, '''image_mean''': [0.48145466, 0.4578275, 0.40821073], '''image_std''': [0.26862954, 0.26130258, 0.27577711], } lowercase = os.path.join(self.tmpdirname ,A__) with open(self.image_processor_file ,'''w''' ,encoding='''utf-8''') as fp: json.dump(A__ ,A__) def A__ ( self ,**A__): return CLIPTokenizer.from_pretrained(self.tmpdirname ,**A__) def A__ ( self ,**A__): return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,**A__) def A__ ( self ,**A__): return CLIPImageProcessor.from_pretrained(self.tmpdirname ,**A__) def A__ ( self): shutil.rmtree(self.tmpdirname) def A__ ( self): lowercase = [np.random.randint(2_5_5 ,size=(3, 3_0, 4_0_0) ,dtype=np.uinta)] lowercase = [Image.fromarray(np.moveaxis(A__ ,0 ,-1)) for x in image_inputs] return image_inputs def A__ ( self): lowercase = self.get_tokenizer() lowercase = self.get_rust_tokenizer() lowercase = self.get_image_processor() lowercase = CLIPProcessor(tokenizer=A__ ,image_processor=A__) processor_slow.save_pretrained(self.tmpdirname) lowercase = CLIPProcessor.from_pretrained(self.tmpdirname ,use_fast=A__) lowercase = CLIPProcessor(tokenizer=A__ ,image_processor=A__) processor_fast.save_pretrained(self.tmpdirname) lowercase = CLIPProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab() ,tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab() ,tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab() ,tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer ,A__) self.assertIsInstance(processor_fast.tokenizer ,A__) self.assertEqual(processor_slow.image_processor.to_json_string() ,image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string() ,image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor ,A__) self.assertIsInstance(processor_fast.image_processor ,A__) def A__ ( self): lowercase = CLIPProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) lowercase = self.get_tokenizer(bos_token='''(BOS)''' ,eos_token='''(EOS)''') lowercase = self.get_image_processor(do_normalize=A__ ,padding_value=1.0) lowercase = CLIPProcessor.from_pretrained( self.tmpdirname ,bos_token='''(BOS)''' ,eos_token='''(EOS)''' ,do_normalize=A__ ,padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer ,A__) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor ,A__) def A__ ( self): lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = CLIPProcessor(tokenizer=A__ ,image_processor=A__) lowercase = self.prepare_image_inputs() lowercase = image_processor(A__ ,return_tensors='''np''') lowercase = processor(images=A__ ,return_tensors='''np''') for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() ,input_processor[key].sum() ,delta=1E-2) def A__ ( self): lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = CLIPProcessor(tokenizer=A__ ,image_processor=A__) lowercase = '''lower newer''' lowercase = processor(text=A__) lowercase = tokenizer(A__) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key]) def A__ ( self): lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = CLIPProcessor(tokenizer=A__ ,image_processor=A__) lowercase = '''lower newer''' lowercase = self.prepare_image_inputs() lowercase = processor(text=A__ ,images=A__) self.assertListEqual(list(inputs.keys()) ,['''input_ids''', '''attention_mask''', '''pixel_values''']) # test if it raises when no input is passed with pytest.raises(A__): processor() def A__ ( self): lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = CLIPProcessor(tokenizer=A__ ,image_processor=A__) lowercase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase = processor.batch_decode(A__) lowercase = tokenizer.batch_decode(A__) self.assertListEqual(A__ ,A__) def A__ ( self): lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = CLIPProcessor(tokenizer=A__ ,image_processor=A__) lowercase = '''lower newer''' lowercase = self.prepare_image_inputs() lowercase = processor(text=A__ ,images=A__) self.assertListEqual(list(inputs.keys()) ,processor.model_input_names)
101
'''simple docstring''' def lowercase__ ( __UpperCamelCase = 1000 )-> int: UpperCamelCase = -1 UpperCamelCase = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c UpperCamelCase = (n * n - 2 * a * n) // (2 * n - 2 * a) UpperCamelCase = n - a - b if c * c == (a * a + b * b): UpperCamelCase = a * b * c if candidate >= product: UpperCamelCase = candidate return product if __name__ == "__main__": print(f'{solution() = }')
321
0
"""simple docstring""" import sys def lowerCamelCase (a_ :Dict) -> Optional[Any]: lowercase :Optional[Any] = len(a_) lowercase :Union[str, Any] = [[0 for x in range(a_)] for x in range(a_)] lowercase :int = [[0 for x in range(a_)] for x in range(a_)] for chain_length in range(2 , a_): for a in range(1 , n - chain_length + 1): lowercase :Dict = a + chain_length - 1 lowercase :List[str] = sys.maxsize for c in range(a_ , a_): lowercase :Any = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: lowercase :Any = cost lowercase :Any = c return matrix, sol def lowerCamelCase (a_ :Tuple , a_ :List[Any] , a_ :Dict) -> Optional[int]: if i == j: print('''A''' + str(a_) , end=''' ''') else: print('''(''' , end=''' ''') print_optiomal_solution(a_ , a_ , optimal_solution[i][j]) print_optiomal_solution(a_ , optimal_solution[i][j] + 1 , a_) print(''')''' , end=''' ''') def lowerCamelCase () -> Optional[Any]: lowercase :Optional[Any] = [30, 35, 15, 5, 10, 20, 25] lowercase :Dict = len(a_) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 lowercase :List[str] = matrix_chain_order(a_) print('''No. of Operation required: ''' + str(matrix[1][n - 1])) print_optiomal_solution(a_ , 1 , n - 1) if __name__ == "__main__": main()
357
"""simple docstring""" import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging UpperCAmelCase = logging.get_logger(__name__) def lowerCamelCase (a_ :str , a_ :Optional[int]) -> Union[str, Any]: lowercase :List[str] = set() lowercase :Dict = [] def parse_line(a_ :Dict): for line in fp: if isinstance(a_ , a_): lowercase :Any = line.decode('''UTF-8''') if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(''' '''): # process a single warning and move it to `selected_warnings`. if len(a_) > 0: lowercase :int = '''\n'''.join(a_) # Only keep the warnings specified in `targets` if any(F""": {x}: """ in warning for x in targets): selected_warnings.add(a_) buffer.clear() continue else: lowercase :Any = line.strip() buffer.append(a_) if from_gh: for filename in os.listdir(a_): lowercase :Optional[int] = os.path.join(a_ , a_) if not os.path.isdir(a_): # read the file if filename != "warnings.txt": continue with open(a_) as fp: parse_line(a_) else: try: with zipfile.ZipFile(a_) as z: for filename in z.namelist(): if not os.path.isdir(a_): # read the file if filename != "warnings.txt": continue with z.open(a_) as fp: parse_line(a_) except Exception: logger.warning( F"""{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.""") return selected_warnings def lowerCamelCase (a_ :Any , a_ :Optional[int]) -> Any: lowercase :Tuple = set() lowercase :Dict = [os.path.join(a_ , a_) for p in os.listdir(a_) if (p.endswith('''.zip''') or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(a_ , a_)) return selected_warnings if __name__ == "__main__": def lowerCamelCase (a_ :List[Any]) -> Optional[Any]: return values.split(''',''') UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') parser.add_argument( '''--output_dir''', type=str, required=True, help='''Where to store the downloaded artifacts and other result files.''', ) parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''') # optional parameters parser.add_argument( '''--targets''', default='''DeprecationWarning,UserWarning,FutureWarning''', type=list_str, help='''Comma-separated list of target warning(s) which we want to extract.''', ) parser.add_argument( '''--from_gh''', action='''store_true''', help='''If running from a GitHub action workflow and collecting warnings from its artifacts.''', ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links UpperCAmelCase = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print('''=''' * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts UpperCAmelCase = extract_warnings(args.output_dir, args.targets) UpperCAmelCase = sorted(selected_warnings) with open(os.path.join(args.output_dir, '''selected_warnings.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
172
0
def lowerCAmelCase__ ( a__: int = 6_0_0_8_5_1_4_7_5_1_4_3 ) -> int: '''simple docstring''' try: _UpperCAmelCase = int(a__ ) except (TypeError, ValueError): raise TypeError('Parameter n must be int or castable to int.' ) if n <= 0: raise ValueError('Parameter n must be greater than or equal to one.' ) _UpperCAmelCase = 1 _UpperCAmelCase = 2 while i * i <= n: while n % i == 0: _UpperCAmelCase = i n //= i i += 1 if n > 1: _UpperCAmelCase = n return int(a__ ) if __name__ == "__main__": print(f'''{solution() = }''')
329
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ :str = { '''configuration_megatron_bert''': ['''MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegatronBertConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ :Union[str, Any] = [ '''MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegatronBertForCausalLM''', '''MegatronBertForMaskedLM''', '''MegatronBertForMultipleChoice''', '''MegatronBertForNextSentencePrediction''', '''MegatronBertForPreTraining''', '''MegatronBertForQuestionAnswering''', '''MegatronBertForSequenceClassification''', '''MegatronBertForTokenClassification''', '''MegatronBertModel''', '''MegatronBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys lowerCAmelCase__ :List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
329
1
'''simple docstring''' import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": __A : List[Any] = argparse.ArgumentParser( description=( "Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned" " Distillation" ) ) parser.add_argument("--model_type", default="roberta", choices=["roberta", "gpt2"]) parser.add_argument("--model_name", default="roberta-large", type=str) parser.add_argument("--dump_checkpoint", default="serialization_dir/tf_roberta_048131723.pth", type=str) parser.add_argument("--vocab_transform", action="store_true") __A : List[Any] = parser.parse_args() if args.model_type == "roberta": __A : List[str] = RobertaForMaskedLM.from_pretrained(args.model_name) __A : Tuple = "roberta" elif args.model_type == "gpt2": __A : Dict = GPTaLMHeadModel.from_pretrained(args.model_name) __A : Optional[int] = "transformer" __A : Any = model.state_dict() __A : List[Any] = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: __A : int = state_dict[F'''{prefix}.{param_name}'''] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: __A : List[Any] = F'''{prefix}.embeddings.{w}.weight''' __A : Any = state_dict[param_name] for w in ["weight", "bias"]: __A : int = F'''{prefix}.embeddings.LayerNorm.{w}''' __A : List[Any] = state_dict[param_name] # Transformer Blocks # __A : Optional[int] = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: __A : Any = state_dict[ F'''{prefix}.h.{teacher_idx}.{layer}.{w}''' ] __A : Any = state_dict[F'''{prefix}.h.{teacher_idx}.attn.bias'''] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: __A : List[Any] = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}''' ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: __A : Any = state_dict[F'''{layer}'''] if args.vocab_transform: for w in ["weight", "bias"]: __A : Any = state_dict[F'''lm_head.dense.{w}'''] __A : str = state_dict[F'''lm_head.layer_norm.{w}'''] elif args.model_type == "gpt2": for w in ["weight", "bias"]: __A : Optional[Any] = state_dict[F'''{prefix}.ln_f.{w}'''] __A : Dict = state_dict["lm_head.weight"] print(F'''N layers selected for distillation: {std_idx}''') print(F'''Number of params transferred for distillation: {len(compressed_sd.keys())}''') print(F'''Save transferred checkpoint to {args.dump_checkpoint}.''') torch.save(compressed_sd, args.dump_checkpoint)
89
'''simple docstring''' import requests def UpperCamelCase_ ( A__ : str , A__ : str ): '''simple docstring''' lowerCAmelCase_ : Optional[Any] = {"""Content-Type""": """application/json"""} lowerCAmelCase_ : Union[str, Any] = requests.post(A__ , json={"""text""": message_body} , headers=A__ ) if response.status_code != 2_00: lowerCAmelCase_ : Dict = ( """Request to slack returned an error """ f'{response.status_code}, the response is:\n{response.text}' ) raise ValueError(A__ ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("<YOUR MESSAGE BODY>", "<SLACK CHANNEL URL>")
89
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowercase : str = { 'configuration_nezha': ['NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NezhaConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = [ 'NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST', 'NezhaForNextSentencePrediction', 'NezhaForMaskedLM', 'NezhaForPreTraining', 'NezhaForMultipleChoice', 'NezhaForQuestionAnswering', 'NezhaForSequenceClassification', 'NezhaForTokenClassification', 'NezhaModel', 'NezhaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys _lowercase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
332
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class _UpperCAmelCase ( unittest.TestCase ): def a ( self : Dict , _lowercase : Union[str, Any] ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): __UpperCAmelCase = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(_lowercase ) def a ( self : str ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : List[str] ): __UpperCAmelCase = '''sgugger/tiny-distilbert-classification''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , only_pretrain_model=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : str ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , torchscript=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def a ( self : Optional[Any] ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , fpaa=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : int ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = AutoConfig.from_pretrained(_lowercase ) # set architectures equal to `None` __UpperCAmelCase = None __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : Tuple ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''' ) def a ( self : Optional[Any] ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_lowercase , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a ( self : Any ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = AutoConfig.from_pretrained(_lowercase ) __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : str ): __UpperCAmelCase = '''sshleifer/tinier_bart''' __UpperCAmelCase = AutoConfig.from_pretrained(_lowercase ) __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a ( self : Union[str, Any] ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' __UpperCAmelCase = AutoConfig.from_pretrained(_lowercase ) __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a ( self : int ): __UpperCAmelCase = '''sshleifer/tinier_bart''' __UpperCAmelCase = AutoConfig.from_pretrained(_lowercase ) __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase , configs=[config] ) __UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a ( self : Optional[Any] ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , save_to_csv=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_lowercase , '''inf_time.csv''' ) , train_memory_csv_file=os.path.join(_lowercase , '''train_mem.csv''' ) , inference_memory_csv_file=os.path.join(_lowercase , '''inf_mem.csv''' ) , train_time_csv_file=os.path.join(_lowercase , '''train_time.csv''' ) , env_info_csv_file=os.path.join(_lowercase , '''env.csv''' ) , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) benchmark.run() self.assertTrue(Path(os.path.join(_lowercase , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowercase , '''train_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowercase , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowercase , '''train_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowercase , '''env.csv''' ) ).exists() ) def a ( self : List[Any] ): __UpperCAmelCase = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(_lowercase : str ): self.assertTrue(hasattr(_lowercase , '''sequential''' ) ) self.assertTrue(hasattr(_lowercase , '''cumulative''' ) ) self.assertTrue(hasattr(_lowercase , '''current''' ) ) self.assertTrue(hasattr(_lowercase , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowercase , inference=_lowercase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_lowercase , '''log.txt''' ) , log_print=_lowercase , trace_memory_line_by_line=_lowercase , multi_process=_lowercase , ) __UpperCAmelCase = PyTorchBenchmark(_lowercase ) __UpperCAmelCase = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(_lowercase , '''log.txt''' ) ).exists() )
332
1
import os from datetime import datetime as dt from github import Github _A = [ 'good first issue', 'feature request', 'wip', ] def _UpperCAmelCase ( ): __UpperCamelCase =Github(os.environ['GITHUB_TOKEN'] ) __UpperCamelCase =g.get_repo('huggingface/accelerate' ) __UpperCamelCase =repo.get_issues(state='open' ) for issue in open_issues: __UpperCamelCase =sorted([comment for comment in issue.get_comments()] , key=lambda SCREAMING_SNAKE_CASE__ : i.created_at , reverse=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =comments[0] if len(SCREAMING_SNAKE_CASE__ ) > 0 else None __UpperCamelCase =dt.utcnow() __UpperCamelCase =(current_time - issue.updated_at).days __UpperCamelCase =(current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='closed' ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) if __name__ == "__main__": main()
117
import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset _A = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class UpperCAmelCase__ ( nn.Module ): """simple docstring""" def __init__( self , A_ ) -> Optional[int]: super().__init__() __UpperCamelCase =torchvision.models.resnetaaa(pretrained=A_ ) __UpperCamelCase =list(model.children() )[:-2] __UpperCamelCase =nn.Sequential(*A_ ) __UpperCamelCase =nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def _a ( self , A_ ) -> int: # Bx3x224x224 -> Bx2048x7x7 -> Bx2048xN -> BxNx2048 __UpperCamelCase =self.pool(self.model(A_ ) ) __UpperCamelCase =torch.flatten(A_ , start_dim=2 ) __UpperCamelCase =out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , A_ , A_ , A_ , A_ , A_ ) -> List[str]: __UpperCamelCase =[json.loads(A_ ) for l in open(A_ )] __UpperCamelCase =os.path.dirname(A_ ) __UpperCamelCase =tokenizer __UpperCamelCase =labels __UpperCamelCase =len(A_ ) __UpperCamelCase =max_seq_length __UpperCamelCase =transforms def __len__( self ) -> Any: return len(self.data ) def __getitem__( self , A_ ) -> Union[str, Any]: __UpperCamelCase =torch.LongTensor(self.tokenizer.encode(self.data[index]['text'] , add_special_tokens=A_ ) ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =sentence[0], sentence[1:-1], sentence[-1] __UpperCamelCase =sentence[: self.max_seq_length] __UpperCamelCase =torch.zeros(self.n_classes ) __UpperCamelCase =1 __UpperCamelCase =Image.open(os.path.join(self.data_dir , self.data[index]['img'] ) ).convert('RGB' ) __UpperCamelCase =self.transforms(A_ ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def _a ( self ) -> List[str]: __UpperCamelCase =Counter() for row in self.data: label_freqs.update(row['label'] ) return label_freqs def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ): __UpperCamelCase =[len(row['sentence'] ) for row in batch] __UpperCamelCase , __UpperCamelCase =len(SCREAMING_SNAKE_CASE__ ), max(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =torch.zeros(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , dtype=torch.long ) __UpperCamelCase =torch.zeros(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): __UpperCamelCase =input_row['sentence'] __UpperCamelCase =1 __UpperCamelCase =torch.stack([row['image'] for row in batch] ) __UpperCamelCase =torch.stack([row['label'] for row in batch] ) __UpperCamelCase =torch.stack([row['image_start_token'] for row in batch] ) __UpperCamelCase =torch.stack([row['image_end_token'] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def _UpperCAmelCase ( ): return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def _UpperCAmelCase ( ): return transforms.Compose( [ transforms.Resize(2_56 ), transforms.CenterCrop(2_24 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46777044, 0.44531429, 0.40661017] , std=[0.12221994, 0.12145835, 0.14380469] , ), ] )
117
1
from __future__ import annotations from typing import Any class UpperCAmelCase : def __init__(self : str , snake_case__ : int ) -> None: '''simple docstring''' snake_case : str = num_of_nodes snake_case : list[list[int]] = [] snake_case : dict[int, int] = {} def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : int , snake_case__ : int , snake_case__ : int ) -> None: '''simple docstring''' self.m_edges.append([u_node, v_node, weight] ) def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : int ) -> int: '''simple docstring''' if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _SCREAMING_SNAKE_CASE (self : List[str] , snake_case__ : int ) -> None: '''simple docstring''' if self.m_component[u_node] != u_node: for k in self.m_component: snake_case : Union[str, Any] = self.find_component(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : list[int] , snake_case__ : int , snake_case__ : int ) -> None: '''simple docstring''' if component_size[u_node] <= component_size[v_node]: snake_case : Any = v_node component_size[v_node] += component_size[u_node] self.set_component(snake_case__ ) elif component_size[u_node] >= component_size[v_node]: snake_case : List[Any] = self.find_component(snake_case__ ) component_size[u_node] += component_size[v_node] self.set_component(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> None: '''simple docstring''' snake_case : Dict = [] snake_case : Any = 0 snake_case : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) snake_case : str = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: snake_case , snake_case , snake_case : Dict = edge snake_case : List[str] = self.m_component[u] snake_case : Union[str, Any] = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): snake_case : Optional[Any] = [u, v, w] for edge in minimum_weight_edge: if isinstance(snake_case__ , snake_case__ ): snake_case , snake_case , snake_case : List[str] = edge snake_case : Tuple = self.m_component[u] snake_case : Dict = self.m_component[v] if u_component != v_component: mst_weight += w self.union(snake_case__ , snake_case__ , snake_case__ ) print(f"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 snake_case : Any = [-1] * self.m_num_of_nodes print(f"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def UpperCamelCase ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
59
from __future__ import annotations def UpperCamelCase_( lowerCamelCase_ ) -> bool: if len(lowerCamelCase_ ) < 2: raise ValueError('Monogons and Digons are not polygons in the Euclidean space' ) if any(i <= 0 for i in nums ): raise ValueError('All values must be greater than 0' ) _lowercase : Tuple = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
21
0
from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function UpperCamelCase_ =1.054571817e-34 # unit of ℏ : J * s UpperCamelCase_ =3e8 # unit of c : m * s^-1 def a_ ( _lowercase , _lowercase , _lowercase ): if (force, area, distance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if force < 0: raise ValueError('''Magnitude of force can not be negative''' ) if distance < 0: raise ValueError('''Distance can not be negative''' ) if area < 0: raise ValueError('''Area can not be negative''' ) if force == 0: _UpperCamelCase : str = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: _UpperCamelCase : str = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: _UpperCamelCase : Tuple = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError('''One and only one argument must be 0''' ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
364
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _a ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): UpperCamelCase = AltDiffusionPipeline UpperCamelCase = TEXT_TO_IMAGE_PARAMS UpperCamelCase = TEXT_TO_IMAGE_BATCH_PARAMS UpperCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS def snake_case ( self : int ) -> int: '''simple docstring''' torch.manual_seed(0 ) _UpperCamelCase : Dict = UNetaDConditionModel( block_out_channels=(3_2, 6_4), layers_per_block=2, sample_size=3_2, in_channels=4, out_channels=4, down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D'''), up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D'''), cross_attention_dim=3_2, ) _UpperCamelCase : Union[str, Any] = DDIMScheduler( beta_start=0.00_085, beta_end=0.012, beta_schedule='''scaled_linear''', clip_sample=lowerCAmelCase__, set_alpha_to_one=lowerCAmelCase__, ) torch.manual_seed(0 ) _UpperCamelCase : List[str] = AutoencoderKL( block_out_channels=[3_2, 6_4], in_channels=3, out_channels=3, down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], latent_channels=4, ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) _UpperCamelCase : str = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=3_2, projection_dim=3_2, intermediate_size=3_7, layer_norm_eps=1e-0_5, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=5_0_0_2, ) _UpperCamelCase : List[Any] = CLIPTextModel(lowerCAmelCase__ ) _UpperCamelCase : Dict = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) _UpperCamelCase : str = 7_7 _UpperCamelCase : int = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def snake_case ( self : Dict, lowerCAmelCase__ : Any, lowerCAmelCase__ : int=0 ) -> Optional[int]: '''simple docstring''' if str(lowerCAmelCase__ ).startswith('''mps''' ): _UpperCamelCase : Any = torch.manual_seed(lowerCAmelCase__ ) else: _UpperCamelCase : Dict = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) _UpperCamelCase : str = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def snake_case ( self : List[Any] ) -> List[str]: '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def snake_case ( self : List[Any] ) -> Tuple: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def snake_case ( self : List[str] ) -> List[Any]: '''simple docstring''' _UpperCamelCase : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCamelCase : int = self.get_dummy_components() torch.manual_seed(0 ) _UpperCamelCase : Any = RobertaSeriesConfig( hidden_size=3_2, project_dim=3_2, intermediate_size=3_7, layer_norm_eps=1e-0_5, num_attention_heads=4, num_hidden_layers=5, vocab_size=5_0_0_2, ) # TODO: remove after fixing the non-deterministic text encoder _UpperCamelCase : Tuple = RobertaSeriesModelWithTransformation(lowerCAmelCase__ ) _UpperCamelCase : str = text_encoder _UpperCamelCase : List[Any] = AltDiffusionPipeline(**lowerCAmelCase__ ) _UpperCamelCase : List[Any] = alt_pipe.to(lowerCAmelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCamelCase : Optional[int] = self.get_dummy_inputs(lowerCAmelCase__ ) _UpperCamelCase : Optional[Any] = '''A photo of an astronaut''' _UpperCamelCase : Any = alt_pipe(**lowerCAmelCase__ ) _UpperCamelCase : Any = output.images _UpperCamelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) _UpperCamelCase : List[Any] = np.array( [0.5_748_162, 0.60_447_145, 0.48_821_217, 0.50_100_636, 0.5_431_185, 0.45_763_683, 0.49_657_696, 0.48_132_733, 0.47_573_093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case ( self : int ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCamelCase : Optional[Any] = self.get_dummy_components() _UpperCamelCase : str = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) torch.manual_seed(0 ) _UpperCamelCase : int = RobertaSeriesConfig( hidden_size=3_2, project_dim=3_2, intermediate_size=3_7, layer_norm_eps=1e-0_5, num_attention_heads=4, num_hidden_layers=5, vocab_size=5_0_0_2, ) # TODO: remove after fixing the non-deterministic text encoder _UpperCamelCase : Tuple = RobertaSeriesModelWithTransformation(lowerCAmelCase__ ) _UpperCamelCase : int = text_encoder _UpperCamelCase : str = AltDiffusionPipeline(**lowerCAmelCase__ ) _UpperCamelCase : List[str] = alt_pipe.to(lowerCAmelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCamelCase : Union[str, Any] = self.get_dummy_inputs(lowerCAmelCase__ ) _UpperCamelCase : Optional[int] = alt_pipe(**lowerCAmelCase__ ) _UpperCamelCase : List[str] = output.images _UpperCamelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) _UpperCamelCase : List[Any] = np.array( [0.51_605_093, 0.5_707_241, 0.47_365_507, 0.50_578_886, 0.5_633_877, 0.4_642_503, 0.5_182_081, 0.48_763_484, 0.49_084_237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class _a ( unittest.TestCase ): def snake_case ( self : List[str] ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case ( self : Union[str, Any] ) -> Any: '''simple docstring''' _UpperCamelCase : str = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''', safety_checker=lowerCAmelCase__ ) _UpperCamelCase : List[Any] = alt_pipe.to(lowerCAmelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCamelCase : int = '''A painting of a squirrel eating a burger''' _UpperCamelCase : int = torch.manual_seed(0 ) _UpperCamelCase : Dict = alt_pipe([prompt], generator=lowerCAmelCase__, guidance_scale=6.0, num_inference_steps=2_0, output_type='''np''' ) _UpperCamelCase : Optional[int] = output.images _UpperCamelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _UpperCamelCase : List[str] = np.array([0.1_010, 0.0_800, 0.0_794, 0.0_885, 0.0_843, 0.0_762, 0.0_769, 0.0_729, 0.0_586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case ( self : str ) -> str: '''simple docstring''' _UpperCamelCase : Any = DDIMScheduler.from_pretrained('''BAAI/AltDiffusion''', subfolder='''scheduler''' ) _UpperCamelCase : Dict = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''', scheduler=lowerCAmelCase__, safety_checker=lowerCAmelCase__ ) _UpperCamelCase : Dict = alt_pipe.to(lowerCAmelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCamelCase : Optional[Any] = '''A painting of a squirrel eating a burger''' _UpperCamelCase : Optional[Any] = torch.manual_seed(0 ) _UpperCamelCase : Union[str, Any] = alt_pipe([prompt], generator=lowerCAmelCase__, num_inference_steps=2, output_type='''numpy''' ) _UpperCamelCase : Tuple = output.images _UpperCamelCase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _UpperCamelCase : str = np.array([0.4_019, 0.4_052, 0.3_810, 0.4_119, 0.3_916, 0.3_982, 0.4_651, 0.4_195, 0.5_323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
128
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ = { '''configuration_upernet''': ['''UperNetConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''UperNetForSemanticSegmentation''', '''UperNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
153
"""simple docstring""" import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class _lowerCamelCase ( _lowercase , unittest.TestCase ): UpperCAmelCase_ = VideoToVideoSDPipeline UpperCAmelCase_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"video"} ) - {"image", "width", "height"} UpperCAmelCase_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"video"} ) - {"image"} UpperCAmelCase_ = PipelineTesterMixin.required_optional_params - {"latents"} UpperCAmelCase_ = False # No `output_type`. UpperCAmelCase_ = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ] ) def snake_case_ (self ) -> List[Any]: torch.manual_seed(0 ) UpperCamelCase = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "DownBlock3D") , up_block_types=("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D") , cross_attention_dim=32 , attention_head_dim=4 , ) UpperCamelCase = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=__a , set_alpha_to_one=__a , ) torch.manual_seed(0 ) UpperCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="gelu" , projection_dim=5_12 , ) UpperCamelCase = CLIPTextModel(__a ) UpperCamelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCamelCase = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def snake_case_ (self , __a , __a=0 ) -> Dict: # 3 frames UpperCamelCase = floats_tensor((1, 3, 3, 32, 32) , rng=random.Random(__a ) ).to(__a ) if str(__a ).startswith("mps" ): UpperCamelCase = torch.manual_seed(__a ) else: UpperCamelCase = torch.Generator(device=__a ).manual_seed(__a ) UpperCamelCase = { "prompt": "A painting of a squirrel eating a burger", "video": video, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "pt", } return inputs def snake_case_ (self ) -> List[Any]: UpperCamelCase = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCamelCase = self.get_dummy_components() UpperCamelCase = VideoToVideoSDPipeline(**__a ) UpperCamelCase = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) UpperCamelCase = self.get_dummy_inputs(__a ) UpperCamelCase = "np" UpperCamelCase = sd_pipe(**__a ).frames UpperCamelCase = frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) UpperCamelCase = np.array([1_06, 1_17, 1_13, 1_74, 1_37, 1_12, 1_48, 1_51, 1_31] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def snake_case_ (self ) -> Dict: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__a , expected_max_diff=5e-3 ) @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def snake_case_ (self ) -> List[Any]: pass @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def snake_case_ (self ) -> Optional[Any]: pass @unittest.skip(reason="`num_images_per_prompt` argument is not supported for this pipeline." ) def snake_case_ (self ) -> Dict: pass def snake_case_ (self ) -> Optional[int]: return super().test_progress_bar() @slow @skip_mps class _lowerCamelCase ( unittest.TestCase ): def snake_case_ (self ) -> List[str]: UpperCamelCase = VideoToVideoSDPipeline.from_pretrained("cerspense/zeroscope_v2_XL" , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames UpperCamelCase = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCamelCase = torch.randn((1, 10, 3, 10_24, 5_76) , generator=__a ) UpperCamelCase = video.to("cuda" ) UpperCamelCase = "Spiderman is surfing" UpperCamelCase = pipe(__a , video=__a , generator=__a , num_inference_steps=3 , output_type="pt" ).frames UpperCamelCase = np.array([-1.0458984, -1.1279297, -0.9663086, -0.91503906, -0.75097656] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1e-2
153
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _SCREAMING_SNAKE_CASE ( __a ,__a ,__a ,unittest.TestCase ): __SCREAMING_SNAKE_CASE :Union[str, Any] = StableDiffusionInpaintPipeline __SCREAMING_SNAKE_CASE :Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS __SCREAMING_SNAKE_CASE :Tuple = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __SCREAMING_SNAKE_CASE :str = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __SCREAMING_SNAKE_CASE :Optional[Any] = frozenset([] ) def snake_case__ ( self : Union[str, Any] ): torch.manual_seed(0 ) __magic_name__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=a__ , ) __magic_name__ = PNDMScheduler(skip_prk_steps=a__ ) torch.manual_seed(0 ) __magic_name__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __magic_name__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=512 , ) __magic_name__ = CLIPTextModel(a__ ) __magic_name__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __magic_name__ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def snake_case__ ( self : Any , a__ : Optional[int] , a__ : List[Any]=0 ): # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched __magic_name__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(a__ ) ).to(a__ ) __magic_name__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] __magic_name__ = Image.fromarray(np.uinta(a__ ) ).convert('''RGB''' ).resize((64, 64) ) __magic_name__ = Image.fromarray(np.uinta(image + 4 ) ).convert('''RGB''' ).resize((64, 64) ) if str(a__ ).startswith('''mps''' ): __magic_name__ = torch.manual_seed(a__ ) else: __magic_name__ = torch.Generator(device=a__ ).manual_seed(a__ ) __magic_name__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def snake_case__ ( self : Union[str, Any] ): __magic_name__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator __magic_name__ = self.get_dummy_components() __magic_name__ = StableDiffusionInpaintPipeline(**a__ ) __magic_name__ = sd_pipe.to(a__ ) sd_pipe.set_progress_bar_config(disable=a__ ) __magic_name__ = self.get_dummy_inputs(a__ ) __magic_name__ = sd_pipe(**a__ ).images __magic_name__ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __magic_name__ = np.array([0.4_727, 0.5_735, 0.3_941, 0.5_446, 0.5_926, 0.4_394, 0.5_062, 0.4_654, 0.4_476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def snake_case__ ( self : List[Any] ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def snake_case__ ( self : int ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self : Tuple ): __magic_name__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) __magic_name__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) __magic_name__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''' ) __magic_name__ = '''stabilityai/stable-diffusion-2-inpainting''' __magic_name__ = StableDiffusionInpaintPipeline.from_pretrained(a__ , safety_checker=a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing() __magic_name__ = '''Face of a yellow cat, high resolution, sitting on a park bench''' __magic_name__ = torch.manual_seed(0 ) __magic_name__ = pipe( prompt=a__ , image=a__ , mask_image=a__ , generator=a__ , output_type='''np''' , ) __magic_name__ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9E-3 def snake_case__ ( self : List[str] ): __magic_name__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) __magic_name__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) __magic_name__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''' ) __magic_name__ = '''stabilityai/stable-diffusion-2-inpainting''' __magic_name__ = StableDiffusionInpaintPipeline.from_pretrained( a__ , torch_dtype=torch.floataa , safety_checker=a__ , ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing() __magic_name__ = '''Face of a yellow cat, high resolution, sitting on a park bench''' __magic_name__ = torch.manual_seed(0 ) __magic_name__ = pipe( prompt=a__ , image=a__ , mask_image=a__ , generator=a__ , output_type='''np''' , ) __magic_name__ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def snake_case__ ( self : List[Any] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __magic_name__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) __magic_name__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) __magic_name__ = '''stabilityai/stable-diffusion-2-inpainting''' __magic_name__ = PNDMScheduler.from_pretrained(a__ , subfolder='''scheduler''' ) __magic_name__ = StableDiffusionInpaintPipeline.from_pretrained( a__ , safety_checker=a__ , scheduler=a__ , torch_dtype=torch.floataa , ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __magic_name__ = '''Face of a yellow cat, high resolution, sitting on a park bench''' __magic_name__ = torch.manual_seed(0 ) __magic_name__ = pipe( prompt=a__ , image=a__ , mask_image=a__ , generator=a__ , num_inference_steps=2 , output_type='''np''' , ) __magic_name__ = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
356
'''simple docstring''' from __future__ import annotations from fractions import Fraction def UpperCamelCase ( a , a ) -> bool: '''simple docstring''' return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def UpperCamelCase ( a ) -> list[str]: '''simple docstring''' __magic_name__ = [] __magic_name__ = 11 __magic_name__ = int('''1''' + '''0''' * digit_len ) for num in range(a , a ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(a , a ): solutions.append(F'''{num}/{den}''' ) den += 1 num += 1 __magic_name__ = 10 return solutions def UpperCamelCase ( a = 2 ) -> int: '''simple docstring''' __magic_name__ = 1.0 for fraction in fraction_list(a ): __magic_name__ = Fraction(a ) result *= frac.denominator / frac.numerator return int(a ) if __name__ == "__main__": print(solution())
98
0
"""simple docstring""" from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def lowercase_ ( ): SCREAMING_SNAKE_CASE__ : str = [randint(-1_000 ,1_000 ) for i in range(10 )] SCREAMING_SNAKE_CASE__ : List[str] = randint(-5_000 ,5_000 ) return (arr, r) UpperCAmelCase__ : Dict = make_dataset() def lowercase_ ( _snake_case ,_snake_case ): for triplet in permutations(lowerCAmelCase__ ,3 ): if sum(lowerCAmelCase__ ) == target: return tuple(sorted(lowerCAmelCase__ ) ) return (0, 0, 0) def lowercase_ ( _snake_case ,_snake_case ): arr.sort() SCREAMING_SNAKE_CASE__ : List[Any] = len(lowerCAmelCase__ ) for i in range(n - 1 ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def lowercase_ ( ): SCREAMING_SNAKE_CASE__ : List[Any] = """ from __main__ import dataset, triplet_sum1, triplet_sum2 """ SCREAMING_SNAKE_CASE__ : Any = """ triplet_sum1(*dataset) """ SCREAMING_SNAKE_CASE__ : str = """ triplet_sum2(*dataset) """ SCREAMING_SNAKE_CASE__ : List[Any] = repeat(setup=lowerCAmelCase__ ,stmt=lowerCAmelCase__ ,repeat=5 ,number=10_000 ) SCREAMING_SNAKE_CASE__ : Tuple = repeat(setup=lowerCAmelCase__ ,stmt=lowerCAmelCase__ ,repeat=5 ,number=10_000 ) return (min(lowerCAmelCase__ ), min(lowerCAmelCase__ )) if __name__ == "__main__": from doctest import testmod testmod() UpperCAmelCase__ : str = solution_times() print(f"""The time for naive implementation is {times[0]}.""") print(f"""The time for optimized implementation is {times[1]}.""")
25
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''') lowercase = ( ('''layer.''', '''layer_'''), ('''word_embeddings.weight''', '''word_embeddings'''), ('''position_embeddings.weight''', '''position_embeddings'''), ('''token_type_embeddings.weight''', '''token_type_embeddings'''), ('''.''', '''/'''), ('''LayerNorm/weight''', '''LayerNorm/gamma'''), ('''LayerNorm/bias''', '''LayerNorm/beta'''), ('''weight''', '''kernel'''), ) if not os.path.isdir(lowerCAmelCase__ ): os.makedirs(lowerCAmelCase__ ) lowercase = model.state_dict() def to_tf_var_name(lowerCAmelCase__ ): for patt, repl in iter(lowerCAmelCase__ ): lowercase = name.replace(lowerCAmelCase__ , lowerCAmelCase__ ) return f'bert/{name}' def create_tf_var(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): lowercase = tf.dtypes.as_dtype(tensor.dtype ) lowercase = tf.get_variable(dtype=lowerCAmelCase__ , shape=tensor.shape , name=lowerCAmelCase__ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(lowerCAmelCase__ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: lowercase = to_tf_var_name(lowerCAmelCase__ ) lowercase = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): lowercase = torch_tensor.T lowercase = create_tf_var(tensor=lowerCAmelCase__ , name=lowerCAmelCase__ , session=lowerCAmelCase__ ) tf.keras.backend.set_value(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = session.run(lowerCAmelCase__ ) print(f'Successfully created {tf_name}: {np.allclose(lowerCAmelCase__ , lowerCAmelCase__ )}' ) lowercase = tf.train.Saver(tf.trainable_variables() ) saver.save(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , model_name.replace('''-''' , '''_''' ) + '''.ckpt''' ) ) def UpperCamelCase ( lowerCAmelCase__=None ): '''simple docstring''' lowercase = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help='''model name e.g. bert-base-uncased''' ) parser.add_argument( '''--cache_dir''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , required=lowerCAmelCase__ , help='''Directory containing pytorch model''' ) parser.add_argument('''--pytorch_model_path''' , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help='''/path/to/<pytorch-model-name>.bin''' ) parser.add_argument('''--tf_cache_dir''' , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help='''Directory in which to save tensorflow model''' ) lowercase = parser.parse_args(lowerCAmelCase__ ) lowercase = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=lowerCAmelCase__ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
101
0
import math from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Any =logging.get_logger(__name__) lowerCamelCase : str ={ '''facebook/data2vec-base-960h''': '''https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json''', # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class __a ( A__ ): _lowerCAmelCase : int = '''data2vec-audio''' def __init__( self : int , SCREAMING_SNAKE_CASE : Optional[int]=32 , SCREAMING_SNAKE_CASE : int=7_68 , SCREAMING_SNAKE_CASE : Any=12 , SCREAMING_SNAKE_CASE : Tuple=12 , SCREAMING_SNAKE_CASE : Optional[Any]=30_72 , SCREAMING_SNAKE_CASE : str="gelu" , SCREAMING_SNAKE_CASE : List[Any]=0.1 , SCREAMING_SNAKE_CASE : str=0.1 , SCREAMING_SNAKE_CASE : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE : Dict=0.0 , SCREAMING_SNAKE_CASE : str=0.1 , SCREAMING_SNAKE_CASE : List[Any]=0.1 , SCREAMING_SNAKE_CASE : List[str]=0.0_2 , SCREAMING_SNAKE_CASE : Optional[Any]=1e-5 , SCREAMING_SNAKE_CASE : Optional[Any]="gelu" , SCREAMING_SNAKE_CASE : Dict=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , SCREAMING_SNAKE_CASE : Any=(5, 2, 2, 2, 2, 2, 2) , SCREAMING_SNAKE_CASE : List[Any]=(10, 3, 3, 3, 3, 2, 2) , SCREAMING_SNAKE_CASE : List[str]=False , SCREAMING_SNAKE_CASE : List[str]=16 , SCREAMING_SNAKE_CASE : Any=19 , SCREAMING_SNAKE_CASE : Optional[Any]=5 , SCREAMING_SNAKE_CASE : List[str]=0.0_5 , SCREAMING_SNAKE_CASE : Tuple=10 , SCREAMING_SNAKE_CASE : Optional[Any]=2 , SCREAMING_SNAKE_CASE : int=0.0 , SCREAMING_SNAKE_CASE : str=10 , SCREAMING_SNAKE_CASE : Union[str, Any]=0 , SCREAMING_SNAKE_CASE : Union[str, Any]="sum" , SCREAMING_SNAKE_CASE : Optional[int]=False , SCREAMING_SNAKE_CASE : List[Any]=False , SCREAMING_SNAKE_CASE : Dict=2_56 , SCREAMING_SNAKE_CASE : List[Any]=(5_12, 5_12, 5_12, 5_12, 15_00) , SCREAMING_SNAKE_CASE : Any=(5, 3, 3, 1, 1) , SCREAMING_SNAKE_CASE : List[str]=(1, 2, 3, 1, 1) , SCREAMING_SNAKE_CASE : Dict=5_12 , SCREAMING_SNAKE_CASE : Optional[int]=0 , SCREAMING_SNAKE_CASE : Tuple=1 , SCREAMING_SNAKE_CASE : Dict=2 , SCREAMING_SNAKE_CASE : Optional[Any]=False , SCREAMING_SNAKE_CASE : Optional[int]=3 , SCREAMING_SNAKE_CASE : Optional[Any]=2 , SCREAMING_SNAKE_CASE : Any=3 , SCREAMING_SNAKE_CASE : List[Any]=None , **SCREAMING_SNAKE_CASE : str , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE , pad_token_id=SCREAMING_SNAKE_CASE , bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = hidden_size UpperCamelCase__ : int = feat_extract_activation UpperCamelCase__ : List[Any] = list(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = list(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = list(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = conv_bias UpperCamelCase__ : Dict = num_conv_pos_embeddings UpperCamelCase__ : Union[str, Any] = num_conv_pos_embedding_groups UpperCamelCase__ : Union[str, Any] = conv_pos_kernel_size UpperCamelCase__ : Union[str, Any] = len(self.conv_dim ) UpperCamelCase__ : Optional[Any] = num_hidden_layers UpperCamelCase__ : List[Any] = intermediate_size UpperCamelCase__ : Tuple = hidden_act UpperCamelCase__ : List[str] = num_attention_heads UpperCamelCase__ : Any = hidden_dropout UpperCamelCase__ : int = attention_dropout UpperCamelCase__ : List[Any] = activation_dropout UpperCamelCase__ : Any = feat_proj_dropout UpperCamelCase__ : List[str] = final_dropout UpperCamelCase__ : List[Any] = layerdrop UpperCamelCase__ : Optional[Any] = layer_norm_eps UpperCamelCase__ : List[str] = initializer_range UpperCamelCase__ : Optional[int] = vocab_size UpperCamelCase__ : Optional[int] = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCamelCase__ : Union[str, Any] = mask_time_prob UpperCamelCase__ : str = mask_time_length UpperCamelCase__ : Dict = mask_time_min_masks UpperCamelCase__ : Dict = mask_feature_prob UpperCamelCase__ : List[str] = mask_feature_length UpperCamelCase__ : int = mask_feature_min_masks # ctc loss UpperCamelCase__ : Union[str, Any] = ctc_loss_reduction UpperCamelCase__ : Any = ctc_zero_infinity # adapter UpperCamelCase__ : str = add_adapter UpperCamelCase__ : Optional[int] = adapter_kernel_size UpperCamelCase__ : Any = adapter_stride UpperCamelCase__ : Any = num_adapter_layers UpperCamelCase__ : Union[str, Any] = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCamelCase__ : str = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCamelCase__ : List[Any] = list(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = list(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = list(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = xvector_output_dim @property def __lowercase ( self : List[str] ): '''simple docstring''' return math.prod(self.conv_stride )
196
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class __a ( unittest.TestCase ): def __lowercase ( self : Union[str, Any] ): '''simple docstring''' UpperCamelCase__ : Dict = tempfile.mkdtemp() # fmt: off UpperCamelCase__ : List[Any] = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on UpperCamelCase__ : List[Any] = dict(zip(SCREAMING_SNAKE_CASE , range(len(SCREAMING_SNAKE_CASE ) ) ) ) UpperCamelCase__ : Tuple = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] UpperCamelCase__ : Tuple = {"unk_token": "<unk>"} UpperCamelCase__ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCamelCase__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(SCREAMING_SNAKE_CASE ) ) UpperCamelCase__ : List[str] = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], "image_std": [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } UpperCamelCase__ : int = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __lowercase ( self : List[str] , **SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE ) def __lowercase ( self : List[Any] , **SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE ) def __lowercase ( self : Any , **SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' return CLIPImageProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __lowercase ( self : Any ): '''simple docstring''' UpperCamelCase__ : int = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] UpperCamelCase__ : int = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowercase ( self : Tuple ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = self.get_tokenizer() UpperCamelCase__ : List[str] = self.get_rust_tokenizer() UpperCamelCase__ : str = self.get_image_processor() UpperCamelCase__ : List[str] = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE , image_processor=SCREAMING_SNAKE_CASE ) processor_slow.save_pretrained(self.tmpdirname ) UpperCamelCase__ : List[Any] = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE , image_processor=SCREAMING_SNAKE_CASE ) processor_fast.save_pretrained(self.tmpdirname ) UpperCamelCase__ : Any = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , SCREAMING_SNAKE_CASE ) self.assertIsInstance(processor_fast.tokenizer , SCREAMING_SNAKE_CASE ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , SCREAMING_SNAKE_CASE ) self.assertIsInstance(processor_fast.image_processor , SCREAMING_SNAKE_CASE ) def __lowercase ( self : List[str] ): '''simple docstring''' UpperCamelCase__ : str = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase__ : Union[str, Any] = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) UpperCamelCase__ : int = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE , padding_value=1.0 ) UpperCamelCase__ : Tuple = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=SCREAMING_SNAKE_CASE , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE ) def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCamelCase__ : List[str] = self.get_image_processor() UpperCamelCase__ : Union[str, Any] = self.get_tokenizer() UpperCamelCase__ : Any = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE , image_processor=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = self.prepare_image_inputs() UpperCamelCase__ : List[Any] = image_processor(SCREAMING_SNAKE_CASE , return_tensors="np" ) UpperCamelCase__ : Optional[Any] = processor(images=SCREAMING_SNAKE_CASE , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' UpperCamelCase__ : str = self.get_image_processor() UpperCamelCase__ : int = self.get_tokenizer() UpperCamelCase__ : Any = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE , image_processor=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = "lower newer" UpperCamelCase__ : int = processor(text=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = tokenizer(SCREAMING_SNAKE_CASE ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __lowercase ( self : int ): '''simple docstring''' UpperCamelCase__ : List[str] = self.get_image_processor() UpperCamelCase__ : Dict = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE , image_processor=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = "lower newer" UpperCamelCase__ : List[Any] = self.prepare_image_inputs() UpperCamelCase__ : Tuple = processor(text=SCREAMING_SNAKE_CASE , images=SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE ): processor() def __lowercase ( self : Optional[int] ): '''simple docstring''' UpperCamelCase__ : Optional[Any] = self.get_image_processor() UpperCamelCase__ : Optional[int] = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE , image_processor=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase__ : Optional[Any] = processor.batch_decode(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE ) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __lowercase ( self : List[str] ): '''simple docstring''' UpperCamelCase__ : Dict = self.get_image_processor() UpperCamelCase__ : Tuple = self.get_tokenizer() UpperCamelCase__ : Dict = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE , image_processor=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = "lower newer" UpperCamelCase__ : List[str] = self.prepare_image_inputs() UpperCamelCase__ : str = processor(text=SCREAMING_SNAKE_CASE , images=SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
196
1
from __future__ import annotations def __lowercase ( _A ) -> list[int]: # This function is recursive SCREAMING_SNAKE_CASE : List[Any] = len(_A ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else SCREAMING_SNAKE_CASE : List[str] = array[0] SCREAMING_SNAKE_CASE : Dict = False SCREAMING_SNAKE_CASE : Optional[Any] = 1 SCREAMING_SNAKE_CASE : list[int] = [] while not is_found and i < array_length: if array[i] < pivot: SCREAMING_SNAKE_CASE : Optional[Any] = True SCREAMING_SNAKE_CASE : Dict = [element for element in array[i:] if element >= array[i]] SCREAMING_SNAKE_CASE : Any = longest_subsequence(_A ) if len(_A ) > len(_A ): SCREAMING_SNAKE_CASE : str = temp_array else: i += 1 SCREAMING_SNAKE_CASE : List[Any] = [element for element in array[1:] if element >= pivot] SCREAMING_SNAKE_CASE : Tuple = [pivot, *longest_subsequence(_A )] if len(_A ) > len(_A ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
245
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase__ : List[Any] = logging.get_logger(__name__) UpperCAmelCase__ : str = { """microsoft/table-transformer-detection""": ( """https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json""" ), } class a__ ( UpperCAmelCase ): """simple docstring""" UpperCAmelCase__ : List[Any] ="""table-transformer""" UpperCAmelCase__ : Union[str, Any] =["""past_key_values"""] UpperCAmelCase__ : Any ={ """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : Tuple , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : int=3 , UpperCAmelCase__ : Any=1_0_0 , UpperCAmelCase__ : Optional[Any]=6 , UpperCAmelCase__ : Dict=2_0_4_8 , UpperCAmelCase__ : Any=8 , UpperCAmelCase__ : List[str]=6 , UpperCAmelCase__ : Union[str, Any]=2_0_4_8 , UpperCAmelCase__ : int=8 , UpperCAmelCase__ : List[Any]=0.0 , UpperCAmelCase__ : Optional[Any]=0.0 , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : Dict="relu" , UpperCAmelCase__ : List[Any]=2_5_6 , UpperCAmelCase__ : Any=0.1 , UpperCAmelCase__ : Any=0.0 , UpperCAmelCase__ : Optional[int]=0.0 , UpperCAmelCase__ : Tuple=0.02 , UpperCAmelCase__ : List[str]=1.0 , UpperCAmelCase__ : Optional[int]=False , UpperCAmelCase__ : int="sine" , UpperCAmelCase__ : Dict="resnet50" , UpperCAmelCase__ : int=True , UpperCAmelCase__ : List[Any]=False , UpperCAmelCase__ : Union[str, Any]=1 , UpperCAmelCase__ : List[Any]=5 , UpperCAmelCase__ : Union[str, Any]=2 , UpperCAmelCase__ : Any=1 , UpperCAmelCase__ : Any=1 , UpperCAmelCase__ : int=5 , UpperCAmelCase__ : Union[str, Any]=2 , UpperCAmelCase__ : int=0.1 , **UpperCAmelCase__ : Union[str, Any] , ) ->Dict: """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) SCREAMING_SNAKE_CASE : str = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): SCREAMING_SNAKE_CASE : Optional[int] = backbone_config.get("""model_type""" ) SCREAMING_SNAKE_CASE : List[str] = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE : Optional[Any] = config_class.from_dict(UpperCAmelCase__ ) # set timm attributes to None SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = None, None, None SCREAMING_SNAKE_CASE : List[Any] = use_timm_backbone SCREAMING_SNAKE_CASE : List[Any] = backbone_config SCREAMING_SNAKE_CASE : Dict = num_channels SCREAMING_SNAKE_CASE : Union[str, Any] = num_queries SCREAMING_SNAKE_CASE : Optional[Any] = d_model SCREAMING_SNAKE_CASE : Any = encoder_ffn_dim SCREAMING_SNAKE_CASE : str = encoder_layers SCREAMING_SNAKE_CASE : List[str] = encoder_attention_heads SCREAMING_SNAKE_CASE : Tuple = decoder_ffn_dim SCREAMING_SNAKE_CASE : Optional[Any] = decoder_layers SCREAMING_SNAKE_CASE : str = decoder_attention_heads SCREAMING_SNAKE_CASE : List[Any] = dropout SCREAMING_SNAKE_CASE : List[Any] = attention_dropout SCREAMING_SNAKE_CASE : Optional[int] = activation_dropout SCREAMING_SNAKE_CASE : Tuple = activation_function SCREAMING_SNAKE_CASE : int = init_std SCREAMING_SNAKE_CASE : str = init_xavier_std SCREAMING_SNAKE_CASE : Tuple = encoder_layerdrop SCREAMING_SNAKE_CASE : Union[str, Any] = decoder_layerdrop SCREAMING_SNAKE_CASE : Optional[Any] = encoder_layers SCREAMING_SNAKE_CASE : Any = auxiliary_loss SCREAMING_SNAKE_CASE : List[Any] = position_embedding_type SCREAMING_SNAKE_CASE : List[Any] = backbone SCREAMING_SNAKE_CASE : Optional[Any] = use_pretrained_backbone SCREAMING_SNAKE_CASE : Optional[Any] = dilation # Hungarian matcher SCREAMING_SNAKE_CASE : List[Any] = class_cost SCREAMING_SNAKE_CASE : Tuple = bbox_cost SCREAMING_SNAKE_CASE : Dict = giou_cost # Loss coefficients SCREAMING_SNAKE_CASE : Dict = mask_loss_coefficient SCREAMING_SNAKE_CASE : Optional[Any] = dice_loss_coefficient SCREAMING_SNAKE_CASE : Tuple = bbox_loss_coefficient SCREAMING_SNAKE_CASE : List[Any] = giou_loss_coefficient SCREAMING_SNAKE_CASE : List[Any] = eos_coefficient super().__init__(is_encoder_decoder=UpperCAmelCase__ , **UpperCAmelCase__ ) @property def _lowercase ( self : List[str] ) ->int: """simple docstring""" return self.encoder_attention_heads @property def _lowercase ( self : Any ) ->int: """simple docstring""" return self.d_model class a__ ( UpperCAmelCase ): """simple docstring""" UpperCAmelCase__ : List[str] =version.parse("""1.11""" ) @property def _lowercase ( self : Union[str, Any] ) ->Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _lowercase ( self : Optional[Any] ) ->float: """simple docstring""" return 1e-5 @property def _lowercase ( self : Tuple ) ->int: """simple docstring""" return 1_2
245
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase__ ={ 'configuration_rembert': ['REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RemBertConfig', 'RemBertOnnxConfig'] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ =['RemBertTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ =['RemBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ =[ 'REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RemBertForCausalLM', 'RemBertForMaskedLM', 'RemBertForMultipleChoice', 'RemBertForQuestionAnswering', 'RemBertForSequenceClassification', 'RemBertForTokenClassification', 'RemBertLayer', 'RemBertModel', 'RemBertPreTrainedModel', 'load_tf_weights_in_rembert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ =[ 'TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRemBertForCausalLM', 'TFRemBertForMaskedLM', 'TFRemBertForMultipleChoice', 'TFRemBertForQuestionAnswering', 'TFRemBertForSequenceClassification', 'TFRemBertForTokenClassification', 'TFRemBertLayer', 'TFRemBertModel', 'TFRemBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys lowercase__ =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
350
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def __UpperCamelCase ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Any ): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __a : Union[str, Any] = np.full((len(lowerCAmelCase__ ), sequence_length, 2) , lowerCAmelCase__ ) else: __a : str = np.full((len(lowerCAmelCase__ ), sequence_length) , lowerCAmelCase__ ) for i, tensor in enumerate(lowerCAmelCase__ ): if padding_side == "right": if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __a : Any = tensor[:sequence_length] else: __a : List[Any] = tensor[:sequence_length] else: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __a : Dict = tensor[:sequence_length] else: __a : int = tensor[:sequence_length] return out_tensor.tolist() def __UpperCamelCase ( lowerCAmelCase__ : Optional[Any] ): __a : str = ord(lowerCAmelCase__ ) if (cp >= 3_3 and cp <= 4_7) or (cp >= 5_8 and cp <= 6_4) or (cp >= 9_1 and cp <= 9_6) or (cp >= 1_2_3 and cp <= 1_2_6): return True __a : List[str] = unicodedata.category(lowerCAmelCase__ ) if cat.startswith('''P''' ): return True return False @dataclass class UpperCamelCase__ ( __lowercase ): _SCREAMING_SNAKE_CASE : PreTrainedTokenizerBase _SCREAMING_SNAKE_CASE : Union[bool, str, PaddingStrategy] = True _SCREAMING_SNAKE_CASE : Optional[int] = None _SCREAMING_SNAKE_CASE : Optional[int] = None _SCREAMING_SNAKE_CASE : int = -100 _SCREAMING_SNAKE_CASE : str = "pt" def lowerCAmelCase (self : str , snake_case_ : Tuple ): import torch __a : Union[str, Any] = '''label''' if '''label''' in features[0].keys() else '''labels''' __a : Tuple = [feature[label_name] for feature in features] if label_name in features[0].keys() else None __a : Union[str, Any] = self.tokenizer.pad( snake_case_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , ) if labels is None: return batch __a : List[str] = torch.tensor(batch['''entity_ids'''] ).shape[1] __a : Tuple = self.tokenizer.padding_side if padding_side == "right": __a : Union[str, Any] = [ list(snake_case_ ) + [self.label_pad_token_id] * (sequence_length - len(snake_case_ )) for label in labels ] else: __a : Dict = [ [self.label_pad_token_id] * (sequence_length - len(snake_case_ )) + list(snake_case_ ) for label in labels ] __a : Dict = [feature['''ner_tags'''] for feature in features] __a : Optional[Any] = padding_tensor(snake_case_ , -1 , snake_case_ , snake_case_ ) __a : Union[str, Any] = [feature['''original_entity_spans'''] for feature in features] __a : Optional[int] = padding_tensor(snake_case_ , (-1, -1) , snake_case_ , snake_case_ ) __a : List[str] = {k: torch.tensor(snake_case_ , dtype=torch.intaa ) for k, v in batch.items()} return batch
90
0
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class _lowercase : '''simple docstring''' def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int=13 , SCREAMING_SNAKE_CASE__ : Optional[int]=7 , SCREAMING_SNAKE_CASE__ : List[Any]=True , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : Optional[int]=99 , SCREAMING_SNAKE_CASE__ : Dict=32 , SCREAMING_SNAKE_CASE__ : int=5 , SCREAMING_SNAKE_CASE__ : Tuple=4 , SCREAMING_SNAKE_CASE__ : Tuple=37 , SCREAMING_SNAKE_CASE__ : Tuple="gelu" , SCREAMING_SNAKE_CASE__ : int=0.1 , SCREAMING_SNAKE_CASE__ : int=0.1 , SCREAMING_SNAKE_CASE__ : Optional[int]=5_12 , SCREAMING_SNAKE_CASE__ : Optional[int]=16 , SCREAMING_SNAKE_CASE__ : Optional[Any]=2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.0_2 , SCREAMING_SNAKE_CASE__ : Any=3 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=4 , SCREAMING_SNAKE_CASE__ : str=None , ) -> int: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_token_type_ids __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = num_labels __lowerCAmelCase = num_choices __lowerCAmelCase = scope __lowerCAmelCase = self.vocab_size - 1 def a ( self : Tuple ) -> Any: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase = None if self.use_token_type_ids: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) __lowerCAmelCase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , *SCREAMING_SNAKE_CASE__ : Optional[int] ) -> str: __lowerCAmelCase = OpenAIGPTModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __lowerCAmelCase = model(SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , head_mask=SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = model(SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a ( self : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int , *SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[Any]: __lowerCAmelCase = OpenAIGPTLMHeadModel(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __lowerCAmelCase = model(SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] , *SCREAMING_SNAKE_CASE__ : Dict ) -> Dict: __lowerCAmelCase = OpenAIGPTDoubleHeadsModel(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __lowerCAmelCase = model(SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a ( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , *SCREAMING_SNAKE_CASE__ : Any ) -> int: __lowerCAmelCase = self.num_labels __lowerCAmelCase = OpenAIGPTForSequenceClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = model(SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a ( self : Dict ) -> int: __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask, } return config, inputs_dict @require_torch class _lowercase ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' _SCREAMING_SNAKE_CASE : List[str] = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE : Any = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly _SCREAMING_SNAKE_CASE : str = ( { """feature-extraction""": OpenAIGPTModel, """text-classification""": OpenAIGPTForSequenceClassification, """text-generation""": OpenAIGPTLMHeadModel, """zero-shot""": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> List[Any]: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any=False ) -> Any: __lowerCAmelCase = super()._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_labels=SCREAMING_SNAKE_CASE__ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": __lowerCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=SCREAMING_SNAKE_CASE__ , ) __lowerCAmelCase = inputs_dict["""labels"""] __lowerCAmelCase = inputs_dict["""labels"""] __lowerCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=SCREAMING_SNAKE_CASE__ , ) __lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE__ ) return inputs_dict def a ( self : Union[str, Any] ) -> List[Any]: __lowerCAmelCase = OpenAIGPTModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , n_embd=37 ) def a ( self : List[str] ) -> int: self.config_tester.run_common_tests() def a ( self : Tuple ) -> Dict: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*SCREAMING_SNAKE_CASE__ ) def a ( self : str ) -> Tuple: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*SCREAMING_SNAKE_CASE__ ) def a ( self : Optional[Any] ) -> Any: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*SCREAMING_SNAKE_CASE__ ) def a ( self : Dict ) -> Union[str, Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*SCREAMING_SNAKE_CASE__ ) @slow def a ( self : Union[str, Any] ) -> int: for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = OpenAIGPTModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) @require_torch class _lowercase ( unittest.TestCase ): '''simple docstring''' @slow def a ( self : Optional[int] ) -> str: __lowerCAmelCase = OpenAIGPTLMHeadModel.from_pretrained("""openai-gpt""" ) model.to(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = torch.tensor([[4_81, 47_35, 5_44]] , dtype=torch.long , device=SCREAMING_SNAKE_CASE__ ) # the president is __lowerCAmelCase = [ 4_81, 47_35, 5_44, 2_46, 9_63, 8_70, 7_62, 2_39, 2_44, 4_04_77, 2_44, 2_49, 7_19, 8_81, 4_87, 5_44, 2_40, 2_44, 6_03, 4_81, ] # the president is a very good man. " \n " i\'m sure he is, " said the __lowerCAmelCase = model.generate(SCREAMING_SNAKE_CASE__ , do_sample=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(output_ids[0].tolist() , SCREAMING_SNAKE_CASE__ )
229
'''simple docstring''' def UpperCamelCase_ ( snake_case_ : list[int] , snake_case_ : list[int] ) -> tuple[float, float]: '''simple docstring''' if not len(snake_case_ ) == len(snake_case_ ) == 3: raise ValueError("""Please enter a valid equation.""" ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError("""Both a & b of two equations can't be zero.""" ) # Extract the coefficients __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = equationa __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = equationa # Calculate the determinants of the matrices __lowerCAmelCase = aa * ba - aa * ba __lowerCAmelCase = ca * ba - ca * ba __lowerCAmelCase = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError("""Infinite solutions. (Consistent system)""" ) else: raise ValueError("""No solution. (Inconsistent system)""" ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: __lowerCAmelCase = determinant_x / determinant __lowerCAmelCase = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
229
1
'''simple docstring''' import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCamelCase_ ( _a , unittest.TestCase ): lowerCAmelCase__ = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def lowercase_ ( self : Union[str, Any] , _A : Tuple=0 ): '''simple docstring''' UpperCAmelCase__ : Any = floats_tensor((1, 3, 128, 128) , rng=random.Random(snake_case_ ) ) UpperCAmelCase__ : List[str] = np.random.RandomState(snake_case_ ) UpperCAmelCase__ : Optional[int] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """strength""": 0.7_5, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : str = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=snake_case_ ) UpperCAmelCase__ : Tuple = self.get_dummy_inputs() UpperCAmelCase__ : Union[str, Any] = pipe(**snake_case_ ).images UpperCAmelCase__ : List[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) UpperCAmelCase__ : int = np.array([0.6_9_6_4_3, 0.5_8_4_8_4, 0.5_0_3_1_4, 0.5_8_7_6_0, 0.5_5_3_6_8, 0.5_9_6_4_3, 0.5_1_5_2_9, 0.4_1_2_1_7, 0.4_9_0_8_7] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : str = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) UpperCAmelCase__ : int = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) UpperCAmelCase__ : Dict = self.get_dummy_inputs() UpperCAmelCase__ : int = pipe(**snake_case_ ).images UpperCAmelCase__ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCAmelCase__ : Tuple = np.array([0.6_1_7_3_7, 0.5_4_6_4_2, 0.5_3_1_8_3, 0.5_4_4_6_5, 0.5_2_7_4_2, 0.6_0_5_2_5, 0.4_9_9_6_9, 0.4_0_6_5_5, 0.4_8_1_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) UpperCAmelCase__ : Dict = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case_ ) # warmup pass to apply optimizations UpperCAmelCase__ : List[Any] = pipe(**self.get_dummy_inputs() ) UpperCAmelCase__ : List[str] = self.get_dummy_inputs() UpperCAmelCase__ : Optional[int] = pipe(**snake_case_ ).images UpperCAmelCase__ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCAmelCase__ : Any = np.array([0.5_2_7_6_1, 0.5_9_9_7_7, 0.4_9_0_3_3, 0.4_9_6_1_9, 0.5_4_2_8_2, 0.5_0_3_1_1, 0.4_7_6_0_0, 0.4_0_9_1_8, 0.4_5_2_0_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) UpperCAmelCase__ : Dict = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case_ ) UpperCAmelCase__ : Union[str, Any] = self.get_dummy_inputs() UpperCAmelCase__ : List[Any] = pipe(**snake_case_ ).images UpperCAmelCase__ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCAmelCase__ : Optional[Any] = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) UpperCAmelCase__ : List[Any] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case_ ) UpperCAmelCase__ : Tuple = self.get_dummy_inputs() UpperCAmelCase__ : Tuple = pipe(**snake_case_ ).images UpperCAmelCase__ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCAmelCase__ : int = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) UpperCAmelCase__ : Union[str, Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case_ ) UpperCAmelCase__ : List[str] = self.get_dummy_inputs() UpperCAmelCase__ : List[str] = pipe(**snake_case_ ).images UpperCAmelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCAmelCase__ : List[str] = np.array([0.6_5_3_3_1, 0.5_8_2_7_7, 0.4_8_2_0_4, 0.5_6_0_5_9, 0.5_3_6_6_5, 0.5_6_2_3_5, 0.5_0_9_6_9, 0.4_0_0_0_9, 0.4_6_5_5_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class lowerCamelCase_ ( unittest.TestCase ): @property def lowercase_ ( self : Dict ): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Tuple = ort.SessionOptions() UpperCAmelCase__ : Optional[Any] = False return options def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) UpperCAmelCase__ : str = init_image.resize((768, 512) ) # using the PNDM scheduler by default UpperCAmelCase__ : Optional[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''onnx''' , safety_checker=snake_case_ , feature_extractor=snake_case_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=snake_case_ ) UpperCAmelCase__ : Dict = """A fantasy landscape, trending on artstation""" UpperCAmelCase__ : str = np.random.RandomState(0 ) UpperCAmelCase__ : Union[str, Any] = pipe( prompt=snake_case_ , image=snake_case_ , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=10 , generator=snake_case_ , output_type='''np''' , ) UpperCAmelCase__ : str = output.images UpperCAmelCase__ : Optional[Any] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) UpperCAmelCase__ : Optional[Any] = np.array([0.4_9_0_9, 0.5_0_5_9, 0.5_3_7_2, 0.4_6_2_3, 0.4_8_7_6, 0.5_0_4_9, 0.4_8_2_0, 0.4_9_5_6, 0.5_0_1_9] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) UpperCAmelCase__ : List[Any] = init_image.resize((768, 512) ) UpperCAmelCase__ : Tuple = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , subfolder='''scheduler''' , revision='''onnx''' ) UpperCAmelCase__ : str = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , scheduler=snake_case_ , safety_checker=snake_case_ , feature_extractor=snake_case_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=snake_case_ ) UpperCAmelCase__ : Union[str, Any] = """A fantasy landscape, trending on artstation""" UpperCAmelCase__ : Optional[int] = np.random.RandomState(0 ) UpperCAmelCase__ : Optional[int] = pipe( prompt=snake_case_ , image=snake_case_ , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=20 , generator=snake_case_ , output_type='''np''' , ) UpperCAmelCase__ : Any = output.images UpperCAmelCase__ : Tuple = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) UpperCAmelCase__ : Tuple = np.array([0.8_0_4_3, 0.9_2_6, 0.9_5_8_1, 0.8_1_1_9, 0.8_9_5_4, 0.9_1_3, 0.7_2_0_9, 0.7_4_6_3, 0.7_4_3_1] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
