code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase : Union[str, Any] =logging.get_logger(__name__) __lowerCAmelCase : List[Any] ={ 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/config.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/config.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/config.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/config.json', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json', 'roberta-large-openai-detector': 'https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json', } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = '''roberta''' def __init__( self :str , lowerCAmelCase__ :Any=50_265 , lowerCAmelCase__ :List[str]=768 , lowerCAmelCase__ :Dict=12 , lowerCAmelCase__ :Union[str, Any]=12 , lowerCAmelCase__ :Optional[Any]=3_072 , lowerCAmelCase__ :List[Any]="gelu" , lowerCAmelCase__ :List[Any]=0.1 , lowerCAmelCase__ :Optional[int]=0.1 , lowerCAmelCase__ :int=512 , lowerCAmelCase__ :List[str]=2 , lowerCAmelCase__ :str=0.02 , lowerCAmelCase__ :Union[str, Any]=1E-1_2 , lowerCAmelCase__ :Optional[int]=1 , lowerCAmelCase__ :Tuple=0 , lowerCAmelCase__ :int=2 , lowerCAmelCase__ :int="absolute" , lowerCAmelCase__ :Any=True , lowerCAmelCase__ :str=None , **lowerCAmelCase__ :int , ) -> List[Any]: super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = vocab_size __SCREAMING_SNAKE_CASE : Optional[int] = hidden_size __SCREAMING_SNAKE_CASE : Dict = num_hidden_layers __SCREAMING_SNAKE_CASE : Dict = num_attention_heads __SCREAMING_SNAKE_CASE : List[Any] = hidden_act __SCREAMING_SNAKE_CASE : Optional[int] = intermediate_size __SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Tuple = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings __SCREAMING_SNAKE_CASE : Optional[int] = type_vocab_size __SCREAMING_SNAKE_CASE : str = initializer_range __SCREAMING_SNAKE_CASE : str = layer_norm_eps __SCREAMING_SNAKE_CASE : Any = position_embedding_type __SCREAMING_SNAKE_CASE : str = use_cache __SCREAMING_SNAKE_CASE : Tuple = classifier_dropout class _lowercase ( A__ ): '''simple docstring''' @property def __magic_name__( self :str ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __SCREAMING_SNAKE_CASE : Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __SCREAMING_SNAKE_CASE : int = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
9
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __A = "platform" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def lowerCAmelCase_ ( __a , __a , __a=None , __a=None , __a=None , __a=None , __a=None , __a=None , ) -> Any: """simple docstring""" if attention_mask is None: lowerCamelCase__: Optional[Any] =np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: lowerCamelCase__: Dict =np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: lowerCamelCase__: Optional[Any] =np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCamelCase__: Any =np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCamelCase__: List[str] =np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict=13 , UpperCAmelCase_ : List[Any]=7 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : Union[str, Any]=99 , UpperCAmelCase_ : Any=16 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Any=4 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : int="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : Tuple=32 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : int=1 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : Any=0.02 , ) ->Optional[int]: '''simple docstring''' lowerCamelCase__: int =parent lowerCamelCase__: List[str] =batch_size lowerCamelCase__: Optional[int] =seq_length lowerCamelCase__: Optional[Any] =is_training lowerCamelCase__: str =use_labels lowerCamelCase__: Optional[Any] =vocab_size lowerCamelCase__: int =hidden_size lowerCamelCase__: Dict =num_hidden_layers lowerCamelCase__: Any =num_attention_heads lowerCamelCase__: str =intermediate_size lowerCamelCase__: int =hidden_act lowerCamelCase__: Tuple =hidden_dropout_prob lowerCamelCase__: List[str] =attention_probs_dropout_prob lowerCamelCase__: Optional[int] =max_position_embeddings lowerCamelCase__: int =eos_token_id lowerCamelCase__: Union[str, Any] =pad_token_id lowerCamelCase__: List[str] =bos_token_id lowerCamelCase__: int =initializer_range def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Optional[Any] =np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) , 3 , self.vocab_size) lowerCamelCase__: str =np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa)) , -1) lowerCamelCase__: int =shift_tokens_right(UpperCAmelCase_ , 1 , 2) lowerCamelCase__: Dict =BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=UpperCAmelCase_ , ) lowerCamelCase__: Any =prepare_blenderbot_inputs_dict(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) return config, inputs_dict def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Dict =self.prepare_config_and_inputs() return config, inputs_dict def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Optional[Any] =20 lowerCamelCase__: Optional[int] =model_class_name(UpperCAmelCase_) lowerCamelCase__: str =model.encode(inputs_dict["input_ids"]) lowerCamelCase__ , lowerCamelCase__: List[Any] =( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) lowerCamelCase__: Union[str, Any] =model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4") lowerCamelCase__: Tuple =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCamelCase__: Union[str, Any] =model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: Union[str, Any] =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4") lowerCamelCase__: Dict =model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: List[Any] =model.decode(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Optional[Any] =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""") def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: List[str] =20 lowerCamelCase__: Optional[Any] =model_class_name(UpperCAmelCase_) lowerCamelCase__: Any =model.encode(inputs_dict["input_ids"]) lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) lowerCamelCase__: Optional[int] =jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) lowerCamelCase__: Union[str, Any] =model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Tuple =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCamelCase__: List[Any] =model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: Dict =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4") lowerCamelCase__: str =model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: Union[str, Any] =model.decode(UpperCAmelCase_ , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_) lowerCamelCase__: str =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""") @require_flax class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' lowercase_ = 99 def SCREAMING_SNAKE_CASE_ (self : Any) ->int: '''simple docstring''' lowerCamelCase__: Union[str, Any] =np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) lowerCamelCase__: Optional[Any] =input_ids.shape[0] lowerCamelCase__: List[str] =BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Any =self._get_config_and_data() lowerCamelCase__: Dict =FlaxBlenderbotForConditionalGeneration(UpperCAmelCase_) lowerCamelCase__: Dict =lm_model(input_ids=UpperCAmelCase_) lowerCamelCase__: Dict =(batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["logits"].shape , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Dict) ->str: '''simple docstring''' lowerCamelCase__: Optional[int] =BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) lowerCamelCase__: str =FlaxBlenderbotForConditionalGeneration(UpperCAmelCase_) lowerCamelCase__: Optional[int] =np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa) lowerCamelCase__: Optional[int] =np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa) lowerCamelCase__: List[str] =lm_model(input_ids=UpperCAmelCase_ , decoder_input_ids=UpperCAmelCase_) lowerCamelCase__: Optional[int] =(*summary.shape, config.vocab_size) self.assertEqual(outputs["logits"].shape , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple: '''simple docstring''' lowerCamelCase__: Optional[int] =np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa) lowerCamelCase__: Optional[int] =shift_tokens_right(UpperCAmelCase_ , 1 , 2) lowerCamelCase__: List[str] =np.equal(UpperCAmelCase_ , 1).astype(np.floataa).sum() lowerCamelCase__: Tuple =np.equal(UpperCAmelCase_ , 1).astype(np.floataa).sum() self.assertEqual(shifted.shape , input_ids.shape) self.assertEqual(UpperCAmelCase_ , n_pad_before - 1) self.assertTrue(np.equal(shifted[:, 0] , 2).all()) @require_flax class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase , __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = True lowercase_ = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) lowercase_ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def SCREAMING_SNAKE_CASE_ (self : List[str]) ->List[Any]: '''simple docstring''' lowerCamelCase__: List[Any] =FlaxBlenderbotModelTester(self) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[str]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: List[str] =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->List[Any]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: List[str] =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->str: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowerCamelCase__: List[str] =self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Optional[int] =model_class(UpperCAmelCase_) @jax.jit def encode_jitted(UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any=None , **UpperCAmelCase_ : List[str]): return model.encode(input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_) with self.subTest("JIT Enabled"): lowerCamelCase__: Any =encode_jitted(**UpperCAmelCase_).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): lowerCamelCase__: Tuple =encode_jitted(**UpperCAmelCase_).to_tuple() self.assertEqual(len(UpperCAmelCase_) , len(UpperCAmelCase_)) for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: List[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowerCamelCase__: Optional[Any] =model_class(UpperCAmelCase_) lowerCamelCase__: List[Any] =model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"]) lowerCamelCase__: int ={ "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]): return model.decode( decoder_input_ids=UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , encoder_outputs=UpperCAmelCase_ , ) with self.subTest("JIT Enabled"): lowerCamelCase__: int =decode_jitted(**UpperCAmelCase_).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): lowerCamelCase__: int =decode_jitted(**UpperCAmelCase_).to_tuple() self.assertEqual(len(UpperCAmelCase_) , len(UpperCAmelCase_)) for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) @slow def SCREAMING_SNAKE_CASE_ (self : Any) ->Union[str, Any]: '''simple docstring''' for model_class_name in self.all_model_classes: lowerCamelCase__: Optional[int] =model_class_name.from_pretrained("facebook/blenderbot-400M-distill") # FlaxBlenderbotForSequenceClassification expects eos token in input_ids lowerCamelCase__: int =np.ones((1, 1)) * model.config.eos_token_id lowerCamelCase__: str =model(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) @unittest.skipUnless(jax_device != "cpu" , "3B test too slow on CPU.") @slow def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Dict: '''simple docstring''' lowerCamelCase__: Dict ={"num_beams": 1, "early_stopping": True, "min_length": 15, "max_length": 25} lowerCamelCase__: Union[str, Any] ={"skip_special_tokens": True, "clean_up_tokenization_spaces": True} lowerCamelCase__: Dict =FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-3B" , from_pt=UpperCAmelCase_) lowerCamelCase__: List[str] =BlenderbotTokenizer.from_pretrained("facebook/blenderbot-3B") lowerCamelCase__: Any =["Sam"] lowerCamelCase__: Tuple =tokenizer(UpperCAmelCase_ , return_tensors="jax") lowerCamelCase__: Optional[Any] =model.generate(**UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Any ="Sam is a great name. It means \"sun\" in Gaelic." lowerCamelCase__: Optional[Any] =tokenizer.batch_decode(UpperCAmelCase_ , **UpperCAmelCase_) assert generated_txt[0].strip() == tgt_text
10
0
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def a ( ): """simple docstring""" UpperCamelCase : Any = HfArgumentParser(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = parser.parse_args_into_dataclasses()[0] UpperCamelCase : Any = TensorFlowBenchmark(args=SCREAMING_SNAKE_CASE_ ) try: UpperCamelCase : Optional[Any] = parser.parse_args_into_dataclasses()[0] except ValueError as e: UpperCamelCase : List[Any] = '''Arg --no_{0} is no longer used, please use --no-{0} instead.''' UpperCamelCase : Optional[Any] = ''' '''.join(str(SCREAMING_SNAKE_CASE_ ).split(''' ''' )[:-1] ) UpperCamelCase : str = '''''' UpperCamelCase : List[str] = eval(str(SCREAMING_SNAKE_CASE_ ).split(''' ''' )[-1] ) UpperCamelCase : Tuple = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) > 0: UpperCamelCase : Any = full_error_msg + begin_error_msg + str(SCREAMING_SNAKE_CASE_ ) raise ValueError(SCREAMING_SNAKE_CASE_ ) benchmark.run() if __name__ == "__main__": main()
315
import math def a ( SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False UpperCamelCase : Union[str, Any] = range(3 , int(math.sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def a ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple=1 , **SCREAMING_SNAKE_CASE_ : Tuple ): """simple docstring""" UpperCamelCase : Tuple = factor * value UpperCamelCase : Optional[int] = value while not is_prime(SCREAMING_SNAKE_CASE_ ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **SCREAMING_SNAKE_CASE_ ) return value
315
1
import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants _UpperCAmelCase : Dict = Mapping[str, np.ndarray] _UpperCAmelCase : Dict = Mapping[str, Any] # Is a nested dict. _UpperCAmelCase : Dict = 0.01 @dataclasses.dataclass(frozen=_SCREAMING_SNAKE_CASE ) class lowercase : __lowercase : np.ndarray # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. __lowercase : np.ndarray # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. __lowercase : np.ndarray # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. __lowercase : np.ndarray # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. __lowercase : np.ndarray # [num_res, num_atom_type] # Chain indices for multi-chain predictions __lowercase : Optional[np.ndarray] = None # Optional remark about the protein. Included as a comment in output PDB # files __lowercase : Optional[str] = None # Templates used to generate this protein (prediction-only) __lowercase : Optional[Sequence[str]] = None # Chain corresponding to each parent __lowercase : Optional[Sequence[int]] = None def A ( lowercase ) -> Protein: '''simple docstring''' UpperCamelCase = R'(\[[A-Z]+\]\n)' UpperCamelCase = [tag.strip() for tag in re.split(lowercase , lowercase ) if len(lowercase ) > 0] UpperCamelCase = zip(tags[0::2] , [l.split('\n' ) for l in tags[1::2]] ) UpperCamelCase = ["N", "CA", "C"] UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None for g in groups: if "[PRIMARY]" == g[0]: UpperCamelCase = g[1][0].strip() for i in range(len(lowercase ) ): if seq[i] not in residue_constants.restypes: UpperCamelCase = 'X' # FIXME: strings are immutable UpperCamelCase = np.array( [residue_constants.restype_order.get(lowercase , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: UpperCamelCase = [] for axis in range(3 ): tertiary.append(list(map(lowercase , g[1][axis].split() ) ) ) UpperCamelCase = np.array(lowercase ) UpperCamelCase = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(lowercase ): UpperCamelCase = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: UpperCamelCase = np.array(list(map({'-': 0, '+': 1}.get , g[1][0].strip() ) ) ) UpperCamelCase = np.zeros( ( len(lowercase ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(lowercase ): UpperCamelCase = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=lowercase , atom_mask=lowercase , aatype=lowercase , residue_index=np.arange(len(lowercase ) ) , b_factors=lowercase , ) def A ( lowercase , lowercase = 0 ) -> List[str]: '''simple docstring''' UpperCamelCase = [] UpperCamelCase = prot.remark if remark is not None: pdb_headers.append(f'''REMARK {remark}''' ) UpperCamelCase = prot.parents UpperCamelCase = prot.parents_chain_index if parents is not None and parents_chain_index is not None: UpperCamelCase = [p for i, p in zip(lowercase , lowercase ) if i == chain_id] if parents is None or len(lowercase ) == 0: UpperCamelCase = ['N/A'] pdb_headers.append(f'''PARENT {' '.join(lowercase )}''' ) return pdb_headers def A ( lowercase , lowercase ) -> str: '''simple docstring''' UpperCamelCase = [] UpperCamelCase = pdb_str.split('\n' ) UpperCamelCase = prot.remark if remark is not None: out_pdb_lines.append(f'''REMARK {remark}''' ) UpperCamelCase = 42 if prot.parents is not None and len(prot.parents ) > 0: UpperCamelCase = [] if prot.parents_chain_index is not None: UpperCamelCase = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(lowercase ) , [] ) parent_dict[str(lowercase )].append(lowercase ) UpperCamelCase = max([int(lowercase ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): UpperCamelCase = parent_dict.get(str(lowercase ) , ['N/A'] ) parents_per_chain.append(lowercase ) else: parents_per_chain.append(list(prot.parents ) ) else: UpperCamelCase = [['N/A']] def make_parent_line(lowercase ) -> str: return f'''PARENT {' '.join(lowercase )}''' out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) UpperCamelCase = 0 for i, l in enumerate(lowercase ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(lowercase ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(lowercase ): UpperCamelCase = parents_per_chain[chain_counter] else: UpperCamelCase = ['N/A'] out_pdb_lines.append(make_parent_line(lowercase ) ) return "\n".join(lowercase ) def A ( lowercase ) -> str: '''simple docstring''' UpperCamelCase = residue_constants.restypes + ['X'] def res_atoa(lowercase ) -> str: return residue_constants.restype_atoa.get(restypes[r] , 'UNK' ) UpperCamelCase = residue_constants.atom_types UpperCamelCase = [] UpperCamelCase = prot.atom_mask UpperCamelCase = prot.aatype UpperCamelCase = prot.atom_positions UpperCamelCase = prot.residue_index.astype(np.intaa ) UpperCamelCase = prot.b_factors UpperCamelCase = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError('Invalid aatypes.' ) UpperCamelCase = get_pdb_headers(lowercase ) if len(lowercase ) > 0: pdb_lines.extend(lowercase ) UpperCamelCase = aatype.shape[0] UpperCamelCase = 1 UpperCamelCase = 0 UpperCamelCase = string.ascii_uppercase UpperCamelCase = None # Add all atom sites. for i in range(lowercase ): UpperCamelCase = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(lowercase , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue UpperCamelCase = 'ATOM' UpperCamelCase = atom_name if len(lowercase ) == 4 else f''' {atom_name}''' UpperCamelCase = '' UpperCamelCase = '' UpperCamelCase = 1.0_0 UpperCamelCase = atom_name[0] # Protein supports only C, N, O, S, this works. UpperCamelCase = '' UpperCamelCase = 'A' if chain_index is not None: UpperCamelCase = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! UpperCamelCase = ( f'''{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}''' f'''{res_name_a:>3} {chain_tag:>1}''' f'''{residue_index[i]:>4}{insertion_code:>1} ''' f'''{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}''' f'''{occupancy:>6.2f}{b_factor:>6.2f} ''' f'''{element:>2}{charge:>2}''' ) pdb_lines.append(lowercase ) atom_index += 1 UpperCamelCase = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: UpperCamelCase = True UpperCamelCase = chain_index[i + 1] if should_terminate: # Close the chain. UpperCamelCase = 'TER' UpperCamelCase = ( f'''{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}''' ) pdb_lines.append(lowercase ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(lowercase , lowercase ) ) pdb_lines.append('END' ) pdb_lines.append('' ) return "\n".join(lowercase ) def A ( lowercase ) -> np.ndarray: '''simple docstring''' return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def A ( lowercase , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , ) -> Protein: '''simple docstring''' return Protein( aatype=features['aatype'] , atom_positions=result['final_atom_positions'] , atom_mask=result['final_atom_mask'] , residue_index=features['residue_index'] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result['final_atom_mask'] ) , chain_index=lowercase , remark=lowercase , parents=lowercase , parents_chain_index=lowercase , )
222
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def A ( ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase = { 'repo_name': ['test_repo1', 'test_repo2', 'test_repo3'], 'path': ['test_1.py', 'test_2.py', 'unit_test.py'], 'content': ['a ' * 20, 'a ' * 30, 'b ' * 7], } UpperCamelCase = Dataset.from_dict(lowercase ) return dataset class lowercase ( _SCREAMING_SNAKE_CASE ): def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = get_dataset() UpperCamelCase = make_duplicate_clusters(A_ , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = get_dataset() UpperCamelCase , UpperCamelCase = deduplicate_dataset(A_ ) self.assertEqual(len(A_ ) , 2 ) print(A_ ) self.assertEqual(duplicate_clusters[0][0]['copies'] , 2 ) self.assertEqual(duplicate_clusters[0][0]['is_extreme'] , A_ )
222
1
import argparse import collections import json import os import re import string import sys import numpy as np UpperCAmelCase : Union[str, Any] = re.compile(r"""\b(a|an|the)\b""", re.UNICODE) UpperCAmelCase : int = None def _A ( ): """simple docstring""" a__ : int =argparse.ArgumentParser("Official evaluation script for SQuAD version 2.0." ) parser.add_argument("data_file" , metavar="data.json" , help="Input data JSON file." ) parser.add_argument("pred_file" , metavar="pred.json" , help="Model predictions." ) parser.add_argument( "--out-file" , "-o" , metavar="eval.json" , help="Write accuracy metrics to file (default is stdout)." ) parser.add_argument( "--na-prob-file" , "-n" , metavar="na_prob.json" , help="Model estimates of probability of no answer." ) parser.add_argument( "--na-prob-thresh" , "-t" , type=SCREAMING_SNAKE_CASE , default=1.0 , help="Predict \"\" if no-answer probability exceeds this (default = 1.0)." , ) parser.add_argument( "--out-image-dir" , "-p" , metavar="out_images" , default=SCREAMING_SNAKE_CASE , help="Save precision-recall curves to directory." ) parser.add_argument("--verbose" , "-v" , action="store_true" ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def _A ( SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" a__ : Any ={} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: a__ : int =bool(qa["answers"]["text"] ) return qid_to_has_ans def _A ( SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" def remove_articles(SCREAMING_SNAKE_CASE : Optional[int] ): return ARTICLES_REGEX.sub(" " , SCREAMING_SNAKE_CASE ) def white_space_fix(SCREAMING_SNAKE_CASE : List[Any] ): return " ".join(text.split() ) def remove_punc(SCREAMING_SNAKE_CASE : Tuple ): a__ : Tuple =set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(SCREAMING_SNAKE_CASE : Union[str, Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(SCREAMING_SNAKE_CASE ) ) ) ) def _A ( SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" if not s: return [] return normalize_answer(SCREAMING_SNAKE_CASE ).split() def _A ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ): """simple docstring""" return int(normalize_answer(SCREAMING_SNAKE_CASE ) == normalize_answer(SCREAMING_SNAKE_CASE ) ) def _A ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" a__ : Tuple =get_tokens(SCREAMING_SNAKE_CASE ) a__ : int =get_tokens(SCREAMING_SNAKE_CASE ) a__ : Dict =collections.Counter(SCREAMING_SNAKE_CASE ) & collections.Counter(SCREAMING_SNAKE_CASE ) a__ : Union[str, Any] =sum(common.values() ) if len(SCREAMING_SNAKE_CASE ) == 0 or len(SCREAMING_SNAKE_CASE ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 a__ : Dict =1.0 * num_same / len(SCREAMING_SNAKE_CASE ) a__ : Tuple =1.0 * num_same / len(SCREAMING_SNAKE_CASE ) a__ : Dict =(2 * precision * recall) / (precision + recall) return fa def _A ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str ): """simple docstring""" a__ : Dict ={} a__ : Optional[Any] ={} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: a__ : Tuple =qa["id"] a__ : Tuple =[t for t in qa["answers"]["text"] if normalize_answer(SCREAMING_SNAKE_CASE )] if not gold_answers: # For unanswerable questions, only correct answer is empty string a__ : Optional[int] =[""] if qid not in preds: print(f'''Missing prediction for {qid}''' ) continue a__ : int =preds[qid] # Take max over all gold answers a__ : Union[str, Any] =max(compute_exact(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for a in gold_answers ) a__ : Optional[Any] =max(compute_fa(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for a in gold_answers ) return exact_scores, fa_scores def _A ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" a__ : str ={} for qid, s in scores.items(): a__ : List[Any] =na_probs[qid] > na_prob_thresh if pred_na: a__ : Tuple =float(not qid_to_has_ans[qid] ) else: a__ : Any =s return new_scores def _A ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Union[str, Any]=None ): """simple docstring""" if not qid_list: a__ : Dict =len(SCREAMING_SNAKE_CASE ) return collections.OrderedDict( [ ("exact", 1_0_0.0 * sum(exact_scores.values() ) / total), ("f1", 1_0_0.0 * sum(fa_scores.values() ) / total), ("total", total), ] ) else: a__ : Optional[int] =len(SCREAMING_SNAKE_CASE ) return collections.OrderedDict( [ ("exact", 1_0_0.0 * sum(exact_scores[k] for k in qid_list ) / total), ("f1", 1_0_0.0 * sum(fa_scores[k] for k in qid_list ) / total), ("total", total), ] ) def _A ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str ): """simple docstring""" for k in new_eval: a__ : List[Any] =new_eval[k] def _A ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" plt.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , color="b" , alpha=0.2 , where="post" ) plt.fill_between(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , step="post" , alpha=0.2 , color="b" ) plt.xlabel("Recall" ) plt.ylabel("Precision" ) plt.xlim([0.0, 1.0_5] ) plt.ylim([0.0, 1.0_5] ) plt.title(SCREAMING_SNAKE_CASE ) plt.savefig(SCREAMING_SNAKE_CASE ) plt.clf() def _A ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Dict=None , SCREAMING_SNAKE_CASE : Optional[int]=None ): """simple docstring""" a__ : Any =sorted(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : na_probs[k] ) a__ : str =0.0 a__ : Dict =1.0 a__ : Tuple =0.0 a__ : List[Any] =[1.0] a__ : Dict =[0.0] a__ : Any =0.0 for i, qid in enumerate(SCREAMING_SNAKE_CASE ): if qid_to_has_ans[qid]: true_pos += scores[qid] a__ : List[str] =true_pos / float(i + 1 ) a__ : List[Any] =true_pos / float(SCREAMING_SNAKE_CASE ) if i == len(SCREAMING_SNAKE_CASE ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(SCREAMING_SNAKE_CASE ) recalls.append(SCREAMING_SNAKE_CASE ) if out_image: plot_pr_curve(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return {"ap": 1_0_0.0 * avg_prec} def _A ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" if out_image_dir and not os.path.exists(SCREAMING_SNAKE_CASE ): os.makedirs(SCREAMING_SNAKE_CASE ) a__ : str =sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return a__ : Tuple =make_precision_recall_eval( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , out_image=os.path.join(SCREAMING_SNAKE_CASE , "pr_exact.png" ) , title="Precision-Recall curve for Exact Match score" , ) a__ : int =make_precision_recall_eval( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , out_image=os.path.join(SCREAMING_SNAKE_CASE , "pr_f1.png" ) , title="Precision-Recall curve for F1 score" , ) a__ : str ={k: float(SCREAMING_SNAKE_CASE ) for k, v in qid_to_has_ans.items()} a__ : Dict =make_precision_recall_eval( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , out_image=os.path.join(SCREAMING_SNAKE_CASE , "pr_oracle.png" ) , title="Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)" , ) merge_eval(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , "pr_exact" ) merge_eval(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , "pr_f1" ) merge_eval(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , "pr_oracle" ) def _A ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ): """simple docstring""" if not qid_list: return a__ : Any =[na_probs[k] for k in qid_list] a__ : Optional[Any] =np.ones_like(SCREAMING_SNAKE_CASE ) / float(len(SCREAMING_SNAKE_CASE ) ) plt.hist(SCREAMING_SNAKE_CASE , weights=SCREAMING_SNAKE_CASE , bins=20 , range=(0.0, 1.0) ) plt.xlabel("Model probability of no-answer" ) plt.ylabel("Proportion of dataset" ) plt.title(f'''Histogram of no-answer probability: {name}''' ) plt.savefig(os.path.join(SCREAMING_SNAKE_CASE , f'''na_prob_hist_{name}.png''' ) ) plt.clf() def _A ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : str ): """simple docstring""" a__ : Optional[int] =sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) a__ : Dict =num_no_ans a__ : Dict =cur_score a__ : str =0.0 a__ : Union[str, Any] =sorted(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : na_probs[k] ) for i, qid in enumerate(SCREAMING_SNAKE_CASE ): if qid not in scores: continue if qid_to_has_ans[qid]: a__ : Union[str, Any] =scores[qid] else: if preds[qid]: a__ : Optional[Any] =-1 else: a__ : Union[str, Any] =0 cur_score += diff if cur_score > best_score: a__ : Optional[int] =cur_score a__ : Optional[int] =na_probs[qid] return 1_0_0.0 * best_score / len(SCREAMING_SNAKE_CASE ), best_thresh def _A ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" a__ , a__ : Optional[int] =find_best_thresh(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) a__ , a__ : int =find_best_thresh(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) a__ : Optional[Any] =best_exact a__ : Tuple =exact_thresh a__ : Any =best_fa a__ : List[Any] =fa_thresh def _A ( ): """simple docstring""" with open(OPTS.data_file ) as f: a__ : str =json.load(SCREAMING_SNAKE_CASE ) a__ : Any =dataset_json["data"] with open(OPTS.pred_file ) as f: a__ : List[str] =json.load(SCREAMING_SNAKE_CASE ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: a__ : int =json.load(SCREAMING_SNAKE_CASE ) else: a__ : Tuple ={k: 0.0 for k in preds} a__ : Any =make_qid_to_has_ans(SCREAMING_SNAKE_CASE ) # maps qid to True/False a__ : Optional[int] =[k for k, v in qid_to_has_ans.items() if v] a__ : List[str] =[k for k, v in qid_to_has_ans.items() if not v] a__ , a__ : Optional[int] =get_raw_scores(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) a__ : Dict =apply_no_ans_threshold(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , OPTS.na_prob_thresh ) a__ : int =apply_no_ans_threshold(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , OPTS.na_prob_thresh ) a__ : str =make_eval_dict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if has_ans_qids: a__ : Union[str, Any] =make_eval_dict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , qid_list=SCREAMING_SNAKE_CASE ) merge_eval(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , "HasAns" ) if no_ans_qids: a__ : List[Any] =make_eval_dict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , qid_list=SCREAMING_SNAKE_CASE ) merge_eval(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , "NoAns" ) if OPTS.na_prob_file: find_all_best_thresh(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , OPTS.out_image_dir ) histogram_na_prob(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , OPTS.out_image_dir , "hasAns" ) histogram_na_prob(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , OPTS.out_image_dir , "noAns" ) if OPTS.out_file: with open(OPTS.out_file , "w" ) as f: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: print(json.dumps(SCREAMING_SNAKE_CASE , indent=2 ) ) if __name__ == "__main__": UpperCAmelCase : Any = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use("""Agg""") import matplotlib.pyplot as plt main()
148
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __lowerCAmelCase ( UpperCamelCase__): def _lowercase ( self ) -> Any: '''simple docstring''' a__ : Optional[int] =self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , "tf_padding" ) ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , "depth_multiplier" ) ) class __lowerCAmelCase : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=1_3 , lowerCAmelCase__=3 , lowerCAmelCase__=3_2 , lowerCAmelCase__=0.25 , lowerCAmelCase__=8 , lowerCAmelCase__=True , lowerCAmelCase__=1_0_2_4 , lowerCAmelCase__=3_2 , lowerCAmelCase__="relu6" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.02 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=1_0 , lowerCAmelCase__=None , ) -> Dict: '''simple docstring''' a__ : int =parent a__ : Optional[Any] =batch_size a__ : Tuple =num_channels a__ : Dict =image_size a__ : Union[str, Any] =depth_multiplier a__ : List[str] =min_depth a__ : Dict =tf_padding a__ : Any =int(last_hidden_size * depth_multiplier ) a__ : Tuple =output_stride a__ : Optional[Any] =hidden_act a__ : str =classifier_dropout_prob a__ : int =use_labels a__ : List[Any] =is_training a__ : List[str] =num_labels a__ : Dict =initializer_range a__ : Tuple =scope def _lowercase ( self ) -> List[str]: '''simple docstring''' a__ : Union[str, Any] =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a__ : Any =None a__ : List[Any] =None if self.use_labels: a__ : Dict =ids_tensor([self.batch_size] , self.num_labels ) a__ : Tuple =ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) a__ : Optional[Any] =self.get_config() return config, pixel_values, labels, pixel_labels def _lowercase ( self ) -> str: '''simple docstring''' return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' a__ : Union[str, Any] =MobileNetVaModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() a__ : str =model(lowerCAmelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: '''simple docstring''' a__ : Any =self.num_labels a__ : Dict =MobileNetVaForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() a__ : Optional[int] =model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self ) -> str: '''simple docstring''' a__ : str =self.prepare_config_and_inputs() a__ , a__ , a__ , a__ : List[str] =config_and_inputs a__ : Tuple ={"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase): _lowercase : List[str] = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () _lowercase : Optional[int] = ( {"""feature-extraction""": MobileNetVaModel, """image-classification""": MobileNetVaForImageClassification} if is_torch_available() else {} ) _lowercase : Union[str, Any] = False _lowercase : Optional[int] = False _lowercase : List[str] = False _lowercase : str = False def _lowercase ( self ) -> Optional[int]: '''simple docstring''' a__ : Optional[Any] =MobileNetVaModelTester(self ) a__ : Optional[Any] =MobileNetVaConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ ) def _lowercase ( self ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="MobileNetV1 does not use inputs_embeds" ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip(reason="MobileNetV1 does not support input and output embeddings" ) def _lowercase ( self ) -> List[str]: '''simple docstring''' pass @unittest.skip(reason="MobileNetV1 does not output attentions" ) def _lowercase ( self ) -> Any: '''simple docstring''' pass def _lowercase ( self ) -> str: '''simple docstring''' a__ , a__ : Optional[int] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : Optional[int] =model_class(lowerCAmelCase__ ) a__ : str =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ : Optional[int] =[*signature.parameters.keys()] a__ : Union[str, Any] =["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' a__ : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def _lowercase ( self ) -> List[str]: '''simple docstring''' def check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): a__ : int =model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): a__ : List[Any] =model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) a__ : Optional[int] =outputs.hidden_states a__ : Optional[int] =2_6 self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) a__ , a__ : Optional[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : Optional[int] =True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a__ : Union[str, Any] =True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def _lowercase ( self ) -> Any: '''simple docstring''' a__ : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @slow def _lowercase ( self ) -> Any: '''simple docstring''' for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ : List[str] =MobileNetVaModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def _A ( ): """simple docstring""" a__ : Optional[Any] =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase): @cached_property def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' return ( MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v1_1.0_224" ) if is_vision_available() else None ) @slow def _lowercase ( self ) -> Optional[int]: '''simple docstring''' a__ : str =MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v1_1.0_224" ).to(lowerCAmelCase__ ) a__ : Optional[Any] =self.default_image_processor a__ : Optional[int] =prepare_img() a__ : Optional[int] =image_processor(images=lowerCAmelCase__ , return_tensors="pt" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): a__ : int =model(**lowerCAmelCase__ ) # verify the logits a__ : str =torch.Size((1, 1_0_0_1) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) a__ : int =torch.tensor([-4.17_39, -1.12_33, 3.12_05] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) )
148
1
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) lowercase__ : List[Any] = "\\n Text data.\n Second line of data." lowercase__ : List[str] = "file" @pytest.fixture(scope="session" ) def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = tmp_path_factory.mktemp("data" ) / (FILE_PATH + ".zstd") snake_case_ = bytes(__lowerCAmelCase , "utf-8" ) with zstd.open(__lowerCAmelCase , "wb" ) as f: f.write(__lowerCAmelCase ) return path @pytest.fixture def lowerCamelCase__ ( _A ): '''simple docstring''' with open(os.path.join(tmpfs.local_root_dir , __lowerCAmelCase ) , "w" ) as f: f.write(__lowerCAmelCase ) return FILE_PATH @pytest.mark.parametrize("compression_format" , ["gzip", "xz", "zstd"] ) def lowerCamelCase__ ( _A , _A , _A , _A , _A , _A ): '''simple docstring''' snake_case_ = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_path} snake_case_ = input_paths[compression_format] snake_case_ = tmp_path / "cache" snake_case_ = DownloadConfig(cache_dir=__lowerCAmelCase , extract_compressed_file=__lowerCAmelCase ) snake_case_ = cached_path(__lowerCAmelCase , download_config=__lowerCAmelCase ) with open(__lowerCAmelCase ) as f: snake_case_ = f.read() with open(__lowerCAmelCase ) as f: snake_case_ = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("default_extracted" , [True, False] ) @pytest.mark.parametrize("default_cache_dir" , [True, False] ) def lowerCamelCase__ ( _A , _A , _A , _A , _A ): '''simple docstring''' snake_case_ = "custom_cache" snake_case_ = "custom_extracted_dir" snake_case_ = tmp_path / "custom_extracted_path" if default_extracted: snake_case_ = ("downloads" if default_cache_dir else custom_cache_dir, "extracted") else: monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR" , __lowerCAmelCase ) monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(__lowerCAmelCase ) ) snake_case_ = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) snake_case_ = xz_file snake_case_ = ( DownloadConfig(extract_compressed_file=__lowerCAmelCase ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=__lowerCAmelCase ) ) snake_case_ = cached_path(__lowerCAmelCase , download_config=__lowerCAmelCase ) assert Path(__lowerCAmelCase ).parent.parts[-2:] == expected def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = str(Path(__lowerCAmelCase ).resolve() ) assert cached_path(__lowerCAmelCase ) == text_file # relative path snake_case_ = str(Path(__lowerCAmelCase ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(__lowerCAmelCase ) == text_file def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = str(tmp_path.resolve() / "__missing_file__.txt" ) with pytest.raises(__lowerCAmelCase ): cached_path(__lowerCAmelCase ) # relative path snake_case_ = "./__missing_file__.txt" with pytest.raises(__lowerCAmelCase ): cached_path(__lowerCAmelCase ) def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = get_from_cache(f"tmp://{tmpfs_file}" ) with open(__lowerCAmelCase ) as f: snake_case_ = f.read() assert output_file_content == FILE_CONTENT @patch("datasets.config.HF_DATASETS_OFFLINE" , __lowerCAmelCase ) def lowerCamelCase__ ( ): '''simple docstring''' with pytest.raises(__lowerCAmelCase ): cached_path("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , __lowerCAmelCase ) def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(__lowerCAmelCase ): http_get("https://huggingface.co" , temp_file=__lowerCAmelCase ) with pytest.raises(__lowerCAmelCase ): http_head("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , __lowerCAmelCase ) def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(__lowerCAmelCase ): ftp_get("ftp://huggingface.co" , temp_file=__lowerCAmelCase ) with pytest.raises(__lowerCAmelCase ): ftp_head("ftp://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , __lowerCAmelCase ) def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(__lowerCAmelCase ): fsspec_get("s3://huggingface.co" , temp_file=__lowerCAmelCase ) with pytest.raises(__lowerCAmelCase ): fsspec_head("s3://huggingface.co" )
187
import argparse import collections import json import os import re import string import sys import numpy as np SCREAMING_SNAKE_CASE__ : Union[str, Any] = re.compile(r"\b(a|an|the)\b", re.UNICODE) SCREAMING_SNAKE_CASE__ : int = None def __magic_name__ ( ) -> str: __lowerCamelCase = argparse.ArgumentParser('''Official evaluation script for SQuAD version 2.0.''' ) parser.add_argument('''data_file''' , metavar='''data.json''' , help='''Input data JSON file.''' ) parser.add_argument('''pred_file''' , metavar='''pred.json''' , help='''Model predictions.''' ) parser.add_argument( '''--out-file''' , '''-o''' , metavar='''eval.json''' , help='''Write accuracy metrics to file (default is stdout).''' ) parser.add_argument( '''--na-prob-file''' , '''-n''' , metavar='''na_prob.json''' , help='''Model estimates of probability of no answer.''' ) parser.add_argument( '''--na-prob-thresh''' , '''-t''' , type=__lowerCAmelCase , default=1.0 , help='''Predict "" if no-answer probability exceeds this (default = 1.0).''' , ) parser.add_argument( '''--out-image-dir''' , '''-p''' , metavar='''out_images''' , default=__lowerCAmelCase , help='''Save precision-recall curves to directory.''' ) parser.add_argument('''--verbose''' , '''-v''' , action='''store_true''' ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def __magic_name__ ( __lowerCAmelCase : List[str] ) -> Union[str, Any]: __lowerCamelCase = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: __lowerCamelCase = bool(qa['''answers''']['''text'''] ) return qid_to_has_ans def __magic_name__ ( __lowerCAmelCase : Dict ) -> Optional[Any]: def remove_articles(__lowerCAmelCase : Optional[int] ): return ARTICLES_REGEX.sub(''' ''' , __lowerCAmelCase ) def white_space_fix(__lowerCAmelCase : Optional[int] ): return " ".join(text.split() ) def remove_punc(__lowerCAmelCase : Union[str, Any] ): __lowerCamelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__lowerCAmelCase : Dict ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__lowerCAmelCase ) ) ) ) def __magic_name__ ( __lowerCAmelCase : List[Any] ) -> Optional[int]: if not s: return [] return normalize_answer(__lowerCAmelCase ).split() def __magic_name__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Tuple ) -> int: return int(normalize_answer(__lowerCAmelCase ) == normalize_answer(__lowerCAmelCase ) ) def __magic_name__ ( __lowerCAmelCase : Any , __lowerCAmelCase : Tuple ) -> str: __lowerCamelCase = get_tokens(__lowerCAmelCase ) __lowerCamelCase = get_tokens(__lowerCAmelCase ) __lowerCamelCase = collections.Counter(__lowerCAmelCase ) & collections.Counter(__lowerCAmelCase ) __lowerCamelCase = sum(common.values() ) if len(__lowerCAmelCase ) == 0 or len(__lowerCAmelCase ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 __lowerCamelCase = 1.0 * num_same / len(__lowerCAmelCase ) __lowerCamelCase = 1.0 * num_same / len(__lowerCAmelCase ) __lowerCamelCase = (2 * precision * recall) / (precision + recall) return fa def __magic_name__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] ) -> Optional[Any]: __lowerCamelCase = {} __lowerCamelCase = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: __lowerCamelCase = qa['''id'''] __lowerCamelCase = [t for t in qa['''answers''']['''text'''] if normalize_answer(__lowerCAmelCase )] if not gold_answers: # For unanswerable questions, only correct answer is empty string __lowerCamelCase = [''''''] if qid not in preds: print(f'''Missing prediction for {qid}''' ) continue __lowerCamelCase = preds[qid] # Take max over all gold answers __lowerCamelCase = max(compute_exact(__lowerCAmelCase , __lowerCAmelCase ) for a in gold_answers ) __lowerCamelCase = max(compute_fa(__lowerCAmelCase , __lowerCAmelCase ) for a in gold_answers ) return exact_scores, fa_scores def __magic_name__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any] ) -> List[str]: __lowerCamelCase = {} for qid, s in scores.items(): __lowerCamelCase = na_probs[qid] > na_prob_thresh if pred_na: __lowerCamelCase = float(not qid_to_has_ans[qid] ) else: __lowerCamelCase = s return new_scores def __magic_name__ ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[Any]=None ) -> Union[str, Any]: if not qid_list: __lowerCamelCase = len(__lowerCAmelCase ) return collections.OrderedDict( [ ('''exact''', 100.0 * sum(exact_scores.values() ) / total), ('''f1''', 100.0 * sum(fa_scores.values() ) / total), ('''total''', total), ] ) else: __lowerCamelCase = len(__lowerCAmelCase ) return collections.OrderedDict( [ ('''exact''', 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ('''f1''', 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ('''total''', total), ] ) def __magic_name__ ( __lowerCAmelCase : Any , __lowerCAmelCase : str , __lowerCAmelCase : Optional[Any] ) -> int: for k in new_eval: __lowerCamelCase = new_eval[k] def __magic_name__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] ) -> Optional[Any]: plt.step(__lowerCAmelCase , __lowerCAmelCase , color='''b''' , alpha=0.2 , where='''post''' ) plt.fill_between(__lowerCAmelCase , __lowerCAmelCase , step='''post''' , alpha=0.2 , color='''b''' ) plt.xlabel('''Recall''' ) plt.ylabel('''Precision''' ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(__lowerCAmelCase ) plt.savefig(__lowerCAmelCase ) plt.clf() def __magic_name__ ( __lowerCAmelCase : Any , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : Tuple=None ) -> int: __lowerCamelCase = sorted(__lowerCAmelCase , key=lambda __lowerCAmelCase : na_probs[k] ) __lowerCamelCase = 0.0 __lowerCamelCase = 1.0 __lowerCamelCase = 0.0 __lowerCamelCase = [1.0] __lowerCamelCase = [0.0] __lowerCamelCase = 0.0 for i, qid in enumerate(__lowerCAmelCase ): if qid_to_has_ans[qid]: true_pos += scores[qid] __lowerCamelCase = true_pos / float(i + 1 ) __lowerCamelCase = true_pos / float(__lowerCAmelCase ) if i == len(__lowerCAmelCase ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(__lowerCAmelCase ) recalls.append(__lowerCAmelCase ) if out_image: plot_pr_curve(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return {"ap": 100.0 * avg_prec} def __magic_name__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[Any] ) -> List[Any]: if out_image_dir and not os.path.exists(__lowerCAmelCase ): os.makedirs(__lowerCAmelCase ) __lowerCamelCase = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return __lowerCamelCase = make_precision_recall_eval( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , out_image=os.path.join(__lowerCAmelCase , '''pr_exact.png''' ) , title='''Precision-Recall curve for Exact Match score''' , ) __lowerCamelCase = make_precision_recall_eval( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , out_image=os.path.join(__lowerCAmelCase , '''pr_f1.png''' ) , title='''Precision-Recall curve for F1 score''' , ) __lowerCamelCase = {k: float(__lowerCAmelCase ) for k, v in qid_to_has_ans.items()} __lowerCamelCase = make_precision_recall_eval( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , out_image=os.path.join(__lowerCAmelCase , '''pr_oracle.png''' ) , title='''Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)''' , ) merge_eval(__lowerCAmelCase , __lowerCAmelCase , '''pr_exact''' ) merge_eval(__lowerCAmelCase , __lowerCAmelCase , '''pr_f1''' ) merge_eval(__lowerCAmelCase , __lowerCAmelCase , '''pr_oracle''' ) def __magic_name__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int ) -> Optional[Any]: if not qid_list: return __lowerCamelCase = [na_probs[k] for k in qid_list] __lowerCamelCase = np.ones_like(__lowerCAmelCase ) / float(len(__lowerCAmelCase ) ) plt.hist(__lowerCAmelCase , weights=__lowerCAmelCase , bins=20 , range=(0.0, 1.0) ) plt.xlabel('''Model probability of no-answer''' ) plt.ylabel('''Proportion of dataset''' ) plt.title(f'''Histogram of no-answer probability: {name}''' ) plt.savefig(os.path.join(__lowerCAmelCase , f'''na_prob_hist_{name}.png''' ) ) plt.clf() def __magic_name__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] ) -> Optional[int]: __lowerCamelCase = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) __lowerCamelCase = num_no_ans __lowerCamelCase = cur_score __lowerCamelCase = 0.0 __lowerCamelCase = sorted(__lowerCAmelCase , key=lambda __lowerCAmelCase : na_probs[k] ) for i, qid in enumerate(__lowerCAmelCase ): if qid not in scores: continue if qid_to_has_ans[qid]: __lowerCamelCase = scores[qid] else: if preds[qid]: __lowerCamelCase = -1 else: __lowerCamelCase = 0 cur_score += diff if cur_score > best_score: __lowerCamelCase = cur_score __lowerCamelCase = na_probs[qid] return 100.0 * best_score / len(__lowerCAmelCase ), best_thresh def __magic_name__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : int , __lowerCAmelCase : Optional[Any] ) -> int: __lowerCamelCase , __lowerCamelCase = find_best_thresh(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) __lowerCamelCase , __lowerCamelCase = find_best_thresh(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) __lowerCamelCase = best_exact __lowerCamelCase = exact_thresh __lowerCamelCase = best_fa __lowerCamelCase = fa_thresh def __magic_name__ ( ) -> Optional[int]: with open(OPTS.data_file ) as f: __lowerCamelCase = json.load(__lowerCAmelCase ) __lowerCamelCase = dataset_json['''data'''] with open(OPTS.pred_file ) as f: __lowerCamelCase = json.load(__lowerCAmelCase ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: __lowerCamelCase = json.load(__lowerCAmelCase ) else: __lowerCamelCase = {k: 0.0 for k in preds} __lowerCamelCase = make_qid_to_has_ans(__lowerCAmelCase ) # maps qid to True/False __lowerCamelCase = [k for k, v in qid_to_has_ans.items() if v] __lowerCamelCase = [k for k, v in qid_to_has_ans.items() if not v] __lowerCamelCase , __lowerCamelCase = get_raw_scores(__lowerCAmelCase , __lowerCAmelCase ) __lowerCamelCase = apply_no_ans_threshold(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , OPTS.na_prob_thresh ) __lowerCamelCase = apply_no_ans_threshold(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , OPTS.na_prob_thresh ) __lowerCamelCase = make_eval_dict(__lowerCAmelCase , __lowerCAmelCase ) if has_ans_qids: __lowerCamelCase = make_eval_dict(__lowerCAmelCase , __lowerCAmelCase , qid_list=__lowerCAmelCase ) merge_eval(__lowerCAmelCase , __lowerCAmelCase , '''HasAns''' ) if no_ans_qids: __lowerCamelCase = make_eval_dict(__lowerCAmelCase , __lowerCAmelCase , qid_list=__lowerCAmelCase ) merge_eval(__lowerCAmelCase , __lowerCAmelCase , '''NoAns''' ) if OPTS.na_prob_file: find_all_best_thresh(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , OPTS.out_image_dir ) histogram_na_prob(__lowerCAmelCase , __lowerCAmelCase , OPTS.out_image_dir , '''hasAns''' ) histogram_na_prob(__lowerCAmelCase , __lowerCAmelCase , OPTS.out_image_dir , '''noAns''' ) if OPTS.out_file: with open(OPTS.out_file , '''w''' ) as f: json.dump(__lowerCAmelCase , __lowerCAmelCase ) else: print(json.dumps(__lowerCAmelCase , indent=2 ) ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Any = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt main()
270
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCAmelCase : Dict = { """configuration_blenderbot""": [ """BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlenderbotConfig""", """BlenderbotOnnxConfig""", ], """tokenization_blenderbot""": ["""BlenderbotTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : int = ["""BlenderbotTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Dict = [ """BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlenderbotForCausalLM""", """BlenderbotForConditionalGeneration""", """BlenderbotModel""", """BlenderbotPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : str = [ """TFBlenderbotForConditionalGeneration""", """TFBlenderbotModel""", """TFBlenderbotPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : int = [ """FlaxBlenderbotForConditionalGeneration""", """FlaxBlenderbotModel""", """FlaxBlenderbotPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys _UpperCAmelCase : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
200
from __future__ import annotations import os from typing import Any import requests _UpperCAmelCase : int = """https://api.github.com""" # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user _UpperCAmelCase : Dict = BASE_URL + """/user""" # https://github.com/settings/tokens _UpperCAmelCase : Optional[Any] = os.environ.get("""USER_TOKEN""", """""") def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = { 'Authorization': F'''token {auth_token}''', 'Accept': 'application/vnd.github.v3+json', } return requests.get(UpperCamelCase__ , headers=UpperCamelCase__ ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(F'''{key}: {value}''') else: raise ValueError("""'USER_TOKEN' field cannot be empty.""")