371
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } UpperCamelCase__ = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } UpperCamelCase__ = { '''facebook/blenderbot_small-90M''': 5_1_2, } class lowerCamelCase_ ( __a ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = BlenderbotSmallTokenizer def __init__( self : List[Any] , _A : List[Any]=None , _A : Optional[Any]=None , _A : Optional[int]="<|endoftext|>" , _A : List[str]="<|endoftext|>" , _A : List[str]="<|endoftext|>" , _A : Any=False , _A : Union[str, Any]=True , **_A : Optional[int] , ): '''simple docstring''' super().__init__( ByteLevelBPETokenizer( vocab=_A , merges=_A , add_prefix_space=_A , trim_offsets=_A , ) , bos_token=_A , eos_token=_A , unk_token=_A , **_A , ) UpperCAmelCase__ : List[Any] = add_prefix_space def lowercase_ ( self : str , _A : Any , _A : Any=None ): '''simple docstring''' UpperCAmelCase__ : Dict = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase_ ( self : Optional[int] , _A : List[int] , _A : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = [self.sep_token_id] UpperCAmelCase__ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
299
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} _UpperCAmelCase = { "vocab_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt" ), "squeezebert/squeezebert-mnli": "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt", "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt" ), }, "tokenizer_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli": ( "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json" ), }, } _UpperCAmelCase = { "squeezebert/squeezebert-uncased": 512, "squeezebert/squeezebert-mnli": 512, "squeezebert/squeezebert-mnli-headless": 512, } _UpperCAmelCase = { "squeezebert/squeezebert-uncased": {"do_lower_case": True}, "squeezebert/squeezebert-mnli": {"do_lower_case": True}, "squeezebert/squeezebert-mnli-headless": {"do_lower_case": True}, } class UpperCAmelCase ( __lowerCAmelCase ): '''simple docstring''' lowerCamelCase_ = VOCAB_FILES_NAMES lowerCamelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ = PRETRAINED_INIT_CONFIGURATION lowerCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ = SqueezeBertTokenizer def __init__( self , lowercase=None , lowercase=None , lowercase=True , lowercase="[UNK]" , lowercase="[SEP]" , lowercase="[PAD]" , lowercase="[CLS]" , lowercase="[MASK]" , lowercase=True , lowercase=None , **lowercase , ): """simple docstring""" super().__init__( lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , do_lower_case=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , tokenize_chinese_chars=lowerCamelCase__ , strip_accents=lowerCamelCase__ , **lowerCamelCase__ , ) A_ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , lowerCamelCase__ ) != do_lower_case or normalizer_state.get('strip_accents' , lowerCamelCase__ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , lowerCamelCase__ ) != tokenize_chinese_chars ): A_ : Union[str, Any] = getattr(lowerCamelCase__ , normalizer_state.pop('type' ) ) A_ : str = do_lower_case A_ : Dict = strip_accents A_ : str = tokenize_chinese_chars A_ : Dict = normalizer_class(**lowerCamelCase__ ) A_ : Optional[int] = do_lower_case def lowerCAmelCase_ ( self , lowercase , lowercase=None ): """simple docstring""" A_ : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase_ ( self , lowercase , lowercase = None ): """simple docstring""" A_ : Optional[Any] = [self.sep_token_id] A_ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self , lowercase , lowercase = None ): """simple docstring""" A_ : Optional[Any] = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ )
140
from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class __magic_name__ ( __lowerCAmelCase): def __init__( self : Optional[Any] , lowerCamelCase__ : Optional[NestedDataStructureLike[PathLike]] = None , lowerCamelCase__ : Optional[NamedSplit] = None , lowerCamelCase__ : Optional[Features] = None , lowerCamelCase__ : str = None , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = False , lowerCamelCase__ : Optional[int] = None , **lowerCamelCase__ : int , ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ : int = path_or_paths UpperCamelCase__ : List[Any] = split if split or isinstance(lowerCamelCase__ , lowerCamelCase__ ) else '''train''' UpperCamelCase__ : Optional[Any] = features UpperCamelCase__ : List[Any] = cache_dir UpperCamelCase__ : Optional[int] = keep_in_memory UpperCamelCase__ : int = streaming UpperCamelCase__ : Union[str, Any] = num_proc UpperCamelCase__ : List[Any] = kwargs @abstractmethod def UpperCAmelCase__ ( self : Optional[Any] ) -> Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]: '''simple docstring''' pass class __magic_name__ ( __lowerCAmelCase): def __init__( self : int , lowerCamelCase__ : Optional[Features] = None , lowerCamelCase__ : str = None , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = False , lowerCamelCase__ : Optional[int] = None , **lowerCamelCase__ : Union[str, Any] , ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ : Optional[int] = features UpperCamelCase__ : Optional[int] = cache_dir UpperCamelCase__ : Union[str, Any] = keep_in_memory UpperCamelCase__ : Tuple = streaming UpperCamelCase__ : Optional[Any] = num_proc UpperCamelCase__ : Union[str, Any] = kwargs @abstractmethod def UpperCAmelCase__ ( self : Tuple ) -> Union[Dataset, IterableDataset]: '''simple docstring''' pass
146
0
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def snake_case__ ( __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : int ): """simple docstring""" lowerCamelCase__ : Dict =s.rsplit(__lowerCamelCase , __lowerCamelCase ) return new.join(__lowerCamelCase ) def snake_case__ ( __lowerCamelCase : List[str] ): """simple docstring""" # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() ) def snake_case__ ( __lowerCamelCase : Any ): """simple docstring""" lowerCamelCase__ : Any ={} lowerCamelCase__ : Optional[int] =['''group_1''', '''group_2''', '''group_3''', '''group_4'''] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: lowerCamelCase__ : List[str] =key.replace(f'''{group_key}.''' , f'''{group_key}.group.''' ) if "res_path" in key: lowerCamelCase__ : Dict =key.replace('''res_path.''' , '''res_path.path.''' ) if key.endswith('''.w''' ): lowerCamelCase__ : Tuple =rreplace(__lowerCamelCase , '''.w''' , '''.weight''' , 1 ) if key.endswith('''.b''' ): lowerCamelCase__ : Optional[Any] =rreplace(__lowerCamelCase , '''.b''' , '''.bias''' , 1 ) lowerCamelCase__ : Union[str, Any] =value.float() return upgrade @torch.no_grad() def snake_case__ ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : List[Any]=True ): """simple docstring""" from dall_e import Encoder lowerCamelCase__ : Any =Encoder() if os.path.exists(__lowerCamelCase ): lowerCamelCase__ : str =torch.load(__lowerCamelCase ) else: lowerCamelCase__ : Optional[int] =torch.hub.load_state_dict_from_url(__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ): lowerCamelCase__ : Any =ckpt.state_dict() encoder.load_state_dict(__lowerCamelCase ) if config_path is not None: lowerCamelCase__ : Tuple =FlavaImageCodebookConfig.from_pretrained(__lowerCamelCase ) else: lowerCamelCase__ : List[Any] =FlavaImageCodebookConfig() lowerCamelCase__ : Union[str, Any] =FlavaImageCodebook(__lowerCamelCase ).eval() lowerCamelCase__ : Tuple =encoder.state_dict() lowerCamelCase__ : Dict =upgrade_state_dict(__lowerCamelCase ) hf_model.load_state_dict(__lowerCamelCase ) lowerCamelCase__ : Optional[int] =hf_model.state_dict() lowerCamelCase__ : Optional[int] =count_parameters(__lowerCamelCase ) lowerCamelCase__ : Dict =count_parameters(__lowerCamelCase ) assert torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(__lowerCamelCase ) else: return hf_state_dict if __name__ == "__main__": _lowercase : Dict = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") _lowercase : Optional[int] = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
272
"""simple docstring""" from collections import defaultdict class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Union[str, Any], lowerCamelCase : List[Any], lowerCamelCase : List[str] )-> Optional[int]: lowerCamelCase__ : List[Any] =total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 lowerCamelCase__ : Optional[Any] =[ [-1 for i in range(total + 1 )] for j in range(2 ** len(lowerCamelCase ) ) ] lowerCamelCase__ : Any =defaultdict(lowerCamelCase ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 lowerCamelCase__ : List[Any] =(1 << len(lowerCamelCase )) - 1 def snake_case ( self : int, lowerCamelCase : str, lowerCamelCase : Any )-> Any: # if mask == self.finalmask all persons are distributed tasks, return 1 if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement lowerCamelCase__ : Optional[int] =self.count_ways_until(lowerCamelCase, task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p), task_no + 1 ) # save the value. lowerCamelCase__ : int =total_ways_util return self.dp[mask][task_no] def snake_case ( self : Dict, lowerCamelCase : Dict )-> int: # Store the list of persons for each task for i in range(len(lowerCamelCase ) ): for j in task_performed[i]: self.task[j].append(lowerCamelCase ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0, 1 ) if __name__ == "__main__": _lowercase : Tuple = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. _lowercase : Dict = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
272
1
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer snake_case__ : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name snake_case__ : List[Any] = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n' @dataclass class A_ ( _lowerCamelCase ): lowerCAmelCase__ = 42 class A_ ( _lowerCamelCase ): def __init__(self :Any , _UpperCamelCase :PriorTransformer , _UpperCamelCase :CLIPVisionModel , _UpperCamelCase :CLIPImageProcessor , _UpperCamelCase :HeunDiscreteScheduler , _UpperCamelCase :ShapERenderer , )-> Union[str, Any]: super().__init__() self.register_modules( prior=_UpperCamelCase , image_encoder=_UpperCamelCase , image_processor=_UpperCamelCase , scheduler=_UpperCamelCase , renderer=_UpperCamelCase , ) def _lowerCAmelCase (self :Optional[Any] , _UpperCamelCase :str , _UpperCamelCase :Any , _UpperCamelCase :Union[str, Any] , _UpperCamelCase :Optional[int] , _UpperCamelCase :List[Any] , _UpperCamelCase :Union[str, Any] )-> List[str]: if latents is None: __A = randn_tensor(_UpperCamelCase , generator=_UpperCamelCase , device=_UpperCamelCase , dtype=_UpperCamelCase ) else: if latents.shape != shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) __A = latents.to(_UpperCamelCase ) __A = latents * scheduler.init_noise_sigma return latents def _lowerCAmelCase (self :Dict , _UpperCamelCase :int=0 )-> str: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) __A = torch.device(f"""cuda:{gpu_id}""" ) __A = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_UpperCamelCase , _UpperCamelCase ) @property def _lowerCAmelCase (self :Optional[Any] )-> Tuple: if self.device != torch.device('''meta''' ) or not hasattr(self.image_encoder , '''_hf_hook''' ): return self.device for module in self.image_encoder.modules(): if ( hasattr(_UpperCamelCase , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def _lowerCAmelCase (self :str , _UpperCamelCase :Optional[int] , _UpperCamelCase :Optional[int] , _UpperCamelCase :str , _UpperCamelCase :int , )-> str: if isinstance(_UpperCamelCase , _UpperCamelCase ) and isinstance(image[0] , torch.Tensor ): __A = torch.cat(_UpperCamelCase , axis=0 ) if image[0].ndim == 4 else torch.stack(_UpperCamelCase , axis=0 ) if not isinstance(_UpperCamelCase , torch.Tensor ): __A = self.image_processor(_UpperCamelCase , return_tensors='''pt''' ).pixel_values[0].unsqueeze(0 ) __A = image.to(dtype=self.image_encoder.dtype , device=_UpperCamelCase ) __A = self.image_encoder(_UpperCamelCase )['''last_hidden_state'''] __A = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 __A = image_embeds.repeat_interleave(_UpperCamelCase , dim=0 ) if do_classifier_free_guidance: __A = torch.zeros_like(_UpperCamelCase ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __A = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(_UpperCamelCase ) def __call__(self :Optional[int] , _UpperCamelCase :Union[PIL.Image.Image, List[PIL.Image.Image]] , _UpperCamelCase :int = 1 , _UpperCamelCase :int = 25 , _UpperCamelCase :Optional[Union[torch.Generator, List[torch.Generator]]] = None , _UpperCamelCase :Optional[torch.FloatTensor] = None , _UpperCamelCase :float = 4.0 , _UpperCamelCase :int = 64 , _UpperCamelCase :Optional[str] = "pil" , _UpperCamelCase :bool = True , )-> str: if isinstance(_UpperCamelCase , PIL.Image.Image ): __A = 1 elif isinstance(_UpperCamelCase , torch.Tensor ): __A = image.shape[0] elif isinstance(_UpperCamelCase , _UpperCamelCase ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): __A = len(_UpperCamelCase ) else: raise ValueError( f"""`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(_UpperCamelCase )}""" ) __A = self._execution_device __A = batch_size * num_images_per_prompt __A = guidance_scale > 1.0 __A = self._encode_image(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # prior self.scheduler.set_timesteps(_UpperCamelCase , device=_UpperCamelCase ) __A = self.scheduler.timesteps __A = self.prior.config.num_embeddings __A = self.prior.config.embedding_dim __A = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim __A = latents.reshape(latents.shape[0] , _UpperCamelCase , _UpperCamelCase ) for i, t in enumerate(self.progress_bar(_UpperCamelCase ) ): # expand the latents if we are doing classifier free guidance __A = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __A = self.scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase ) __A = self.prior( _UpperCamelCase , timestep=_UpperCamelCase , proj_embedding=_UpperCamelCase , ).predicted_image_embedding # remove the variance __A , __A = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: __A , __A = noise_pred.chunk(2 ) __A = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) __A = self.scheduler.step( _UpperCamelCase , timestep=_UpperCamelCase , sample=_UpperCamelCase , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=_UpperCamelCase ) __A = [] for i, latent in enumerate(_UpperCamelCase ): print() __A = self.renderer.decode( latent[None, :] , _UpperCamelCase , size=_UpperCamelCase , ray_batch_size=4096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(_UpperCamelCase ) __A = torch.stack(_UpperCamelCase ) if output_type not in ["np", "pil"]: raise ValueError(f"""Only the output types `pil` and `np` are supported not output_type={output_type}""" ) __A = images.cpu().numpy() if output_type == "pil": __A = [self.numpy_to_pil(_UpperCamelCase ) for image in images] # Offload last model to CPU if hasattr(self , '''final_offload_hook''' ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=_UpperCamelCase )
117
def _a ( lowerCamelCase: dict ) -> bool: '''simple docstring''' __A = set() # To detect a back edge, keep track of vertices currently in the recursion stack __A = set() return any( node not in visited and depth_first_search(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) for node in graph ) def _a ( lowerCamelCase: dict , lowerCamelCase: int , lowerCamelCase: set , lowerCamelCase: set ) -> bool: '''simple docstring''' visited.add(lowerCamelCase ) rec_stk.add(lowerCamelCase ) for node in graph[vertex]: if node not in visited: if depth_first_search(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(lowerCamelCase ) return False if __name__ == "__main__": from doctest import testmod testmod()
117
1
from torch import nn class _lowercase ( nn.Module ): """simple docstring""" def __init__(self , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" super().__init__() a = class_size a = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) a = nn.Linear(lowerCamelCase_ , lowerCamelCase_ ) def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" a = self.mlp(lowerCamelCase_ ) return logits
71
import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowercase ( lowerCAmelCase, unittest.TestCase ): """simple docstring""" __A = LxmertTokenizer __A = LxmertTokenizerFast __A = True __A = True def UpperCamelCase_ (self ): """simple docstring""" super().setUp() a = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" a = "UNwant\u00E9d,running" a = "unwanted, running" return input_text, output_text def UpperCamelCase_ (self ): """simple docstring""" a = self.tokenizer_class(self.vocab_file ) a = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(lowerCamelCase_ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [7, 4, 5, 10, 8, 9] ) def UpperCamelCase_ (self ): """simple docstring""" if not self.test_rust_tokenizer: return a = self.get_tokenizer() a = self.get_rust_tokenizer() a = "I was born in 92000, and this is falsé." a = tokenizer.tokenize(lowerCamelCase_ ) a = rust_tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) a = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) a = rust_tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) a = self.get_rust_tokenizer() a = tokenizer.encode(lowerCamelCase_ ) a = rust_tokenizer.encode(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ )
71
1
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class UpperCamelCase__ (lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ : Optional[Any] = """pixel_values""" lowerCamelCase_ : Optional[Any] = False lowerCamelCase_ : str = TimmBackboneConfig def __init__( self , UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: requires_backends(self , "timm" ) super().__init__(UpperCamelCase__ ) lowerCamelCase : Any = config if config.backbone is None: raise ValueError("backbone is not set in the config. Please set it to a timm model name." ) if config.backbone not in timm.list_models(): raise ValueError(F'''backbone {config.backbone} is not supported by timm.''' ) if hasattr(UpperCamelCase__ , "out_features" ) and config.out_features is not None: raise ValueError("out_features is not supported by TimmBackbone. Please use out_indices instead." ) lowerCamelCase : List[Any] = getattr(UpperCamelCase__ , "use_pretrained_backbone" , UpperCamelCase__ ) if pretrained is None: raise ValueError("use_pretrained_backbone is not set in the config. Please set it to True or False." ) # We just take the final layer by default. This matches the default for the transformers models. lowerCamelCase : str = config.out_indices if getattr(UpperCamelCase__ , "out_indices" , UpperCamelCase__ ) is not None else (-1,) lowerCamelCase : Optional[Any] = timm.create_model( config.backbone , pretrained=UpperCamelCase__ , features_only=config.features_only , in_chans=config.num_channels , out_indices=UpperCamelCase__ , **UpperCamelCase__ , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. lowerCamelCase : List[Any] = self._backbone.return_layers lowerCamelCase : Optional[int] = {layer["module"]: str(UpperCamelCase__ ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(UpperCamelCase__ ) @classmethod def _lowercase ( cls , UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: requires_backends(cls , ["vision", "timm"] ) from ...models.timm_backbone import TimmBackboneConfig lowerCamelCase : Dict = kwargs.pop("config" , TimmBackboneConfig() ) lowerCamelCase : List[Any] = kwargs.pop("use_timm_backbone" , UpperCamelCase__ ) if not use_timm: raise ValueError("use_timm_backbone must be True for timm backbones" ) lowerCamelCase : Any = kwargs.pop("num_channels" , config.num_channels ) lowerCamelCase : Tuple = kwargs.pop("features_only" , config.features_only ) lowerCamelCase : Optional[Any] = kwargs.pop("use_pretrained_backbone" , config.use_pretrained_backbone ) lowerCamelCase : Optional[int] = kwargs.pop("out_indices" , config.out_indices ) lowerCamelCase : Optional[Any] = TimmBackboneConfig( backbone=UpperCamelCase__ , num_channels=UpperCamelCase__ , features_only=UpperCamelCase__ , use_pretrained_backbone=UpperCamelCase__ , out_indices=UpperCamelCase__ , ) return super()._from_config(UpperCamelCase__ , **UpperCamelCase__ ) def _lowercase ( self , UpperCamelCase__ ) -> Union[str, Any]: pass def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ) -> Union[BackboneOutput, Tuple[Tensor, ...]]: lowerCamelCase : Any = return_dict if return_dict is not None else self.config.use_return_dict lowerCamelCase : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCamelCase : Tuple = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError("Cannot output attentions for timm backbones at the moment" ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone lowerCamelCase : Any = self._all_layers lowerCamelCase : Union[str, Any] = self._backbone(UpperCamelCase__ , **UpperCamelCase__ ) lowerCamelCase : int = self._return_layers lowerCamelCase : List[str] = tuple(hidden_states[i] for i in self.out_indices ) else: lowerCamelCase : Optional[int] = self._backbone(UpperCamelCase__ , **UpperCamelCase__ ) lowerCamelCase : Optional[Any] = None lowerCamelCase : Optional[int] = tuple(UpperCamelCase__ ) lowerCamelCase : List[str] = tuple(UpperCamelCase__ ) if hidden_states is not None else None if not return_dict: lowerCamelCase : Dict = (feature_maps,) if output_hidden_states: lowerCamelCase : List[Any] = output + (hidden_states,) return output return BackboneOutput(feature_maps=UpperCamelCase__ , hidden_states=UpperCamelCase__ , attentions=UpperCamelCase__ )
48
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(lowerCAmelCase__ ) , """Tatoeba directory does not exist.""" ) class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' @cached_property def _lowercase ( self ) -> int: lowerCamelCase : str = tempfile.mkdtemp() return TatoebaConverter(save_dir=UpperCamelCase__ ) @slow def _lowercase ( self ) -> List[Any]: self.resolver.convert_models(["heb-eng"] ) @slow def _lowercase ( self ) -> Tuple: lowerCamelCase , lowerCamelCase : Dict = self.resolver.write_model_card("opus-mt-he-en" , dry_run=UpperCamelCase__ ) assert mmeta["long_pair"] == "heb-eng"
48
1
"""simple docstring""" def snake_case__ ( __lowerCamelCase : int ): """simple docstring""" lowerCamelCase__ : List[Any] =[0] * len(__lowerCamelCase ) lowerCamelCase__ : List[Any] =[] lowerCamelCase__ : List[Any] =[1] * len(__lowerCamelCase ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__lowerCamelCase ) ): if indegree[i] == 0: queue.append(__lowerCamelCase ) while queue: lowerCamelCase__ : Tuple =queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: lowerCamelCase__ : Optional[Any] =long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__lowerCamelCase ) print(max(__lowerCamelCase ) ) # Adjacency list of Graph _lowercase : Optional[Any] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
272
"""simple docstring""" from ...processing_utils import ProcessorMixin class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' _a = 'SpeechT5FeatureExtractor' _a = 'SpeechT5Tokenizer' def __init__( self : Dict, lowerCamelCase : Optional[int], lowerCamelCase : str )-> Any: super().__init__(lowerCamelCase, lowerCamelCase ) def __call__( self : Tuple, *lowerCamelCase : List[str], **lowerCamelCase : Optional[int] )-> List[str]: lowerCamelCase__ : List[Any] =kwargs.pop('''audio''', lowerCamelCase ) lowerCamelCase__ : List[str] =kwargs.pop('''text''', lowerCamelCase ) lowerCamelCase__ : int =kwargs.pop('''text_target''', lowerCamelCase ) lowerCamelCase__ : Dict =kwargs.pop('''audio_target''', lowerCamelCase ) lowerCamelCase__ : Any =kwargs.pop('''sampling_rate''', lowerCamelCase ) if audio is not None and text is not None: raise ValueError( '''Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?''' ) if audio_target is not None and text_target is not None: raise ValueError( '''Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?''' ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( '''You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.''' ) if audio is not None: lowerCamelCase__ : Union[str, Any] =self.feature_extractor(lowerCamelCase, *lowerCamelCase, sampling_rate=lowerCamelCase, **lowerCamelCase ) elif text is not None: lowerCamelCase__ : List[Any] =self.tokenizer(lowerCamelCase, **lowerCamelCase ) else: lowerCamelCase__ : Any =None if audio_target is not None: lowerCamelCase__ : List[str] =self.feature_extractor(audio_target=lowerCamelCase, *lowerCamelCase, sampling_rate=lowerCamelCase, **lowerCamelCase ) lowerCamelCase__ : Tuple =targets['''input_values'''] elif text_target is not None: lowerCamelCase__ : Dict =self.tokenizer(lowerCamelCase, **lowerCamelCase ) lowerCamelCase__ : int =targets['''input_ids'''] else: lowerCamelCase__ : List[str] =None if inputs is None: return targets if targets is not None: lowerCamelCase__ : Dict =labels lowerCamelCase__ : Any =targets.get('''attention_mask''' ) if decoder_attention_mask is not None: lowerCamelCase__ : Dict =decoder_attention_mask return inputs def snake_case ( self : int, *lowerCamelCase : Optional[Any], **lowerCamelCase : Optional[int] )-> Optional[Any]: lowerCamelCase__ : List[Any] =kwargs.pop('''input_values''', lowerCamelCase ) lowerCamelCase__ : Union[str, Any] =kwargs.pop('''input_ids''', lowerCamelCase ) lowerCamelCase__ : Optional[Any] =kwargs.pop('''labels''', lowerCamelCase ) if input_values is not None and input_ids is not None: raise ValueError('''Cannot process both `input_values` and `input_ids` inputs.''' ) if input_values is None and input_ids is None and labels is None: raise ValueError( '''You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.''' ) if input_values is not None: lowerCamelCase__ : List[str] =self.feature_extractor.pad(lowerCamelCase, *lowerCamelCase, **lowerCamelCase ) elif input_ids is not None: lowerCamelCase__ : Tuple =self.tokenizer.pad(lowerCamelCase, **lowerCamelCase ) else: lowerCamelCase__ : Any =None if labels is not None: if "input_ids" in labels or (isinstance(lowerCamelCase, lowerCamelCase ) and "input_ids" in labels[0]): lowerCamelCase__ : str =self.tokenizer.pad(lowerCamelCase, **lowerCamelCase ) lowerCamelCase__ : List[Any] =targets['''input_ids'''] else: lowerCamelCase__ : Any =self.feature_extractor.feature_size lowerCamelCase__ : Optional[Any] =self.feature_extractor.num_mel_bins lowerCamelCase__ : Optional[int] =self.feature_extractor.pad(lowerCamelCase, *lowerCamelCase, **lowerCamelCase ) lowerCamelCase__ : List[Any] =feature_size_hack lowerCamelCase__ : Tuple =targets['''input_values'''] else: lowerCamelCase__ : Optional[Any] =None if inputs is None: return targets if targets is not None: lowerCamelCase__ : Tuple =labels lowerCamelCase__ : Optional[int] =targets.get('''attention_mask''' ) if decoder_attention_mask is not None: lowerCamelCase__ : Optional[Any] =decoder_attention_mask return inputs def snake_case ( self : List[str], *lowerCamelCase : Union[str, Any], **lowerCamelCase : List[Any] )-> List[Any]: return self.tokenizer.batch_decode(*lowerCamelCase, **lowerCamelCase ) def snake_case ( self : List[str], *lowerCamelCase : List[Any], **lowerCamelCase : Tuple )-> int: return self.tokenizer.decode(*lowerCamelCase, **lowerCamelCase )
272
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCamelCase_ = { '''vocab_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/vocab.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/vocab.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/vocab.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json''' ), }, '''merges_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/merges.txt''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/merges.txt''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/merges.txt''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt''' ), }, '''tokenizer_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/tokenizer.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/tokenizer.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json''', '''roberta-base-openai-detector''': ( '''https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json''' ), '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json''' ), }, } lowerCamelCase_ = { '''roberta-base''': 5_12, '''roberta-large''': 5_12, '''roberta-large-mnli''': 5_12, '''distilroberta-base''': 5_12, '''roberta-base-openai-detector''': 5_12, '''roberta-large-openai-detector''': 5_12, } class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = VOCAB_FILES_NAMES snake_case = PRETRAINED_VOCAB_FILES_MAP snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case = ['''input_ids''', '''attention_mask'''] snake_case = RobertaTokenizer def __init__( self : Optional[Any] , __UpperCAmelCase : str=None , __UpperCAmelCase : Tuple=None , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[Any]="replace" , __UpperCAmelCase : List[str]="<s>" , __UpperCAmelCase : Optional[int]="</s>" , __UpperCAmelCase : Optional[Any]="</s>" , __UpperCAmelCase : List[str]="<s>" , __UpperCAmelCase : List[Any]="<unk>" , __UpperCAmelCase : List[str]="<pad>" , __UpperCAmelCase : Optional[Any]="<mask>" , __UpperCAmelCase : Optional[Any]=False , __UpperCAmelCase : int=True , **__UpperCAmelCase : List[Any] , ): '''simple docstring''' super().__init__( __UpperCAmelCase , __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , errors=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , trim_offsets=__UpperCAmelCase , **__UpperCAmelCase , ) _A = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , __UpperCAmelCase ) != add_prefix_space: _A = getattr(__UpperCAmelCase , pre_tok_state.pop("type" ) ) _A = add_prefix_space _A = pre_tok_class(**__UpperCAmelCase ) _A = add_prefix_space _A = "post_processor" _A = getattr(self.backend_tokenizer , __UpperCAmelCase , __UpperCAmelCase ) if tokenizer_component_instance: _A = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _A = tuple(state["sep"] ) if "cls" in state: _A = tuple(state["cls"] ) _A = False if state.get("add_prefix_space" , __UpperCAmelCase ) != add_prefix_space: _A = add_prefix_space _A = True if state.get("trim_offsets" , __UpperCAmelCase ) != trim_offsets: _A = trim_offsets _A = True if changes_to_apply: _A = getattr(__UpperCAmelCase , state.pop("type" ) ) _A = component_class(**__UpperCAmelCase ) setattr(self.backend_tokenizer , __UpperCAmelCase , __UpperCAmelCase ) @property def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : Tuple ): '''simple docstring''' _A = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else value _A = value def lowerCAmelCase ( self : Any , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : Optional[Any] ): '''simple docstring''' _A = kwargs.get("is_split_into_words" , __UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__UpperCAmelCase , **__UpperCAmelCase ) def lowerCAmelCase ( self : List[str] , *__UpperCAmelCase : Tuple , **__UpperCAmelCase : List[str] ): '''simple docstring''' _A = kwargs.get("is_split_into_words" , __UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*__UpperCAmelCase , **__UpperCAmelCase ) def lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ): '''simple docstring''' _A = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase ) def lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[str]=None ): '''simple docstring''' _A = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ): '''simple docstring''' _A = [self.sep_token_id] _A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
79
def lowerCAmelCase_ ( A_ ,A_): if b == 0: return 1 if (b % 2) == 0: return actual_power(A_ ,int(b / 2)) * actual_power(A_ ,int(b / 2)) else: return a * actual_power(A_ ,int(b / 2)) * actual_power(A_ ,int(b / 2)) def lowerCAmelCase_ ( A_ ,A_): if b < 0: return 1 / actual_power(A_ ,A_) return actual_power(A_ ,A_) if __name__ == "__main__": print(power(-2, -3))
149
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE : str = {"configuration_plbart": ["PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "PLBartConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Union[str, Any] = ["PLBartTokenizer"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[Any] = [ "PLBART_PRETRAINED_MODEL_ARCHIVE_LIST", "PLBartForCausalLM", "PLBartForConditionalGeneration", "PLBartForSequenceClassification", "PLBartModel", "PLBartPreTrainedModel", ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()["__file__"], _import_structure)
92
'''simple docstring''' import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class _snake_case ( lowercase_ , lowercase_ , unittest.TestCase ): lowerCAmelCase_ : List[str] = IFPipeline lowerCAmelCase_ : int = TEXT_TO_IMAGE_PARAMS - {"width", "height", "latents"} lowerCAmelCase_ : Optional[int] = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase_ : List[Any] = PipelineTesterMixin.required_optional_params - {"latents"} def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' return self._get_dummy_components() def lowerCAmelCase__ ( self , a__ , a__=0 ) -> str: '''simple docstring''' if str(a__ ).startswith("mps" ): snake_case_ = torch.manual_seed(a__ ) else: snake_case_ = torch.Generator(device=a__ ).manual_seed(a__ ) snake_case_ = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1e-1 ) def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' self._test_save_load_local() def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1e-2 , ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @slow @require_torch_gpu class _snake_case ( unittest.TestCase ): def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0" , variant="fp16" , torch_dtype=torch.floataa ) snake_case_ = IFSuperResolutionPipeline.from_pretrained( "DeepFloyd/IF-II-L-v1.0" , variant="fp16" , torch_dtype=torch.floataa , text_encoder=a__ , tokenizer=a__ ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("cuda" ) snake_case_ , snake_case_ = pipe_a.encode_prompt("anime turtle" , device="cuda" ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() snake_case_ = None snake_case_ = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(a__ , a__ , a__ , a__ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img snake_case_ = IFImgaImgPipeline(**pipe_a.components ) snake_case_ = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(a__ , a__ , a__ , a__ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting snake_case_ = IFInpaintingPipeline(**pipe_a.components ) snake_case_ = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(a__ , a__ , a__ , a__ ) def lowerCAmelCase__ ( self , a__ , a__ , a__ , a__ ) -> Dict: '''simple docstring''' _start_torch_memory_measurement() snake_case_ = torch.Generator(device="cpu" ).manual_seed(0 ) snake_case_ = pipe_a( prompt_embeds=a__ , negative_prompt_embeds=a__ , num_inference_steps=2 , generator=a__ , output_type="np" , ) snake_case_ = output.images[0] assert image.shape == (64, 64, 3) snake_case_ = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 snake_case_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy" ) assert_mean_pixel_difference(a__ , a__ ) # pipeline 2 _start_torch_memory_measurement() snake_case_ = torch.Generator(device="cpu" ).manual_seed(0 ) snake_case_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(a__ ) snake_case_ = pipe_a( prompt_embeds=a__ , negative_prompt_embeds=a__ , image=a__ , generator=a__ , num_inference_steps=2 , output_type="np" , ) snake_case_ = output.images[0] assert image.shape == (256, 256, 3) snake_case_ = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 snake_case_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy" ) assert_mean_pixel_difference(a__ , a__ ) def lowerCAmelCase__ ( self , a__ , a__ , a__ , a__ ) -> Dict: '''simple docstring''' _start_torch_memory_measurement() snake_case_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(a__ ) snake_case_ = torch.Generator(device="cpu" ).manual_seed(0 ) snake_case_ = pipe_a( prompt_embeds=a__ , negative_prompt_embeds=a__ , image=a__ , num_inference_steps=2 , generator=a__ , output_type="np" , ) snake_case_ = output.images[0] assert image.shape == (64, 64, 3) snake_case_ = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 snake_case_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy" ) assert_mean_pixel_difference(a__ , a__ ) # pipeline 2 _start_torch_memory_measurement() snake_case_ = torch.Generator(device="cpu" ).manual_seed(0 ) snake_case_ = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(a__ ) snake_case_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(a__ ) snake_case_ = pipe_a( prompt_embeds=a__ , negative_prompt_embeds=a__ , image=a__ , original_image=a__ , generator=a__ , num_inference_steps=2 , output_type="np" , ) snake_case_ = output.images[0] assert image.shape == (256, 256, 3) snake_case_ = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 snake_case_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy" ) assert_mean_pixel_difference(a__ , a__ ) def lowerCAmelCase__ ( self , a__ , a__ , a__ , a__ ) -> str: '''simple docstring''' _start_torch_memory_measurement() snake_case_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(a__ ) snake_case_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(a__ ) snake_case_ = torch.Generator(device="cpu" ).manual_seed(0 ) snake_case_ = pipe_a( prompt_embeds=a__ , negative_prompt_embeds=a__ , image=a__ , mask_image=a__ , num_inference_steps=2 , generator=a__ , output_type="np" , ) snake_case_ = output.images[0] assert image.shape == (64, 64, 3) snake_case_ = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 snake_case_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy" ) assert_mean_pixel_difference(a__ , a__ ) # pipeline 2 _start_torch_memory_measurement() snake_case_ = torch.Generator(device="cpu" ).manual_seed(0 ) snake_case_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(a__ ) snake_case_ = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(a__ ) snake_case_ = floats_tensor((1, 3, 256, 256) , rng=random.Random(1 ) ).to(a__ ) snake_case_ = pipe_a( prompt_embeds=a__ , negative_prompt_embeds=a__ , image=a__ , mask_image=a__ , original_image=a__ , generator=a__ , num_inference_steps=2 , output_type="np" , ) snake_case_ = output.images[0] assert image.shape == (256, 256, 3) snake_case_ = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 snake_case_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy" ) assert_mean_pixel_difference(a__ , a__ ) def UpperCamelCase_( ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
92
1
"""simple docstring""" import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse("""0.8.3"""): raise Exception("""requires gluonnlp == 0.8.3""") if version.parse(mx.__version__) != version.parse("""1.5.0"""): raise Exception("""requires mxnet == 1.5.0""") logging.set_verbosity_info() lowercase__ = logging.get_logger(__name__) lowercase__ = """The Nymphenburg Palace is a beautiful palace in Munich!""" def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase ) -> str: """simple docstring""" lowerCAmelCase_ : Optional[Any] = { "attention_cell": "multi_head", "num_layers": 4, "units": 1024, "hidden_size": 768, "max_length": 512, "num_heads": 8, "scaled": True, "dropout": 0.1, "use_residual": True, "embed_size": 1024, "embed_dropout": 0.1, "word_embed": None, "layer_norm_eps": 1e-5, "token_type_vocab_size": 2, } lowerCAmelCase_ : Any = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py lowerCAmelCase_ : Optional[Any] = BERTEncoder( attention_cell=predefined_args["attention_cell"] , num_layers=predefined_args["num_layers"] , units=predefined_args["units"] , hidden_size=predefined_args["hidden_size"] , max_length=predefined_args["max_length"] , num_heads=predefined_args["num_heads"] , scaled=predefined_args["scaled"] , dropout=predefined_args["dropout"] , output_attention=__UpperCamelCase , output_all_encodings=__UpperCamelCase , use_residual=predefined_args["use_residual"] , activation=predefined_args.get("activation" , "gelu" ) , layer_norm_eps=predefined_args.get("layer_norm_eps" , __UpperCamelCase ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later lowerCAmelCase_ : Dict = "openwebtext_ccnews_stories_books_cased" # Specify download folder to Gluonnlp's vocab lowerCAmelCase_ : Tuple = os.path.join(get_home_dir() , "models" ) lowerCAmelCase_ : Union[str, Any] = _load_vocab(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , cls=__UpperCamelCase ) lowerCAmelCase_ : Any = nlp.model.BERTModel( __UpperCamelCase , len(__UpperCamelCase ) , units=predefined_args["units"] , embed_size=predefined_args["embed_size"] , embed_dropout=predefined_args["embed_dropout"] , word_embed=predefined_args["word_embed"] , use_pooler=__UpperCamelCase , use_token_type_embed=__UpperCamelCase , token_type_vocab_size=predefined_args["token_type_vocab_size"] , use_classifier=__UpperCamelCase , use_decoder=__UpperCamelCase , ) original_bort.load_parameters(__UpperCamelCase , cast_dtype=__UpperCamelCase , ignore_extra=__UpperCamelCase ) lowerCAmelCase_ : str = original_bort._collect_params_with_prefix() # Build our config 🤗 lowerCAmelCase_ : int = { "architectures": ["BertForMaskedLM"], "attention_probs_dropout_prob": predefined_args["dropout"], "hidden_act": "gelu", "hidden_dropout_prob": predefined_args["dropout"], "hidden_size": predefined_args["embed_size"], "initializer_range": 0.02, "intermediate_size": predefined_args["hidden_size"], "layer_norm_eps": predefined_args["layer_norm_eps"], "max_position_embeddings": predefined_args["max_length"], "model_type": "bort", "num_attention_heads": predefined_args["num_heads"], "num_hidden_layers": predefined_args["num_layers"], "pad_token_id": 1, # 2 = BERT, 1 = RoBERTa "type_vocab_size": 1, # 2 = BERT, 1 = RoBERTa "vocab_size": len(__UpperCamelCase ), } lowerCAmelCase_ : Optional[int] = BertConfig.from_dict(__UpperCamelCase ) lowerCAmelCase_ : Optional[int] = BertForMaskedLM(__UpperCamelCase ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(__UpperCamelCase ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(__UpperCamelCase , __UpperCamelCase ): lowerCAmelCase_ : Any = hf_param.shape lowerCAmelCase_ : List[str] = to_torch(params[gluon_param] ) lowerCAmelCase_ : Optional[Any] = gluon_param.shape assert ( shape_hf == shape_gluon ), f'''The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers''' return gluon_param lowerCAmelCase_ : Any = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , "word_embed.0.weight" ) lowerCAmelCase_ : Tuple = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , "encoder.position_weight" ) lowerCAmelCase_ : int = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , "encoder.layer_norm.beta" ) lowerCAmelCase_ : Dict = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , "encoder.layer_norm.gamma" ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) lowerCAmelCase_ : int = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): lowerCAmelCase_ : BertLayer = hf_bort_model.bert.encoder.layer[i] # self attention lowerCAmelCase_ : BertSelfAttention = layer.attention.self lowerCAmelCase_ : Optional[Any] = check_and_map_params( self_attn.key.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.bias''' ) lowerCAmelCase_ : Optional[Any] = check_and_map_params( self_attn.key.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.weight''' ) lowerCAmelCase_ : List[str] = check_and_map_params( self_attn.query.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.bias''' ) lowerCAmelCase_ : Any = check_and_map_params( self_attn.query.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.weight''' ) lowerCAmelCase_ : Optional[int] = check_and_map_params( self_attn.value.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.bias''' ) lowerCAmelCase_ : str = check_and_map_params( self_attn.value.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.weight''' ) # self attention output lowerCAmelCase_ : BertSelfOutput = layer.attention.output lowerCAmelCase_ : int = check_and_map_params( self_output.dense.bias , f'''encoder.transformer_cells.{i}.proj.bias''' ) lowerCAmelCase_ : Optional[Any] = check_and_map_params( self_output.dense.weight , f'''encoder.transformer_cells.{i}.proj.weight''' ) lowerCAmelCase_ : List[Any] = check_and_map_params( self_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.layer_norm.beta''' ) lowerCAmelCase_ : Union[str, Any] = check_and_map_params( self_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.layer_norm.gamma''' ) # intermediate lowerCAmelCase_ : BertIntermediate = layer.intermediate lowerCAmelCase_ : Dict = check_and_map_params( intermediate.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_1.bias''' ) lowerCAmelCase_ : List[Any] = check_and_map_params( intermediate.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_1.weight''' ) # output lowerCAmelCase_ : BertOutput = layer.output lowerCAmelCase_ : Tuple = check_and_map_params( bert_output.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_2.bias''' ) lowerCAmelCase_ : Tuple = check_and_map_params( bert_output.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_2.weight''' ) lowerCAmelCase_ : int = check_and_map_params( bert_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.ffn.layer_norm.beta''' ) lowerCAmelCase_ : Tuple = check_and_map_params( bert_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.ffn.layer_norm.gamma''' ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models lowerCAmelCase_ : Dict = RobertaTokenizer.from_pretrained("roberta-base" ) lowerCAmelCase_ : Union[str, Any] = tokenizer.encode_plus(__UpperCamelCase )["input_ids"] # Get gluon output lowerCAmelCase_ : Optional[int] = mx.nd.array([input_ids] ) lowerCAmelCase_ : List[Any] = original_bort(inputs=__UpperCamelCase , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(__UpperCamelCase ) lowerCAmelCase_ : Tuple = BertModel.from_pretrained(__UpperCamelCase ) hf_bort_model.eval() lowerCAmelCase_ : Optional[int] = tokenizer.encode_plus(__UpperCamelCase , return_tensors="pt" ) lowerCAmelCase_ : Union[str, Any] = hf_bort_model(**__UpperCamelCase )[0] lowerCAmelCase_ : Optional[Any] = output_gluon[0].asnumpy() lowerCAmelCase_ : Any = output_hf[0].detach().numpy() lowerCAmelCase_ : Dict = np.max(np.abs(hf_layer - gluon_layer ) ).item() lowerCAmelCase_ : Any = np.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) if success: print("✔️ Both model do output the same tensors" ) else: print("❌ Both model do **NOT** output the same tensors" ) print("Absolute difference is:" , __UpperCamelCase ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--bort_checkpoint_path""", default=None, type=str, required=True, help="""Path the official Bort params file.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowercase__ = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
241
"""simple docstring""" from __future__ import annotations from math import pow, sqrt def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> dict[str, float]: """simple docstring""" if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if resistance == 0: return {"resistance": sqrt(pow(__UpperCamelCase , 2 ) - pow(__UpperCamelCase , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(__UpperCamelCase , 2 ) - pow(__UpperCamelCase , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(__UpperCamelCase , 2 ) + pow(__UpperCamelCase , 2 ) )} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
241
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a__ ( UpperCAmelCase__ , unittest.TestCase ): lowerCamelCase : Union[str, Any] =UnCLIPImageVariationPipeline lowerCamelCase : Any =IMAGE_VARIATION_PARAMS - {"height", "width", "guidance_scale"} lowerCamelCase : List[str] =IMAGE_VARIATION_BATCH_PARAMS lowerCamelCase : List[str] =[ "generator", "return_dict", "decoder_num_inference_steps", "super_res_num_inference_steps", ] lowerCamelCase : str =False @property def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" return 32 @property def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" return 32 @property def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" return self.time_input_dim @property def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" return self.time_input_dim * 4 @property def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" return 1_00 @property def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" __lowerCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" torch.manual_seed(0 ) __lowerCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModelWithProjection(a ) @property def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" torch.manual_seed(0 ) __lowerCamelCase = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) return CLIPVisionModelWithProjection(a ) @property def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" torch.manual_seed(0 ) __lowerCamelCase = { '''clip_embeddings_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''cross_attention_dim''': self.cross_attention_dim, } __lowerCamelCase = UnCLIPTextProjModel(**a ) return model @property def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" torch.manual_seed(0 ) __lowerCamelCase = { '''sample_size''': 32, # RGB in channels '''in_channels''': 3, # Out channels is double in channels because predicts mean and variance '''out_channels''': 6, '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': '''identity''', } __lowerCamelCase = UNetaDConditionModel(**a ) return model @property def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" torch.manual_seed(0 ) __lowerCamelCase = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" torch.manual_seed(1 ) __lowerCamelCase = UNetaDModel(**self.dummy_super_res_kwargs ) return model def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" __lowerCamelCase = self.dummy_decoder __lowerCamelCase = self.dummy_text_proj __lowerCamelCase = self.dummy_text_encoder __lowerCamelCase = self.dummy_tokenizer __lowerCamelCase = self.dummy_super_res_first __lowerCamelCase = self.dummy_super_res_last __lowerCamelCase = UnCLIPScheduler( variance_type='''learned_range''' , prediction_type='''epsilon''' , num_train_timesteps=10_00 , ) __lowerCamelCase = UnCLIPScheduler( variance_type='''fixed_small_log''' , prediction_type='''epsilon''' , num_train_timesteps=10_00 , ) __lowerCamelCase = CLIPImageProcessor(crop_size=32 , size=32 ) __lowerCamelCase = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def SCREAMING_SNAKE_CASE__ ( self : Tuple , a : Tuple , a : int=0 , a : str=True ): """simple docstring""" __lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(a ) ).to(a ) if str(a ).startswith('''mps''' ): __lowerCamelCase = torch.manual_seed(a ) else: __lowerCamelCase = torch.Generator(device=a ).manual_seed(a ) if pil_image: __lowerCamelCase = input_image * 0.5 + 0.5 __lowerCamelCase = input_image.clamp(0 , 1 ) __lowerCamelCase = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __lowerCamelCase = DiffusionPipeline.numpy_to_pil(a )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" __lowerCamelCase = '''cpu''' __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**a ) __lowerCamelCase = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) __lowerCamelCase = self.get_dummy_inputs(a , pil_image=a ) __lowerCamelCase = pipe(**a ) __lowerCamelCase = output.images __lowerCamelCase = self.get_dummy_inputs(a , pil_image=a ) __lowerCamelCase = pipe( **a , return_dict=a , )[0] __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowerCamelCase = np.array( [ 0.99_97, 0.00_02, 0.99_97, 0.99_97, 0.99_69, 0.00_23, 0.99_97, 0.99_69, 0.99_70, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" __lowerCamelCase = '''cpu''' __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**a ) __lowerCamelCase = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) __lowerCamelCase = self.get_dummy_inputs(a , pil_image=a ) __lowerCamelCase = pipe(**a ) __lowerCamelCase = output.images __lowerCamelCase = self.get_dummy_inputs(a , pil_image=a ) __lowerCamelCase = pipe( **a , return_dict=a , )[0] __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowerCamelCase = np.array([0.99_97, 0.00_03, 0.99_97, 0.99_97, 0.99_70, 0.00_24, 0.99_97, 0.99_71, 0.99_71] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" __lowerCamelCase = '''cpu''' __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**a ) __lowerCamelCase = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) __lowerCamelCase = self.get_dummy_inputs(a , pil_image=a ) __lowerCamelCase = [ pipeline_inputs['''image'''], pipeline_inputs['''image'''], ] __lowerCamelCase = pipe(**a ) __lowerCamelCase = output.images __lowerCamelCase = self.get_dummy_inputs(a , pil_image=a ) __lowerCamelCase = [ tuple_pipeline_inputs['''image'''], tuple_pipeline_inputs['''image'''], ] __lowerCamelCase = pipe( **a , return_dict=a , )[0] __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) __lowerCamelCase = np.array( [ 0.99_97, 0.99_89, 0.00_08, 0.00_21, 0.99_60, 0.00_18, 0.00_14, 0.00_02, 0.99_33, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" __lowerCamelCase = torch.device('''cpu''' ) class a__ : lowerCamelCase : List[str] =1 __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**a ) __lowerCamelCase = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) __lowerCamelCase = torch.Generator(device=a ).manual_seed(0 ) __lowerCamelCase = pipe.decoder.dtype __lowerCamelCase = 1 __lowerCamelCase = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) __lowerCamelCase = pipe.prepare_latents( a , dtype=a , device=a , generator=a , latents=a , scheduler=DummyScheduler() ) __lowerCamelCase = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) __lowerCamelCase = pipe.prepare_latents( a , dtype=a , device=a , generator=a , latents=a , scheduler=DummyScheduler() ) __lowerCamelCase = self.get_dummy_inputs(a , pil_image=a ) __lowerCamelCase = pipe( **a , decoder_latents=a , super_res_latents=a ).images __lowerCamelCase = self.get_dummy_inputs(a , pil_image=a ) # Don't pass image, instead pass embedding __lowerCamelCase = pipeline_inputs.pop('''image''' ) __lowerCamelCase = pipe.image_encoder(a ).image_embeds __lowerCamelCase = pipe( **a , decoder_latents=a , super_res_latents=a , image_embeddings=a , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1e-4 @skip_mps def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" __lowerCamelCase = torch_device == '''cpu''' # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor __lowerCamelCase = 1e-2 self._test_attention_slicing_forward_pass( test_max_difference=a , expected_max_diff=a ) @skip_mps def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" __lowerCamelCase = torch_device == '''cpu''' __lowerCamelCase = True __lowerCamelCase = [ '''decoder_num_inference_steps''', '''super_res_num_inference_steps''', ] self._test_inference_batch_single_identical( test_max_difference=a , relax_max_difference=a , additional_params_copy_to_batched_inputs=a , ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" __lowerCamelCase = [ '''decoder_num_inference_steps''', '''super_res_num_inference_steps''', ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes __lowerCamelCase = [2, 3] self._test_inference_batch_consistent( batch_sizes=a , additional_params_copy_to_batched_inputs=a , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=a ) @skip_mps def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" return super().test_dict_tuple_outputs_equivalent() @skip_mps def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" return super().test_save_load_local() @skip_mps def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" return super().test_save_load_optional_components() @slow @require_torch_gpu class a__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" __lowerCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png''' ) __lowerCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/unclip/karlo_v1_alpha_cat_variation_fp16.npy''' ) __lowerCamelCase = UnCLIPImageVariationPipeline.from_pretrained( '''kakaobrain/karlo-v1-alpha-image-variations''' , torch_dtype=torch.floataa ) __lowerCamelCase = pipeline.to(a ) pipeline.set_progress_bar_config(disable=a ) __lowerCamelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __lowerCamelCase = pipeline( a , generator=a , output_type='''np''' , ) __lowerCamelCase = output.images[0] assert image.shape == (2_56, 2_56, 3) assert_mean_pixel_difference(a , a , 15 )
237
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase =logging.get_logger(__name__) __UpperCAmelCase ={ "microsoft/unispeech-sat-base-100h-libri-ft": ( "https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json" ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class a__ ( UpperCAmelCase__ ): lowerCamelCase : List[Any] ="unispeech-sat" def __init__( self : Dict , a : str=32 , a : Any=7_68 , a : Optional[Any]=12 , a : Optional[int]=12 , a : int=30_72 , a : int="gelu" , a : Dict=0.1 , a : Dict=0.1 , a : List[Any]=0.1 , a : Tuple=0.0 , a : Optional[Any]=0.0 , a : Tuple=0.1 , a : List[Any]=0.1 , a : str=0.02 , a : List[Any]=1e-5 , a : int="group" , a : Union[str, Any]="gelu" , a : Optional[int]=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , a : List[Any]=(5, 2, 2, 2, 2, 2, 2) , a : int=(10, 3, 3, 3, 3, 2, 2) , a : Optional[Any]=False , a : Any=1_28 , a : Tuple=16 , a : str=False , a : Optional[Any]=True , a : Dict=0.05 , a : List[Any]=10 , a : Any=2 , a : Optional[Any]=0.0 , a : Optional[Any]=10 , a : Any=0 , a : Any=3_20 , a : str=2 , a : List[str]=0.1 , a : List[str]=1_00 , a : List[str]=2_56 , a : str=2_56 , a : Dict=0.1 , a : Optional[Any]="mean" , a : str=False , a : Tuple=False , a : Optional[Any]=2_56 , a : int=(5_12, 5_12, 5_12, 5_12, 15_00) , a : int=(5, 3, 3, 1, 1) , a : Any=(1, 2, 3, 1, 1) , a : Union[str, Any]=5_12 , a : Optional[int]=0 , a : Optional[int]=1 , a : Optional[int]=2 , a : int=5_04 , **a : Dict , ): """simple docstring""" super().__init__(**a , pad_token_id=a , bos_token_id=a , eos_token_id=a ) __lowerCamelCase = hidden_size __lowerCamelCase = feat_extract_norm __lowerCamelCase = feat_extract_activation __lowerCamelCase = list(a ) __lowerCamelCase = list(a ) __lowerCamelCase = list(a ) __lowerCamelCase = conv_bias __lowerCamelCase = num_conv_pos_embeddings __lowerCamelCase = num_conv_pos_embedding_groups __lowerCamelCase = len(self.conv_dim ) __lowerCamelCase = num_hidden_layers __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_dropout __lowerCamelCase = attention_dropout __lowerCamelCase = activation_dropout __lowerCamelCase = feat_proj_dropout __lowerCamelCase = final_dropout __lowerCamelCase = layerdrop __lowerCamelCase = layer_norm_eps __lowerCamelCase = initializer_range __lowerCamelCase = vocab_size __lowerCamelCase = num_clusters __lowerCamelCase = do_stable_layer_norm __lowerCamelCase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowerCamelCase = apply_spec_augment __lowerCamelCase = mask_time_prob __lowerCamelCase = mask_time_length __lowerCamelCase = mask_time_min_masks __lowerCamelCase = mask_feature_prob __lowerCamelCase = mask_feature_length __lowerCamelCase = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __lowerCamelCase = num_codevectors_per_group __lowerCamelCase = num_codevector_groups __lowerCamelCase = contrastive_logits_temperature __lowerCamelCase = feat_quantizer_dropout __lowerCamelCase = num_negatives __lowerCamelCase = codevector_dim __lowerCamelCase = proj_codevector_dim __lowerCamelCase = diversity_loss_weight # ctc loss __lowerCamelCase = ctc_loss_reduction __lowerCamelCase = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. __lowerCamelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __lowerCamelCase = list(a ) __lowerCamelCase = list(a ) __lowerCamelCase = list(a ) __lowerCamelCase = xvector_output_dim @property def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
237
1
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py _snake_case : Optional[int] = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. _snake_case : List[str] = direct_transformers_import(PATH_TO_TRANSFORMERS) _snake_case : str = transformers.models.auto.configuration_auto.CONFIG_MAPPING _snake_case : str = { # used to compute the property `self.chunk_length` 'EncodecConfig': ['overlap'], # used as `self.bert_model = BertModel(config, ...)` 'DPRConfig': True, # not used in modeling files, but it's an important information 'FSMTConfig': ['langs'], # used internally in the configuration class file 'GPTNeoConfig': ['attention_types'], # used internally in the configuration class file 'EsmConfig': ['is_folding_model'], # used during training (despite we don't have training script for these models yet) 'Mask2FormerConfig': ['ignore_value'], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) 'OneFormerConfig': ['ignore_value', 'norm'], # used during preprocessing and collation, see `collating_graphormer.py` 'GraphormerConfig': ['spatial_pos_max'], # used internally in the configuration class file 'T5Config': ['feed_forward_proj'], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally 'MT5Config': ['feed_forward_proj', 'tokenizer_class'], 'UMT5Config': ['feed_forward_proj', 'tokenizer_class'], # used internally in the configuration class file 'LongT5Config': ['feed_forward_proj'], # used internally in the configuration class file 'SwitchTransformersConfig': ['feed_forward_proj'], # having default values other than `1e-5` - we can't fix them without breaking 'BioGptConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'GLPNConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'SegformerConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'CvtConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'PerceiverConfig': ['layer_norm_eps'], # used internally to calculate the feature size 'InformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate the feature size 'TimeSeriesTransformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate the feature size 'AutoformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate `mlp_dim` 'SamVisionConfig': ['mlp_ratio'], # For (head) training, but so far not implemented 'ClapAudioConfig': ['num_classes'], # Not used, but providing useful information to users 'SpeechT5HifiGanConfig': ['sampling_rate'], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { 'CLIPSegConfig': True, 'DeformableDetrConfig': True, 'DetaConfig': True, 'DinatConfig': True, 'DonutSwinConfig': True, 'EfficientFormerConfig': True, 'FSMTConfig': True, 'JukeboxConfig': True, 'LayoutLMv2Config': True, 'MaskFormerSwinConfig': True, 'MT5Config': True, 'NatConfig': True, 'OneFormerConfig': True, 'PerceiverConfig': True, 'RagConfig': True, 'SpeechT5Config': True, 'SwinConfig': True, 'Swin2SRConfig': True, 'Swinv2Config': True, 'SwitchTransformersConfig': True, 'TableTransformerConfig': True, 'TapasConfig': True, 'TransfoXLConfig': True, 'UniSpeechConfig': True, 'UniSpeechSatConfig': True, 'WavLMConfig': True, 'WhisperConfig': True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) 'JukeboxPriorConfig': True, # TODO: @Younes (for `is_decoder`) 'Pix2StructTextConfig': True, } ) def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : Any, lowerCAmelCase_ : int, lowerCAmelCase_ : Optional[int] ): __lowerCAmelCase = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( F"""config.{attribute}""" in modeling_source or F"""getattr(config, \"{attribute}\"""" in modeling_source or F"""getattr(self.config, \"{attribute}\"""" in modeling_source ): __lowerCAmelCase = True # Deal with multi-line cases elif ( re.search( RF"""getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"""", __a, ) is not None ): __lowerCAmelCase = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: __lowerCAmelCase = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files __lowerCAmelCase = [ 'bos_index', 'eos_index', 'pad_index', 'unk_index', 'mask_index', 'image_size', 'use_cache', 'out_features', 'out_indices', ] __lowerCAmelCase = ['encoder_no_repeat_ngram_size'] # Special cases to be allowed __lowerCAmelCase = True if not attribute_used: __lowerCAmelCase = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: __lowerCAmelCase = True elif attribute in ["tie_word_embeddings"] and default_value is False: __lowerCAmelCase = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: __lowerCAmelCase = True elif attribute.endswith('_token_id' ): __lowerCAmelCase = True # configuration class specific cases if not case_allowed: __lowerCAmelCase = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__, [] ) __lowerCAmelCase = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def a_ ( lowerCAmelCase_ : str ): __lowerCAmelCase = dict(inspect.signature(config_class.__init__ ).parameters ) __lowerCAmelCase = [x for x in list(signature.keys() ) if x not in ['self', 'kwargs']] __lowerCAmelCase = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass __lowerCAmelCase = {} if len(config_class.attribute_map ) > 0: __lowerCAmelCase = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files __lowerCAmelCase = inspect.getsourcefile(__a ) __lowerCAmelCase = os.path.dirname(__a ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. __lowerCAmelCase = [os.path.join(__a, __a ) for fn in os.listdir(__a ) if fn.startswith('modeling_' )] # Get the source code strings __lowerCAmelCase = [] for path in modeling_paths: if os.path.isfile(__a ): with open(__a ) as fp: modeling_sources.append(fp.read() ) __lowerCAmelCase = [] for config_param, default_value in zip(__a, __a ): # `attributes` here is all the variant names for `config_param` __lowerCAmelCase = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(__a, __a, __a, __a ): unused_attributes.append(attributes[0] ) return sorted(__a ) def a_ ( ): __lowerCAmelCase = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) __lowerCAmelCase = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ), lambda lowerCAmelCase_ : inspect.isclass(__a ) and issubclass(__a, __a ) and inspect.getmodule(__a ) == inspect.getmodule(_config_class ), ) ] for config_class in config_classes_in_module: __lowerCAmelCase = check_config_attributes_being_used(__a ) if len(__a ) > 0: __lowerCAmelCase = unused_attributes if len(__a ) > 0: __lowerCAmelCase = 'The following configuration classes contain unused attributes in the corresponding modeling files:\n' for name, attributes in configs_with_unused_attributes.items(): error += F"""{name}: {attributes}\n""" raise ValueError(__a ) if __name__ == "__main__": check_config_attributes()
284
'''simple docstring''' from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { """linear""": get_linear_schedule_with_warmup, """cosine""": get_cosine_schedule_with_warmup, """cosine_w_restarts""": get_cosine_with_hard_restarts_schedule_with_warmup, """polynomial""": get_polynomial_decay_schedule_with_warmup, """constant""": get_constant_schedule, """constant_w_warmup""": get_constant_schedule_with_warmup, } class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" def __init__( self : Optional[int] ,_a : Optional[Any]=None ,_a : Dict=None ,*_a : int ,**_a : str ): '''simple docstring''' super().__init__(*_a ,**_a ) if config is None: assert isinstance(self.model ,_a ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F""" {self.model.__class__}""" ) _a : List[Any] = self.model.config else: _a : Optional[int] = config _a : List[str] = data_args _a : List[Any] = self.config.tgt_vocab_size if isinstance(self.config ,_a ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F"""The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for""" ' padding..' ) if self.args.label_smoothing == 0: _a : List[str] = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss _a : Tuple = label_smoothed_nll_loss def __lowercase ( self : List[str] ,_a : int ): '''simple docstring''' if self.optimizer is None: _a : Union[str, Any] = ['bias', 'LayerNorm.weight'] _a : Tuple = [ { 'params': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], 'weight_decay': self.args.weight_decay, }, { 'params': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] _a : Optional[int] = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: _a : Any = Adafactor _a : Dict = {'scale_parameter': False, 'relative_step': False} else: _a : Union[str, Any] = AdamW _a : str = { 'betas': (self.args.adam_betaa, self.args.adam_betaa), 'eps': self.args.adam_epsilon, } _a : Union[str, Any] = self.args.learning_rate if self.sharded_ddp: _a : str = OSS( params=_a ,optim=_a ,**_a ,) else: _a : Tuple = optimizer_cls(_a ,**_a ) if self.lr_scheduler is None: _a : List[Any] = self._get_lr_scheduler(_a ) else: # ignoring --lr_scheduler logger.warning('scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.' ) def __lowercase ( self : List[Any] ,_a : List[Any] ): '''simple docstring''' _a : str = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": _a : int = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": _a : List[str] = schedule_func(self.optimizer ,num_warmup_steps=self.args.warmup_steps ) else: _a : Optional[int] = schedule_func( self.optimizer ,num_warmup_steps=self.args.warmup_steps ,num_training_steps=_a ) return scheduler def __lowercase ( self : Tuple ): '''simple docstring''' if isinstance(self.train_dataset ,torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size ,distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) ,) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def __lowercase ( self : Dict ,_a : Dict ,_a : Any ,_a : Dict ): '''simple docstring''' if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token _a : List[Any] = model(**_a ,use_cache=_a )[0] _a : Union[str, Any] = self.loss_fn(logits.view(-1 ,logits.shape[-1] ) ,labels.view(-1 ) ) else: # compute usual loss via models _a, _a : Union[str, Any] = model(**_a ,labels=_a ,use_cache=_a )[:2] else: # compute label smoothed loss _a : List[Any] = model(**_a ,use_cache=_a )[0] _a : Any = torch.nn.functional.log_softmax(_a ,dim=-1 ) _a, _a : List[str] = self.loss_fn(_a ,_a ,self.args.label_smoothing ,ignore_index=self.config.pad_token_id ) return loss, logits def __lowercase ( self : Optional[int] ,_a : Union[str, Any] ,_a : List[Any] ): '''simple docstring''' _a : Optional[int] = inputs.pop('labels' ) _a, _a : int = self._compute_loss(_a ,_a ,_a ) return loss def __lowercase ( self : Optional[Any] ,_a : nn.Module ,_a : Dict[str, Union[torch.Tensor, Any]] ,_a : bool ,_a : Optional[List[str]] = None ,): '''simple docstring''' _a : int = self._prepare_inputs(_a ) _a : Any = { 'max_length': self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, 'num_beams': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: _a : int = self.model.generate( inputs['input_ids'] ,attention_mask=inputs['attention_mask'] ,**_a ,) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: _a : int = self._pad_tensors_to_max_len(_a ,gen_kwargs['max_length'] ) _a : Union[str, Any] = inputs.pop('labels' ) with torch.no_grad(): # compute loss on predict data _a, _a : Optional[int] = self._compute_loss(_a ,_a ,_a ) _a : Optional[Any] = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) _a : Optional[Any] = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: _a : Dict = self._pad_tensors_to_max_len(_a ,gen_kwargs['max_length'] ) return (loss, logits, labels) def __lowercase ( self : str ,_a : Tuple ,_a : Tuple ): '''simple docstring''' _a : List[Any] = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( 'Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be' F""" padded to `max_length`={max_length}""" ) _a : int = pad_token_id * torch.ones( (tensor.shape[0], max_length) ,dtype=tensor.dtype ,device=tensor.device ) _a : Union[str, Any] = tensor return padded_tensor
271
0
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def lowerCamelCase ( lowerCAmelCase : List[str] , lowerCAmelCase : Dict=False ): """simple docstring""" __magic_name__ : Dict = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'module.blocks.{i}.norm1.weight', f'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'module.blocks.{i}.norm1.bias', f'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (f'module.blocks.{i}.attn.proj.weight', f'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((f'module.blocks.{i}.attn.proj.bias', f'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'module.blocks.{i}.norm2.weight', f'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'module.blocks.{i}.norm2.bias', f'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'module.blocks.{i}.mlp.fc1.weight', f'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'module.blocks.{i}.mlp.fc1.bias', f'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'module.blocks.{i}.mlp.fc2.weight', f'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'module.blocks.{i}.mlp.fc2.bias', f'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ('module.cls_token', 'vit.embeddings.cls_token'), ('module.patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('module.patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('module.pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('module.norm.weight', 'layernorm.weight'), ('module.norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __magic_name__ : Dict = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def lowerCamelCase ( lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : Any=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: __magic_name__ : int = '' else: __magic_name__ : int = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __magic_name__ : List[Any] = state_dict.pop(f'module.blocks.{i}.attn.qkv.weight' ) __magic_name__ : Dict = state_dict.pop(f'module.blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __magic_name__ : List[str] = in_proj_weight[ : config.hidden_size, : ] __magic_name__ : str = in_proj_bias[: config.hidden_size] __magic_name__ : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __magic_name__ : Any = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __magic_name__ : List[Any] = in_proj_weight[ -config.hidden_size :, : ] __magic_name__ : List[Any] = in_proj_bias[-config.hidden_size :] def lowerCamelCase ( lowerCAmelCase : Optional[int] ): """simple docstring""" __magic_name__ : List[Any] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" __magic_name__ : Tuple = [ 'module.fc.fc1.weight', 'module.fc.fc1.bias', 'module.fc.bn1.weight', 'module.fc.bn1.bias', 'module.fc.bn1.running_mean', 'module.fc.bn1.running_var', 'module.fc.bn1.num_batches_tracked', 'module.fc.fc2.weight', 'module.fc.fc2.bias', 'module.fc.bn2.weight', 'module.fc.bn2.bias', 'module.fc.bn2.running_mean', 'module.fc.bn2.running_var', 'module.fc.bn2.num_batches_tracked', 'module.fc.fc3.weight', 'module.fc.fc3.bias', ] for k in ignore_keys: state_dict.pop(lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Dict ): """simple docstring""" __magic_name__ : Dict = dct.pop(lowerCAmelCase ) __magic_name__ : List[Any] = val def lowerCamelCase ( lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any] ): """simple docstring""" __magic_name__ : List[str] = ViTMSNConfig() __magic_name__ : List[Any] = 1000 __magic_name__ : Optional[int] = 'datasets/huggingface/label-files' __magic_name__ : Optional[Any] = 'imagenet-1k-id2label.json' __magic_name__ : Any = json.load(open(hf_hub_download(lowerCAmelCase , lowerCAmelCase ) , 'r' ) ) __magic_name__ : Optional[int] = {int(lowerCAmelCase ): v for k, v in idalabel.items()} __magic_name__ : List[Any] = idalabel __magic_name__ : int = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: __magic_name__ : str = 384 __magic_name__ : Dict = 1536 __magic_name__ : str = 6 elif "l16" in checkpoint_url: __magic_name__ : Tuple = 1024 __magic_name__ : List[str] = 4096 __magic_name__ : Union[str, Any] = 24 __magic_name__ : Optional[int] = 16 __magic_name__ : List[str] = 0.1 elif "b4" in checkpoint_url: __magic_name__ : Optional[int] = 4 elif "l7" in checkpoint_url: __magic_name__ : Tuple = 7 __magic_name__ : str = 1024 __magic_name__ : int = 4096 __magic_name__ : List[str] = 24 __magic_name__ : Tuple = 16 __magic_name__ : Dict = 0.1 __magic_name__ : Optional[int] = ViTMSNModel(lowerCAmelCase ) __magic_name__ : Dict = torch.hub.load_state_dict_from_url(lowerCAmelCase , map_location='cpu' )['target_encoder'] __magic_name__ : Union[str, Any] = ViTImageProcessor(size=config.image_size ) remove_projection_head(lowerCAmelCase ) __magic_name__ : Any = create_rename_keys(lowerCAmelCase , base_model=lowerCAmelCase ) for src, dest in rename_keys: rename_key(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) read_in_q_k_v(lowerCAmelCase , lowerCAmelCase , base_model=lowerCAmelCase ) model.load_state_dict(lowerCAmelCase ) model.eval() __magic_name__ : Tuple = 'http://images.cocodataset.org/val2017/000000039769.jpg' __magic_name__ : Optional[Any] = Image.open(requests.get(lowerCAmelCase , stream=lowerCAmelCase ).raw ) __magic_name__ : Optional[Any] = ViTImageProcessor( size=config.image_size , image_mean=lowerCAmelCase , image_std=lowerCAmelCase ) __magic_name__ : Any = image_processor(images=lowerCAmelCase , return_tensors='pt' ) # forward pass torch.manual_seed(2 ) __magic_name__ : str = model(**lowerCAmelCase ) __magic_name__ : Tuple = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: __magic_name__ : Dict = torch.tensor([[-1.0915, -1.4876, -1.1809]] ) elif "b16" in checkpoint_url: __magic_name__ : Tuple = torch.tensor([[14.2889, -18.9045, 11.7281]] ) elif "l16" in checkpoint_url: __magic_name__ : str = torch.tensor([[41.5028, -22.8681, 45.6475]] ) elif "b4" in checkpoint_url: __magic_name__ : Union[str, Any] = torch.tensor([[-4.3868, 5.2932, -0.4137]] ) else: __magic_name__ : Optional[Any] = torch.tensor([[-0.1792, -0.6465, 2.4263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , lowerCAmelCase , atol=1e-4 ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCAmelCase ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": lowerCAmelCase :str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) lowerCAmelCase :str = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
275
'''simple docstring''' def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" if not isinstance(lowerCAmelCase , lowerCAmelCase ): __magic_name__ : int = f'Input value of [number={number}] must be an integer' raise TypeError(lowerCAmelCase ) if number < 0: return False __magic_name__ : Tuple = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
275
1
"""simple docstring""" _a : Union[str, Any] = '0.21.0' from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
44
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __UpperCAmelCase = logging.get_logger(__name__) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =["input_features", "is_longer"] def __init__( self , _A=64 , _A=48000 , _A=480 , _A=10 , _A=1024 , _A=0.0 , _A=False , _A = 0 , _A = 14000 , _A = None , _A = "fusion" , _A = "repeatpad" , **_A , ) -> Dict: super().__init__( feature_size=_A , sampling_rate=_A , padding_value=_A , return_attention_mask=_A , **_A , ) SCREAMING_SNAKE_CASE_ = top_db SCREAMING_SNAKE_CASE_ = truncation SCREAMING_SNAKE_CASE_ = padding SCREAMING_SNAKE_CASE_ = fft_window_size SCREAMING_SNAKE_CASE_ = (fft_window_size >> 1) + 1 SCREAMING_SNAKE_CASE_ = hop_length SCREAMING_SNAKE_CASE_ = max_length_s SCREAMING_SNAKE_CASE_ = max_length_s * sampling_rate SCREAMING_SNAKE_CASE_ = sampling_rate SCREAMING_SNAKE_CASE_ = frequency_min SCREAMING_SNAKE_CASE_ = frequency_max SCREAMING_SNAKE_CASE_ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_A , min_frequency=_A , max_frequency=_A , sampling_rate=_A , norm=_A , mel_scale='''htk''' , ) SCREAMING_SNAKE_CASE_ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_A , min_frequency=_A , max_frequency=_A , sampling_rate=_A , norm='''slaney''' , mel_scale='''slaney''' , ) def _UpperCamelCase ( self ) -> Dict[str, Any]: SCREAMING_SNAKE_CASE_ = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE_ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def _UpperCamelCase ( self , _A , _A = None ) -> np.ndarray: SCREAMING_SNAKE_CASE_ = spectrogram( _A , window_function(self.fft_window_size , '''hann''' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=_A , log_mel='''dB''' , ) return log_mel_spectrogram.T def _UpperCamelCase ( self , _A , _A , _A ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk SCREAMING_SNAKE_CASE_ = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk SCREAMING_SNAKE_CASE_ = [0] # randomly choose index for each part SCREAMING_SNAKE_CASE_ = np.random.choice(ranges[0] ) SCREAMING_SNAKE_CASE_ = np.random.choice(ranges[1] ) SCREAMING_SNAKE_CASE_ = np.random.choice(ranges[2] ) SCREAMING_SNAKE_CASE_ = mel[idx_front : idx_front + chunk_frames, :] SCREAMING_SNAKE_CASE_ = mel[idx_middle : idx_middle + chunk_frames, :] SCREAMING_SNAKE_CASE_ = mel[idx_back : idx_back + chunk_frames, :] SCREAMING_SNAKE_CASE_ = torch.tensor(mel[None, None, :] ) SCREAMING_SNAKE_CASE_ = torch.nn.functional.interpolate( _A , size=[chunk_frames, 64] , mode='''bilinear''' , align_corners=_A ) SCREAMING_SNAKE_CASE_ = mel_shrink[0][0].numpy() SCREAMING_SNAKE_CASE_ = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def _UpperCamelCase ( self , _A , _A , _A , _A ) -> np.array: if waveform.shape[0] > max_length: if truncation == "rand_trunc": SCREAMING_SNAKE_CASE_ = True # random crop to max_length (for compatibility) -> this should be handled by self.pad SCREAMING_SNAKE_CASE_ = len(_A ) - max_length SCREAMING_SNAKE_CASE_ = np.random.randint(0 , overflow + 1 ) SCREAMING_SNAKE_CASE_ = waveform[idx : idx + max_length] SCREAMING_SNAKE_CASE_ = self._np_extract_fbank_features(_A , self.mel_filters_slaney )[None, :] elif truncation == "fusion": SCREAMING_SNAKE_CASE_ = self._np_extract_fbank_features(_A , self.mel_filters ) SCREAMING_SNAKE_CASE_ = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed SCREAMING_SNAKE_CASE_ = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. SCREAMING_SNAKE_CASE_ = np.stack([mel, mel, mel, mel] , axis=0 ) SCREAMING_SNAKE_CASE_ = False else: SCREAMING_SNAKE_CASE_ = self._random_mel_fusion(_A , _A , _A ) SCREAMING_SNAKE_CASE_ = True else: raise NotImplementedError(F'''data_truncating {truncation} not implemented''' ) else: SCREAMING_SNAKE_CASE_ = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": SCREAMING_SNAKE_CASE_ = int(max_length / len(_A ) ) SCREAMING_SNAKE_CASE_ = np.stack(np.tile(_A , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": SCREAMING_SNAKE_CASE_ = int(max_length / len(_A ) ) SCREAMING_SNAKE_CASE_ = np.stack(np.tile(_A , _A ) ) SCREAMING_SNAKE_CASE_ = np.pad(_A , (0, max_length - waveform.shape[0]) , mode='''constant''' , constant_values=0 ) if truncation == "fusion": SCREAMING_SNAKE_CASE_ = self._np_extract_fbank_features(_A , self.mel_filters ) SCREAMING_SNAKE_CASE_ = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: SCREAMING_SNAKE_CASE_ = self._np_extract_fbank_features(_A , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self , _A , _A = None , _A = None , _A = None , _A = None , _A = None , **_A , ) -> BatchFeature: SCREAMING_SNAKE_CASE_ = truncation if truncation is not None else self.truncation SCREAMING_SNAKE_CASE_ = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) SCREAMING_SNAKE_CASE_ = isinstance(_A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) SCREAMING_SNAKE_CASE_ = is_batched_numpy or ( isinstance(_A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: SCREAMING_SNAKE_CASE_ = [np.asarray(_A , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_A , np.ndarray ): SCREAMING_SNAKE_CASE_ = np.asarray(_A , dtype=np.floataa ) elif isinstance(_A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE_ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: SCREAMING_SNAKE_CASE_ = [np.asarray(_A )] # convert to mel spectrogram, truncate and pad if needed. SCREAMING_SNAKE_CASE_ = [ self._get_input_mel(_A , max_length if max_length else self.nb_max_samples , _A , _A ) for waveform in raw_speech ] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] for mel, longer in padded_inputs: input_mel.append(_A ) is_longer.append(_A ) if truncation == "fusion" and sum(_A ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer SCREAMING_SNAKE_CASE_ = np.random.randint(0 , len(_A ) ) SCREAMING_SNAKE_CASE_ = True if isinstance(input_mel[0] , _A ): SCREAMING_SNAKE_CASE_ = [np.asarray(_A , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool SCREAMING_SNAKE_CASE_ = [[longer] for longer in is_longer] SCREAMING_SNAKE_CASE_ = {'''input_features''': input_mel, '''is_longer''': is_longer} SCREAMING_SNAKE_CASE_ = BatchFeature(_A ) if return_tensors is not None: SCREAMING_SNAKE_CASE_ = input_features.convert_to_tensors(_A ) return input_features
299
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def lowerCAmelCase_ (lowerCAmelCase__: List[Any] ): """simple docstring""" return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def lowerCAmelCase_ (lowerCAmelCase__: int ): """simple docstring""" UpperCAmelCase_: Tuple = create_tensor(lowerCAmelCase__ ) UpperCAmelCase_: List[Any] = gather(lowerCAmelCase__ ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def lowerCAmelCase_ (lowerCAmelCase__: int ): """simple docstring""" UpperCAmelCase_: Union[str, Any] = [state.process_index] UpperCAmelCase_: Optional[int] = gather_object(lowerCAmelCase__ ) assert len(lowerCAmelCase__ ) == state.num_processes, F'{gathered_obj}, {len(lowerCAmelCase__ )} != {state.num_processes}' assert gathered_obj == list(range(state.num_processes ) ), F'{gathered_obj} != {list(range(state.num_processes ) )}' def lowerCAmelCase_ (lowerCAmelCase__: int ): """simple docstring""" UpperCAmelCase_: Tuple = create_tensor(lowerCAmelCase__ ) UpperCAmelCase_: Any = broadcast(lowerCAmelCase__ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def lowerCAmelCase_ (lowerCAmelCase__: Optional[int] ): """simple docstring""" if state.is_main_process: UpperCAmelCase_: List[Any] = torch.arange(state.num_processes + 1 ).to(state.device ) else: UpperCAmelCase_: List[Any] = torch.arange(state.num_processes ).to(state.device ) UpperCAmelCase_: Optional[int] = pad_across_processes(lowerCAmelCase__ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def lowerCAmelCase_ (lowerCAmelCase__: Optional[int] ): """simple docstring""" if state.num_processes != 2: return UpperCAmelCase_: Dict = create_tensor(lowerCAmelCase__ ) UpperCAmelCase_: int = reduce(lowerCAmelCase__ , """sum""" ) UpperCAmelCase_: Optional[Any] = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ ), F'{reduced_tensor} != {truth_tensor}' def lowerCAmelCase_ (lowerCAmelCase__: List[str] ): """simple docstring""" if state.num_processes != 2: return UpperCAmelCase_: Optional[int] = create_tensor(lowerCAmelCase__ ) UpperCAmelCase_: Tuple = reduce(lowerCAmelCase__ , """mean""" ) UpperCAmelCase_: Optional[int] = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ ), F'{reduced_tensor} != {truth_tensor}' def lowerCAmelCase_ (lowerCAmelCase__: Union[str, Any] ): """simple docstring""" main() def lowerCAmelCase_ (): """simple docstring""" UpperCAmelCase_: Union[str, Any] = PartialState() state.print(F'State: {state}' ) state.print("""testing gather""" ) test_gather(lowerCAmelCase__ ) state.print("""testing gather_object""" ) test_gather_object(lowerCAmelCase__ ) state.print("""testing broadcast""" ) test_broadcast(lowerCAmelCase__ ) state.print("""testing pad_across_processes""" ) test_pad_across_processes(lowerCAmelCase__ ) state.print("""testing reduce_sum""" ) test_reduce_sum(lowerCAmelCase__ ) state.print("""testing reduce_mean""" ) test_reduce_mean(lowerCAmelCase__ ) if __name__ == "__main__": main()
82
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets a : Dict = datasets.logging.get_logger(__name__) a : Any = '\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric",\n author = "Moosavi, Nafise Sadat and\n Strube, Michael",\n booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",\n month = aug,\n year = "2016",\n address = "Berlin, Germany",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/P16-1060",\n doi = "10.18653/v1/P16-1060",\n pages = "632--642",\n}\n\n' a : int = '\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n' a : List[Any] = '\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting \'keep_singletons=False\', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n \'mentions\': mentions\n \'muc\': MUC metric [Vilain et al, 1995]\n \'bcub\': B-cubed [Bagga and Baldwin, 1998]\n \'ceafe\': CEAFe [Luo et al., 2005]\n \'lea\': LEA [Moosavi and Strube, 2016]\n \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric(\'coval\')\n >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\',\n ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\',\n ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\',\n ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\',\n ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\',\n ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0}\n' def lowerCAmelCase_ (lowerCAmelCase__: List[str] , lowerCAmelCase__: List[Any] , lowerCAmelCase__: Dict=False , lowerCAmelCase__: List[Any]=False , lowerCAmelCase__: Any=True , lowerCAmelCase__: Union[str, Any]=False , lowerCAmelCase__: List[Any]="dummy_doc" ): """simple docstring""" UpperCAmelCase_: str = {doc: key_lines} UpperCAmelCase_: str = {doc: sys_lines} UpperCAmelCase_: Optional[Any] = {} UpperCAmelCase_: Optional[int] = 0 UpperCAmelCase_: Optional[Any] = 0 UpperCAmelCase_: str = 0 UpperCAmelCase_: List[Any] = 0 UpperCAmelCase_: Tuple = 0 UpperCAmelCase_: Union[str, Any] = 0 UpperCAmelCase_ , UpperCAmelCase_: List[str] = reader.get_doc_mentions(lowerCAmelCase__ , key_doc_lines[doc] , lowerCAmelCase__ ) key_singletons_num += singletons_num if NP_only or min_span: UpperCAmelCase_: List[str] = reader.set_annotated_parse_trees(lowerCAmelCase__ , key_doc_lines[doc] , lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ , UpperCAmelCase_: Any = reader.get_doc_mentions(lowerCAmelCase__ , sys_doc_lines[doc] , lowerCAmelCase__ ) sys_singletons_num += singletons_num if NP_only or min_span: UpperCAmelCase_: Tuple = reader.set_annotated_parse_trees(lowerCAmelCase__ , key_doc_lines[doc] , lowerCAmelCase__ , lowerCAmelCase__ ) if remove_nested: UpperCAmelCase_ , UpperCAmelCase_: str = reader.remove_nested_coref_mentions(lowerCAmelCase__ , lowerCAmelCase__ ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters UpperCAmelCase_ , UpperCAmelCase_: Union[str, Any] = reader.remove_nested_coref_mentions(lowerCAmelCase__ , lowerCAmelCase__ ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters UpperCAmelCase_: Tuple = reader.get_mention_assignments(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_: Dict = reader.get_mention_assignments(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_: Optional[Any] = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( """Number of removed nested coreferring mentions in the key """ F'annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}' ) logger.info( """Number of resulting singleton clusters in the key """ F'annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}' ) if not keep_singletons: logger.info( F'{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ' """files, respectively""" ) return doc_coref_infos def lowerCAmelCase_ (lowerCAmelCase__: Any , lowerCAmelCase__: Dict , lowerCAmelCase__: int , lowerCAmelCase__: Any , lowerCAmelCase__: Optional[int] , lowerCAmelCase__: Optional[Any] , lowerCAmelCase__: int ): """simple docstring""" UpperCAmelCase_: Tuple = get_coref_infos(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_: Any = {} UpperCAmelCase_: Tuple = 0 UpperCAmelCase_: Optional[Any] = 0 for name, metric in metrics: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_: Dict = evaluator.evaluate_documents(lowerCAmelCase__ , lowerCAmelCase__ , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F'{name}/recall': recall, F'{name}/precision': precision, F'{name}/f1': fa} ) logger.info( name.ljust(1_0 ) , F'Recall: {recall * 1_0_0:.2f}' , F' Precision: {precision * 1_0_0:.2f}' , F' F1: {fa * 1_0_0:.2f}' , ) if conll_subparts_num == 3: UpperCAmelCase_: List[str] = (conll / 3) * 1_0_0 logger.info(F'CoNLL score: {conll:.2f}' ) output_scores.update({"""conll_score""": conll} ) return output_scores def lowerCAmelCase_ (lowerCAmelCase__: Optional[Any] ): """simple docstring""" UpperCAmelCase_: Dict = False for line in key_lines: if not line.startswith("""#""" ): if len(line.split() ) > 6: UpperCAmelCase_: Any = line.split()[5] if not parse_col == "-": UpperCAmelCase_: List[str] = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): def __snake_case (self ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" ) ), """references""": datasets.Sequence(datasets.Value("""string""" ) ), } ), codebase_urls=["""https://github.com/ns-moosavi/coval"""], reference_urls=[ """https://github.com/ns-moosavi/coval""", """https://www.aclweb.org/anthology/P16-1060""", """http://www.conll.cemantix.org/2012/data.html""", ], ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=False ) -> int: UpperCAmelCase_: Tuple = [ ("""mentions""", evaluator.mentions), ("""muc""", evaluator.muc), ("""bcub""", evaluator.b_cubed), ("""ceafe""", evaluator.ceafe), ("""lea""", evaluator.lea), ] if min_span: UpperCAmelCase_: str = util.check_gold_parse_annotation(SCREAMING_SNAKE_CASE_ ) if not has_gold_parse: raise NotImplementedError("""References should have gold parse annotation to use 'min_span'.""" ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" UpperCAmelCase_: Tuple = evaluate( key_lines=SCREAMING_SNAKE_CASE_, sys_lines=SCREAMING_SNAKE_CASE_, metrics=SCREAMING_SNAKE_CASE_, NP_only=SCREAMING_SNAKE_CASE_, remove_nested=SCREAMING_SNAKE_CASE_, keep_singletons=SCREAMING_SNAKE_CASE_, min_span=SCREAMING_SNAKE_CASE_, ) return score
82
1
"""simple docstring""" from __future__ import annotations import os from collections.abc import Mapping lowercase__ = tuple[int, int] class __snake_case : def __init__( self , lowercase , lowercase) -> None: '''simple docstring''' a__: set[int] = vertices a__: dict[EdgeT, int] = { (min(lowercase), max(lowercase)): weight for edge, weight in edges.items() } def lowerCamelCase_ ( self , lowercase , lowercase) -> None: '''simple docstring''' self.vertices.add(edge[0]) self.vertices.add(edge[1]) a__: Union[str, Any] = weight def lowerCamelCase_ ( self) -> Graph: '''simple docstring''' a__: Graph = Graph({min(self.vertices)} , {}) a__: EdgeT a__: int a__: EdgeT a__: int while len(subgraph.vertices) < len(self.vertices): a__: Union[str, Any] = max(self.edges.values()) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: a__: List[str] = edge a__: Tuple = weight subgraph.add_edge(lowercase , lowercase) return subgraph def __a ( _SCREAMING_SNAKE_CASE = "p107_network.txt" ) ->int: a__: str = os.path.abspath(os.path.dirname(_SCREAMING_SNAKE_CASE ) ) a__: str = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a__: dict[EdgeT, int] = {} a__: list[str] a__: int a__: int with open(_SCREAMING_SNAKE_CASE ) as f: a__: Any = f.read().strip().split('\n' ) a__: str = [line.split(',' ) for line in data] for edgea in range(1 , len(_SCREAMING_SNAKE_CASE ) ): for edgea in range(_SCREAMING_SNAKE_CASE ): if adjaceny_matrix[edgea][edgea] != "-": a__: List[str] = int(adjaceny_matrix[edgea][edgea] ) a__: Graph = Graph(set(range(len(_SCREAMING_SNAKE_CASE ) ) ) , _SCREAMING_SNAKE_CASE ) a__: Graph = graph.prims_algorithm() a__: int = sum(graph.edges.values() ) a__: int = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(f"{solution() = }")
290
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __snake_case ( __lowerCAmelCase , unittest.TestCase ): a__ = KandinskyInpaintPipeline a__ = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] a__ = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] a__ = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] a__ = False @property def lowerCamelCase_ ( self) -> Optional[int]: '''simple docstring''' return 32 @property def lowerCamelCase_ ( self) -> Tuple: '''simple docstring''' return 32 @property def lowerCamelCase_ ( self) -> Dict: '''simple docstring''' return self.time_input_dim @property def lowerCamelCase_ ( self) -> Dict: '''simple docstring''' return self.time_input_dim * 4 @property def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' return 1_00 @property def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' a__: Optional[int] = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base') return tokenizer @property def lowerCamelCase_ ( self) -> Any: '''simple docstring''' torch.manual_seed(0) a__: Dict = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) a__: Optional[Any] = MultilingualCLIP(lowercase) a__: int = text_encoder.eval() return text_encoder @property def lowerCamelCase_ ( self) -> List[str]: '''simple docstring''' torch.manual_seed(0) a__: Any = { 'in_channels': 9, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'text_image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'text_image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } a__: str = UNetaDConditionModel(**lowercase) return model @property def lowerCamelCase_ ( self) -> Union[str, Any]: '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' torch.manual_seed(0) a__: Any = VQModel(**self.dummy_movq_kwargs) return model def lowerCamelCase_ ( self) -> Any: '''simple docstring''' a__: Dict = self.dummy_text_encoder a__: int = self.dummy_tokenizer a__: str = self.dummy_unet a__: Any = self.dummy_movq a__: Tuple = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule='linear' , beta_start=0.00085 , beta_end=0.012 , clip_sample=lowercase , set_alpha_to_one=lowercase , steps_offset=1 , prediction_type='epsilon' , thresholding=lowercase , ) a__: Tuple = { 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def lowerCamelCase_ ( self , lowercase , lowercase=0) -> Any: '''simple docstring''' a__: List[Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(lowercase)).to(lowercase) a__: int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1)).to(lowercase) # create init_image a__: Optional[int] = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowercase)).to(lowercase) a__: int = image.cpu().permute(0 , 2 , 3 , 1)[0] a__: Optional[int] = Image.fromarray(np.uinta(lowercase)).convert('RGB').resize((2_56, 2_56)) # create mask a__: Tuple = np.ones((64, 64) , dtype=np.floataa) a__: Optional[Any] = 0 if str(lowercase).startswith('mps'): a__: str = torch.manual_seed(lowercase) else: a__: Dict = torch.Generator(device=lowercase).manual_seed(lowercase) a__: Optional[int] = { 'prompt': 'horse', 'image': init_image, 'mask_image': mask, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 2, 'guidance_scale': 4.0, 'output_type': 'np', } return inputs def lowerCamelCase_ ( self) -> str: '''simple docstring''' a__: Optional[Any] = 'cpu' a__: List[Any] = self.get_dummy_components() a__: Optional[Any] = self.pipeline_class(**lowercase) a__: str = pipe.to(lowercase) pipe.set_progress_bar_config(disable=lowercase) a__: Optional[int] = pipe(**self.get_dummy_inputs(lowercase)) a__: List[str] = output.images a__: int = pipe( **self.get_dummy_inputs(lowercase) , return_dict=lowercase , )[0] a__: Optional[Any] = image[0, -3:, -3:, -1] a__: List[Any] = image_from_tuple[0, -3:, -3:, -1] print(f'image.shape {image.shape}') assert image.shape == (1, 64, 64, 3) a__: str = np.array( [0.8326919, 0.73790467, 0.20918581, 0.9309612, 0.5511791, 0.43713328, 0.5513321, 0.49922934, 0.59497786]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def lowerCamelCase_ ( self) -> str: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): def lowerCamelCase_ ( self) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self) -> Dict: '''simple docstring''' a__: List[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy') a__: int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png') a__: Union[str, Any] = np.ones((7_68, 7_68) , dtype=np.floataa) a__: int = 0 a__: Optional[int] = 'a hat' a__: int = KandinskyPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-prior' , torch_dtype=torch.floataa) pipe_prior.to(lowercase) a__: Any = KandinskyInpaintPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-inpaint' , torch_dtype=torch.floataa) a__: Optional[Any] = pipeline.to(lowercase) pipeline.set_progress_bar_config(disable=lowercase) a__: Dict = torch.Generator(device='cpu').manual_seed(0) a__ , a__: Optional[Any] = pipe_prior( lowercase , generator=lowercase , num_inference_steps=5 , negative_prompt='' , ).to_tuple() a__: List[str] = pipeline( lowercase , image=lowercase , mask_image=lowercase , image_embeds=lowercase , negative_image_embeds=lowercase , generator=lowercase , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type='np' , ) a__: str = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(lowercase , lowercase)
290
1
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format='''%(message)s''') def __lowercase ( _UpperCamelCase ) ->np.ndarray: """simple docstring""" return input_array.reshape((input_array.size, 1) ) def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) ->np.ndarray: """simple docstring""" lowercase : Optional[Any] = np.nan for i in range(_UpperCamelCase ): lowercase : str = features[:, labels == i] lowercase : Dict = data.mean(1 ) # Centralize the data of class i lowercase : List[Any] = data - column_reshape(_UpperCamelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(_UpperCamelCase, centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) lowercase : Optional[Any] = np.dot(_UpperCamelCase, centered_data.T ) return covariance_sum / features.shape[1] def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) ->np.ndarray: """simple docstring""" lowercase : Optional[int] = features.mean(1 ) lowercase : Dict = np.nan for i in range(_UpperCamelCase ): lowercase : int = features[:, labels == i] lowercase : Union[str, Any] = data.shape[1] lowercase : Union[str, Any] = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(_UpperCamelCase ) - column_reshape(_UpperCamelCase ), (column_reshape(_UpperCamelCase ) - column_reshape(_UpperCamelCase )).T, ) else: # If covariance_sum is np.nan (i.e. first loop) lowercase : Any = device_data * np.dot( column_reshape(_UpperCamelCase ) - column_reshape(_UpperCamelCase ), (column_reshape(_UpperCamelCase ) - column_reshape(_UpperCamelCase )).T, ) return covariance_sum / features.shape[1] def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->np.ndarray: """simple docstring""" if features.any(): lowercase : Dict = features.mean(1 ) # Center the dataset lowercase : List[str] = features - np.reshape(_UpperCamelCase, (data_mean.size, 1) ) lowercase : str = np.dot(_UpperCamelCase, centered_data.T ) / features.shape[1] lowercase : int = np.linalg.eigh(_UpperCamelCase ) # Take all the columns in the reverse order (-1), and then takes only the first lowercase : Any = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space lowercase : Optional[Any] = np.dot(filtered_eigenvectors.T, _UpperCamelCase ) logging.info('''Principal Component Analysis computed''' ) return projected_data else: logging.basicConfig(level=logging.ERROR, format='''%(message)s''', force=_UpperCamelCase ) logging.error('''Dataset empty''' ) raise AssertionError def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) ->np.ndarray: """simple docstring""" assert classes > dimensions # Check if features have been already loaded if features.any: lowercase : List[Any] = eigh( covariance_between_classes(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase ), covariance_within_classes(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase ), ) lowercase : str = eigenvectors[:, ::-1][:, :dimensions] lowercase : List[Any] = np.linalg.svd(_UpperCamelCase ) lowercase : Dict = svd_matrix[:, 0:dimensions] lowercase : Dict = np.dot(filtered_svd_matrix.T, _UpperCamelCase ) logging.info('''Linear Discriminant Analysis computed''' ) return projected_data else: logging.basicConfig(level=logging.ERROR, format='''%(message)s''', force=_UpperCamelCase ) logging.error('''Dataset empty''' ) raise AssertionError def __lowercase ( ) ->None: """simple docstring""" lowercase : Optional[int] = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) lowercase : str = np.array([0, 0, 0, 1, 1] ) lowercase : Any = 2 lowercase : int = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(_UpperCamelCase ) as error_info: lowercase : Tuple = linear_discriminant_analysis( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) if isinstance(_UpperCamelCase, np.ndarray ): raise AssertionError( '''Did not raise AssertionError for dimensions > classes''' ) assert error_info.type is AssertionError def __lowercase ( ) ->None: """simple docstring""" lowercase : Optional[int] = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) lowercase : List[Any] = 2 lowercase : Tuple = np.array([[6.9_2_8_2_0_3_2_3, 8.6_6_0_2_5_4_0_4, 10.39230485], [3.0, 3.0, 3.0]] ) with pytest.raises(_UpperCamelCase ) as error_info: lowercase : Optional[int] = principal_component_analysis(_UpperCamelCase, _UpperCamelCase ) if not np.allclose(_UpperCamelCase, _UpperCamelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
357
# flake8: noqa # Lint as: python3 __a = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
173
0
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class __A( a ): snake_case_ = (DDPMScheduler,) def SCREAMING_SNAKE_CASE_ ( self , **_snake_case ) -> Any: '''simple docstring''' __a = { '''num_train_timesteps''': 1_000, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**_snake_case ) return config def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_snake_case , beta_end=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' self.check_over_configs(thresholding=_snake_case ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_snake_case , prediction_type=_snake_case , sample_max_value=_snake_case , ) def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' for t in [0, 500, 999]: self.check_over_forward(time_step=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' __a = self.scheduler_classes[0] __a = self.get_scheduler_config() __a = scheduler_class(**_snake_case ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5 def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = self.scheduler_classes[0] __a = self.get_scheduler_config() __a = scheduler_class(**_snake_case ) __a = len(_snake_case ) __a = self.dummy_model() __a = self.dummy_sample_deter __a = torch.manual_seed(0 ) for t in reversed(range(_snake_case ) ): # 1. predict noise residual __a = model(_snake_case , _snake_case ) # 2. predict previous mean of sample x_t-1 __a = scheduler.step(_snake_case , _snake_case , _snake_case , generator=_snake_case ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __a = pred_prev_sample __a = torch.sum(torch.abs(_snake_case ) ) __a = torch.mean(torch.abs(_snake_case ) ) assert abs(result_sum.item() - 258.9606 ) < 1E-2 assert abs(result_mean.item() - 0.3372 ) < 1E-3 def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' __a = self.scheduler_classes[0] __a = self.get_scheduler_config(prediction_type='''v_prediction''' ) __a = scheduler_class(**_snake_case ) __a = len(_snake_case ) __a = self.dummy_model() __a = self.dummy_sample_deter __a = torch.manual_seed(0 ) for t in reversed(range(_snake_case ) ): # 1. predict noise residual __a = model(_snake_case , _snake_case ) # 2. predict previous mean of sample x_t-1 __a = scheduler.step(_snake_case , _snake_case , _snake_case , generator=_snake_case ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __a = pred_prev_sample __a = torch.sum(torch.abs(_snake_case ) ) __a = torch.mean(torch.abs(_snake_case ) ) assert abs(result_sum.item() - 202.0296 ) < 1E-2 assert abs(result_mean.item() - 0.2631 ) < 1E-3 def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = self.scheduler_classes[0] __a = self.get_scheduler_config() __a = scheduler_class(**_snake_case ) __a = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_snake_case ) __a = scheduler.timesteps for i, timestep in enumerate(_snake_case ): if i == len(_snake_case ) - 1: __a = -1 else: __a = timesteps[i + 1] __a = scheduler.previous_timestep(_snake_case ) __a = prev_t.item() self.assertEqual(_snake_case , _snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' __a = self.scheduler_classes[0] __a = self.get_scheduler_config() __a = scheduler_class(**_snake_case ) __a = [100, 87, 50, 51, 0] with self.assertRaises(_snake_case , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' __a = self.scheduler_classes[0] __a = self.get_scheduler_config() __a = scheduler_class(**_snake_case ) __a = [100, 87, 50, 1, 0] __a = len(_snake_case ) with self.assertRaises(_snake_case , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=_snake_case , timesteps=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a = self.scheduler_classes[0] __a = self.get_scheduler_config() __a = scheduler_class(**_snake_case ) __a = [scheduler.config.num_train_timesteps] with self.assertRaises( _snake_case , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=_snake_case )
6
import random from .binary_exp_mod import bin_exp_mod def lowerCamelCase__ ( a , a=10_00 ) -> Optional[int]: if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd _A: List[Any] = n - 1 _A: Dict = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) _A: List[str] = 0 while count < prec: _A: Optional[int] = random.randint(2 , n - 1 ) _A: Union[str, Any] = bin_exp_mod(a , a , a ) if b != 1: _A: Optional[Any] = True for _ in range(a ): if b == n - 1: _A: int = False break _A: Optional[Any] = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": UpperCAmelCase__ : Dict = abs(int(input('Enter bound : ').strip())) print('Here\'s the list of primes:') print(', '.join(str(i) for i in range(n + 1) if is_prime_big(i)))
121
0
'''simple docstring''' import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase__ ( _A , _A , _A ): def get_masked_lm_array(_A ): a : Optional[Any] = f"""masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE""" a : List[str] = tf.train.load_variable(UpperCAmelCase__ , UpperCAmelCase__ ) if "kernel" in name: a : str = array.transpose() return torch.from_numpy(UpperCAmelCase__ ) def get_encoder_array(_A ): a : Dict = f"""encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE""" a : Tuple = tf.train.load_variable(UpperCAmelCase__ , UpperCAmelCase__ ) if "kernel" in name: a : Optional[int] = array.transpose() return torch.from_numpy(UpperCAmelCase__ ) def get_encoder_layer_array(_A , _A ): a : Optional[Any] = f"""encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE""" a : Dict = tf.train.load_variable(UpperCAmelCase__ , UpperCAmelCase__ ) if "kernel" in name: a : str = array.transpose() return torch.from_numpy(UpperCAmelCase__ ) def get_encoder_attention_layer_array(_A , _A , _A ): a : str = f"""encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE""" a : Tuple = tf.train.load_variable(UpperCAmelCase__ , UpperCAmelCase__ ) a : Optional[Any] = array.reshape(UpperCAmelCase__ ) if "kernel" in name: a : Optional[int] = array.transpose() return torch.from_numpy(UpperCAmelCase__ ) print(f"""Loading model based on config from {config_path}...""" ) a : Optional[Any] = BertConfig.from_json_file(UpperCAmelCase__ ) a : List[Any] = BertForMaskedLM(UpperCAmelCase__ ) # Layers for layer_index in range(0 , config.num_hidden_layers ): a : BertLayer = model.bert.encoder.layer[layer_index] # Self-attention a : BertSelfAttention = layer.attention.self a : Union[str, Any] = get_encoder_attention_layer_array( UpperCAmelCase__ , '_query_dense/kernel' , self_attn.query.weight.data.shape ) a : str = get_encoder_attention_layer_array( UpperCAmelCase__ , '_query_dense/bias' , self_attn.query.bias.data.shape ) a : List[Any] = get_encoder_attention_layer_array( UpperCAmelCase__ , '_key_dense/kernel' , self_attn.key.weight.data.shape ) a : str = get_encoder_attention_layer_array( UpperCAmelCase__ , '_key_dense/bias' , self_attn.key.bias.data.shape ) a : Tuple = get_encoder_attention_layer_array( UpperCAmelCase__ , '_value_dense/kernel' , self_attn.value.weight.data.shape ) a : str = get_encoder_attention_layer_array( UpperCAmelCase__ , '_value_dense/bias' , self_attn.value.bias.data.shape ) # Self-attention Output a : BertSelfOutput = layer.attention.output a : List[Any] = get_encoder_attention_layer_array( UpperCAmelCase__ , '_output_dense/kernel' , self_output.dense.weight.data.shape ) a : Union[str, Any] = get_encoder_attention_layer_array( UpperCAmelCase__ , '_output_dense/bias' , self_output.dense.bias.data.shape ) a : int = get_encoder_layer_array(UpperCAmelCase__ , '_attention_layer_norm/gamma' ) a : Optional[Any] = get_encoder_layer_array(UpperCAmelCase__ , '_attention_layer_norm/beta' ) # Intermediate a : BertIntermediate = layer.intermediate a : List[Any] = get_encoder_layer_array(UpperCAmelCase__ , '_intermediate_dense/kernel' ) a : Any = get_encoder_layer_array(UpperCAmelCase__ , '_intermediate_dense/bias' ) # Output a : BertOutput = layer.output a : Optional[int] = get_encoder_layer_array(UpperCAmelCase__ , '_output_dense/kernel' ) a : Optional[Any] = get_encoder_layer_array(UpperCAmelCase__ , '_output_dense/bias' ) a : Dict = get_encoder_layer_array(UpperCAmelCase__ , '_output_layer_norm/gamma' ) a : Any = get_encoder_layer_array(UpperCAmelCase__ , '_output_layer_norm/beta' ) # Embeddings a : Union[str, Any] = get_encoder_array('_position_embedding_layer/embeddings' ) a : Any = get_encoder_array('_type_embedding_layer/embeddings' ) a : str = get_encoder_array('_embedding_norm_layer/gamma' ) a : List[Any] = get_encoder_array('_embedding_norm_layer/beta' ) # LM Head a : Optional[int] = model.cls.predictions.transform a : str = get_masked_lm_array('dense/kernel' ) a : List[Any] = get_masked_lm_array('dense/bias' ) a : int = get_masked_lm_array('layer_norm/gamma' ) a : Optional[Any] = get_masked_lm_array('layer_norm/beta' ) a : int = get_masked_lm_array('embedding_table' ) # Pooling a : int = BertPooler(config=UpperCAmelCase__ ) a : BertPooler = get_encoder_array('_pooler_layer/kernel' ) a : BertPooler = get_encoder_array('_pooler_layer/bias' ) # Export final model model.save_pretrained(UpperCAmelCase__ ) # Integration test - should load without any errors ;) a : Dict = BertForMaskedLM.from_pretrained(UpperCAmelCase__ ) print(new_model.eval() ) print('Model conversion was done sucessfully!' ) if __name__ == "__main__": lowerCAmelCase: Optional[int] = argparse.ArgumentParser() parser.add_argument( '--tf_checkpoint_path', type=str, required=True, help='Path to the TensorFlow Token Dropping checkpoint path.' ) parser.add_argument( '--bert_config_file', type=str, required=True, help='The config json file corresponding to the BERT model. This specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', type=str, required=True, help='Path to the output PyTorch model.', ) lowerCAmelCase: Tuple = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
371
'''simple docstring''' import argparse import os import re import packaging.version lowerCAmelCase: List[str] = 'examples/' lowerCAmelCase: List[Any] = { 'examples': (re.compile(r'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(r'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(r'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), r'\1version="VERSION",'), 'doc': (re.compile(r'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'), } lowerCAmelCase: str = { 'init': 'src/transformers/__init__.py', 'setup': 'setup.py', } lowerCAmelCase: str = 'README.md' def lowerCamelCase__ ( _A , _A , _A ): with open(_A , 'r' , encoding='utf-8' , newline='\n' ) as f: a : Tuple = f.read() a , a : Tuple = REPLACE_PATTERNS[pattern] a : Dict = replace.replace('VERSION' , _A ) a : Dict = re_pattern.sub(_A , _A ) with open(_A , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(_A ) def lowerCamelCase__ ( _A ): for folder, directories, fnames in os.walk(_A ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('research_projects' ) if "legacy" in directories: directories.remove('legacy' ) for fname in fnames: if fname.endswith('.py' ): update_version_in_file(os.path.join(_A , _A ) , _A , pattern='examples' ) def lowerCamelCase__ ( _A , _A=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_A , _A , _A ) if not patch: update_version_in_examples(_A ) def lowerCamelCase__ ( ): a : Tuple = '🤗 Transformers currently provides the following architectures' a : Any = '1. Want to contribute a new model?' with open(_A , 'r' , encoding='utf-8' , newline='\n' ) as f: a : Tuple = f.readlines() # Find the start of the list. a : Optional[int] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 a : Optional[int] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('1.' ): a : List[Any] = lines[index].replace( 'https://huggingface.co/docs/transformers/main/model_doc' , 'https://huggingface.co/docs/transformers/model_doc' , ) index += 1 with open(_A , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(_A ) def lowerCamelCase__ ( ): with open(REPLACE_FILES['init'] , 'r' ) as f: a : Union[str, Any] = f.read() a : Tuple = REPLACE_PATTERNS['init'][0].search(_A ).groups()[0] return packaging.version.parse(_A ) def lowerCamelCase__ ( _A=False ): a : int = get_version() if patch and default_version.is_devrelease: raise ValueError('Can\'t create a patch version from the dev branch, checkout a released version!' ) if default_version.is_devrelease: a : Any = default_version.base_version elif patch: a : Dict = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: a : Union[str, Any] = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. a : List[Any] = input(f"""Which version are you releasing? [{default_version}]""" ) if len(_A ) == 0: a : Union[str, Any] = default_version print(f"""Updating version to {version}.""" ) global_version_update(_A , patch=_A ) if not patch: print('Cleaning main README, don\'t forget to run `make fix-copies`.' ) clean_main_ref_in_model_list() def lowerCamelCase__ ( ): a : int = get_version() a : Any = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" a : int = current_version.base_version # Check with the user we got that right. a : Tuple = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(_A ) == 0: a : Optional[int] = dev_version print(f"""Updating version to {version}.""" ) global_version_update(_A ) print('Cleaning main README, don\'t forget to run `make fix-copies`.' ) clean_main_ref_in_model_list() if __name__ == "__main__": lowerCAmelCase: Tuple = argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') lowerCAmelCase: Optional[Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
96
0
"""simple docstring""" import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class _lowerCAmelCase : """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase=1_3 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=9_9 , __UpperCAmelCase=3_2 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=3_7 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=None , ): '''simple docstring''' lowerCAmelCase__ :Tuple = parent lowerCAmelCase__ :List[str] = batch_size lowerCAmelCase__ :List[Any] = seq_length lowerCAmelCase__ :str = is_training lowerCAmelCase__ :Dict = use_input_mask lowerCAmelCase__ :Union[str, Any] = vocab_size lowerCAmelCase__ :Union[str, Any] = hidden_size lowerCAmelCase__ :Optional[Any] = num_hidden_layers lowerCAmelCase__ :List[str] = num_attention_heads lowerCAmelCase__ :Optional[Any] = intermediate_size lowerCAmelCase__ :Union[str, Any] = hidden_act lowerCAmelCase__ :int = hidden_dropout_prob lowerCAmelCase__ :int = attention_probs_dropout_prob lowerCAmelCase__ :Union[str, Any] = max_position_embeddings lowerCAmelCase__ :Union[str, Any] = initializer_range lowerCAmelCase__ :List[Any] = use_labels lowerCAmelCase__ :List[Any] = scope def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ :Tuple = None if self.use_input_mask: lowerCAmelCase__ :Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: lowerCAmelCase__ :int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ :Optional[int] = self.get_config() return config, input_ids, input_mask, token_labels def snake_case ( self ): '''simple docstring''' return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def snake_case ( self ): '''simple docstring''' ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) :Optional[Any] = self.prepare_config_and_inputs() lowerCAmelCase__ :Dict = True lowerCAmelCase__ :Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCAmelCase__ :Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase , ): '''simple docstring''' lowerCAmelCase__ :Tuple = BertGenerationEncoder(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ :str = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) lowerCAmelCase__ :int = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase , ): '''simple docstring''' lowerCAmelCase__ :str = True lowerCAmelCase__ :List[str] = BertGenerationEncoder(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ :List[str] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) lowerCAmelCase__ :str = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase , ): '''simple docstring''' lowerCAmelCase__ :Tuple = True lowerCAmelCase__ :Union[str, Any] = True lowerCAmelCase__ :Optional[int] = BertGenerationDecoder(config=__UpperCAmelCase ).to(__UpperCAmelCase ).eval() # first forward pass lowerCAmelCase__ :int = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase , ) lowerCAmelCase__ :Union[str, Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase__ :Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase__ :Any = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCAmelCase__ :Tuple = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase__ :List[str] = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCAmelCase__ :Optional[int] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )['hidden_states'][0] lowerCAmelCase__ :int = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )['hidden_states'][0] # select random slice lowerCAmelCase__ :Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase__ :Tuple = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase__ :Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , *__UpperCAmelCase , ): '''simple docstring''' lowerCAmelCase__ :int = BertGenerationDecoder(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ :Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Any = self.prepare_config_and_inputs() lowerCAmelCase__ :Union[str, Any] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _lowerCAmelCase ( a , a , a , unittest.TestCase ): """simple docstring""" __magic_name__ :Any = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () __magic_name__ :Optional[Any] = (BertGenerationDecoder,) if is_torch_available() else () __magic_name__ :Optional[Any] = ( {"""feature-extraction""": BertGenerationEncoder, """text-generation""": BertGenerationDecoder} if is_torch_available() else {} ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = BertGenerationEncoderTester(self ) lowerCAmelCase__ :int = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=3_7 ) def snake_case ( self ): '''simple docstring''' self.config_tester.run_common_tests() def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :List[str] = self.model_tester.prepare_config_and_inputs() lowerCAmelCase__ :List[str] = 'bert' self.model_tester.create_and_check_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) :int = self.model_tester.prepare_config_and_inputs_for_decoder() lowerCAmelCase__ :int = None self.model_tester.create_and_check_model_as_decoder( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*__UpperCAmelCase ) @slow def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Dict = BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) self.assertIsNotNone(__UpperCAmelCase ) @require_torch class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) lowerCAmelCase__ :Tuple = torch.tensor([[1_0_1, 7_5_9_2, 1_0_1_0, 2_0_2_6, 3_8_9_9, 2_0_0_3, 1_0_1_4_0, 1_0_2]] ) with torch.no_grad(): lowerCAmelCase__ :Dict = model(__UpperCAmelCase )[0] lowerCAmelCase__ :Any = torch.Size([1, 8, 1_0_2_4] ) self.assertEqual(output.shape , __UpperCAmelCase ) lowerCAmelCase__ :Tuple = torch.tensor( [[[0.17_75, 0.00_83, -0.03_21], [1.60_02, 0.12_87, 0.39_12], [2.14_73, 0.57_91, 0.60_66]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @require_torch class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = BertGenerationDecoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) lowerCAmelCase__ :str = torch.tensor([[1_0_1, 7_5_9_2, 1_0_1_0, 2_0_2_6, 3_8_9_9, 2_0_0_3, 1_0_1_4_0, 1_0_2]] ) with torch.no_grad(): lowerCAmelCase__ :Any = model(__UpperCAmelCase )[0] lowerCAmelCase__ :Tuple = torch.Size([1, 8, 5_0_3_5_8] ) self.assertEqual(output.shape , __UpperCAmelCase ) lowerCAmelCase__ :Tuple = torch.tensor( [[[-0.57_88, -2.59_94, -3.70_54], [0.04_38, 4.79_97, 1.87_95], [1.58_62, 6.64_09, 4.46_38]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
293
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __A = { """configuration_owlvit""": [ """OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """OwlViTConfig""", """OwlViTOnnxConfig""", """OwlViTTextConfig""", """OwlViTVisionConfig""", ], """processing_owlvit""": ["""OwlViTProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["""OwlViTFeatureExtractor"""] __A = ["""OwlViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ """OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """OwlViTModel""", """OwlViTPreTrainedModel""", """OwlViTTextModel""", """OwlViTVisionModel""", """OwlViTForObjectDetection""", ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys __A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
293
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: lowerCAmelCase : List[str] =None lowerCAmelCase : str =logging.get_logger(__name__) lowerCAmelCase : Any ={'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase : Tuple ={ '''vocab_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/spiece.model''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/spiece.model''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/spiece.model''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json''', }, } lowerCAmelCase : Optional[int] ={ '''albert-base-v1''': 512, '''albert-large-v1''': 512, '''albert-xlarge-v1''': 512, '''albert-xxlarge-v1''': 512, '''albert-base-v2''': 512, '''albert-large-v2''': 512, '''albert-xlarge-v2''': 512, '''albert-xxlarge-v2''': 512, } lowerCAmelCase : str ='''▁''' class a_ ( _lowerCAmelCase ): __A = VOCAB_FILES_NAMES __A = PRETRAINED_VOCAB_FILES_MAP __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = AlbertTokenizer def __init__( self : Optional[Any] , lowercase : Union[str, Any]=None , lowercase : Optional[int]=None , lowercase : List[Any]=True , lowercase : Dict=True , lowercase : List[Any]=False , lowercase : Any="[CLS]" , lowercase : Any="[SEP]" , lowercase : Union[str, Any]="<unk>" , lowercase : str="[SEP]" , lowercase : int="<pad>" , lowercase : str="[CLS]" , lowercase : List[str]="[MASK]" , **lowercase : str , ): """simple docstring""" lowercase_ :int = ( AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase , normalized=lowercase ) if isinstance(lowercase , lowercase ) else mask_token ) super().__init__( lowercase , tokenizer_file=lowercase , do_lower_case=lowercase , remove_space=lowercase , keep_accents=lowercase , bos_token=lowercase , eos_token=lowercase , unk_token=lowercase , sep_token=lowercase , pad_token=lowercase , cls_token=lowercase , mask_token=lowercase , **lowercase , ) lowercase_ :List[Any] = do_lower_case lowercase_ :Optional[int] = remove_space lowercase_ :Optional[Any] = keep_accents lowercase_ :List[str] = vocab_file lowercase_ :Union[str, Any] = False if not self.vocab_file else True def lowercase__ ( self : Optional[Any] , lowercase : List[int] , lowercase : Optional[List[int]] = None ): """simple docstring""" lowercase_ :Any = [self.sep_token_id] lowercase_ :Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowercase__ ( self : Tuple , lowercase : List[int] , lowercase : Optional[List[int]] = None ): """simple docstring""" lowercase_ :Dict = [self.sep_token_id] lowercase_ :str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase__ ( self : Any , lowercase : str , lowercase : Optional[str] = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(lowercase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowercase_ :Dict = os.path.join( lowercase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase ): copyfile(self.vocab_file , lowercase ) return (out_vocab_file,)
147
'''simple docstring''' from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging lowerCAmelCase : Tuple =logging.get_logger(__name__) def UpperCAmelCase_ ( __lowerCamelCase : Union[tf.Tensor, np.ndarray] ): if isinstance(__lowerCamelCase ,np.ndarray ): return list(tensor.shape ) lowercase_ :Optional[int] = tf.shape(__lowerCamelCase ) if tensor.shape == tf.TensorShape(__lowerCamelCase ): return dynamic lowercase_ :Union[str, Any] = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(__lowerCamelCase )] def UpperCAmelCase_ ( __lowerCamelCase : tf.Tensor ,__lowerCamelCase : Optional[int] = None ,__lowerCamelCase : Optional[str] = None ): return tf.nn.softmax(logits=logits + 1e-9 ,axis=__lowerCamelCase ,name=__lowerCamelCase ) def UpperCAmelCase_ ( __lowerCamelCase : str ,__lowerCamelCase : List[Any] ,__lowerCamelCase : Any ,__lowerCamelCase : List[str]=1e-5 ,__lowerCamelCase : List[str]=-1 ): # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(__lowerCamelCase ,__lowerCamelCase ): raise NotImplementedError("Only 1D weight and bias tensors are supported for now, with only a single axis." ) # Get mean and variance on the axis to be normalized lowercase_ , lowercase_ :List[str] = tf.nn.moments(__lowerCamelCase ,axes=[axis] ,keepdims=__lowerCamelCase ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis lowercase_ :Union[str, Any] = [1] * inputs.shape.rank lowercase_ :Optional[Any] = shape_list(__lowerCamelCase )[axis] lowercase_ :List[str] = tf.reshape(__lowerCamelCase ,__lowerCamelCase ) lowercase_ :Dict = tf.reshape(__lowerCamelCase ,__lowerCamelCase ) # Compute layer normalization using the batch_normalization # function. lowercase_ :Union[str, Any] = tf.nn.batch_normalization( __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,offset=__lowerCamelCase ,scale=__lowerCamelCase ,variance_epsilon=__lowerCamelCase ,) return outputs def UpperCAmelCase_ ( __lowerCamelCase : Optional[int] ,__lowerCamelCase : Union[str, Any]=0 ,__lowerCamelCase : Dict=-1 ): # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input lowercase_ :Optional[int] = tf.shape(__lowerCamelCase ) lowercase_ :Optional[int] = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) lowercase_ :List[str] = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] ,axis=0 ) return tf.reshape(__lowerCamelCase ,__lowerCamelCase ) def UpperCAmelCase_ ( __lowerCamelCase : tf.Tensor ): if not isinstance(__lowerCamelCase ,tf.Tensor ): lowercase_ :str = tf.convert_to_tensor(__lowerCamelCase ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: lowercase_ :List[Any] = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: lowercase_ :Optional[int] = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) lowercase_ :str = ( tf.cast(1 ,encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def UpperCAmelCase_ ( __lowerCamelCase : tf.Tensor ,__lowerCamelCase : int ,__lowerCamelCase : str = "input_ids" ): tf.debugging.assert_less( __lowerCamelCase ,tf.cast(__lowerCamelCase ,dtype=tensor.dtype ) ,message=( F'The maximum value of {tensor_name} ({tf.math.reduce_max(__lowerCamelCase )}) must be smaller than the embedding ' F'layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.' ) ,) def UpperCAmelCase_ ( __lowerCamelCase : List[str] ,__lowerCamelCase : Tuple ,__lowerCamelCase : Dict ): lowercase_ :int = 6_45_12 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. lowercase_ :Union[str, Any] = [x for x in data if len(__lowerCamelCase ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( "The following attributes cannot be saved to HDF5 file because " F'they are larger than {HDF5_OBJECT_HEADER_LIMIT} ' F'bytes: {bad_attributes}' ) lowercase_ :Union[str, Any] = np.asarray(__lowerCamelCase ) lowercase_ :Optional[int] = 1 lowercase_ :int = np.array_split(__lowerCamelCase ,__lowerCamelCase ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 lowercase_ :List[Any] = np.array_split(__lowerCamelCase ,__lowerCamelCase ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(__lowerCamelCase ): lowercase_ :int = chunk_data else: lowercase_ :Tuple = data def UpperCAmelCase_ ( __lowerCamelCase : str ,__lowerCamelCase : Tuple ): if name in group.attrs: lowercase_ :Optional[Any] = [n.decode("utf8" ) if hasattr(__lowerCamelCase ,"decode" ) else n for n in group.attrs[name]] else: lowercase_ :List[str] = [] lowercase_ :str = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode("utf8" ) if hasattr(__lowerCamelCase ,"decode" ) else n for n in group.attrs["%s%d" % (name, chunk_id)]] ) chunk_id += 1 return data def UpperCAmelCase_ ( __lowerCamelCase : str ): def _expand_single_ad_tensor(__lowerCamelCase : Tuple ): if isinstance(__lowerCamelCase ,tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(__lowerCamelCase ,axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor ,__lowerCamelCase )
147
1
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: str , SCREAMING_SNAKE_CASE_: str ) -> Optional[int]: '''simple docstring''' A__ = RobertaPreLayerNormConfig.from_pretrained( snake_case__ , architectures=["RobertaPreLayerNormForMaskedLM"] ) # convert state_dict A__ = torch.load(hf_hub_download(repo_id=snake_case__ , filename="pytorch_model.bin" ) ) A__ = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("roberta." ): A__ = "roberta_prelayernorm." + tensor_key[len("roberta." ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(".self.LayerNorm.weight" ) or tensor_key.endswith(".self.LayerNorm.bias" ): continue A__ = tensor_value A__ = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=snake_case__ , config=snake_case__ , state_dict=snake_case__ ) model.save_pretrained(snake_case__ ) # convert tokenizer A__ = AutoTokenizer.from_pretrained(snake_case__ ) tokenizer.save_pretrained(snake_case__ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint-repo""", default=None, type=str, required=True, help="""Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowerCAmelCase__ = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
68
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''facebook/deit-base-distilled-patch16-224''': ( '''https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json''' ), # See all DeiT models at https://huggingface.co/models?filter=deit } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Optional[Any] = '''deit''' def __init__( self : int ,A_ : Optional[Any]=768 ,A_ : Union[str, Any]=12 ,A_ : Dict=12 ,A_ : int=3072 ,A_ : Optional[Any]="gelu" ,A_ : Dict=0.0 ,A_ : Any=0.0 ,A_ : str=0.02 ,A_ : Tuple=1e-12 ,A_ : Union[str, Any]=224 ,A_ : Optional[Any]=16 ,A_ : List[Any]=3 ,A_ : Optional[Any]=True ,A_ : Optional[int]=16 ,**A_ : Union[str, Any] ,) -> Dict: super().__init__(**A_ ) A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = image_size A = patch_size A = num_channels A = qkv_bias A = encoder_stride class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: int = version.parse('''1.11''' ) @property def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> float: return 1e-4
74
0
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class a : """simple docstring""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=3 , lowerCAmelCase_=32 , lowerCAmelCase_=3 , lowerCAmelCase_=10 , lowerCAmelCase_=[8, 16, 32, 64] , lowerCAmelCase_=[1, 1, 2, 1] , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_="relu" , lowerCAmelCase_=3 , lowerCAmelCase_=None , lowerCAmelCase_=["stage2", "stage3", "stage4"] , lowerCAmelCase_=[2, 3, 4] , lowerCAmelCase_=1 , ) -> List[Any]: _A = parent _A = batch_size _A = image_size _A = num_channels _A = embeddings_size _A = hidden_sizes _A = depths _A = is_training _A = use_labels _A = hidden_act _A = num_labels _A = scope _A = len(_a ) _A = out_features _A = out_indices _A = num_groups def UpperCAmelCase ( self ) -> Union[str, Any]: _A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.num_labels ) _A = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self ) -> Tuple: return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Dict: _A = BitModel(config=_a ) model.to(_a ) model.eval() _A = model(_a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[Any]: _A = self.num_labels _A = BitForImageClassification(_a ) model.to(_a ) model.eval() _A = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> str: _A = BitBackbone(config=_a ) model.to(_a ) model.eval() _A = model(_a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _A = None _A = BitBackbone(config=_a ) model.to(_a ) model.eval() _A = model(_a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def UpperCAmelCase ( self ) -> Dict: _A = self.prepare_config_and_inputs() _A = config_and_inputs _A = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a ( __lowercase , __lowercase , unittest.TestCase ): """simple docstring""" lowerCamelCase :List[str] = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () lowerCamelCase :Optional[Any] = ( {"feature-extraction": BitModel, "image-classification": BitForImageClassification} if is_torch_available() else {} ) lowerCamelCase :Any = False lowerCamelCase :Any = False lowerCamelCase :Any = False lowerCamelCase :List[Any] = False lowerCamelCase :str = False def UpperCAmelCase ( self ) -> str: _A = BitModelTester(self ) _A = ConfigTester(self , config_class=_a , has_text_modality=_a ) def UpperCAmelCase ( self ) -> Optional[int]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self ) -> str: return @unittest.skip(reason="""Bit does not output attentions""" ) def UpperCAmelCase ( self ) -> Union[str, Any]: pass @unittest.skip(reason="""Bit does not use inputs_embeds""" ) def UpperCAmelCase ( self ) -> List[str]: pass @unittest.skip(reason="""Bit does not support input and output embeddings""" ) def UpperCAmelCase ( self ) -> Tuple: pass def UpperCAmelCase ( self ) -> Tuple: _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(_a ) _A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A = [*signature.parameters.keys()] _A = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def UpperCAmelCase ( self ) -> Optional[int]: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def UpperCAmelCase ( self ) -> Union[str, Any]: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_a ) def UpperCAmelCase ( self ) -> List[Any]: _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(config=_a ) for name, module in model.named_modules(): if isinstance(_a , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def UpperCAmelCase ( self ) -> List[Any]: def check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): _A = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _A = model(**self._prepare_for_class(_a , _a ) ) _A = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _A = self.model_tester.num_stages self.assertEqual(len(_a ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _A = self.model_tester.prepare_config_and_inputs_for_common() _A = ['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: _A = layer_type _A = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A = True check_hidden_states_output(_a , _a , _a ) @unittest.skip(reason="""Bit does not use feedforward chunking""" ) def UpperCAmelCase ( self ) -> List[Any]: pass def UpperCAmelCase ( self ) -> str: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def UpperCAmelCase ( self ) -> List[str]: for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = BitModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def snake_case ( ) -> Dict: _A = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""") return image @require_torch @require_vision class a ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase ( self ) -> str: return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCAmelCase ( self ) -> str: _A = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_a ) _A = self.default_image_processor _A = prepare_img() _A = image_processor(images=_a , return_tensors="""pt""" ).to(_a ) # forward pass with torch.no_grad(): _A = model(**_a ) # verify the logits _A = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , _a ) _A = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1E-4 ) ) @require_torch class a ( __lowercase , unittest.TestCase ): """simple docstring""" lowerCamelCase :str = (BitBackbone,) if is_torch_available() else () lowerCamelCase :Union[str, Any] = BitConfig lowerCamelCase :List[Any] = False def UpperCAmelCase ( self ) -> Any: _A = BitModelTester(self )
365
import colorsys from PIL import Image # type: ignore def snake_case ( snake_case__ :float , snake_case__ :float , snake_case__ :int) -> float: _A = x _A = y for step in range(snake_case__): # noqa: B007 _A = a * a - b * b + x _A = 2 * a * b + y _A = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def snake_case ( snake_case__ :float) -> tuple: if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def snake_case ( snake_case__ :float) -> tuple: if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255) for i in colorsys.hsv_to_rgb(snake_case__ , 1 , 1)) def snake_case ( snake_case__ :int = 800 , snake_case__ :int = 600 , snake_case__ :float = -0.6 , snake_case__ :float = 0 , snake_case__ :float = 3.2 , snake_case__ :int = 50 , snake_case__ :bool = True , ) -> Image.Image: _A = Image.new("""RGB""" , (image_width, image_height)) _A = img.load() # loop through the image-coordinates for image_x in range(snake_case__): for image_y in range(snake_case__): # determine the figure-coordinates based on the image-coordinates _A = figure_width / image_width * image_height _A = figure_center_x + (image_x / image_width - 0.5) * figure_width _A = figure_center_y + (image_y / image_height - 0.5) * figure_height _A = get_distance(snake_case__ , snake_case__ , snake_case__) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: _A = get_color_coded_rgb(snake_case__) else: _A = get_black_and_white_rgb(snake_case__) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure _SCREAMING_SNAKE_CASE = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
81
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCAmelCase = { '''configuration_bridgetower''': [ '''BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BridgeTowerConfig''', '''BridgeTowerTextConfig''', '''BridgeTowerVisionConfig''', ], '''processing_bridgetower''': ['''BridgeTowerProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''BridgeTowerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BridgeTowerForContrastiveLearning''', '''BridgeTowerForImageAndTextRetrieval''', '''BridgeTowerForMaskedLM''', '''BridgeTowerModel''', '''BridgeTowerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
119
from __future__ import annotations __UpperCAmelCase = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } class lowerCAmelCase_ : def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> None: UpperCamelCase : Union[str, Any] = graph # mapping node to its parent in resulting breadth first tree UpperCamelCase : dict[str, str | None] = {} UpperCamelCase : Union[str, Any] = source_vertex def snake_case_ ( self ) -> None: UpperCamelCase : str = {self.source_vertex} UpperCamelCase : str = None UpperCamelCase : int = [self.source_vertex] # first in first out queue while queue: UpperCamelCase : Dict = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = vertex queue.append(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> str: if target_vertex == self.source_vertex: return self.source_vertex UpperCamelCase : Optional[Any] = self.parent.get(SCREAMING_SNAKE_CASE_ ) if target_vertex_parent is None: UpperCamelCase : Union[str, Any] = ( F"""No path from vertex: {self.source_vertex} to vertex: {target_vertex}""" ) raise ValueError(SCREAMING_SNAKE_CASE_ ) return self.shortest_path(SCREAMING_SNAKE_CASE_ ) + F"""->{target_vertex}""" if __name__ == "__main__": __UpperCAmelCase = Graph(graph, '''G''') g.breath_first_search() print(g.shortest_path('''D''')) print(g.shortest_path('''G''')) print(g.shortest_path('''Foo'''))
119
1