200
1
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class __UpperCamelCase ( unittest.TestCase ): def __init__( self , __a , __a=7 , __a=3 , __a=30 , __a=400 , __a=True , __a=None , __a=True , __a=[0.5, 0.5, 0.5] , __a=[0.5, 0.5, 0.5] , __a=True , __a=1 / 255 , __a=True , ): '''simple docstring''' __a : Union[str, Any] = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} __a : List[Any] = parent __a : Union[str, Any] = batch_size __a : Union[str, Any] = num_channels __a : Optional[int] = min_resolution __a : Any = max_resolution __a : Union[str, Any] = do_resize __a : Tuple = size __a : str = do_normalize __a : Optional[Any] = image_mean __a : List[str] = image_std __a : str = do_rescale __a : Optional[int] = rescale_factor __a : Optional[int] = do_pad def __UpperCAmelCase ( self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __UpperCAmelCase ( self , __a , __a=False ): '''simple docstring''' if not batched: __a : int = image_inputs[0] if isinstance(__a , Image.Image ): __a , __a : List[Any] = image.size else: __a , __a : int = image.shape[1], image.shape[2] if w < h: __a : Dict = int(self.size['shortest_edge'] * h / w ) __a : Optional[Any] = self.size['shortest_edge'] elif w > h: __a : List[Any] = self.size['shortest_edge'] __a : Union[str, Any] = int(self.size['shortest_edge'] * w / h ) else: __a : List[Any] = self.size['shortest_edge'] __a : List[Any] = self.size['shortest_edge'] else: __a : Tuple = [] for image in image_inputs: __a , __a : Union[str, Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __a : Tuple = max(__a , key=lambda __a : item[0] )[0] __a : Tuple = max(__a , key=lambda __a : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __UpperCamelCase ( a_ , unittest.TestCase ): A_ = ConditionalDetrImageProcessor if is_vision_available() else None def __UpperCAmelCase ( self ): '''simple docstring''' __a : Any = ConditionalDetrImageProcessingTester(self ) @property def __UpperCAmelCase ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__a , 'image_mean' ) ) self.assertTrue(hasattr(__a , 'image_std' ) ) self.assertTrue(hasattr(__a , 'do_normalize' ) ) self.assertTrue(hasattr(__a , 'do_resize' ) ) self.assertTrue(hasattr(__a , 'size' ) ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333} ) self.assertEqual(image_processor.do_pad , __a ) __a : Dict = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__a ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , __a ) def __UpperCAmelCase ( self ): '''simple docstring''' pass def __UpperCAmelCase ( self ): '''simple docstring''' __a : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __a : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a ) for image in image_inputs: self.assertIsInstance(__a , Image.Image ) # Test not batched input __a : int = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __a , __a : str = self.image_processor_tester.get_expected_values(__a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __a , __a : Optional[Any] = self.image_processor_tester.get_expected_values(__a , batched=__a ) __a : List[str] = image_processing(__a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __a : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , numpify=__a ) for image in image_inputs: self.assertIsInstance(__a , np.ndarray ) # Test not batched input __a : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __a , __a : str = self.image_processor_tester.get_expected_values(__a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __a : Optional[Any] = image_processing(__a , return_tensors='pt' ).pixel_values __a , __a : Tuple = self.image_processor_tester.get_expected_values(__a , batched=__a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __a : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , torchify=__a ) for image in image_inputs: self.assertIsInstance(__a , torch.Tensor ) # Test not batched input __a : List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __a , __a : Union[str, Any] = self.image_processor_tester.get_expected_values(__a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __a : Optional[int] = image_processing(__a , return_tensors='pt' ).pixel_values __a , __a : Union[str, Any] = self.image_processor_tester.get_expected_values(__a , batched=__a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __UpperCAmelCase ( self ): '''simple docstring''' __a : str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: __a : str = json.loads(f.read() ) __a : Optional[int] = {'image_id': 3_9769, 'annotations': target} # encode them __a : List[str] = ConditionalDetrImageProcessor.from_pretrained('microsoft/conditional-detr-resnet-50' ) __a : List[str] = image_processing(images=__a , annotations=__a , return_tensors='pt' ) # verify pixel values __a : Union[str, Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , __a ) __a : Optional[Any] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , __a , atol=1E-4 ) ) # verify area __a : int = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , __a ) ) # verify boxes __a : List[Any] = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , __a ) __a : Optional[int] = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , __a , atol=1E-3 ) ) # verify image_id __a : Optional[Any] = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , __a ) ) # verify is_crowd __a : Optional[int] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , __a ) ) # verify class_labels __a : Optional[Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , __a ) ) # verify orig_size __a : Tuple = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , __a ) ) # verify size __a : Dict = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , __a ) ) @slow def __UpperCAmelCase ( self ): '''simple docstring''' __a : str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: __a : Any = json.loads(f.read() ) __a : Tuple = {'file_name': '000000039769.png', 'image_id': 3_9769, 'segments_info': target} __a : Optional[int] = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them __a : Dict = ConditionalDetrImageProcessor(format='coco_panoptic' ) __a : Dict = image_processing(images=__a , annotations=__a , masks_path=__a , return_tensors='pt' ) # verify pixel values __a : List[Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , __a ) __a : str = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , __a , atol=1E-4 ) ) # verify area __a : int = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , __a ) ) # verify boxes __a : List[str] = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , __a ) __a : Tuple = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , __a , atol=1E-3 ) ) # verify image_id __a : List[str] = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , __a ) ) # verify is_crowd __a : Optional[int] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , __a ) ) # verify class_labels __a : str = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , __a ) ) # verify masks __a : List[Any] = 82_2873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , __a ) # verify orig_size __a : Union[str, Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , __a ) ) # verify size __a : List[Any] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , __a ) )
27
import enum import shutil import sys UpperCAmelCase, UpperCAmelCase : Union[str, Any] = shutil.get_terminal_size() UpperCAmelCase : Dict = {"UP": "A", "DOWN": "B", "RIGHT": "C", "LEFT": "D"} class __lowercase ( enum.Enum ): """simple docstring""" UpperCamelCase : Any = 0 UpperCamelCase : int = 1 def __lowerCamelCase ( lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Any="" ): '''simple docstring''' sys.stdout.write(str(lowerCamelCase__ ) + end ) sys.stdout.flush() def __lowerCamelCase ( lowerCamelCase__ : Any , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Tuple="" ): '''simple docstring''' forceWrite(f'\u001b[{color}m{content}\u001b[0m' , lowerCamelCase__ ) def __lowerCamelCase ( ): '''simple docstring''' forceWrite("""\r""" ) def __lowerCamelCase ( lowerCamelCase__ : int , lowerCamelCase__ : str ): '''simple docstring''' forceWrite(f'\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}' ) def __lowerCamelCase ( ): '''simple docstring''' forceWrite(""" """ * TERMINAL_WIDTH ) reset_cursor() def __lowerCamelCase ( ): '''simple docstring''' reset_cursor() forceWrite("""-""" * TERMINAL_WIDTH )
252
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging _lowerCamelCase = logging.get_logger(__name__) if is_vision_available(): import PIL class _snake_case (__SCREAMING_SNAKE_CASE): __A : Dict =["pixel_values"] def __init__( self ,_snake_case = True ,_snake_case = None ,_snake_case = PILImageResampling.BICUBIC ,_snake_case = True ,_snake_case = None ,_snake_case = True ,_snake_case = 1 / 2_55 ,_snake_case = True ,_snake_case = None ,_snake_case = None ,_snake_case = True ,**_snake_case ,): super().__init__(**_snake_case ) UpperCAmelCase_ : Tuple = size if size is not None else {"shortest_edge": 2_24} UpperCAmelCase_ : Union[str, Any] = get_size_dict(_snake_case ,default_to_square=_snake_case ) UpperCAmelCase_ : Tuple = crop_size if crop_size is not None else {"height": 2_24, "width": 2_24} UpperCAmelCase_ : Optional[int] = get_size_dict(_snake_case ,default_to_square=_snake_case ,param_name="crop_size" ) UpperCAmelCase_ : Union[str, Any] = do_resize UpperCAmelCase_ : str = size UpperCAmelCase_ : Dict = resample UpperCAmelCase_ : Tuple = do_center_crop UpperCAmelCase_ : int = crop_size UpperCAmelCase_ : Any = do_rescale UpperCAmelCase_ : int = rescale_factor UpperCAmelCase_ : str = do_normalize UpperCAmelCase_ : Union[str, Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN UpperCAmelCase_ : Optional[Any] = image_std if image_std is not None else OPENAI_CLIP_STD UpperCAmelCase_ : Union[str, Any] = do_convert_rgb def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case = PILImageResampling.BICUBIC ,_snake_case = None ,**_snake_case ,): UpperCAmelCase_ : str = get_size_dict(_snake_case ,default_to_square=_snake_case ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) UpperCAmelCase_ : int = get_resize_output_image_size(_snake_case ,size=size["shortest_edge"] ,default_to_square=_snake_case ) return resize(_snake_case ,size=_snake_case ,resample=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case = None ,**_snake_case ,): UpperCAmelCase_ : Tuple = get_size_dict(_snake_case ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(_snake_case ,size=(size["height"], size["width"]) ,data_format=_snake_case ,**_snake_case ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case = None ,**_snake_case ,): return rescale(_snake_case ,scale=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ,_snake_case = None ,**_snake_case ,): return normalize(_snake_case ,mean=_snake_case ,std=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case = None ,_snake_case = None ,_snake_case = None ,_snake_case = None ,_snake_case = None ,_snake_case = None ,_snake_case = None ,_snake_case = None ,_snake_case = None ,_snake_case = None ,_snake_case = None ,_snake_case = None ,_snake_case = ChannelDimension.FIRST ,**_snake_case ,): UpperCAmelCase_ : Tuple = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ : str = size if size is not None else self.size UpperCAmelCase_ : Tuple = get_size_dict(_snake_case ,param_name="size" ,default_to_square=_snake_case ) UpperCAmelCase_ : Any = resample if resample is not None else self.resample UpperCAmelCase_ : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ : Tuple = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ : str = get_size_dict(_snake_case ,param_name="crop_size" ,default_to_square=_snake_case ) UpperCAmelCase_ : List[str] = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ : Any = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ : List[str] = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ : Tuple = image_std if image_std is not None else self.image_std UpperCAmelCase_ : Tuple = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCAmelCase_ : List[str] = make_list_of_images(_snake_case ) if not valid_images(_snake_case ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCAmelCase_ : List[Any] = [convert_to_rgb(_snake_case ) for image in images] # All transformations expect numpy arrays. UpperCAmelCase_ : Dict = [to_numpy_array(_snake_case ) for image in images] if do_resize: UpperCAmelCase_ : List[str] = [self.resize(image=_snake_case ,size=_snake_case ,resample=_snake_case ) for image in images] if do_center_crop: UpperCAmelCase_ : List[str] = [self.center_crop(image=_snake_case ,size=_snake_case ) for image in images] if do_rescale: UpperCAmelCase_ : List[str] = [self.rescale(image=_snake_case ,scale=_snake_case ) for image in images] if do_normalize: UpperCAmelCase_ : Optional[int] = [self.normalize(image=_snake_case ,mean=_snake_case ,std=_snake_case ) for image in images] UpperCAmelCase_ : int = [to_channel_dimension_format(_snake_case ,_snake_case ) for image in images] UpperCAmelCase_ : Dict = {"pixel_values": images} return BatchFeature(data=_snake_case ,tensor_type=_snake_case )
67
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _lowerCamelCase = { """configuration_mobilevit""": ["""MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileViTConfig""", """MobileViTOnnxConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = ["""MobileViTFeatureExtractor"""] _lowerCamelCase = ["""MobileViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ """MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileViTForImageClassification""", """MobileViTForSemanticSegmentation""", """MobileViTModel""", """MobileViTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ """TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFMobileViTForImageClassification""", """TFMobileViTForSemanticSegmentation""", """TFMobileViTModel""", """TFMobileViTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys _lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
67
1
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[Any] , _lowerCamelCase : Dict , _lowerCamelCase : int , _lowerCamelCase : List[str]) -> str: '''simple docstring''' if isinstance(_lowerCamelCase , _lowerCamelCase): __UpperCamelCase : Optional[int] = np.full((len(_lowerCamelCase), sequence_length, 2) , _lowerCamelCase) else: __UpperCamelCase : str = np.full((len(_lowerCamelCase), sequence_length) , _lowerCamelCase) for i, tensor in enumerate(_lowerCamelCase): if padding_side == "right": if isinstance(_lowerCamelCase , _lowerCamelCase): __UpperCamelCase : List[Any] = tensor[:sequence_length] else: __UpperCamelCase : Dict = tensor[:sequence_length] else: if isinstance(_lowerCamelCase , _lowerCamelCase): __UpperCamelCase : Optional[int] = tensor[:sequence_length] else: __UpperCamelCase : int = tensor[:sequence_length] return out_tensor.tolist() def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[int]) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase : Optional[Any] = ord(_lowerCamelCase) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True __UpperCamelCase : str = unicodedata.category(_lowerCamelCase) if cat.startswith("P"): return True return False @dataclass class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' _A = 42 _A = True _A = None _A = None _A = -1_0_0 _A = "pt" def _lowerCamelCase ( self :Optional[int] , a :List[str] ) -> List[Any]: import torch __UpperCamelCase : Any = """label""" if """label""" in features[0].keys() else """labels""" __UpperCamelCase : int = [feature[label_name] for feature in features] if label_name in features[0].keys() else None __UpperCamelCase : List[Any] = self.tokenizer.pad( lowerCAmelCase__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" if labels is None else None , ) if labels is None: return batch __UpperCamelCase : Tuple = torch.tensor(batch["entity_ids"] ).shape[1] __UpperCamelCase : Optional[int] = self.tokenizer.padding_side if padding_side == "right": __UpperCamelCase : List[str] = [ list(lowerCAmelCase__ ) + [self.label_pad_token_id] * (sequence_length - len(lowerCAmelCase__ )) for label in labels ] else: __UpperCamelCase : List[Any] = [ [self.label_pad_token_id] * (sequence_length - len(lowerCAmelCase__ )) + list(lowerCAmelCase__ ) for label in labels ] __UpperCamelCase : Optional[Any] = [feature["""ner_tags"""] for feature in features] __UpperCamelCase : List[str] = padding_tensor(lowerCAmelCase__ , -1 , lowerCAmelCase__ , lowerCAmelCase__ ) __UpperCamelCase : str = [feature["""original_entity_spans"""] for feature in features] __UpperCamelCase : int = padding_tensor(lowerCAmelCase__ , (-1, -1) , lowerCAmelCase__ , lowerCAmelCase__ ) __UpperCamelCase : Any = {k: torch.tensor(lowerCAmelCase__ , dtype=torch.intaa ) for k, v in batch.items()} return batch
232
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase__ : Optional[int] = logging.get_logger(__name__) UpperCamelCase__ : Optional[int] = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all BART models at https://huggingface.co/models?filter=bart UpperCamelCase__ : Optional[int] = { '''vocab_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/vocab.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/vocab.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json''', }, '''merges_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/merges.txt''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/merges.txt''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt''', }, } UpperCamelCase__ : List[Any] = { '''facebook/bart-base''': 10_24, '''facebook/bart-large''': 10_24, '''facebook/bart-large-mnli''': 10_24, '''facebook/bart-large-cnn''': 10_24, '''facebook/bart-large-xsum''': 10_24, '''yjernite/bart_eli5''': 10_24, } @lru_cache() def lowerCAmelCase_ ( ): __SCREAMING_SNAKE_CASE : Union[str, Any] = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) __SCREAMING_SNAKE_CASE : int = bs[:] __SCREAMING_SNAKE_CASE : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(_lowerCamelCase ) cs.append(2**8 + n ) n += 1 __SCREAMING_SNAKE_CASE : Dict = [chr(_lowerCamelCase ) for n in cs] return dict(zip(_lowerCamelCase , _lowerCamelCase ) ) def lowerCAmelCase_ ( _lowerCamelCase: int ): __SCREAMING_SNAKE_CASE : List[str] = set() __SCREAMING_SNAKE_CASE : Optional[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __SCREAMING_SNAKE_CASE : Optional[int] = char return pairs class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A : List[str] = VOCAB_FILES_NAMES _A : Tuple = PRETRAINED_VOCAB_FILES_MAP _A : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : int = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple="replace" , lowerCAmelCase__ : str="<s>" , lowerCAmelCase__ : Dict="</s>" , lowerCAmelCase__ : Union[str, Any]="</s>" , lowerCAmelCase__ : Any="<s>" , lowerCAmelCase__ : str="<unk>" , lowerCAmelCase__ : Tuple="<pad>" , lowerCAmelCase__ : Union[str, Any]="<mask>" , lowerCAmelCase__ : Dict=False , **lowerCAmelCase__ : Optional[int] , ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token __SCREAMING_SNAKE_CASE : Optional[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token __SCREAMING_SNAKE_CASE : Tuple = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token __SCREAMING_SNAKE_CASE : Tuple = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token __SCREAMING_SNAKE_CASE : Dict = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token __SCREAMING_SNAKE_CASE : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __SCREAMING_SNAKE_CASE : int = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding="""utf-8""" ) as vocab_handle: __SCREAMING_SNAKE_CASE : Dict = json.load(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = {v: k for k, v in self.encoder.items()} __SCREAMING_SNAKE_CASE : Dict = errors # how to handle errors in decoding __SCREAMING_SNAKE_CASE : Optional[int] = bytes_to_unicode() __SCREAMING_SNAKE_CASE : Tuple = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding="""utf-8""" ) as merges_handle: __SCREAMING_SNAKE_CASE : Tuple = merges_handle.read().split("""\n""" )[1:-1] __SCREAMING_SNAKE_CASE : Optional[int] = [tuple(merge.split() ) for merge in bpe_merges] __SCREAMING_SNAKE_CASE : str = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __SCREAMING_SNAKE_CASE : Optional[int] = {} __SCREAMING_SNAKE_CASE : Any = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __SCREAMING_SNAKE_CASE : Tuple = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property def UpperCamelCase__ ( self : Optional[int] ): """simple docstring""" return len(self.encoder ) def UpperCamelCase__ ( self : List[str] ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def UpperCamelCase__ ( self : Any , lowerCAmelCase__ : Tuple ): """simple docstring""" if token in self.cache: return self.cache[token] __SCREAMING_SNAKE_CASE : Optional[int] = tuple(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: __SCREAMING_SNAKE_CASE : Optional[int] = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = bigram __SCREAMING_SNAKE_CASE : int = [] __SCREAMING_SNAKE_CASE : List[str] = 0 while i < len(lowerCAmelCase__ ): try: __SCREAMING_SNAKE_CASE : Any = word.index(lowerCAmelCase__ , lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __SCREAMING_SNAKE_CASE : Dict = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __SCREAMING_SNAKE_CASE : Optional[int] = tuple(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = new_word if len(lowerCAmelCase__ ) == 1: break else: __SCREAMING_SNAKE_CASE : Tuple = get_pairs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = """ """.join(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = word return word def UpperCamelCase__ ( self : Optional[int] , lowerCAmelCase__ : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = [] for token in re.findall(self.pat , lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(""" """ ) ) return bpe_tokens def UpperCamelCase__ ( self : Dict , lowerCAmelCase__ : Tuple ): """simple docstring""" return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token ) ) def UpperCamelCase__ ( self : Any , lowerCAmelCase__ : Tuple ): """simple docstring""" return self.decoder.get(lowerCAmelCase__ ) def UpperCamelCase__ ( self : Dict , lowerCAmelCase__ : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = """""".join(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def UpperCamelCase__ ( self : Optional[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __SCREAMING_SNAKE_CASE : str = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __SCREAMING_SNAKE_CASE : List[Any] = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + """\n""" ) __SCREAMING_SNAKE_CASE : Optional[int] = 0 with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." """ Please check that the tokenizer is not corrupted!""" ) __SCREAMING_SNAKE_CASE : Optional[Any] = token_index writer.write(""" """.join(lowerCAmelCase__ ) + """\n""" ) index += 1 return vocab_file, merge_file def UpperCamelCase__ ( self : Optional[int] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __SCREAMING_SNAKE_CASE : List[Any] = [self.cls_token_id] __SCREAMING_SNAKE_CASE : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase__ ( self : List[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def UpperCamelCase__ ( self : Optional[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = [self.sep_token_id] __SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase__ ( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Dict=False , **lowerCAmelCase__ : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()): __SCREAMING_SNAKE_CASE : List[str] = """ """ + text return (text, kwargs)