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger() @dataclass class a__ : _a : nn.Module _a : List[nn.Module] = field(default_factory=snake_case__ ) _a : list = field(default_factory=snake_case__ ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = len(list(m.modules() ) ) == 1 or isinstance(_A , nn.Convad ) or isinstance(_A , nn.BatchNormad ) if has_not_submodules: self.traced.append(_A ) def __call__( self , _A ): """simple docstring""" for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(_A ) [x.remove() for x in self.handles] return self @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return list(filter(lambda _A : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class a__ : _a : nn.Module _a : nn.Module _a : int = 1 _a : List = field(default_factory=snake_case__ ) _a : List = field(default_factory=snake_case__ ) _a : bool = True def __call__( self , _A ): """simple docstring""" __lowerCAmelCase = Tracker(self.dest )(_A ).parametrized __lowerCAmelCase = Tracker(self.src )(_A ).parametrized __lowerCAmelCase = list(filter(lambda _A : type(_A ) not in self.src_skip , _A ) ) __lowerCAmelCase = list(filter(lambda _A : type(_A ) not in self.dest_skip , _A ) ) if len(_A ) != len(_A ) and self.raise_if_mismatch: raise Exception( f"""Numbers of operations are different. Source module has {len(_A )} operations while""" f""" destination module has {len(_A )}.""" ) for dest_m, src_m in zip(_A , _A ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f"""Transfered from={src_m} to={dest_m}""" ) class a__ ( nn.Module ): def __init__( self , _A ): """simple docstring""" super().__init__() __lowerCAmelCase = [] # - get the stem feature_blocks.append(("conv1", model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith("block" ), f"""Unexpected layer name {k}""" __lowerCAmelCase = len(_A ) + 1 feature_blocks.append((f"""res{block_index}""", v) ) __lowerCAmelCase = nn.ModuleDict(_A ) def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" return get_trunk_forward_outputs( _A , out_feat_keys=_A , feature_blocks=self._feature_blocks , ) class a__ ( snake_case__ ): def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" __lowerCAmelCase = x.split("-" ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self , _A ): """simple docstring""" if x not in self: __lowerCAmelCase = self.convert_name_to_timm(_A ) __lowerCAmelCase = partial(lambda: (timm.create_model(_A , pretrained=_A ).eval(), None) ) else: __lowerCAmelCase = super().__getitem__(_A ) return val class a__ ( snake_case__ ): def __getitem__( self , _A ): """simple docstring""" if "seer" in x and "in1k" not in x: __lowerCAmelCase = RegNetModel else: __lowerCAmelCase = RegNetForImageClassification return val def _a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[Tuple[str, str]] ): for from_key, to_key in keys: __lowerCAmelCase = from_state_dict[from_key].clone() print(F"""Copied key={from_key} to={to_key}""" ) return to_state_dict def _a ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Callable[[], nn.Module] , SCREAMING_SNAKE_CASE_ : Callable[[], nn.Module] , SCREAMING_SNAKE_CASE_ : RegNetConfig , SCREAMING_SNAKE_CASE_ : Path , SCREAMING_SNAKE_CASE_ : bool = True , ): print(F"""Converting {name}...""" ) with torch.no_grad(): __lowerCAmelCase , __lowerCAmelCase = from_model_func() __lowerCAmelCase = our_model_func(SCREAMING_SNAKE_CASE_ ).eval() __lowerCAmelCase = ModuleTransfer(src=SCREAMING_SNAKE_CASE_ , dest=SCREAMING_SNAKE_CASE_ , raise_if_mismatch=SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = torch.randn((1, 3, 2_24, 2_24) ) module_transfer(SCREAMING_SNAKE_CASE_ ) if from_state_dict is not None: __lowerCAmelCase = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: __lowerCAmelCase = [("0.clf.0.weight", "classifier.1.weight"), ("0.clf.0.bias", "classifier.1.bias")] __lowerCAmelCase = manually_copy_vissl_head(SCREAMING_SNAKE_CASE_ , our_model.state_dict() , SCREAMING_SNAKE_CASE_ ) our_model.load_state_dict(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = our_model(SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = ( our_outputs.logits if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else our_outputs.last_hidden_state ) __lowerCAmelCase = from_model(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = from_output[-1] if type(SCREAMING_SNAKE_CASE_ ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: __lowerCAmelCase = our_outputs.hidden_states[-1] assert torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message="Add model" , use_temp_dir=SCREAMING_SNAKE_CASE_ , ) __lowerCAmelCase = 2_24 if "seer" not in name else 3_84 # we can use the convnext one __lowerCAmelCase = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" , size=SCREAMING_SNAKE_CASE_ ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message="Add image processor" , use_temp_dir=SCREAMING_SNAKE_CASE_ , ) print(F"""Pushed {name}""" ) def _a ( SCREAMING_SNAKE_CASE_ : Path , SCREAMING_SNAKE_CASE_ : str = None , SCREAMING_SNAKE_CASE_ : bool = True ): __lowerCAmelCase = "imagenet-1k-id2label.json" __lowerCAmelCase = 10_00 __lowerCAmelCase = (1, num_labels) __lowerCAmelCase = "huggingface/label-files" __lowerCAmelCase = num_labels __lowerCAmelCase = json.load(open(cached_download(hf_hub_url(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type="dataset" ) ) , "r" ) ) __lowerCAmelCase = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} __lowerCAmelCase = partial(SCREAMING_SNAKE_CASE_ , num_labels=SCREAMING_SNAKE_CASE_ , idalabel=SCREAMING_SNAKE_CASE_ , labelaid=SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = { "regnet-x-002": ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 1_52, 3_68] , groups_width=8 , layer_type="x" ), "regnet-x-004": ImageNetPreTrainedConfig( depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 1_60, 3_84] , groups_width=16 , layer_type="x" ), "regnet-x-006": ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 2_40, 5_28] , groups_width=24 , layer_type="x" ), "regnet-x-008": ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[64, 1_28, 2_88, 6_72] , groups_width=16 , layer_type="x" ), "regnet-x-016": ImageNetPreTrainedConfig( depths=[2, 4, 10, 2] , hidden_sizes=[72, 1_68, 4_08, 9_12] , groups_width=24 , layer_type="x" ), "regnet-x-032": ImageNetPreTrainedConfig( depths=[2, 6, 15, 2] , hidden_sizes=[96, 1_92, 4_32, 10_08] , groups_width=48 , layer_type="x" ), "regnet-x-040": ImageNetPreTrainedConfig( depths=[2, 5, 14, 2] , hidden_sizes=[80, 2_40, 5_60, 13_60] , groups_width=40 , layer_type="x" ), "regnet-x-064": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[1_68, 3_92, 7_84, 16_24] , groups_width=56 , layer_type="x" ), "regnet-x-080": ImageNetPreTrainedConfig( depths=[2, 5, 15, 1] , hidden_sizes=[80, 2_40, 7_20, 19_20] , groups_width=1_20 , layer_type="x" ), "regnet-x-120": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[2_24, 4_48, 8_96, 22_40] , groups_width=1_12 , layer_type="x" ), "regnet-x-160": ImageNetPreTrainedConfig( depths=[2, 6, 13, 1] , hidden_sizes=[2_56, 5_12, 8_96, 20_48] , groups_width=1_28 , layer_type="x" ), "regnet-x-320": ImageNetPreTrainedConfig( depths=[2, 7, 13, 1] , hidden_sizes=[3_36, 6_72, 13_44, 25_20] , groups_width=1_68 , layer_type="x" ), # y variant "regnet-y-002": ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 1_52, 3_68] , groups_width=8 ), "regnet-y-004": ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[48, 1_04, 2_08, 4_40] , groups_width=8 ), "regnet-y-006": ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[48, 1_12, 2_56, 6_08] , groups_width=16 ), "regnet-y-008": ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[64, 1_28, 3_20, 7_68] , groups_width=16 ), "regnet-y-016": ImageNetPreTrainedConfig( depths=[2, 6, 17, 2] , hidden_sizes=[48, 1_20, 3_36, 8_88] , groups_width=24 ), "regnet-y-032": ImageNetPreTrainedConfig( depths=[2, 5, 13, 1] , hidden_sizes=[72, 2_16, 5_76, 15_12] , groups_width=24 ), "regnet-y-040": ImageNetPreTrainedConfig( depths=[2, 6, 12, 2] , hidden_sizes=[1_28, 1_92, 5_12, 10_88] , groups_width=64 ), "regnet-y-064": ImageNetPreTrainedConfig( depths=[2, 7, 14, 2] , hidden_sizes=[1_44, 2_88, 5_76, 12_96] , groups_width=72 ), "regnet-y-080": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[1_68, 4_48, 8_96, 20_16] , groups_width=56 ), "regnet-y-120": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[2_24, 4_48, 8_96, 22_40] , groups_width=1_12 ), "regnet-y-160": ImageNetPreTrainedConfig( depths=[2, 4, 11, 1] , hidden_sizes=[2_24, 4_48, 12_32, 30_24] , groups_width=1_12 ), "regnet-y-320": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[2_32, 6_96, 13_92, 37_12] , groups_width=2_32 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 "regnet-y-320-seer": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[2_32, 6_96, 13_92, 37_12] , groups_width=2_32 ), "regnet-y-640-seer": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[3_28, 9_84, 19_68, 49_20] , groups_width=3_28 ), "regnet-y-1280-seer": RegNetConfig( depths=[2, 7, 17, 1] , hidden_sizes=[5_28, 10_56, 29_04, 73_92] , groups_width=2_64 ), "regnet-y-2560-seer": RegNetConfig( depths=[3, 7, 16, 1] , hidden_sizes=[6_40, 16_96, 25_44, 50_88] , groups_width=6_40 ), "regnet-y-10b-seer": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[20_20, 40_40, 1_11_10, 2_82_80] , groups_width=10_10 ), # finetuned on imagenet "regnet-y-320-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[2_32, 6_96, 13_92, 37_12] , groups_width=2_32 ), "regnet-y-640-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[3_28, 9_84, 19_68, 49_20] , groups_width=3_28 ), "regnet-y-1280-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[5_28, 10_56, 29_04, 73_92] , groups_width=2_64 ), "regnet-y-2560-seer-in1k": ImageNetPreTrainedConfig( depths=[3, 7, 16, 1] , hidden_sizes=[6_40, 16_96, 25_44, 50_88] , groups_width=6_40 ), "regnet-y-10b-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[20_20, 40_40, 1_11_10, 2_82_80] , groups_width=10_10 ), } __lowerCAmelCase = NameToOurModelFuncMap() __lowerCAmelCase = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Callable[[], nn.Module] ) -> Tuple[nn.Module, Dict]: __lowerCAmelCase = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE_ , model_dir=str(SCREAMING_SNAKE_CASE_ ) , map_location="cpu" ) __lowerCAmelCase = model_func() # check if we have a head, if yes add it __lowerCAmelCase = files["classy_state_dict"]["base_model"]["model"] __lowerCAmelCase = model_state_dict["trunk"] model.load_state_dict(SCREAMING_SNAKE_CASE_ ) return model.eval(), model_state_dict["heads"] # pretrained __lowerCAmelCase = partial( SCREAMING_SNAKE_CASE_ , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __lowerCAmelCase = partial( SCREAMING_SNAKE_CASE_ , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __lowerCAmelCase = partial( SCREAMING_SNAKE_CASE_ , "https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) __lowerCAmelCase = partial( SCREAMING_SNAKE_CASE_ , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=10_10 , w_a=17_44 , w_a=6_20.83 , w_m=2.52 ) ) ) , ) # IN1K finetuned __lowerCAmelCase = partial( SCREAMING_SNAKE_CASE_ , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __lowerCAmelCase = partial( SCREAMING_SNAKE_CASE_ , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __lowerCAmelCase = partial( SCREAMING_SNAKE_CASE_ , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) __lowerCAmelCase = partial( SCREAMING_SNAKE_CASE_ , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=10_10 , w_a=17_44 , w_a=6_20.83 , w_m=2.52 ) ) ) , ) if model_name: convert_weight_and_push( SCREAMING_SNAKE_CASE_ , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( SCREAMING_SNAKE_CASE_ , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) return config, expected_shape if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help=( """The name of the model you wish to convert, it must be one of the supported regnet* architecture,""" """ currently: regnetx-*, regnety-*. If `None`, all of them will the converted.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=Path, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=True, type=bool, required=False, help="""If True, push model and image processor to the hub.""", ) UpperCamelCase__ = parser.parse_args() UpperCamelCase__ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
102
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging UpperCamelCase__ = """\ """ UpperCamelCase__ = """ Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity """ UpperCamelCase__ = """ Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to 'cuda' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"] >>> results = perplexity.compute(model_id='gpt2', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 78.22 >>> print(round(results[\"perplexities\"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = datasets.load_dataset(\"wikitext\", ... \"wikitext-2-raw-v1\", ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=''] >>> results = perplexity.compute(model_id='gpt2', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 60.35 >>> print(round(results[\"perplexities\"][0], 2)) 81.12 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "input_texts": datasets.Value("string" ), } ) , reference_urls=["https://huggingface.co/docs/transformers/perplexity"] , ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A = 1_6 , _A = True , _A=None ): """simple docstring""" if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": __lowerCAmelCase = "cuda" else: __lowerCAmelCase = "cuda" if torch.cuda.is_available() else "cpu" __lowerCAmelCase = AutoModelForCausalLM.from_pretrained(_A ) __lowerCAmelCase = model.to(_A ) __lowerCAmelCase = AutoTokenizer.from_pretrained(_A ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: __lowerCAmelCase = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(_A ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"pad_token": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" __lowerCAmelCase = model.config.max_length - 1 else: __lowerCAmelCase = model.config.max_length __lowerCAmelCase = tokenizer( _A , add_special_tokens=_A , padding=_A , truncation=_A , max_length=_A , return_tensors="pt" , return_attention_mask=_A , ).to(_A ) __lowerCAmelCase = encodings["input_ids"] __lowerCAmelCase = encodings["attention_mask"] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." __lowerCAmelCase = [] __lowerCAmelCase = CrossEntropyLoss(reduction="none" ) for start_index in logging.tqdm(range(0 , len(_A ) , _A ) ): __lowerCAmelCase = min(start_index + batch_size , len(_A ) ) __lowerCAmelCase = encoded_texts[start_index:end_index] __lowerCAmelCase = attn_masks[start_index:end_index] if add_start_token: __lowerCAmelCase = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_A ) __lowerCAmelCase = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) __lowerCAmelCase = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_A ), attn_mask] , dim=1 ) __lowerCAmelCase = encoded_batch with torch.no_grad(): __lowerCAmelCase = model(_A , attention_mask=_A ).logits __lowerCAmelCase = out_logits[..., :-1, :].contiguous() __lowerCAmelCase = labels[..., 1:].contiguous() __lowerCAmelCase = attn_mask[..., 1:].contiguous() __lowerCAmelCase = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , _A ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(_A )}
102
1
import math def __lowercase ( a__ ) -> Any: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __lowercase ( a__ = 1_00_01 ) -> Tuple: try: __SCREAMING_SNAKE_CASE = int(lowerCAmelCase_ ) except (TypeError, ValueError): raise TypeError('Parameter nth must be int or castable to int.' ) from None if nth <= 0: raise ValueError('Parameter nth must be greater than or equal to one.' ) __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = 2 while len(lowerCAmelCase_ ) < nth: if is_prime(lowerCAmelCase_ ): primes.append(lowerCAmelCase_ ) num += 1 else: num += 1 return primes[len(lowerCAmelCase_ ) - 1] if __name__ == "__main__": print(F'''{solution() = }''')
257
def snake_case_ ( lowerCAmelCase_ : list ): if len(lowerCAmelCase_ ) <= 1: return [tuple(lowerCAmelCase_ )] __lowercase : Any = [] def generate(lowerCAmelCase_ : int , lowerCAmelCase_ : list ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , lowerCAmelCase_ ) for i in range(k - 1 ): if k % 2 == 0: # k is even __lowercase , __lowercase : List[str] = arr[k - 1], arr[i] else: # k is odd __lowercase , __lowercase : Any = arr[k - 1], arr[0] generate(k - 1 , lowerCAmelCase_ ) generate(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) return res if __name__ == "__main__": lowerCamelCase : Union[str, Any] = input('''Enter numbers separated by a comma:\n''').strip() lowerCamelCase : Optional[Any] = [int(item) for item in user_input.split(''',''')] print(heaps(arr))
233
0
from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run A = True except (ImportError, AttributeError): A = object def __A ( *a_ :Union[str, Any] , **a_ :List[Any]) -> Any: pass A = False A = logging.get_logger('''transformers-cli/serving''') def __A ( a_ :Namespace) -> Optional[Any]: __a : int = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) return ServeCommand(SCREAMING_SNAKE_CASE_ , args.host , args.port , args.workers) class __lowercase ( snake_case__ ): '''simple docstring''' __lowerCAmelCase = 42 class __lowercase ( snake_case__ ): '''simple docstring''' __lowerCAmelCase = 42 __lowerCAmelCase = 42 class __lowercase ( snake_case__ ): '''simple docstring''' __lowerCAmelCase = 42 class __lowercase ( snake_case__ ): '''simple docstring''' __lowerCAmelCase = 42 class __lowercase ( snake_case__ ): '''simple docstring''' @staticmethod def _lowerCamelCase ( _UpperCAmelCase ): __a : str = parser.add_parser( '''serve''' , help='''CLI tool to run inference requests through REST and GraphQL endpoints.''' ) serve_parser.add_argument( '''--task''' , type=_A , choices=get_supported_tasks() , help='''The task to run the pipeline on''' , ) serve_parser.add_argument('''--host''' , type=_A , default='''localhost''' , help='''Interface the server will listen on.''' ) serve_parser.add_argument('''--port''' , type=_A , default=8888 , help='''Port the serving will listen to.''' ) serve_parser.add_argument('''--workers''' , type=_A , default=1 , help='''Number of http workers''' ) serve_parser.add_argument('''--model''' , type=_A , help='''Model\'s name or path to stored model.''' ) serve_parser.add_argument('''--config''' , type=_A , help='''Model\'s config name or path to stored model.''' ) serve_parser.add_argument('''--tokenizer''' , type=_A , help='''Tokenizer name to use.''' ) serve_parser.add_argument( '''--device''' , type=_A , default=-1 , help='''Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)''' , ) serve_parser.set_defaults(func=_A ) def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : int = pipeline __a : Optional[int] = host __a : int = port __a : str = workers if not _serve_dependencies_installed: raise RuntimeError( '''Using serve command requires FastAPI and uvicorn. ''' '''Please install transformers with [serving]: pip install \"transformers[serving]\".''' '''Or install FastAPI and uvicorn separately.''' ) else: logger.info(f"""Serving model over {host}:{port}""" ) __a : Optional[Any] = FastAPI( routes=[ APIRoute( '''/''' , self.model_info , response_model=_A , response_class=_A , methods=['''GET'''] , ), APIRoute( '''/tokenize''' , self.tokenize , response_model=_A , response_class=_A , methods=['''POST'''] , ), APIRoute( '''/detokenize''' , self.detokenize , response_model=_A , response_class=_A , methods=['''POST'''] , ), APIRoute( '''/forward''' , self.forward , response_model=_A , response_class=_A , methods=['''POST'''] , ), ] , timeout=600 , ) def _lowerCamelCase ( self ): run(self._app , host=self.host , port=self.port , workers=self.workers ) def _lowerCamelCase ( self ): return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def _lowerCamelCase ( self , _UpperCAmelCase = Body(_A , embed=_A ) , _UpperCAmelCase = Body(_A , embed=_A ) ): try: __a : Optional[int] = self._pipeline.tokenizer.tokenize(_A ) if return_ids: __a : str = self._pipeline.tokenizer.convert_tokens_to_ids(_A ) return ServeTokenizeResult(tokens=_A , tokens_ids=_A ) else: return ServeTokenizeResult(tokens=_A ) except Exception as e: raise HTTPException(status_code=500 , detail={'''model''': '''''', '''error''': str(_A )} ) def _lowerCamelCase ( self , _UpperCAmelCase = Body(_A , embed=_A ) , _UpperCAmelCase = Body(_A , embed=_A ) , _UpperCAmelCase = Body(_A , embed=_A ) , ): try: __a : str = self._pipeline.tokenizer.decode(_A , _A , _A ) return ServeDeTokenizeResult(model='''''' , text=_A ) except Exception as e: raise HTTPException(status_code=500 , detail={'''model''': '''''', '''error''': str(_A )} ) async def _lowerCamelCase ( self , _UpperCAmelCase=Body(_A , embed=_A ) ): if len(_A ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model __a : str = self._pipeline(_A ) return ServeForwardResult(output=_A ) except Exception as e: raise HTTPException(500 , {'''error''': str(_A )} )
364
"""simple docstring""" import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class __lowercase : '''simple docstring''' @staticmethod def _lowerCamelCase ( *_UpperCAmelCase , **_UpperCAmelCase ): pass def __A ( a_ :Image) -> str: __a : List[str] = hashlib.mda(image.tobytes()) return m.hexdigest()[:10] def __A ( a_ :Image) -> Dict: __a : Any = np.array(a_) __a : Tuple = npimg.shape return {"hash": hashimage(a_), "shape": shape} @is_pipeline_test @require_vision @require_torch class __lowercase ( unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) __lowerCAmelCase = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : List[str] = MaskGenerationPipeline(model=_UpperCAmelCase , image_processor=_UpperCAmelCase ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): pass @require_tf @unittest.skip('''Image segmentation not implemented in TF''' ) def _lowerCamelCase ( self ): pass @slow @require_torch def _lowerCamelCase ( self ): __a : Dict = pipeline('''mask-generation''' , model='''facebook/sam-vit-huge''' ) __a : Optional[Any] = image_segmenter('''http://images.cocodataset.org/val2017/000000039769.jpg''' , points_per_batch=256 ) # Shortening by hashing __a : Optional[int] = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(_UpperCAmelCase ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0_4_4_4}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.0_2_1}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0_1_6_7}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0_1_3_2}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0_0_5_3}, {'''mask''': {'''hash''': '''e2d0b7a0b7''', '''shape''': (480, 640)}, '''scores''': 0.9_9_6_7}, {'''mask''': {'''hash''': '''453c7844bd''', '''shape''': (480, 640)}, '''scores''': 0.9_9_3}, {'''mask''': {'''hash''': '''3d44f2926d''', '''shape''': (480, 640)}, '''scores''': 0.9_9_0_9}, {'''mask''': {'''hash''': '''64033ddc3f''', '''shape''': (480, 640)}, '''scores''': 0.9_8_7_9}, {'''mask''': {'''hash''': '''801064ff79''', '''shape''': (480, 640)}, '''scores''': 0.9_8_3_4}, {'''mask''': {'''hash''': '''6172f276ef''', '''shape''': (480, 640)}, '''scores''': 0.9_7_1_6}, {'''mask''': {'''hash''': '''b49e60e084''', '''shape''': (480, 640)}, '''scores''': 0.9_6_1_2}, {'''mask''': {'''hash''': '''a811e775fd''', '''shape''': (480, 640)}, '''scores''': 0.9_5_9_9}, {'''mask''': {'''hash''': '''a6a8ebcf4b''', '''shape''': (480, 640)}, '''scores''': 0.9_5_5_2}, {'''mask''': {'''hash''': '''9d8257e080''', '''shape''': (480, 640)}, '''scores''': 0.9_5_3_2}, {'''mask''': {'''hash''': '''32de6454a8''', '''shape''': (480, 640)}, '''scores''': 0.9_5_1_6}, {'''mask''': {'''hash''': '''af3d4af2c8''', '''shape''': (480, 640)}, '''scores''': 0.9_4_9_9}, {'''mask''': {'''hash''': '''3c6db475fb''', '''shape''': (480, 640)}, '''scores''': 0.9_4_8_3}, {'''mask''': {'''hash''': '''c290813fb9''', '''shape''': (480, 640)}, '''scores''': 0.9_4_6_4}, {'''mask''': {'''hash''': '''b6f0b8f606''', '''shape''': (480, 640)}, '''scores''': 0.9_4_3}, {'''mask''': {'''hash''': '''92ce16bfdf''', '''shape''': (480, 640)}, '''scores''': 0.9_4_3}, {'''mask''': {'''hash''': '''c749b25868''', '''shape''': (480, 640)}, '''scores''': 0.9_4_0_8}, {'''mask''': {'''hash''': '''efb6cab859''', '''shape''': (480, 640)}, '''scores''': 0.9_3_3_5}, {'''mask''': {'''hash''': '''1ff2eafb30''', '''shape''': (480, 640)}, '''scores''': 0.9_3_2_6}, {'''mask''': {'''hash''': '''788b798e24''', '''shape''': (480, 640)}, '''scores''': 0.9_2_6_2}, {'''mask''': {'''hash''': '''abea804f0e''', '''shape''': (480, 640)}, '''scores''': 0.8_9_9_9}, {'''mask''': {'''hash''': '''7b9e8ddb73''', '''shape''': (480, 640)}, '''scores''': 0.8_9_8_6}, {'''mask''': {'''hash''': '''cd24047c8a''', '''shape''': (480, 640)}, '''scores''': 0.8_9_8_4}, {'''mask''': {'''hash''': '''6943e6bcbd''', '''shape''': (480, 640)}, '''scores''': 0.8_8_7_3}, {'''mask''': {'''hash''': '''b5f47c9191''', '''shape''': (480, 640)}, '''scores''': 0.8_8_7_1} ] , ) # fmt: on @require_torch @slow def _lowerCamelCase ( self ): __a : Dict = '''facebook/sam-vit-huge''' __a : Tuple = pipeline('''mask-generation''' , model=_UpperCAmelCase ) __a : List[Any] = image_segmenter( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing __a : Optional[int] = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(_UpperCAmelCase ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0_4_4_4}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.0_2_1_0}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0_1_6_7}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0_1_3_2}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0_0_5_3}, ] , )
188
0
"""simple docstring""" import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class UpperCamelCase_ (__A ): def __get__( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict=None ) -> Any: # See docs.python.org/3/howto/descriptor.html#properties if obj is None: return self if self.fget is None: raise AttributeError("unreadable attribute" ) UpperCAmelCase_ : Optional[int] = "__cached_" + self.fget.__name__ UpperCAmelCase_ : Dict = getattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if cached is None: UpperCAmelCase_ : Union[str, Any] = self.fget(lowerCAmelCase_ ) setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return cached def snake_case ( A__ ): UpperCAmelCase_ : Dict = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(F"""invalid truth value {val!r}""" ) def snake_case ( A__ ): if is_torch_fx_proxy(A__ ): return True if is_torch_available(): import torch if isinstance(A__ ,torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(A__ ,tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(A__ ,(jnp.ndarray, Tracer) ): return True return isinstance(A__ ,np.ndarray ) def snake_case ( A__ ): return isinstance(A__ ,np.ndarray ) def snake_case ( A__ ): return _is_numpy(A__ ) def snake_case ( A__ ): import torch return isinstance(A__ ,torch.Tensor ) def snake_case ( A__ ): return False if not is_torch_available() else _is_torch(A__ ) def snake_case ( A__ ): import torch return isinstance(A__ ,torch.device ) def snake_case ( A__ ): return False if not is_torch_available() else _is_torch_device(A__ ) def snake_case ( A__ ): import torch if isinstance(A__ ,A__ ): if hasattr(A__ ,A__ ): UpperCAmelCase_ : Tuple = getattr(A__ ,A__ ) else: return False return isinstance(A__ ,torch.dtype ) def snake_case ( A__ ): return False if not is_torch_available() else _is_torch_dtype(A__ ) def snake_case ( A__ ): import tensorflow as tf return isinstance(A__ ,tf.Tensor ) def snake_case ( A__ ): return False if not is_tf_available() else _is_tensorflow(A__ ) def snake_case ( A__ ): import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(A__ ,"is_symbolic_tensor" ): return tf.is_symbolic_tensor(A__ ) return type(A__ ) == tf.Tensor def snake_case ( A__ ): return False if not is_tf_available() else _is_tf_symbolic_tensor(A__ ) def snake_case ( A__ ): import jax.numpy as jnp # noqa: F811 return isinstance(A__ ,jnp.ndarray ) def snake_case ( A__ ): return False if not is_flax_available() else _is_jax(A__ ) def snake_case ( A__ ): if isinstance(A__ ,(dict, UserDict) ): return {k: to_py_obj(A__ ) for k, v in obj.items()} elif isinstance(A__ ,(list, tuple) ): return [to_py_obj(A__ ) for o in obj] elif is_tf_tensor(A__ ): return obj.numpy().tolist() elif is_torch_tensor(A__ ): return obj.detach().cpu().tolist() elif is_jax_tensor(A__ ): return np.asarray(A__ ).tolist() elif isinstance(A__ ,(np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def snake_case ( A__ ): if isinstance(A__ ,(dict, UserDict) ): return {k: to_numpy(A__ ) for k, v in obj.items()} elif isinstance(A__ ,(list, tuple) ): return np.array(A__ ) elif is_tf_tensor(A__ ): return obj.numpy() elif is_torch_tensor(A__ ): return obj.detach().cpu().numpy() elif is_jax_tensor(A__ ): return np.asarray(A__ ) else: return obj class UpperCamelCase_ (__A ): def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> str: UpperCAmelCase_ : List[str] = fields(self ) # Safety and consistency checks if not len(lowerCAmelCase_ ): raise ValueError(f"""{self.__class__.__name__} has no fields.""" ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(f"""{self.__class__.__name__} should not have more than one required field.""" ) UpperCAmelCase_ : List[str] = getattr(self , class_fields[0].name ) UpperCAmelCase_ : Optional[int] = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(lowerCAmelCase_ ): if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): UpperCAmelCase_ : str = first_field.items() UpperCAmelCase_ : List[str] = True else: try: UpperCAmelCase_ : List[Any] = iter(lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = True except TypeError: UpperCAmelCase_ : Any = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(lowerCAmelCase_ ): if ( not isinstance(lowerCAmelCase_ , (list, tuple) ) or not len(lowerCAmelCase_ ) == 2 or not isinstance(element[0] , lowerCAmelCase_ ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute UpperCAmelCase_ : int = first_field else: # If we have a mixed iterator, raise an error raise ValueError( f"""Cannot set key/value for {element}. It needs to be a tuple (key, value).""" ) break setattr(self , element[0] , element[1] ) if element[1] is not None: UpperCAmelCase_ : Any = element[1] elif first_field is not None: UpperCAmelCase_ : Any = first_field else: for field in class_fields: UpperCAmelCase_ : Optional[int] = getattr(self , field.name ) if v is not None: UpperCAmelCase_ : Any = v def __delitem__( self : List[str] , *lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : List[str] ) -> Tuple: raise Exception(f"""You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.""" ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , *lowerCAmelCase_ : Optional[Any] , **lowerCAmelCase_ : Any ) -> Union[str, Any]: raise Exception(f"""You cannot use ``setdefault`` on a {self.__class__.__name__} instance.""" ) def _SCREAMING_SNAKE_CASE ( self : Tuple , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : Dict ) -> str: raise Exception(f"""You cannot use ``pop`` on a {self.__class__.__name__} instance.""" ) def _SCREAMING_SNAKE_CASE ( self : Dict , *lowerCAmelCase_ : Tuple , **lowerCAmelCase_ : List[str] ) -> List[Any]: raise Exception(f"""You cannot use ``update`` on a {self.__class__.__name__} instance.""" ) def __getitem__( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] ) -> str: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): UpperCAmelCase_ : Optional[int] = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any] ) -> Optional[Any]: if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(lowerCAmelCase_ , lowerCAmelCase_ ) super().__setattr__(lowerCAmelCase_ , lowerCAmelCase_ ) def __setitem__( self : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict ) -> Optional[int]: # Will raise a KeyException if needed super().__setitem__(lowerCAmelCase_ , lowerCAmelCase_ ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(lowerCAmelCase_ , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple[Any]: return tuple(self[k] for k in self.keys() ) class UpperCamelCase_ (__A , __A ): @classmethod def _SCREAMING_SNAKE_CASE ( cls : List[Any] , lowerCAmelCase_ : Optional[int] ) -> Union[str, Any]: raise ValueError( f"""{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}""" ) class UpperCamelCase_ (__A ): __magic_name__ = '''longest''' __magic_name__ = '''max_length''' __magic_name__ = '''do_not_pad''' class UpperCamelCase_ (__A ): __magic_name__ = '''pt''' __magic_name__ = '''tf''' __magic_name__ = '''np''' __magic_name__ = '''jax''' class UpperCamelCase_ : def __init__( self : Any , lowerCAmelCase_ : List[ContextManager] ) -> Any: UpperCAmelCase_ : int = context_managers UpperCAmelCase_ : List[Any] = ExitStack() def __enter__( self : Optional[int] ) -> int: for context_manager in self.context_managers: self.stack.enter_context(lowerCAmelCase_ ) def __exit__( self : Dict , *lowerCAmelCase_ : Optional[Any] , **lowerCAmelCase_ : Tuple ) -> List[Any]: self.stack.__exit__(*lowerCAmelCase_ , **lowerCAmelCase_ ) def snake_case ( A__ ): UpperCAmelCase_ : Dict = infer_framework(A__ ) if framework == "tf": UpperCAmelCase_ : Any = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": UpperCAmelCase_ : int = inspect.signature(model_class.forward ) # PyTorch models else: UpperCAmelCase_ : int = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def snake_case ( A__ ): UpperCAmelCase_ : Optional[Any] = model_class.__name__ UpperCAmelCase_ : str = infer_framework(A__ ) if framework == "tf": UpperCAmelCase_ : Optional[Any] = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": UpperCAmelCase_ : Tuple = inspect.signature(model_class.forward ) # PyTorch models else: UpperCAmelCase_ : Union[str, Any] = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def snake_case ( A__ ,A__ = "" ,A__ = "." ): def _flatten_dict(A__ ,A__="" ,A__="." ): for k, v in d.items(): UpperCAmelCase_ : Optional[int] = str(A__ ) + delimiter + str(A__ ) if parent_key else k if v and isinstance(A__ ,A__ ): yield from flatten_dict(A__ ,A__ ,delimiter=A__ ).items() else: yield key, v return dict(_flatten_dict(A__ ,A__ ,A__ ) ) @contextmanager def snake_case ( A__ ,A__ = False ): if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def snake_case ( A__ ,A__=None ): if is_numpy_array(A__ ): return np.transpose(A__ ,axes=A__ ) elif is_torch_tensor(A__ ): return array.T if axes is None else array.permute(*A__ ) elif is_tf_tensor(A__ ): import tensorflow as tf return tf.transpose(A__ ,perm=A__ ) elif is_jax_tensor(A__ ): return jnp.transpose(A__ ,axes=A__ ) else: raise ValueError(F"""Type not supported for transpose: {type(A__ )}.""" ) def snake_case ( A__ ,A__ ): if is_numpy_array(A__ ): return np.reshape(A__ ,A__ ) elif is_torch_tensor(A__ ): return array.reshape(*A__ ) elif is_tf_tensor(A__ ): import tensorflow as tf return tf.reshape(A__ ,A__ ) elif is_jax_tensor(A__ ): return jnp.reshape(A__ ,A__ ) else: raise ValueError(F"""Type not supported for reshape: {type(A__ )}.""" ) def snake_case ( A__ ,A__=None ): if is_numpy_array(A__ ): return np.squeeze(A__ ,axis=A__ ) elif is_torch_tensor(A__ ): return array.squeeze() if axis is None else array.squeeze(dim=A__ ) elif is_tf_tensor(A__ ): import tensorflow as tf return tf.squeeze(A__ ,axis=A__ ) elif is_jax_tensor(A__ ): return jnp.squeeze(A__ ,axis=A__ ) else: raise ValueError(F"""Type not supported for squeeze: {type(A__ )}.""" ) def snake_case ( A__ ,A__ ): if is_numpy_array(A__ ): return np.expand_dims(A__ ,A__ ) elif is_torch_tensor(A__ ): return array.unsqueeze(dim=A__ ) elif is_tf_tensor(A__ ): import tensorflow as tf return tf.expand_dims(A__ ,axis=A__ ) elif is_jax_tensor(A__ ): return jnp.expand_dims(A__ ,axis=A__ ) else: raise ValueError(F"""Type not supported for expand_dims: {type(A__ )}.""" ) def snake_case ( A__ ): if is_numpy_array(A__ ): return np.size(A__ ) elif is_torch_tensor(A__ ): return array.numel() elif is_tf_tensor(A__ ): import tensorflow as tf return tf.size(A__ ) elif is_jax_tensor(A__ ): return array.size else: raise ValueError(F"""Type not supported for expand_dims: {type(A__ )}.""" ) def snake_case ( A__ ,A__ ): for key, value in auto_map.items(): if isinstance(A__ ,(tuple, list) ): UpperCAmelCase_ : Union[str, Any] = [F"""{repo_id}--{v}""" if (v is not None and "--" not in v) else v for v in value] elif value is not None and "--" not in value: UpperCAmelCase_ : Dict = F"""{repo_id}--{value}""" return auto_map def snake_case ( A__ ): for base_class in inspect.getmro(A__ ): UpperCAmelCase_ : List[str] = base_class.__module__ UpperCAmelCase_ : List[str] = base_class.__name__ if module.startswith("tensorflow" ) or module.startswith("keras" ) or name == "TFPreTrainedModel": return "tf" elif module.startswith("torch" ) or name == "PreTrainedModel": return "pt" elif module.startswith("flax" ) or module.startswith("jax" ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(F"""Could not infer framework from class {model_class}.""" )
268
"""simple docstring""" lowerCamelCase_ = [ (1000, '''M'''), (900, '''CM'''), (500, '''D'''), (400, '''CD'''), (100, '''C'''), (90, '''XC'''), (50, '''L'''), (40, '''XL'''), (10, '''X'''), (9, '''IX'''), (5, '''V'''), (4, '''IV'''), (1, '''I'''), ] def snake_case ( A__ ): UpperCAmelCase_ : List[str] = {"I": 1, "V": 5, "X": 10, "L": 50, "C": 1_00, "D": 5_00, "M": 10_00} UpperCAmelCase_ : Optional[Any] = 0 UpperCAmelCase_ : Tuple = 0 while place < len(A__ ): if (place + 1 < len(A__ )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def snake_case ( A__ ): UpperCAmelCase_ : Union[str, Any] = [] for arabic, roman in ROMAN: ((UpperCAmelCase_) , (UpperCAmelCase_)) : str = divmod(A__ ,A__ ) result.append(roman * factor ) if number == 0: break return "".join(A__ ) if __name__ == "__main__": import doctest doctest.testmod()
268
1
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging UpperCamelCase__ = { 'cola': 2, 'mnli': 3, 'mrpc': 2, 'sst-2': 2, 'sts-b': 1, 'qqp': 2, 'qnli': 2, 'rte': 2, 'wnli': 2, } logging.set_verbosity_info() def lowerCAmelCase_ ( __A, __A, __A, __A=None ) -> Dict: '''simple docstring''' UpperCAmelCase__ = XLNetConfig.from_json_file(__A ) UpperCAmelCase__ = finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(f"""Building PyTorch XLNetForSequenceClassification model from configuration: {config}""" ) UpperCAmelCase__ = finetuning_task UpperCAmelCase__ = GLUE_TASKS_NUM_LABELS[finetuning_task] UpperCAmelCase__ = XLNetForSequenceClassification(__A ) elif "squad" in finetuning_task: UpperCAmelCase__ = finetuning_task UpperCAmelCase__ = XLNetForQuestionAnswering(__A ) else: UpperCAmelCase__ = XLNetLMHeadModel(__A ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(__A, __A, __A ) # Save pytorch-model UpperCAmelCase__ = os.path.join(__A, __A ) UpperCAmelCase__ = os.path.join(__A, __A ) print(f"""Save PyTorch model to {os.path.abspath(__A )}""" ) torch.save(model.state_dict(), __A ) print(f"""Save configuration file to {os.path.abspath(__A )}""" ) with open(__A, "w", encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--xlnet_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained XLNet model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--finetuning_task', default=None, type=str, help='Name of a task on which the XLNet TensorFlow model was fine-tuned', ) UpperCamelCase__ = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
143
from __future__ import annotations def lowerCAmelCase_ ( __A, __A, __A, ) -> tuple: '''simple docstring''' if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor" ) elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor" ) elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
143
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class lowercase ( _UpperCAmelCase ): def __init__( self , *lowercase , **lowercase ) -> None: warnings.warn( """The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use FlavaImageProcessor instead.""" , lowercase , ) super().__init__(*lowercase , **lowercase )
46
"""simple docstring""" from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class lowercase : def __init__( self , lowercase , ) -> Optional[int]: lowerCAmelCase = parent lowerCAmelCase = 13 lowerCAmelCase = 7 lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = False lowerCAmelCase = True lowerCAmelCase = 99 lowerCAmelCase = 32 lowerCAmelCase = 2 lowerCAmelCase = 4 lowerCAmelCase = 37 lowerCAmelCase = """gelu""" lowerCAmelCase = 0.1 lowerCAmelCase = 0.1 lowerCAmelCase = 512 lowerCAmelCase = 16 lowerCAmelCase = 2 lowerCAmelCase = 0.02 lowerCAmelCase = 3 lowerCAmelCase = 4 lowerCAmelCase = None def _snake_case ( self ) -> str: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> List[Any]: lowerCAmelCase = TFDistilBertModel(config=lowercase ) lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} lowerCAmelCase = model(lowercase ) lowerCAmelCase = [input_ids, input_mask] lowerCAmelCase = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: lowerCAmelCase = TFDistilBertForMaskedLM(config=lowercase ) lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} lowerCAmelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> List[Any]: lowerCAmelCase = TFDistilBertForQuestionAnswering(config=lowercase ) lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, } lowerCAmelCase = model(lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> List[Any]: lowerCAmelCase = self.num_labels lowerCAmelCase = TFDistilBertForSequenceClassification(lowercase ) lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} lowerCAmelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Any: lowerCAmelCase = self.num_choices lowerCAmelCase = TFDistilBertForMultipleChoice(lowercase ) lowerCAmelCase = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, } lowerCAmelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> int: lowerCAmelCase = self.num_labels lowerCAmelCase = TFDistilBertForTokenClassification(lowercase ) lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} lowerCAmelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase = self.prepare_config_and_inputs() ((lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase)) = config_and_inputs lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class lowercase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): _SCREAMING_SNAKE_CASE = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) _SCREAMING_SNAKE_CASE = ( { 'feature-extraction': TFDistilBertModel, 'fill-mask': TFDistilBertForMaskedLM, 'question-answering': TFDistilBertForQuestionAnswering, 'text-classification': TFDistilBertForSequenceClassification, 'token-classification': TFDistilBertForTokenClassification, 'zero-shot': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False def _snake_case ( self ) -> Dict: lowerCAmelCase = TFDistilBertModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=lowercase , dim=37 ) def _snake_case ( self ) -> str: self.config_tester.run_common_tests() def _snake_case ( self ) -> int: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*lowercase ) def _snake_case ( self ) -> Any: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*lowercase ) def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*lowercase ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowercase ) def _snake_case ( self ) -> List[Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowercase ) def _snake_case ( self ) -> str: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*lowercase ) @slow def _snake_case ( self ) -> List[str]: for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): lowerCAmelCase = TFDistilBertModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @require_tf class lowercase ( unittest.TestCase ): @slow def _snake_case ( self ) -> Any: lowerCAmelCase = TFDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) lowerCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase = model(lowercase )[0] lowerCAmelCase = [1, 6, 768] self.assertEqual(output.shape , lowercase ) lowerCAmelCase = tf.constant( [ [ [0.19_261_885, -0.13_732_955, 0.4_119_799], [0.22_150_156, -0.07_422_661, 0.39_037_204], [0.22_756_018, -0.0_896_414, 0.3_701_467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1e-4 )
46
1
"""simple docstring""" from __future__ import annotations import queue class SCREAMING_SNAKE_CASE_ : def __init__( self : Any , _A : Union[str, Any] ) -> List[Any]: """simple docstring""" snake_case_ : List[str] = data snake_case_ : int = None snake_case_ : Any = None def SCREAMING_SNAKE_CASE__ ( ): print('\n********Press N to stop entering at any point of time********\n' ) snake_case_ : Optional[int] = input('Enter the value of the root node: ' ).strip().lower() snake_case_ : int = queue.Queue() snake_case_ : Union[str, Any] = TreeNode(int(__a ) ) q.put(__a ) while not q.empty(): snake_case_ : Dict = q.get() snake_case_ : Optional[Any] = f"""Enter the left node of {node_found.data}: """ snake_case_ : Optional[int] = input(__a ).strip().lower() or 'n' if check == "n": return tree_node snake_case_ : Optional[int] = TreeNode(int(__a ) ) snake_case_ : Any = left_node q.put(__a ) snake_case_ : Optional[Any] = f"""Enter the right node of {node_found.data}: """ snake_case_ : int = input(__a ).strip().lower() or 'n' if check == "n": return tree_node snake_case_ : Any = TreeNode(int(__a ) ) snake_case_ : int = right_node q.put(__a ) raise def SCREAMING_SNAKE_CASE__ ( __a ): if not isinstance(__a , __a ) or not node: return print(node.data , end=',' ) pre_order(node.left ) pre_order(node.right ) def SCREAMING_SNAKE_CASE__ ( __a ): if not isinstance(__a , __a ) or not node: return in_order(node.left ) print(node.data , end=',' ) in_order(node.right ) def SCREAMING_SNAKE_CASE__ ( __a ): if not isinstance(__a , __a ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=',' ) def SCREAMING_SNAKE_CASE__ ( __a ): if not isinstance(__a , __a ) or not node: return snake_case_ : Dict = queue.Queue() q.put(__a ) while not q.empty(): snake_case_ : Any = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def SCREAMING_SNAKE_CASE__ ( __a ): if not isinstance(__a , __a ) or not node: return snake_case_ : List[Any] = queue.Queue() q.put(__a ) while not q.empty(): snake_case_ : str = [] while not q.empty(): snake_case_ : List[Any] = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(__a ) def SCREAMING_SNAKE_CASE__ ( __a ): if not isinstance(__a , __a ) or not node: return snake_case_ : int = [] snake_case_ : Optional[Any] = node while n or stack: while n: # start from root node, find its left child print(n.data , end=',' ) stack.append(__a ) snake_case_ : int = n.left # end of while means current node doesn't have left child snake_case_ : Union[str, Any] = stack.pop() # start to traverse its right child snake_case_ : str = n.right def SCREAMING_SNAKE_CASE__ ( __a ): if not isinstance(__a , __a ) or not node: return snake_case_ : Dict = [] snake_case_ : int = node while n or stack: while n: stack.append(__a ) snake_case_ : str = n.left snake_case_ : Any = stack.pop() print(n.data , end=',' ) snake_case_ : Dict = n.right def SCREAMING_SNAKE_CASE__ ( __a ): if not isinstance(__a , __a ) or not node: return snake_case_ ,snake_case_ : List[str] = [], [] snake_case_ : List[str] = node stacka.append(__a ) while stacka: # to find the reversed order of post order, store it in stack2 snake_case_ : Optional[Any] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(__a ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=',' ) def SCREAMING_SNAKE_CASE__ ( __a = "" , __a=50 , __a="*" ): if not s: return "\n" + width * char snake_case_ ,snake_case_ : Optional[Any] = divmod(width - len(__a ) - 2 , 2 ) return f"""{left * char} {s} {(left + extra) * char}""" if __name__ == "__main__": import doctest doctest.testmod() print(prompt("""Binary Tree Traversals""")) _SCREAMING_SNAKE_CASE = build_tree() print(prompt("""Pre Order Traversal""")) pre_order(node) print(prompt() + """\n""") print(prompt("""In Order Traversal""")) in_order(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal""")) post_order(node) print(prompt() + """\n""") print(prompt("""Level Order Traversal""")) level_order(node) print(prompt() + """\n""") print(prompt("""Actual Level Order Traversal""")) level_order_actual(node) print("""*""" * 50 + """\n""") print(prompt("""Pre Order Traversal - Iteration Version""")) pre_order_iter(node) print(prompt() + """\n""") print(prompt("""In Order Traversal - Iteration Version""")) in_order_iter(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal - Iteration Version""")) post_order_iter(node) print(prompt())
355
import re import string import numpy as np import datasets _SCREAMING_SNAKE_CASE = """ Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. """ _SCREAMING_SNAKE_CASE = """ Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive. Examples: >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 25.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 50.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 75.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results[\"exact_match\"], 1)) 100.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"] >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 33.3 """ _SCREAMING_SNAKE_CASE = """ """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE_ ( datasets.Metric ): def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , reference_urls=[] , ) def UpperCAmelCase_ ( self : List[Any] , _A : Optional[Any] , _A : Optional[int] , _A : Optional[int]=None , _A : Dict=False , _A : Dict=False , _A : Optional[Any]=False , ) -> List[str]: """simple docstring""" if regexes_to_ignore is not None: for s in regexes_to_ignore: snake_case_ : List[str] = np.array([re.sub(_A , '' , _A ) for x in predictions] ) snake_case_ : int = np.array([re.sub(_A , '' , _A ) for x in references] ) else: snake_case_ : Optional[Any] = np.asarray(_A ) snake_case_ : Optional[Any] = np.asarray(_A ) if ignore_case: snake_case_ : int = np.char.lower(_A ) snake_case_ : List[str] = np.char.lower(_A ) if ignore_punctuation: snake_case_ : str = string.punctuation.maketrans('' , '' , string.punctuation ) snake_case_ : str = np.char.translate(_A , table=_A ) snake_case_ : Any = np.char.translate(_A , table=_A ) if ignore_numbers: snake_case_ : int = string.digits.maketrans('' , '' , string.digits ) snake_case_ : Tuple = np.char.translate(_A , table=_A ) snake_case_ : Optional[Any] = np.char.translate(_A , table=_A ) snake_case_ : Optional[Any] = predictions == references return {"exact_match": np.mean(_A ) * 100}
88
0
from __future__ import annotations import numpy as np def _lowerCamelCase( lowercase__ ) -> tuple[np.ndarray, np.ndarray]: '''simple docstring''' __lowercase, __lowercase= np.shape(lowercase__ ) if rows != columns: __lowercase= ( '\'table\' has to be of square shaped array but got a ' F'{rows}x{columns} array:\n{table}' ) raise ValueError(lowercase__ ) __lowercase= np.zeros((rows, columns) ) __lowercase= np.zeros((rows, columns) ) for i in range(lowercase__ ): for j in range(lowercase__ ): __lowercase= sum(lower[i][k] * upper[k][j] for k in range(lowercase__ ) ) if upper[j][j] == 0: raise ArithmeticError('No LU decomposition exists' ) __lowercase= (table[i][j] - total) / upper[j][j] __lowercase= 1 for j in range(lowercase__ , lowercase__ ): __lowercase= sum(lower[i][k] * upper[k][j] for k in range(lowercase__ ) ) __lowercase= table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
295
import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def _lowerCamelCase( lowercase__=None , lowercase__=None ) -> Dict: '''simple docstring''' return field(default_factory=lambda: default , metadata=lowercase__ ) @dataclass class A : UpperCamelCase_ : str =field( metadata={'''help''': '''The csv file to plot.'''} , ) UpperCamelCase_ : bool =field( default=A_ , metadata={'''help''': '''Whether to plot along batch size or sequence length. Defaults to sequence length.'''} , ) UpperCamelCase_ : bool =field( default=A_ , metadata={'''help''': '''Whether the csv file has time results or memory results. Defaults to memory results.'''} , ) UpperCamelCase_ : bool =field( default=A_ , metadata={'''help''': '''Disable logarithmic scale when plotting'''} , ) UpperCamelCase_ : bool =field( default=A_ , metadata={ '''help''': '''Whether the csv file has training results or inference results. Defaults to inference results.''' } , ) UpperCamelCase_ : Optional[str] =field( default=A_ , metadata={'''help''': '''Filename under which the plot will be saved. If unused no plot is saved.'''} , ) UpperCamelCase_ : Optional[List[str]] =list_field( default=A_ , metadata={'''help''': '''List of model names that are used instead of the ones in the csv file.'''} ) def _lowerCamelCase( lowercase__ ) -> int: '''simple docstring''' try: int(lowercase__ ) return True except ValueError: return False def _lowerCamelCase( lowercase__ ) -> int: '''simple docstring''' try: float(lowercase__ ) return True except ValueError: return False class A : def __init__(self , lowerCAmelCase ): __lowercase= args __lowercase= defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline='' ) as csv_file: __lowercase= csv.DictReader(lowerCAmelCase ) for row in reader: __lowercase= row['model'] self.result_dict[model_name]["bsz"].append(int(row['batch_size'] ) ) self.result_dict[model_name]["seq_len"].append(int(row['sequence_length'] ) ) if can_convert_to_int(row['result'] ): # value is not None __lowercase= int(row['result'] ) elif can_convert_to_float(row['result'] ): # value is not None __lowercase= float(row['result'] ) def _A (self ): __lowercase, __lowercase= plt.subplots() __lowercase= 'Time usage' if self.args.is_time else 'Memory usage' __lowercase= title_str + ' for training' if self.args.is_train else title_str + ' for inference' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('log' ) ax.set_yscale('log' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): __lowercase= sorted(set(self.result_dict[model_name]['bsz'] ) ) __lowercase= sorted(set(self.result_dict[model_name]['seq_len'] ) ) __lowercase= self.result_dict[model_name]['result'] ((__lowercase), (__lowercase))= ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) __lowercase= ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: __lowercase= np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=lowerCAmelCase , ) else: __lowercase= np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((__lowercase), (__lowercase))= ( ('batch_size', 'len') if self.args.plot_along_batch else ('in #tokens', 'bsz') ) __lowercase= np.asarray(lowerCAmelCase , lowerCAmelCase )[: len(lowerCAmelCase )] plt.scatter( lowerCAmelCase , lowerCAmelCase , label=f'{label_model_name} - {inner_loop_label}: {inner_loop_value}' ) plt.plot(lowerCAmelCase , lowerCAmelCase , '--' ) title_str += f' {label_model_name} vs.' __lowercase= title_str[:-4] __lowercase= 'Time in s' if self.args.is_time else 'Memory in MB' # plot plt.title(lowerCAmelCase ) plt.xlabel(lowerCAmelCase ) plt.ylabel(lowerCAmelCase ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def _lowerCamelCase( ) -> str: '''simple docstring''' __lowercase= HfArgumentParser(lowercase__ ) __lowercase= parser.parse_args_into_dataclasses()[0] __lowercase= Plot(args=lowercase__ ) plot.plot() if __name__ == "__main__": main()
295
1
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available snake_case__ : Tuple = { 'configuration_cpmant': ['CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CpmAntConfig'], 'tokenization_cpmant': ['CpmAntTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Optional[Any] = [ 'CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST', 'CpmAntForCausalLM', 'CpmAntModel', 'CpmAntPreTrainedModel', ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys snake_case__ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
364
"""simple docstring""" import numpy as np from PIL import Image def _snake_case ( _snake_case : np.ndarray , _snake_case : int , _snake_case : int ): lowerCAmelCase : Dict = np.array(_snake_case ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) lowerCAmelCase : int = 0 lowerCAmelCase : Dict = 0 lowerCAmelCase : str = 0 lowerCAmelCase : Union[str, Any] = 0 # compute the shape of the output matrix lowerCAmelCase : Tuple = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape lowerCAmelCase : Dict = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix lowerCAmelCase : List[Any] = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCAmelCase : int = 0 lowerCAmelCase : Tuple = 0 return updated_arr def _snake_case ( _snake_case : np.ndarray , _snake_case : int , _snake_case : int ): lowerCAmelCase : Union[str, Any] = np.array(_snake_case ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : Any = 0 lowerCAmelCase : int = 0 lowerCAmelCase : int = 0 # compute the shape of the output matrix lowerCAmelCase : str = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape lowerCAmelCase : Dict = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix lowerCAmelCase : Optional[int] = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCAmelCase : str = 0 lowerCAmelCase : List[Any] = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='''avgpooling''', verbose=True) # Loading the image snake_case__ : Optional[Any] = Image.open('''path_to_image''') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
314
0
import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def lowerCAmelCase_ (lowerCAmelCase__: Dict ): """simple docstring""" return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def lowerCAmelCase_ (lowerCAmelCase__: Tuple , lowerCAmelCase__: Any ): """simple docstring""" UpperCAmelCase_: Optional[Any] = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue UpperCAmelCase_: Optional[Any] = key.replace("""heads.cmd.mim_head.cls.predictions""" , """mmm_image_head""" ) UpperCAmelCase_: str = key.replace("""heads.cmd.mlm_head.cls.predictions""" , """mmm_text_head""" ) UpperCAmelCase_: Dict = key.replace("""heads.cmd.itm_head.cls""" , """itm_head""" ) UpperCAmelCase_: str = key.replace("""heads.cmd.itm_head.pooler""" , """itm_head.pooler""" ) UpperCAmelCase_: Tuple = key.replace("""heads.cmd.clip_head.logit_scale""" , """flava.logit_scale""" ) UpperCAmelCase_: Tuple = key.replace("""heads.fairseq_mlm.cls.predictions""" , """mlm_head""" ) UpperCAmelCase_: Optional[Any] = key.replace("""heads.imagenet.mim_head.cls.predictions""" , """mim_head""" ) UpperCAmelCase_: int = key.replace("""mm_text_projection""" , """flava.text_to_mm_projection""" ) UpperCAmelCase_: Optional[Any] = key.replace("""mm_image_projection""" , """flava.image_to_mm_projection""" ) UpperCAmelCase_: Optional[Any] = key.replace("""image_encoder.module""" , """flava.image_model""" ) UpperCAmelCase_: List[str] = key.replace("""text_encoder.module""" , """flava.text_model""" ) UpperCAmelCase_: Optional[int] = key.replace("""mm_encoder.module.encoder.cls_token""" , """flava.multimodal_model.cls_token""" ) UpperCAmelCase_: Union[str, Any] = key.replace("""mm_encoder.module""" , """flava.multimodal_model""" ) UpperCAmelCase_: List[str] = key.replace("""text_projection""" , """flava.text_projection""" ) UpperCAmelCase_: int = key.replace("""image_projection""" , """flava.image_projection""" ) UpperCAmelCase_: List[Any] = value.float() for key, value in codebook_state_dict.items(): UpperCAmelCase_: Any = value return upgrade @torch.no_grad() def lowerCAmelCase_ (lowerCAmelCase__: Tuple , lowerCAmelCase__: Optional[int] , lowerCAmelCase__: List[Any] , lowerCAmelCase__: List[Any]=None ): """simple docstring""" if config_path is not None: UpperCAmelCase_: Optional[Any] = FlavaConfig.from_pretrained(lowerCAmelCase__ ) else: UpperCAmelCase_: Optional[int] = FlavaConfig() UpperCAmelCase_: Union[str, Any] = FlavaForPreTraining(lowerCAmelCase__ ).eval() UpperCAmelCase_: List[str] = convert_dalle_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , save_checkpoint=lowerCAmelCase__ ) if os.path.exists(lowerCAmelCase__ ): UpperCAmelCase_: Optional[int] = torch.load(lowerCAmelCase__ , map_location="""cpu""" ) else: UpperCAmelCase_: int = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location="""cpu""" ) UpperCAmelCase_: Optional[int] = upgrade_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) hf_model.load_state_dict(lowerCAmelCase__ ) UpperCAmelCase_: Union[str, Any] = hf_model.state_dict() UpperCAmelCase_: Tuple = count_parameters(lowerCAmelCase__ ) UpperCAmelCase_: List[Any] = count_parameters(lowerCAmelCase__ ) + count_parameters(lowerCAmelCase__ ) assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 ) hf_model.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": a : Dict = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint') parser.add_argument('--codebook_path', default=None, type=str, help='Path to flava codebook checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') a : Dict = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
147
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py a : List[str] = 'src/diffusers' a : Optional[Any] = '.' # This is to make sure the diffusers module imported is the one in the repo. a : Dict = importlib.util.spec_from_file_location( 'diffusers', os.path.join(DIFFUSERS_PATH, '__init__.py'), submodule_search_locations=[DIFFUSERS_PATH], ) a : str = spec.loader.load_module() def lowerCAmelCase_ (lowerCAmelCase__: Optional[int] , lowerCAmelCase__: List[str] ): """simple docstring""" return line.startswith(lowerCAmelCase__ ) or len(lowerCAmelCase__ ) <= 1 or re.search(r"""^\s*\)(\s*->.*:|:)\s*$""" , lowerCAmelCase__ ) is not None def lowerCAmelCase_ (lowerCAmelCase__: str ): """simple docstring""" UpperCAmelCase_: Optional[Any] = object_name.split(""".""" ) UpperCAmelCase_: Tuple = 0 # First let's find the module where our object lives. UpperCAmelCase_: Union[str, Any] = parts[i] while i < len(lowerCAmelCase__ ) and not os.path.isfile(os.path.join(lowerCAmelCase__ , F'{module}.py' ) ): i += 1 if i < len(lowerCAmelCase__ ): UpperCAmelCase_: List[Any] = os.path.join(lowerCAmelCase__ , parts[i] ) if i >= len(lowerCAmelCase__ ): raise ValueError(F'`object_name` should begin with the name of a module of diffusers but got {object_name}.' ) with open(os.path.join(lowerCAmelCase__ , F'{module}.py' ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: UpperCAmelCase_: List[Any] = f.readlines() # Now let's find the class / func in the code! UpperCAmelCase_: Any = """""" UpperCAmelCase_: Tuple = 0 for name in parts[i + 1 :]: while ( line_index < len(lowerCAmelCase__ ) and re.search(rF'^{indent}(class|def)\s+{name}(\(|\:)' , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(lowerCAmelCase__ ): raise ValueError(F' {object_name} does not match any function or class in {module}.' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). UpperCAmelCase_: Dict = line_index while line_index < len(lowerCAmelCase__ ) and _should_continue(lines[line_index] , lowerCAmelCase__ ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 UpperCAmelCase_: Optional[int] = lines[start_index:line_index] return "".join(lowerCAmelCase__ ) a : List[str] = re.compile(r'^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)') a : Optional[int] = re.compile(r'^\s*(\S+)->(\S+)(\s+.*|$)') a : List[Any] = re.compile(r'<FILL\s+[^>]*>') def lowerCAmelCase_ (lowerCAmelCase__: Dict ): """simple docstring""" UpperCAmelCase_: Dict = code.split("""\n""" ) UpperCAmelCase_: Any = 0 while idx < len(lowerCAmelCase__ ) and len(lines[idx] ) == 0: idx += 1 if idx < len(lowerCAmelCase__ ): return re.search(r"""^(\s*)\S""" , lines[idx] ).groups()[0] return "" def lowerCAmelCase_ (lowerCAmelCase__: Union[str, Any] ): """simple docstring""" UpperCAmelCase_: str = len(get_indent(lowerCAmelCase__ ) ) > 0 if has_indent: UpperCAmelCase_: Union[str, Any] = F'class Bla:\n{code}' UpperCAmelCase_: int = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 , preview=lowerCAmelCase__ ) UpperCAmelCase_: int = black.format_str(lowerCAmelCase__ , mode=lowerCAmelCase__ ) UpperCAmelCase_ , UpperCAmelCase_: List[Any] = style_docstrings_in_code(lowerCAmelCase__ ) return result[len("""class Bla:\n""" ) :] if has_indent else result def lowerCAmelCase_ (lowerCAmelCase__: Tuple , lowerCAmelCase__: int=False ): """simple docstring""" with open(lowerCAmelCase__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: UpperCAmelCase_: List[str] = f.readlines() UpperCAmelCase_: List[str] = [] UpperCAmelCase_: Tuple = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(lowerCAmelCase__ ): UpperCAmelCase_: Dict = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_: Any = search.groups() UpperCAmelCase_: str = find_code_in_diffusers(lowerCAmelCase__ ) UpperCAmelCase_: int = get_indent(lowerCAmelCase__ ) UpperCAmelCase_: Dict = line_index + 1 if indent == theoretical_indent else line_index + 2 UpperCAmelCase_: Tuple = theoretical_indent UpperCAmelCase_: Dict = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. UpperCAmelCase_: Tuple = True while line_index < len(lowerCAmelCase__ ) and should_continue: line_index += 1 if line_index >= len(lowerCAmelCase__ ): break UpperCAmelCase_: Any = lines[line_index] UpperCAmelCase_: Tuple = _should_continue(lowerCAmelCase__ , lowerCAmelCase__ ) and re.search(F'^{indent}# End copy' , lowerCAmelCase__ ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 UpperCAmelCase_: int = lines[start_index:line_index] UpperCAmelCase_: Union[str, Any] = """""".join(lowerCAmelCase__ ) # Remove any nested `Copied from` comments to avoid circular copies UpperCAmelCase_: int = [line for line in theoretical_code.split("""\n""" ) if _re_copy_warning.search(lowerCAmelCase__ ) is None] UpperCAmelCase_: Union[str, Any] = """\n""".join(lowerCAmelCase__ ) # Before comparing, use the `replace_pattern` on the original code. if len(lowerCAmelCase__ ) > 0: UpperCAmelCase_: Any = replace_pattern.replace("""with""" , """""" ).split(""",""" ) UpperCAmelCase_: int = [_re_replace_pattern.search(lowerCAmelCase__ ) for p in patterns] for pattern in patterns: if pattern is None: continue UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_: str = pattern.groups() UpperCAmelCase_: int = re.sub(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if option.strip() == "all-casing": UpperCAmelCase_: List[Any] = re.sub(obja.lower() , obja.lower() , lowerCAmelCase__ ) UpperCAmelCase_: Optional[int] = re.sub(obja.upper() , obja.upper() , lowerCAmelCase__ ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line UpperCAmelCase_: Union[str, Any] = blackify(lines[start_index - 1] + theoretical_code ) UpperCAmelCase_: Dict = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: UpperCAmelCase_: str = lines[:start_index] + [theoretical_code] + lines[line_index:] UpperCAmelCase_: Optional[int] = start_index + 1 if overwrite and len(lowerCAmelCase__ ) > 0: # Warn the user a file has been modified. print(F'Detected changes, rewriting {filename}.' ) with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lowerCAmelCase__ ) return diffs def lowerCAmelCase_ (lowerCAmelCase__: bool = False ): """simple docstring""" UpperCAmelCase_: Dict = glob.glob(os.path.join(lowerCAmelCase__ , """**/*.py""" ) , recursive=lowerCAmelCase__ ) UpperCAmelCase_: Optional[Any] = [] for filename in all_files: UpperCAmelCase_: str = is_copy_consistent(lowerCAmelCase__ , lowerCAmelCase__ ) diffs += [F'- {filename}: copy does not match {d[0]} at line {d[1]}' for d in new_diffs] if not overwrite and len(lowerCAmelCase__ ) > 0: UpperCAmelCase_: Dict = """\n""".join(lowerCAmelCase__ ) raise Exception( """Found the following copy inconsistencies:\n""" + diff + """\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.""" ) if __name__ == "__main__": a : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') a : List[Any] = parser.parse_args() check_copies(args.fix_and_overwrite)
147
1
"""simple docstring""" from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class __UpperCAmelCase : pass
363
import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version UpperCamelCase = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.14.0''', '''To fix: pip install -r examples/pytorch/audio-classification/requirements.txt''') def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ = 1_60_00 ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = int(round(sample_rate * max_length ) ) if len(snake_case__ ) <= sample_length: return wav _SCREAMING_SNAKE_CASE = randint(0 ,len(snake_case__ ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class __UpperCAmelCase : __snake_case : Optional[str] = field(default=_UpperCAmelCase ,metadata={"help": "Name of a dataset from the datasets package"} ) __snake_case : Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) __snake_case : Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "A file containing the training audio paths and labels."} ) __snake_case : Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "A file containing the validation audio paths and labels."} ) __snake_case : str = field( default="train" ,metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" } ,) __snake_case : str = field( default="validation" ,metadata={ "help": ( "The name of the training data set split to use (via the datasets library). Defaults to 'validation'" ) } ,) __snake_case : str = field( default="audio" ,metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"} ,) __snake_case : str = field( default="label" ,metadata={"help": "The name of the dataset column containing the labels. Defaults to 'label'"} ) __snake_case : Optional[int] = field( default=_UpperCAmelCase ,metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } ,) __snake_case : Optional[int] = field( default=_UpperCAmelCase ,metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } ,) __snake_case : float = field( default=20 ,metadata={"help": "Audio clips will be randomly cut to this length during training if the value is set."} ,) @dataclass class __UpperCAmelCase : __snake_case : str = field( default="facebook/wav2vec2-base" ,metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ,) __snake_case : Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __snake_case : Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "Where do you want to store the pretrained models downloaded from the Hub"} ) __snake_case : str = field( default="main" ,metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} ,) __snake_case : Optional[str] = field( default=_UpperCAmelCase ,metadata={"help": "Name or path of preprocessor config."} ) __snake_case : bool = field( default=_UpperCAmelCase ,metadata={"help": "Whether to freeze the feature encoder layers of the model."} ) __snake_case : bool = field( default=_UpperCAmelCase ,metadata={"help": "Whether to generate an attention mask in the feature extractor."} ) __snake_case : bool = field( default=_UpperCAmelCase ,metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } ,) __snake_case : Optional[bool] = field( default=_UpperCAmelCase ,metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) __snake_case : bool = field( default=_UpperCAmelCase ,metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} ,) def UpperCamelCase ( self: List[str] ): '''simple docstring''' if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( """The argument `--freeze_feature_extractor` is deprecated and """ """will be removed in a future version. Use `--freeze_feature_encoder`""" """instead. Setting `freeze_feature_encoder==True`.""" , UpperCAmelCase_ , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( """The argument `--freeze_feature_extractor` is deprecated and """ """should not be used in combination with `--freeze_feature_encoder`.""" """Only make use of `--freeze_feature_encoder`.""" ) def __lowerCamelCase ( ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_audio_classification""" ,snake_case__ ,snake_case__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" ,datefmt="""%m/%d/%Y %H:%M:%S""" ,handlers=[logging.StreamHandler(sys.stdout )] ,) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = training_args.get_process_log_level() logger.setLevel(snake_case__ ) transformers.utils.logging.set_verbosity(snake_case__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} ' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. _SCREAMING_SNAKE_CASE = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _SCREAMING_SNAKE_CASE = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' """Use --overwrite_output_dir to train from scratch.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset and prepare it for the audio classification task. _SCREAMING_SNAKE_CASE = DatasetDict() _SCREAMING_SNAKE_CASE = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,split=data_args.train_split_name ,use_auth_token=True if model_args.use_auth_token else None ,) _SCREAMING_SNAKE_CASE = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,split=data_args.eval_split_name ,use_auth_token=True if model_args.use_auth_token else None ,) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F'--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. ' """Make sure to set `--audio_column_name` to the correct audio column - one of """ F'{", ".join(raw_datasets["train"].column_names )}.' ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F'--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. ' """Make sure to set `--label_column_name` to the correct text column - one of """ F'{", ".join(raw_datasets["train"].column_names )}.' ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy _SCREAMING_SNAKE_CASE = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path ,return_attention_mask=model_args.attention_mask ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. _SCREAMING_SNAKE_CASE = raw_datasets.cast_column( data_args.audio_column_name ,datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) _SCREAMING_SNAKE_CASE = feature_extractor.model_input_names[0] def train_transforms(snake_case__ ): _SCREAMING_SNAKE_CASE = [] for audio in batch[data_args.audio_column_name]: _SCREAMING_SNAKE_CASE = random_subsample( audio["""array"""] ,max_length=data_args.max_length_seconds ,sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(snake_case__ ) _SCREAMING_SNAKE_CASE = feature_extractor(snake_case__ ,sampling_rate=feature_extractor.sampling_rate ) _SCREAMING_SNAKE_CASE = {model_input_name: inputs.get(snake_case__ )} _SCREAMING_SNAKE_CASE = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(snake_case__ ): _SCREAMING_SNAKE_CASE = [audio["""array"""] for audio in batch[data_args.audio_column_name]] _SCREAMING_SNAKE_CASE = feature_extractor(snake_case__ ,sampling_rate=feature_extractor.sampling_rate ) _SCREAMING_SNAKE_CASE = {model_input_name: inputs.get(snake_case__ )} _SCREAMING_SNAKE_CASE = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. _SCREAMING_SNAKE_CASE = raw_datasets["""train"""].features[data_args.label_column_name].names _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = {}, {} for i, label in enumerate(snake_case__ ): _SCREAMING_SNAKE_CASE = str(snake_case__ ) _SCREAMING_SNAKE_CASE = label # Load the accuracy metric from the datasets package _SCREAMING_SNAKE_CASE = evaluate.load("""accuracy""" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(snake_case__ ): _SCREAMING_SNAKE_CASE = np.argmax(eval_pred.predictions ,axis=1 ) return metric.compute(predictions=snake_case__ ,references=eval_pred.label_ids ) _SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path ,num_labels=len(snake_case__ ) ,labelaid=snake_case__ ,idalabel=snake_case__ ,finetuning_task="""audio-classification""" ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) _SCREAMING_SNAKE_CASE = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path ,from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) ,config=snake_case__ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,ignore_mismatched_sizes=model_args.ignore_mismatched_sizes ,) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: _SCREAMING_SNAKE_CASE = ( raw_datasets["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(snake_case__ ,output_all_columns=snake_case__ ) if training_args.do_eval: if data_args.max_eval_samples is not None: _SCREAMING_SNAKE_CASE = ( raw_datasets["""eval"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(snake_case__ ,output_all_columns=snake_case__ ) # Initialize our trainer _SCREAMING_SNAKE_CASE = Trainer( model=snake_case__ ,args=snake_case__ ,train_dataset=raw_datasets["""train"""] if training_args.do_train else None ,eval_dataset=raw_datasets["""eval"""] if training_args.do_eval else None ,compute_metrics=snake_case__ ,tokenizer=snake_case__ ,) # Training if training_args.do_train: _SCREAMING_SNAKE_CASE = None if training_args.resume_from_checkpoint is not None: _SCREAMING_SNAKE_CASE = training_args.resume_from_checkpoint elif last_checkpoint is not None: _SCREAMING_SNAKE_CASE = last_checkpoint _SCREAMING_SNAKE_CASE = trainer.train(resume_from_checkpoint=snake_case__ ) trainer.save_model() trainer.log_metrics("""train""" ,train_result.metrics ) trainer.save_metrics("""train""" ,train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _SCREAMING_SNAKE_CASE = trainer.evaluate() trainer.log_metrics("""eval""" ,snake_case__ ) trainer.save_metrics("""eval""" ,snake_case__ ) # Write model card and (optionally) push to hub _SCREAMING_SNAKE_CASE = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """audio-classification""", """dataset""": data_args.dataset_name, """tags""": ["""audio-classification"""], } if training_args.push_to_hub: trainer.push_to_hub(**snake_case__ ) else: trainer.create_model_card(**snake_case__ ) if __name__ == "__main__": main()
125
0
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : Optional[int] = logging.get_logger(__name__) __UpperCamelCase : str = "https://openaipublic.azureedge.net/jukebox/models/" __UpperCamelCase : Tuple = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def __A ( __lowerCamelCase ) -> List[str]: if key.endswith(""".model.1.bias""" ) and len(key.split(""".""" ) ) > 10: a = key.replace(""".model.1.bias""" , """.conv1d_1.bias""" ) elif key.endswith(""".model.1.weight""" ) and len(key.split(""".""" ) ) > 10: a = key.replace(""".model.1.weight""" , """.conv1d_1.weight""" ) elif key.endswith(""".model.3.bias""" ) and len(key.split(""".""" ) ) > 10: a = key.replace(""".model.3.bias""" , """.conv1d_2.bias""" ) elif key.endswith(""".model.3.weight""" ) and len(key.split(""".""" ) ) > 10: a = key.replace(""".model.3.weight""" , """.conv1d_2.weight""" ) if "conditioner_blocks.0." in key: a = key.replace("""conditioner_blocks.0""" , """conditioner_blocks""" ) if "prime_prior" in key: a = key.replace("""prime_prior""" , """encoder""" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: a = key.replace(""".emb.""" , """.""" ) if key.endswith("""k""" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(""".k""" , """.codebook""" ) if "y_emb." in key: return key.replace("""y_emb.""" , """metadata_embedding.""" ) if "x_emb.emb." in key: a = key.replace("""0.x_emb.emb""" , """embed_tokens""" ) if "prime_state_ln" in key: return key.replace("""prime_state_ln""" , """encoder.final_layer_norm""" ) if ".ln" in key: return key.replace(""".ln""" , """.layer_norm""" ) if "_ln" in key: return key.replace("""_ln""" , """_layer_norm""" ) if "prime_state_proj" in key: return key.replace("""prime_state_proj""" , """encoder.proj_in""" ) if "prime_x_out" in key: return key.replace("""prime_x_out""" , """encoder.lm_head""" ) if "prior.x_out" in key: return key.replace("""x_out""" , """fc_proj_out""" ) if "x_emb" in key: return key.replace("""x_emb""" , """embed_tokens""" ) return key def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Dict: a = {} import re a = re.compile(R"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" ) a = re.compile( R"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) a = re.compile(R"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" ) a = re.compile(R"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" ) a = re.compile( R"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) a = re.compile(R"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" ) a = re.compile(R"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)""" ) a = re.compile( R"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) a = re.compile(R"""conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)""" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(__lowerCamelCase ): a = re_encoder_block_conv_in.match(__lowerCamelCase ) a = regex_match.groups() a = int(groups[2] ) * 2 + int(groups[3] ) a = f'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}' a = re_encoder_block_conv_in.sub(__lowerCamelCase , __lowerCamelCase ) elif re_encoder_block_resnet.fullmatch(__lowerCamelCase ): a = re_encoder_block_resnet.match(__lowerCamelCase ) a = regex_match.groups() a = int(groups[2] ) * 2 + int(groups[3] ) a = {"""1""": 1, """3""": 2}[groups[-2]] a = f'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.' a = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' a = prefix + resnet_block a = re_encoder_block_resnet.sub(__lowerCamelCase , __lowerCamelCase ) elif re_encoder_block_proj_out.fullmatch(__lowerCamelCase ): a = re_encoder_block_proj_out.match(__lowerCamelCase ) a = regex_match.groups() a = f'encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}' a = re_encoder_block_proj_out.sub(__lowerCamelCase , __lowerCamelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(__lowerCamelCase ): a = re_decoder_block_conv_out.match(__lowerCamelCase ) a = regex_match.groups() a = int(groups[2] ) * 2 + int(groups[3] ) - 2 a = f'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}' a = re_decoder_block_conv_out.sub(__lowerCamelCase , __lowerCamelCase ) elif re_decoder_block_resnet.fullmatch(__lowerCamelCase ): a = re_decoder_block_resnet.match(__lowerCamelCase ) a = regex_match.groups() a = int(groups[2] ) * 2 + int(groups[3] ) - 2 a = {"""1""": 1, """3""": 2}[groups[-2]] a = f'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.' a = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' a = prefix + resnet_block a = re_decoder_block_resnet.sub(__lowerCamelCase , __lowerCamelCase ) elif re_decoder_block_proj_in.fullmatch(__lowerCamelCase ): a = re_decoder_block_proj_in.match(__lowerCamelCase ) a = regex_match.groups() a = f'decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}' a = re_decoder_block_proj_in.sub(__lowerCamelCase , __lowerCamelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(__lowerCamelCase ): a = re_prior_cond_conv_out.match(__lowerCamelCase ) a = regex_match.groups() a = int(groups[1] ) * 2 + int(groups[2] ) - 2 a = f'conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}' a = re_prior_cond_conv_out.sub(__lowerCamelCase , __lowerCamelCase ) elif re_prior_cond_resnet.fullmatch(__lowerCamelCase ): a = re_prior_cond_resnet.match(__lowerCamelCase ) a = regex_match.groups() a = int(groups[1] ) * 2 + int(groups[2] ) - 2 a = {"""1""": 1, """3""": 2}[groups[-2]] a = f'conditioner_blocks.upsampler.upsample_block.{block_index}.' a = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' a = prefix + resnet_block a = re_prior_cond_resnet.sub(__lowerCamelCase , __lowerCamelCase ) elif re_prior_cond_proj_in.fullmatch(__lowerCamelCase ): a = re_prior_cond_proj_in.match(__lowerCamelCase ) a = regex_match.groups() a = f'conditioner_blocks.upsampler.proj_in.{groups[-1]}' a = re_prior_cond_proj_in.sub(__lowerCamelCase , __lowerCamelCase ) # keep original key else: a = original_key a = replace_key(__lowerCamelCase ) if f'{key_prefix}.{key}' not in model_state_dict or key is None: print(f'failed converting {original_key} to {key}, does not match' ) # handle missmatched shape elif value.shape != model_state_dict[f'{key_prefix}.{key}'].shape: a = model_state_dict[f'{key_prefix}.{key}'] print(f'{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match' ) a = original_key a = original_key a = value return new_dict @torch.no_grad() def __A ( __lowerCamelCase=None , __lowerCamelCase=None ) -> Tuple: for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' ): a = requests.get(f'{PREFIX}{file}' , allow_redirects=__lowerCamelCase ) os.makedirs(f'{pytorch_dump_folder_path}/' , exist_ok=__lowerCamelCase ) open(f'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' , """wb""" ).write(r.content ) a = MODEL_MAPPING[model_name.split("""/""" )[-1]] a = JukeboxConfig.from_pretrained(__lowerCamelCase ) a = JukeboxModel(__lowerCamelCase ) a = [] a = {} for i, dict_name in enumerate(__lowerCamelCase ): a = torch.load(f'{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}' )["""model"""] a = {} for k in old_dic.keys(): if k.endswith(""".b""" ): a = old_dic[k] elif k.endswith(""".w""" ): a = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: a = old_dic[k] else: a = old_dic[k] a = """vqvae""" if i == 0 else f'priors.{3 - i}' a = fix_jukebox_keys(__lowerCamelCase , model.state_dict() , __lowerCamelCase , __lowerCamelCase ) weight_dict.append(__lowerCamelCase ) a = weight_dict.pop(0 ) model.vqvae.load_state_dict(__lowerCamelCase ) for i in range(len(__lowerCamelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) with open(f'{pytorch_dump_folder_path}/mapping.json' , """w""" ) as txtfile: json.dump(__lowerCamelCase , __lowerCamelCase ) print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__lowerCamelCase ) return weight_dict if __name__ == "__main__": __UpperCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) __UpperCamelCase : int = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
228
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin __UpperCamelCase : Optional[Any] = False @skip_mps class __lowerCAmelCase ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): UpperCamelCase__ = StableDiffusionAttendAndExcitePipeline UpperCamelCase__ = False UpperCamelCase__ = TEXT_TO_IMAGE_PARAMS UpperCamelCase__ = TEXT_TO_IMAGE_BATCH_PARAMS.union({'''token_indices'''} ) UpperCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def lowerCamelCase__ ( cls :Union[str, Any] ): '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(__magic_name__ ) @classmethod def lowerCamelCase__ ( cls :Union[str, Any] ): '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(__magic_name__ ) def lowerCamelCase__ ( self :Tuple ): '''simple docstring''' torch.manual_seed(0 ) a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=__magic_name__ , ) a = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__magic_name__ , set_alpha_to_one=__magic_name__ , ) torch.manual_seed(0 ) a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , ) a = CLIPTextModel(__magic_name__ ) a = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) a = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCamelCase__ ( self :Dict , __magic_name__ :Optional[int] , __magic_name__ :Optional[int]=0 ): '''simple docstring''' if str(__magic_name__ ).startswith("""mps""" ): a = torch.manual_seed(__magic_name__ ) else: a = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) a = a = { """prompt""": """a cat and a frog""", """token_indices""": [2, 5], """generator""": generator, """num_inference_steps""": 1, """guidance_scale""": 6.0, """output_type""": """numpy""", """max_iter_to_alter""": 2, """thresholds""": {0: 0.7}, } return inputs def lowerCamelCase__ ( self :str ): '''simple docstring''' a = """cpu""" a = self.get_dummy_components() a = self.pipeline_class(**__magic_name__ ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) a = self.get_dummy_inputs(__magic_name__ ) a = pipe(**__magic_name__ ).images a = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 64, 64, 3) ) a = np.array( [0.63905364, 0.62897307, 0.48599017, 0.5133624, 0.5550048, 0.45769516, 0.50326973, 0.5023139, 0.45384496] ) a = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__magic_name__ , 1E-3 ) def lowerCamelCase__ ( self :Tuple ): '''simple docstring''' super().test_cpu_offload_forward_pass(expected_max_diff=5E-4 ) def lowerCamelCase__ ( self :List[Any] ): '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCamelCase__ ( self :List[str] ): '''simple docstring''' self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7E-4 ) def lowerCamelCase__ ( self :List[str] ): '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def lowerCamelCase__ ( self :Dict ): '''simple docstring''' super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5E-4 ) def lowerCamelCase__ ( self :List[str] ): '''simple docstring''' super().test_save_load_local(expected_max_difference=5E-4 ) def lowerCamelCase__ ( self :str ): '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=4E-4 ) @require_torch_gpu @slow class __lowerCAmelCase ( unittest.TestCase ): @classmethod def lowerCamelCase__ ( cls :int ): '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(__magic_name__ ) @classmethod def lowerCamelCase__ ( cls :Any ): '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(__magic_name__ ) def lowerCamelCase__ ( self :Union[str, Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self :int ): '''simple docstring''' a = torch.manual_seed(51 ) a = StableDiffusionAttendAndExcitePipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , safety_checker=__magic_name__ , torch_dtype=torch.floataa ) pipe.to("""cuda""" ) a = """a painting of an elephant with glasses""" a = [5, 7] a = pipe( prompt=__magic_name__ , token_indices=__magic_name__ , guidance_scale=7.5 , generator=__magic_name__ , num_inference_steps=5 , max_iter_to_alter=5 , output_type="""numpy""" , ).images[0] a = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy""" ) assert np.abs((expected_image - image).max() ) < 5E-1
228
1
import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class _SCREAMING_SNAKE_CASE : def __init__( self : Any , __lowerCamelCase : int , __lowerCamelCase : List[Any]=14 , __lowerCamelCase : Tuple=7 , __lowerCamelCase : Dict=True , __lowerCamelCase : str=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Dict=True , __lowerCamelCase : Any=True , __lowerCamelCase : Union[str, Any]=99 , __lowerCamelCase : List[Any]=32 , __lowerCamelCase : int=5 , __lowerCamelCase : List[str]=4 , __lowerCamelCase : Union[str, Any]=37 , __lowerCamelCase : Any="gelu" , __lowerCamelCase : Any=0.1 , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : Union[str, Any]=512 , __lowerCamelCase : Any=16 , __lowerCamelCase : Dict=2 , __lowerCamelCase : Dict=0.02 , __lowerCamelCase : Union[str, Any]=3 , __lowerCamelCase : List[Any]=4 , __lowerCamelCase : Union[str, Any]=None , ): UpperCamelCase :Optional[int] = parent UpperCamelCase :Tuple = batch_size UpperCamelCase :List[str] = seq_length UpperCamelCase :Union[str, Any] = is_training UpperCamelCase :Dict = use_token_type_ids UpperCamelCase :Optional[int] = use_input_mask UpperCamelCase :Tuple = use_labels UpperCamelCase :str = use_mc_token_ids UpperCamelCase :Union[str, Any] = vocab_size UpperCamelCase :Optional[int] = hidden_size UpperCamelCase :Union[str, Any] = num_hidden_layers UpperCamelCase :Optional[int] = num_attention_heads UpperCamelCase :int = intermediate_size UpperCamelCase :Tuple = hidden_act UpperCamelCase :Optional[int] = hidden_dropout_prob UpperCamelCase :Tuple = attention_probs_dropout_prob UpperCamelCase :str = max_position_embeddings UpperCamelCase :str = type_vocab_size UpperCamelCase :List[str] = type_sequence_label_size UpperCamelCase :List[Any] = initializer_range UpperCamelCase :Any = num_labels UpperCamelCase :Optional[Any] = num_choices UpperCamelCase :Optional[Any] = scope UpperCamelCase :List[Any] = self.vocab_size - 1 def _A ( self : Optional[int] ): UpperCamelCase :int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase :str = None if self.use_input_mask: UpperCamelCase :List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase :str = None if self.use_token_type_ids: UpperCamelCase :Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase :Tuple = None if self.use_mc_token_ids: UpperCamelCase :Optional[Any] = ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) UpperCamelCase :Tuple = None UpperCamelCase :Dict = None UpperCamelCase :Dict = None if self.use_labels: UpperCamelCase :List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase :List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase :List[str] = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase :Tuple = self.get_config() UpperCamelCase :List[str] = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def _A ( self : Dict ): return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def _A ( self : Tuple , __lowerCamelCase : Any , __lowerCamelCase : str , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int] , *__lowerCamelCase : Dict ): UpperCamelCase :Optional[int] = CTRLModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() model(__lowerCamelCase , token_type_ids=__lowerCamelCase , head_mask=__lowerCamelCase ) model(__lowerCamelCase , token_type_ids=__lowerCamelCase ) UpperCamelCase :Optional[Any] = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def _A ( self : List[Any] , __lowerCamelCase : Dict , __lowerCamelCase : List[str] , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] , *__lowerCamelCase : Tuple ): UpperCamelCase :Union[str, Any] = CTRLLMHeadModel(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() UpperCamelCase :List[Any] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _A ( self : int ): UpperCamelCase :Optional[Any] = self.prepare_config_and_inputs() ( UpperCamelCase ) :Any = config_and_inputs UpperCamelCase :str = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask} return config, inputs_dict def _A ( self : Tuple , __lowerCamelCase : Any , __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] , *__lowerCamelCase : Any ): UpperCamelCase :Any = self.num_labels UpperCamelCase :Tuple = CTRLForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() UpperCamelCase :List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase :int = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class _SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): snake_case__ : Union[str, Any] = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () snake_case__ : Union[str, Any] = (CTRLLMHeadModel,) if is_torch_available() else () snake_case__ : Tuple = ( { """feature-extraction""": CTRLModel, """text-classification""": CTRLForSequenceClassification, """text-generation""": CTRLLMHeadModel, """zero-shot""": CTRLForSequenceClassification, } if is_torch_available() else {} ) snake_case__ : Optional[Any] = True snake_case__ : Optional[Any] = False snake_case__ : Optional[Any] = False def _A ( self : str , __lowerCamelCase : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def _A ( self : Optional[int] ): UpperCamelCase :Tuple = CTRLModelTester(self ) UpperCamelCase :Optional[int] = ConfigTester(self , config_class=__lowerCamelCase , n_embd=37 ) def _A ( self : List[str] ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def _A ( self : List[Any] ): self.config_tester.run_common_tests() def _A ( self : int ): UpperCamelCase :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*__lowerCamelCase ) def _A ( self : str ): UpperCamelCase :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__lowerCamelCase ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _A ( self : List[Any] ): pass @slow def _A ( self : List[str] ): for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase :List[str] = CTRLModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @unittest.skip("""The model doesn\'t support left padding""" ) # and it's not used enough to be worth fixing :) def _A ( self : Tuple ): pass @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _A ( self : str ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def _A ( self : Optional[int] ): UpperCamelCase :Union[str, Any] = CTRLLMHeadModel.from_pretrained("""ctrl""" ) model.to(__lowerCamelCase ) UpperCamelCase :Tuple = torch.tensor( [[11_859, 0, 1_611, 8]] , dtype=torch.long , device=__lowerCamelCase ) # Legal the president is UpperCamelCase :List[str] = [ 11_859, 0, 1_611, 8, 5, 150, 26_449, 2, 19, 348, 469, 3, 2_595, 48, 20_740, 246_533, 246_533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a UpperCamelCase :Optional[Any] = model.generate(__lowerCamelCase , do_sample=__lowerCamelCase ) self.assertListEqual(output_ids[0].tolist() , __lowerCamelCase )
351
from __future__ import annotations from PIL import Image # Define glider example UpperCAmelCase_ : Optional[Any] = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example UpperCAmelCase_ : List[Any] = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def SCREAMING_SNAKE_CASE_ ( __magic_name__ : list[list[int]] ) -> list[list[int]]: """simple docstring""" UpperCamelCase :List[str] = [] for i in range(len(__magic_name__ ) ): UpperCamelCase :Optional[int] = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours UpperCamelCase :Tuple = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(__magic_name__ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(__magic_name__ ) - 1: neighbour_count += cells[i + 1][j] if i < len(__magic_name__ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. UpperCamelCase :str = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(__magic_name__ ) return next_generation def SCREAMING_SNAKE_CASE_ ( __magic_name__ : list[list[int]] , __magic_name__ : int ) -> list[Image.Image]: """simple docstring""" UpperCamelCase :int = [] for _ in range(__magic_name__ ): # Create output image UpperCamelCase :int = Image.new("""RGB""" , (len(cells[0] ), len(__magic_name__ )) ) UpperCamelCase :Tuple = img.load() # Save cells to image for x in range(len(__magic_name__ ) ): for y in range(len(cells[0] ) ): UpperCamelCase :Union[str, Any] = 255 - cells[y][x] * 255 UpperCamelCase :int = (colour, colour, colour) # Save image images.append(__magic_name__ ) UpperCamelCase :Any = new_generation(__magic_name__ ) return images if __name__ == "__main__": UpperCAmelCase_ : Any = generate_images(GLIDER, 16) images[0].save('''out.gif''', save_all=True, append_images=images[1:])
62
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) SCREAMING_SNAKE_CASE : Tuple = {"""configuration_beit""": ["""BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BeitConfig""", """BeitOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Dict = ["""BeitFeatureExtractor"""] SCREAMING_SNAKE_CASE : Optional[Any] = ["""BeitImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : int = [ """BEIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BeitForImageClassification""", """BeitForMaskedImageModeling""", """BeitForSemanticSegmentation""", """BeitModel""", """BeitPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : int = [ """FlaxBeitForImageClassification""", """FlaxBeitForMaskedImageModeling""", """FlaxBeitModel""", """FlaxBeitPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
102
"""simple docstring""" import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_=13 , a_=32 , a_=3 , a_=4 , a_=[10, 20, 30, 40] , a_=[2, 2, 3, 2] , a_=True , a_=True , a_=37 , a_="gelu" , a_=10 , a_=0.02 , a_=["stage2", "stage3", "stage4"] , a_=[2, 3, 4] , a_=None , ): '''simple docstring''' __snake_case : List[str] = parent __snake_case : str = batch_size __snake_case : List[Any] = image_size __snake_case : List[Any] = num_channels __snake_case : str = num_stages __snake_case : Any = hidden_sizes __snake_case : Optional[int] = depths __snake_case : Dict = is_training __snake_case : Tuple = use_labels __snake_case : str = intermediate_size __snake_case : Optional[int] = hidden_act __snake_case : Dict = num_labels __snake_case : Tuple = initializer_range __snake_case : Dict = out_features __snake_case : Optional[int] = out_indices __snake_case : str = scope def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : str = None if self.use_labels: __snake_case : Any = ids_tensor([self.batch_size] , self.num_labels ) __snake_case : Dict = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=a_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Optional[int] = ConvNextVaModel(config=a_ ) model.to(a_ ) model.eval() __snake_case : Any = model(a_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Any = ConvNextVaForImageClassification(a_ ) model.to(a_ ) model.eval() __snake_case : Union[str, Any] = model(a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Dict = ConvNextVaBackbone(config=a_ ) model.to(a_ ) model.eval() __snake_case : Tuple = model(a_ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __snake_case : str = None __snake_case : Optional[Any] = ConvNextVaBackbone(config=a_ ) model.to(a_ ) model.eval() __snake_case : Tuple = model(a_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case : Union[str, Any] = config_and_inputs __snake_case : Any = {'''pixel_values''': pixel_values} return config, inputs_dict def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case : Union[str, Any] = config_and_inputs __snake_case : Optional[int] = {'''pixel_values''': pixel_values, '''labels''': labels} return config, inputs_dict @require_torch class _UpperCAmelCase ( __snake_case, __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowerCamelCase__ =( {'feature-extraction': ConvNextVaModel, 'image-classification': ConvNextVaForImageClassification} if is_torch_available() else {} ) lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =False def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = ConvNextVaModelTester(self ) __snake_case : Union[str, Any] = ConfigTester(self , config_class=a_ , has_text_modality=a_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return @unittest.skip(reason='''ConvNextV2 does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @unittest.skip(reason='''ConvNextV2 does not support input and output embeddings''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @unittest.skip(reason='''ConvNextV2 does not use feedforward chunking''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: __snake_case , __snake_case : str = self.model_tester.prepare_config_and_inputs_with_labels() __snake_case : int = True if model_class.__name__ in [ *get_values(a_ ), *get_values(a_ ), ]: continue __snake_case : Dict = model_class(a_ ) model.to(a_ ) model.train() __snake_case : Tuple = self._prepare_for_class(a_ , a_ , return_labels=a_ ) __snake_case : List[str] = model(**a_ ).loss loss.backward() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: __snake_case , __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_with_labels() __snake_case : Optional[Any] = False __snake_case : Tuple = True if ( model_class.__name__ in [*get_values(a_ ), *get_values(a_ )] or not model_class.supports_gradient_checkpointing ): continue __snake_case : Union[str, Any] = model_class(a_ ) model.to(a_ ) model.gradient_checkpointing_enable() model.train() __snake_case : str = self._prepare_for_class(a_ , a_ , return_labels=a_ ) __snake_case : Union[str, Any] = model(**a_ ).loss loss.backward() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Optional[Any] = model_class(a_ ) __snake_case : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : int = [*signature.parameters.keys()] __snake_case : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' def check_hidden_states_output(a_ , a_ , a_ ): __snake_case : Tuple = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): __snake_case : Union[str, Any] = model(**self._prepare_for_class(a_ , a_ ) ) __snake_case : Union[str, Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __snake_case : List[Any] = self.model_tester.num_stages self.assertEqual(len(a_ ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __snake_case , __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : str = True check_hidden_states_output(a_ , a_ , a_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : str = True check_hidden_states_output(a_ , a_ , a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a_ ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : str = ConvNextVaModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def lowercase ( ) ->Any: """simple docstring""" __snake_case : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return AutoImageProcessor.from_pretrained('''facebook/convnextv2-tiny-1k-224''' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = ConvNextVaForImageClassification.from_pretrained('''facebook/convnextv2-tiny-1k-224''' ).to(a_ ) __snake_case : Dict = self.default_image_processor __snake_case : Tuple = prepare_img() __snake_case : Tuple = preprocessor(images=a_ , return_tensors='''pt''' ).to(a_ ) # forward pass with torch.no_grad(): __snake_case : Union[str, Any] = model(**a_ ) # verify the logits __snake_case : Tuple = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , a_ ) __snake_case : Any = torch.tensor([0.9996, 0.1966, -0.4386] ).to(a_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a_ , atol=1E-4 ) )
102
1
"""simple docstring""" import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class __UpperCAmelCase( lowerCamelCase_ ): """simple docstring""" __lowerCamelCase = (PNDMScheduler,) __lowerCamelCase = (('''num_inference_steps''', 50),) def UpperCAmelCase_ ( self , **snake_case__ ): '''simple docstring''' lowercase__ : List[Any]= { "num_train_timesteps": 1000, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**__snake_case ) return config def UpperCAmelCase_ ( self , snake_case__=0 , **snake_case__ ): '''simple docstring''' lowercase__ : Dict= dict(self.forward_default_kwargs ) lowercase__ : Optional[int]= kwargs.pop("num_inference_steps" , __snake_case ) lowercase__ : Union[str, Any]= self.dummy_sample lowercase__ : Optional[int]= 0.1 * sample lowercase__ : List[Any]= [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase__ : Optional[int]= self.get_scheduler_config(**__snake_case ) lowercase__ : Optional[int]= scheduler_class(**__snake_case ) scheduler.set_timesteps(__snake_case ) # copy over dummy past residuals lowercase__ : Union[str, Any]= dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__snake_case ) lowercase__ : Dict= scheduler_class.from_pretrained(__snake_case ) new_scheduler.set_timesteps(__snake_case ) # copy over dummy past residuals lowercase__ : Optional[int]= dummy_past_residuals[:] lowercase__ : List[str]= scheduler.step_prk(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample lowercase__ : Optional[int]= new_scheduler.step_prk(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" lowercase__ : Tuple= scheduler.step_plms(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample lowercase__ : int= new_scheduler.step_plms(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase_ ( self ): '''simple docstring''' pass def UpperCAmelCase_ ( self , snake_case__=0 , **snake_case__ ): '''simple docstring''' lowercase__ : Optional[int]= dict(self.forward_default_kwargs ) lowercase__ : Any= kwargs.pop("num_inference_steps" , __snake_case ) lowercase__ : str= self.dummy_sample lowercase__ : Any= 0.1 * sample lowercase__ : Any= [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase__ : Tuple= self.get_scheduler_config() lowercase__ : Tuple= scheduler_class(**__snake_case ) scheduler.set_timesteps(__snake_case ) # copy over dummy past residuals (must be after setting timesteps) lowercase__ : str= dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__snake_case ) lowercase__ : Union[str, Any]= scheduler_class.from_pretrained(__snake_case ) # copy over dummy past residuals new_scheduler.set_timesteps(__snake_case ) # copy over dummy past residual (must be after setting timesteps) lowercase__ : Dict= dummy_past_residuals[:] lowercase__ : Union[str, Any]= scheduler.step_prk(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample lowercase__ : Any= new_scheduler.step_prk(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" lowercase__ : int= scheduler.step_plms(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample lowercase__ : Optional[int]= new_scheduler.step_plms(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase_ ( self , **snake_case__ ): '''simple docstring''' lowercase__ : Dict= self.scheduler_classes[0] lowercase__ : Dict= self.get_scheduler_config(**__snake_case ) lowercase__ : Optional[int]= scheduler_class(**__snake_case ) lowercase__ : str= 10 lowercase__ : Union[str, Any]= self.dummy_model() lowercase__ : Optional[Any]= self.dummy_sample_deter scheduler.set_timesteps(__snake_case ) for i, t in enumerate(scheduler.prk_timesteps ): lowercase__ : int= model(__snake_case , __snake_case ) lowercase__ : Any= scheduler.step_prk(__snake_case , __snake_case , __snake_case ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): lowercase__ : Tuple= model(__snake_case , __snake_case ) lowercase__ : Any= scheduler.step_plms(__snake_case , __snake_case , __snake_case ).prev_sample return sample def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Tuple= dict(self.forward_default_kwargs ) lowercase__ : List[Any]= kwargs.pop("num_inference_steps" , __snake_case ) for scheduler_class in self.scheduler_classes: lowercase__ : Dict= self.get_scheduler_config() lowercase__ : Any= scheduler_class(**__snake_case ) lowercase__ : Any= self.dummy_sample lowercase__ : Tuple= 0.1 * sample if num_inference_steps is not None and hasattr(__snake_case , "set_timesteps" ): scheduler.set_timesteps(__snake_case ) elif num_inference_steps is not None and not hasattr(__snake_case , "set_timesteps" ): lowercase__ : Any= num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowercase__ : Any= [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] lowercase__ : Tuple= dummy_past_residuals[:] lowercase__ : str= scheduler.step_prk(__snake_case , 0 , __snake_case , **__snake_case ).prev_sample lowercase__ : Any= scheduler.step_prk(__snake_case , 1 , __snake_case , **__snake_case ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) lowercase__ : Optional[Any]= scheduler.step_plms(__snake_case , 0 , __snake_case , **__snake_case ).prev_sample lowercase__ : str= scheduler.step_plms(__snake_case , 1 , __snake_case , **__snake_case ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCAmelCase_ ( self ): '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=__snake_case ) def UpperCAmelCase_ ( self ): '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__snake_case ) lowercase__ : str= self.scheduler_classes[0] lowercase__ : str= self.get_scheduler_config(steps_offset=1 ) lowercase__ : Optional[int]= scheduler_class(**__snake_case ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def UpperCAmelCase_ ( self ): '''simple docstring''' for beta_start, beta_end in zip([0.00_01, 0.0_01] , [0.0_02, 0.02] ): self.check_over_configs(beta_start=__snake_case , beta_end=__snake_case ) def UpperCAmelCase_ ( self ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__snake_case ) def UpperCAmelCase_ ( self ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__snake_case ) def UpperCAmelCase_ ( self ): '''simple docstring''' for t in [1, 5, 10]: self.check_over_forward(time_step=__snake_case ) def UpperCAmelCase_ ( self ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=__snake_case ) def UpperCAmelCase_ ( self ): '''simple docstring''' # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 lowercase__ : str= 27 for scheduler_class in self.scheduler_classes: lowercase__ : Optional[int]= self.dummy_sample lowercase__ : Tuple= 0.1 * sample lowercase__ : Any= self.get_scheduler_config() lowercase__ : Optional[int]= scheduler_class(**__snake_case ) scheduler.set_timesteps(__snake_case ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): lowercase__ : List[Any]= scheduler.step_prk(__snake_case , __snake_case , __snake_case ).prev_sample def UpperCAmelCase_ ( self ): '''simple docstring''' with self.assertRaises(__snake_case ): lowercase__ : Optional[int]= self.scheduler_classes[0] lowercase__ : Optional[Any]= self.get_scheduler_config() lowercase__ : List[Any]= scheduler_class(**__snake_case ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : int= self.full_loop() lowercase__ : Tuple= torch.sum(torch.abs(__snake_case ) ) lowercase__ : Any= torch.mean(torch.abs(__snake_case ) ) assert abs(result_sum.item() - 198.1318 ) < 1e-2 assert abs(result_mean.item() - 0.25_80 ) < 1e-3 def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Dict= self.full_loop(prediction_type="v_prediction" ) lowercase__ : List[Any]= torch.sum(torch.abs(__snake_case ) ) lowercase__ : List[str]= torch.mean(torch.abs(__snake_case ) ) assert abs(result_sum.item() - 67.39_86 ) < 1e-2 assert abs(result_mean.item() - 0.08_78 ) < 1e-3 def UpperCAmelCase_ ( self ): '''simple docstring''' # We specify different beta, so that the first alpha is 0.99 lowercase__ : Optional[Any]= self.full_loop(set_alpha_to_one=__snake_case , beta_start=0.01 ) lowercase__ : Any= torch.sum(torch.abs(__snake_case ) ) lowercase__ : Dict= torch.mean(torch.abs(__snake_case ) ) assert abs(result_sum.item() - 230.0399 ) < 1e-2 assert abs(result_mean.item() - 0.29_95 ) < 1e-3 def UpperCAmelCase_ ( self ): '''simple docstring''' # We specify different beta, so that the first alpha is 0.99 lowercase__ : Optional[Any]= self.full_loop(set_alpha_to_one=__snake_case , beta_start=0.01 ) lowercase__ : Dict= torch.sum(torch.abs(__snake_case ) ) lowercase__ : List[Any]= torch.mean(torch.abs(__snake_case ) ) assert abs(result_sum.item() - 186.9482 ) < 1e-2 assert abs(result_mean.item() - 0.24_34 ) < 1e-3
371
"""simple docstring""" from __future__ import annotations def lowercase__(A , A ) ->list[str]: """simple docstring""" if partitions <= 0: raise ValueError("partitions must be a positive number!" ) if partitions > number_of_bytes: raise ValueError("partitions can not > number_of_bytes!" ) lowercase__ : List[str]= number_of_bytes // partitions lowercase__ : Dict= [] for i in range(A ): lowercase__ : Union[str, Any]= i * bytes_per_partition + 1 lowercase__ : Any= ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'''{start_bytes}-{end_bytes}''' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
150
0
'''simple docstring''' import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class A ( __UpperCAmelCase , unittest.TestCase ): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class A ( unittest.TestCase ): @property def A__ ( self ) -> Union[str, Any]: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def A__ ( self ) -> Tuple: '''simple docstring''' lowercase__ = ort.SessionOptions() lowercase__ = False return options def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) lowercase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) lowercase__ = OnnxStableDiffusionInpaintPipeline.from_pretrained( """runwayml/stable-diffusion-inpainting""" , revision="""onnx""" , safety_checker=lowerCamelCase__ , feature_extractor=lowerCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowercase__ = """A red cat sitting on a park bench""" lowercase__ = np.random.RandomState(0 ) lowercase__ = pipe( prompt=lowerCamelCase__ , image=lowerCamelCase__ , mask_image=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=10 , generator=lowerCamelCase__ , output_type="""np""" , ) lowercase__ = output.images lowercase__ = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) lowercase__ = np.array([0.25_14, 0.30_07, 0.35_17, 0.17_90, 0.23_82, 0.31_67, 0.19_44, 0.22_73, 0.24_64] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def A__ ( self ) -> Dict: '''simple docstring''' lowercase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) lowercase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) lowercase__ = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-inpainting""" , subfolder="""scheduler""" , revision="""onnx""" ) lowercase__ = OnnxStableDiffusionInpaintPipeline.from_pretrained( """runwayml/stable-diffusion-inpainting""" , revision="""onnx""" , scheduler=lowerCamelCase__ , safety_checker=lowerCamelCase__ , feature_extractor=lowerCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowercase__ = """A red cat sitting on a park bench""" lowercase__ = np.random.RandomState(0 ) lowercase__ = pipe( prompt=lowerCamelCase__ , image=lowerCamelCase__ , mask_image=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=20 , generator=lowerCamelCase__ , output_type="""np""" , ) lowercase__ = output.images lowercase__ = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) lowercase__ = np.array([0.00_86, 0.00_77, 0.00_83, 0.00_93, 0.01_07, 0.01_39, 0.00_94, 0.00_97, 0.01_25] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
164
'''simple docstring''' def _A ( lowercase__ = 1000000 ): lowercase__ = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , lowercase__ ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
164
1
'''simple docstring''' import os def lowerCamelCase__ ( ): with open(os.path.dirname(_A ) + '/grid.txt' ) as f: a : Any = [] # noqa: E741 for _ in range(20 ): l.append([int(_A ) for x in f.readline().split()] ) a : Dict = 0 # right for i in range(20 ): for j in range(17 ): a : Optional[Any] = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: a : Optional[int] = temp # down for i in range(17 ): for j in range(20 ): a : Any = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: a : Union[str, Any] = temp # diagonal 1 for i in range(17 ): for j in range(17 ): a : Dict = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: a : str = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): a : Dict = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: a : Union[str, Any] = temp return maximum if __name__ == "__main__": print(solution())
363
'''simple docstring''' lowerCAmelCase: Union[str, Any] = { 'meter': 'm', 'kilometer': 'km', 'megametre': 'Mm', 'gigametre': 'Gm', 'terametre': 'Tm', 'petametre': 'Pm', 'exametre': 'Em', 'zettametre': 'Zm', 'yottametre': 'Ym', } # Exponent of the factor(meter) lowerCAmelCase: Optional[Any] = { 'm': 0, 'km': 3, 'Mm': 6, 'Gm': 9, 'Tm': 1_2, 'Pm': 1_5, 'Em': 1_8, 'Zm': 2_1, 'Ym': 2_4, } def lowerCamelCase__ ( _A , _A , _A ): a : Optional[int] = from_type.lower().strip('s' ) a : Optional[Any] = to_type.lower().strip('s' ) a : Dict = UNIT_SYMBOL.get(_A , _A ) a : Optional[Any] = UNIT_SYMBOL.get(_A , _A ) if from_sanitized not in METRIC_CONVERSION: a : Optional[Any] = ( f"""Invalid 'from_type' value: {from_type!r}.\n""" f"""Conversion abbreviations are: {", ".join(_A )}""" ) raise ValueError(_A ) if to_sanitized not in METRIC_CONVERSION: a : Union[str, Any] = ( f"""Invalid 'to_type' value: {to_type!r}.\n""" f"""Conversion abbreviations are: {", ".join(_A )}""" ) raise ValueError(_A ) a : List[Any] = METRIC_CONVERSION[from_sanitized] a : int = METRIC_CONVERSION[to_sanitized] a : Tuple = 1 if from_exponent > to_exponent: a : Optional[int] = from_exponent - to_exponent else: a : Optional[Any] = -(to_exponent - from_exponent) return value * pow(10 , _A ) if __name__ == "__main__": from doctest import testmod testmod()
96
0
'''simple docstring''' def __lowerCamelCase ( A__ , A__ , A__ ) -> Any: """simple docstring""" if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(A__ , n - 1 , A__ ) * a) % mod else: UpperCamelCase = binary_exponentiation(A__ , n / 2 , A__ ) return (b * b) % mod # a prime number _lowerCamelCase : Dict = 701 _lowerCamelCase : Dict = 10_0000_0000 _lowerCamelCase : Tuple = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
28
def _A ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): UpperCamelCase :Any = len(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :str = len(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :int = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] UpperCamelCase :List[str] = True for i in range(SCREAMING_SNAKE_CASE__ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: UpperCamelCase :List[Any] = True if a[i].islower(): UpperCamelCase :List[Any] = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
259
0
"""simple docstring""" import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( lowercase , unittest.TestCase ): """simple docstring""" a : List[str] =ConsistencyModelPipeline a : Optional[int] =UNCONDITIONAL_IMAGE_GENERATION_PARAMS a : Dict =UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt a : Union[str, Any] =frozenset( [ "num_inference_steps", "generator", "latents", "output_type", "return_dict", "callback", "callback_steps", ] ) @property def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = UNetaDModel.from_pretrained( "diffusers/consistency-models-test" , subfolder="test_unet" , ) return unet @property def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = UNetaDModel.from_pretrained( "diffusers/consistency-models-test" , subfolder="test_unet_class_cond" , ) return unet def lowercase__ ( self , snake_case__=False ): """simple docstring""" if class_cond: lowerCAmelCase : List[str] = self.dummy_cond_unet else: lowerCAmelCase : List[Any] = self.dummy_uncond_unet # Default to CM multistep sampler lowerCAmelCase : List[str] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) lowerCAmelCase : List[str] = { "unet": unet, "scheduler": scheduler, } return components def lowercase__ ( self , snake_case__ , snake_case__=0 ): """simple docstring""" if str(snake_case__ ).startswith("mps" ): lowerCAmelCase : Dict = torch.manual_seed(snake_case__ ) else: lowerCAmelCase : List[Any] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowerCAmelCase : List[Any] = { "batch_size": 1, "num_inference_steps": None, "timesteps": [22, 0], "generator": generator, "output_type": "np", } return inputs def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase : Tuple = self.get_dummy_components() lowerCAmelCase : Dict = ConsistencyModelPipeline(**snake_case__ ) lowerCAmelCase : Optional[int] = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : List[str] = self.get_dummy_inputs(snake_case__ ) lowerCAmelCase : Dict = pipe(**snake_case__ ).images assert image.shape == (1, 32, 32, 3) lowerCAmelCase : List[Any] = image[0, -3:, -3:, -1] lowerCAmelCase : Tuple = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase : Any = self.get_dummy_components(class_cond=snake_case__ ) lowerCAmelCase : Any = ConsistencyModelPipeline(**snake_case__ ) lowerCAmelCase : Union[str, Any] = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : str = self.get_dummy_inputs(snake_case__ ) lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : int = pipe(**snake_case__ ).images assert image.shape == (1, 32, 32, 3) lowerCAmelCase : List[Any] = image[0, -3:, -3:, -1] lowerCAmelCase : Union[str, Any] = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase : str = self.get_dummy_components() lowerCAmelCase : Union[str, Any] = ConsistencyModelPipeline(**snake_case__ ) lowerCAmelCase : Optional[Any] = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : List[Any] = self.get_dummy_inputs(snake_case__ ) lowerCAmelCase : Dict = 1 lowerCAmelCase : Dict = None lowerCAmelCase : Union[str, Any] = pipe(**snake_case__ ).images assert image.shape == (1, 32, 32, 3) lowerCAmelCase : List[str] = image[0, -3:, -3:, -1] lowerCAmelCase : Union[str, Any] = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase : Union[str, Any] = self.get_dummy_components(class_cond=snake_case__ ) lowerCAmelCase : Optional[int] = ConsistencyModelPipeline(**snake_case__ ) lowerCAmelCase : int = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Dict = self.get_dummy_inputs(snake_case__ ) lowerCAmelCase : List[Any] = 1 lowerCAmelCase : Dict = None lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : Optional[int] = pipe(**snake_case__ ).images assert image.shape == (1, 32, 32, 3) lowerCAmelCase : List[str] = image[0, -3:, -3:, -1] lowerCAmelCase : str = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self , snake_case__=0 , snake_case__=False , snake_case__="cpu" , snake_case__=torch.floataa , snake_case__=(1, 3, 64, 64) ): """simple docstring""" lowerCAmelCase : Tuple = torch.manual_seed(snake_case__ ) lowerCAmelCase : Dict = { "num_inference_steps": None, "timesteps": [22, 0], "class_labels": 0, "generator": generator, "output_type": "np", } if get_fixed_latents: lowerCAmelCase : int = self.get_fixed_latents(seed=snake_case__ , device=snake_case__ , dtype=snake_case__ , shape=snake_case__ ) lowerCAmelCase : Dict = latents return inputs def lowercase__ ( self , snake_case__=0 , snake_case__="cpu" , snake_case__=torch.floataa , snake_case__=(1, 3, 64, 64) ): """simple docstring""" if type(snake_case__ ) == str: lowerCAmelCase : Tuple = torch.device(snake_case__ ) lowerCAmelCase : Optional[Any] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowerCAmelCase : List[str] = randn_tensor(snake_case__ , generator=snake_case__ , device=snake_case__ , dtype=snake_case__ ) return latents def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" ) lowerCAmelCase : List[str] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) lowerCAmelCase : Tuple = ConsistencyModelPipeline(unet=snake_case__ , scheduler=snake_case__ ) pipe.to(torch_device=snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Optional[int] = self.get_inputs() lowerCAmelCase : List[str] = pipe(**snake_case__ ).images assert image.shape == (1, 64, 64, 3) lowerCAmelCase : Dict = image[0, -3:, -3:, -1] lowerCAmelCase : Optional[int] = np.array([0.0888, 0.0881, 0.0666, 0.0479, 0.0292, 0.0195, 0.0201, 0.0163, 0.0254] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" ) lowerCAmelCase : List[str] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) lowerCAmelCase : Union[str, Any] = ConsistencyModelPipeline(unet=snake_case__ , scheduler=snake_case__ ) pipe.to(torch_device=snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Any = self.get_inputs() lowerCAmelCase : str = 1 lowerCAmelCase : List[str] = None lowerCAmelCase : Tuple = pipe(**snake_case__ ).images assert image.shape == (1, 64, 64, 3) lowerCAmelCase : Any = image[0, -3:, -3:, -1] lowerCAmelCase : List[Any] = np.array([0.0340, 0.0152, 0.0063, 0.0267, 0.0221, 0.0107, 0.0416, 0.0186, 0.0217] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 @require_torch_a def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" ) lowerCAmelCase : List[str] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) lowerCAmelCase : int = ConsistencyModelPipeline(unet=snake_case__ , scheduler=snake_case__ ) pipe.to(torch_device=snake_case__ , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Optional[int] = self.get_inputs(get_fixed_latents=snake_case__ , device=snake_case__ ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=snake_case__ , enable_math=snake_case__ , enable_mem_efficient=snake_case__ ): lowerCAmelCase : Dict = pipe(**snake_case__ ).images assert image.shape == (1, 64, 64, 3) lowerCAmelCase : List[str] = image[0, -3:, -3:, -1] lowerCAmelCase : int = np.array([0.1875, 0.1428, 0.1289, 0.2151, 0.2092, 0.1477, 0.1877, 0.1641, 0.1353] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @require_torch_a def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" ) lowerCAmelCase : Union[str, Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) lowerCAmelCase : Dict = ConsistencyModelPipeline(unet=snake_case__ , scheduler=snake_case__ ) pipe.to(torch_device=snake_case__ , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Any = self.get_inputs(get_fixed_latents=snake_case__ , device=snake_case__ ) lowerCAmelCase : Tuple = 1 lowerCAmelCase : Tuple = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=snake_case__ , enable_math=snake_case__ , enable_mem_efficient=snake_case__ ): lowerCAmelCase : str = pipe(**snake_case__ ).images assert image.shape == (1, 64, 64, 3) lowerCAmelCase : Any = image[0, -3:, -3:, -1] lowerCAmelCase : Union[str, Any] = np.array([0.1663, 0.1948, 0.2275, 0.1680, 0.1204, 0.1245, 0.1858, 0.1338, 0.2095] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
360
"""simple docstring""" import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--original_config_file''', type=str, required=True, help='''The YAML config file corresponding to the original architecture.''', ) parser.add_argument( '''--num_in_channels''', default=None, type=int, help='''The number of input channels. If `None` number of input channels will be automatically inferred.''', ) parser.add_argument( '''--image_size''', default=512, type=int, help=( '''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2''' ''' Base. Use 768 for Stable Diffusion v2.''' ), ) parser.add_argument( '''--extract_ema''', action='''store_true''', help=( '''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights''' ''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield''' ''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.''' ), ) parser.add_argument( '''--upcast_attention''', action='''store_true''', help=( '''Whether the attention computation should always be upcasted. This is necessary when running stable''' ''' diffusion 2.1.''' ), ) parser.add_argument( '''--from_safetensors''', action='''store_true''', help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''', ) parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') def a__ ( SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' if string == "True": return True elif string == "False": return False else: raise ValueError(f"""could not parse string as bool {string}""" ) parser.add_argument( '''--use_linear_projection''', help='''Override for use linear projection''', required=False, type=parse_bool ) parser.add_argument('''--cross_attention_dim''', help='''Override for cross attention_dim''', required=False, type=int) lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
133
0
'''simple docstring''' def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ): while second != 0: _UpperCamelCase : str = first & second first ^= second _UpperCamelCase : Tuple = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() snake_case_ : Union[str, Any] = int(input('Enter the first number: ').strip()) snake_case_ : int = int(input('Enter the second number: ').strip()) print(F"""{add(first, second) = }""")
83
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys __lowerCAmelCase : int = subprocess.check_output('git merge-base main HEAD'.split()).decode('utf-8') __lowerCAmelCase : Any = ( subprocess.check_output(F'''git diff --diff-filter=d --name-only {fork_point_sha}'''.split()).decode('utf-8').split() ) __lowerCAmelCase : str = '|'.join(sys.argv[1:]) __lowerCAmelCase : Tuple = re.compile(RF'''^({joined_dirs}).*?\.py$''') __lowerCAmelCase : Union[str, Any] = [x for x in modified_files if regex.match(x)] print(' '.join(relevant_modified_files), end='')
88
0
def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = int(_lowerCamelCase ) if n_element < 1: _lowerCAmelCase : Any = ValueError("a should be a positive number" ) raise my_error _lowerCAmelCase : Dict = [1] _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Tuple = (0, 0, 0) _lowerCAmelCase : Union[str, Any] = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": _snake_case = input("Enter the last number (nth term) of the Hamming Number Series: ") print("Formula of Hamming Number Series => 2^i * 3^j * 5^k") _snake_case = hamming(int(n)) print("-----------------------------------------------------") print(f'''The list with nth numbers is: {hamming_numbers}''') print("-----------------------------------------------------")
300
class UpperCAmelCase_ : def __init__( self): '''simple docstring''' _lowerCAmelCase : Dict = 0 _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : Tuple = {} def snake_case__ ( self, __a): '''simple docstring''' if vertex not in self.adjacency: _lowerCAmelCase : List[Any] = {} self.num_vertices += 1 def snake_case__ ( self, __a, __a, __a): '''simple docstring''' self.add_vertex(__a) self.add_vertex(__a) if head == tail: return _lowerCAmelCase : Dict = weight _lowerCAmelCase : Dict = weight def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.get_edges() for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Dict = edge edges.remove((tail, head, weight)) for i in range(len(__a)): _lowerCAmelCase : Optional[int] = list(edges[i]) edges.sort(key=lambda __a: e[2]) for i in range(len(__a) - 1): if edges[i][2] >= edges[i + 1][2]: _lowerCAmelCase : Tuple = edges[i][2] + 1 for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Dict = edge _lowerCAmelCase : Union[str, Any] = weight _lowerCAmelCase : Optional[int] = weight def __str__( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = "" for tail in self.adjacency: for head in self.adjacency[tail]: _lowerCAmelCase : List[Any] = self.adjacency[head][tail] string += f"{head} -> {tail} == {weight}\n" return string.rstrip("\n") def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail])) return output def snake_case__ ( self): '''simple docstring''' return self.adjacency.keys() @staticmethod def snake_case__ ( __a=None, __a=None): '''simple docstring''' _lowerCAmelCase : Optional[Any] = Graph() if vertices is None: _lowerCAmelCase : Any = [] if edges is None: _lowerCAmelCase : Any = [] for vertex in vertices: g.add_vertex(__a) for edge in edges: g.add_edge(*__a) return g class UpperCAmelCase_ : def __init__( self): '''simple docstring''' _lowerCAmelCase : Dict = {} _lowerCAmelCase : List[Any] = {} def __len__( self): '''simple docstring''' return len(self.parent) def snake_case__ ( self, __a): '''simple docstring''' if item in self.parent: return self.find(__a) _lowerCAmelCase : Optional[int] = item _lowerCAmelCase : Any = 0 return item def snake_case__ ( self, __a): '''simple docstring''' if item not in self.parent: return self.make_set(__a) if item != self.parent[item]: _lowerCAmelCase : Any = self.find(self.parent[item]) return self.parent[item] def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = self.find(__a) _lowerCAmelCase : List[str] = self.find(__a) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: _lowerCAmelCase : Any = roota return roota if self.rank[roota] < self.rank[roota]: _lowerCAmelCase : List[Any] = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 _lowerCAmelCase : int = roota return roota return None @staticmethod def snake_case__ ( __a): '''simple docstring''' _lowerCAmelCase : Tuple = graph.num_vertices _lowerCAmelCase : Optional[int] = Graph.UnionFind() _lowerCAmelCase : str = [] while num_components > 1: _lowerCAmelCase : List[str] = {} for vertex in graph.get_vertices(): _lowerCAmelCase : Optional[Any] = -1 _lowerCAmelCase : Union[str, Any] = graph.get_edges() for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = edge edges.remove((tail, head, weight)) for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = edge _lowerCAmelCase : Dict = union_find.find(__a) _lowerCAmelCase : Optional[Any] = union_find.find(__a) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _lowerCAmelCase : Union[str, Any] = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _lowerCAmelCase : Tuple = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = cheap_edge[vertex] if union_find.find(__a) != union_find.find(__a): union_find.union(__a, __a) mst_edges.append(cheap_edge[vertex]) _lowerCAmelCase : Any = num_components - 1 _lowerCAmelCase : List[str] = Graph.build(edges=__a) return mst
300
1
'''simple docstring''' import argparse import json from tqdm import tqdm def UpperCAmelCase_ ( ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--src_path" , type=__lowercase , default="biencoder-nq-dev.json" , help="Path to raw DPR training data" , ) parser.add_argument( "--evaluation_set" , type=__lowercase , help="where to store parsed evaluation_set file" , ) parser.add_argument( "--gold_data_path" , type=__lowercase , help="where to store parsed gold_data_path file" , ) _UpperCAmelCase = parser.parse_args() with open(args.src_path , "r" ) as src_file, open(args.evaluation_set , "w" ) as eval_file, open( args.gold_data_path , "w" ) as gold_file: _UpperCAmelCase = json.load(__lowercase ) for dpr_record in tqdm(__lowercase ): _UpperCAmelCase = dpr_record["question"] _UpperCAmelCase = [context["title"] for context in dpr_record["positive_ctxs"]] eval_file.write(question + "\n" ) gold_file.write("\t".join(__lowercase ) + "\n" ) if __name__ == "__main__": main()
22
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class lowercase ( unittest.TestCase ): __lowercase : Any = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def __UpperCamelCase ( self , A_ , A_ , A_ ) -> List[Any]: """simple docstring""" UpperCamelCase = hf_hub_download( repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' ) UpperCamelCase = VideoClassificationPipeline(model=A_ , image_processor=A_ , top_k=2 ) UpperCamelCase = [ example_video_filepath, 'https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4', ] return video_classifier, examples def __UpperCamelCase ( self , A_ , A_ ) -> Optional[int]: """simple docstring""" for example in examples: UpperCamelCase = video_classifier(A_ ) self.assertEqual( A_ , [ {'score': ANY(A_ ), 'label': ANY(A_ )}, {'score': ANY(A_ ), 'label': ANY(A_ )}, ] , ) @require_torch def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = 'hf-internal-testing/tiny-random-VideoMAEForVideoClassification' UpperCamelCase = VideoMAEFeatureExtractor( size={'shortest_edge': 10} , crop_size={'height': 10, 'width': 10} ) UpperCamelCase = pipeline( 'video-classification' , model=A_ , feature_extractor=A_ , frame_sampling_rate=4 ) UpperCamelCase = hf_hub_download(repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' ) UpperCamelCase = video_classifier(A_ , top_k=2 ) self.assertEqual( nested_simplify(A_ , decimals=4 ) , [{'score': 0.5199, 'label': 'LABEL_0'}, {'score': 0.4801, 'label': 'LABEL_1'}] , ) UpperCamelCase = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(A_ , decimals=4 ) , [ [{'score': 0.5199, 'label': 'LABEL_0'}, {'score': 0.4801, 'label': 'LABEL_1'}], [{'score': 0.5199, 'label': 'LABEL_0'}, {'score': 0.4801, 'label': 'LABEL_1'}], ] , ) @require_tf def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" pass
222
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __A = {'''configuration_van''': ['''VAN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VanConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ '''VAN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''VanForImageClassification''', '''VanModel''', '''VanPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
278
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase_ : def __init__( self : Optional[Any] , A__ : str , A__ : Any=13 , A__ : str=[30, 30] , A__ : int=2 , A__ : Dict=3 , A__ : str=True , A__ : Union[str, Any]=True , A__ : Any=32 , A__ : int=5 , A__ : str=4 , A__ : List[Any]=37 , A__ : Union[str, Any]="gelu" , A__ : Dict=0.1 , A__ : Dict=0.1 , A__ : Tuple=10 , A__ : Dict=0.02 , A__ : Any=3 , A__ : Union[str, Any]=None , A__ : Optional[Any]=8 , A__ : Dict=10 , ) -> Optional[Any]: _snake_case = parent _snake_case = batch_size _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = is_training _snake_case = use_labels _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = num_labels _snake_case = scope _snake_case = n_targets _snake_case = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens _snake_case = (image_size[1] // patch_size) * (image_size[0] // patch_size) _snake_case = num_patches + 1 + self.num_detection_tokens def UpperCamelCase_ ( self : List[str] ) -> str: _snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) _snake_case = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) _snake_case = [] for i in range(self.batch_size ): _snake_case = {} _snake_case = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=A__ ) _snake_case = torch.rand(self.n_targets , 4 , device=A__ ) labels.append(A__ ) _snake_case = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self : Dict ) -> List[Any]: return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A__ , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def UpperCamelCase_ ( self : Any , A__ : Any , A__ : str , A__ : Tuple ) -> Dict: _snake_case = YolosModel(config=A__ ) model.to(A__ ) model.eval() _snake_case = model(A__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def UpperCamelCase_ ( self : Dict , A__ : List[str] , A__ : Optional[Any] , A__ : str ) -> int: _snake_case = YolosForObjectDetection(A__ ) model.to(A__ ) model.eval() _snake_case = model(pixel_values=A__ ) _snake_case = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) _snake_case = model(pixel_values=A__ , labels=A__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def UpperCamelCase_ ( self : Optional[Any] ) -> Tuple: _snake_case = self.prepare_config_and_inputs() _snake_case, _snake_case, _snake_case = config_and_inputs _snake_case = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowercase_ ( __lowercase , __lowercase , unittest.TestCase ): UpperCamelCase_ : Optional[int] = (YolosModel, YolosForObjectDetection) if is_torch_available() else () UpperCamelCase_ : int = ( {"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {} ) UpperCamelCase_ : List[str] = False UpperCamelCase_ : List[Any] = False UpperCamelCase_ : List[Any] = False UpperCamelCase_ : Tuple = False def UpperCamelCase_ ( self : Dict , A__ : List[Any] , A__ : List[str] , A__ : Optional[int]=False ) -> Optional[int]: _snake_case = super()._prepare_for_class(A__ , A__ , return_labels=A__ ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": _snake_case = [] for i in range(self.model_tester.batch_size ): _snake_case = {} _snake_case = torch.ones( size=(self.model_tester.n_targets,) , device=A__ , dtype=torch.long ) _snake_case = torch.ones( self.model_tester.n_targets , 4 , device=A__ , dtype=torch.float ) labels.append(A__ ) _snake_case = labels return inputs_dict def UpperCamelCase_ ( self : List[Any] ) -> List[str]: _snake_case = YolosModelTester(self ) _snake_case = ConfigTester(self , config_class=A__ , has_text_modality=A__ , hidden_size=37 ) def UpperCamelCase_ ( self : Optional[int] ) -> Dict: self.config_tester.run_common_tests() def UpperCamelCase_ ( self : List[Any] ) -> str: # YOLOS does not use inputs_embeds pass def UpperCamelCase_ ( self : Union[str, Any] ) -> List[str]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(A__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _snake_case = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A__ , nn.Linear ) ) def UpperCamelCase_ ( self : List[Any] ) -> Optional[Any]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(A__ ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , A__ ) def UpperCamelCase_ ( self : List[str] ) -> List[Any]: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A__ ) def UpperCamelCase_ ( self : Union[str, Any] ) -> int: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = True # in YOLOS, the seq_len is different _snake_case = self.model_tester.expected_seq_len for model_class in self.all_model_classes: _snake_case = True _snake_case = False _snake_case = True _snake_case = model_class(A__ ) model.to(A__ ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(A__ , A__ ) ) _snake_case = outputs.attentions self.assertEqual(len(A__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _snake_case = True _snake_case = model_class(A__ ) model.to(A__ ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(A__ , A__ ) ) _snake_case = outputs.attentions self.assertEqual(len(A__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) _snake_case = len(A__ ) # Check attention is always last and order is fine _snake_case = True _snake_case = True _snake_case = model_class(A__ ) model.to(A__ ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(A__ , A__ ) ) _snake_case = 1 self.assertEqual(out_len + added_hidden_states , len(A__ ) ) _snake_case = outputs.attentions self.assertEqual(len(A__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def UpperCamelCase_ ( self : int ) -> Dict: def check_hidden_states_output(A__ : Optional[int] , A__ : Union[str, Any] , A__ : int ): _snake_case = model_class(A__ ) model.to(A__ ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(A__ , A__ ) ) _snake_case = outputs.hidden_states _snake_case = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(A__ ) , A__ ) # YOLOS has a different seq_length _snake_case = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = True check_hidden_states_output(A__ , A__ , A__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case = True check_hidden_states_output(A__ , A__ , A__ ) def UpperCamelCase_ ( self : Optional[Any] ) -> str: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*A__ ) @slow def UpperCamelCase_ ( self : List[str] ) -> Dict: for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = YolosModel.from_pretrained(A__ ) self.assertIsNotNone(A__ ) def snake_case_() -> str: """simple docstring""" _snake_case = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowercase_ ( unittest.TestCase ): @cached_property def UpperCamelCase_ ( self : Any ) -> str: return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None @slow def UpperCamelCase_ ( self : Tuple ) -> str: _snake_case = YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(A__ ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(images=A__ , return_tensors='''pt''' ).to(A__ ) # forward pass with torch.no_grad(): _snake_case = model(inputs.pixel_values ) # verify outputs _snake_case = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , A__ ) _snake_case = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] , device=A__ , ) _snake_case = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] , device=A__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , A__ , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , A__ , atol=1e-4 ) ) # verify postprocessing _snake_case = image_processor.post_process_object_detection( A__ , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] _snake_case = torch.tensor([0.9994, 0.9790, 0.9964, 0.9972, 0.9861] ).to(A__ ) _snake_case = [75, 75, 17, 63, 17] _snake_case = torch.tensor([335.0609, 79.3848, 375.4216, 187.2495] ).to(A__ ) self.assertEqual(len(results['''scores'''] ) , 5 ) self.assertTrue(torch.allclose(results['''scores'''] , A__ , atol=1e-4 ) ) self.assertSequenceEqual(results['''labels'''].tolist() , A__ ) self.assertTrue(torch.allclose(results['''boxes'''][0, :] , A__ ) )
278
1
class lowerCAmelCase_ : def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: UpperCamelCase : Tuple = None UpperCamelCase : List[Any] = None UpperCamelCase : List[str] = graph self._normalize_graph(_lowerCamelCase, _lowerCamelCase ) UpperCamelCase : str = len(_lowerCamelCase ) UpperCamelCase : str = None def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[str]: if sources is int: UpperCamelCase : Tuple = [sources] if sinks is int: UpperCamelCase : List[str] = [sinks] if len(_lowerCamelCase ) == 0 or len(_lowerCamelCase ) == 0: return UpperCamelCase : Optional[Any] = sources[0] UpperCamelCase : List[str] = sinks[0] # make fake vertex if there are more # than one source or sink if len(_lowerCamelCase ) > 1 or len(_lowerCamelCase ) > 1: UpperCamelCase : List[str] = 0 for i in sources: max_input_flow += sum(self.graph[i] ) UpperCamelCase : Union[str, Any] = len(self.graph ) + 1 for room in self.graph: room.insert(0, 0 ) self.graph.insert(0, [0] * size ) for i in sources: UpperCamelCase : int = max_input_flow UpperCamelCase : str = 0 UpperCamelCase : List[str] = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: UpperCamelCase : Optional[Any] = max_input_flow UpperCamelCase : str = size - 1 def snake_case_ ( self ) -> str: if self.maximum_flow_algorithm is None: raise Exception('You need to set maximum flow algorithm before.' ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Dict: UpperCamelCase : Union[str, Any] = algorithm(self ) class lowerCAmelCase_ : def __init__( self, SCREAMING_SNAKE_CASE_ ) -> Tuple: UpperCamelCase : List[Any] = flow_network UpperCamelCase : Union[str, Any] = flow_network.verticesCount UpperCamelCase : List[Any] = flow_network.sourceIndex UpperCamelCase : Dict = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that UpperCamelCase : Optional[int] = flow_network.graph UpperCamelCase : Optional[int] = False def snake_case_ ( self ) -> Optional[int]: if not self.executed: self._algorithm() UpperCamelCase : Optional[Any] = True def snake_case_ ( self ) -> List[str]: pass class lowerCAmelCase_ ( __A ): def __init__( self, SCREAMING_SNAKE_CASE_ ) -> List[Any]: super().__init__(_lowerCamelCase ) # use this to save your result UpperCamelCase : Dict = -1 def snake_case_ ( self ) -> Any: if not self.executed: raise Exception('You should execute algorithm before using its result!' ) return self.maximum_flow class lowerCAmelCase_ ( __A ): def __init__( self, SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: super().__init__(_lowerCamelCase ) UpperCamelCase : Tuple = [[0] * self.verticies_count for i in range(self.verticies_count )] UpperCamelCase : List[Any] = [0] * self.verticies_count UpperCamelCase : Union[str, Any] = [0] * self.verticies_count def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : List[Any] = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule UpperCamelCase : Optional[int] = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list UpperCamelCase : List[Any] = 0 while i < len(_lowerCamelCase ): UpperCamelCase : str = vertices_list[i] UpperCamelCase : Optional[Any] = self.heights[vertex_index] self.process_vertex(_lowerCamelCase ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0, vertices_list.pop(_lowerCamelCase ) ) UpperCamelCase : Union[str, Any] = 0 else: i += 1 UpperCamelCase : Any = sum(self.preflow[self.source_index] ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> List[str]: while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(_lowerCamelCase, _lowerCamelCase ) self.relabel(_lowerCamelCase ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: UpperCamelCase : Union[str, Any] = min( self.excesses[from_index], self.graph[from_index][to_index] - self.preflow[from_index][to_index], ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> List[str]: UpperCamelCase : Dict = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): UpperCamelCase : List[Any] = self.heights[to_index] if min_height is not None: UpperCamelCase : Optional[Any] = min_height + 1 if __name__ == "__main__": __UpperCAmelCase = [0] __UpperCAmelCase = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] __UpperCAmelCase = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network __UpperCAmelCase = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate __UpperCAmelCase = flow_network.find_maximum_flow() print(F"""maximum flow is {maximum_flow}""")
119
'''simple docstring''' import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType UpperCamelCase__ : Optional[Any] = logging.get_logger(__name__) class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = '''vision-encoder-decoder''' lowerCamelCase = True def __init__( self , **_lowerCamelCase ) -> str: super().__init__(**_lowerCamelCase ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( F"A configuraton of type {self.model_type} cannot be instantiated because " F"not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}" ) A_ : Optional[int] = kwargs.pop("""encoder""" ) A_ : List[str] = encoder_config.pop("""model_type""" ) A_ : str = kwargs.pop("""decoder""" ) A_ : Optional[Any] = decoder_config.pop("""model_type""" ) A_ : List[str] = AutoConfig.for_model(_lowerCamelCase , **_lowerCamelCase ) A_ : str = AutoConfig.for_model(_lowerCamelCase , **_lowerCamelCase ) A_ : Any = True @classmethod def UpperCAmelCase_ ( cls , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) -> PretrainedConfig: logger.info("""Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) A_ : int = True A_ : List[Any] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Any: A_ : Dict = copy.deepcopy(self.__dict__ ) A_ : List[str] = self.encoder.to_dict() A_ : Union[str, Any] = self.decoder.to_dict() A_ : str = self.__class__.model_type return output class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = version.parse('''1.11''' ) @property def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCAmelCase_ ( self ) -> float: return 1e-4 @property def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict({"""last_hidden_state""": {0: """batch""", 1: """encoder_sequence"""}} ) class _lowerCAmelCase ( __A ): """simple docstring""" @property def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: A_ : Optional[Any] = OrderedDict() A_ : Any = {0: """batch""", 1: """past_decoder_sequence + sequence"""} A_ : str = {0: """batch""", 1: """past_decoder_sequence + sequence"""} A_ : Optional[int] = {0: """batch""", 1: """encoder_sequence"""} return common_inputs def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = -1 , _lowerCamelCase = -1 , _lowerCamelCase = False , _lowerCamelCase = None , ) -> Mapping[str, Any]: import torch A_ : Optional[int] = OrderedDict() A_ : List[Any] = super().generate_dummy_inputs( _lowerCamelCase , batch_size=_lowerCamelCase , seq_length=_lowerCamelCase , is_pair=_lowerCamelCase , framework=_lowerCamelCase ) A_ , A_ : str = dummy_input["""input_ids"""].shape A_ : Optional[int] = (batch, encoder_sequence, self._config.encoder_hidden_size) A_ : Union[str, Any] = dummy_input.pop("""input_ids""" ) A_ : List[str] = dummy_input.pop("""attention_mask""" ) A_ : Optional[int] = torch.zeros(_lowerCamelCase ) return common_inputs class _lowerCAmelCase ( __A ): """simple docstring""" @property def UpperCAmelCase_ ( self ) -> None: pass def UpperCAmelCase_ ( self , _lowerCamelCase ) -> OnnxConfig: return VisionEncoderDecoderEncoderOnnxConfig(_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = "default" ) -> OnnxConfig: A_ : List[Any] = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(_lowerCamelCase , _lowerCamelCase )
344
0
def lowerCamelCase__ ( A__ : str , A__ : bool = False ): '''simple docstring''' if not isinstance(A__ , A__ ): __lowerCamelCase = f'Expected string as input, found {type(A__ )}' raise ValueError(A__ ) if not isinstance(A__ , A__ ): __lowerCamelCase = f'Expected boolean as use_pascal parameter, found {type(A__ )}' raise ValueError(A__ ) __lowerCamelCase = input_str.split("""_""" ) __lowerCamelCase = 0 if use_pascal else 1 __lowerCamelCase = words[start_index:] __lowerCamelCase = [word[0].upper() + word[1:] for word in words_to_capitalize] __lowerCamelCase = """""" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
29
def lowerCamelCase__ ( A__ : int ): '''simple docstring''' __lowerCamelCase = [[0 for _ in range(A__ )] for _ in range(m + 1 )] for i in range(m + 1 ): __lowerCamelCase = 1 for n in range(m + 1 ): for k in range(1 , A__ ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: UpperCAmelCase_ = int(input('Enter a number: ').strip()) print(partition(n)) except ValueError: print('Please enter a number.') else: try: UpperCAmelCase_ = int(sys.argv[1]) print(partition(n)) except ValueError: print('Please pass a number.')