112
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,unittest.TestCase ): _UpperCAmelCase : List[Any] = StableDiffusionInstructPixaPixPipeline _UpperCAmelCase : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width", "cross_attention_kwargs"} _UpperCAmelCase : Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS _UpperCAmelCase : Tuple = IMAGE_TO_IMAGE_IMAGE_PARAMS _UpperCAmelCase : Any = IMAGE_TO_IMAGE_IMAGE_PARAMS def __lowerCamelCase ( self : str ) ->Union[str, Any]: torch.manual_seed(0 ) lowerCamelCase__ : List[Any] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=8 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , ) lowerCamelCase__ : int = PNDMScheduler(skip_prk_steps=A ) torch.manual_seed(0 ) lowerCamelCase__ : str = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCamelCase__ : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) lowerCamelCase__ : List[Any] = CLIPTextModel(A ) lowerCamelCase__ : str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowerCamelCase__ : Dict = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __lowerCamelCase ( self : Dict , A : Any , A : Tuple=0 ) ->List[Any]: lowerCamelCase__ : Dict = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(A ) ).to(A ) lowerCamelCase__ : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase__ : List[str] = Image.fromarray(np.uinta(A ) ).convert('''RGB''' ) if str(A ).startswith('''mps''' ): lowerCamelCase__ : Any = torch.manual_seed(A ) else: lowerCamelCase__ : int = torch.Generator(device=A ).manual_seed(A ) lowerCamelCase__ : Dict = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''image_guidance_scale''': 1, '''output_type''': '''numpy''', } return inputs def __lowerCamelCase ( self : List[Any] ) ->Dict: lowerCamelCase__ : List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCamelCase__ : Any = self.get_dummy_components() lowerCamelCase__ : List[str] = StableDiffusionInstructPixaPixPipeline(**A ) lowerCamelCase__ : List[Any] = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) lowerCamelCase__ : Optional[int] = self.get_dummy_inputs(A ) lowerCamelCase__ : Any = sd_pipe(**A ).images lowerCamelCase__ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) lowerCamelCase__ : List[str] = np.array([0.75_26, 0.37_50, 0.45_47, 0.61_17, 0.58_66, 0.50_16, 0.43_27, 0.56_42, 0.48_15] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __lowerCamelCase ( self : Optional[int] ) ->List[str]: lowerCamelCase__ : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCamelCase__ : Any = self.get_dummy_components() lowerCamelCase__ : Optional[int] = StableDiffusionInstructPixaPixPipeline(**A ) lowerCamelCase__ : str = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) lowerCamelCase__ : Tuple = self.get_dummy_inputs(A ) lowerCamelCase__ : Dict = '''french fries''' lowerCamelCase__ : Dict = sd_pipe(**A , negative_prompt=A ) lowerCamelCase__ : Dict = output.images lowerCamelCase__ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) lowerCamelCase__ : Dict = np.array([0.75_11, 0.36_42, 0.45_53, 0.62_36, 0.57_97, 0.50_13, 0.43_43, 0.56_11, 0.48_31] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __lowerCamelCase ( self : Any ) ->int: lowerCamelCase__ : Union[str, Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCamelCase__ : Optional[Any] = self.get_dummy_components() lowerCamelCase__ : Any = StableDiffusionInstructPixaPixPipeline(**A ) lowerCamelCase__ : List[Any] = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) lowerCamelCase__ : Optional[int] = self.get_dummy_inputs(A ) lowerCamelCase__ : Dict = [inputs['''prompt''']] * 2 lowerCamelCase__ : int = np.array(inputs['''image'''] ).astype(np.floataa ) / 2_5_5.0 lowerCamelCase__ : str = torch.from_numpy(A ).unsqueeze(0 ).to(A ) lowerCamelCase__ : List[Any] = image / 2 + 0.5 lowerCamelCase__ : int = image.permute(0 , 3 , 1 , 2 ) lowerCamelCase__ : str = image.repeat(2 , 1 , 1 , 1 ) lowerCamelCase__ : Optional[Any] = sd_pipe(**A ).images lowerCamelCase__ : List[Any] = image[-1, -3:, -3:, -1] assert image.shape == (2, 3_2, 3_2, 3) lowerCamelCase__ : List[str] = np.array([0.58_12, 0.57_48, 0.52_22, 0.59_08, 0.56_95, 0.71_74, 0.68_04, 0.55_23, 0.55_79] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __lowerCamelCase ( self : Optional[int] ) ->List[str]: lowerCamelCase__ : Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCamelCase__ : List[str] = self.get_dummy_components() lowerCamelCase__ : Optional[Any] = EulerAncestralDiscreteScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' ) lowerCamelCase__ : Union[str, Any] = StableDiffusionInstructPixaPixPipeline(**A ) lowerCamelCase__ : Any = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) lowerCamelCase__ : List[Any] = self.get_dummy_inputs(A ) lowerCamelCase__ : int = sd_pipe(**A ).images lowerCamelCase__ : Optional[Any] = image[0, -3:, -3:, -1] lowerCamelCase__ : List[str] = [round(A , 4 ) for x in image_slice.flatten().tolist()] print(''','''.join([str(A ) for x in slice] ) ) assert image.shape == (1, 3_2, 3_2, 3) lowerCamelCase__ : List[Any] = np.array([0.74_17, 0.38_42, 0.47_32, 0.57_76, 0.58_91, 0.51_39, 0.40_52, 0.56_73, 0.49_86] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __lowerCamelCase ( self : Optional[int] ) ->Dict: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def __lowerCamelCase ( self : Dict ) ->Optional[int]: lowerCamelCase__ : Any = self.get_dummy_components() lowerCamelCase__ : str = StableDiffusionInstructPixaPixPipeline(**A ) lowerCamelCase__ : Dict = VaeImageProcessor(do_resize=A , do_normalize=A ) lowerCamelCase__ : Tuple = pipe.to(A ) pipe.set_progress_bar_config(disable=A ) lowerCamelCase__ : int = pipe(**self.get_dummy_inputs_by_type(A , input_image_type='''pt''' ) )[0] lowerCamelCase__ : int = components['''vae'''] lowerCamelCase__ : Any = self.get_dummy_inputs_by_type(A , input_image_type='''pt''' ) for image_param in self.image_latents_params: if image_param in inputs.keys(): lowerCamelCase__ : List[Any] = vae.encode(inputs[image_param] ).latent_dist.mode() lowerCamelCase__ : Union[str, Any] = pipe(**A )[0] lowerCamelCase__ : Any = np.abs(out - out_latents_inputs ).max() self.assertLess(A , 1e-4 , '''passing latents as image input generate different result from passing image''' ) @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCamelCase ( self : List[Any] ) ->Dict: super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self : str , A : Optional[int]=0 ) ->Dict: lowerCamelCase__ : Tuple = torch.manual_seed(A ) lowerCamelCase__ : Tuple = load_image( '''https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg''' ) lowerCamelCase__ : int = { '''prompt''': '''turn him into a cyborg''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''image_guidance_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def __lowerCamelCase ( self : Dict ) ->int: lowerCamelCase__ : Union[str, Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() lowerCamelCase__ : Tuple = self.get_inputs() lowerCamelCase__ : int = pipe(**A ).images lowerCamelCase__ : int = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCamelCase__ : Tuple = np.array([0.59_02, 0.60_15, 0.60_27, 0.59_83, 0.60_92, 0.60_61, 0.57_65, 0.57_85, 0.55_55] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def __lowerCamelCase ( self : List[str] ) ->List[Any]: lowerCamelCase__ : List[str] = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=A ) lowerCamelCase__ : Tuple = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() lowerCamelCase__ : List[str] = self.get_inputs() lowerCamelCase__ : int = pipe(**A ).images lowerCamelCase__ : Tuple = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCamelCase__ : List[str] = np.array([0.65_78, 0.68_17, 0.69_72, 0.67_61, 0.68_56, 0.69_16, 0.64_28, 0.65_16, 0.63_01] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def __lowerCamelCase ( self : Optional[Any] ) ->List[Any]: lowerCamelCase__ : int = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=A ) lowerCamelCase__ : Any = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() lowerCamelCase__ : Tuple = self.get_inputs() lowerCamelCase__ : Any = pipe(**A ).images lowerCamelCase__ : List[str] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCamelCase__ : Optional[Any] = np.array([0.38_28, 0.38_34, 0.38_18, 0.37_92, 0.38_65, 0.37_52, 0.37_92, 0.38_47, 0.37_53] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def __lowerCamelCase ( self : List[Any] ) ->List[Any]: lowerCamelCase__ : str = 0 def callback_fn(A : int , A : int , A : torch.FloatTensor ) -> None: lowerCamelCase__ : Optional[Any] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: lowerCamelCase__ : int = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 6_4) lowerCamelCase__ : Any = latents[0, -3:, -3:, -1] lowerCamelCase__ : Tuple = np.array([-0.24_63, -0.46_44, -0.97_56, 1.51_76, 1.44_14, 0.78_66, 0.98_97, 0.85_21, 0.79_83] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: lowerCamelCase__ : Union[str, Any] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 6_4) lowerCamelCase__ : List[str] = latents[0, -3:, -3:, -1] lowerCamelCase__ : int = np.array([-0.26_44, -0.46_26, -0.96_53, 1.51_76, 1.45_51, 0.76_86, 0.98_05, 0.84_52, 0.81_15] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 lowerCamelCase__ : Union[str, Any] = False lowerCamelCase__ : Tuple = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=A , torch_dtype=torch.floataa ) lowerCamelCase__ : int = pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() lowerCamelCase__ : Optional[int] = self.get_inputs() pipe(**A , callback=A , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def __lowerCamelCase ( self : Any ) ->List[str]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCamelCase__ : Any = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=A , torch_dtype=torch.floataa ) lowerCamelCase__ : List[str] = pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowerCamelCase__ : Tuple = self.get_inputs() lowerCamelCase__ : List[Any] = pipe(**A ) lowerCamelCase__ : Dict = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 1_0**9 def __lowerCamelCase ( self : str ) ->Optional[int]: lowerCamelCase__ : Union[str, Any] = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 lowerCamelCase__ : Any = inputs['''image'''].resize((5_0_4, 5_0_4) ) lowerCamelCase__ : Dict = '''timbrooks/instruct-pix2pix''' lowerCamelCase__ : List[str] = StableDiffusionInstructPixaPixPipeline.from_pretrained( A , safety_checker=A , ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() lowerCamelCase__ : List[str] = pipe(**A ) lowerCamelCase__ : List[str] = output.images[0] lowerCamelCase__ : Tuple = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert image.shape == (5_0_4, 5_0_4, 3) lowerCamelCase__ : str = np.array([0.27_26, 0.25_29, 0.26_64, 0.26_55, 0.26_41, 0.26_42, 0.25_91, 0.26_49, 0.25_90] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
350
import pprint import requests _A : Any = 'https://zenquotes.io/api' def _a ( ) -> list: """simple docstring""" return requests.get(API_ENDPOINT_URL + '''/today''' ).json() def _a ( ) -> list: """simple docstring""" return requests.get(API_ENDPOINT_URL + '''/random''' ).json() if __name__ == "__main__": _A : Optional[Any] = random_quotes() pprint.pprint(response)
265
0
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class __lowerCAmelCase : @property def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' return self.get_dummy_input() @property def _lowercase ( self ) -> Any: '''simple docstring''' if self.block_type == "down": return (4, 3_2, 1_6, 1_6) elif self.block_type == "mid": return (4, 3_2, 3_2, 3_2) elif self.block_type == "up": return (4, 3_2, 6_4, 6_4) raise ValueError(F'''\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.''' ) def _lowercase ( self , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__=False , lowerCAmelCase__=False , ) -> List[str]: '''simple docstring''' a__ : List[str] =4 a__ : str =3_2 a__ : Dict =(3_2, 3_2) a__ : Optional[int] =torch.manual_seed(0 ) a__ : List[Any] =torch.device(lowerCAmelCase__ ) a__ : Union[str, Any] =(batch_size, num_channels) + sizes a__ : Dict =randn_tensor(lowerCAmelCase__ , generator=lowerCAmelCase__ , device=lowerCAmelCase__ ) a__ : Optional[int] ={"hidden_states": hidden_states} if include_temb: a__ : List[Any] =1_2_8 a__ : List[str] =randn_tensor((batch_size, temb_channels) , generator=lowerCAmelCase__ , device=lowerCAmelCase__ ) if include_res_hidden_states_tuple: a__ : Optional[int] =torch.manual_seed(1 ) a__ : Tuple =(randn_tensor(lowerCAmelCase__ , generator=lowerCAmelCase__ , device=lowerCAmelCase__ ),) if include_encoder_hidden_states: a__ : Dict =floats_tensor((batch_size, 3_2, 3_2) ).to(lowerCAmelCase__ ) if include_skip_sample: a__ : Dict =randn_tensor(((batch_size, 3) + sizes) , generator=lowerCAmelCase__ , device=lowerCAmelCase__ ) return dummy_input def _lowercase ( self ) -> Optional[int]: '''simple docstring''' a__ : Optional[int] ={ "in_channels": 3_2, "out_channels": 3_2, "temb_channels": 1_2_8, } if self.block_type == "up": a__ : Any =3_2 if self.block_type == "mid": init_dict.pop("out_channels" ) a__ : Optional[int] =self.dummy_input return init_dict, inputs_dict def _lowercase ( self , lowerCAmelCase__ ) -> str: '''simple docstring''' a__ , a__ : Union[str, Any] =self.prepare_init_args_and_inputs_for_common() a__ : Dict =self.block_class(**lowerCAmelCase__ ) unet_block.to(lowerCAmelCase__ ) unet_block.eval() with torch.no_grad(): a__ : List[Any] =unet_block(**lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): a__ : str =output[0] self.assertEqual(output.shape , self.output_shape ) a__ : int =output[0, -1, -3:, -3:] a__ : Any =torch.tensor(lowerCAmelCase__ ).to(lowerCAmelCase__ ) assert torch_all_close(output_slice.flatten() , lowerCAmelCase__ , atol=5E-3 ) @unittest.skipIf(torch_device == "mps" , "Training is not supported in mps" ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' a__ , a__ : Dict =self.prepare_init_args_and_inputs_for_common() a__ : Any =self.block_class(**lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.train() a__ : int =model(**lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): a__ : List[str] =output[0] a__ : List[Any] =torch.device(lowerCAmelCase__ ) a__ : List[str] =randn_tensor(output.shape , device=lowerCAmelCase__ ) a__ : List[Any] =torch.nn.functional.mse_loss(lowerCAmelCase__ , lowerCAmelCase__ ) loss.backward()
95
import numpy as np def _A ( SCREAMING_SNAKE_CASE : np.array ): """simple docstring""" return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
95
1
'''simple docstring''' def a__ ( _SCREAMING_SNAKE_CASE : int ) -> Dict: """simple docstring""" UpperCAmelCase_ : Any = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
365
'''simple docstring''' from ..utils import DummyObject, requires_backends class _snake_case (metaclass=__SCREAMING_SNAKE_CASE): __A : Union[str, Any] =["torch", "torchsde"] def __init__( self ,*_snake_case ,**_snake_case ): requires_backends(self ,["torch", "torchsde"] ) @classmethod def UpperCamelCase__ ( cls ,*_snake_case ,**_snake_case ): requires_backends(cls ,["torch", "torchsde"] ) @classmethod def UpperCamelCase__ ( cls ,*_snake_case ,**_snake_case ): requires_backends(cls ,["torch", "torchsde"] )
67
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowerCAmelCase__ = logging.get_logger(__name__) if is_vision_available(): import PIL class a__ ( snake_case ): """simple docstring""" __lowerCamelCase = ['pixel_values'] def __init__( self , lowercase = True , lowercase = None , lowercase = PILImageResampling.BICUBIC , lowercase = True , lowercase = None , lowercase = True , lowercase = 1 / 255 , lowercase = True , lowercase = None , lowercase = None , lowercase = True , **lowercase , ) -> None: '''simple docstring''' super().__init__(**lowercase ) A__ = size if size is not None else {"shortest_edge": 224} A__ = get_size_dict(lowercase , default_to_square=lowercase ) A__ = crop_size if crop_size is not None else {"height": 224, "width": 224} A__ = get_size_dict(lowercase , default_to_square=lowercase , param_name="crop_size" ) A__ = do_resize A__ = size A__ = resample A__ = do_center_crop A__ = crop_size A__ = do_rescale A__ = rescale_factor A__ = do_normalize A__ = image_mean if image_mean is not None else OPENAI_CLIP_MEAN A__ = image_std if image_std is not None else OPENAI_CLIP_STD A__ = do_convert_rgb def UpperCamelCase ( self , lowercase , lowercase , lowercase = PILImageResampling.BICUBIC , lowercase = None , **lowercase , ) -> np.ndarray: '''simple docstring''' A__ = get_size_dict(lowercase , default_to_square=lowercase ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) A__ = get_resize_output_image_size(lowercase , size=size["shortest_edge"] , default_to_square=lowercase ) return resize(lowercase , size=lowercase , resample=lowercase , data_format=lowercase , **lowercase ) def UpperCamelCase ( self , lowercase , lowercase , lowercase = None , **lowercase , ) -> np.ndarray: '''simple docstring''' A__ = get_size_dict(lowercase ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(lowercase , size=(size["height"], size["width"]) , data_format=lowercase , **lowercase ) def UpperCamelCase ( self , lowercase , lowercase , lowercase = None , **lowercase , ) -> int: '''simple docstring''' return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def UpperCamelCase ( self , lowercase , lowercase , lowercase , lowercase = None , **lowercase , ) -> np.ndarray: '''simple docstring''' return normalize(lowercase , mean=lowercase , std=lowercase , data_format=lowercase , **lowercase ) def UpperCamelCase ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = ChannelDimension.FIRST , **lowercase , ) -> PIL.Image.Image: '''simple docstring''' A__ = do_resize if do_resize is not None else self.do_resize A__ = size if size is not None else self.size A__ = get_size_dict(lowercase , param_name="size" , default_to_square=lowercase ) A__ = resample if resample is not None else self.resample A__ = do_center_crop if do_center_crop is not None else self.do_center_crop A__ = crop_size if crop_size is not None else self.crop_size A__ = get_size_dict(lowercase , param_name="crop_size" , default_to_square=lowercase ) A__ = do_rescale if do_rescale is not None else self.do_rescale A__ = rescale_factor if rescale_factor is not None else self.rescale_factor A__ = do_normalize if do_normalize is not None else self.do_normalize A__ = image_mean if image_mean is not None else self.image_mean A__ = image_std if image_std is not None else self.image_std A__ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb A__ = make_list_of_images(lowercase ) if not valid_images(lowercase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: A__ = [convert_to_rgb(lowercase ) for image in images] # All transformations expect numpy arrays. A__ = [to_numpy_array(lowercase ) for image in images] if do_resize: A__ = [self.resize(image=lowercase , size=lowercase , resample=lowercase ) for image in images] if do_center_crop: A__ = [self.center_crop(image=lowercase , size=lowercase ) for image in images] if do_rescale: A__ = [self.rescale(image=lowercase , scale=lowercase ) for image in images] if do_normalize: A__ = [self.normalize(image=lowercase , mean=lowercase , std=lowercase ) for image in images] A__ = [to_channel_dimension_format(lowercase , lowercase ) for image in images] A__ = {"pixel_values": images} return BatchFeature(data=lowercase , tensor_type=lowercase )
68
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Optional[int] , SCREAMING_SNAKE_CASE_: int ) -> int: '''simple docstring''' A__ = nn.functional.normalize(SCREAMING_SNAKE_CASE_ ) A__ = nn.functional.normalize(SCREAMING_SNAKE_CASE_ ) return torch.mm(SCREAMING_SNAKE_CASE_ , normalized_text_embeds.t() ) class a__ ( snake_case ): """simple docstring""" __lowerCamelCase = CLIPConfig __lowerCamelCase = ['CLIPEncoderLayer'] def __init__( self , lowercase ) -> Optional[int]: '''simple docstring''' super().__init__(lowercase ) A__ = CLIPVisionModel(config.vision_config ) A__ = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=lowercase ) A__ = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=lowercase ) A__ = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=lowercase ) A__ = nn.Parameter(torch.ones(17 ) , requires_grad=lowercase ) A__ = nn.Parameter(torch.ones(3 ) , requires_grad=lowercase ) @torch.no_grad() def UpperCamelCase ( self , lowercase , lowercase ) -> Any: '''simple docstring''' A__ = self.vision_model(lowercase )[1] # pooled_output A__ = self.visual_projection(lowercase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A__ = cosine_distance(lowercase , self.special_care_embeds ).cpu().float().numpy() A__ = cosine_distance(lowercase , self.concept_embeds ).cpu().float().numpy() A__ = [] A__ = image_embeds.shape[0] for i in range(lowercase ): A__ = {"special_scores": {}, "special_care": [], "concept_scores": {}, "bad_concepts": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images A__ = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): A__ = special_cos_dist[i][concept_idx] A__ = self.special_care_embeds_weights[concept_idx].item() A__ = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["special_scores"][concept_idx]} ) A__ = 0.01 for concept_idx in range(len(cos_dist[0] ) ): A__ = cos_dist[i][concept_idx] A__ = self.concept_embeds_weights[concept_idx].item() A__ = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(lowercase ) result.append(lowercase ) A__ = [len(res["bad_concepts"] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def UpperCamelCase ( self , lowercase , lowercase ) -> Any: '''simple docstring''' A__ = self.vision_model(lowercase )[1] # pooled_output A__ = self.visual_projection(lowercase ) A__ = cosine_distance(lowercase , self.special_care_embeds ) A__ = cosine_distance(lowercase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images A__ = 0.0 A__ = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) A__ = torch.any(special_scores > 0 , dim=1 ) A__ = special_care * 0.01 A__ = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) A__ = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) A__ = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
68
1
"""simple docstring""" import baseaa def lowercase__ ( lowercase_ ) -> bytes: """simple docstring""" return baseaa.baaencode(string.encode("utf-8" ) ) def lowercase__ ( lowercase_ ) -> str: """simple docstring""" return baseaa.baadecode(lowercase_ ).decode("utf-8" ) if __name__ == "__main__": lowerCamelCase__ = "Hello World!" lowerCamelCase__ = baseaa_encode(test) print(encoded) lowerCamelCase__ = baseaa_decode(encoded) print(decoded)
310