29
1
import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False, False, False @dataclass class A : __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : bool = True __UpperCAmelCase : bool = True __UpperCAmelCase : Optional[str] = None # Automatically constructed __UpperCAmelCase : ClassVar[str] = "dict" __UpperCAmelCase : ClassVar[Any] = pa.struct({'bytes': pa.binary(), 'path': pa.string()} ) __UpperCAmelCase : str = field(default='Audio' , init=UpperCAmelCase_ , repr=UpperCAmelCase_ ) def __call__(self : int ) -> Dict: """simple docstring""" return self.pa_type def lowercase_ (self : int , __UpperCAmelCase : Union[str, bytes, dict] ) -> dict: """simple docstring""" try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("To support encoding audio data, please install 'soundfile'." ) from err if isinstance(__UpperCAmelCase , __UpperCAmelCase ): return {"bytes": None, "path": value} elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes UpperCAmelCase__ = BytesIO() sf.write(__UpperCAmelCase , value["array"] , value["sampling_rate"] , format="wav" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("pcm" ): # "PCM" only has raw audio bytes if value.get("sampling_rate" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("To use PCM files, please specify a 'sampling_rate' in Audio object" ) if value.get("bytes" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) UpperCAmelCase__ = np.frombuffer(value["bytes"] , dtype=np.intaa ).astype(np.floataa ) / 3_2_7_6_7 else: UpperCAmelCase__ = np.memmap(value["path"] , dtype="h" , mode="r" ).astype(np.floataa ) / 3_2_7_6_7 UpperCAmelCase__ = BytesIO(bytes() ) sf.write(__UpperCAmelCase , __UpperCAmelCase , value["sampling_rate"] , format="wav" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( f"""An audio sample should have one of 'path' or 'bytes' but they are missing or None in {value}.""" ) def lowercase_ (self : int , __UpperCAmelCase : dict , __UpperCAmelCase : Optional[Dict[str, Union[str, bool, None]]] = None ) -> dict: """simple docstring""" if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Audio(decode=True) instead." ) UpperCAmelCase__ , UpperCAmelCase__ = (value["path"], BytesIO(value["bytes"] )) if value["bytes"] is not None else (value["path"], None) if path is None and file is None: raise ValueError(f"""An audio sample should have one of 'path' or 'bytes' but both are None in {value}.""" ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("To support decoding audio files, please install 'librosa' and 'soundfile'." ) from err UpperCAmelCase__ = xsplitext(__UpperCAmelCase )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( "Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( "Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) if file is None: UpperCAmelCase__ = token_per_repo_id or {} UpperCAmelCase__ = path.split("::" )[-1] try: UpperCAmelCase__ = string_to_dict(__UpperCAmelCase , config.HUB_DATASETS_URL )["repo_id"] UpperCAmelCase__ = token_per_repo_id[repo_id] except (ValueError, KeyError): UpperCAmelCase__ = None with xopen(__UpperCAmelCase , "rb" , use_auth_token=__UpperCAmelCase ) as f: UpperCAmelCase__ , UpperCAmelCase__ = sf.read(__UpperCAmelCase ) else: UpperCAmelCase__ , UpperCAmelCase__ = sf.read(__UpperCAmelCase ) UpperCAmelCase__ = array.T if self.mono: UpperCAmelCase__ = librosa.to_mono(__UpperCAmelCase ) if self.sampling_rate and self.sampling_rate != sampling_rate: UpperCAmelCase__ = librosa.resample(__UpperCAmelCase , orig_sr=__UpperCAmelCase , target_sr=self.sampling_rate ) UpperCAmelCase__ = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def lowercase_ (self : Optional[int] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Value if self.decode: raise ValueError("Cannot flatten a decoded Audio feature." ) return { "bytes": Value("binary" ), "path": Value("string" ), } def lowercase_ (self : List[Any] , __UpperCAmelCase : Union[pa.StringArray, pa.StructArray] ) -> pa.StructArray: """simple docstring""" if pa.types.is_string(storage.type ): UpperCAmelCase__ = pa.array([None] * len(__UpperCAmelCase ) , type=pa.binary() ) UpperCAmelCase__ = pa.StructArray.from_arrays([bytes_array, storage] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): UpperCAmelCase__ = pa.array([None] * len(__UpperCAmelCase ) , type=pa.string() ) UpperCAmelCase__ = pa.StructArray.from_arrays([storage, path_array] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("array" ): UpperCAmelCase__ = pa.array([Audio().encode_example(__UpperCAmelCase ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: UpperCAmelCase__ = storage.field("bytes" ) else: UpperCAmelCase__ = pa.array([None] * len(__UpperCAmelCase ) , type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: UpperCAmelCase__ = storage.field("path" ) else: UpperCAmelCase__ = pa.array([None] * len(__UpperCAmelCase ) , type=pa.string() ) UpperCAmelCase__ = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=storage.is_null() ) return array_cast(__UpperCAmelCase , self.pa_type ) def lowercase_ (self : Dict , __UpperCAmelCase : pa.StructArray ) -> pa.StructArray: """simple docstring""" @no_op_if_value_is_null def path_to_bytes(__UpperCAmelCase : Any ): with xopen(__UpperCAmelCase , "rb" ) as f: UpperCAmelCase__ = f.read() return bytes_ UpperCAmelCase__ = pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) UpperCAmelCase__ = pa.array( [os.path.basename(__UpperCAmelCase ) if path is not None else None for path in storage.field("path" ).to_pylist()] , type=pa.string() , ) UpperCAmelCase__ = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null() ) return array_cast(__UpperCAmelCase , self.pa_type )
65
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _A = { 'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'], 'tokenization_convbert': ['ConvBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ['ConvBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvBertForMaskedLM', 'ConvBertForMultipleChoice', 'ConvBertForQuestionAnswering', 'ConvBertForSequenceClassification', 'ConvBertForTokenClassification', 'ConvBertLayer', 'ConvBertModel', 'ConvBertPreTrainedModel', 'load_tf_weights_in_convbert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFConvBertForMaskedLM', 'TFConvBertForMultipleChoice', 'TFConvBertForQuestionAnswering', 'TFConvBertForSequenceClassification', 'TFConvBertForTokenClassification', 'TFConvBertLayer', 'TFConvBertModel', 'TFConvBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
62
0
"""simple docstring""" import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def __lowerCamelCase ( snake_case__ ,snake_case__="shi-labs/oneformer_demo" ) -> Union[str, Any]: """simple docstring""" with open(hf_hub_download(snake_case__ ,snake_case__ ,repo_type="""dataset""" ) ,"""r""" ) as f: _SCREAMING_SNAKE_CASE = json.load(snake_case__ ) _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] for key, info in class_info.items(): _SCREAMING_SNAKE_CASE = info["""name"""] class_names.append(info["""name"""] ) if info["isthing"]: thing_ids.append(int(snake_case__ ) ) _SCREAMING_SNAKE_CASE = thing_ids _SCREAMING_SNAKE_CASE = class_names return metadata class __UpperCAmelCase (unittest.TestCase ): def __init__( self: List[Any] , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Optional[Any]=7 , UpperCAmelCase_: Union[str, Any]=3 , UpperCAmelCase_: Optional[int]=30 , UpperCAmelCase_: List[str]=400 , UpperCAmelCase_: List[str]=None , UpperCAmelCase_: List[Any]=True , UpperCAmelCase_: Tuple=True , UpperCAmelCase_: Union[str, Any]=[0.5, 0.5, 0.5] , UpperCAmelCase_: int=[0.5, 0.5, 0.5] , UpperCAmelCase_: List[str]=10 , UpperCAmelCase_: Optional[int]=False , UpperCAmelCase_: Optional[int]=255 , UpperCAmelCase_: Tuple="shi-labs/oneformer_demo" , UpperCAmelCase_: Union[str, Any]="ade20k_panoptic.json" , UpperCAmelCase_: Union[str, Any]=10 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = num_channels _SCREAMING_SNAKE_CASE = min_resolution _SCREAMING_SNAKE_CASE = max_resolution _SCREAMING_SNAKE_CASE = do_resize _SCREAMING_SNAKE_CASE = {"""shortest_edge""": 32, """longest_edge""": 1_333} if size is None else size _SCREAMING_SNAKE_CASE = do_normalize _SCREAMING_SNAKE_CASE = image_mean _SCREAMING_SNAKE_CASE = image_std _SCREAMING_SNAKE_CASE = class_info_file _SCREAMING_SNAKE_CASE = prepare_metadata(UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = num_text _SCREAMING_SNAKE_CASE = repo_path # for the post_process_functions _SCREAMING_SNAKE_CASE = 2 _SCREAMING_SNAKE_CASE = 10 _SCREAMING_SNAKE_CASE = 10 _SCREAMING_SNAKE_CASE = 3 _SCREAMING_SNAKE_CASE = 4 _SCREAMING_SNAKE_CASE = num_labels _SCREAMING_SNAKE_CASE = do_reduce_labels _SCREAMING_SNAKE_CASE = ignore_index def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def UpperCamelCase ( self: int , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: List[str]=False ): '''simple docstring''' if not batched: _SCREAMING_SNAKE_CASE = image_inputs[0] if isinstance(UpperCAmelCase_ , Image.Image ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = image.size else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = image.shape[1], image.shape[2] if w < h: _SCREAMING_SNAKE_CASE = int(self.size["""shortest_edge"""] * h / w ) _SCREAMING_SNAKE_CASE = self.size["""shortest_edge"""] elif w > h: _SCREAMING_SNAKE_CASE = self.size["""shortest_edge"""] _SCREAMING_SNAKE_CASE = int(self.size["""shortest_edge"""] * w / h ) else: _SCREAMING_SNAKE_CASE = self.size["""shortest_edge"""] _SCREAMING_SNAKE_CASE = self.size["""shortest_edge"""] else: _SCREAMING_SNAKE_CASE = [] for image in image_inputs: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _SCREAMING_SNAKE_CASE = max(UpperCAmelCase_ , key=lambda UpperCAmelCase_ : item[0] )[0] _SCREAMING_SNAKE_CASE = max(UpperCAmelCase_ , key=lambda UpperCAmelCase_ : item[1] )[1] return expected_height, expected_width def UpperCamelCase ( self: Any ): '''simple docstring''' return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): __snake_case : Union[str, Any] = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string __snake_case : int = image_processing_class def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = OneFormerImageProcessorTester(self ) @property def UpperCamelCase ( self: int ): '''simple docstring''' return self.image_processing_tester.prepare_image_processor_dict() def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase_ , """image_mean""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """image_std""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """do_normalize""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """do_resize""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """size""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """ignore_index""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """class_info_file""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """num_text""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """repo_path""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """metadata""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """do_reduce_labels""" ) ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' pass def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image ) # Test not batched input _SCREAMING_SNAKE_CASE = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processing_tester.get_expected_values(UpperCAmelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processing_tester.get_expected_values(UpperCAmelCase_ , batched=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = image_processor( UpperCAmelCase_ , ["""semantic"""] * len(UpperCAmelCase_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray ) # Test not batched input _SCREAMING_SNAKE_CASE = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processing_tester.get_expected_values(UpperCAmelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processing_tester.get_expected_values(UpperCAmelCase_ , batched=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = image_processor( UpperCAmelCase_ , ["""semantic"""] * len(UpperCAmelCase_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor ) # Test not batched input _SCREAMING_SNAKE_CASE = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processing_tester.get_expected_values(UpperCAmelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processing_tester.get_expected_values(UpperCAmelCase_ , batched=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = image_processor( UpperCAmelCase_ , ["""semantic"""] * len(UpperCAmelCase_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: Tuple=False , UpperCAmelCase_: Any=False , UpperCAmelCase_: str="np" ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # prepare image and target _SCREAMING_SNAKE_CASE = self.image_processing_tester.num_labels _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCAmelCase_ ) if with_segmentation_maps: _SCREAMING_SNAKE_CASE = num_labels if is_instance_map: _SCREAMING_SNAKE_CASE = list(range(UpperCAmelCase_ ) ) * 2 _SCREAMING_SNAKE_CASE = dict(enumerate(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": _SCREAMING_SNAKE_CASE = [Image.fromarray(UpperCAmelCase_ ) for annotation in annotations] _SCREAMING_SNAKE_CASE = image_processor( UpperCAmelCase_ , ["""semantic"""] * len(UpperCAmelCase_ ) , UpperCAmelCase_ , return_tensors="""pt""" , instance_id_to_semantic_id=UpperCAmelCase_ , pad_and_return_pixel_mask=UpperCAmelCase_ , ) return inputs def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' pass def UpperCamelCase ( self: Any ): '''simple docstring''' def common(UpperCAmelCase_: List[str]=False , UpperCAmelCase_: Optional[int]=None ): _SCREAMING_SNAKE_CASE = self.comm_get_image_processor_inputs( with_segmentation_maps=UpperCAmelCase_ , is_instance_map=UpperCAmelCase_ , segmentation_type=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = inputs["""mask_labels"""] _SCREAMING_SNAKE_CASE = inputs["""class_labels"""] _SCREAMING_SNAKE_CASE = inputs["""pixel_values"""] _SCREAMING_SNAKE_CASE = inputs["""text_inputs"""] # check the batch_size for mask_label, class_label, text_input in zip(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(UpperCAmelCase_ ) , self.image_processing_tester.num_text ) common() common(is_instance_map=UpperCAmelCase_ ) common(is_instance_map=UpperCAmelCase_ , segmentation_type="""pil""" ) common(is_instance_map=UpperCAmelCase_ , segmentation_type="""pil""" ) def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = np.zeros((20, 50) ) _SCREAMING_SNAKE_CASE = 1 _SCREAMING_SNAKE_CASE = 1 _SCREAMING_SNAKE_CASE = 1 _SCREAMING_SNAKE_CASE = binary_mask_to_rle(UpperCAmelCase_ ) self.assertEqual(len(UpperCAmelCase_ ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) _SCREAMING_SNAKE_CASE = self.image_processing_tester.get_fake_oneformer_outputs() _SCREAMING_SNAKE_CASE = fature_extractor.post_process_semantic_segmentation(UpperCAmelCase_ ) self.assertEqual(len(UpperCAmelCase_ ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) _SCREAMING_SNAKE_CASE = [(1, 4) for i in range(self.image_processing_tester.batch_size )] _SCREAMING_SNAKE_CASE = fature_extractor.post_process_semantic_segmentation(UpperCAmelCase_ , target_sizes=UpperCAmelCase_ ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) _SCREAMING_SNAKE_CASE = self.image_processing_tester.get_fake_oneformer_outputs() _SCREAMING_SNAKE_CASE = image_processor.post_process_instance_segmentation(UpperCAmelCase_ , threshold=0 ) self.assertTrue(len(UpperCAmelCase_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("""segmentation""" in el ) self.assertTrue("""segments_info""" in el ) self.assertEqual(type(el["""segments_info"""] ) , UpperCAmelCase_ ) self.assertEqual( el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) _SCREAMING_SNAKE_CASE = self.image_processing_tester.get_fake_oneformer_outputs() _SCREAMING_SNAKE_CASE = image_processor.post_process_panoptic_segmentation(UpperCAmelCase_ , threshold=0 ) self.assertTrue(len(UpperCAmelCase_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("""segmentation""" in el ) self.assertTrue("""segments_info""" in el ) self.assertEqual(type(el["""segments_info"""] ) , UpperCAmelCase_ ) self.assertEqual( el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
368
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) UpperCamelCase = { '''sample_size''': 32, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 2, '''num_class_embeds''': 1_000, '''block_out_channels''': [32, 64], '''attention_head_dim''': 8, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''scale_shift''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } UpperCamelCase = { '''sample_size''': 64, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 3, '''num_class_embeds''': 1_000, '''block_out_channels''': [192, 192 * 2, 192 * 3, 192 * 4], '''attention_head_dim''': 64, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''scale_shift''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } UpperCamelCase = { '''sample_size''': 256, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 2, '''num_class_embeds''': None, '''block_out_channels''': [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], '''attention_head_dim''': 64, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''ResnetDownsampleBlock2D''', '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', '''ResnetUpsampleBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''default''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } UpperCamelCase = { '''num_train_timesteps''': 40, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } UpperCamelCase = { '''num_train_timesteps''': 201, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } UpperCamelCase = { '''num_train_timesteps''': 151, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } def __lowerCamelCase ( snake_case__ ) -> Optional[Any]: """simple docstring""" if isinstance(snake_case__ ,snake_case__ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("""boolean value expected""" ) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__=False ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.in_layers.0.weight'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.in_layers.0.bias'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.in_layers.2.weight'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.in_layers.2.bias'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.emb_layers.1.weight'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.emb_layers.1.bias'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.out_layers.0.weight'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.out_layers.0.bias'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.out_layers.3.weight'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.out_layers.3.bias'] if has_skip: _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.skip_connection.weight'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.skip_connection.bias'] return new_checkpoint def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__=None ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.qkv.weight'].chunk(3 ,dim=0 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.qkv.bias'].chunk(3 ,dim=0 ) _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.norm.weight'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.norm.bias'] _SCREAMING_SNAKE_CASE = weight_q.squeeze(-1 ).squeeze(-1 ) _SCREAMING_SNAKE_CASE = bias_q.squeeze(-1 ).squeeze(-1 ) _SCREAMING_SNAKE_CASE = weight_k.squeeze(-1 ).squeeze(-1 ) _SCREAMING_SNAKE_CASE = bias_k.squeeze(-1 ).squeeze(-1 ) _SCREAMING_SNAKE_CASE = weight_v.squeeze(-1 ).squeeze(-1 ) _SCREAMING_SNAKE_CASE = bias_v.squeeze(-1 ).squeeze(-1 ) _SCREAMING_SNAKE_CASE = ( checkpoint[F'{old_prefix}.proj_out.weight'].squeeze(-1 ).squeeze(-1 ) ) _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.proj_out.bias'].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = torch.load(snake_case__ ,map_location="""cpu""" ) _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = checkpoint["""time_embed.0.weight"""] _SCREAMING_SNAKE_CASE = checkpoint["""time_embed.0.bias"""] _SCREAMING_SNAKE_CASE = checkpoint["""time_embed.2.weight"""] _SCREAMING_SNAKE_CASE = checkpoint["""time_embed.2.bias"""] if unet_config["num_class_embeds"] is not None: _SCREAMING_SNAKE_CASE = checkpoint["""label_emb.weight"""] _SCREAMING_SNAKE_CASE = checkpoint["""input_blocks.0.0.weight"""] _SCREAMING_SNAKE_CASE = checkpoint["""input_blocks.0.0.bias"""] _SCREAMING_SNAKE_CASE = unet_config["""down_block_types"""] _SCREAMING_SNAKE_CASE = unet_config["""layers_per_block"""] _SCREAMING_SNAKE_CASE = unet_config["""attention_head_dim"""] _SCREAMING_SNAKE_CASE = unet_config["""block_out_channels"""] _SCREAMING_SNAKE_CASE = 1 _SCREAMING_SNAKE_CASE = channels_list[0] for i, layer_type in enumerate(snake_case__ ): _SCREAMING_SNAKE_CASE = channels_list[i] _SCREAMING_SNAKE_CASE = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(snake_case__ ): _SCREAMING_SNAKE_CASE = F'down_blocks.{i}.resnets.{j}' _SCREAMING_SNAKE_CASE = F'input_blocks.{current_layer}.0' _SCREAMING_SNAKE_CASE = True if j == 0 and downsample_block_has_skip else False _SCREAMING_SNAKE_CASE = convert_resnet(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,has_skip=snake_case__ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(snake_case__ ): _SCREAMING_SNAKE_CASE = F'down_blocks.{i}.resnets.{j}' _SCREAMING_SNAKE_CASE = F'input_blocks.{current_layer}.0' _SCREAMING_SNAKE_CASE = True if j == 0 and downsample_block_has_skip else False _SCREAMING_SNAKE_CASE = convert_resnet(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,has_skip=snake_case__ ) _SCREAMING_SNAKE_CASE = F'down_blocks.{i}.attentions.{j}' _SCREAMING_SNAKE_CASE = F'input_blocks.{current_layer}.1' _SCREAMING_SNAKE_CASE = convert_attention( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) current_layer += 1 if i != len(snake_case__ ) - 1: _SCREAMING_SNAKE_CASE = F'down_blocks.{i}.downsamplers.0' _SCREAMING_SNAKE_CASE = F'input_blocks.{current_layer}.0' _SCREAMING_SNAKE_CASE = convert_resnet(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) current_layer += 1 _SCREAMING_SNAKE_CASE = current_channels # hardcoded the mid-block for now _SCREAMING_SNAKE_CASE = """mid_block.resnets.0""" _SCREAMING_SNAKE_CASE = """middle_block.0""" _SCREAMING_SNAKE_CASE = convert_resnet(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = """mid_block.attentions.0""" _SCREAMING_SNAKE_CASE = """middle_block.1""" _SCREAMING_SNAKE_CASE = convert_attention(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = """mid_block.resnets.1""" _SCREAMING_SNAKE_CASE = """middle_block.2""" _SCREAMING_SNAKE_CASE = convert_resnet(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = unet_config["""up_block_types"""] for i, layer_type in enumerate(snake_case__ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): _SCREAMING_SNAKE_CASE = F'up_blocks.{i}.resnets.{j}' _SCREAMING_SNAKE_CASE = F'output_blocks.{current_layer}.0' _SCREAMING_SNAKE_CASE = convert_resnet(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,has_skip=snake_case__ ) current_layer += 1 if i != len(snake_case__ ) - 1: _SCREAMING_SNAKE_CASE = F'up_blocks.{i}.upsamplers.0' _SCREAMING_SNAKE_CASE = F'output_blocks.{current_layer-1}.1' _SCREAMING_SNAKE_CASE = convert_resnet(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): _SCREAMING_SNAKE_CASE = F'up_blocks.{i}.resnets.{j}' _SCREAMING_SNAKE_CASE = F'output_blocks.{current_layer}.0' _SCREAMING_SNAKE_CASE = convert_resnet(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,has_skip=snake_case__ ) _SCREAMING_SNAKE_CASE = F'up_blocks.{i}.attentions.{j}' _SCREAMING_SNAKE_CASE = F'output_blocks.{current_layer}.1' _SCREAMING_SNAKE_CASE = convert_attention( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) current_layer += 1 if i != len(snake_case__ ) - 1: _SCREAMING_SNAKE_CASE = F'up_blocks.{i}.upsamplers.0' _SCREAMING_SNAKE_CASE = F'output_blocks.{current_layer-1}.2' _SCREAMING_SNAKE_CASE = convert_resnet(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = checkpoint["""out.0.weight"""] _SCREAMING_SNAKE_CASE = checkpoint["""out.0.bias"""] _SCREAMING_SNAKE_CASE = checkpoint["""out.2.weight"""] _SCREAMING_SNAKE_CASE = checkpoint["""out.2.bias"""] return new_checkpoint if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--unet_path''', default=None, type=str, required=True, help='''Path to the unet.pt to convert.''') parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output the converted UNet model.''' ) parser.add_argument('''--class_cond''', default=True, type=str, help='''Whether the model is class-conditional.''') UpperCamelCase = parser.parse_args() UpperCamelCase = strabool(args.class_cond) UpperCamelCase = os.path.basename(args.unet_path) print(f"Checkpoint: {ckpt_name}") # Get U-Net config if "imagenet64" in ckpt_name: UpperCamelCase = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): UpperCamelCase = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: UpperCamelCase = TEST_UNET_CONFIG else: raise ValueError(f"Checkpoint type {ckpt_name} is not currently supported.") if not args.class_cond: UpperCamelCase = None UpperCamelCase = con_pt_to_diffuser(args.unet_path, unet_config) UpperCamelCase = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: UpperCamelCase = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: UpperCamelCase = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): UpperCamelCase = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(f"Checkpoint type {ckpt_name} is not currently supported.") UpperCamelCase = CMStochasticIterativeScheduler(**scheduler_config) UpperCamelCase = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
125
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase__ = { "configuration_wav2vec2": ["WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Wav2Vec2Config"], "feature_extraction_wav2vec2": ["Wav2Vec2FeatureExtractor"], "processing_wav2vec2": ["Wav2Vec2Processor"], "tokenization_wav2vec2": ["Wav2Vec2CTCTokenizer", "Wav2Vec2Tokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ "WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST", "Wav2Vec2ForAudioFrameClassification", "Wav2Vec2ForCTC", "Wav2Vec2ForMaskedLM", "Wav2Vec2ForPreTraining", "Wav2Vec2ForSequenceClassification", "Wav2Vec2ForXVector", "Wav2Vec2Model", "Wav2Vec2PreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ "TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST", "TFWav2Vec2ForCTC", "TFWav2Vec2Model", "TFWav2Vec2PreTrainedModel", "TFWav2Vec2ForSequenceClassification", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ "FlaxWav2Vec2ForCTC", "FlaxWav2Vec2ForPreTraining", "FlaxWav2Vec2Model", "FlaxWav2Vec2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
290
'''simple docstring''' import warnings from functools import wraps from typing import Callable def UpperCamelCase_( snake_case : Callable ): '''simple docstring''' @wraps(snake_case ) def _inner_fn(*snake_case : Optional[int] , **snake_case : List[Any] ): warnings.warn( (f'\'{fn.__name__}\' is experimental and might be subject to breaking changes in the future.') , snake_case , ) return fn(*snake_case , **snake_case ) return _inner_fn
85
0
"""simple docstring""" import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging __A : int = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCamelCase ( _UpperCAmelCase ): def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ): super().__init__() self.register_modules( vae=SCREAMING_SNAKE_CASE_ , text_encoder=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , ) def a_ ( self , SCREAMING_SNAKE_CASE_ = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCamelCase : Union[str, Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(SCREAMING_SNAKE_CASE_ ) def a_ ( self ): self.enable_attention_slicing(SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 512 , SCREAMING_SNAKE_CASE_ = 512 , SCREAMING_SNAKE_CASE_ = 50 , SCREAMING_SNAKE_CASE_ = 7.5 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "pil" , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Union[str, Any] = 1 elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : int = len(SCREAMING_SNAKE_CASE_ ) else: raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(SCREAMING_SNAKE_CASE_ )}' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or callback_steps <= 0) ): raise ValueError( f'`callback_steps` has to be a positive integer but is {callback_steps} of type' f' {type(SCREAMING_SNAKE_CASE_ )}.' ) # get prompt text embeddings UpperCamelCase : Optional[Any] = self.tokenizer( SCREAMING_SNAKE_CASE_ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) UpperCamelCase : Optional[Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCamelCase : Tuple = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f' {self.tokenizer.model_max_length} tokens: {removed_text}' ) UpperCamelCase : str = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: UpperCamelCase : Union[str, Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method UpperCamelCase : Optional[Any] = text_embeddings.shape UpperCamelCase : Optional[Any] = text_embeddings.repeat(1 , SCREAMING_SNAKE_CASE_ , 1 ) UpperCamelCase : Optional[Any] = text_embeddings.view(bs_embed * num_images_per_prompt , SCREAMING_SNAKE_CASE_ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCamelCase : Dict = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCamelCase : List[str] if negative_prompt is None: UpperCamelCase : Any = [""""""] elif type(SCREAMING_SNAKE_CASE_ ) is not type(SCREAMING_SNAKE_CASE_ ): raise TypeError( f'`negative_prompt` should be the same type to `prompt`, but got {type(SCREAMING_SNAKE_CASE_ )} !=' f' {type(SCREAMING_SNAKE_CASE_ )}.' ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Optional[Any] = [negative_prompt] elif batch_size != len(SCREAMING_SNAKE_CASE_ ): raise ValueError( f'`negative_prompt`: {negative_prompt} has batch size {len(SCREAMING_SNAKE_CASE_ )}, but `prompt`:' f' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches' """ the batch size of `prompt`.""" ) else: UpperCamelCase : str = negative_prompt UpperCamelCase : Tuple = text_input_ids.shape[-1] UpperCamelCase : Dict = self.tokenizer( SCREAMING_SNAKE_CASE_ , padding="""max_length""" , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , ) UpperCamelCase : Tuple = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCamelCase : Optional[Any] = uncond_embeddings.shape[1] UpperCamelCase : str = uncond_embeddings.repeat(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 1 ) UpperCamelCase : str = uncond_embeddings.view(batch_size * num_images_per_prompt , SCREAMING_SNAKE_CASE_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCamelCase : Optional[int] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCamelCase : Union[str, Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) UpperCamelCase : Optional[Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) UpperCamelCase : List[str] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps UpperCamelCase : Any = torch.randn( SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device="""cpu""" , dtype=SCREAMING_SNAKE_CASE_ ).to(self.device ) UpperCamelCase : Tuple = torch.randn(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device="""cpu""" , dtype=SCREAMING_SNAKE_CASE_ ).to( self.device ) else: UpperCamelCase : Any = torch.randn( SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=self.device , dtype=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = torch.randn(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=self.device , dtype=SCREAMING_SNAKE_CASE_ ) else: if latents_reference.shape != latents_shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) UpperCamelCase : Tuple = latents_reference.to(self.device ) UpperCamelCase : Union[str, Any] = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images UpperCamelCase : str = (latents_shape[3] - latents_shape_reference[3]) // 2 UpperCamelCase : Union[str, Any] = (latents_shape[2] - latents_shape_reference[2]) // 2 UpperCamelCase : Tuple = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx UpperCamelCase : Optional[int] = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy UpperCamelCase : int = 0 if dx < 0 else dx UpperCamelCase : Union[str, Any] = 0 if dy < 0 else dy UpperCamelCase : List[Any] = max(-dx , 0 ) UpperCamelCase : Union[str, Any] = max(-dy , 0 ) # import pdb # pdb.set_trace() UpperCamelCase : List[str] = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand UpperCamelCase : List[Any] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCamelCase : Any = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCamelCase : Dict = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCamelCase : Any = {} if accepts_eta: UpperCamelCase : List[Any] = eta for i, t in enumerate(self.progress_bar(SCREAMING_SNAKE_CASE_ ) ): # expand the latents if we are doing classifier free guidance UpperCamelCase : str = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCamelCase : Tuple = self.scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # predict the noise residual UpperCamelCase : int = self.unet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ ).sample # perform guidance if do_classifier_free_guidance: UpperCamelCase : Tuple = noise_pred.chunk(2 ) UpperCamelCase : Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase : Dict = self.scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = 1 / 0.18215 * latents UpperCamelCase : Dict = self.vae.decode(SCREAMING_SNAKE_CASE_ ).sample UpperCamelCase : Optional[int] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCamelCase : int = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: UpperCamelCase : Any = self.feature_extractor(self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) , return_tensors="""pt""" ).to( self.device ) UpperCamelCase : Optional[int] = self.safety_checker( images=SCREAMING_SNAKE_CASE_ , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: UpperCamelCase : List[str] = None if output_type == "pil": UpperCamelCase : List[Any] = self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=SCREAMING_SNAKE_CASE_ , nsfw_content_detected=SCREAMING_SNAKE_CASE_ )
355
"""simple docstring""" import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCamelCase ( _UpperCAmelCase , unittest.TestCase ): lowercase : Any = AudioLDMPipeline lowercase : Union[str, Any] = TEXT_TO_AUDIO_PARAMS lowercase : List[str] = TEXT_TO_AUDIO_BATCH_PARAMS lowercase : Tuple = frozenset( [ 'num_inference_steps', 'num_waveforms_per_prompt', 'generator', 'latents', 'output_type', 'return_dict', 'callback', 'callback_steps', ] ) def a_ ( self ): torch.manual_seed(0 ) UpperCamelCase : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=(32, 64) , class_embed_type="""simple_projection""" , projection_class_embeddings_input_dim=32 , class_embeddings_concat=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase : Optional[Any] = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=SCREAMING_SNAKE_CASE_ , set_alpha_to_one=SCREAMING_SNAKE_CASE_ , ) torch.manual_seed(0 ) UpperCamelCase : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCamelCase : int = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , projection_dim=32 , ) UpperCamelCase : Optional[int] = ClapTextModelWithProjection(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = RobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-roberta""" , model_max_length=77 ) UpperCamelCase : Tuple = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=1_6000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase : Tuple = SpeechTaHifiGan(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """vocoder""": vocoder, } return components def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0 ): if str(SCREAMING_SNAKE_CASE_ ).startswith("""mps""" ): UpperCamelCase : List[Any] = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase : Any = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = { """prompt""": """A hammer hitting a wooden surface""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, } return inputs def a_ ( self ): UpperCamelCase : str = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase : Any = self.get_dummy_components() UpperCamelCase : int = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = output.audios[0] assert audio.ndim == 1 assert len(SCREAMING_SNAKE_CASE_ ) == 256 UpperCamelCase : Tuple = audio[:10] UpperCamelCase : Dict = np.array( [-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def a_ ( self ): UpperCamelCase : str = self.get_dummy_components() UpperCamelCase : Tuple = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = 3 * [inputs["""prompt"""]] # forward UpperCamelCase : List[Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = output.audios[0] UpperCamelCase : Union[str, Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = 3 * [inputs.pop("""prompt""" )] UpperCamelCase : List[str] = audioldm_pipe.tokenizer( SCREAMING_SNAKE_CASE_ , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , ) UpperCamelCase : Optional[int] = text_inputs["""input_ids"""].to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = audioldm_pipe.text_encoder( SCREAMING_SNAKE_CASE_ , ) UpperCamelCase : str = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state UpperCamelCase : Optional[int] = F.normalize(SCREAMING_SNAKE_CASE_ , dim=-1 ) UpperCamelCase : Tuple = prompt_embeds # forward UpperCamelCase : List[str] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def a_ ( self ): UpperCamelCase : List[str] = self.get_dummy_components() UpperCamelCase : List[Any] = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = 3 * ["""this is a negative prompt"""] UpperCamelCase : List[Any] = negative_prompt UpperCamelCase : str = 3 * [inputs["""prompt"""]] # forward UpperCamelCase : str = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = output.audios[0] UpperCamelCase : Tuple = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = 3 * [inputs.pop("""prompt""" )] UpperCamelCase : List[Any] = [] for p in [prompt, negative_prompt]: UpperCamelCase : int = audioldm_pipe.tokenizer( SCREAMING_SNAKE_CASE_ , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , ) UpperCamelCase : Union[str, Any] = text_inputs["""input_ids"""].to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = audioldm_pipe.text_encoder( SCREAMING_SNAKE_CASE_ , ) UpperCamelCase : Tuple = text_embeds.text_embeds # additional L_2 normalization over each hidden-state UpperCamelCase : Optional[int] = F.normalize(SCREAMING_SNAKE_CASE_ , dim=-1 ) embeds.append(SCREAMING_SNAKE_CASE_ ) UpperCamelCase , UpperCamelCase : Tuple = embeds # forward UpperCamelCase : List[Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def a_ ( self ): UpperCamelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase : Optional[int] = self.get_dummy_components() UpperCamelCase : List[str] = PNDMScheduler(skip_prk_steps=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = """egg cracking""" UpperCamelCase : List[Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = output.audios[0] assert audio.ndim == 1 assert len(SCREAMING_SNAKE_CASE_ ) == 256 UpperCamelCase : Union[str, Any] = audio[:10] UpperCamelCase : Dict = np.array( [-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def a_ ( self ): UpperCamelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase : Union[str, Any] = self.get_dummy_components() UpperCamelCase : Tuple = PNDMScheduler(skip_prk_steps=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = """A hammer hitting a wooden surface""" # test num_waveforms_per_prompt=1 (default) UpperCamelCase : List[Any] = audioldm_pipe(SCREAMING_SNAKE_CASE_ , num_inference_steps=2 ).audios assert audios.shape == (1, 256) # test num_waveforms_per_prompt=1 (default) for batch of prompts UpperCamelCase : Dict = 2 UpperCamelCase : List[str] = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 256) # test num_waveforms_per_prompt for single prompt UpperCamelCase : List[str] = 2 UpperCamelCase : Optional[Any] = audioldm_pipe(SCREAMING_SNAKE_CASE_ , num_inference_steps=2 , num_waveforms_per_prompt=SCREAMING_SNAKE_CASE_ ).audios assert audios.shape == (num_waveforms_per_prompt, 256) # test num_waveforms_per_prompt for batch of prompts UpperCamelCase : Any = 2 UpperCamelCase : str = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=SCREAMING_SNAKE_CASE_ ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) def a_ ( self ): UpperCamelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase : Tuple = self.get_dummy_components() UpperCamelCase : Tuple = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = audioldm_pipe.vocoder.config.sampling_rate UpperCamelCase : List[str] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = audioldm_pipe(audio_length_in_s=0.016 , **SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = output.audios[0] assert audio.ndim == 1 assert len(SCREAMING_SNAKE_CASE_ ) / vocoder_sampling_rate == 0.016 UpperCamelCase : Optional[Any] = audioldm_pipe(audio_length_in_s=0.032 , **SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = output.audios[0] assert audio.ndim == 1 assert len(SCREAMING_SNAKE_CASE_ ) / vocoder_sampling_rate == 0.032 def a_ ( self ): UpperCamelCase : str = self.get_dummy_components() UpperCamelCase : Optional[Any] = AudioLDMPipeline(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = ["""hey"""] UpperCamelCase : Dict = audioldm_pipe(SCREAMING_SNAKE_CASE_ , num_inference_steps=1 ) UpperCamelCase : str = output.audios.shape assert audio_shape == (1, 256) UpperCamelCase : Optional[Any] = audioldm_pipe.vocoder.config config.model_in_dim *= 2 UpperCamelCase : str = SpeechTaHifiGan(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = audioldm_pipe(SCREAMING_SNAKE_CASE_ , num_inference_steps=1 ) UpperCamelCase : List[str] = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 256) def a_ ( self ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=SCREAMING_SNAKE_CASE_ ) def a_ ( self ): self._test_inference_batch_single_identical(test_mean_pixel_difference=SCREAMING_SNAKE_CASE_ ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def a_ ( self ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=SCREAMING_SNAKE_CASE_ ) @slow class lowerCamelCase ( unittest.TestCase ): def a_ ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="cpu" , SCREAMING_SNAKE_CASE_=torch.floataa , SCREAMING_SNAKE_CASE_=0 ): UpperCamelCase : str = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = np.random.RandomState(SCREAMING_SNAKE_CASE_ ).standard_normal((1, 8, 128, 16) ) UpperCamelCase : int = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(device=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = { """prompt""": """A hammer hitting a wooden surface""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 2.5, } return inputs def a_ ( self ): UpperCamelCase : Optional[int] = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" ) UpperCamelCase : List[Any] = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = self.get_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = 25 UpperCamelCase : Optional[Any] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ).audios[0] assert audio.ndim == 1 assert len(SCREAMING_SNAKE_CASE_ ) == 8_1920 UpperCamelCase : Union[str, Any] = audio[7_7230:7_7240] UpperCamelCase : Optional[Any] = np.array( [-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315] ) UpperCamelCase : Any = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1e-2 def a_ ( self ): UpperCamelCase : Any = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" ) UpperCamelCase : Any = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) UpperCamelCase : str = audioldm_pipe.to(SCREAMING_SNAKE_CASE_ ) audioldm_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = self.get_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = audioldm_pipe(**SCREAMING_SNAKE_CASE_ ).audios[0] assert audio.ndim == 1 assert len(SCREAMING_SNAKE_CASE_ ) == 8_1920 UpperCamelCase : Union[str, Any] = audio[2_7780:2_7790] UpperCamelCase : Tuple = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212] ) UpperCamelCase : Tuple = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3e-2
27
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case = { '''configuration_distilbert''': [ '''DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DistilBertConfig''', '''DistilBertOnnxConfig''', ], '''tokenization_distilbert''': ['''DistilBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''DistilBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DistilBertForMaskedLM''', '''DistilBertForMultipleChoice''', '''DistilBertForQuestionAnswering''', '''DistilBertForSequenceClassification''', '''DistilBertForTokenClassification''', '''DistilBertModel''', '''DistilBertPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDistilBertForMaskedLM''', '''TFDistilBertForMultipleChoice''', '''TFDistilBertForQuestionAnswering''', '''TFDistilBertForSequenceClassification''', '''TFDistilBertForTokenClassification''', '''TFDistilBertMainLayer''', '''TFDistilBertModel''', '''TFDistilBertPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''FlaxDistilBertForMaskedLM''', '''FlaxDistilBertForMultipleChoice''', '''FlaxDistilBertForQuestionAnswering''', '''FlaxDistilBertForSequenceClassification''', '''FlaxDistilBertForTokenClassification''', '''FlaxDistilBertModel''', '''FlaxDistilBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
97
'''simple docstring''' from pathlib import Path import fire from tqdm import tqdm def a ( __a="ro" , __a="en" , __a="wmt16" , __a=None ) -> None: '''simple docstring''' try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError('''run pip install datasets''' ) UpperCamelCase__ :int = f'''{src_lang}-{tgt_lang}''' print(f'''Converting {dataset}-{pair}''' ) UpperCamelCase__ :Tuple = datasets.load_dataset(__a , __a ) if save_dir is None: UpperCamelCase__ :Any = f'''{dataset}-{pair}''' UpperCamelCase__ :Dict = Path(__a ) save_dir.mkdir(exist_ok=__a ) for split in ds.keys(): print(f'''Splitting {split} with {ds[split].num_rows} records''' ) # to save to val.source, val.target like summary datasets UpperCamelCase__ :Dict = '''val''' if split == '''validation''' else split UpperCamelCase__ :List[Any] = save_dir.joinpath(f'''{fn}.source''' ) UpperCamelCase__ :int = save_dir.joinpath(f'''{fn}.target''' ) UpperCamelCase__ :Union[str, Any] = src_path.open('''w+''' ) UpperCamelCase__ :Tuple = tgt_path.open('''w+''' ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): UpperCamelCase__ :Union[str, Any] = x['''translation'''] src_fp.write(ex[src_lang] + '''\n''' ) tgt_fp.write(ex[tgt_lang] + '''\n''' ) print(f'''Saved {dataset} dataset to {save_dir}''' ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
97
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor lowercase : str = logging.get_logger(__name__) class __UpperCAmelCase ( _lowerCamelCase ): def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" warnings.warn( 'The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use SegformerImageProcessor instead.' , lowerCAmelCase_ , ) super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ )
160
'''simple docstring''' # limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
160
1
"""simple docstring""" from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def lowerCamelCase__ ( _lowerCamelCase : int ) -> int: lowerCamelCase_ = prime_factors(_lowerCamelCase ) if is_square_free(_lowerCamelCase ): return -1 if len(_lowerCamelCase ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
183
"""simple docstring""" from __future__ import annotations from typing import Generic, TypeVar _SCREAMING_SNAKE_CASE : Optional[Any] = TypeVar('''T''') class a ( Generic[T] ): def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : T ) -> None: lowerCamelCase_ = data lowerCamelCase_ = self lowerCamelCase_ = 0 class a ( Generic[T] ): def __init__( self : Any ) -> None: # map from node name to the node object lowerCamelCase_ = {} def UpperCamelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : T ) -> None: # create a new set with x as its member lowerCamelCase_ = DisjointSetTreeNode(__SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : T ) -> DisjointSetTreeNode[T]: # find the set x belongs to (with path-compression) lowerCamelCase_ = self.map[data] if elem_ref != elem_ref.parent: lowerCamelCase_ = self.find_set(elem_ref.parent.data ) return elem_ref.parent def UpperCamelCase ( self : str , __SCREAMING_SNAKE_CASE : DisjointSetTreeNode[T] , __SCREAMING_SNAKE_CASE : DisjointSetTreeNode[T] ) -> None: # helper function for union operation if nodea.rank > nodea.rank: lowerCamelCase_ = nodea else: lowerCamelCase_ = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def UpperCamelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : T , __SCREAMING_SNAKE_CASE : T ) -> None: # merge 2 disjoint sets self.link(self.find_set(__SCREAMING_SNAKE_CASE ) , self.find_set(__SCREAMING_SNAKE_CASE ) ) class a ( Generic[T] ): def __init__( self : Optional[int] ) -> None: # connections: map from the node to the neighbouring nodes (with weights) lowerCamelCase_ = {} def UpperCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : T ) -> None: # add a node ONLY if its not present in the graph if node not in self.connections: lowerCamelCase_ = {} def UpperCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : T , __SCREAMING_SNAKE_CASE : T , __SCREAMING_SNAKE_CASE : int ) -> None: # add an edge with the given weight self.add_node(__SCREAMING_SNAKE_CASE ) self.add_node(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = weight lowerCamelCase_ = weight def UpperCamelCase ( self : List[Any] ) -> GraphUndirectedWeighted[T]: lowerCamelCase_ = [] lowerCamelCase_ = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda __SCREAMING_SNAKE_CASE : x[2] ) # creating the disjoint set lowerCamelCase_ = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(__SCREAMING_SNAKE_CASE ) # MST generation lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edges[index] index += 1 lowerCamelCase_ = disjoint_set.find_set(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = disjoint_set.find_set(__SCREAMING_SNAKE_CASE ) if parent_u != parent_v: num_edges += 1 graph.add_edge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) disjoint_set.union(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return graph
183
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _SCREAMING_SNAKE_CASE : Union[str, Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : str = ["""BartphoTokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys _SCREAMING_SNAKE_CASE : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
352
def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" snake_case = len(UpperCamelCase_ ) snake_case = [[0] * n for i in range(UpperCamelCase_ )] for i in range(UpperCamelCase_ ): snake_case = y_points[i] for i in range(2 ,UpperCamelCase_ ): for j in range(UpperCamelCase_ ,UpperCamelCase_ ): snake_case = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
213
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A : Any = { 'configuration_altclip': [ 'ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AltCLIPConfig', 'AltCLIPTextConfig', 'AltCLIPVisionConfig', ], 'processing_altclip': ['AltCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = [ 'ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'AltCLIPPreTrainedModel', 'AltCLIPModel', 'AltCLIPTextModel', 'AltCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys A : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
6
from __future__ import annotations def __lowercase ( lowerCamelCase : Optional[Any] , lowerCamelCase : Dict , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[str] ): # noqa: E741 while r - l > 1: UpperCamelCase_ : Union[str, Any] = (l + r) // 2 if v[m] >= key: UpperCamelCase_ : str = m else: UpperCamelCase_ : List[Any] = m # noqa: E741 return r def __lowercase ( lowerCamelCase : list[int] ): if len(lowerCamelCase ) == 0: return 0 UpperCamelCase_ : Tuple = [0] * len(lowerCamelCase ) UpperCamelCase_ : int = 1 UpperCamelCase_ : Dict = v[0] for i in range(1 , len(lowerCamelCase ) ): if v[i] < tail[0]: UpperCamelCase_ : Any = v[i] elif v[i] > tail[length - 1]: UpperCamelCase_ : Dict = v[i] length += 1 else: UpperCamelCase_ : List[str] = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
175
0
'''simple docstring''' from __future__ import annotations from scipy.special import comb # type: ignore class __lowerCamelCase : """simple docstring""" def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE : list[tuple[float, float]]): _A : List[str] = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. _A : Optional[int] = len(SCREAMING_SNAKE_CASE) - 1 def A ( self : Optional[Any] , SCREAMING_SNAKE_CASE : float): assert 0 <= t <= 1, "Time t must be between 0 and 1." _A : list[float] = [] for i in range(len(self.list_of_points)): # basis function for each i output_values.append( comb(self.degree , SCREAMING_SNAKE_CASE) * ((1 - t) ** (self.degree - i)) * (t**i)) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(SCREAMING_SNAKE_CASE) , 5) == 1 return output_values def A ( self : str , SCREAMING_SNAKE_CASE : float): assert 0 <= t <= 1, "Time t must be between 0 and 1." _A : Tuple = self.basis_function(SCREAMING_SNAKE_CASE) _A : List[str] = 0.0 _A : List[str] = 0.0 for i in range(len(self.list_of_points)): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def A ( self : Any , SCREAMING_SNAKE_CASE : float = 0.01): from matplotlib import pyplot as plt # type: ignore _A : list[float] = [] # x coordinates of points to plot _A : list[float] = [] # y coordinates of points to plot _A : Optional[int] = 0.0 while t <= 1: _A : Union[str, Any] = self.bezier_curve_function(SCREAMING_SNAKE_CASE) to_plot_x.append(value[0]) to_plot_y.append(value[1]) t += step_size _A : List[str] = [i[0] for i in self.list_of_points] _A : Union[str, Any] = [i[1] for i in self.list_of_points] plt.plot( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , color='blue' , label='Curve of Degree ' + str(self.degree) , ) plt.scatter(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , color='red' , label='Control Points') plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
365
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowerCAmelCase__ ( lowerCamelCase : int ,lowerCamelCase : str=0.999 ,lowerCamelCase : int="cosine" ,): if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCamelCase : Tuple ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCamelCase : List[Any] ): return math.exp(t * -12.0 ) else: raise ValueError(F'Unsupported alpha_tranform_type: {alpha_transform_type}' ) _A : Tuple = [] for i in range(lowerCamelCase ): _A : List[Any] = i / num_diffusion_timesteps _A : List[str] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCamelCase ) / alpha_bar_fn(lowerCamelCase ) ,lowerCamelCase ) ) return torch.tensor(lowerCamelCase ,dtype=torch.floataa ) class __lowerCamelCase ( a_ , a_ ): """simple docstring""" a = [e.name for e in KarrasDiffusionSchedulers] a = 2 @register_to_config def __init__( self : int , SCREAMING_SNAKE_CASE : int = 1000 , SCREAMING_SNAKE_CASE : float = 0.0_0085 , SCREAMING_SNAKE_CASE : float = 0.012 , SCREAMING_SNAKE_CASE : str = "linear" , SCREAMING_SNAKE_CASE : Optional[Union[np.ndarray, List[float]]] = None , SCREAMING_SNAKE_CASE : str = "epsilon" , SCREAMING_SNAKE_CASE : str = "linspace" , SCREAMING_SNAKE_CASE : int = 0 , ): if trained_betas is not None: _A : Optional[int] = torch.tensor(SCREAMING_SNAKE_CASE , dtype=torch.floataa) elif beta_schedule == "linear": _A : List[Any] = torch.linspace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , dtype=torch.floataa) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _A : Any = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , SCREAMING_SNAKE_CASE , dtype=torch.floataa) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _A : Optional[Any] = betas_for_alpha_bar(SCREAMING_SNAKE_CASE) else: raise NotImplementedError(F'{beta_schedule} does is not implemented for {self.__class__}') _A : Any = 1.0 - self.betas _A : List[Any] = torch.cumprod(self.alphas , dim=0) # set all values self.set_timesteps(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) def A ( self : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Any=None): if schedule_timesteps is None: _A : Dict = self.timesteps _A : List[Any] = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter) == 0: _A : Dict = 1 if len(SCREAMING_SNAKE_CASE) > 1 else 0 else: _A : Union[str, Any] = timestep.cpu().item() if torch.is_tensor(SCREAMING_SNAKE_CASE) else timestep _A : int = self._index_counter[timestep_int] return indices[pos].item() @property def A ( self : Optional[Any]): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def A ( self : List[Any] , SCREAMING_SNAKE_CASE : torch.FloatTensor , SCREAMING_SNAKE_CASE : Union[float, torch.FloatTensor] , ): _A : Tuple = self.index_for_timestep(SCREAMING_SNAKE_CASE) if self.state_in_first_order: _A : Any = self.sigmas[step_index] else: _A : int = self.sigmas_interpol[step_index] _A : Union[str, Any] = sample / ((sigma**2 + 1) ** 0.5) return sample def A ( self : Tuple , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Union[str, torch.device] = None , SCREAMING_SNAKE_CASE : Optional[int] = None , ): _A : Optional[Any] = num_inference_steps _A : int = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _A : Tuple = np.linspace(0 , num_train_timesteps - 1 , SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE)[::-1].copy() elif self.config.timestep_spacing == "leading": _A : Optional[Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _A : int = (np.arange(0 , SCREAMING_SNAKE_CASE) * step_ratio).round()[::-1].copy().astype(SCREAMING_SNAKE_CASE) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _A : List[str] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _A : str = (np.arange(SCREAMING_SNAKE_CASE , 0 , -step_ratio)).round().copy().astype(SCREAMING_SNAKE_CASE) timesteps -= 1 else: raise ValueError( F'{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.') _A : List[str] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) _A : Optional[int] = torch.from_numpy(np.log(SCREAMING_SNAKE_CASE)).to(SCREAMING_SNAKE_CASE) _A : str = np.interp(SCREAMING_SNAKE_CASE , np.arange(0 , len(SCREAMING_SNAKE_CASE)) , SCREAMING_SNAKE_CASE) _A : str = np.concatenate([sigmas, [0.0]]).astype(np.floataa) _A : Union[str, Any] = torch.from_numpy(SCREAMING_SNAKE_CASE).to(device=SCREAMING_SNAKE_CASE) # interpolate sigmas _A : Optional[int] = sigmas.log().lerp(sigmas.roll(1).log() , 0.5).exp() _A : Any = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2), sigmas[-1:]]) _A : List[Any] = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2), sigmas_interpol[-1:]]) if str(SCREAMING_SNAKE_CASE).startswith('mps'): # mps does not support float64 _A : Union[str, Any] = torch.from_numpy(SCREAMING_SNAKE_CASE).to(SCREAMING_SNAKE_CASE , dtype=torch.floataa) else: _A : Dict = torch.from_numpy(SCREAMING_SNAKE_CASE).to(SCREAMING_SNAKE_CASE) # interpolate timesteps _A : Optional[int] = self.sigma_to_t(SCREAMING_SNAKE_CASE).to(SCREAMING_SNAKE_CASE , dtype=timesteps.dtype) _A : Union[str, Any] = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1).flatten() _A : Optional[Any] = torch.cat([timesteps[:1], interleaved_timesteps]) _A : str = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _A : Union[str, Any] = defaultdict(SCREAMING_SNAKE_CASE) def A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Union[str, Any]): # get log sigma _A : Dict = sigma.log() # get distribution _A : Any = log_sigma - self.log_sigmas[:, None] # get sigmas range _A : Tuple = dists.ge(0).cumsum(dim=0).argmax(dim=0).clamp(max=self.log_sigmas.shape[0] - 2) _A : Union[str, Any] = low_idx + 1 _A : Dict = self.log_sigmas[low_idx] _A : List[Any] = self.log_sigmas[high_idx] # interpolate sigmas _A : Dict = (low - log_sigma) / (low - high) _A : Union[str, Any] = w.clamp(0 , 1) # transform interpolation to time range _A : int = (1 - w) * low_idx + w * high_idx _A : Any = t.view(sigma.shape) return t @property def A ( self : Any): return self.sample is None def A ( self : int , SCREAMING_SNAKE_CASE : Union[torch.FloatTensor, np.ndarray] , SCREAMING_SNAKE_CASE : Union[float, torch.FloatTensor] , SCREAMING_SNAKE_CASE : Union[torch.FloatTensor, np.ndarray] , SCREAMING_SNAKE_CASE : bool = True , ): _A : Optional[int] = self.index_for_timestep(SCREAMING_SNAKE_CASE) # advance index counter by 1 _A : Dict = timestep.cpu().item() if torch.is_tensor(SCREAMING_SNAKE_CASE) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _A : Tuple = self.sigmas[step_index] _A : Dict = self.sigmas_interpol[step_index + 1] _A : Union[str, Any] = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method _A : int = self.sigmas[step_index - 1] _A : Union[str, Any] = self.sigmas_interpol[step_index] _A : Dict = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _A : List[Any] = 0 _A : Dict = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _A : Tuple = sigma_hat if self.state_in_first_order else sigma_interpol _A : Tuple = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _A : Any = sigma_hat if self.state_in_first_order else sigma_interpol _A : Union[str, Any] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('prediction_type not implemented yet: sample') else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`') if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _A : int = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _A : str = sigma_interpol - sigma_hat # store for 2nd order step _A : List[str] = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order _A : List[Any] = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep _A : Optional[int] = sigma_next - sigma_hat _A : str = self.sample _A : Any = None _A : Tuple = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=SCREAMING_SNAKE_CASE) def A ( self : Any , SCREAMING_SNAKE_CASE : torch.FloatTensor , SCREAMING_SNAKE_CASE : torch.FloatTensor , SCREAMING_SNAKE_CASE : torch.FloatTensor , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples _A : str = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype) if original_samples.device.type == "mps" and torch.is_floating_point(SCREAMING_SNAKE_CASE): # mps does not support float64 _A : Any = self.timesteps.to(original_samples.device , dtype=torch.floataa) _A : List[str] = timesteps.to(original_samples.device , dtype=torch.floataa) else: _A : str = self.timesteps.to(original_samples.device) _A : str = timesteps.to(original_samples.device) _A : int = [self.index_for_timestep(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) for t in timesteps] _A : Tuple = sigmas[step_indices].flatten() while len(sigma.shape) < len(original_samples.shape): _A : List[Any] = sigma.unsqueeze(-1) _A : Dict = original_samples + noise * sigma return noisy_samples def __len__( self : List[Any]): return self.config.num_train_timesteps
227
0
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class A : def __init__( self, UpperCamelCase__, UpperCamelCase__=2, UpperCamelCase__=3, UpperCamelCase__=4, UpperCamelCase__=2, UpperCamelCase__=7, UpperCamelCase__=True, UpperCamelCase__=True, UpperCamelCase__=True, UpperCamelCase__=True, UpperCamelCase__=99, UpperCamelCase__=36, UpperCamelCase__=3, UpperCamelCase__=4, UpperCamelCase__=37, UpperCamelCase__="gelu", UpperCamelCase__=0.1, UpperCamelCase__=0.1, UpperCamelCase__=512, UpperCamelCase__=16, UpperCamelCase__=2, UpperCamelCase__=0.02, UpperCamelCase__=6, UpperCamelCase__=6, UpperCamelCase__=3, UpperCamelCase__=4, UpperCamelCase__=None, UpperCamelCase__=1000, ): """simple docstring""" lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = num_channels lowerCAmelCase_ = image_size lowerCAmelCase_ = patch_size lowerCAmelCase_ = text_seq_length lowerCAmelCase_ = is_training lowerCAmelCase_ = use_input_mask lowerCAmelCase_ = use_token_type_ids lowerCAmelCase_ = use_labels lowerCAmelCase_ = vocab_size lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = type_vocab_size lowerCAmelCase_ = type_sequence_label_size lowerCAmelCase_ = initializer_range lowerCAmelCase_ = coordinate_size lowerCAmelCase_ = shape_size lowerCAmelCase_ = num_labels lowerCAmelCase_ = num_choices lowerCAmelCase_ = scope lowerCAmelCase_ = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) lowerCAmelCase_ = text_seq_length lowerCAmelCase_ = (image_size // patch_size) ** 2 + 1 lowerCAmelCase_ = self.text_seq_length + self.image_seq_length def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = ids_tensor([self.batch_size, self.text_seq_length], self.vocab_size ) lowerCAmelCase_ = ids_tensor([self.batch_size, self.text_seq_length, 4], self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowerCAmelCase_ = bbox[i, j, 3] lowerCAmelCase_ = bbox[i, j, 1] lowerCAmelCase_ = t if bbox[i, j, 2] < bbox[i, j, 0]: lowerCAmelCase_ = bbox[i, j, 2] lowerCAmelCase_ = bbox[i, j, 0] lowerCAmelCase_ = t lowerCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ = None if self.use_input_mask: lowerCAmelCase_ = random_attention_mask([self.batch_size, self.text_seq_length] ) lowerCAmelCase_ = None if self.use_token_type_ids: lowerCAmelCase_ = ids_tensor([self.batch_size, self.text_seq_length], self.type_vocab_size ) lowerCAmelCase_ = None lowerCAmelCase_ = None if self.use_labels: lowerCAmelCase_ = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCAmelCase_ = ids_tensor([self.batch_size, self.text_seq_length], self.num_labels ) lowerCAmelCase_ = LayoutLMvaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, coordinate_size=self.coordinate_size, shape_size=self.shape_size, input_size=self.image_size, patch_size=self.patch_size, ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = LayoutLMvaModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() # text + image lowerCAmelCase_ = model(UpperCamelCase__, pixel_values=UpperCamelCase__ ) lowerCAmelCase_ = model( UpperCamelCase__, bbox=UpperCamelCase__, pixel_values=UpperCamelCase__, attention_mask=UpperCamelCase__, token_type_ids=UpperCamelCase__ ) lowerCAmelCase_ = model(UpperCamelCase__, bbox=UpperCamelCase__, pixel_values=UpperCamelCase__, token_type_ids=UpperCamelCase__ ) lowerCAmelCase_ = model(UpperCamelCase__, bbox=UpperCamelCase__, pixel_values=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) # text only lowerCAmelCase_ = model(UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only lowerCAmelCase_ = model(pixel_values=UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.image_seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = self.num_labels lowerCAmelCase_ = LayoutLMvaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCAmelCase_ = model( UpperCamelCase__, bbox=UpperCamelCase__, pixel_values=UpperCamelCase__, attention_mask=UpperCamelCase__, token_type_ids=UpperCamelCase__, labels=UpperCamelCase__, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = self.num_labels lowerCAmelCase_ = LayoutLMvaForTokenClassification(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCAmelCase_ = model( UpperCamelCase__, bbox=UpperCamelCase__, pixel_values=UpperCamelCase__, attention_mask=UpperCamelCase__, token_type_ids=UpperCamelCase__, labels=UpperCamelCase__, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.text_seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = LayoutLMvaForQuestionAnswering(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCAmelCase_ = model( UpperCamelCase__, bbox=UpperCamelCase__, pixel_values=UpperCamelCase__, attention_mask=UpperCamelCase__, token_type_ids=UpperCamelCase__, start_positions=UpperCamelCase__, end_positions=UpperCamelCase__, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.prepare_config_and_inputs() ( ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ) = config_and_inputs lowerCAmelCase_ = { '''input_ids''': input_ids, '''bbox''': bbox, '''pixel_values''': pixel_values, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class A ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): __snake_case = False __snake_case = False __snake_case = False __snake_case = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) __snake_case = ( {'document-question-answering': LayoutLMvaForQuestionAnswering, 'feature-extraction': LayoutLMvaModel} if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" return True def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = LayoutLMvaModelTester(self ) lowerCAmelCase_ = ConfigTester(self, config_class=UpperCamelCase__, hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__=False ): """simple docstring""" lowerCAmelCase_ = copy.deepcopy(UpperCamelCase__ ) if model_class in get_values(UpperCamelCase__ ): lowerCAmelCase_ = { k: v.unsqueeze(1 ).expand(-1, self.model_tester.num_choices, -1 ).contiguous() if isinstance(UpperCamelCase__, torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(UpperCamelCase__ ): lowerCAmelCase_ = torch.ones(self.model_tester.batch_size, dtype=torch.long, device=UpperCamelCase__ ) elif model_class in get_values(UpperCamelCase__ ): lowerCAmelCase_ = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=UpperCamelCase__ ) lowerCAmelCase_ = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=UpperCamelCase__ ) elif model_class in [ *get_values(UpperCamelCase__ ), ]: lowerCAmelCase_ = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=UpperCamelCase__ ) elif model_class in [ *get_values(UpperCamelCase__ ), ]: lowerCAmelCase_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length), dtype=torch.long, device=UpperCamelCase__, ) return inputs_dict def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase_ = type self.model_tester.create_and_check_model(*UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase__ ) @slow def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ = LayoutLMvaModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def __UpperCamelCase ( ): lowerCAmelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch class A ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return LayoutLMvaImageProcessor(apply_ocr=UpperCamelCase__ ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = LayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' ).to(UpperCamelCase__ ) lowerCAmelCase_ = self.default_image_processor lowerCAmelCase_ = prepare_img() lowerCAmelCase_ = image_processor(images=UpperCamelCase__, return_tensors='''pt''' ).pixel_values.to(UpperCamelCase__ ) lowerCAmelCase_ = torch.tensor([[1, 2]] ) lowerCAmelCase_ = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass lowerCAmelCase_ = model( input_ids=input_ids.to(UpperCamelCase__ ), bbox=bbox.to(UpperCamelCase__ ), pixel_values=pixel_values.to(UpperCamelCase__ ), ) # verify the logits lowerCAmelCase_ = torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape, UpperCamelCase__ ) lowerCAmelCase_ = torch.tensor( [[-0.0_529, 0.3_618, 0.1_632], [-0.1_587, -0.1_667, -0.0_400], [-0.1_557, -0.1_671, -0.0_505]] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3], UpperCamelCase__, atol=1E-4 ) )
278