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { "post_extract_proj": "feature_projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.upsample.0": "encoder.upsample.projection", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> Optional[Any]: """simple docstring""" for attribute in key.split("." ): _UpperCamelCase : str = getattr(lowercase_ ,lowercase_ ) if weight_type is not None: _UpperCamelCase : str = getattr(lowercase_ ,lowercase_ ).shape else: _UpperCamelCase : int = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _UpperCamelCase : Optional[Any] = value elif weight_type == "weight_g": _UpperCamelCase : int = value elif weight_type == "weight_v": _UpperCamelCase : Optional[Any] = value elif weight_type == "bias": _UpperCamelCase : int = value else: _UpperCamelCase : Any = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> List[str]: """simple docstring""" _UpperCamelCase : List[str] = [] _UpperCamelCase : Any = fairseq_model.state_dict() _UpperCamelCase : Union[str, Any] = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _UpperCamelCase : List[str] = False if "conv_layers" in name: load_conv_layer( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,hf_model.config.feat_extract_norm == "group" ,) _UpperCamelCase : Union[str, Any] = True else: for key, mapped_key in MAPPING.items(): _UpperCamelCase : Dict = "sew." + mapped_key if (is_finetuned and mapped_key != "lm_head") else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: _UpperCamelCase : Any = True if "*" in mapped_key: _UpperCamelCase : Dict = name.split(lowercase_ )[0].split("." )[-2] _UpperCamelCase : Any = mapped_key.replace("*" ,lowercase_ ) if "weight_g" in name: _UpperCamelCase : str = "weight_g" elif "weight_v" in name: _UpperCamelCase : Any = "weight_v" elif "weight" in name: _UpperCamelCase : List[str] = "weight" elif "bias" in name: _UpperCamelCase : List[Any] = "bias" else: _UpperCamelCase : str = None set_recursively(lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) continue if not is_used: unused_weights.append(lowercase_ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> Any: """simple docstring""" _UpperCamelCase : Any = full_name.split("conv_layers." )[-1] _UpperCamelCase : Optional[Any] = name.split("." ) _UpperCamelCase : Union[str, Any] = int(items[0] ) _UpperCamelCase : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _UpperCamelCase : Union[str, Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _UpperCamelCase : Tuple = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) _UpperCamelCase : List[str] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) _UpperCamelCase : int = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowercase_ ) def lowercase__ ( lowercase_ ,lowercase_ ) -> Optional[int]: """simple docstring""" _UpperCamelCase : Dict = SEWConfig() if is_finetuned: _UpperCamelCase : Dict = model.wav_encoder.wav_model.cfg else: _UpperCamelCase : List[Any] = model.cfg _UpperCamelCase : Any = fs_config.conv_bias _UpperCamelCase : str = eval(fs_config.conv_feature_layers ) _UpperCamelCase : Any = [x[0] for x in conv_layers] _UpperCamelCase : List[Any] = [x[1] for x in conv_layers] _UpperCamelCase : Union[str, Any] = [x[2] for x in conv_layers] _UpperCamelCase : str = "gelu" _UpperCamelCase : List[str] = "layer" if fs_config.extractor_mode == "layer_norm" else "group" _UpperCamelCase : Optional[int] = 0.0 _UpperCamelCase : Dict = fs_config.activation_fn.name _UpperCamelCase : Any = fs_config.encoder_embed_dim _UpperCamelCase : Optional[Any] = 0.02 _UpperCamelCase : str = fs_config.encoder_ffn_embed_dim _UpperCamelCase : int = 1e-5 _UpperCamelCase : Optional[int] = fs_config.encoder_layerdrop _UpperCamelCase : str = fs_config.encoder_attention_heads _UpperCamelCase : Tuple = fs_config.conv_pos_groups _UpperCamelCase : List[str] = fs_config.conv_pos _UpperCamelCase : Optional[int] = len(lowercase_ ) _UpperCamelCase : Union[str, Any] = fs_config.encoder_layers _UpperCamelCase : Union[str, Any] = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: _UpperCamelCase : List[str] = model.cfg _UpperCamelCase : List[str] = fs_config.final_dropout _UpperCamelCase : Optional[Any] = fs_config.layerdrop _UpperCamelCase : int = fs_config.activation_dropout _UpperCamelCase : int = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 _UpperCamelCase : int = fs_config.attention_dropout _UpperCamelCase : int = fs_config.dropout_input _UpperCamelCase : List[Any] = fs_config.dropout _UpperCamelCase : List[Any] = fs_config.mask_channel_length _UpperCamelCase : List[str] = fs_config.mask_channel_prob _UpperCamelCase : Optional[Any] = fs_config.mask_length _UpperCamelCase : Optional[int] = fs_config.mask_prob _UpperCamelCase : List[str] = "Wav2Vec2FeatureExtractor" _UpperCamelCase : Optional[Any] = "Wav2Vec2CTCTokenizer" return config @torch.no_grad() def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_=None ,lowercase_=None ,lowercase_=True ) -> str: """simple docstring""" if is_finetuned: _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: _UpperCamelCase : str = SEWConfig.from_pretrained(lowercase_ ) else: _UpperCamelCase : Optional[int] = convert_config(model[0] ,lowercase_ ) _UpperCamelCase : List[str] = model[0].eval() _UpperCamelCase : Union[str, Any] = True if config.feat_extract_norm == "layer" else False _UpperCamelCase : Union[str, Any] = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=16_000 ,padding_value=0 ,do_normalize=lowercase_ ,return_attention_mask=lowercase_ ,) if is_finetuned: if dict_path: _UpperCamelCase : Union[str, Any] = Dictionary.load(lowercase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _UpperCamelCase : List[str] = target_dict.pad_index _UpperCamelCase : Optional[int] = target_dict.bos_index _UpperCamelCase : Any = target_dict.pad_index _UpperCamelCase : List[Any] = target_dict.bos_index _UpperCamelCase : List[str] = target_dict.eos_index _UpperCamelCase : Optional[Any] = len(target_dict.symbols ) _UpperCamelCase : List[Any] = os.path.join(lowercase_ ,"vocab.json" ) if not os.path.isdir(lowercase_ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(lowercase_ ) ) return os.makedirs(lowercase_ ,exist_ok=lowercase_ ) with open(lowercase_ ,"w" ,encoding="utf-8" ) as vocab_handle: json.dump(target_dict.indices ,lowercase_ ) _UpperCamelCase : Optional[Any] = WavaVecaCTCTokenizer( lowercase_ ,unk_token=target_dict.unk_word ,pad_token=target_dict.pad_word ,bos_token=target_dict.bos_word ,eos_token=target_dict.eos_word ,word_delimiter_token="|" ,do_lower_case=lowercase_ ,) _UpperCamelCase : List[str] = WavaVecaProcessor(feature_extractor=lowercase_ ,tokenizer=lowercase_ ) processor.save_pretrained(lowercase_ ) _UpperCamelCase : List[Any] = SEWForCTC(lowercase_ ) else: _UpperCamelCase : int = SEWModel(lowercase_ ) feature_extractor.save_pretrained(lowercase_ ) recursively_load_weights(lowercase_ ,lowercase_ ,lowercase_ ) hf_model.save_pretrained(lowercase_ ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) lowerCamelCase__ = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
310
1
import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = tmp_path / 'cache' lowercase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowercase = SqlDatasetReader( 'dataset' , 'sqlite:///' + sqlite_path , cache_dir=__SCREAMING_SNAKE_CASE , keep_in_memory=__SCREAMING_SNAKE_CASE ).read() _check_sql_dataset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @require_sqlalchemy @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = tmp_path / 'cache' lowercase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} lowercase = features.copy() if features else default_expected_features lowercase = ( Features({feature: Value(__SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) lowercase = SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , features=__SCREAMING_SNAKE_CASE , cache_dir=__SCREAMING_SNAKE_CASE ).read() _check_sql_dataset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): with contextlib.closing(sqlitea.connect(__SCREAMING_SNAKE_CASE ) ) as con: lowercase = con.cursor() cur.execute('SELECT * FROM dataset' ) for row in cur: yield row @require_sqlalchemy def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = tmp_path / 'cache' lowercase = os.path.join(__SCREAMING_SNAKE_CASE , 'tmp.sql' ) lowercase = SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , cache_dir=__SCREAMING_SNAKE_CASE ).read() SqlDatasetWriter(__SCREAMING_SNAKE_CASE , 'dataset' , 'sqlite:///' + output_sqlite_path , num_proc=1 ).write() lowercase = iter_sql_file(__SCREAMING_SNAKE_CASE ) lowercase = iter_sql_file(__SCREAMING_SNAKE_CASE ) for rowa, rowa in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): assert rowa == rowa @require_sqlalchemy def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = tmp_path / 'cache' lowercase = os.path.join(__SCREAMING_SNAKE_CASE , 'tmp.sql' ) lowercase = SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , cache_dir=__SCREAMING_SNAKE_CASE ).read() SqlDatasetWriter(__SCREAMING_SNAKE_CASE , 'dataset' , 'sqlite:///' + output_sqlite_path , num_proc=2 ).write() lowercase = iter_sql_file(__SCREAMING_SNAKE_CASE ) lowercase = iter_sql_file(__SCREAMING_SNAKE_CASE ) for rowa, rowa in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): assert rowa == rowa @require_sqlalchemy def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = tmp_path / 'cache' lowercase = os.path.join(__SCREAMING_SNAKE_CASE , 'tmp.sql' ) lowercase = SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , cache_dir=__SCREAMING_SNAKE_CASE ).read() with pytest.raises(__SCREAMING_SNAKE_CASE ): SqlDatasetWriter(__SCREAMING_SNAKE_CASE , 'dataset' , 'sqlite:///' + output_sqlite_path , num_proc=0 ).write()
195
import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors UpperCAmelCase = logging.getLogger(__name__) class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : Optional[int] = """sequence-classification""" def __init__( self , snake_case ): if type(snake_case ) == dict: lowercase = Namespace(**snake_case ) lowercase = glue_output_modes[hparams.task] lowercase = glue_tasks_num_labels[hparams.task] super().__init__(snake_case , snake_case , self.mode ) def SCREAMING_SNAKE_CASE__ ( self , **snake_case ): return self.model(**snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case ): lowercase = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: lowercase = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None lowercase = self(**snake_case ) lowercase = outputs[0] lowercase = self.trainer.lr_schedulers[0]['scheduler'] lowercase = {'loss': loss, 'rate': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.hparams lowercase = processors[args.task]() lowercase = processor.get_labels() for mode in ["train", "dev"]: lowercase = self._feature_file(snake_case ) if os.path.exists(snake_case ) and not args.overwrite_cache: logger.info('Loading features from cached file %s' , snake_case ) else: logger.info('Creating features from dataset file at %s' , args.data_dir ) lowercase = ( processor.get_dev_examples(args.data_dir ) if mode == 'dev' else processor.get_train_examples(args.data_dir ) ) lowercase = convert_examples_to_features( snake_case , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('Saving features into cached file %s' , snake_case ) torch.save(snake_case , snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case = False ): lowercase = 'dev' if mode == 'test' else mode lowercase = self._feature_file(snake_case ) logger.info('Loading features from cached file %s' , snake_case ) lowercase = torch.load(snake_case ) lowercase = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) lowercase = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) lowercase = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": lowercase = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": lowercase = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(snake_case , snake_case , snake_case , snake_case ) , batch_size=snake_case , shuffle=snake_case , ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case ): lowercase = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: lowercase = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None lowercase = self(**snake_case ) lowercase , lowercase = outputs[:2] lowercase = logits.detach().cpu().numpy() lowercase = inputs['labels'].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def SCREAMING_SNAKE_CASE__ ( self , snake_case ): lowercase = torch.stack([x['val_loss'] for x in outputs] ).mean().detach().cpu().item() lowercase = np.concatenate([x['pred'] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": lowercase = np.argmax(snake_case , axis=1 ) elif self.hparams.glue_output_mode == "regression": lowercase = np.squeeze(snake_case ) lowercase = np.concatenate([x['target'] for x in outputs] , axis=0 ) lowercase = [[] for _ in range(out_label_ids.shape[0] )] lowercase = [[] for _ in range(out_label_ids.shape[0] )] lowercase = {**{'val_loss': val_loss_mean}, **compute_metrics(self.hparams.task , snake_case , snake_case )} lowercase = dict(results.items() ) lowercase = results return ret, preds_list, out_label_list def SCREAMING_SNAKE_CASE__ ( self , snake_case ): lowercase , lowercase , lowercase = self._eval_end(snake_case ) lowercase = ret['log'] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def SCREAMING_SNAKE_CASE__ ( self , snake_case ): lowercase , lowercase , lowercase = self._eval_end(snake_case ) lowercase = ret['log'] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case , snake_case ): BaseTransformer.add_model_specific_args(snake_case , snake_case ) parser.add_argument( '--max_seq_length' , default=128 , type=snake_case , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--task' , default='' , type=snake_case , required=snake_case , help='The GLUE task to run' , ) parser.add_argument( '--gpus' , default=0 , type=snake_case , help='The number of GPUs allocated for this, it is by default 0 meaning none' , ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) return parser def UpperCAmelCase_ ( ): lowercase = argparse.ArgumentParser() add_generic_args(__SCREAMING_SNAKE_CASE , os.getcwd() ) lowercase = GLUETransformer.add_model_specific_args(__SCREAMING_SNAKE_CASE , os.getcwd() ) lowercase = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: lowercase = os.path.join( './results' , F'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) lowercase = GLUETransformer(__SCREAMING_SNAKE_CASE ) lowercase = generic_train(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Optionally, predict on dev set and write to output_dir if args.do_predict: lowercase = sorted(glob.glob(os.path.join(args.output_dir , 'checkpoint-epoch=*.ckpt' ) , recursive=__SCREAMING_SNAKE_CASE ) ) lowercase = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
195
1
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} UpperCAmelCase_ = { 'vocab_file': { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json', 'allenai/longformer-large-4096': ( 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json' ), 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json' ), }, 'merges_file': { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt', 'allenai/longformer-large-4096': ( 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt' ), 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt' ), }, } UpperCAmelCase_ = { 'allenai/longformer-base-4096': 4_096, 'allenai/longformer-large-4096': 4_096, 'allenai/longformer-large-4096-finetuned-triviaqa': 4_096, 'allenai/longformer-base-4096-extra.pos.embd.only': 4_096, 'allenai/longformer-large-4096-extra.pos.embd.only': 4_096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) __lowerCamelCase = bs[:] __lowerCamelCase = 0 for b in range(2**8 ): if b not in bs: bs.append(A__ ) cs.append(2**8 + n ) n += 1 __lowerCamelCase = [chr(A__ ) for n in cs] return dict(zip(A__ , A__ ) ) def lowerCamelCase__ ( A__ : Optional[Any] ): '''simple docstring''' __lowerCamelCase = set() __lowerCamelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowerCamelCase = char return pairs class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Optional[int] = VOCAB_FILES_NAMES UpperCAmelCase__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : int = ['input_ids', 'attention_mask'] def __init__( self: Tuple , UpperCamelCase_: List[str] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: List[str]="replace" , UpperCamelCase_: str="<s>" , UpperCamelCase_: Dict="</s>" , UpperCamelCase_: Optional[Any]="</s>" , UpperCamelCase_: Any="<s>" , UpperCamelCase_: Optional[Any]="<unk>" , UpperCamelCase_: int="<pad>" , UpperCamelCase_: Tuple="<mask>" , UpperCamelCase_: str=False , **UpperCamelCase_: Any , ): __lowerCamelCase = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else bos_token __lowerCamelCase = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else eos_token __lowerCamelCase = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else sep_token __lowerCamelCase = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else cls_token __lowerCamelCase = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else unk_token __lowerCamelCase = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __lowerCamelCase = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token super().__init__( errors=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , ) with open(UpperCamelCase_ , encoding="""utf-8""" ) as vocab_handle: __lowerCamelCase = json.load(UpperCamelCase_ ) __lowerCamelCase = {v: k for k, v in self.encoder.items()} __lowerCamelCase = errors # how to handle errors in decoding __lowerCamelCase = bytes_to_unicode() __lowerCamelCase = {v: k for k, v in self.byte_encoder.items()} with open(UpperCamelCase_ , encoding="""utf-8""" ) as merges_handle: __lowerCamelCase = merges_handle.read().split("""\n""" )[1:-1] __lowerCamelCase = [tuple(merge.split() ) for merge in bpe_merges] __lowerCamelCase = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) __lowerCamelCase = {} __lowerCamelCase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __lowerCamelCase = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property def lowerCAmelCase__ ( self: Tuple ): return len(self.encoder ) def lowerCAmelCase__ ( self: Optional[int] ): return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Any ): if token in self.cache: return self.cache[token] __lowerCamelCase = tuple(UpperCamelCase_ ) __lowerCamelCase = get_pairs(UpperCamelCase_ ) if not pairs: return token while True: __lowerCamelCase = min(UpperCamelCase_ , key=lambda UpperCamelCase_ : self.bpe_ranks.get(UpperCamelCase_ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break __lowerCamelCase, __lowerCamelCase = bigram __lowerCamelCase = [] __lowerCamelCase = 0 while i < len(UpperCamelCase_ ): try: __lowerCamelCase = word.index(UpperCamelCase_ , UpperCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowerCamelCase = j if word[i] == first and i < len(UpperCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowerCamelCase = tuple(UpperCamelCase_ ) __lowerCamelCase = new_word if len(UpperCamelCase_ ) == 1: break else: __lowerCamelCase = get_pairs(UpperCamelCase_ ) __lowerCamelCase = """ """.join(UpperCamelCase_ ) __lowerCamelCase = word return word def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: int ): __lowerCamelCase = [] for token in re.findall(self.pat , UpperCamelCase_ ): __lowerCamelCase = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCamelCase_ ).split(""" """ ) ) return bpe_tokens def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Any ): return self.encoder.get(UpperCamelCase_ , self.encoder.get(self.unk_token ) ) def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: Tuple ): return self.decoder.get(UpperCamelCase_ ) def lowerCAmelCase__ ( self: int , UpperCamelCase_: Optional[Any] ): __lowerCamelCase = """""".join(UpperCamelCase_ ) __lowerCamelCase = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: str , UpperCamelCase_: Optional[str] = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __lowerCamelCase = os.path.join( UpperCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __lowerCamelCase = os.path.join( UpperCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(UpperCamelCase_ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase_ , ensure_ascii=UpperCamelCase_ ) + """\n""" ) __lowerCamelCase = 0 with open(UpperCamelCase_ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase_ : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' """ Please check that the tokenizer is not corrupted!""" ) __lowerCamelCase = token_index writer.write(""" """.join(UpperCamelCase_ ) + """\n""" ) index += 1 return vocab_file, merge_file def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowerCamelCase = [self.cls_token_id] __lowerCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None , UpperCamelCase_: bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ): __lowerCamelCase = [self.sep_token_id] __lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase__ ( self: Any , UpperCamelCase_: Tuple , UpperCamelCase_: int=False , **UpperCamelCase_: Dict ): __lowerCamelCase = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCamelCase_ ) > 0 and not text[0].isspace()): __lowerCamelCase = """ """ + text return (text, kwargs)
29
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class lowerCamelCase__( unittest.TestCase): @parameterized.expand([(None,), ("""foo.json""",)] ) def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: List[str] ): __lowerCamelCase = GenerationConfig( do_sample=UpperCamelCase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCamelCase_ , config_name=UpperCamelCase_ ) __lowerCamelCase = GenerationConfig.from_pretrained(UpperCamelCase_ , config_name=UpperCamelCase_ ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , UpperCamelCase_ ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = AutoConfig.from_pretrained("""gpt2""" ) __lowerCamelCase = GenerationConfig.from_model_config(UpperCamelCase_ ) __lowerCamelCase = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(UpperCamelCase_ , UpperCamelCase_ ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = GenerationConfig() __lowerCamelCase = { """max_new_tokens""": 10_24, """foo""": """bar""", } __lowerCamelCase = copy.deepcopy(UpperCamelCase_ ) __lowerCamelCase = generation_config.update(**UpperCamelCase_ ) # update_kwargs was not modified (no side effects) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 10_24 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(UpperCamelCase_ , {"""foo""": """bar"""} ) def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = GenerationConfig() __lowerCamelCase = """bar""" with tempfile.TemporaryDirectory("""test-generation-config""" ) as tmp_dir: generation_config.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = GenerationConfig.from_pretrained(UpperCamelCase_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , """bar""" ) __lowerCamelCase = GenerationConfig.from_model_config(UpperCamelCase_ ) assert not hasattr(UpperCamelCase_ , """foo""" ) # no new kwargs should be initialized if from config def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , UpperCamelCase_ ) self.assertEqual(default_config.num_beams , 1 ) __lowerCamelCase = GenerationConfig( do_sample=UpperCamelCase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , UpperCamelCase_ ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = GenerationConfig.from_pretrained(UpperCamelCase_ , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , UpperCamelCase_ ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class lowerCamelCase__( unittest.TestCase): @classmethod def lowerCAmelCase__ ( cls: Optional[Any] ): __lowerCamelCase = TOKEN HfFolder.save_token(UpperCamelCase_ ) @classmethod def lowerCAmelCase__ ( cls: str ): try: delete_repo(token=cls._token , repo_id="""test-generation-config""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-generation-config-org""" ) except HTTPError: pass def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = GenerationConfig( do_sample=UpperCamelCase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""test-generation-config""" , use_auth_token=self._token ) __lowerCamelCase = GenerationConfig.from_pretrained(F'{USER}/test-generation-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-generation-config""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCamelCase_ , repo_id="""test-generation-config""" , push_to_hub=UpperCamelCase_ , use_auth_token=self._token ) __lowerCamelCase = GenerationConfig.from_pretrained(F'{USER}/test-generation-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = GenerationConfig( do_sample=UpperCamelCase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""valid_org/test-generation-config-org""" , use_auth_token=self._token ) __lowerCamelCase = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-generation-config-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCamelCase_ , repo_id="""valid_org/test-generation-config-org""" , push_to_hub=UpperCamelCase_ , use_auth_token=self._token ) __lowerCamelCase = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) )
29
1
'''simple docstring''' def __lowerCamelCase ( __snake_case : Any ) -> Union[str, Any]: """simple docstring""" A__ : Any =len(UpperCamelCase_ ) for i in range(length - 1 ): A__ : int =i for k in range(i + 1, UpperCamelCase_ ): if collection[k] < collection[least]: A__ : Dict =k if least != i: A__ , A__ : Union[str, Any] =(collection[i], collection[least]) return collection if __name__ == "__main__": __snake_case : Any = input('Enter numbers separated by a comma:\n').strip() __snake_case : Any = [int(item) for item in user_input.split(',')] print(selection_sort(unsorted))
134
import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput _SCREAMING_SNAKE_CASE : List[str] = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class A__ ( snake_case__ ): """simple docstring""" def __init__( self , *__snake_case , __snake_case=None , __snake_case=None , __snake_case=None , **__snake_case ): super().__init__(*__snake_case , **__snake_case ) snake_case = eval_examples snake_case = post_process_function snake_case = quant_trainer_args snake_case = 1_2_8 # default number of calibration samples def a_ ( self , __snake_case=None ): if calib_dataset is None and self.calib_dataset is None: raise ValueError('''Trainer: calibration requires an calib_dataset.''' ) snake_case = calib_dataset if calib_dataset is not None else self.calib_dataset snake_case = self._remove_unused_columns(__snake_case , description='''Calibration''' ) return DataLoader( __snake_case , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=__snake_case , ) def a_ ( self , __snake_case=None ): snake_case = self.train_dataset if calib_dataset is None else calib_dataset snake_case = self.get_calib_dataloader(__snake_case ) snake_case = self.model quant_trainer.configure_model(__snake_case , self.quant_trainer_args , calib=__snake_case ) model.eval() quant_trainer.enable_calibration(__snake_case ) logger.info('''***** Running calibration *****''' ) logger.info(F''' Num examples = {self.calib_num}''' ) logger.info(F''' Batch size = {calib_dataloader.batch_size}''' ) for step, inputs in enumerate(__snake_case ): # Prediction step snake_case , snake_case , snake_case = self.prediction_step(__snake_case , __snake_case , prediction_loss_only=__snake_case ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(__snake_case , self.quant_trainer_args ) snake_case = model def a_ ( self , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case = "eval" ): snake_case = self.eval_dataset if eval_dataset is None else eval_dataset snake_case = self.get_eval_dataloader(__snake_case ) snake_case = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. snake_case = self.compute_metrics snake_case = None snake_case = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: snake_case = eval_loop( __snake_case , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__snake_case , ) finally: snake_case = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: snake_case = self.post_process_function(__snake_case , __snake_case , output.predictions ) snake_case = self.compute_metrics(__snake_case ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): snake_case = metrics.pop(__snake_case ) self.log(__snake_case ) else: snake_case = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) snake_case = self.callback_handler.on_evaluate(self.args , self.state , self.control , __snake_case ) return metrics def a_ ( self , __snake_case , __snake_case , __snake_case=None , __snake_case = "test" ): snake_case = self.get_test_dataloader(__snake_case ) # Temporarily disable metric computation, we will do it in the loop here. snake_case = self.compute_metrics snake_case = None snake_case = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: snake_case = eval_loop( __snake_case , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__snake_case , ) finally: snake_case = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output snake_case = self.post_process_function(__snake_case , __snake_case , output.predictions , '''predict''' ) snake_case = self.compute_metrics(__snake_case ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): snake_case = metrics.pop(__snake_case ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__snake_case ) def a_ ( self , __snake_case="./" ): snake_case = self.eval_dataset snake_case = self.get_eval_dataloader(__snake_case ) snake_case = next(iter(__snake_case ) ) # saving device - to make it consistent snake_case = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) # convert to tuple snake_case = tuple(v.to(__snake_case ) for k, v in batch.items() ) logger.info('''Converting model to be onnx compatible''' ) from pytorch_quantization.nn import TensorQuantizer snake_case = True snake_case = self.model.to(__snake_case ) model.eval() model.float() snake_case = model.module if hasattr(__snake_case , '''module''' ) else model quant_trainer.configure_model(__snake_case , self.quant_trainer_args ) snake_case = os.path.join(__snake_case , '''model.onnx''' ) logger.info(F'''exporting model to {output_model_file}''' ) snake_case = {0: '''batch_size''', 1: '''seq_len'''} torch.onnx.export( __snake_case , __snake_case , __snake_case , export_params=__snake_case , opset_version=1_3 , do_constant_folding=__snake_case , input_names=['''input_ids''', '''attention_mask''', '''token_type_ids'''] , output_names=['''output_start_logits''', '''output_end_logits'''] , dynamic_axes={ '''input_ids''': axes, '''attention_mask''': axes, '''token_type_ids''': axes, '''output_start_logits''': axes, '''output_end_logits''': axes, } , verbose=__snake_case , ) logger.info('''onnx export finished''' )
127
0
"""simple docstring""" import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _a : List[str] = logging.get_logger(__name__) _a : Optional[Any] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } _a : Tuple = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } _a : Dict = {'facebook/blenderbot_small-90M': 512} def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ) -> Tuple: _lowerCAmelCase : str = set() _lowerCAmelCase : int = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCAmelCase : int = char _lowerCAmelCase : Optional[Any] = set(_lowerCamelCase ) return pairs class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : int = VOCAB_FILES_NAMES _UpperCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Optional[Any] = ["input_ids", "attention_mask"] def __init__( self , a__ , a__ , a__="__start__" , a__="__end__" , a__="__unk__" , a__="__null__" , **a__ , ): super().__init__(unk_token=a__ , bos_token=a__ , eos_token=a__ , pad_token=a__ , **a__ ) with open(a__ , encoding="""utf-8""" ) as vocab_handle: _lowerCAmelCase : Tuple = json.load(a__ ) _lowerCAmelCase : int = {v: k for k, v in self.encoder.items()} with open(a__ , encoding="""utf-8""" ) as merges_handle: _lowerCAmelCase : int = merges_handle.read().split("""\n""" )[1:-1] _lowerCAmelCase : int = [tuple(merge.split() ) for merge in merges] _lowerCAmelCase : str = dict(zip(a__ , range(len(a__ ) ) ) ) _lowerCAmelCase : Union[str, Any] = {} @property def __A ( self ): return len(self.encoder ) def __A ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def __A ( self , a__ ): if token in self.cache: return self.cache[token] _lowerCAmelCase : Optional[int] = re.sub("""([.,!?()])""" , r""" \1""" , a__ ) _lowerCAmelCase : Optional[int] = re.sub("""(')""" , r""" \1 """ , a__ ) _lowerCAmelCase : Union[str, Any] = re.sub(r"""\s{2,}""" , """ """ , a__ ) if "\n" in token: _lowerCAmelCase : Dict = token.replace("""\n""" , """ __newln__""" ) _lowerCAmelCase : List[str] = token.split(""" """ ) _lowerCAmelCase : Any = [] for token in tokens: if not len(a__ ): continue _lowerCAmelCase : str = token.lower() _lowerCAmelCase : Optional[Any] = tuple(a__ ) _lowerCAmelCase : str = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) _lowerCAmelCase : Any = get_pairs(a__ ) if not pairs: words.append(a__ ) continue while True: _lowerCAmelCase : Dict = min(a__ , key=lambda a__ : self.bpe_ranks.get(a__ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break _lowerCAmelCase : Any = bigram _lowerCAmelCase : str = [] _lowerCAmelCase : List[Any] = 0 while i < len(a__ ): try: _lowerCAmelCase : List[str] = word.index(a__ , a__ ) new_word.extend(word[i:j] ) _lowerCAmelCase : List[Any] = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(a__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowerCAmelCase : Optional[int] = tuple(a__ ) _lowerCAmelCase : str = new_word if len(a__ ) == 1: break else: _lowerCAmelCase : Tuple = get_pairs(a__ ) _lowerCAmelCase : Union[str, Any] = """@@ """.join(a__ ) _lowerCAmelCase : Optional[int] = word[:-4] _lowerCAmelCase : List[str] = word words.append(a__ ) return " ".join(a__ ) def __A ( self , a__ ): _lowerCAmelCase : Tuple = [] _lowerCAmelCase : int = re.findall(r"""\S+\n?""" , a__ ) for token in words: split_tokens.extend(list(self.bpe(a__ ).split(""" """ ) ) ) return split_tokens def __A ( self , a__ ): _lowerCAmelCase : Union[str, Any] = token.lower() return self.encoder.get(a__ , self.encoder.get(self.unk_token ) ) def __A ( self , a__ ): return self.decoder.get(a__ , self.unk_token ) def __A ( self , a__ ): _lowerCAmelCase : List[str] = """ """.join(a__ ).replace("""@@ """ , """""" ).strip() return out_string def __A ( self , a__ , a__ = None ): if not os.path.isdir(a__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return _lowerCAmelCase : List[str] = os.path.join( a__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) _lowerCAmelCase : Tuple = os.path.join( a__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(a__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=a__ , ensure_ascii=a__ ) + """\n""" ) _lowerCAmelCase : Any = 0 with open(a__ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda a__ : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." """ Please check that the tokenizer is not corrupted!""" ) _lowerCAmelCase : int = token_index writer.write(""" """.join(a__ ) + """\n""" ) index += 1 return vocab_file, merge_file
355
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int = 100 ) -> int: _lowerCAmelCase : Optional[Any] = n * (n + 1) * (2 * n + 1) / 6 _lowerCAmelCase : Tuple = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F"""{solution() = }""")
126
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { '''alibaba-damo/mgp-str-base''': '''https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json''', } class __magic_name__ ( lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : int = 'mgp-str' def __init__( self, lowercase_=[32, 128], lowercase_=4, lowercase_=3, lowercase_=27, lowercase_=38, lowercase_=50257, lowercase_=30522, lowercase_=768, lowercase_=12, lowercase_=12, lowercase_=4.0, lowercase_=True, lowercase_=False, lowercase_=1E-5, lowercase_=0.0, lowercase_=0.0, lowercase_=0.0, lowercase_=False, lowercase_=0.02, **lowercase_, ) -> List[Any]: """simple docstring""" super().__init__(**lowercase_ ) a__ =image_size a__ =patch_size a__ =num_channels a__ =max_token_length a__ =num_character_labels a__ =num_bpe_labels a__ =num_wordpiece_labels a__ =hidden_size a__ =num_hidden_layers a__ =num_attention_heads a__ =mlp_ratio a__ =distilled a__ =layer_norm_eps a__ =drop_rate a__ =qkv_bias a__ =attn_drop_rate a__ =drop_path_rate a__ =output_aa_attentions a__ =initializer_range
188
from math import factorial def UpperCAmelCase__ ( _A : int = 1_00 ): '''simple docstring''' return sum(int(_A ) for x in str(factorial(_A ) ) ) if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
188
1
"""simple docstring""" from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
364
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool SCREAMING_SNAKE_CASE : Optional[Any] = { '''Acehnese Arabic''': '''ace_Arab''', '''Acehnese Latin''': '''ace_Latn''', '''Mesopotamian Arabic''': '''acm_Arab''', '''Ta\'izzi-Adeni Arabic''': '''acq_Arab''', '''Tunisian Arabic''': '''aeb_Arab''', '''Afrikaans''': '''afr_Latn''', '''South Levantine Arabic''': '''ajp_Arab''', '''Akan''': '''aka_Latn''', '''Amharic''': '''amh_Ethi''', '''North Levantine Arabic''': '''apc_Arab''', '''Modern Standard Arabic''': '''arb_Arab''', '''Modern Standard Arabic Romanized''': '''arb_Latn''', '''Najdi Arabic''': '''ars_Arab''', '''Moroccan Arabic''': '''ary_Arab''', '''Egyptian Arabic''': '''arz_Arab''', '''Assamese''': '''asm_Beng''', '''Asturian''': '''ast_Latn''', '''Awadhi''': '''awa_Deva''', '''Central Aymara''': '''ayr_Latn''', '''South Azerbaijani''': '''azb_Arab''', '''North Azerbaijani''': '''azj_Latn''', '''Bashkir''': '''bak_Cyrl''', '''Bambara''': '''bam_Latn''', '''Balinese''': '''ban_Latn''', '''Belarusian''': '''bel_Cyrl''', '''Bemba''': '''bem_Latn''', '''Bengali''': '''ben_Beng''', '''Bhojpuri''': '''bho_Deva''', '''Banjar Arabic''': '''bjn_Arab''', '''Banjar Latin''': '''bjn_Latn''', '''Standard Tibetan''': '''bod_Tibt''', '''Bosnian''': '''bos_Latn''', '''Buginese''': '''bug_Latn''', '''Bulgarian''': '''bul_Cyrl''', '''Catalan''': '''cat_Latn''', '''Cebuano''': '''ceb_Latn''', '''Czech''': '''ces_Latn''', '''Chokwe''': '''cjk_Latn''', '''Central Kurdish''': '''ckb_Arab''', '''Crimean Tatar''': '''crh_Latn''', '''Welsh''': '''cym_Latn''', '''Danish''': '''dan_Latn''', '''German''': '''deu_Latn''', '''Southwestern Dinka''': '''dik_Latn''', '''Dyula''': '''dyu_Latn''', '''Dzongkha''': '''dzo_Tibt''', '''Greek''': '''ell_Grek''', '''English''': '''eng_Latn''', '''Esperanto''': '''epo_Latn''', '''Estonian''': '''est_Latn''', '''Basque''': '''eus_Latn''', '''Ewe''': '''ewe_Latn''', '''Faroese''': '''fao_Latn''', '''Fijian''': '''fij_Latn''', '''Finnish''': '''fin_Latn''', '''Fon''': '''fon_Latn''', '''French''': '''fra_Latn''', '''Friulian''': '''fur_Latn''', '''Nigerian Fulfulde''': '''fuv_Latn''', '''Scottish Gaelic''': '''gla_Latn''', '''Irish''': '''gle_Latn''', '''Galician''': '''glg_Latn''', '''Guarani''': '''grn_Latn''', '''Gujarati''': '''guj_Gujr''', '''Haitian Creole''': '''hat_Latn''', '''Hausa''': '''hau_Latn''', '''Hebrew''': '''heb_Hebr''', '''Hindi''': '''hin_Deva''', '''Chhattisgarhi''': '''hne_Deva''', '''Croatian''': '''hrv_Latn''', '''Hungarian''': '''hun_Latn''', '''Armenian''': '''hye_Armn''', '''Igbo''': '''ibo_Latn''', '''Ilocano''': '''ilo_Latn''', '''Indonesian''': '''ind_Latn''', '''Icelandic''': '''isl_Latn''', '''Italian''': '''ita_Latn''', '''Javanese''': '''jav_Latn''', '''Japanese''': '''jpn_Jpan''', '''Kabyle''': '''kab_Latn''', '''Jingpho''': '''kac_Latn''', '''Kamba''': '''kam_Latn''', '''Kannada''': '''kan_Knda''', '''Kashmiri Arabic''': '''kas_Arab''', '''Kashmiri Devanagari''': '''kas_Deva''', '''Georgian''': '''kat_Geor''', '''Central Kanuri Arabic''': '''knc_Arab''', '''Central Kanuri Latin''': '''knc_Latn''', '''Kazakh''': '''kaz_Cyrl''', '''Kabiyè''': '''kbp_Latn''', '''Kabuverdianu''': '''kea_Latn''', '''Khmer''': '''khm_Khmr''', '''Kikuyu''': '''kik_Latn''', '''Kinyarwanda''': '''kin_Latn''', '''Kyrgyz''': '''kir_Cyrl''', '''Kimbundu''': '''kmb_Latn''', '''Northern Kurdish''': '''kmr_Latn''', '''Kikongo''': '''kon_Latn''', '''Korean''': '''kor_Hang''', '''Lao''': '''lao_Laoo''', '''Ligurian''': '''lij_Latn''', '''Limburgish''': '''lim_Latn''', '''Lingala''': '''lin_Latn''', '''Lithuanian''': '''lit_Latn''', '''Lombard''': '''lmo_Latn''', '''Latgalian''': '''ltg_Latn''', '''Luxembourgish''': '''ltz_Latn''', '''Luba-Kasai''': '''lua_Latn''', '''Ganda''': '''lug_Latn''', '''Luo''': '''luo_Latn''', '''Mizo''': '''lus_Latn''', '''Standard Latvian''': '''lvs_Latn''', '''Magahi''': '''mag_Deva''', '''Maithili''': '''mai_Deva''', '''Malayalam''': '''mal_Mlym''', '''Marathi''': '''mar_Deva''', '''Minangkabau Arabic ''': '''min_Arab''', '''Minangkabau Latin''': '''min_Latn''', '''Macedonian''': '''mkd_Cyrl''', '''Plateau Malagasy''': '''plt_Latn''', '''Maltese''': '''mlt_Latn''', '''Meitei Bengali''': '''mni_Beng''', '''Halh Mongolian''': '''khk_Cyrl''', '''Mossi''': '''mos_Latn''', '''Maori''': '''mri_Latn''', '''Burmese''': '''mya_Mymr''', '''Dutch''': '''nld_Latn''', '''Norwegian Nynorsk''': '''nno_Latn''', '''Norwegian Bokmål''': '''nob_Latn''', '''Nepali''': '''npi_Deva''', '''Northern Sotho''': '''nso_Latn''', '''Nuer''': '''nus_Latn''', '''Nyanja''': '''nya_Latn''', '''Occitan''': '''oci_Latn''', '''West Central Oromo''': '''gaz_Latn''', '''Odia''': '''ory_Orya''', '''Pangasinan''': '''pag_Latn''', '''Eastern Panjabi''': '''pan_Guru''', '''Papiamento''': '''pap_Latn''', '''Western Persian''': '''pes_Arab''', '''Polish''': '''pol_Latn''', '''Portuguese''': '''por_Latn''', '''Dari''': '''prs_Arab''', '''Southern Pashto''': '''pbt_Arab''', '''Ayacucho Quechua''': '''quy_Latn''', '''Romanian''': '''ron_Latn''', '''Rundi''': '''run_Latn''', '''Russian''': '''rus_Cyrl''', '''Sango''': '''sag_Latn''', '''Sanskrit''': '''san_Deva''', '''Santali''': '''sat_Olck''', '''Sicilian''': '''scn_Latn''', '''Shan''': '''shn_Mymr''', '''Sinhala''': '''sin_Sinh''', '''Slovak''': '''slk_Latn''', '''Slovenian''': '''slv_Latn''', '''Samoan''': '''smo_Latn''', '''Shona''': '''sna_Latn''', '''Sindhi''': '''snd_Arab''', '''Somali''': '''som_Latn''', '''Southern Sotho''': '''sot_Latn''', '''Spanish''': '''spa_Latn''', '''Tosk Albanian''': '''als_Latn''', '''Sardinian''': '''srd_Latn''', '''Serbian''': '''srp_Cyrl''', '''Swati''': '''ssw_Latn''', '''Sundanese''': '''sun_Latn''', '''Swedish''': '''swe_Latn''', '''Swahili''': '''swh_Latn''', '''Silesian''': '''szl_Latn''', '''Tamil''': '''tam_Taml''', '''Tatar''': '''tat_Cyrl''', '''Telugu''': '''tel_Telu''', '''Tajik''': '''tgk_Cyrl''', '''Tagalog''': '''tgl_Latn''', '''Thai''': '''tha_Thai''', '''Tigrinya''': '''tir_Ethi''', '''Tamasheq Latin''': '''taq_Latn''', '''Tamasheq Tifinagh''': '''taq_Tfng''', '''Tok Pisin''': '''tpi_Latn''', '''Tswana''': '''tsn_Latn''', '''Tsonga''': '''tso_Latn''', '''Turkmen''': '''tuk_Latn''', '''Tumbuka''': '''tum_Latn''', '''Turkish''': '''tur_Latn''', '''Twi''': '''twi_Latn''', '''Central Atlas Tamazight''': '''tzm_Tfng''', '''Uyghur''': '''uig_Arab''', '''Ukrainian''': '''ukr_Cyrl''', '''Umbundu''': '''umb_Latn''', '''Urdu''': '''urd_Arab''', '''Northern Uzbek''': '''uzn_Latn''', '''Venetian''': '''vec_Latn''', '''Vietnamese''': '''vie_Latn''', '''Waray''': '''war_Latn''', '''Wolof''': '''wol_Latn''', '''Xhosa''': '''xho_Latn''', '''Eastern Yiddish''': '''ydd_Hebr''', '''Yoruba''': '''yor_Latn''', '''Yue Chinese''': '''yue_Hant''', '''Chinese Simplified''': '''zho_Hans''', '''Chinese Traditional''': '''zho_Hant''', '''Standard Malay''': '''zsm_Latn''', '''Zulu''': '''zul_Latn''', } class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 'facebook/nllb-200-distilled-600M' __UpperCamelCase = ( 'This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ' 'be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ' 'which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ' 'plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.' ) __UpperCamelCase = 'translator' __UpperCamelCase = AutoTokenizer __UpperCamelCase = AutoModelForSeqaSeqLM __UpperCamelCase = LANGUAGE_CODES __UpperCamelCase = ['text', 'text', 'text'] __UpperCamelCase = ['text'] def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if src_lang not in self.lang_to_code: raise ValueError(f"""{src_lang} is not a supported language.""" ) if tgt_lang not in self.lang_to_code: raise ValueError(f"""{tgt_lang} is not a supported language.""" ) _lowerCAmelCase = self.lang_to_code[src_lang] _lowerCAmelCase = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowerCamelCase , return_tensors="""pt""" , src_lang=lowerCamelCase , tgt_lang=lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' return self.model.generate(**lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowerCamelCase )
317
0
'''simple docstring''' from __future__ import annotations def __A ( lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = str(lowerCamelCase_ ) return len(lowerCamelCase_ ) == 9 and set(lowerCamelCase_ ) == set("""123456789""" ) def __A ( ): """simple docstring""" for base_num in range(99_99 , 49_99 , -1 ): SCREAMING_SNAKE_CASE : Tuple = 10_00_02 * base_num if is_9_pandigital(lowerCamelCase_ ): return candidate for base_num in range(3_33 , 99 , -1 ): SCREAMING_SNAKE_CASE : str = 1_00_20_03 * base_num if is_9_pandigital(lowerCamelCase_ ): return candidate return None if __name__ == "__main__": print(f'''{solution() = }''')
323