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES _A = '''tiny-wmt19-en-ru''' # Build # borrowed from a test _A = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] _A = dict(zip(vocab, range(len(vocab)))) _A = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] with tempfile.TemporaryDirectory() as tmpdirname: _A = Path(tmpdirname) _A = build_dir / VOCAB_FILES_NAMES['''src_vocab_file'''] _A = build_dir / VOCAB_FILES_NAMES['''tgt_vocab_file'''] _A = build_dir / VOCAB_FILES_NAMES['''merges_file'''] with open(src_vocab_file, '''w''') as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, '''w''') as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, '''w''') as fp: fp.write('''\n'''.join(merges)) _A = FSMTTokenizer( langs=['''en''', '''ru'''], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) _A = FSMTConfig( langs=['''ru''', '''en'''], src_vocab_size=1_000, tgt_vocab_size=1_000, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) _A = FSMTForConditionalGeneration(config) print(f"num of params {tiny_model.num_parameters()}") # Test _A = tokenizer(['''Making tiny model'''], return_tensors='''pt''') _A = tiny_model(**batch) print('''test output:''', len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(f"Generated {mname_tiny}") # Upload # transformers-cli upload tiny-wmt19-en-ru
278
1
"""simple docstring""" import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def _lowerCamelCase( ): with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(a ): requests.request("GET" , "https://huggingface.co" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("GET" , "https://huggingface.co" , timeout=1.0 ) @pytest.mark.integration def _lowerCamelCase( ): with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("GET" , "https://huggingface.co" ) def _lowerCamelCase( ): with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(a ): http_head("https://huggingface.co" )
353
"""simple docstring""" from __future__ import annotations def _lowerCamelCase( a , a , a , a , a , ): __a = len(a ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([". " * i + "Q " + ". " * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(a ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , a , a , ) def _lowerCamelCase( a ): __a = [] depth_first_search([] , [] , [] , a , a ) # Print all the boards for board in boards: for column in board: print(a ) print("" ) print(len(a ) , "solutions were found." ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
268
0
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING __UpperCAmelCase = logging.get_logger(__name__) @add_end_docstrings(_snake_case ) class lowerCamelCase (_snake_case ): '''simple docstring''' def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> int: super().__init__(*_UpperCamelCase , **_UpperCamelCase ) self.check_model_type(_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , **_UpperCamelCase ) -> List[Any]: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = {}, {} if padding is not None: UpperCAmelCase_ : List[str] = padding if truncation is not None: UpperCAmelCase_ : Tuple = truncation if top_k is not None: UpperCAmelCase_ : Dict = top_k return preprocess_params, {}, postprocess_params def __call__( self , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase ) -> int: if isinstance(_UpperCamelCase , (Image.Image, str) ) and isinstance(_UpperCamelCase , _UpperCamelCase ): UpperCAmelCase_ : Optional[Any] = {'image': image, 'question': question} else: UpperCAmelCase_ : List[str] = image UpperCAmelCase_ : Optional[Any] = super().__call__(_UpperCamelCase , **_UpperCamelCase ) return results def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase=False , _UpperCamelCase=False ) -> Optional[Any]: UpperCAmelCase_ : List[Any] = load_image(inputs['image'] ) UpperCAmelCase_ : Dict = self.tokenizer( inputs['question'] , return_tensors=self.framework , padding=_UpperCamelCase , truncation=_UpperCamelCase ) UpperCAmelCase_ : int = self.image_processor(images=_UpperCamelCase , return_tensors=self.framework ) model_inputs.update(_UpperCamelCase ) return model_inputs def __UpperCAmelCase ( self , _UpperCamelCase ) -> Optional[int]: UpperCAmelCase_ : Any = self.model(**_UpperCamelCase ) return model_outputs def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase=5 ) -> str: if top_k > self.model.config.num_labels: UpperCAmelCase_ : Union[str, Any] = self.model.config.num_labels if self.framework == "pt": UpperCAmelCase_ : List[str] = model_outputs.logits.sigmoid()[0] UpperCAmelCase_ , UpperCAmelCase_ : str = probs.topk(_UpperCamelCase ) else: raise ValueError(f"Unsupported framework: {self.framework}" ) UpperCAmelCase_ : Optional[Any] = scores.tolist() UpperCAmelCase_ : Tuple = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(_UpperCamelCase , _UpperCamelCase )]
29
def lowercase__ ( __snake_case : list ): '''simple docstring''' for i in range(len(__snake_case ) - 1 , 0 , -1 ): UpperCAmelCase_ : Dict = False for j in range(__snake_case , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: UpperCAmelCase_ , UpperCAmelCase_ : Any = unsorted[j - 1], unsorted[j] UpperCAmelCase_ : int = True for j in range(__snake_case ): if unsorted[j] > unsorted[j + 1]: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = unsorted[j + 1], unsorted[j] UpperCAmelCase_ : Any = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = input('Enter numbers separated by a comma:\n').strip() __UpperCAmelCase = [int(item) for item in user_input.split(',')] print(F'{cocktail_shaker_sort(unsorted) = }')
29
1
'''simple docstring''' import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _UpperCamelCase = 16 _UpperCamelCase = 32 def lowercase_ ( lowerCAmelCase__ : Accelerator , lowerCAmelCase__ : int = 16 ): """simple docstring""" __UpperCAmelCase : int = AutoTokenizer.from_pretrained("""bert-base-cased""" ) __UpperCAmelCase : Any = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(lowerCAmelCase__ : List[str] ): # max_length=None => use the model max length (it's actually the default) __UpperCAmelCase : Tuple = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __UpperCAmelCase : Tuple = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __UpperCAmelCase : Optional[Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowerCAmelCase__ : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. __UpperCAmelCase : List[Any] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __UpperCAmelCase : Optional[int] = 16 elif accelerator.mixed_precision != "no": __UpperCAmelCase : Optional[int] = 8 else: __UpperCAmelCase : List[Any] = None return tokenizer.pad( lowerCAmelCase__ , padding="""longest""" , max_length=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_tensors="""pt""" , ) # Instantiate dataloaders. __UpperCAmelCase : Dict = DataLoader( tokenized_datasets["""train"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) __UpperCAmelCase : int = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _UpperCamelCase = mocked_dataloaders # noqa: F811 def lowercase_ ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[Any] ): """simple docstring""" if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , lowerCAmelCase__ ) == "1": __UpperCAmelCase : Optional[int] = 2 # Initialize accelerator __UpperCAmelCase : List[Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __UpperCAmelCase : Tuple = config["""lr"""] __UpperCAmelCase : Optional[Any] = int(config["""num_epochs"""] ) __UpperCAmelCase : Optional[Any] = int(config["""seed"""] ) __UpperCAmelCase : List[Any] = int(config["""batch_size"""] ) __UpperCAmelCase : List[Any] = evaluate.load("""glue""" , """mrpc""" ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=lowerCAmelCase__ ) def inner_training_loop(lowerCAmelCase__ : Dict ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(lowerCAmelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __UpperCAmelCase : Dict = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowerCAmelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __UpperCAmelCase : List[str] = model.to(accelerator.device ) # Instantiate optimizer __UpperCAmelCase : Union[str, Any] = AdamW(params=model.parameters() , lr=lowerCAmelCase__ ) __UpperCAmelCase , __UpperCAmelCase : List[str] = get_dataloaders(lowerCAmelCase__ , lowerCAmelCase__ ) # Instantiate scheduler __UpperCAmelCase : Optional[int] = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase__ , num_warmup_steps=100 , num_training_steps=(len(lowerCAmelCase__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Now we train the model for epoch in range(lowerCAmelCase__ ): model.train() for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __UpperCAmelCase : List[str] = model(**lowerCAmelCase__ ) __UpperCAmelCase : Optional[Any] = outputs.loss accelerator.backward(lowerCAmelCase__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __UpperCAmelCase : Dict = model(**lowerCAmelCase__ ) __UpperCAmelCase : Optional[int] = outputs.logits.argmax(dim=-1 ) __UpperCAmelCase , __UpperCAmelCase : Tuple = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=lowerCAmelCase__ , references=lowerCAmelCase__ , ) __UpperCAmelCase : str = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , lowerCAmelCase__ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def lowercase_ ( ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=lowerCAmelCase__ , default=lowerCAmelCase__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) __UpperCAmelCase : Tuple = parser.parse_args() __UpperCAmelCase : Optional[Any] = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": main()
16
'''simple docstring''' import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _A : @staticmethod def __A ( *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' pass @is_pipeline_test @require_vision @require_torch class _A ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Optional[int] = pipeline( """zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" ) __UpperCAmelCase : Optional[int] = [ { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """candidate_labels""": ["""cat""", """remote""", """couch"""], } ] return object_detector, examples def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Optional[int] = object_detector(examples[0] , threshold=0.0 ) __UpperCAmelCase : Tuple = len(__UpperCAmelCase ) self.assertGreater(__UpperCAmelCase , 0 ) self.assertEqual( __UpperCAmelCase , [ { """score""": ANY(__UpperCAmelCase ), """label""": ANY(__UpperCAmelCase ), """box""": {"""xmin""": ANY(__UpperCAmelCase ), """ymin""": ANY(__UpperCAmelCase ), """xmax""": ANY(__UpperCAmelCase ), """ymax""": ANY(__UpperCAmelCase )}, } for i in range(__UpperCAmelCase ) ] , ) @require_tf @unittest.skip("""Zero Shot Object Detection not implemented in TF""" ) def __A ( self ) -> Tuple: '''simple docstring''' pass @require_torch def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = pipeline( """zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" ) __UpperCAmelCase : Optional[int] = object_detector( """./tests/fixtures/tests_samples/COCO/000000039769.png""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=0.64 , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, {"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}}, {"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, ] , ) __UpperCAmelCase : str = object_detector( [ { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """candidate_labels""": ["""cat""", """remote""", """couch"""], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ [ {"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, {"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}}, {"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, ] ] , ) @require_torch @slow def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = pipeline("""zero-shot-object-detection""" ) __UpperCAmelCase : List[Any] = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ] , ) __UpperCAmelCase : Any = object_detector( [ { """image""": """http://images.cocodataset.org/val2017/000000039769.jpg""", """candidate_labels""": ["""cat""", """remote""", """couch"""], }, { """image""": """http://images.cocodataset.org/val2017/000000039769.jpg""", """candidate_labels""": ["""cat""", """remote""", """couch"""], }, ] , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ], [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ], ] , ) @require_tf @unittest.skip("""Zero Shot Object Detection not implemented in TF""" ) def __A ( self ) -> List[str]: '''simple docstring''' pass @require_torch @slow def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[int] = 0.2 __UpperCAmelCase : List[Any] = pipeline("""zero-shot-object-detection""" ) __UpperCAmelCase : Optional[int] = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=__UpperCAmelCase , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, ] , ) @require_torch @slow def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = 2 __UpperCAmelCase : Optional[int] = pipeline("""zero-shot-object-detection""" ) __UpperCAmelCase : List[Any] = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , top_k=__UpperCAmelCase , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, ] , )
16
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json' ), } class _a ( UpperCamelCase__ ): _lowercase : Optional[Any] = '''dpr''' def __init__( self: Optional[Any] , UpperCamelCase_: List[Any]=30_522 , UpperCamelCase_: Optional[Any]=768 , UpperCamelCase_: Dict=12 , UpperCamelCase_: str=12 , UpperCamelCase_: Dict=3_072 , UpperCamelCase_: Optional[int]="gelu" , UpperCamelCase_: Union[str, Any]=0.1 , UpperCamelCase_: List[Any]=0.1 , UpperCamelCase_: Dict=512 , UpperCamelCase_: int=2 , UpperCamelCase_: Dict=0.02 , UpperCamelCase_: Optional[int]=1E-1_2 , UpperCamelCase_: str=0 , UpperCamelCase_: Optional[Any]="absolute" , UpperCamelCase_: int = 0 , **UpperCamelCase_: Optional[Any] , ) -> Tuple: """simple docstring""" super().__init__(pad_token_id=UpperCamelCase_ , **UpperCamelCase_ ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = projection_dim lowercase__ = position_embedding_type
110
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask lowerCAmelCase = logging.getLogger(__name__) class _a ( UpperCamelCase__ ): _lowercase : Union[str, Any] = '''token-classification''' def __init__( self: int , UpperCamelCase_: Optional[Any] ) -> Dict: """simple docstring""" if type(UpperCamelCase_ ) == dict: lowercase__ = Namespace(**UpperCamelCase_ ) lowercase__ = import_module('''tasks''' ) try: lowercase__ = getattr(UpperCamelCase_ , hparams.task_type ) lowercase__ = token_classification_task_clazz() except AttributeError: raise ValueError( f'Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ' f'Available tasks classes are: {TokenClassificationTask.__subclasses__()}' ) lowercase__ = self.token_classification_task.get_labels(hparams.labels ) lowercase__ = CrossEntropyLoss().ignore_index super().__init__(UpperCamelCase_ , len(self.labels ) , self.mode ) def lowerCamelCase_ ( self: Tuple , **UpperCamelCase_: Optional[int] ) -> str: """simple docstring""" return self.model(**UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: List[Any] , UpperCamelCase_: int ) -> int: """simple docstring""" lowercase__ = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": lowercase__ = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids lowercase__ = self(**UpperCamelCase_ ) lowercase__ = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def lowerCamelCase_ ( self: Optional[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = self.hparams for mode in ["train", "dev", "test"]: lowercase__ = self._feature_file(UpperCamelCase_ ) if os.path.exists(UpperCamelCase_ ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , UpperCamelCase_ ) lowercase__ = torch.load(UpperCamelCase_ ) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir ) lowercase__ = self.token_classification_task.read_examples_from_file(args.data_dir , UpperCamelCase_ ) lowercase__ = self.token_classification_task.convert_examples_to_features( UpperCamelCase_ , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ['''xlnet'''] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ['''xlnet'''] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=UpperCamelCase_ , pad_on_left=bool(self.config.model_type in ['''xlnet'''] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info('''Saving features into cached file %s''' , UpperCamelCase_ ) torch.save(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: int , UpperCamelCase_: int , UpperCamelCase_: bool = False ) -> DataLoader: """simple docstring""" lowercase__ = self._feature_file(UpperCamelCase_ ) logger.info('''Loading features from cached file %s''' , UpperCamelCase_ ) lowercase__ = torch.load(UpperCamelCase_ ) lowercase__ = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) lowercase__ = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: lowercase__ = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: lowercase__ = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) lowercase__ = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , batch_size=UpperCamelCase_ ) def lowerCamelCase_ ( self: Any , UpperCamelCase_: int , UpperCamelCase_: List[Any] ) -> Union[str, Any]: """simple docstring""" """Compute validation""" "" lowercase__ = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": lowercase__ = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids lowercase__ = self(**UpperCamelCase_ ) lowercase__ , lowercase__ = outputs[:2] lowercase__ = logits.detach().cpu().numpy() lowercase__ = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def lowerCamelCase_ ( self: Dict , UpperCamelCase_: List[str] ) -> int: """simple docstring""" lowercase__ = torch.stack([x['''val_loss'''] for x in outputs] ).mean() lowercase__ = np.concatenate([x['''pred'''] for x in outputs] , axis=0 ) lowercase__ = np.argmax(UpperCamelCase_ , axis=2 ) lowercase__ = np.concatenate([x['''target'''] for x in outputs] , axis=0 ) lowercase__ = dict(enumerate(self.labels ) ) lowercase__ = [[] for _ in range(out_label_ids.shape[0] )] lowercase__ = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) lowercase__ = { '''val_loss''': val_loss_mean, '''accuracy_score''': accuracy_score(UpperCamelCase_ , UpperCamelCase_ ), '''precision''': precision_score(UpperCamelCase_ , UpperCamelCase_ ), '''recall''': recall_score(UpperCamelCase_ , UpperCamelCase_ ), '''f1''': fa_score(UpperCamelCase_ , UpperCamelCase_ ), } lowercase__ = dict(results.items() ) lowercase__ = results return ret, preds_list, out_label_list def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: List[Any] ) -> Dict: """simple docstring""" lowercase__ , lowercase__ , lowercase__ = self._eval_end(UpperCamelCase_ ) lowercase__ = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: Dict ) -> Dict: """simple docstring""" lowercase__ , lowercase__ , lowercase__ = self._eval_end(UpperCamelCase_ ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 lowercase__ = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def lowerCamelCase_ ( UpperCamelCase_: Optional[Any] , UpperCamelCase_: str ) -> Optional[Any]: """simple docstring""" BaseTransformer.add_model_specific_args(UpperCamelCase_ , UpperCamelCase_ ) parser.add_argument( '''--task_type''' , default='''NER''' , type=UpperCamelCase_ , help='''Task type to fine tune in training (e.g. NER, POS, etc)''' ) parser.add_argument( '''--max_seq_length''' , default=128 , type=UpperCamelCase_ , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--labels''' , default='''''' , type=UpperCamelCase_ , help='''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.''' , ) parser.add_argument( '''--gpus''' , default=0 , type=UpperCamelCase_ , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) return parser if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) lowerCAmelCase = NERTransformer.add_model_specific_args(parser, os.getcwd()) lowerCAmelCase = parser.parse_args() lowerCAmelCase = NERTransformer(args) lowerCAmelCase = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 lowerCAmelCase = sorted(glob.glob(os.path.join(args.output_dir, 'checkpoint-epoch=*.ckpt'), recursive=True)) lowerCAmelCase = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
110
1
import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _A ( _lowerCamelCase , unittest.TestCase ): _UpperCamelCase : Optional[int] = KandinskyVaaControlnetPipeline _UpperCamelCase : Union[str, Any] = ['''image_embeds''', '''negative_image_embeds''', '''hint'''] _UpperCamelCase : Any = ['''image_embeds''', '''negative_image_embeds''', '''hint'''] _UpperCamelCase : Optional[int] = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _UpperCamelCase : Optional[int] = False @property def __a ( self : List[Any] ) -> List[Any]: """simple docstring""" return 32 @property def __a ( self : Any ) -> List[str]: """simple docstring""" return 32 @property def __a ( self : Tuple ) -> Dict: """simple docstring""" return self.time_input_dim @property def __a ( self : List[Any] ) -> Optional[Any]: """simple docstring""" return self.time_input_dim * 4 @property def __a ( self : Tuple ) -> str: """simple docstring""" return 100 @property def __a ( self : List[Any] ) -> Dict: """simple docstring""" torch.manual_seed(0 ) lowercase : Tuple = { '''in_channels''': 8, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image_hint''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } lowercase : Dict = UNetaDConditionModel(**_A ) return model @property def __a ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def __a ( self : List[Any] ) -> Any: """simple docstring""" torch.manual_seed(0 ) lowercase : Dict = VQModel(**self.dummy_movq_kwargs ) return model def __a ( self : Tuple ) -> str: """simple docstring""" lowercase : List[str] = self.dummy_unet lowercase : Optional[Any] = self.dummy_movq lowercase : int = DDIMScheduler( num_train_timesteps=1_000 , beta_schedule='''linear''' , beta_start=0.00_085 , beta_end=0.012 , clip_sample=_A , set_alpha_to_one=_A , steps_offset=1 , prediction_type='''epsilon''' , thresholding=_A , ) lowercase : Tuple = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __a ( self : Any , _A : Union[str, Any] , _A : Optional[int]=0 ) -> List[str]: """simple docstring""" lowercase : Tuple = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_A ) ).to(_A ) lowercase : int = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _A ) # create hint lowercase : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(_A ) ).to(_A ) if str(_A ).startswith('''mps''' ): lowercase : str = torch.manual_seed(_A ) else: lowercase : Optional[Any] = torch.Generator(device=_A ).manual_seed(_A ) lowercase : Optional[int] = { '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''hint''': hint, '''generator''': generator, '''height''': 64, '''width''': 64, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def __a ( self : List[str] ) -> Dict: """simple docstring""" lowercase : Dict = '''cpu''' lowercase : List[str] = self.get_dummy_components() lowercase : Any = self.pipeline_class(**_A ) lowercase : int = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) lowercase : str = pipe(**self.get_dummy_inputs(_A ) ) lowercase : Tuple = output.images lowercase : Dict = pipe( **self.get_dummy_inputs(_A ) , return_dict=_A , )[0] lowercase : Optional[int] = image[0, -3:, -3:, -1] lowercase : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase : Any = np.array( [0.6_959_826, 0.868_279, 0.7_558_092, 0.68_769_467, 0.85_805_804, 0.65_977_496, 0.44_885_302, 0.5_959_111, 0.4_251_595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class _A ( unittest.TestCase ): def __a ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : int ) -> List[str]: """simple docstring""" lowercase : Tuple = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy''' ) lowercase : int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/hint_image_cat.png''' ) lowercase : Union[str, Any] = torch.from_numpy(np.array(_A ) ).float() / 255.0 lowercase : Optional[Any] = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) lowercase : Union[str, Any] = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_A ) lowercase : Optional[int] = KandinskyVaaControlnetPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-controlnet-depth''' , torch_dtype=torch.floataa ) lowercase : Tuple = pipeline.to(_A ) pipeline.set_progress_bar_config(disable=_A ) lowercase : Optional[int] = '''A robot, 4k photo''' lowercase : Tuple = torch.Generator(device='''cuda''' ).manual_seed(0 ) lowercase : Tuple = pipe_prior( _A , generator=_A , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() lowercase : int = torch.Generator(device='''cuda''' ).manual_seed(0 ) lowercase : List[str] = pipeline( image_embeds=_A , negative_image_embeds=_A , hint=_A , generator=_A , num_inference_steps=100 , output_type='''np''' , ) lowercase : List[str] = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(_A , _A )
371
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger lowerCAmelCase_ = get_logger(__name__) lowerCAmelCase_ = Path(__file__).parent / 'model_card_template.md' lowerCAmelCase_ = uuida().hex lowerCAmelCase_ = os.getenv('HF_HUB_OFFLINE', '').upper() in ENV_VARS_TRUE_VALUES lowerCAmelCase_ = os.getenv('DISABLE_TELEMETRY', '').upper() in ENV_VARS_TRUE_VALUES lowerCAmelCase_ = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '/api/telemetry/' def snake_case( __magic_name__ = None ) -> str: '''simple docstring''' lowercase : List[Any] = F"""diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}""" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F"""; torch/{_torch_version}""" if is_flax_available(): ua += F"""; jax/{_jax_version}""" ua += F"""; flax/{_flax_version}""" if is_onnx_available(): ua += F"""; onnxruntime/{_onnxruntime_version}""" # CI will set this value to True if os.environ.get('''DIFFUSERS_IS_CI''' , '''''' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(__magic_name__ , __magic_name__ ): ua += "; " + "; ".join(F"""{k}/{v}""" for k, v in user_agent.items() ) elif isinstance(__magic_name__ , __magic_name__ ): ua += "; " + user_agent return ua def snake_case( __magic_name__ , __magic_name__ = None , __magic_name__ = None ) -> Optional[Any]: '''simple docstring''' if token is None: lowercase : int = HfFolder.get_token() if organization is None: lowercase : List[str] = whoami(__magic_name__ )['''name'''] return F"""{username}/{model_id}""" else: return F"""{organization}/{model_id}""" def snake_case( __magic_name__ , __magic_name__ ) -> Union[str, Any]: '''simple docstring''' if not is_jinja_available(): raise ValueError( '''Modelcard rendering is based on Jinja templates.''' ''' Please make sure to have `jinja` installed before using `create_model_card`.''' ''' To install it, please run `pip install Jinja2`.''' ) if hasattr(__magic_name__ , '''local_rank''' ) and args.local_rank not in [-1, 0]: return lowercase : Optional[Any] = args.hub_token if hasattr(__magic_name__ , '''hub_token''' ) else None lowercase : int = get_full_repo_name(__magic_name__ , token=__magic_name__ ) lowercase : Dict = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='''en''' , license='''apache-2.0''' , library_name='''diffusers''' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=__magic_name__ , model_name=__magic_name__ , repo_name=__magic_name__ , dataset_name=args.dataset_name if hasattr(__magic_name__ , '''dataset_name''' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(__magic_name__ , '''gradient_accumulation_steps''' ) else None ) , adam_betaa=args.adam_betaa if hasattr(__magic_name__ , '''adam_beta1''' ) else None , adam_betaa=args.adam_betaa if hasattr(__magic_name__ , '''adam_beta2''' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(__magic_name__ , '''adam_weight_decay''' ) else None , adam_epsilon=args.adam_epsilon if hasattr(__magic_name__ , '''adam_epsilon''' ) else None , lr_scheduler=args.lr_scheduler if hasattr(__magic_name__ , '''lr_scheduler''' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(__magic_name__ , '''lr_warmup_steps''' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(__magic_name__ , '''ema_inv_gamma''' ) else None , ema_power=args.ema_power if hasattr(__magic_name__ , '''ema_power''' ) else None , ema_max_decay=args.ema_max_decay if hasattr(__magic_name__ , '''ema_max_decay''' ) else None , mixed_precision=args.mixed_precision , ) lowercase : Any = os.path.join(args.output_dir , '''README.md''' ) model_card.save(__magic_name__ ) def snake_case( __magic_name__ , __magic_name__ = None ) -> int: '''simple docstring''' if resolved_file is None or commit_hash is not None: return commit_hash lowercase : Dict = str(Path(__magic_name__ ).as_posix() ) lowercase : Any = re.search(r'''snapshots/([^/]+)/''' , __magic_name__ ) if search is None: return None lowercase : List[Any] = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(__magic_name__ ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. lowerCAmelCase_ = os.path.expanduser( os.getenv('HF_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'huggingface')) ) lowerCAmelCase_ = os.path.join(hf_cache_home, 'diffusers') def snake_case( __magic_name__ = None , __magic_name__ = None ) -> None: '''simple docstring''' if new_cache_dir is None: lowercase : str = DIFFUSERS_CACHE if old_cache_dir is None: lowercase : List[str] = old_diffusers_cache lowercase : str = Path(__magic_name__ ).expanduser() lowercase : Dict = Path(__magic_name__ ).expanduser() for old_blob_path in old_cache_dir.glob('''**/blobs/*''' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): lowercase : List[Any] = new_cache_dir / old_blob_path.relative_to(__magic_name__ ) new_blob_path.parent.mkdir(parents=__magic_name__ , exist_ok=__magic_name__ ) os.replace(__magic_name__ , __magic_name__ ) try: os.symlink(__magic_name__ , __magic_name__ ) except OSError: logger.warning( '''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). lowerCAmelCase_ = os.path.join(DIFFUSERS_CACHE, 'version_diffusers_cache.txt') if not os.path.isfile(cache_version_file): lowerCAmelCase_ = 0 else: with open(cache_version_file) as f: try: lowerCAmelCase_ = int(f.read()) except ValueError: lowerCAmelCase_ = 0 if cache_version < 1: lowerCAmelCase_ = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( 'The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ' 'existing cached models. This is a one-time operation, you can interrupt it or run it ' 'later by calling `diffusers.utils.hub_utils.move_cache()`.' ) try: move_cache() except Exception as e: lowerCAmelCase_ = '\n'.join(traceback.format_tb(e.__traceback__)) logger.error( f'''There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ''' 'file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ' 'message and we will do our best to help.' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, 'w') as f: f.write('1') except Exception: logger.warning( f'''There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ''' 'the directory exists and can be written to.' ) def snake_case( __magic_name__ , __magic_name__ = None ) -> str: '''simple docstring''' if variant is not None: lowercase : List[str] = weights_name.split('''.''' ) lowercase : Any = splits[:-1] + [variant] + splits[-1:] lowercase : Tuple = '''.'''.join(__magic_name__ ) return weights_name def snake_case( __magic_name__ , *, __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None , ) -> Dict: '''simple docstring''' lowercase : Union[str, Any] = str(__magic_name__ ) if os.path.isfile(__magic_name__ ): return pretrained_model_name_or_path elif os.path.isdir(__magic_name__ ): if os.path.isfile(os.path.join(__magic_name__ , __magic_name__ ) ): # Load from a PyTorch checkpoint lowercase : Dict = os.path.join(__magic_name__ , __magic_name__ ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(__magic_name__ , __magic_name__ , __magic_name__ ) ): lowercase : str = os.path.join(__magic_name__ , __magic_name__ , __magic_name__ ) return model_file else: raise EnvironmentError( F"""Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.""" ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(__magic_name__ ).base_version ) >= version.parse('''0.20.0''' ) ): try: lowercase : int = hf_hub_download( __magic_name__ , filename=_add_variant(__magic_name__ , __magic_name__ ) , cache_dir=__magic_name__ , force_download=__magic_name__ , proxies=__magic_name__ , resume_download=__magic_name__ , local_files_only=__magic_name__ , use_auth_token=__magic_name__ , user_agent=__magic_name__ , subfolder=__magic_name__ , revision=revision or commit_hash , ) warnings.warn( F"""Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead.""" , __magic_name__ , ) return model_file except: # noqa: E722 warnings.warn( F"""You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(__magic_name__ , __magic_name__ )} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(__magic_name__ , __magic_name__ )}' so that the correct variant file can be added.""" , __magic_name__ , ) try: # 2. Load model file as usual lowercase : Dict = hf_hub_download( __magic_name__ , filename=__magic_name__ , cache_dir=__magic_name__ , force_download=__magic_name__ , proxies=__magic_name__ , resume_download=__magic_name__ , local_files_only=__magic_name__ , use_auth_token=__magic_name__ , user_agent=__magic_name__ , subfolder=__magic_name__ , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F"""{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier """ '''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ''' '''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ''' '''login`.''' ) except RevisionNotFoundError: raise EnvironmentError( F"""{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for """ '''this model name. Check the model page at ''' F"""'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions.""" ) except EntryNotFoundError: raise EnvironmentError( F"""{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.""" ) except HTTPError as err: raise EnvironmentError( F"""There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}""" ) except ValueError: raise EnvironmentError( F"""We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it""" F""" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a""" F""" directory containing a file named {weights_name} or""" ''' \nCheckout your internet connection or see how to run the library in''' ''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''' ) except EnvironmentError: raise EnvironmentError( F"""Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from """ '''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ''' F"""Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory """ F"""containing a file named {weights_name}""" )
116
0
"""simple docstring""" import fcntl import os import socket import torch import torch.distributed as dist def lowerCAmelCase__ ( *_UpperCamelCase : int ) -> Optional[int]: """simple docstring""" with open(_SCREAMING_SNAKE_CASE , 'r' ) as fh: fcntl.flock(_SCREAMING_SNAKE_CASE , fcntl.LOCK_EX ) try: print(*_SCREAMING_SNAKE_CASE ) finally: fcntl.flock(_SCREAMING_SNAKE_CASE , fcntl.LOCK_UN ) SCREAMING_SNAKE_CASE__ = int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) SCREAMING_SNAKE_CASE__ = torch.device("cuda", local_rank) SCREAMING_SNAKE_CASE__ = socket.gethostname() SCREAMING_SNAKE_CASE__ = f"""[{hostname}-{local_rank}]""" try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank SCREAMING_SNAKE_CASE__ = dist.get_rank() SCREAMING_SNAKE_CASE__ = dist.get_world_size() printflock(f"""{gpu} is OK (global rank: {rank}/{world_size})""") dist.barrier() if rank == 0: printflock(f"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""") except Exception: printflock(f"""{gpu} is broken""") raise
150
'''simple docstring''' from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __UpperCamelCase : def __init__( self , __a , __a=2 , __a=3 , __a=4 , __a=2 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=36 , __a=2 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=6 , __a=6 , __a=3 , __a=4 , __a=None , __a=1000 , ): '''simple docstring''' __a : Optional[Any] = parent __a : int = batch_size __a : Any = num_channels __a : Optional[int] = image_size __a : Dict = patch_size __a : int = is_training __a : Union[str, Any] = use_input_mask __a : Optional[int] = use_token_type_ids __a : Dict = use_labels __a : str = vocab_size __a : List[Any] = hidden_size __a : Union[str, Any] = num_hidden_layers __a : str = num_attention_heads __a : Union[str, Any] = intermediate_size __a : Any = hidden_act __a : List[str] = hidden_dropout_prob __a : List[str] = attention_probs_dropout_prob __a : List[Any] = max_position_embeddings __a : Tuple = type_vocab_size __a : Any = type_sequence_label_size __a : Optional[int] = initializer_range __a : Any = coordinate_size __a : List[Any] = shape_size __a : Optional[int] = num_labels __a : Dict = num_choices __a : Union[str, Any] = scope __a : Union[str, Any] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __a : Optional[int] = text_seq_length __a : Any = (image_size // patch_size) ** 2 + 1 __a : Dict = self.text_seq_length + self.image_seq_length def __UpperCAmelCase ( self ): '''simple docstring''' __a : str = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __a : Tuple = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) __a : Any = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __a : List[Any] = bbox[i, j, 3] __a : Tuple = bbox[i, j, 1] __a : str = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: __a : int = bbox[i, j, 2] __a : Dict = bbox[i, j, 0] __a : int = tmp_coordinate __a : Optional[int] = tf.constant(__a ) __a : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a : str = None if self.use_input_mask: __a : Optional[Any] = random_attention_mask([self.batch_size, self.text_seq_length] ) __a : str = None if self.use_token_type_ids: __a : List[Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __a : Optional[Any] = None __a : Optional[int] = None if self.use_labels: __a : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a : Optional[int] = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __a : int = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def __UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a ): '''simple docstring''' __a : Dict = TFLayoutLMvaModel(config=__a ) # text + image __a : List[Any] = model(__a , pixel_values=__a , training=__a ) __a : Any = model( __a , bbox=__a , pixel_values=__a , attention_mask=__a , token_type_ids=__a , training=__a , ) __a : Optional[int] = model(__a , bbox=__a , pixel_values=__a , training=__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __a : Any = model(__a , training=__a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __a : str = model({'pixel_values': pixel_values} , training=__a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def __UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a ): '''simple docstring''' __a : Any = self.num_labels __a : Dict = TFLayoutLMvaForSequenceClassification(config=__a ) __a : List[str] = model( __a , bbox=__a , pixel_values=__a , attention_mask=__a , token_type_ids=__a , labels=__a , training=__a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a ): '''simple docstring''' __a : str = self.num_labels __a : Optional[Any] = TFLayoutLMvaForTokenClassification(config=__a ) __a : List[str] = model( __a , bbox=__a , pixel_values=__a , attention_mask=__a , token_type_ids=__a , labels=__a , training=__a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def __UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a ): '''simple docstring''' __a : List[Any] = 2 __a : Any = TFLayoutLMvaForQuestionAnswering(config=__a ) __a : Any = model( __a , bbox=__a , pixel_values=__a , attention_mask=__a , token_type_ids=__a , start_positions=__a , end_positions=__a , training=__a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Dict = self.prepare_config_and_inputs() ((__a) , (__a) , (__a) , (__a) , (__a) , (__a) , (__a) , (__a)) : Dict = config_and_inputs __a : Any = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class __UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): A_ = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) A_ = ( {"document-question-answering": TFLayoutLMvaForQuestionAnswering, "feature-extraction": TFLayoutLMvaModel} if is_tf_available() else {} ) A_ = False A_ = False A_ = False def __UpperCAmelCase ( self , __a , __a , __a , __a , __a ): '''simple docstring''' return True def __UpperCAmelCase ( self , __a , __a , __a=False ): '''simple docstring''' __a : str = copy.deepcopy(__a ) if model_class in get_values(__a ): __a : str = { k: tf.tile(tf.expand_dims(__a , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(__a , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(__a ): __a : Optional[int] = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__a ): __a : int = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) __a : Optional[Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__a ): __a : Any = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__a ): __a : Union[str, Any] = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[Any] = TFLayoutLMvaModelTester(self ) __a : Optional[int] = ConfigTester(self , config_class=__a , hidden_size=37 ) def __UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def __UpperCAmelCase ( self ): '''simple docstring''' __a , __a : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : Dict = model_class(__a ) if getattr(__a , 'hf_compute_loss' , __a ): # The number of elements in the loss should be the same as the number of elements in the label __a : Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , __a , return_labels=__a ) __a : str = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=__a )[0] ] __a : Dict = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs __a : int = self._prepare_for_class(inputs_dict.copy() , __a , return_labels=__a ) __a : Dict = prepared_for_class.pop('input_ids' ) __a : Tuple = model(__a , **__a )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions __a : int = self._prepare_for_class(inputs_dict.copy() , __a , return_labels=__a ) __a : str = prepared_for_class.pop('input_ids' ) if "labels" in prepared_for_class: __a : Union[str, Any] = prepared_for_class['labels'].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: __a : List[Any] = -100 __a : List[str] = tf.convert_to_tensor(__a ) __a : Any = model(__a , **__a )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict __a : Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , __a , return_labels=__a ) __a : str = model(__a )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple __a : Tuple = self._prepare_for_class(inputs_dict.copy() , __a , return_labels=__a ) # Get keys that were added with the _prepare_for_class function __a : Dict = prepared_for_class.keys() - inputs_dict.keys() __a : Any = inspect.signature(model.call ).parameters __a : str = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple __a : List[Any] = {0: 'input_ids'} for label_key in label_keys: __a : List[Any] = signature_names.index(__a ) __a : Union[str, Any] = label_key __a : List[str] = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple __a : Union[str, Any] = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: __a : Optional[Any] = prepared_for_class[value] __a : str = tuple(__a ) # Send to model __a : Tuple = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def __UpperCAmelCase ( self ): '''simple docstring''' ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__a , __a , __a , __a , __a , __a ) def __UpperCAmelCase ( self ): '''simple docstring''' ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) : Dict = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __a : Any = type self.model_tester.create_and_check_model(__a , __a , __a , __a , __a , __a ) def __UpperCAmelCase ( self ): '''simple docstring''' ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( __a , __a , __a , __a , __a , __a , __a ) def __UpperCAmelCase ( self ): '''simple docstring''' ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( __a , __a , __a , __a , __a , __a , __a ) def __UpperCAmelCase ( self ): '''simple docstring''' ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( __a , __a , __a , __a , __a , __a , __a ) @slow def __UpperCAmelCase ( self ): '''simple docstring''' for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a : List[Any] = TFLayoutLMvaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def lowerCamelCase (): __a : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf class __UpperCamelCase ( unittest.TestCase ): @cached_property def __UpperCAmelCase ( self ): '''simple docstring''' return LayoutLMvaImageProcessor(apply_ocr=__a ) if is_vision_available() else None @slow def __UpperCAmelCase ( self ): '''simple docstring''' __a : str = TFLayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ) __a : Tuple = self.default_image_processor __a : List[Any] = prepare_img() __a : int = image_processor(images=__a , return_tensors='tf' ).pixel_values __a : Union[str, Any] = tf.constant([[1, 2]] ) __a : Optional[Any] = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass __a : Tuple = model(input_ids=__a , bbox=__a , pixel_values=__a , training=__a ) # verify the logits __a : List[Any] = (1, 199, 768) self.assertEqual(outputs.last_hidden_state.shape , __a ) __a : Optional[Any] = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , __a , atol=1E-4 ) )
27
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''uw-madison/mra-base-512-4''': '''https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json''', } class __snake_case ( _lowercase): snake_case__ : Any = "mra" def __init__( self : List[str] , __lowerCAmelCase : List[Any]=5_0_2_6_5 , __lowerCAmelCase : List[Any]=7_6_8 , __lowerCAmelCase : int=1_2 , __lowerCAmelCase : Union[str, Any]=1_2 , __lowerCAmelCase : int=3_0_7_2 , __lowerCAmelCase : Dict="gelu" , __lowerCAmelCase : List[Any]=0.1 , __lowerCAmelCase : Optional[Any]=0.1 , __lowerCAmelCase : Dict=5_1_2 , __lowerCAmelCase : str=1 , __lowerCAmelCase : Optional[Any]=0.02 , __lowerCAmelCase : Optional[int]=1E-5 , __lowerCAmelCase : Any="absolute" , __lowerCAmelCase : List[Any]=4 , __lowerCAmelCase : Optional[int]="full" , __lowerCAmelCase : Optional[int]=0 , __lowerCAmelCase : str=0 , __lowerCAmelCase : Dict=1 , __lowerCAmelCase : Optional[Any]=0 , __lowerCAmelCase : Tuple=2 , **__lowerCAmelCase : Any , ): """simple docstring""" super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) _lowerCamelCase : int = vocab_size _lowerCamelCase : Any = max_position_embeddings _lowerCamelCase : Dict = hidden_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : Dict = num_attention_heads _lowerCamelCase : Dict = intermediate_size _lowerCamelCase : Any = hidden_act _lowerCamelCase : Optional[Any] = hidden_dropout_prob _lowerCamelCase : Any = attention_probs_dropout_prob _lowerCamelCase : Tuple = initializer_range _lowerCamelCase : Tuple = type_vocab_size _lowerCamelCase : int = layer_norm_eps _lowerCamelCase : Optional[int] = position_embedding_type _lowerCamelCase : Dict = block_per_row _lowerCamelCase : int = approx_mode _lowerCamelCase : Dict = initial_prior_first_n_blocks _lowerCamelCase : List[str] = initial_prior_diagonal_n_blocks
175
"""simple docstring""" import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int lowerCAmelCase__ = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class __snake_case ( datasets.BuilderConfig): snake_case__ : Optional[datasets.Features] = None def snake_case_ ( A_ : "pyspark.sql.DataFrame", A_ : List[int], ): '''simple docstring''' import pyspark def generate_fn(): _lowerCamelCase : int = df.select('''*''', pyspark.sql.functions.spark_partition_id().alias('''part_id''' ) ) for partition_id in partition_order: _lowerCamelCase : Any = df_with_partition_id.select('''*''' ).where(F'''part_id = {partition_id}''' ).drop('''part_id''' ) _lowerCamelCase : Optional[int] = partition_df.collect() _lowerCamelCase : List[str] = 0 for row in rows: yield F'''{partition_id}_{row_id}''', row.asDict() row_id += 1 return generate_fn class __snake_case ( _BaseExamplesIterable): def __init__( self : Tuple , __lowerCAmelCase : "pyspark.sql.DataFrame" , __lowerCAmelCase : Optional[int]=None , ): """simple docstring""" _lowerCamelCase : Dict = df _lowerCamelCase : Union[str, Any] = partition_order or range(self.df.rdd.getNumPartitions() ) _lowerCamelCase : Dict = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self : List[Any] ): """simple docstring""" yield from self.generate_examples_fn() def SCREAMING_SNAKE_CASE ( self : Tuple , __lowerCAmelCase : np.random.Generator ): """simple docstring""" _lowerCamelCase : Optional[Any] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(__lowerCAmelCase ) return SparkExamplesIterable(self.df , partition_order=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCAmelCase : int , __lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : List[Any] = self.split_shard_indices_by_worker(__lowerCAmelCase , __lowerCAmelCase ) return SparkExamplesIterable(self.df , partition_order=__lowerCAmelCase ) @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" return len(self.partition_order ) class __snake_case ( datasets.DatasetBuilder): snake_case__ : List[Any] = SparkConfig def __init__( self : Union[str, Any] , __lowerCAmelCase : "pyspark.sql.DataFrame" , __lowerCAmelCase : str = None , __lowerCAmelCase : str = None , **__lowerCAmelCase : int , ): """simple docstring""" import pyspark _lowerCamelCase : Optional[int] = pyspark.sql.SparkSession.builder.getOrCreate() _lowerCamelCase : int = df _lowerCamelCase : Any = working_dir super().__init__( cache_dir=__lowerCAmelCase , config_name=str(self.df.semanticHash() ) , **__lowerCAmelCase , ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" def create_cache_and_write_probe(__lowerCAmelCase : Optional[int] ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = os.path.join(self._cache_dir , '''fs_test''' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(__lowerCAmelCase , '''a''' ) return [probe_file] if self._spark.conf.get('''spark.master''' , '''''' ).startswith('''local''' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: _lowerCamelCase : Optional[Any] = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(__lowerCAmelCase ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( '''When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir''' ) def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : datasets.download.download_manager.DownloadManager ): """simple docstring""" return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def SCREAMING_SNAKE_CASE ( self : Tuple , __lowerCAmelCase : Union[str, Any] ): """simple docstring""" import pyspark def get_arrow_batch_size(__lowerCAmelCase : Dict ): for batch in it: yield pa.RecordBatch.from_pydict({'''batch_bytes''': [batch.nbytes]} ) _lowerCamelCase : Any = self.df.count() _lowerCamelCase : Union[str, Any] = df_num_rows if df_num_rows <= 1_0_0 else 1_0_0 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. _lowerCamelCase : List[Any] = ( self.df.limit(__lowerCAmelCase ) .repartition(1 ) .mapInArrow(__lowerCAmelCase , '''batch_bytes: long''' ) .agg(pyspark.sql.functions.sum('''batch_bytes''' ).alias('''sample_bytes''' ) ) .collect()[0] .sample_bytes / sample_num_rows ) _lowerCamelCase : Dict = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. _lowerCamelCase : List[str] = min(__lowerCAmelCase , int(approx_total_size / max_shard_size ) ) _lowerCamelCase : Optional[int] = self.df.repartition(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : int , ): """simple docstring""" import pyspark _lowerCamelCase : Optional[Any] = ParquetWriter if file_format == '''parquet''' else ArrowWriter _lowerCamelCase : List[Any] = os.path.join(self._working_dir , os.path.basename(__lowerCAmelCase ) ) if self._working_dir else fpath _lowerCamelCase : Dict = file_format == '''parquet''' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. _lowerCamelCase : str = self.config.features _lowerCamelCase : Dict = self._writer_batch_size _lowerCamelCase : List[str] = self._fs.storage_options def write_arrow(__lowerCAmelCase : List[str] ): # Within the same SparkContext, no two task attempts will share the same attempt ID. _lowerCamelCase : List[str] = pyspark.TaskContext().taskAttemptId() _lowerCamelCase : Any = next(__lowerCAmelCase , __lowerCAmelCase ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) _lowerCamelCase : List[Any] = 0 _lowerCamelCase : Optional[int] = writer_class( features=__lowerCAmelCase , path=working_fpath.replace('''SSSSS''' , f'''{shard_id:05d}''' ).replace('''TTTTT''' , f'''{task_id:05d}''' ) , writer_batch_size=__lowerCAmelCase , storage_options=__lowerCAmelCase , embed_local_files=__lowerCAmelCase , ) _lowerCamelCase : int = pa.Table.from_batches([first_batch] ) writer.write_table(__lowerCAmelCase ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: _lowerCamelCase , _lowerCamelCase : Any = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) shard_id += 1 _lowerCamelCase : Optional[int] = writer_class( features=writer._features , path=working_fpath.replace('''SSSSS''' , f'''{shard_id:05d}''' ).replace('''TTTTT''' , f'''{task_id:05d}''' ) , writer_batch_size=__lowerCAmelCase , storage_options=__lowerCAmelCase , embed_local_files=__lowerCAmelCase , ) _lowerCamelCase : Optional[int] = pa.Table.from_batches([batch] ) writer.write_table(__lowerCAmelCase ) if writer._num_bytes > 0: _lowerCamelCase , _lowerCamelCase : Optional[int] = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(__lowerCAmelCase ) ): _lowerCamelCase : Optional[Any] = os.path.join(os.path.dirname(__lowerCAmelCase ) , os.path.basename(__lowerCAmelCase ) ) shutil.move(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : List[Any] = ( self.df.mapInArrow(__lowerCAmelCase , '''task_id: long, num_examples: long, num_bytes: long''' ) .groupBy('''task_id''' ) .agg( pyspark.sql.functions.sum('''num_examples''' ).alias('''total_num_examples''' ) , pyspark.sql.functions.sum('''num_bytes''' ).alias('''total_num_bytes''' ) , pyspark.sql.functions.count('''num_bytes''' ).alias('''num_shards''' ) , pyspark.sql.functions.collect_list('''num_examples''' ).alias('''shard_lengths''' ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def SCREAMING_SNAKE_CASE ( self : Tuple , __lowerCAmelCase : "datasets.SplitGenerator" , __lowerCAmelCase : str = "arrow" , __lowerCAmelCase : Optional[Union[str, int]] = None , __lowerCAmelCase : Optional[int] = None , **__lowerCAmelCase : Tuple , ): """simple docstring""" self._validate_cache_dir() _lowerCamelCase : str = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(__lowerCAmelCase ) _lowerCamelCase : str = not is_remote_filesystem(self._fs ) _lowerCamelCase : Tuple = os.path.join if is_local else posixpath.join _lowerCamelCase : int = '''-TTTTT-SSSSS-of-NNNNN''' _lowerCamelCase : Tuple = f'''{self.name}-{split_generator.name}{SUFFIX}.{file_format}''' _lowerCamelCase : List[Any] = path_join(self._output_dir , __lowerCAmelCase ) _lowerCamelCase : List[Any] = 0 _lowerCamelCase : Any = 0 _lowerCamelCase : str = 0 _lowerCamelCase : int = [] _lowerCamelCase : List[str] = [] for task_id, content in self._prepare_split_single(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): ( ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ) : str = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(__lowerCAmelCase ) _lowerCamelCase : int = total_num_examples _lowerCamelCase : str = total_num_bytes # should rename everything at the end logger.debug(f'''Renaming {total_shards} shards.''' ) if total_shards > 1: _lowerCamelCase : Optional[Any] = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. _lowerCamelCase : str = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int , ): rename( __lowerCAmelCase , fpath.replace('''SSSSS''' , f'''{shard_id:05d}''' ).replace('''TTTTT''' , f'''{task_id:05d}''' ) , fpath.replace('''TTTTT-SSSSS''' , f'''{global_shard_id:05d}''' ).replace('''NNNNN''' , f'''{total_shards:05d}''' ) , ) _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : Any = 0 for i in range(len(__lowerCAmelCase ) ): _lowerCamelCase , _lowerCamelCase : Dict = task_id_and_num_shards[i] for shard_id in range(__lowerCAmelCase ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(__lowerCAmelCase , len(__lowerCAmelCase ) ).map(lambda __lowerCAmelCase : _rename_shard(*__lowerCAmelCase ) ).collect() else: # don't use any pattern _lowerCamelCase : Any = 0 _lowerCamelCase : List[str] = task_id_and_num_shards[0][0] self._rename( fpath.replace('''SSSSS''' , f'''{shard_id:05d}''' ).replace('''TTTTT''' , f'''{task_id:05d}''' ) , fpath.replace(__lowerCAmelCase , '''''' ) , ) def SCREAMING_SNAKE_CASE ( self : Any , __lowerCAmelCase : "datasets.SplitGenerator" , ): """simple docstring""" return SparkExamplesIterable(self.df )
175
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { """microsoft/beit-base-patch16-224-pt22k""": ( """https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json""" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class SCREAMING_SNAKE_CASE_ ( snake_case_ ): __lowerCAmelCase = """beit""" def __init__( self : Union[str, Any] , lowerCamelCase_ : Optional[Any]=8192 , lowerCamelCase_ : Dict=768 , lowerCamelCase_ : Dict=12 , lowerCamelCase_ : Optional[Any]=12 , lowerCamelCase_ : int=3072 , lowerCamelCase_ : str="gelu" , lowerCamelCase_ : List[str]=0.0 , lowerCamelCase_ : Optional[int]=0.0 , lowerCamelCase_ : Any=0.0_2 , lowerCamelCase_ : Any=1E-12 , lowerCamelCase_ : str=224 , lowerCamelCase_ : Optional[int]=16 , lowerCamelCase_ : Any=3 , lowerCamelCase_ : Any=False , lowerCamelCase_ : str=False , lowerCamelCase_ : Tuple=False , lowerCamelCase_ : List[str]=False , lowerCamelCase_ : Dict=0.1 , lowerCamelCase_ : List[str]=0.1 , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : Optional[Any]=[3, 5, 7, 11] , lowerCamelCase_ : Optional[Any]=[1, 2, 3, 6] , lowerCamelCase_ : Optional[Any]=True , lowerCamelCase_ : Optional[Any]=0.4 , lowerCamelCase_ : Optional[Any]=256 , lowerCamelCase_ : str=1 , lowerCamelCase_ : str=False , lowerCamelCase_ : Union[str, Any]=255 , **lowerCamelCase_ : Union[str, Any] , ): """simple docstring""" super().__init__(**lowerCamelCase_ ) UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = use_mask_token UpperCamelCase = use_absolute_position_embeddings UpperCamelCase = use_relative_position_bias UpperCamelCase = use_shared_relative_position_bias UpperCamelCase = layer_scale_init_value UpperCamelCase = drop_path_rate UpperCamelCase = use_mean_pooling # decode head attributes (semantic segmentation) UpperCamelCase = out_indices UpperCamelCase = pool_scales # auxiliary head attributes (semantic segmentation) UpperCamelCase = use_auxiliary_head UpperCamelCase = auxiliary_loss_weight UpperCamelCase = auxiliary_channels UpperCamelCase = auxiliary_num_convs UpperCamelCase = auxiliary_concat_input UpperCamelCase = semantic_loss_ignore_index class SCREAMING_SNAKE_CASE_ ( snake_case_ ): __lowerCAmelCase = version.parse("""1.11""" ) @property def lowerCamelCase_ ( self : str ): """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCamelCase_ ( self : int ): """simple docstring""" return 1E-4
343
from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class _lowercase ( snake_case_ ): lowercase = 'megatron-bert' def __init__( self : List[str] , snake_case : Tuple=2_9_0_5_6 , snake_case : Dict=1_0_2_4 , snake_case : Dict=2_4 , snake_case : Union[str, Any]=1_6 , snake_case : Optional[int]=4_0_9_6 , snake_case : Optional[int]="gelu" , snake_case : Any=0.1 , snake_case : Tuple=0.1 , snake_case : Optional[int]=5_1_2 , snake_case : List[Any]=2 , snake_case : Tuple=0.02 , snake_case : Optional[Any]=1e-12 , snake_case : str=0 , snake_case : Optional[int]="absolute" , snake_case : Union[str, Any]=True , **snake_case : Any , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=snake_case , **snake_case ) UpperCamelCase_ : Optional[Any] = vocab_size UpperCamelCase_ : Any = hidden_size UpperCamelCase_ : Union[str, Any] = num_hidden_layers UpperCamelCase_ : List[Any] = num_attention_heads UpperCamelCase_ : str = hidden_act UpperCamelCase_ : List[str] = intermediate_size UpperCamelCase_ : List[Any] = hidden_dropout_prob UpperCamelCase_ : Any = attention_probs_dropout_prob UpperCamelCase_ : Tuple = max_position_embeddings UpperCamelCase_ : Dict = type_vocab_size UpperCamelCase_ : Optional[int] = initializer_range UpperCamelCase_ : Optional[Any] = layer_norm_eps UpperCamelCase_ : Dict = position_embedding_type UpperCamelCase_ : List[str] = use_cache
175
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class a ( unittest.TestCase ): """simple docstring""" def __init__( self : Any , snake_case : str , snake_case : Optional[Any]=7 , snake_case : Dict=3 , snake_case : List[Any]=30 , snake_case : Union[str, Any]=400 , snake_case : Optional[Any]=True , snake_case : Union[str, Any]=None , snake_case : List[str]=0.9 , snake_case : str=None , snake_case : Dict=True , snake_case : str=[0.5, 0.5, 0.5] , snake_case : List[Any]=[0.5, 0.5, 0.5] , ) -> Optional[int]: __UpperCAmelCase : List[str] = size if size is not None else {'''shortest_edge''': 30} __UpperCAmelCase : Any = crop_size if crop_size is not None else {'''height''': 30, '''width''': 30} __UpperCAmelCase : List[str] = parent __UpperCAmelCase : int = batch_size __UpperCAmelCase : List[Any] = num_channels __UpperCAmelCase : List[str] = min_resolution __UpperCAmelCase : Tuple = max_resolution __UpperCAmelCase : Tuple = do_resize_and_center_crop __UpperCAmelCase : str = size __UpperCAmelCase : str = crop_pct __UpperCAmelCase : Union[str, Any] = crop_size __UpperCAmelCase : Dict = do_normalize __UpperCAmelCase : int = image_mean __UpperCAmelCase : Optional[int] = image_std def lowerCamelCase__ ( self : Tuple ) -> Optional[Any]: return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class a ( _a , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = PoolFormerImageProcessor if is_vision_available() else None def lowerCamelCase__ ( self : Optional[int] ) -> Optional[Any]: __UpperCAmelCase : Optional[Any] = PoolFormerImageProcessingTester(self ) @property def lowerCamelCase__ ( self : int ) -> List[Any]: return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase__ ( self : Tuple ) -> Any: __UpperCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case , '''do_resize_and_center_crop''' ) ) self.assertTrue(hasattr(snake_case , '''size''' ) ) self.assertTrue(hasattr(snake_case , '''crop_pct''' ) ) self.assertTrue(hasattr(snake_case , '''do_normalize''' ) ) self.assertTrue(hasattr(snake_case , '''image_mean''' ) ) self.assertTrue(hasattr(snake_case , '''image_std''' ) ) def lowerCamelCase__ ( self : Optional[Any] ) -> Tuple: __UpperCAmelCase : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 30} ) self.assertEqual(image_processor.crop_size , {'''height''': 30, '''width''': 30} ) __UpperCAmelCase : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def lowerCamelCase__ ( self : Optional[int] ) -> List[str]: pass def lowerCamelCase__ ( self : Any ) -> List[Any]: # Initialize image_processing __UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCAmelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , Image.Image ) # Test not batched input __UpperCAmelCase : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __UpperCAmelCase : Optional[Any] = image_processing(snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def lowerCamelCase__ ( self : Optional[int] ) -> Optional[int]: # Initialize image_processing __UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case , numpify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , np.ndarray ) # Test not batched input __UpperCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __UpperCAmelCase : Optional[Any] = image_processing(snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def lowerCamelCase__ ( self : Any ) -> Optional[int]: # Initialize image_processing __UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCAmelCase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case , torchify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , torch.Tensor ) # Test not batched input __UpperCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __UpperCAmelCase : str = image_processing(snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
351
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer __UpperCAmelCase :Dict = logging.get_logger(__name__) __UpperCAmelCase :str = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __UpperCAmelCase :Optional[int] = { "vocab_file": { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/vocab.txt", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/vocab.txt", "bert-base-multilingual-uncased": ( "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt" ), "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt", "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt" ), "bert-base-cased-finetuned-mrpc": ( "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt" ), "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt", "bert-base-german-dbmdz-uncased": ( "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt" ), "wietsedv/bert-base-dutch-cased": ( "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json", "bert-base-multilingual-uncased": ( "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json" ), "bert-base-multilingual-cased": ( "https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json" ), "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json" ), "bert-base-cased-finetuned-mrpc": ( "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json" ), "bert-base-german-dbmdz-cased": ( "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json" ), "bert-base-german-dbmdz-uncased": ( "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json" ), "wietsedv/bert-base-dutch-cased": ( "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json" ), }, } __UpperCAmelCase :Union[str, Any] = { "bert-base-uncased": 5_1_2, "bert-large-uncased": 5_1_2, "bert-base-cased": 5_1_2, "bert-large-cased": 5_1_2, "bert-base-multilingual-uncased": 5_1_2, "bert-base-multilingual-cased": 5_1_2, "bert-base-chinese": 5_1_2, "bert-base-german-cased": 5_1_2, "bert-large-uncased-whole-word-masking": 5_1_2, "bert-large-cased-whole-word-masking": 5_1_2, "bert-large-uncased-whole-word-masking-finetuned-squad": 5_1_2, "bert-large-cased-whole-word-masking-finetuned-squad": 5_1_2, "bert-base-cased-finetuned-mrpc": 5_1_2, "bert-base-german-dbmdz-cased": 5_1_2, "bert-base-german-dbmdz-uncased": 5_1_2, "TurkuNLP/bert-base-finnish-cased-v1": 5_1_2, "TurkuNLP/bert-base-finnish-uncased-v1": 5_1_2, "wietsedv/bert-base-dutch-cased": 5_1_2, } __UpperCAmelCase :str = { "bert-base-uncased": {"do_lower_case": True}, "bert-large-uncased": {"do_lower_case": True}, "bert-base-cased": {"do_lower_case": False}, "bert-large-cased": {"do_lower_case": False}, "bert-base-multilingual-uncased": {"do_lower_case": True}, "bert-base-multilingual-cased": {"do_lower_case": False}, "bert-base-chinese": {"do_lower_case": False}, "bert-base-german-cased": {"do_lower_case": False}, "bert-large-uncased-whole-word-masking": {"do_lower_case": True}, "bert-large-cased-whole-word-masking": {"do_lower_case": False}, "bert-large-uncased-whole-word-masking-finetuned-squad": {"do_lower_case": True}, "bert-large-cased-whole-word-masking-finetuned-squad": {"do_lower_case": False}, "bert-base-cased-finetuned-mrpc": {"do_lower_case": False}, "bert-base-german-dbmdz-cased": {"do_lower_case": False}, "bert-base-german-dbmdz-uncased": {"do_lower_case": True}, "TurkuNLP/bert-base-finnish-cased-v1": {"do_lower_case": False}, "TurkuNLP/bert-base-finnish-uncased-v1": {"do_lower_case": True}, "wietsedv/bert-base-dutch-cased": {"do_lower_case": False}, } class a ( _a ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : Optional[Any] = BertTokenizer def __init__( self : Optional[int] , snake_case : Union[str, Any]=None , snake_case : str=None , snake_case : Any=True , snake_case : Tuple="[UNK]" , snake_case : int="[SEP]" , snake_case : Optional[Any]="[PAD]" , snake_case : int="[CLS]" , snake_case : Optional[Any]="[MASK]" , snake_case : Union[str, Any]=True , snake_case : List[Any]=None , **snake_case : int , ) -> str: super().__init__( snake_case , tokenizer_file=snake_case , do_lower_case=snake_case , unk_token=snake_case , sep_token=snake_case , pad_token=snake_case , cls_token=snake_case , mask_token=snake_case , tokenize_chinese_chars=snake_case , strip_accents=snake_case , **snake_case , ) __UpperCAmelCase : List[str] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , snake_case ) != do_lower_case or normalizer_state.get('''strip_accents''' , snake_case ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , snake_case ) != tokenize_chinese_chars ): __UpperCAmelCase : List[Any] = getattr(snake_case , normalizer_state.pop('''type''' ) ) __UpperCAmelCase : List[Any] = do_lower_case __UpperCAmelCase : List[Any] = strip_accents __UpperCAmelCase : str = tokenize_chinese_chars __UpperCAmelCase : List[str] = normalizer_class(**snake_case ) __UpperCAmelCase : Optional[int] = do_lower_case def lowerCamelCase__ ( self : List[Any] , snake_case : Tuple , snake_case : List[str]=None ) -> str: __UpperCAmelCase : Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase__ ( self : str , snake_case : List[int] , snake_case : Optional[List[int]] = None ) -> List[int]: __UpperCAmelCase : List[str] = [self.sep_token_id] __UpperCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__ ( self : List[Any] , snake_case : str , snake_case : Optional[str] = None ) -> Tuple[str]: __UpperCAmelCase : Optional[int] = self._tokenizer.model.save(snake_case , name=snake_case ) return tuple(snake_case )
240
0
from __future__ import annotations def lowerCamelCase__ ( snake_case_ : list[int] ) -> list[int]: # This function is recursive __snake_case = len(snake_case_ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else __snake_case = array[0] __snake_case = False __snake_case = 1 __snake_case = [] while not is_found and i < array_length: if array[i] < pivot: __snake_case = True __snake_case = [element for element in array[i:] if element >= array[i]] __snake_case = longest_subsequence(snake_case_ ) if len(snake_case_ ) > len(snake_case_ ): __snake_case = temp_array else: i += 1 __snake_case = [element for element in array[1:] if element >= pivot] __snake_case = [pivot, *longest_subsequence(snake_case_ )] if len(snake_case_ ) > len(snake_case_ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
24