'''simple docstring''' import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class UpperCamelCase__ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Dict , lowerCamelCase_ : Dict[str, int] , lowerCamelCase_ : List[str] , lowerCamelCase_ : int = None , lowerCamelCase_ : int = None ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : Any = pad_token_id SCREAMING_SNAKE_CASE : List[Any] = max_length SCREAMING_SNAKE_CASE : Optional[int] = vocab SCREAMING_SNAKE_CASE : List[Any] = merges SCREAMING_SNAKE_CASE : Tuple = BytePairTokenizer(lowerCamelCase_ , lowerCamelCase_ , sequence_length=lowerCamelCase_ ) @classmethod def lowerCamelCase_ ( cls : Any , lowerCamelCase_ : GPTaTokenizer , *lowerCamelCase_ : str , **lowerCamelCase_ : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = [""" """.join(lowerCamelCase_ ) for m in tokenizer.bpe_ranks.keys()] SCREAMING_SNAKE_CASE : List[str] = tokenizer.get_vocab() return cls(lowerCamelCase_ , lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ ) @classmethod def lowerCamelCase_ ( cls : List[Any] , lowerCamelCase_ : Union[str, os.PathLike] , *lowerCamelCase_ : str , **lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = GPTaTokenizer.from_pretrained(lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ ) return cls.from_tokenizer(lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ ) @classmethod def lowerCamelCase_ ( cls : List[str] , lowerCamelCase_ : Tuple ): '''simple docstring''' return cls(**lowerCamelCase_ ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : int = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.tf_tokenizer(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = tf.ones_like(lowerCamelCase_ ) if self.pad_token_id is not None: # pad the tokens up to max length SCREAMING_SNAKE_CASE : Optional[int] = max_length if max_length is not None else self.max_length if max_length is not None: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Union[str, Any] = pad_model_inputs( lowerCamelCase_ , max_seq_length=lowerCamelCase_ , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
323
1
"""simple docstring""" class lowercase : def __init__( self ,A__): lowercase = len(A__) lowercase = [0] * len_array if len_array > 0: lowercase = array[0] for i in range(1 ,A__): lowercase = self.prefix_sum[i - 1] + array[i] def A__ ( self ,A__ ,A__): if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def A__ ( self ,A__): lowercase = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(A__) return False if __name__ == "__main__": import doctest doctest.testmod()
353
import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = np.inf def set_batch_size(lowerCAmelCase__ ) -> None: nonlocal batch_size if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): lowercase = min(lowerCAmelCase__ , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): lowercase = min(lowerCAmelCase__ , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and feature.dtype == "binary": lowercase = min(lowerCAmelCase__ , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(lowerCAmelCase__ , lowerCAmelCase__ ) return None if batch_size is np.inf else batch_size class lowercase ( SCREAMING_SNAKE_CASE__ ): def __init__( self ,A__ ,A__ = None ,A__ = None ,A__ = None ,A__ = False ,A__ = False ,A__ = None ,**A__ ,): super().__init__( A__ ,split=A__ ,features=A__ ,cache_dir=A__ ,keep_in_memory=A__ ,streaming=A__ ,num_proc=A__ ,**A__ ,) lowercase = path_or_paths if isinstance(A__ ,A__) else {self.split: path_or_paths} lowercase = _PACKAGED_DATASETS_MODULES['''parquet'''][1] lowercase = Parquet( cache_dir=A__ ,data_files=A__ ,features=A__ ,hash=A__ ,**A__ ,) def A__ ( self): # Build iterable dataset if self.streaming: lowercase = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: lowercase = None lowercase = None lowercase = None lowercase = None self.builder.download_and_prepare( download_config=A__ ,download_mode=A__ ,verification_mode=A__ ,base_path=A__ ,num_proc=self.num_proc ,) lowercase = self.builder.as_dataset( split=self.split ,verification_mode=A__ ,in_memory=self.keep_in_memory) return dataset class lowercase : def __init__( self ,A__ ,A__ ,A__ = None ,**A__ ,): lowercase = dataset lowercase = path_or_buf lowercase = batch_size or get_writer_batch_size(dataset.features) lowercase = parquet_writer_kwargs def A__ ( self): lowercase = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf ,(str, bytes, os.PathLike)): with open(self.path_or_buf ,'''wb+''') as buffer: lowercase = self._write(file_obj=A__ ,batch_size=A__ ,**self.parquet_writer_kwargs) else: lowercase = self._write(file_obj=self.path_or_buf ,batch_size=A__ ,**self.parquet_writer_kwargs) return written def A__ ( self ,A__ ,A__ ,**A__): lowercase = 0 lowercase = parquet_writer_kwargs.pop('''path_or_buf''' ,A__) lowercase = self.dataset.features.arrow_schema lowercase = pq.ParquetWriter(A__ ,schema=A__ ,**A__) for offset in logging.tqdm( range(0 ,len(self.dataset) ,A__) ,unit='''ba''' ,disable=not logging.is_progress_bar_enabled() ,desc='''Creating parquet from Arrow format''' ,): lowercase = query_table( table=self.dataset._data ,key=slice(A__ ,offset + batch_size) ,indices=self.dataset._indices if self.dataset._indices is not None else None ,) writer.write_table(A__) written += batch.nbytes writer.close() return written
97
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case_ : Tuple = { """configuration_roformer""": ["""ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RoFormerConfig""", """RoFormerOnnxConfig"""], """tokenization_roformer""": ["""RoFormerTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : int = ["""RoFormerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : str = [ """ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """RoFormerForCausalLM""", """RoFormerForMaskedLM""", """RoFormerForMultipleChoice""", """RoFormerForQuestionAnswering""", """RoFormerForSequenceClassification""", """RoFormerForTokenClassification""", """RoFormerLayer""", """RoFormerModel""", """RoFormerPreTrainedModel""", """load_tf_weights_in_roformer""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Dict = [ """TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRoFormerForCausalLM""", """TFRoFormerForMaskedLM""", """TFRoFormerForMultipleChoice""", """TFRoFormerForQuestionAnswering""", """TFRoFormerForSequenceClassification""", """TFRoFormerForTokenClassification""", """TFRoFormerLayer""", """TFRoFormerModel""", """TFRoFormerPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[int] = [ """FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """FlaxRoFormerForMaskedLM""", """FlaxRoFormerForMultipleChoice""", """FlaxRoFormerForQuestionAnswering""", """FlaxRoFormerForSequenceClassification""", """FlaxRoFormerForTokenClassification""", """FlaxRoFormerModel""", """FlaxRoFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys snake_case_ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
83
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class a__ ( unittest.TestCase ): """simple docstring""" @slow def _snake_case (self ): __lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''' , return_dict=__lowercase ).to(__lowercase ) __lowerCAmelCase = AutoTokenizer.from_pretrained('''google/mt5-small''' ) __lowerCAmelCase = tokenizer('''Hello there''' , return_tensors='''pt''' ).input_ids __lowerCAmelCase = tokenizer('''Hi I am''' , return_tensors='''pt''' ).input_ids __lowerCAmelCase = model(input_ids.to(__lowercase ) , labels=labels.to(__lowercase ) ).loss __lowerCAmelCase = -(labels.shape[-1] * loss.item()) __lowerCAmelCase = -8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
174
0
from ...processing_utils import ProcessorMixin class __a( _a ): """simple docstring""" lowerCAmelCase = '''SpeechT5FeatureExtractor''' lowerCAmelCase = '''SpeechT5Tokenizer''' def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> int: super().__init__(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def __call__( self ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ : List[str] = kwargs.pop('''audio''' ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = kwargs.pop('''text''' ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = kwargs.pop('''text_target''' ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = kwargs.pop('''audio_target''' ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = kwargs.pop('''sampling_rate''' ,_SCREAMING_SNAKE_CASE ) if audio is not None and text is not None: raise ValueError( '''Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?''' ) if audio_target is not None and text_target is not None: raise ValueError( '''Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?''' ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( '''You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.''' ) if audio is not None: UpperCAmelCase_ : Optional[Any] = self.feature_extractor(_SCREAMING_SNAKE_CASE ,*_SCREAMING_SNAKE_CASE ,sampling_rate=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) elif text is not None: UpperCAmelCase_ : Dict = self.tokenizer(_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) else: UpperCAmelCase_ : List[str] = None if audio_target is not None: UpperCAmelCase_ : List[Any] = self.feature_extractor(audio_target=_SCREAMING_SNAKE_CASE ,*_SCREAMING_SNAKE_CASE ,sampling_rate=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = targets['''input_values'''] elif text_target is not None: UpperCAmelCase_ : Optional[int] = self.tokenizer(_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = targets['''input_ids'''] else: UpperCAmelCase_ : Tuple = None if inputs is None: return targets if targets is not None: UpperCAmelCase_ : Dict = labels UpperCAmelCase_ : Optional[int] = targets.get('''attention_mask''' ) if decoder_attention_mask is not None: UpperCAmelCase_ : List[Any] = decoder_attention_mask return inputs def a__ ( self ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> Tuple: UpperCAmelCase_ : Dict = kwargs.pop('''input_values''' ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = kwargs.pop('''input_ids''' ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = kwargs.pop('''labels''' ,_SCREAMING_SNAKE_CASE ) if input_values is not None and input_ids is not None: raise ValueError('''Cannot process both `input_values` and `input_ids` inputs.''' ) if input_values is None and input_ids is None and labels is None: raise ValueError( '''You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.''' ) if input_values is not None: UpperCAmelCase_ : Tuple = self.feature_extractor.pad(_SCREAMING_SNAKE_CASE ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) elif input_ids is not None: UpperCAmelCase_ : Tuple = self.tokenizer.pad(_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) else: UpperCAmelCase_ : List[str] = None if labels is not None: if "input_ids" in labels or (isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) and "input_ids" in labels[0]): UpperCAmelCase_ : Tuple = self.tokenizer.pad(_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = targets['''input_ids'''] else: UpperCAmelCase_ : int = self.feature_extractor.feature_size UpperCAmelCase_ : List[str] = self.feature_extractor.num_mel_bins UpperCAmelCase_ : Optional[Any] = self.feature_extractor.pad(_SCREAMING_SNAKE_CASE ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = feature_size_hack UpperCAmelCase_ : List[Any] = targets['''input_values'''] else: UpperCAmelCase_ : Optional[int] = None if inputs is None: return targets if targets is not None: UpperCAmelCase_ : Optional[int] = labels UpperCAmelCase_ : Union[str, Any] = targets.get('''attention_mask''' ) if decoder_attention_mask is not None: UpperCAmelCase_ : List[Any] = decoder_attention_mask return inputs def a__ ( self ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> Optional[Any]: return self.tokenizer.batch_decode(*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) def a__ ( self ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: return self.tokenizer.decode(*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE )
235
import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) __a = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", F"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", F"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.weight""", F"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm1.bias""", F"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.weight""", F"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", F"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", F"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", F"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.weight""", F"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm1.bias""", F"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.weight""", F"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.bias""", F"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.weight""", F"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""decoder.layers.{i}.final_layer_norm.bias""")) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.encoder.norm.weight', 'encoder.layernorm.weight'), ('transformer.encoder.norm.bias', 'encoder.layernorm.bias'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ] ) def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : int = state_dict.pop(_lowercase ) UpperCAmelCase_ : Optional[int] = val def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : str = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCAmelCase_ : List[Any] = key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' ) UpperCAmelCase_ : Optional[Any] = value else: UpperCAmelCase_ : Union[str, Any] = value return new_state_dict def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : int = '''''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase_ : Dict = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) UpperCAmelCase_ : Any = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : Union[str, Any] = in_proj_weight[:256, :] UpperCAmelCase_ : Optional[int] = in_proj_bias[:256] UpperCAmelCase_ : Tuple = in_proj_weight[256:512, :] UpperCAmelCase_ : List[Any] = in_proj_bias[256:512] UpperCAmelCase_ : Union[str, Any] = in_proj_weight[-256:, :] UpperCAmelCase_ : str = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention UpperCAmelCase_ : Any = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) UpperCAmelCase_ : Optional[int] = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : Union[str, Any] = in_proj_weight[:256, :] UpperCAmelCase_ : List[str] = in_proj_bias[:256] UpperCAmelCase_ : Optional[int] = in_proj_weight[256:512, :] UpperCAmelCase_ : str = in_proj_bias[256:512] UpperCAmelCase_ : Optional[Any] = in_proj_weight[-256:, :] UpperCAmelCase_ : Union[str, Any] = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention UpperCAmelCase_ : List[str] = state_dict.pop( f'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) UpperCAmelCase_ : List[Any] = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict UpperCAmelCase_ : List[str] = in_proj_weight_cross_attn[:256, :] UpperCAmelCase_ : str = in_proj_bias_cross_attn[:256] UpperCAmelCase_ : int = in_proj_weight_cross_attn[256:512, :] UpperCAmelCase_ : Tuple = in_proj_bias_cross_attn[256:512] UpperCAmelCase_ : List[str] = in_proj_weight_cross_attn[-256:, :] UpperCAmelCase_ : Dict = in_proj_bias_cross_attn[-256:] def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_, UpperCAmelCase_ : List[Any] = image.size UpperCAmelCase_ : List[Any] = max(_lowercase , _lowercase ) UpperCAmelCase_ : Dict = 800 if '''detection''' in checkpoint_url else 1000 UpperCAmelCase_ : Any = target_max_size / current_max_size UpperCAmelCase_ : Any = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = F.to_tensor(_lowercase ) UpperCAmelCase_ : Optional[Any] = F.normalize(_lowercase , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' logger.info('''Converting model...''' ) # load original state dict UpperCAmelCase_ : Any = torch.hub.load_state_dict_from_url(_lowercase , map_location='''cpu''' ) # rename keys for src, dest in rename_keys: rename_key(_lowercase , _lowercase , _lowercase ) UpperCAmelCase_ : Optional[int] = rename_backbone_keys(_lowercase ) # query, key and value matrices need special treatment read_in_q_k_v(_lowercase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase_ : int = '''model.''' for key in state_dict.copy().keys(): if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): UpperCAmelCase_ : int = state_dict.pop(_lowercase ) UpperCAmelCase_ : Dict = val # create HuggingFace model and load state dict UpperCAmelCase_ : str = TableTransformerConfig( backbone='''resnet18''' , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: UpperCAmelCase_ : Any = 15 UpperCAmelCase_ : List[str] = 2 UpperCAmelCase_ : Union[str, Any] = {0: '''table''', 1: '''table rotated'''} UpperCAmelCase_ : str = idalabel UpperCAmelCase_ : Optional[int] = {v: k for k, v in idalabel.items()} else: UpperCAmelCase_ : Optional[Any] = 125 UpperCAmelCase_ : Optional[Any] = 6 UpperCAmelCase_ : Dict = { 0: '''table''', 1: '''table column''', 2: '''table row''', 3: '''table column header''', 4: '''table projected row header''', 5: '''table spanning cell''', } UpperCAmelCase_ : Optional[Any] = idalabel UpperCAmelCase_ : Optional[int] = {v: k for k, v in idalabel.items()} UpperCAmelCase_ : Union[str, Any] = DetrImageProcessor( format='''coco_detection''' , max_size=800 if '''detection''' in checkpoint_url else 1000 ) UpperCAmelCase_ : Union[str, Any] = TableTransformerForObjectDetection(_lowercase ) model.load_state_dict(_lowercase ) model.eval() # verify our conversion UpperCAmelCase_ : str = '''example_pdf.png''' if '''detection''' in checkpoint_url else '''example_table.png''' UpperCAmelCase_ : Dict = hf_hub_download(repo_id='''nielsr/example-pdf''' , repo_type='''dataset''' , filename=_lowercase ) UpperCAmelCase_ : Dict = Image.open(_lowercase ).convert('''RGB''' ) UpperCAmelCase_ : Any = normalize(resize(_lowercase , _lowercase ) ).unsqueeze(0 ) UpperCAmelCase_ : Dict = model(_lowercase ) if "detection" in checkpoint_url: UpperCAmelCase_ : Any = (1, 15, 3) UpperCAmelCase_ : Optional[int] = torch.tensor( [[-6.7897, -16.9985, 6.7937], [-8.0186, -22.2192, 6.9677], [-7.3117, -21.0708, 7.4055]] ) UpperCAmelCase_ : Any = torch.tensor([[0.4867, 0.1767, 0.6732], [0.6718, 0.4479, 0.3830], [0.4716, 0.1760, 0.6364]] ) else: UpperCAmelCase_ : Any = (1, 125, 7) UpperCAmelCase_ : Any = torch.tensor( [[-18.1430, -8.3214, 4.8274], [-18.4685, -7.1361, -4.2667], [-26.3693, -9.3429, -4.9962]] ) UpperCAmelCase_ : str = torch.tensor([[0.4983, 0.5595, 0.9440], [0.4916, 0.6315, 0.5954], [0.6108, 0.8637, 0.1135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , _lowercase , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , _lowercase , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) image_processor.save_pretrained(_lowercase ) if push_to_hub: # Push model to HF hub logger.info('''Pushing model to the hub...''' ) UpperCAmelCase_ : List[Any] = ( '''microsoft/table-transformer-detection''' if '''detection''' in checkpoint_url else '''microsoft/table-transformer-structure-recognition''' ) model.push_to_hub(_lowercase ) image_processor.push_to_hub(_lowercase ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument( '--checkpoint_url', default='https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth', type=str, choices=[ 'https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth', 'https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth', ], help='URL of the Table Transformer checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __a = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
235
1
"""simple docstring""" from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ = None ): if version.parse(hfh.__version__ ).release < version.parse('0.11.0' ).release: # old versions of hfh don't url-encode the file path UpperCAmelCase = quote(lowercase_ ) return hfh.hf_hub_url(lowercase_ , lowercase_ , repo_type='dataset' , revision=lowercase_ )
78
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Dict , a_ : Dict , a_ : Union[str, Any]=7 , a_ : Optional[Any]=3 , a_ : List[str]=18 , a_ : Union[str, Any]=30 , a_ : Union[str, Any]=4_00 , a_ : Union[str, Any]=True , a_ : Tuple=None , a_ : Optional[int]=True , ): '''simple docstring''' __UpperCAmelCase : Optional[int] = size if size is not None else {'''height''': 18, '''width''': 18} __UpperCAmelCase : Dict = parent __UpperCAmelCase : str = batch_size __UpperCAmelCase : List[str] = num_channels __UpperCAmelCase : Union[str, Any] = image_size __UpperCAmelCase : Optional[int] = min_resolution __UpperCAmelCase : Union[str, Any] = max_resolution __UpperCAmelCase : Tuple = do_resize __UpperCAmelCase : List[str] = size __UpperCAmelCase : List[Any] = apply_ocr def snake_case__ ( self : Optional[int] ): '''simple docstring''' return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class UpperCAmelCase__ ( __UpperCamelCase ,unittest.TestCase ): '''simple docstring''' UpperCamelCase = LayoutLMvaImageProcessor if is_pytesseract_available() else None def snake_case__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : str = LayoutLMvaImageProcessingTester(self ) @property def snake_case__ ( self : Union[str, Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def snake_case__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a_ , '''do_resize''' ) ) self.assertTrue(hasattr(a_ , '''size''' ) ) self.assertTrue(hasattr(a_ , '''apply_ocr''' ) ) def snake_case__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) __UpperCAmelCase : int = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def snake_case__ ( self : int ): '''simple docstring''' pass def snake_case__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCAmelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ ) for image in image_inputs: self.assertIsInstance(a_ , Image.Image ) # Test not batched input __UpperCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) self.assertIsInstance(encoding.words , a_ ) self.assertIsInstance(encoding.boxes , a_ ) # Test batched __UpperCAmelCase : Optional[Any] = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def snake_case__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCAmelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , numpify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , np.ndarray ) # Test not batched input __UpperCAmelCase : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __UpperCAmelCase : int = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def snake_case__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , torchify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , torch.Tensor ) # Test not batched input __UpperCAmelCase : str = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __UpperCAmelCase : List[Any] = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def snake_case__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Any = LayoutLMvaImageProcessor() from datasets import load_dataset __UpperCAmelCase : Any = load_dataset('''hf-internal-testing/fixtures_docvqa''' , split='''test''' ) __UpperCAmelCase : Optional[int] = Image.open(ds[0]['''file'''] ).convert('''RGB''' ) __UpperCAmelCase : Any = image_processing(a_ , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __UpperCAmelCase : Any = [['''11:14''', '''to''', '''11:39''', '''a.m''', '''11:39''', '''to''', '''11:44''', '''a.m.''', '''11:44''', '''a.m.''', '''to''', '''12:25''', '''p.m.''', '''12:25''', '''to''', '''12:58''', '''p.m.''', '''12:58''', '''to''', '''4:00''', '''p.m.''', '''2:00''', '''to''', '''5:00''', '''p.m.''', '''Coffee''', '''Break''', '''Coffee''', '''will''', '''be''', '''served''', '''for''', '''men''', '''and''', '''women''', '''in''', '''the''', '''lobby''', '''adjacent''', '''to''', '''exhibit''', '''area.''', '''Please''', '''move''', '''into''', '''exhibit''', '''area.''', '''(Exhibits''', '''Open)''', '''TRRF''', '''GENERAL''', '''SESSION''', '''(PART''', '''|)''', '''Presiding:''', '''Lee''', '''A.''', '''Waller''', '''TRRF''', '''Vice''', '''President''', '''“Introductory''', '''Remarks”''', '''Lee''', '''A.''', '''Waller,''', '''TRRF''', '''Vice''', '''Presi-''', '''dent''', '''Individual''', '''Interviews''', '''with''', '''TRRF''', '''Public''', '''Board''', '''Members''', '''and''', '''Sci-''', '''entific''', '''Advisory''', '''Council''', '''Mem-''', '''bers''', '''Conducted''', '''by''', '''TRRF''', '''Treasurer''', '''Philip''', '''G.''', '''Kuehn''', '''to''', '''get''', '''answers''', '''which''', '''the''', '''public''', '''refrigerated''', '''warehousing''', '''industry''', '''is''', '''looking''', '''for.''', '''Plus''', '''questions''', '''from''', '''the''', '''floor.''', '''Dr.''', '''Emil''', '''M.''', '''Mrak,''', '''University''', '''of''', '''Cal-''', '''ifornia,''', '''Chairman,''', '''TRRF''', '''Board;''', '''Sam''', '''R.''', '''Cecil,''', '''University''', '''of''', '''Georgia''', '''College''', '''of''', '''Agriculture;''', '''Dr.''', '''Stanley''', '''Charm,''', '''Tufts''', '''University''', '''School''', '''of''', '''Medicine;''', '''Dr.''', '''Robert''', '''H.''', '''Cotton,''', '''ITT''', '''Continental''', '''Baking''', '''Company;''', '''Dr.''', '''Owen''', '''Fennema,''', '''University''', '''of''', '''Wis-''', '''consin;''', '''Dr.''', '''Robert''', '''E.''', '''Hardenburg,''', '''USDA.''', '''Questions''', '''and''', '''Answers''', '''Exhibits''', '''Open''', '''Capt.''', '''Jack''', '''Stoney''', '''Room''', '''TRRF''', '''Scientific''', '''Advisory''', '''Council''', '''Meeting''', '''Ballroom''', '''Foyer''']] # noqa: E231 __UpperCAmelCase : Tuple = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , a_ ) self.assertListEqual(encoding.boxes , a_ ) # with apply_OCR = False __UpperCAmelCase : List[str] = LayoutLMvaImageProcessor(apply_ocr=a_ ) __UpperCAmelCase : List[Any] = image_processing(a_ , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