'''simple docstring''' import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase_ (__a : Optional[Any] , __a : str , __a : Optional[Any]=None ): """simple docstring""" assert torch_layer.weight.shape == weight.shape, f"""{torch_layer} layer.weight does not match""" _a : str = nn.Parameter(__a ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f"""{torch_layer} layer.bias does not match""" _a : Any = nn.Parameter(__a ) def UpperCAmelCase_ (__a : int , __a : Optional[Any] , __a : int ): """simple docstring""" _a : Tuple = np.asarray(weights[0] ) _a : Union[str, Any] = np.asarray(weights[1] ) _a : Dict = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(__a ).transpose(1 , 2 ).contiguous().view(-1 , __a ) , ) set_param( torch_layer.self_attention.value , torch.tensor(__a ).transpose(1 , 2 ).contiguous().view(-1 , __a ) , ) set_param( torch_layer.output.dense , torch.tensor(__a ).view(-1 , __a ).contiguous().transpose(0 , 1 ) , ) def UpperCAmelCase_ (__a : Optional[Any] , __a : Optional[int] , __a : List[str] ): """simple docstring""" _a : Dict = np.asarray(weights[0] ) _a : Union[str, Any] = np.asarray(weights[1] ) _a : str = np.asarray(weights[2] ) _a : int = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(__a ).transpose(1 , 2 ).contiguous().view(-1 , __a ) , ) set_param( torch_layer.self_attention.key , torch.tensor(__a ).transpose(1 , 2 ).contiguous().view(-1 , __a ) , ) set_param( torch_layer.self_attention.value , torch.tensor(__a ).transpose(1 , 2 ).contiguous().view(-1 , __a ) , ) set_param( torch_layer.output.dense , torch.tensor(__a ).view(-1 , __a ).contiguous().transpose(0 , 1 ) , ) def UpperCAmelCase_ (__a : Any , __a : Any , __a : Optional[Any] ): """simple docstring""" _a : List[str] = weights[0][0][0] _a : List[Any] = np.asarray(layer_norm_a[0] ) _a : List[str] = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(__a ) , torch.tensor(__a ) , ) # lsh weights + output _a : List[str] = weights[0][1] if len(__a ) < 4: set_layer_weights_in_torch_lsh(__a , torch_block.attention , __a ) else: set_layer_weights_in_torch_local(__a , torch_block.attention , __a ) # intermediate weighs _a : Optional[Any] = weights[2][0][1][2] # Chunked Feed Forward if len(__a ) == 4: _a : Union[str, Any] = intermediate_weights[2] # layernorm 2 _a : Any = np.asarray(intermediate_weights[0][0] ) _a : List[Any] = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(__a ) , torch.tensor(__a ) , ) # intermediate dense _a : Any = np.asarray(intermediate_weights[1][0] ) _a : Any = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(__a ).transpose(0 , 1 ).contiguous() , torch.tensor(__a ) , ) # intermediate out _a : Optional[int] = np.asarray(intermediate_weights[4][0] ) _a : int = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(__a ).transpose(0 , 1 ).contiguous() , torch.tensor(__a ) , ) def UpperCAmelCase_ (__a : Dict , __a : Dict , __a : List[Any] ): """simple docstring""" _a : Optional[int] = torch_model.reformer # word embeds _a : Tuple = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(__a ) , ) if isinstance(weights[3] , __a ): _a : Any = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): _a : List[Any] = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f"""{position_embeddings[emb_idx]} emb does not match""" _a : Any = nn.Parameter(torch.tensor(__a ) ) _a : List[str] = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( __a ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): _a : Tuple = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(__a , __a , __a ) # output layer norm _a : Optional[Any] = np.asarray(weights[7][0] ) _a : int = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(__a ) , torch.tensor(__a ) , ) # output embeddings _a : List[str] = np.asarray(weights[9][0] ) _a : int = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(__a ).transpose(0 , 1 ).contiguous() , torch.tensor(__a ) , ) def UpperCAmelCase_ (__a : Tuple , __a : Optional[Any] , __a : Dict ): """simple docstring""" _a : List[Any] = ReformerConfig.from_json_file(__a ) print(f"""Building PyTorch model from configuration: {config}""" ) _a : int = ReformerModelWithLMHead(__a ) with open(__a , 'rb' ) as f: _a : Optional[Any] = pickle.load(__a )['weights'] set_model_weights_in_torch(__a , __a , config.hidden_size ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , __a ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--trax_model_pkl_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained Reformer model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __lowerCAmelCase = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
271
0
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=__lowercase ) class UpperCAmelCase_ ( __lowercase ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization lowerCamelCase : str = field(default='''text-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) lowerCamelCase : ClassVar[Features] = Features({'''text''': Value('''string''' )} ) lowerCamelCase : ClassVar[Features] = Features({'''labels''': ClassLabel} ) lowerCamelCase : str = "text" lowerCamelCase : str = "labels" def __UpperCAmelCase ( self : Tuple , UpperCAmelCase__ : Optional[int] ) -> Tuple: if self.label_column not in features: raise ValueError(F'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , UpperCAmelCase__ ): raise ValueError(F'''Column {self.label_column} is not a ClassLabel.''' ) lowerCAmelCase = copy.deepcopy(self ) lowerCAmelCase = self.label_schema.copy() lowerCAmelCase = features[self.label_column] lowerCAmelCase = label_schema return task_template @property def __UpperCAmelCase ( self : Tuple ) -> Dict[str, str]: return { self.text_column: "text", self.label_column: "labels", }
55
'''simple docstring''' from __future__ import annotations def a_ ( lowerCamelCase : list[float] , lowerCamelCase : list[float] ): lowerCAmelCase = sorted(numsa + numsa ) lowerCAmelCase , lowerCAmelCase = divmod(len(lowerCamelCase ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() __snake_case =[float(x) for x in input("""Enter the elements of first array: """).split()] __snake_case =[float(x) for x in input("""Enter the elements of second array: """).split()] print(F'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''')
55
1
import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def __UpperCamelCase ( _A ): lowerCAmelCase_ = checkpoints.load_tax_checkpoint(_A ) lowerCAmelCase_ = flatten_dict(_A ) return flax_params def __UpperCamelCase ( _A ): lowerCAmelCase_ = {} lowerCAmelCase_ = { '''token_embedder''': '''embeddings''', '''encoder_norm''': '''layernorm''', '''kernel''': '''weight''', '''.out''': '''.output''', '''scale''': '''weight''', '''embedders_0.pos_embedding''': '''row_embedder.weight''', '''embedders_1.pos_embedding''': '''column_embedder.weight''', } lowerCAmelCase_ = { '''query''': '''attention.query''', '''key''': '''attention.key''', '''value''': '''attention.value''', '''output.dense''': '''output''', '''encoder_decoder_attention.o''': '''encoder_decoder_attention.attention.o''', '''pre_self_attention_layer_norm''': '''self_attention.layer_norm''', '''pre_cross_attention_layer_norm''': '''encoder_decoder_attention.layer_norm''', '''mlp.''': '''mlp.DenseReluDense.''', '''pre_mlp_layer_norm''': '''mlp.layer_norm''', '''self_attention.o''': '''self_attention.attention.o''', '''decoder.embeddings.embedding''': '''decoder.embed_tokens.weight''', '''decoder.relpos_bias.rel_embedding''': '''decoder.layer.0.self_attention.attention.relative_attention_bias.weight''', '''decoder.decoder_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.logits_dense.weight''': '''decoder.lm_head.weight''', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key lowerCAmelCase_ = '''.'''.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): lowerCAmelCase_ = new_key.replace(_A , _A ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): lowerCAmelCase_ = new_key.replace(_A , _A ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number lowerCAmelCase_ = re.sub(r'''layers_(\d+)''' , r'''layer.\1''' , _A ) lowerCAmelCase_ = new_key.replace('''encoder''' , '''encoder.encoder''' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number lowerCAmelCase_ = re.sub(r'''layers_(\d+)''' , r'''layer.\1''' , _A ) lowerCAmelCase_ = flax_dict[key] lowerCAmelCase_ = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): lowerCAmelCase_ = torch.from_numpy(converted_dict[key].T ) else: lowerCAmelCase_ = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def __UpperCamelCase ( _A , _A , _A=False , _A=False ): lowerCAmelCase_ = get_flax_param(_A ) if not use_large: lowerCAmelCase_ = PixaStructVisionConfig() lowerCAmelCase_ = PixaStructTextConfig() else: lowerCAmelCase_ = PixaStructVisionConfig( hidden_size=1536 , d_ff=3968 , num_attention_heads=24 , num_hidden_layers=18 ) lowerCAmelCase_ = PixaStructTextConfig(hidden_size=1536 , d_ff=3968 , num_heads=24 , num_layers=18 ) lowerCAmelCase_ = PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=_A ) lowerCAmelCase_ = PixaStructForConditionalGeneration(_A ) lowerCAmelCase_ = rename_and_convert_flax_params(_A ) model.load_state_dict(_A ) lowerCAmelCase_ = AutoTokenizer.from_pretrained('''ybelkada/test-pix2struct-tokenizer''' ) lowerCAmelCase_ = PixaStructImageProcessor() lowerCAmelCase_ = PixaStructProcessor(image_processor=_A , tokenizer=_A ) if use_large: lowerCAmelCase_ = 4096 lowerCAmelCase_ = True # mkdir if needed os.makedirs(_A , exist_ok=_A ) model.save_pretrained(_A ) processor.save_pretrained(_A ) print('''Model saved in {}'''.format(_A ) ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument('''--t5x_checkpoint_path''', default=None, type=str, help='''Path to the original T5x checkpoint.''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--use_large''', action='''store_true''', help='''Use large model.''') parser.add_argument('''--is_vqa''', action='''store_true''', help='''Use large model.''') _A = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
278
from functools import lru_cache @lru_cache def __UpperCamelCase ( _A ): if num < 0: raise ValueError('''Number should not be negative.''' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
278
1
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __a :Tuple = logging.get_logger(__name__) class _a ( enum.Enum ): """simple docstring""" _lowerCamelCase : List[str] = 0 _lowerCamelCase : Optional[int] = 1 @add_end_docstrings(snake_case_ ) class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : Optional[int] = 'generated' def __init__( self : List[Any] , *UpperCAmelCase : List[str] , **UpperCAmelCase : str ): super().__init__(*UpperCAmelCase , **UpperCAmelCase ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == "tf" else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def __A ( self : str , UpperCAmelCase : int=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : Tuple=None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Dict=None , UpperCAmelCase : List[str]=None , **UpperCAmelCase : Any , ): A_ = {} if truncation is not None: A_ = truncation A_ = generate_kwargs A_ = {} if return_tensors is not None and return_type is None: A_ = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: A_ = return_type if clean_up_tokenization_spaces is not None: A_ = clean_up_tokenization_spaces if stop_sequence is not None: A_ = self.tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) if len(UpperCAmelCase ) > 1: warnings.warn( "Stopping on a multiple token sequence is not yet supported on transformers. The first token of" " the stop sequence will be used as the stop sequence string in the interim." ) A_ = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def __A ( self : int , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int ): return True def __A ( self : Dict , *UpperCAmelCase : Tuple , UpperCAmelCase : List[str] ): A_ = self.model.config.prefix if self.model.config.prefix is not None else "" if isinstance(args[0] , UpperCAmelCase ): if self.tokenizer.pad_token_id is None: raise ValueError("Please make sure that the tokenizer has a pad_token_id when using a batch input" ) A_ = ([prefix + arg for arg in args[0]],) A_ = True elif isinstance(args[0] , UpperCAmelCase ): A_ = (prefix + args[0],) A_ = False else: raise ValueError( f''' `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`''' ) A_ = self.tokenizer(*UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self : List[Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : List[Any] ): A_ = super().__call__(*UpperCAmelCase , **UpperCAmelCase ) if ( isinstance(args[0] , UpperCAmelCase ) and all(isinstance(UpperCAmelCase , UpperCAmelCase ) for el in args[0] ) and all(len(UpperCAmelCase ) == 1 for res in result ) ): return [res[0] for res in result] return result def __A ( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any=TruncationStrategy.DO_NOT_TRUNCATE , **UpperCAmelCase : str ): A_ = self._parse_and_tokenize(UpperCAmelCase , truncation=UpperCAmelCase , **UpperCAmelCase ) return inputs def __A ( self : Dict , UpperCAmelCase : str , **UpperCAmelCase : List[Any] ): if self.framework == "pt": A_ , A_ = model_inputs["input_ids"].shape elif self.framework == "tf": A_ , A_ = tf.shape(model_inputs["input_ids"] ).numpy() A_ = generate_kwargs.get("min_length" , self.model.config.min_length ) A_ = generate_kwargs.get("max_length" , self.model.config.max_length ) self.check_inputs(UpperCAmelCase , generate_kwargs["min_length"] , generate_kwargs["max_length"] ) A_ = self.model.generate(**UpperCAmelCase , **UpperCAmelCase ) A_ = output_ids.shape[0] if self.framework == "pt": A_ = output_ids.reshape(UpperCAmelCase , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": A_ = tf.reshape(UpperCAmelCase , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def __A ( self : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int]=ReturnType.TEXT , UpperCAmelCase : Tuple=False ): A_ = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: A_ = {f'''{self.return_name}_token_ids''': output_ids} elif return_type == ReturnType.TEXT: A_ = { f'''{self.return_name}_text''': self.tokenizer.decode( UpperCAmelCase , skip_special_tokens=UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase , ) } records.append(UpperCAmelCase ) return records @add_end_docstrings(snake_case_ ) class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : Union[str, Any] = 'summary' def __call__( self : Union[str, Any] , *UpperCAmelCase : Tuple , **UpperCAmelCase : List[str] ): return super().__call__(*UpperCAmelCase , **UpperCAmelCase ) def __A ( self : int , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int ): if max_length < min_length: logger.warning(f'''Your min_length={min_length} must be inferior than your max_length={max_length}.''' ) if input_length < max_length: logger.warning( f'''Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is ''' "a summarization task, where outputs shorter than the input are typically wanted, you might " f'''consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})''' ) @add_end_docstrings(snake_case_ ) class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : Union[str, Any] = 'translation' def __A ( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int ): if input_length > 0.9 * max_length: logger.warning( f'''Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider ''' "increasing your max_length manually, e.g. translator('...', max_length=400)" ) return True def __A ( self : str , *UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str]=TruncationStrategy.DO_NOT_TRUNCATE , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Dict=None ): if getattr(self.tokenizer , "_build_translation_inputs" , UpperCAmelCase ): return self.tokenizer._build_translation_inputs( *UpperCAmelCase , return_tensors=self.framework , truncation=UpperCAmelCase , src_lang=UpperCAmelCase , tgt_lang=UpperCAmelCase ) else: return super()._parse_and_tokenize(*UpperCAmelCase , truncation=UpperCAmelCase ) def __A ( self : Optional[int] , UpperCAmelCase : str=None , UpperCAmelCase : List[str]=None , **UpperCAmelCase : List[Any] ): A_ , A_ , A_ = super()._sanitize_parameters(**UpperCAmelCase ) if src_lang is not None: A_ = src_lang if tgt_lang is not None: A_ = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. A_ = kwargs.get("task" , self.task ) A_ = task.split("_" ) if task and len(UpperCAmelCase ) == 4: # translation, XX, to YY A_ = items[1] A_ = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self : List[str] , *UpperCAmelCase : Any , **UpperCAmelCase : Any ): return super().__call__(*UpperCAmelCase , **UpperCAmelCase )
329
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer __a :Optional[Any] = logging.get_logger(__name__) __a :Any = {'vocab_file': 'vocab.txt'} __a :Any = { 'vocab_file': { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt', } } __a :List[str] = { 'YituTech/conv-bert-base': 512, 'YituTech/conv-bert-medium-small': 512, 'YituTech/conv-bert-small': 512, } __a :List[str] = { 'YituTech/conv-bert-base': {'do_lower_case': True}, 'YituTech/conv-bert-medium-small': {'do_lower_case': True}, 'YituTech/conv-bert-small': {'do_lower_case': True}, } class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : Tuple = VOCAB_FILES_NAMES _lowerCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : int = PRETRAINED_INIT_CONFIGURATION _lowerCamelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : Union[str, Any] = ConvBertTokenizer def __init__( self : Optional[int] , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : int="[UNK]" , UpperCAmelCase : str="[SEP]" , UpperCAmelCase : Union[str, Any]="[PAD]" , UpperCAmelCase : Tuple="[CLS]" , UpperCAmelCase : Tuple="[MASK]" , UpperCAmelCase : Any=True , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : List[str] , ): super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , ) A_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , UpperCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , UpperCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , UpperCAmelCase ) != tokenize_chinese_chars ): A_ = getattr(UpperCAmelCase , normalizer_state.pop("type" ) ) A_ = do_lower_case A_ = strip_accents A_ = tokenize_chinese_chars A_ = normalizer_class(**UpperCAmelCase ) A_ = do_lower_case def __A ( self : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Dict=None ): A_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self : Optional[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): A_ = [self.sep_token_id] A_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ): A_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
329
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: lowerCAmelCase__ : str =None lowerCAmelCase__ : str =logging.get_logger(__name__) lowerCAmelCase__ : Dict ={'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase__ : Optional[Any] ={ '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase__ : Tuple ={ '''moussaKam/mbarthez''': 1024, '''moussaKam/barthez''': 1024, '''moussaKam/barthez-orangesum-title''': 1024, } lowerCAmelCase__ : List[str] ='''▁''' class UpperCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ : Dict = VOCAB_FILES_NAMES UpperCamelCase__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ : Optional[int] = ['''input_ids''', '''attention_mask'''] UpperCamelCase__ : List[str] = BarthezTokenizer def __init__( self , _A=None , _A=None , _A="<s>" , _A="</s>" , _A="</s>" , _A="<s>" , _A="<unk>" , _A="<pad>" , _A="<mask>" , **_A , ): '''simple docstring''' __SCREAMING_SNAKE_CASE = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else mask_token super().__init__( _A , tokenizer_file=_A , bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , cls_token=_A , pad_token=_A , mask_token=_A , **_A , ) __SCREAMING_SNAKE_CASE = vocab_file __SCREAMING_SNAKE_CASE = False if not self.vocab_file else True def _A ( self , _A , _A = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __SCREAMING_SNAKE_CASE = [self.cls_token_id] __SCREAMING_SNAKE_CASE = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _A ( self , _A , _A = None ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [self.sep_token_id] __SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _A ( self , _A , _A = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(_A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __SCREAMING_SNAKE_CASE = os.path.join( _A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ): copyfile(self.vocab_file , _A ) return (out_vocab_file,)
257
import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class UpperCAmelCase_ ( UpperCamelCase_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase__ : Optional[int] = MvpTokenizer UpperCamelCase__ : Tuple = MvpTokenizerFast UpperCamelCase__ : int = True UpperCamelCase__ : Tuple = filter_roberta_detectors def _A ( self ): '''simple docstring''' super().setUp() __SCREAMING_SNAKE_CASE = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] __SCREAMING_SNAKE_CASE = dict(zip(_A , range(len(_A ) ) ) ) __SCREAMING_SNAKE_CASE = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] __SCREAMING_SNAKE_CASE = {'unk_token': '<unk>'} __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_A ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_A ) ) def _A ( self , **_A ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def _A ( self , **_A ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def _A ( self , _A ): '''simple docstring''' return "lower newer", "lower newer" @cached_property def _A ( self ): '''simple docstring''' return MvpTokenizer.from_pretrained('RUCAIBox/mvp' ) @cached_property def _A ( self ): '''simple docstring''' return MvpTokenizerFast.from_pretrained('RUCAIBox/mvp' ) @require_torch def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __SCREAMING_SNAKE_CASE = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __SCREAMING_SNAKE_CASE = tokenizer(_A , max_length=len(_A ) , padding=_A , return_tensors='pt' ) self.assertIsInstance(_A , _A ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) __SCREAMING_SNAKE_CASE = batch.input_ids.tolist()[0] self.assertListEqual(_A , _A ) # Test that special tokens are reset @require_torch def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __SCREAMING_SNAKE_CASE = tokenizer(_A , padding=_A , return_tensors='pt' ) # check if input_ids are returned and no labels self.assertIn('input_ids' , _A ) self.assertIn('attention_mask' , _A ) self.assertNotIn('labels' , _A ) self.assertNotIn('decoder_attention_mask' , _A ) @require_torch def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __SCREAMING_SNAKE_CASE = tokenizer(text_target=_A , max_length=32 , padding='max_length' , return_tensors='pt' ) self.assertEqual(32 , targets['input_ids'].shape[1] ) @require_torch def _A ( self ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __SCREAMING_SNAKE_CASE = tokenizer( ['I am a small frog' * 1_024, 'I am a small frog'] , padding=_A , truncation=_A , return_tensors='pt' ) self.assertIsInstance(_A , _A ) self.assertEqual(batch.input_ids.shape , (2, 1_024) ) @require_torch def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ['A long paragraph for summarization.'] __SCREAMING_SNAKE_CASE = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __SCREAMING_SNAKE_CASE = tokenizer(_A , text_target=_A , return_tensors='pt' ) __SCREAMING_SNAKE_CASE = inputs['input_ids'] __SCREAMING_SNAKE_CASE = inputs['labels'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def _A ( self ): '''simple docstring''' pass def _A ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(_A , **_A ) __SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(_A , **_A ) __SCREAMING_SNAKE_CASE = 'A, <mask> AllenNLP sentence.' __SCREAMING_SNAKE_CASE = tokenizer_r.encode_plus(_A , add_special_tokens=_A , return_token_type_ids=_A ) __SCREAMING_SNAKE_CASE = tokenizer_p.encode_plus(_A , add_special_tokens=_A , return_token_type_ids=_A ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) __SCREAMING_SNAKE_CASE = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) __SCREAMING_SNAKE_CASE = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( _A , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( _A , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
257
1
import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ = "▁" , A_ = True , A_ = "<unk>" , A_ = "</s>" , A_ = "<pad>" , ) -> Optional[int]: """simple docstring""" UpperCamelCase = { 'pad': {'id': 0, 'token': pad_token}, 'eos': {'id': 1, 'token': eos_token}, 'unk': {'id': 2, 'token': unk_token}, } UpperCamelCase = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): UpperCamelCase = token_dict['token'] UpperCamelCase = Tokenizer(Unigram() ) UpperCamelCase = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(' {2,}' ) , ' ' ), normalizers.Lowercase(), ] ) UpperCamelCase = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=A_ , add_prefix_space=A_ ), pre_tokenizers.Digits(individual_digits=A_ ), pre_tokenizers.Punctuation(), ] ) UpperCamelCase = decoders.Metaspace(replacement=A_ , add_prefix_space=A_ ) UpperCamelCase = TemplateProcessing( single=F'''$A {self.special_tokens['eos']['token']}''' , special_tokens=[(self.special_tokens['eos']['token'], self.special_tokens['eos']['id'])] , ) UpperCamelCase = { 'model': 'SentencePieceUnigram', 'replacement': replacement, 'add_prefix_space': add_prefix_space, } super().__init__(A_ , A_ ) def __UpperCamelCase ( self , A_ , A_ = 8_000 , A_ = True , ) -> List[str]: """simple docstring""" UpperCamelCase = trainers.UnigramTrainer( vocab_size=A_ , special_tokens=self.special_tokens_list , show_progress=A_ , ) if isinstance(A_ , A_ ): UpperCamelCase = [files] self._tokenizer.train(A_ , trainer=A_ ) self.add_unk_id() def __UpperCamelCase ( self , A_ , A_ = 8_000 , A_ = True , ) -> Any: """simple docstring""" UpperCamelCase = trainers.UnigramTrainer( vocab_size=A_ , special_tokens=self.special_tokens_list , show_progress=A_ , ) self._tokenizer.train_from_iterator(A_ , trainer=A_ ) self.add_unk_id() def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = json.loads(self._tokenizer.to_str() ) UpperCamelCase = self.special_tokens['unk']['id'] UpperCamelCase = Tokenizer.from_str(json.dumps(A_ ) )
366
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
110
0
"""simple docstring""" import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase_ = 16 lowerCAmelCase_ = 32 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = 16 ) -> Optional[Any]: lowercase__ : Optional[Any] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowercase__ : int = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) lowercase__ : str = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowerCamelCase , max_length=__lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ : str = datasets.map( __lowerCamelCase , batched=__lowerCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ : Union[str, Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ : List[str] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ : Optional[int] = 16 elif accelerator.mixed_precision != "no": lowercase__ : List[Any] = 8 else: lowercase__ : int = None return tokenizer.pad( __lowerCamelCase , padding='''longest''' , max_length=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. lowercase__ : List[Any] = DataLoader( tokenized_datasets['''train'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) lowercase__ : str = DataLoader( tokenized_datasets['''validation'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase_ = mocked_dataloaders # noqa: F811 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> str: # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __lowerCamelCase ) == "1": lowercase__ : List[Any] = 2 # Initialize accelerator lowercase__ : Optional[int] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ : str = config['''lr'''] lowercase__ : str = int(config['''num_epochs'''] ) lowercase__ : Optional[int] = int(config['''seed'''] ) lowercase__ : Tuple = int(config['''batch_size'''] ) lowercase__ : List[Any] = evaluate.load('''glue''' , '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=__lowerCamelCase ) def inner_training_loop(__lowerCamelCase ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(__lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ : List[str] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ : Tuple = model.to(accelerator.device ) # Instantiate optimizer lowercase__ : List[str] = AdamW(params=model.parameters() , lr=__lowerCamelCase ) lowercase__ , lowercase__ : List[Any] = get_dataloaders(__lowerCamelCase , __lowerCamelCase ) # Instantiate scheduler lowercase__ : Optional[int] = get_linear_schedule_with_warmup( optimizer=__lowerCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(__lowerCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Optional[int] = accelerator.prepare( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Now we train the model for epoch in range(__lowerCamelCase ): model.train() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowercase__ : Dict = model(**__lowerCamelCase ) lowercase__ : List[Any] = outputs.loss accelerator.backward(__lowerCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ : Tuple = model(**__lowerCamelCase ) lowercase__ : Any = outputs.logits.argmax(dim=-1 ) lowercase__ , lowercase__ : int = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__lowerCamelCase , references=__lowerCamelCase , ) lowercase__ : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , __lowerCamelCase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def __UpperCAmelCase ( ) -> Dict: lowercase__ : Optional[int] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__lowerCamelCase , default=__lowerCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) lowercase__ : int = parser.parse_args() lowercase__ : Union[str, Any] = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": main()
16
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[Any]: print('''\nThe shortest path matrix using Floyd Warshall algorithm\n''' ) for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): if dist[i][j] != float('''inf''' ): print(int(dist[i][j] ) , end='''\t''' ) else: print('''INF''' , end='''\t''' ) print() def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: lowercase__ : str = [[float('''inf''' ) for _ in range(__lowerCamelCase )] for _ in range(__lowerCamelCase )] for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): lowercase__ : List[str] = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(__lowerCamelCase ): # looping through rows of graph array for i in range(__lowerCamelCase ): # looping through columns of graph array for j in range(__lowerCamelCase ): if ( dist[i][k] != float('''inf''' ) and dist[k][j] != float('''inf''' ) and dist[i][k] + dist[k][j] < dist[i][j] ): lowercase__ : str = dist[i][k] + dist[k][j] _print_dist(__lowerCamelCase , __lowerCamelCase ) return dist, v if __name__ == "__main__": lowerCAmelCase_ = int(input('Enter number of vertices: ')) lowerCAmelCase_ = int(input('Enter number of edges: ')) lowerCAmelCase_ = [[float('inf') for i in range(v)] for j in range(v)] for i in range(v): lowerCAmelCase_ = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('\nEdge ', i + 1) lowerCAmelCase_ = int(input('Enter source:')) lowerCAmelCase_ = int(input('Enter destination:')) lowerCAmelCase_ = float(input('Enter weight:')) lowerCAmelCase_ = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
16
1
"""simple docstring""" import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def _snake_case ( _snake_case : int ) -> Any: '''simple docstring''' random.seed(_snake_case ) np.random.seed(_snake_case ) torch.manual_seed(_snake_case ) torch.cuda.manual_seed_all(_snake_case ) # ^^ safe to call this function even if cuda is not available class lowercase_ : '''simple docstring''' def __init__( self : Tuple , _UpperCAmelCase : Iterable[torch.nn.Parameter] , _UpperCAmelCase : float = 0.9999 , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : int = 0 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Union[float, int] = 1.0 , _UpperCAmelCase : Union[float, int] = 2 / 3 , _UpperCAmelCase : Optional[Any] = None , _UpperCAmelCase : Dict[str, Any] = None , **_UpperCAmelCase : Optional[int] , ): if isinstance(_UpperCAmelCase , torch.nn.Module ): _A = ( 'Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. ' 'Please pass the parameters of the module instead.' ) deprecate( 'passing a `torch.nn.Module` to `ExponentialMovingAverage`' , '1.0.0' , _UpperCAmelCase , standard_warn=_UpperCAmelCase , ) _A = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility _A = True if kwargs.get('max_value' , _UpperCAmelCase ) is not None: _A = 'The `max_value` argument is deprecated. Please use `decay` instead.' deprecate('max_value' , '1.0.0' , _UpperCAmelCase , standard_warn=_UpperCAmelCase ) _A = kwargs['max_value'] if kwargs.get('min_value' , _UpperCAmelCase ) is not None: _A = 'The `min_value` argument is deprecated. Please use `min_decay` instead.' deprecate('min_value' , '1.0.0' , _UpperCAmelCase , standard_warn=_UpperCAmelCase ) _A = kwargs['min_value'] _A = list(_UpperCAmelCase ) _A = [p.clone().detach() for p in parameters] if kwargs.get('device' , _UpperCAmelCase ) is not None: _A = 'The `device` argument is deprecated. Please use `to` instead.' deprecate('device' , '1.0.0' , _UpperCAmelCase , standard_warn=_UpperCAmelCase ) self.to(device=kwargs['device'] ) _A = None _A = decay _A = min_decay _A = update_after_step _A = use_ema_warmup _A = inv_gamma _A = power _A = 0 _A = None # set in `step()` _A = model_cls _A = model_config @classmethod def lowerCAmelCase_ ( cls : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] ): _A , _A = model_cls.load_config(_UpperCAmelCase , return_unused_kwargs=_UpperCAmelCase ) _A = model_cls.from_pretrained(_UpperCAmelCase ) _A = cls(model.parameters() , model_cls=_UpperCAmelCase , model_config=model.config ) ema_model.load_state_dict(_UpperCAmelCase ) return ema_model def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Tuple ): if self.model_cls is None: raise ValueError('`save_pretrained` can only be used if `model_cls` was defined at __init__.' ) if self.model_config is None: raise ValueError('`save_pretrained` can only be used if `model_config` was defined at __init__.' ) _A = self.model_cls.from_config(self.model_config ) _A = self.state_dict() state_dict.pop('shadow_params' , _UpperCAmelCase ) model.register_to_config(**_UpperCAmelCase ) self.copy_to(model.parameters() ) model.save_pretrained(_UpperCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : int ): _A = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: _A = 1 - (1 + step / self.inv_gamma) ** -self.power else: _A = (1 + step) / (10 + step) _A = min(_UpperCAmelCase , self.decay ) # make sure decay is not smaller than min_decay _A = max(_UpperCAmelCase , self.min_decay ) return cur_decay_value @torch.no_grad() def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Iterable[torch.nn.Parameter] ): if isinstance(_UpperCAmelCase , torch.nn.Module ): _A = ( 'Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. ' 'Please pass the parameters of the module instead.' ) deprecate( 'passing a `torch.nn.Module` to `ExponentialMovingAverage.step`' , '1.0.0' , _UpperCAmelCase , standard_warn=_UpperCAmelCase , ) _A = parameters.parameters() _A = list(_UpperCAmelCase ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. _A = self.get_decay(self.optimization_step ) _A = decay _A = 1 - decay _A = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , _UpperCAmelCase ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): _A = deepspeed.zero.GatheredParameters(_UpperCAmelCase , modifier_rank=_UpperCAmelCase ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(_UpperCAmelCase ) def lowerCAmelCase_ ( self : str , _UpperCAmelCase : Iterable[torch.nn.Parameter] ): _A = list(_UpperCAmelCase ) for s_param, param in zip(self.shadow_params , _UpperCAmelCase ): param.data.copy_(s_param.to(param.device ).data ) def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Dict=None ): _A = [ p.to(device=_UpperCAmelCase , dtype=_UpperCAmelCase ) if p.is_floating_point() else p.to(device=_UpperCAmelCase ) for p in self.shadow_params ] def lowerCAmelCase_ ( self : Dict ): return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : Iterable[torch.nn.Parameter] ): _A = [param.detach().cpu().clone() for param in parameters] def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Iterable[torch.nn.Parameter] ): if self.temp_stored_params is None: raise RuntimeError('This ExponentialMovingAverage has no `store()`ed weights ' 'to `restore()`' ) for c_param, param in zip(self.temp_stored_params , _UpperCAmelCase ): param.data.copy_(c_param.data ) # Better memory-wise. _A = None def lowerCAmelCase_ ( self : int , _UpperCAmelCase : dict ): _A = copy.deepcopy(_UpperCAmelCase ) _A = state_dict.get('decay' , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError('Decay must be between 0 and 1' ) _A = state_dict.get('min_decay' , self.min_decay ) if not isinstance(self.min_decay , _UpperCAmelCase ): raise ValueError('Invalid min_decay' ) _A = state_dict.get('optimization_step' , self.optimization_step ) if not isinstance(self.optimization_step , _UpperCAmelCase ): raise ValueError('Invalid optimization_step' ) _A = state_dict.get('update_after_step' , self.update_after_step ) if not isinstance(self.update_after_step , _UpperCAmelCase ): raise ValueError('Invalid update_after_step' ) _A = state_dict.get('use_ema_warmup' , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , _UpperCAmelCase ): raise ValueError('Invalid use_ema_warmup' ) _A = state_dict.get('inv_gamma' , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError('Invalid inv_gamma' ) _A = state_dict.get('power' , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError('Invalid power' ) _A = state_dict.get('shadow_params' , _UpperCAmelCase ) if shadow_params is not None: _A = shadow_params if not isinstance(self.shadow_params , _UpperCAmelCase ): raise ValueError('shadow_params must be a list' ) if not all(isinstance(_UpperCAmelCase , torch.Tensor ) for p in self.shadow_params ): raise ValueError('shadow_params must all be Tensors' )
271
"""simple docstring""" import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = (IPNDMScheduler,) UpperCAmelCase : Optional[Any] = (('''num_inference_steps''', 50),) def lowerCAmelCase_ ( self : Union[str, Any] , **_UpperCAmelCase : List[Any] ): _A = {'num_train_timesteps': 1_000} config.update(**_UpperCAmelCase ) return config def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : Optional[int]=0 , **_UpperCAmelCase : Union[str, Any] ): _A = dict(self.forward_default_kwargs ) _A = kwargs.pop('num_inference_steps' , _UpperCAmelCase ) _A = self.dummy_sample _A = 0.1 * sample _A = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _A = self.get_scheduler_config(**_UpperCAmelCase ) _A = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals _A = dummy_past_residuals[:] if time_step is None: _A = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) _A = scheduler_class.from_pretrained(_UpperCAmelCase ) new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals _A = dummy_past_residuals[:] _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _A = new_scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _A = new_scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCAmelCase_ ( self : str ): pass def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Any=0 , **_UpperCAmelCase : Any ): _A = dict(self.forward_default_kwargs ) _A = kwargs.pop('num_inference_steps' , _UpperCAmelCase ) _A = self.dummy_sample _A = 0.1 * sample _A = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _A = self.get_scheduler_config() _A = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) _A = dummy_past_residuals[:] if time_step is None: _A = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) _A = scheduler_class.from_pretrained(_UpperCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residual (must be after setting timesteps) _A = dummy_past_residuals[:] _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _A = new_scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _A = new_scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCAmelCase_ ( self : List[str] , **_UpperCAmelCase : Optional[int] ): _A = self.scheduler_classes[0] _A = self.get_scheduler_config(**_UpperCAmelCase ) _A = scheduler_class(**_UpperCAmelCase ) _A = 10 _A = self.dummy_model() _A = self.dummy_sample_deter scheduler.set_timesteps(_UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): _A = model(_UpperCAmelCase , _UpperCAmelCase ) _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample for i, t in enumerate(scheduler.timesteps ): _A = model(_UpperCAmelCase , _UpperCAmelCase ) _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample return sample def lowerCAmelCase_ ( self : Union[str, Any] ): _A = dict(self.forward_default_kwargs ) _A = kwargs.pop('num_inference_steps' , _UpperCAmelCase ) for scheduler_class in self.scheduler_classes: _A = self.get_scheduler_config() _A = scheduler_class(**_UpperCAmelCase ) _A = self.dummy_sample _A = 0.1 * sample if num_inference_steps is not None and hasattr(_UpperCAmelCase , 'set_timesteps' ): scheduler.set_timesteps(_UpperCAmelCase ) elif num_inference_steps is not None and not hasattr(_UpperCAmelCase , 'set_timesteps' ): _A = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _A = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] _A = dummy_past_residuals[:] _A = scheduler.timesteps[5] _A = scheduler.timesteps[6] _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowerCAmelCase_ ( self : Tuple ): for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase , time_step=_UpperCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=_UpperCAmelCase , time_step=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] ): _A = self.full_loop() _A = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_mean.item() - 2_540_529 ) < 10
271
1
'''simple docstring''' def UpperCamelCase_ ( A__ : List[str]=2_81_23 ): '''simple docstring''' lowerCAmelCase_ : Optional[int] = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i lowerCAmelCase_ : Union[str, Any] = set() lowerCAmelCase_ : Any = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(A__ ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
120
'''simple docstring''' from __future__ import annotations from typing import Any class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" pass class __snake_case : """simple docstring""" def __init__( self : Union[str, Any] , lowerCamelCase : Any ) -> None: lowerCAmelCase_ : Any = data lowerCAmelCase_ : Node | None = None def __iter__( self : Union[str, Any] ) -> Optional[Any]: lowerCAmelCase_ : Union[str, Any] = self lowerCAmelCase_ : Any = [] while node: if node in visited: raise ContainsLoopError visited.append(lowerCamelCase ) yield node.data lowerCAmelCase_ : int = node.next_node @property def __lowercase ( self : str ) -> bool: try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": __A : Dict = Node(1) __A : Optional[Any] = Node(2) __A : int = Node(3) __A : Optional[Any] = Node(4) print(root_node.has_loop) # False __A : Any = root_node.next_node print(root_node.has_loop) # True __A : List[Any] = Node(5) __A : Dict = Node(6) __A : str = Node(5) __A : Dict = Node(6) print(root_node.has_loop) # False __A : Optional[int] = Node(1) print(root_node.has_loop) # False
120
1
"""simple docstring""" import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort _snake_case = logging.get_logger(__name__) _snake_case = { 'tensor(bool)': np.bool_, 'tensor(int8)': np.inta, 'tensor(uint8)': np.uinta, 'tensor(int16)': np.intaa, 'tensor(uint16)': np.uintaa, 'tensor(int32)': np.intaa, 'tensor(uint32)': np.uintaa, 'tensor(int64)': np.intaa, 'tensor(uint64)': np.uintaa, 'tensor(float16)': np.floataa, 'tensor(float)': np.floataa, 'tensor(double)': np.floataa, } class UpperCamelCase : def __init__( self : Dict , UpperCAmelCase__ : List[Any]=None , **UpperCAmelCase__ : int ) -> str: logger.info("""`diffusers.OnnxRuntimeModel` is experimental and might change in the future.""" ) _a : Optional[Any] = model _a : List[Any] = kwargs.get("""model_save_dir""" , UpperCAmelCase__ ) _a : List[str] = kwargs.get("""latest_model_name""" , UpperCAmelCase__ ) def __call__( self : Optional[int] , **UpperCAmelCase__ : List[Any] ) -> Optional[Any]: _a : str = {k: np.array(UpperCAmelCase__ ) for k, v in kwargs.items()} return self.model.run(UpperCAmelCase__ , UpperCAmelCase__ ) @staticmethod def _lowercase ( UpperCAmelCase__ : Union[str, Path] , UpperCAmelCase__ : int=None , UpperCAmelCase__ : List[Any]=None ) -> Tuple: if provider is None: logger.info("""No onnxruntime provider specified, using CPUExecutionProvider""" ) _a : Any = """CPUExecutionProvider""" return ort.InferenceSession(UpperCAmelCase__ , providers=[provider] , sess_options=UpperCAmelCase__ ) def _lowercase ( self : Tuple , UpperCAmelCase__ : Union[str, Path] , UpperCAmelCase__ : Optional[str] = None , **UpperCAmelCase__ : Optional[Any] ) -> int: _a : Union[str, Any] = file_name if file_name is not None else ONNX_WEIGHTS_NAME _a : List[Any] = self.model_save_dir.joinpath(self.latest_model_name ) _a : Any = Path(UpperCAmelCase__ ).joinpath(UpperCAmelCase__ ) try: shutil.copyfile(UpperCAmelCase__ , UpperCAmelCase__ ) except shutil.SameFileError: pass # copy external weights (for models >2GB) _a : List[Any] = self.model_save_dir.joinpath(UpperCAmelCase__ ) if src_path.exists(): _a : str = Path(UpperCAmelCase__ ).joinpath(UpperCAmelCase__ ) try: shutil.copyfile(UpperCAmelCase__ , UpperCAmelCase__ ) except shutil.SameFileError: pass def _lowercase ( self : Tuple , UpperCAmelCase__ : Union[str, os.PathLike] , **UpperCAmelCase__ : str , ) -> Tuple: if os.path.isfile(UpperCAmelCase__ ): logger.error(f"""Provided path ({save_directory}) should be a directory, not a file""" ) return os.makedirs(UpperCAmelCase__ , exist_ok=UpperCAmelCase__ ) # saving model weights/files self._save_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) @classmethod def _lowercase ( cls : Any , UpperCAmelCase__ : Union[str, Path] , UpperCAmelCase__ : Optional[Union[bool, str, None]] = None , UpperCAmelCase__ : Optional[Union[str, None]] = None , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Optional["ort.SessionOptions"] = None , **UpperCAmelCase__ : Optional[Any] , ) -> Tuple: _a : Dict = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(UpperCAmelCase__ ): _a : Union[str, Any] = OnnxRuntimeModel.load_model( os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) , provider=UpperCAmelCase__ , sess_options=UpperCAmelCase__ ) _a : Optional[int] = Path(UpperCAmelCase__ ) # load model from hub else: # download model _a : Union[str, Any] = hf_hub_download( repo_id=UpperCAmelCase__ , filename=UpperCAmelCase__ , use_auth_token=UpperCAmelCase__ , revision=UpperCAmelCase__ , cache_dir=UpperCAmelCase__ , force_download=UpperCAmelCase__ , ) _a : Optional[int] = Path(UpperCAmelCase__ ).parent _a : Union[str, Any] = Path(UpperCAmelCase__ ).name _a : int = OnnxRuntimeModel.load_model(UpperCAmelCase__ , provider=UpperCAmelCase__ , sess_options=UpperCAmelCase__ ) return cls(model=UpperCAmelCase__ , **UpperCAmelCase__ ) @classmethod def _lowercase ( cls : Tuple , UpperCAmelCase__ : Union[str, Path] , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Optional[str] = None , **UpperCAmelCase__ : Union[str, Any] , ) -> str: _a : str = None if len(str(UpperCAmelCase__ ).split("""@""" ) ) == 2: _a , _a : List[str] = model_id.split("""@""" ) return cls._from_pretrained( model_id=UpperCAmelCase__ , revision=UpperCAmelCase__ , cache_dir=UpperCAmelCase__ , force_download=UpperCAmelCase__ , use_auth_token=UpperCAmelCase__ , **UpperCAmelCase__ , )
324
"""simple docstring""" from math import factorial def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if successes > trials: raise ValueError("""successes must be lower or equal to trials""" ) if trials < 0 or successes < 0: raise ValueError("""the function is defined for non-negative integers""" ) if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError("""the function is defined for non-negative integers""" ) if not 0 < prob < 1: raise ValueError("""prob has to be in range of 1 - 0""" ) _a : Optional[int] = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! _a : Optional[int] = float(factorial(UpperCamelCase__ ) ) coefficient /= factorial(UpperCamelCase__ ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('Probability of 2 successes out of 4 trails') print('with probability of 0.75 is:', end=' ') print(binomial_distribution(2, 4, 0.75))
324
1
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL __lowerCamelCase : Dict = version.parse(version.parse(torch.__version__).base_version) < version.parse('''1.11''') def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : tuple , lowerCAmelCase : Path , lowerCAmelCase : str , lowerCAmelCase : int , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : List[str]=False , ): """simple docstring""" output_path.parent.mkdir(parents=lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( lowerCAmelCase__ , lowerCAmelCase__ , f=output_path.as_posix() , input_names=lowerCAmelCase__ , output_names=lowerCAmelCase__ , dynamic_axes=lowerCAmelCase__ , do_constant_folding=lowerCAmelCase__ , use_external_data_format=lowerCAmelCase__ , enable_onnx_checker=lowerCAmelCase__ , opset_version=lowerCAmelCase__ , ) else: export( lowerCAmelCase__ , lowerCAmelCase__ , f=output_path.as_posix() , input_names=lowerCAmelCase__ , output_names=lowerCAmelCase__ , dynamic_axes=lowerCAmelCase__ , do_constant_folding=lowerCAmelCase__ , opset_version=lowerCAmelCase__ , ) @torch.no_grad() def _snake_case ( lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : int , lowerCAmelCase : bool = False ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): SCREAMING_SNAKE_CASE_ : int = "cuda" elif fpaa and not torch.cuda.is_available(): raise ValueError("`float16` model export is only supported on GPUs with CUDA" ) else: SCREAMING_SNAKE_CASE_ : List[str] = "cpu" SCREAMING_SNAKE_CASE_ : Optional[int] = Path(lowerCAmelCase__ ) # VAE DECODER SCREAMING_SNAKE_CASE_ : Optional[Any] = AutoencoderKL.from_pretrained(model_path + "/vae" ) SCREAMING_SNAKE_CASE_ : List[str] = vae_decoder.config.latent_channels # forward only through the decoder part SCREAMING_SNAKE_CASE_ : Union[str, Any] = vae_decoder.decode onnx_export( lowerCAmelCase__ , model_args=( torch.randn(1 , lowerCAmelCase__ , 2_5 , 2_5 ).to(device=lowerCAmelCase__ , dtype=lowerCAmelCase__ ), False, ) , output_path=output_path / "vae_decoder" / "model.onnx" , ordered_input_names=["latent_sample", "return_dict"] , output_names=["sample"] , dynamic_axes={ "latent_sample": {0: "batch", 1: "channels", 2: "height", 3: "width"}, } , opset=lowerCAmelCase__ , ) del vae_decoder if __name__ == "__main__": __lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument( '''--model_path''', type=str, required=True, help='''Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).''', ) parser.add_argument('''--output_path''', type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--opset''', default=14, type=int, help='''The version of the ONNX operator set to use.''', ) parser.add_argument('''--fp16''', action='''store_true''', default=False, help='''Export the models in `float16` mode''') __lowerCamelCase : Dict = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print('''SD: Done: ONNX''')
18
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : List[Any] =logging.get_logger(__name__) __lowerCAmelCase : Union[str, Any] ={ """s-JoL/Open-Llama-V1""": """https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json""", } class _A ( lowerCAmelCase ): snake_case__ : Union[str, Any] = 'open-llama' def __init__( self , __lowerCAmelCase=10_0000 , __lowerCAmelCase=4096 , __lowerCAmelCase=1_1008 , __lowerCAmelCase=32 , __lowerCAmelCase=32 , __lowerCAmelCase="silu" , __lowerCAmelCase=2048 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=1E-6 , __lowerCAmelCase=True , __lowerCAmelCase=0 , __lowerCAmelCase=1 , __lowerCAmelCase=2 , __lowerCAmelCase=False , __lowerCAmelCase=True , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=None , **__lowerCAmelCase , ): """simple docstring""" lowercase = vocab_size lowercase = max_position_embeddings lowercase = hidden_size lowercase = intermediate_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = hidden_act lowercase = initializer_range lowercase = rms_norm_eps lowercase = use_cache lowercase = kwargs.pop( """use_memorry_efficient_attention""" , __lowerCAmelCase ) lowercase = hidden_dropout_prob lowercase = attention_dropout_prob lowercase = use_stable_embedding lowercase = shared_input_output_embedding lowercase = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , tie_word_embeddings=__lowerCAmelCase , **__lowerCAmelCase , ) def A__ ( self ): """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __lowerCAmelCase ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f'got {self.rope_scaling}' ) lowercase = self.rope_scaling.get("""type""" , __lowerCAmelCase ) lowercase = self.rope_scaling.get("""factor""" , __lowerCAmelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}' ) if rope_scaling_factor is None or not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or rope_scaling_factor <= 1.0: raise ValueError(f'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}' )
197
0
from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def snake_case ( snake_case__ :Dict) -> int: if not is_accelerate_available(): return method _A = version.parse(accelerate.__version__).base_version if version.parse(a__) < version.parse("""0.17.0"""): return method def wrapper(self :Optional[Any] , *snake_case__ :Optional[Any] , **snake_case__ :List[str]): if hasattr(self , """_hf_hook""") and hasattr(self._hf_hook , """pre_forward"""): self._hf_hook.pre_forward(self) return method(self , *a__ , **a__) return wrapper
370
from collections.abc import Sequence def snake_case ( snake_case__ :Sequence[float] , snake_case__ :bool = False) -> float: if not arr: return 0 _A = 0 if allow_empty_subarrays else float("""-inf""") _A = 0.0 for num in arr: _A = max(0 if allow_empty_subarrays else num , curr_sum + num) _A = max(snake_case__ , snake_case__) return max_sum if __name__ == "__main__": from doctest import testmod testmod() _SCREAMING_SNAKE_CASE = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F'''{max_subarray_sum(nums) = }''')
81
0
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=_snake_case ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = field(default="""summarization""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) UpperCAmelCase_ : List[str] = Features({"""text""": Value("""string""" )} ) UpperCAmelCase_ : Tuple = Features({"""summary""": Value("""string""" )} ) UpperCAmelCase_ : Union[str, Any] = """text""" UpperCAmelCase_ : Dict = """summary""" @property def UpperCAmelCase_ ( self : List[str] ) -> Optional[int]: return {self.text_column: "text", self.summary_column: "summary"}
151
"""simple docstring""" import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset UpperCAmelCase : str = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class lowerCamelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Union[str, Any] , UpperCamelCase : Optional[int] ): '''simple docstring''' super().__init__() __UpperCAmelCase : Union[str, Any] = torchvision.models.resnetaaa(pretrained=UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = list(model.children() )[:-2] __UpperCAmelCase : Tuple = nn.Sequential(*UpperCamelCase ) __UpperCAmelCase : Tuple = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : List[str] ): '''simple docstring''' __UpperCAmelCase : int = self.pool(self.model(UpperCamelCase ) ) __UpperCAmelCase : str = torch.flatten(UpperCamelCase , start_dim=2 ) __UpperCAmelCase : Union[str, Any] = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class lowerCamelCase__ ( A ): """simple docstring""" def __init__( self : str , UpperCamelCase : str , UpperCamelCase : Tuple , UpperCamelCase : str , UpperCamelCase : Any , UpperCamelCase : Optional[int] ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = [json.loads(UpperCamelCase ) for l in open(UpperCamelCase )] __UpperCAmelCase : Optional[Any] = os.path.dirname(UpperCamelCase ) __UpperCAmelCase : List[Any] = tokenizer __UpperCAmelCase : List[str] = labels __UpperCAmelCase : Optional[int] = len(UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = max_seq_length __UpperCAmelCase : Tuple = transforms def __len__( self : Tuple ): '''simple docstring''' return len(self.data ) def __getitem__( self : int , UpperCamelCase : Any ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = torch.LongTensor(self.tokenizer.encode(self.data[index]["""text"""] , add_special_tokens=UpperCamelCase ) ) __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : Dict = sentence[0], sentence[1:-1], sentence[-1] __UpperCAmelCase : Union[str, Any] = sentence[: self.max_seq_length] __UpperCAmelCase : Tuple = torch.zeros(self.n_classes ) __UpperCAmelCase : str = 1 __UpperCAmelCase : List[str] = Image.open(os.path.join(self.data_dir , self.data[index]["""img"""] ) ).convert("""RGB""" ) __UpperCAmelCase : Any = self.transforms(UpperCamelCase ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : int = Counter() for row in self.data: label_freqs.update(row["""label"""] ) return label_freqs def lowerCamelCase ( _UpperCamelCase : Union[str, Any] ) -> Any: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = [len(row["""sentence"""] ) for row in batch] __UpperCAmelCase ,__UpperCAmelCase : Union[str, Any] = len(_UpperCamelCase ), max(_UpperCamelCase ) __UpperCAmelCase : int = torch.zeros(_UpperCamelCase , _UpperCamelCase , dtype=torch.long ) __UpperCAmelCase : Any = torch.zeros(_UpperCamelCase , _UpperCamelCase , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(_UpperCamelCase , _UpperCamelCase ) ): __UpperCAmelCase : List[str] = input_row["""sentence"""] __UpperCAmelCase : Optional[Any] = 1 __UpperCAmelCase : int = torch.stack([row["""image"""] for row in batch] ) __UpperCAmelCase : Optional[int] = torch.stack([row["""label"""] for row in batch] ) __UpperCAmelCase : int = torch.stack([row["""image_start_token"""] for row in batch] ) __UpperCAmelCase : int = torch.stack([row["""image_end_token"""] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def lowerCamelCase ( ) -> List[str]: '''simple docstring''' return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def lowerCamelCase ( ) -> Dict: '''simple docstring''' return transforms.Compose( [ transforms.Resize(2_5_6 ), transforms.CenterCrop(2_2_4 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46_777_044, 0.44_531_429, 0.40_661_017] , std=[0.12_221_994, 0.12_145_835, 0.14_380_469] , ), ] )
115
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : Union[str, Any] = 'encoder-decoder' A_ : Optional[int] = True def __init__(self : List[str] , **a__ : Any ): """simple docstring""" super().__init__(**a__ ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" __snake_case = kwargs.pop('''encoder''' ) __snake_case = encoder_config.pop('''model_type''' ) __snake_case = kwargs.pop('''decoder''' ) __snake_case = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig __snake_case = AutoConfig.for_model(a__ , **a__ ) __snake_case = AutoConfig.for_model(a__ , **a__ ) __snake_case = True @classmethod def a (cls : Optional[Any] , a__ : PretrainedConfig , a__ : PretrainedConfig , **a__ : Optional[Any] ): """simple docstring""" logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) __snake_case = True __snake_case = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **a__ ) def a (self : str ): """simple docstring""" __snake_case = copy.deepcopy(self.__dict__ ) __snake_case = self.encoder.to_dict() __snake_case = self.decoder.to_dict() __snake_case = self.__class__.model_type return output
351
import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 snake_case_ = data_utils.TransfoXLTokenizer snake_case_ = data_utils.TransfoXLCorpus snake_case_ = data_utils snake_case_ = data_utils def lowerCamelCase__ ( snake_case_ : Union[str, Any] , snake_case_ : int , snake_case_ : List[Any] , snake_case_ : int ) -> Dict: if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(snake_case_ , '''rb''' ) as fp: __snake_case = pickle.load(snake_case_ , encoding='''latin1''' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) __snake_case = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''pretrained_vocab_file'''] print(f"""Save vocabulary to {pytorch_vocab_dump_path}""" ) __snake_case = corpus.vocab.__dict__ torch.save(snake_case_ , snake_case_ ) __snake_case = corpus.__dict__ corpus_dict_no_vocab.pop('''vocab''' , snake_case_ ) __snake_case = pytorch_dump_folder_path + '''/''' + CORPUS_NAME print(f"""Save dataset to {pytorch_dataset_dump_path}""" ) torch.save(snake_case_ , snake_case_ ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model __snake_case = os.path.abspath(snake_case_ ) __snake_case = os.path.abspath(snake_case_ ) print(f"""Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.""" ) # Initialise PyTorch model if transfo_xl_config_file == "": __snake_case = TransfoXLConfig() else: __snake_case = TransfoXLConfig.from_json_file(snake_case_ ) print(f"""Building PyTorch model from configuration: {config}""" ) __snake_case = TransfoXLLMHeadModel(snake_case_ ) __snake_case = load_tf_weights_in_transfo_xl(snake_case_ , snake_case_ , snake_case_ ) # Save pytorch-model __snake_case = os.path.join(snake_case_ , snake_case_ ) __snake_case = os.path.join(snake_case_ , snake_case_ ) print(f"""Save PyTorch model to {os.path.abspath(snake_case_ )}""" ) torch.save(model.state_dict() , snake_case_ ) print(f"""Save configuration file to {os.path.abspath(snake_case_ )}""" ) with open(snake_case_ , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": snake_case_ = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--tf_checkpoint_path', default='', type=str, help='An optional path to a TensorFlow checkpoint path to be converted.', ) parser.add_argument( '--transfo_xl_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--transfo_xl_dataset_file', default='', type=str, help='An optional dataset file to be converted in a vocabulary.', ) snake_case_ = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
238
0
"""simple docstring""" from __future__ import annotations def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) ->None: """simple docstring""" a_ = len(__lowercase ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([". " * i + "Q " + ". " * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(__lowercase ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , __lowercase , __lowercase , ) def UpperCamelCase ( UpperCAmelCase ) ->None: """simple docstring""" a_ = [] depth_first_search([] , [] , [] , __lowercase , __lowercase ) # Print all the boards for board in boards: for column in board: print(__lowercase ) print("" ) print(len(__lowercase ) , "solutions were found." ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
243
from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def a_ ( __lowercase : Sequence[float] , __lowercase : int , __lowercase : int ) -> tuple[int | None, int | None, float]: if not arr: return None, None, 0 if low == high: return low, high, arr[low] _snake_case = (low + high) // 2 _snake_case , _snake_case , _snake_case = max_subarray(__lowercase , __lowercase , __lowercase ) _snake_case , _snake_case , _snake_case = max_subarray(__lowercase , mid + 1 , __lowercase ) _snake_case , _snake_case , _snake_case = max_cross_sum(__lowercase , __lowercase , __lowercase , __lowercase ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def a_ ( __lowercase : Sequence[float] , __lowercase : int , __lowercase : int , __lowercase : int ) -> tuple[int, int, float]: _snake_case , _snake_case = float('-inf' ), -1 _snake_case , _snake_case = float('-inf' ), -1 _snake_case = 0 for i in range(__lowercase , low - 1 , -1 ): summ += arr[i] if summ > left_sum: _snake_case = summ _snake_case = i _snake_case = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: _snake_case = summ _snake_case = i return max_left, max_right, (left_sum + right_sum) def a_ ( __lowercase : int ) -> float: _snake_case = [randint(1 , __lowercase ) for _ in range(__lowercase )] _snake_case = time.time() max_subarray(__lowercase , 0 , input_size - 1 ) _snake_case = time.time() return end - start def a_ ( ) -> None: _snake_case = [10, 100, 1_000, 10_000, 50_000, 100_000, 200_000, 300_000, 400_000, 500_000] _snake_case = [time_max_subarray(__lowercase ) for input_size in input_sizes] print('No of Inputs\t\tTime Taken' ) for input_size, runtime in zip(__lowercase , __lowercase ): print(__lowercase , '\t\t' , __lowercase ) plt.plot(__lowercase , __lowercase ) plt.xlabel('Number of Inputs' ) plt.ylabel('Time taken in seconds' ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
282
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowercase_ ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase_ ( self : Optional[int] ): """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" _SCREAMING_SNAKE_CASE = 1 _SCREAMING_SNAKE_CASE = 3 _SCREAMING_SNAKE_CASE = (3_2, 3_2) _SCREAMING_SNAKE_CASE = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__lowerCamelCase ) return image @property def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , ) return model @property def lowerCAmelCase_ ( self : str ): """simple docstring""" torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_6 , ) return RobertaSeriesModelWithTransformation(__lowerCamelCase ) @property def lowerCAmelCase_ ( self : Any ): """simple docstring""" def extract(*__lowerCamelCase : Optional[Any] , **__lowerCamelCase : List[str] ): class lowercase_ : """simple docstring""" def __init__( self : List[Any] ): """simple docstring""" _SCREAMING_SNAKE_CASE = torch.ones([0] ) def lowerCAmelCase_ ( self : int , __lowerCamelCase : Optional[Any] ): """simple docstring""" self.pixel_values.to(__lowerCamelCase ) return self return Out() return extract def lowerCAmelCase_ ( self : Any ): """simple docstring""" _SCREAMING_SNAKE_CASE = "cpu" # ensure determinism for the device-dependent torch.Generator _SCREAMING_SNAKE_CASE = self.dummy_cond_unet _SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = self.dummy_vae _SCREAMING_SNAKE_CASE = self.dummy_text_encoder _SCREAMING_SNAKE_CASE = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) _SCREAMING_SNAKE_CASE = 7_7 _SCREAMING_SNAKE_CASE = self.dummy_image.to(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk _SCREAMING_SNAKE_CASE = AltDiffusionImgaImgPipeline( unet=__lowerCamelCase , scheduler=__lowerCamelCase , vae=__lowerCamelCase , text_encoder=__lowerCamelCase , tokenizer=__lowerCamelCase , safety_checker=__lowerCamelCase , feature_extractor=self.dummy_extractor , ) _SCREAMING_SNAKE_CASE = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = alt_pipe.to(__lowerCamelCase ) alt_pipe.set_progress_bar_config(disable=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = "A painting of a squirrel eating a burger" _SCREAMING_SNAKE_CASE = torch.Generator(device=__lowerCamelCase ).manual_seed(0 ) _SCREAMING_SNAKE_CASE = alt_pipe( [prompt] , generator=__lowerCamelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=__lowerCamelCase , ) _SCREAMING_SNAKE_CASE = output.images _SCREAMING_SNAKE_CASE = torch.Generator(device=__lowerCamelCase ).manual_seed(0 ) _SCREAMING_SNAKE_CASE = alt_pipe( [prompt] , generator=__lowerCamelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=__lowerCamelCase , return_dict=__lowerCamelCase , )[0] _SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] _SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) _SCREAMING_SNAKE_CASE = np.array([0.4_4_2_7, 0.3_7_3_1, 0.4_2_4_9, 0.4_9_4_1, 0.4_5_4_6, 0.4_1_4_8, 0.4_1_9_3, 0.4_6_6_6, 0.4_4_9_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def lowerCAmelCase_ ( self : List[str] ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.dummy_cond_unet _SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = self.dummy_vae _SCREAMING_SNAKE_CASE = self.dummy_text_encoder _SCREAMING_SNAKE_CASE = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) _SCREAMING_SNAKE_CASE = 7_7 _SCREAMING_SNAKE_CASE = self.dummy_image.to(__lowerCamelCase ) # put models in fp16 _SCREAMING_SNAKE_CASE = unet.half() _SCREAMING_SNAKE_CASE = vae.half() _SCREAMING_SNAKE_CASE = bert.half() # make sure here that pndm scheduler skips prk _SCREAMING_SNAKE_CASE = AltDiffusionImgaImgPipeline( unet=__lowerCamelCase , scheduler=__lowerCamelCase , vae=__lowerCamelCase , text_encoder=__lowerCamelCase , tokenizer=__lowerCamelCase , safety_checker=__lowerCamelCase , feature_extractor=self.dummy_extractor , ) _SCREAMING_SNAKE_CASE = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = alt_pipe.to(__lowerCamelCase ) alt_pipe.set_progress_bar_config(disable=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = "A painting of a squirrel eating a burger" _SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = alt_pipe( [prompt] , generator=__lowerCamelCase , num_inference_steps=2 , output_type="np" , image=__lowerCamelCase , ).images assert image.shape == (1, 3_2, 3_2, 3) @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def lowerCAmelCase_ ( self : int ): """simple docstring""" _SCREAMING_SNAKE_CASE = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 _SCREAMING_SNAKE_CASE = init_image.resize((7_6_0, 5_0_4) ) _SCREAMING_SNAKE_CASE = "BAAI/AltDiffusion" _SCREAMING_SNAKE_CASE = AltDiffusionImgaImgPipeline.from_pretrained( __lowerCamelCase , safety_checker=__lowerCamelCase , ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) pipe.enable_attention_slicing() _SCREAMING_SNAKE_CASE = "A fantasy landscape, trending on artstation" _SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = pipe( prompt=__lowerCamelCase , image=__lowerCamelCase , strength=0.7_5 , guidance_scale=7.5 , generator=__lowerCamelCase , output_type="np" , ) _SCREAMING_SNAKE_CASE = output.images[0] _SCREAMING_SNAKE_CASE = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert image.shape == (5_0_4, 7_6_0, 3) _SCREAMING_SNAKE_CASE = np.array([0.9_3_5_8, 0.9_3_9_7, 0.9_5_9_9, 0.9_9_0_1, 1.0_0_0_0, 1.0_0_0_0, 0.9_8_8_2, 1.0_0_0_0, 1.0_0_0_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class lowercase_ ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self : List[str] ): """simple docstring""" _SCREAMING_SNAKE_CASE = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) _SCREAMING_SNAKE_CASE = init_image.resize((7_6_8, 5_1_2) ) _SCREAMING_SNAKE_CASE = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) _SCREAMING_SNAKE_CASE = "BAAI/AltDiffusion" _SCREAMING_SNAKE_CASE = AltDiffusionImgaImgPipeline.from_pretrained( __lowerCamelCase , safety_checker=__lowerCamelCase , ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) pipe.enable_attention_slicing() _SCREAMING_SNAKE_CASE = "A fantasy landscape, trending on artstation" _SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = pipe( prompt=__lowerCamelCase , image=__lowerCamelCase , strength=0.7_5 , guidance_scale=7.5 , generator=__lowerCamelCase , output_type="np" , ) _SCREAMING_SNAKE_CASE = output.images[0] assert image.shape == (5_1_2, 7_6_8, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
111
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCamelCase_ = abspath(join(dirname(dirname(__file__)), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def SCREAMING_SNAKE_CASE_ ( __A : Dict ) -> Dict: from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(__A ) def SCREAMING_SNAKE_CASE_ ( __A : List[Any] ) -> str: from diffusers.utils.testing_utils import pytest_terminal_summary_main _SCREAMING_SNAKE_CASE = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(__A , id=__A )
111
1