226
0
"""simple docstring""" import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) _lowercase : List[str] = logging.getLogger(__name__) def snake_case__ ( __lowerCamelCase : str ): """simple docstring""" lowerCamelCase__ : List[Any] =git.Repo(search_parent_directories=__a ) lowerCamelCase__ : int ={ '''repo_id''': str(__a ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), } with open(os.path.join(__a , '''git_log.json''' ) , '''w''' ) as f: json.dump(__a , __a , indent=4 ) def snake_case__ ( __lowerCamelCase : Tuple ): """simple docstring""" if params.n_gpu <= 0: lowerCamelCase__ : List[Any] =0 lowerCamelCase__ : Optional[int] =-1 lowerCamelCase__ : Dict =True lowerCamelCase__ : Optional[int] =False return assert torch.cuda.is_available() logger.info('''Initializing GPUs''' ) if params.n_gpu > 1: assert params.local_rank != -1 lowerCamelCase__ : Optional[Any] =int(os.environ['''WORLD_SIZE'''] ) lowerCamelCase__ : Optional[int] =int(os.environ['''N_GPU_NODE'''] ) lowerCamelCase__ : List[str] =int(os.environ['''RANK'''] ) # number of nodes / node ID lowerCamelCase__ : int =params.world_size // params.n_gpu_per_node lowerCamelCase__ : str =params.global_rank // params.n_gpu_per_node lowerCamelCase__ : int =True assert params.n_nodes == int(os.environ['''N_NODES'''] ) assert params.node_id == int(os.environ['''NODE_RANK'''] ) # local job (single GPU) else: assert params.local_rank == -1 lowerCamelCase__ : Union[str, Any] =1 lowerCamelCase__ : Dict =0 lowerCamelCase__ : Union[str, Any] =0 lowerCamelCase__ : Dict =0 lowerCamelCase__ : Any =1 lowerCamelCase__ : Optional[Any] =1 lowerCamelCase__ : Union[str, Any] =False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode lowerCamelCase__ : str =params.node_id == 0 and params.local_rank == 0 lowerCamelCase__ : str =params.n_nodes > 1 # summary lowerCamelCase__ : List[str] =f'''--- Global rank: {params.global_rank} - ''' logger.info(PREFIX + '''Number of nodes: %i''' % params.n_nodes ) logger.info(PREFIX + '''Node ID : %i''' % params.node_id ) logger.info(PREFIX + '''Local rank : %i''' % params.local_rank ) logger.info(PREFIX + '''World size : %i''' % params.world_size ) logger.info(PREFIX + '''GPUs per node : %i''' % params.n_gpu_per_node ) logger.info(PREFIX + '''Master : %s''' % str(params.is_master ) ) logger.info(PREFIX + '''Multi-node : %s''' % str(params.multi_node ) ) logger.info(PREFIX + '''Multi-GPU : %s''' % str(params.multi_gpu ) ) logger.info(PREFIX + '''Hostname : %s''' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('''Initializing PyTorch distributed''' ) torch.distributed.init_process_group( init_method='''env://''' , backend='''nccl''' , ) def snake_case__ ( __lowerCamelCase : List[str] ): """simple docstring""" np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
350
"""simple docstring""" # Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _lowercase : Dict = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model _lowercase : str = { # fairseq: "wmt19-ru-en": {"length_penalty": 1.1}, "wmt19-en-ru": {"length_penalty": 1.15}, "wmt19-en-de": {"length_penalty": 1.0}, "wmt19-de-en": {"length_penalty": 1.1}, # allenai: "wmt16-en-de-dist-12-1": {"length_penalty": 0.6}, "wmt16-en-de-dist-6-1": {"length_penalty": 0.6}, "wmt16-en-de-12-1": {"length_penalty": 0.8}, "wmt19-de-en-6-6-base": {"length_penalty": 0.6}, "wmt19-de-en-6-6-big": {"length_penalty": 0.6}, } # this remaps the different models to their organization names _lowercase : str = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: _lowercase : Any = "facebook" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: _lowercase : List[Any] = "allenai" def snake_case__ ( __lowerCamelCase : Optional[Any] ): """simple docstring""" # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} lowerCamelCase__ : Optional[Any] =dict((re.sub(R'''@@$''' , '''''' , __lowerCamelCase ), v) if k.endswith('''@@''' ) else (re.sub(R'''$''' , '''</w>''' , __lowerCamelCase ), v) for k, v in d.items() ) lowerCamelCase__ : Tuple ='''<s> <pad> </s> <unk>'''.split() # restore the special tokens for k in keep_keys: del da[f'''{k}</w>'''] lowerCamelCase__ : str =d[k] # restore return da def snake_case__ ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict ): """simple docstring""" # prep assert os.path.exists(__lowerCamelCase ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) print(f'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models lowerCamelCase__ : Union[str, Any] =basename(__lowerCamelCase ) lowerCamelCase__ : str =dirname(__lowerCamelCase ) lowerCamelCase__ : Dict =fairseq.model_parallel.models.transformer.ModelParallelTransformerModel lowerCamelCase__ : Union[str, Any] =cls.hub_models() lowerCamelCase__ : Optional[Any] ={'''bpe''': '''fastbpe''', '''tokenizer''': '''moses'''} lowerCamelCase__ : Any ='''.''' # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f'''using checkpoint {checkpoint_file}''' ) lowerCamelCase__ : Optional[int] =hub_utils.from_pretrained( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , archive_map=__lowerCamelCase , **__lowerCamelCase ) lowerCamelCase__ : Any =vars(chkpt['''args''']['''model'''] ) lowerCamelCase__ : int =args['''source_lang'''] lowerCamelCase__ : Optional[Any] =args['''target_lang'''] lowerCamelCase__ : Dict =dirname(__lowerCamelCase ) lowerCamelCase__ : str =basename(__lowerCamelCase ) # dicts lowerCamelCase__ : Optional[Any] =os.path.join(__lowerCamelCase , f'''dict.{src_lang}.txt''' ) lowerCamelCase__ : int =os.path.join(__lowerCamelCase , f'''dict.{tgt_lang}.txt''' ) lowerCamelCase__ : Dict =Dictionary.load(__lowerCamelCase ) lowerCamelCase__ : List[str] =rewrite_dict_keys(src_dict.indices ) lowerCamelCase__ : Optional[int] =len(__lowerCamelCase ) lowerCamelCase__ : Dict =os.path.join(__lowerCamelCase , '''vocab-src.json''' ) print(f'''Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records''' ) with open(__lowerCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__lowerCamelCase , ensure_ascii=__lowerCamelCase , indent=__lowerCamelCase ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab lowerCamelCase__ : Optional[int] =True for k in src_vocab.keys(): if not k.islower(): lowerCamelCase__ : int =False break lowerCamelCase__ : Any =Dictionary.load(__lowerCamelCase ) lowerCamelCase__ : Tuple =rewrite_dict_keys(tgt_dict.indices ) lowerCamelCase__ : str =len(__lowerCamelCase ) lowerCamelCase__ : Dict =os.path.join(__lowerCamelCase , '''vocab-tgt.json''' ) print(f'''Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records''' ) with open(__lowerCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__lowerCamelCase , ensure_ascii=__lowerCamelCase , indent=__lowerCamelCase ) ) # merges_file (bpecodes) lowerCamelCase__ : Union[str, Any] =os.path.join(__lowerCamelCase , VOCAB_FILES_NAMES['''merges_file'''] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" lowerCamelCase__ : Tuple =os.path.join(__lowerCamelCase , __lowerCamelCase ) if os.path.exists(__lowerCamelCase ): break with open(__lowerCamelCase , encoding='''utf-8''' ) as fin: lowerCamelCase__ : Optional[Any] =fin.read() lowerCamelCase__ : List[Any] =re.sub(R''' \d+$''' , '''''' , __lowerCamelCase , 0 , re.M ) # remove frequency number print(f'''Generating {merges_file}''' ) with open(__lowerCamelCase , '''w''' , encoding='''utf-8''' ) as fout: fout.write(__lowerCamelCase ) # model config lowerCamelCase__ : List[Any] =os.path.join(__lowerCamelCase , '''config.json''' ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f'''need to extend tokenizer to support bpe={args["bpe"]}''' assert args["tokenizer"] == "moses", f'''need to extend tokenizer to support bpe={args["tokenizer"]}''' lowerCamelCase__ : str ={ '''architectures''': ['''FSMTForConditionalGeneration'''], '''model_type''': '''fsmt''', '''activation_dropout''': args['''activation_dropout'''], '''activation_function''': '''relu''', '''attention_dropout''': args['''attention_dropout'''], '''d_model''': args['''decoder_embed_dim'''], '''dropout''': args['''dropout'''], '''init_std''': 0.02, '''max_position_embeddings''': args['''max_source_positions'''], '''num_hidden_layers''': args['''encoder_layers'''], '''src_vocab_size''': src_vocab_size, '''tgt_vocab_size''': tgt_vocab_size, '''langs''': [src_lang, tgt_lang], '''encoder_attention_heads''': args['''encoder_attention_heads'''], '''encoder_ffn_dim''': args['''encoder_ffn_embed_dim'''], '''encoder_layerdrop''': args['''encoder_layerdrop'''], '''encoder_layers''': args['''encoder_layers'''], '''decoder_attention_heads''': args['''decoder_attention_heads'''], '''decoder_ffn_dim''': args['''decoder_ffn_embed_dim'''], '''decoder_layerdrop''': args['''decoder_layerdrop'''], '''decoder_layers''': args['''decoder_layers'''], '''bos_token_id''': 0, '''pad_token_id''': 1, '''eos_token_id''': 2, '''is_encoder_decoder''': True, '''scale_embedding''': not args['''no_scale_embedding'''], '''tie_word_embeddings''': args['''share_all_embeddings'''], } # good hparam defaults to start with lowerCamelCase__ : Optional[int] =5 lowerCamelCase__ : List[str] =False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: lowerCamelCase__ : Optional[int] =best_score_hparams[model_dir]['''length_penalty'''] else: lowerCamelCase__ : Union[str, Any] =1.0 print(f'''Generating {fsmt_model_config_file}''' ) with open(__lowerCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__lowerCamelCase , ensure_ascii=__lowerCamelCase , indent=__lowerCamelCase ) ) # tokenizer config lowerCamelCase__ : Any =os.path.join(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : int ={ '''langs''': [src_lang, tgt_lang], '''model_max_length''': 1024, '''do_lower_case''': do_lower_case, } print(f'''Generating {fsmt_tokenizer_config_file}''' ) with open(__lowerCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__lowerCamelCase , ensure_ascii=__lowerCamelCase , indent=__lowerCamelCase ) ) # model lowerCamelCase__ : int =chkpt['''models'''][0] lowerCamelCase__ : Union[str, Any] =model.state_dict() # rename keys to start with 'model.' lowerCamelCase__ : Union[str, Any] =OrderedDict(('''model.''' + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys lowerCamelCase__ : str =[ '''model.model''', '''model.encoder.version''', '''model.decoder.version''', '''model.encoder_embed_tokens.weight''', '''model.decoder_embed_tokens.weight''', '''model.encoder.embed_positions._float_tensor''', '''model.decoder.embed_positions._float_tensor''', ] for k in ignore_keys: model_state_dict.pop(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : Dict =FSMTConfig.from_pretrained(__lowerCamelCase ) lowerCamelCase__ : int =FSMTForConditionalGeneration(__lowerCamelCase ) # check that it loads ok model_new.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase ) # save lowerCamelCase__ : Optional[int] =os.path.join(__lowerCamelCase , __lowerCamelCase ) print(f'''Generating {pytorch_weights_dump_path}''' ) torch.save(__lowerCamelCase , __lowerCamelCase ) print('''Conversion is done!''' ) print('''\nLast step is to upload the files to s3''' ) print(f'''cd {data_root}''' ) print(f'''transformers-cli upload {model_dir}''' ) if __name__ == "__main__": _lowercase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fsmt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _lowercase : str = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
272
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __snake_case ={ """configuration_mega""": ["""MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegaConfig""", """MegaOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case =[ """MEGA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MegaForCausalLM""", """MegaForMaskedLM""", """MegaForMultipleChoice""", """MegaForQuestionAnswering""", """MegaForSequenceClassification""", """MegaForTokenClassification""", """MegaModel""", """MegaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys __snake_case =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
4
'''simple docstring''' def a_ ( _lowerCAmelCase ) -> str: if not all(char in '01' for char in bin_string ): raise ValueError('Non-binary value was passed to the function' ) if not bin_string: raise ValueError('Empty string was passed to the function' ) __lowerCamelCase : int = '' while len(_lowerCAmelCase ) % 3 != 0: __lowerCamelCase : str = '0' + bin_string __lowerCamelCase : Union[str, Any] = [ bin_string[index : index + 3] for index in range(len(_lowerCAmelCase ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: __lowerCamelCase : Tuple = 0 for index, val in enumerate(_lowerCAmelCase ): oct_val += int(2 ** (2 - index) * int(_lowerCAmelCase ) ) oct_string += str(_lowerCAmelCase ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
208
0
from __future__ import annotations import numpy as np def _lowerCamelCase( lowercase__ ) -> tuple[np.ndarray, np.ndarray]: '''simple docstring''' __lowercase, __lowercase= np.shape(lowercase__ ) if rows != columns: __lowercase= ( '\'table\' has to be of square shaped array but got a ' F'{rows}x{columns} array:\n{table}' ) raise ValueError(lowercase__ ) __lowercase= np.zeros((rows, columns) ) __lowercase= np.zeros((rows, columns) ) for i in range(lowercase__ ): for j in range(lowercase__ ): __lowercase= sum(lower[i][k] * upper[k][j] for k in range(lowercase__ ) ) if upper[j][j] == 0: raise ArithmeticError('No LU decomposition exists' ) __lowercase= (table[i][j] - total) / upper[j][j] __lowercase= 1 for j in range(lowercase__ , lowercase__ ): __lowercase= sum(lower[i][k] * upper[k][j] for k in range(lowercase__ ) ) __lowercase= table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
304
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , ) -> int: '''simple docstring''' __lowercase= {} if train_file is not None: __lowercase= [train_file] if eval_file is not None: __lowercase= [eval_file] if test_file is not None: __lowercase= [test_file] __lowercase= datasets.load_dataset('csv' , data_files=lowercase__ ) __lowercase= list(ds[list(files.keys() )[0]].features.keys() ) __lowercase= features_name.pop(lowercase__ ) __lowercase= list(set(ds[list(files.keys() )[0]][label_name] ) ) __lowercase= {label: i for i, label in enumerate(lowercase__ )} __lowercase= tokenizer.model_input_names __lowercase= {} if len(lowercase__ ) == 1: for k in files.keys(): __lowercase= ds[k].map( lambda lowercase__ : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=lowercase__ , max_length=lowercase__ , padding='max_length' ) , batched=lowercase__ , ) elif len(lowercase__ ) == 2: for k in files.keys(): __lowercase= ds[k].map( lambda lowercase__ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=lowercase__ , max_length=lowercase__ , padding='max_length' , ) , batched=lowercase__ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: __lowercase= {k: v for k, v in ex.items() if k in input_names} __lowercase= labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: __lowercase= {k: v for k, v in ex.items() if k in input_names} __lowercase= labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: __lowercase= {k: v for k, v in ex.items() if k in input_names} __lowercase= labelaid[ex[label_name]] yield (d, label) __lowercase= ( tf.data.Dataset.from_generator( lowercase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: __lowercase= train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) __lowercase= ( tf.data.Dataset.from_generator( lowercase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: __lowercase= val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) __lowercase= ( tf.data.Dataset.from_generator( lowercase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: __lowercase= test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid lowerCAmelCase = logging.getLogger(__name__) @dataclass class A : UpperCamelCase_ : int =field(metadata={'''help''': '''Which column contains the label'''} ) UpperCamelCase_ : str =field(default=A_ , metadata={'''help''': '''The path of the training file'''} ) UpperCamelCase_ : Optional[str] =field(default=A_ , metadata={'''help''': '''The path of the development file'''} ) UpperCamelCase_ : Optional[str] =field(default=A_ , metadata={'''help''': '''The path of the test file'''} ) UpperCamelCase_ : int =field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) UpperCamelCase_ : bool =field( default=A_ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) @dataclass class A : UpperCamelCase_ : str =field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) UpperCamelCase_ : Optional[str] =field( default=A_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase_ : Optional[str] =field( default=A_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase_ : bool =field(default=A_ , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. UpperCamelCase_ : Optional[str] =field( default=A_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) def _lowerCamelCase( ) -> Optional[Any]: '''simple docstring''' __lowercase= HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) __lowercase, __lowercase, __lowercase= parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. Use' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.info( F'n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ' F'16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowercase= AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __lowercase, __lowercase, __lowercase, __lowercase= get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=lowercase__ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) __lowercase= AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(lowercase__ ) , labelaid=lowercase__ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='text-classification' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): __lowercase= TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('.bin' in model_args.model_name_or_path ) , config=lowercase__ , cache_dir=model_args.cache_dir , ) def compute_metrics(lowercase__ ) -> Dict: __lowercase= np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer __lowercase= TFTrainer( model=lowercase__ , args=lowercase__ , train_dataset=lowercase__ , eval_dataset=lowercase__ , compute_metrics=lowercase__ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowercase= {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __lowercase= trainer.evaluate() __lowercase= os.path.join(training_args.output_dir , 'eval_results.txt' ) with open(lowercase__ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(F' {key} = {value}' ) writer.write(F'{key} = {value}\n' ) results.update(lowercase__ ) return results if __name__ == "__main__": main()
304
1
import math from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'facebook/data2vec-base-960h': 'https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json', # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : Optional[Any] = '''data2vec-audio''' def __init__( self , _UpperCamelCase=3_2 , _UpperCamelCase=7_6_8 , _UpperCamelCase=1_2 , _UpperCamelCase=1_2 , _UpperCamelCase=3_0_7_2 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=0.0 , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=0.02 , _UpperCamelCase=1E-5 , _UpperCamelCase="gelu" , _UpperCamelCase=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , _UpperCamelCase=(5, 2, 2, 2, 2, 2, 2) , _UpperCamelCase=(1_0, 3, 3, 3, 3, 2, 2) , _UpperCamelCase=False , _UpperCamelCase=1_6 , _UpperCamelCase=1_9 , _UpperCamelCase=5 , _UpperCamelCase=0.05 , _UpperCamelCase=1_0 , _UpperCamelCase=2 , _UpperCamelCase=0.0 , _UpperCamelCase=1_0 , _UpperCamelCase=0 , _UpperCamelCase="sum" , _UpperCamelCase=False , _UpperCamelCase=False , _UpperCamelCase=2_5_6 , _UpperCamelCase=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , _UpperCamelCase=(5, 3, 3, 1, 1) , _UpperCamelCase=(1, 2, 3, 1, 1) , _UpperCamelCase=5_1_2 , _UpperCamelCase=0 , _UpperCamelCase=1 , _UpperCamelCase=2 , _UpperCamelCase=False , _UpperCamelCase=3 , _UpperCamelCase=2 , _UpperCamelCase=3 , _UpperCamelCase=None , **_UpperCamelCase , ) -> Any: super().__init__(**_UpperCamelCase , pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase ) UpperCAmelCase_ : Optional[int] = hidden_size UpperCAmelCase_ : Optional[int] = feat_extract_activation UpperCAmelCase_ : Optional[Any] = list(_UpperCamelCase ) UpperCAmelCase_ : int = list(_UpperCamelCase ) UpperCAmelCase_ : Optional[int] = list(_UpperCamelCase ) UpperCAmelCase_ : List[Any] = conv_bias UpperCAmelCase_ : int = num_conv_pos_embeddings UpperCAmelCase_ : int = num_conv_pos_embedding_groups UpperCAmelCase_ : List[str] = conv_pos_kernel_size UpperCAmelCase_ : List[Any] = len(self.conv_dim ) UpperCAmelCase_ : Union[str, Any] = num_hidden_layers UpperCAmelCase_ : Any = intermediate_size UpperCAmelCase_ : List[Any] = hidden_act UpperCAmelCase_ : int = num_attention_heads UpperCAmelCase_ : Optional[Any] = hidden_dropout UpperCAmelCase_ : Any = attention_dropout UpperCAmelCase_ : Dict = activation_dropout UpperCAmelCase_ : Optional[Any] = feat_proj_dropout UpperCAmelCase_ : Any = final_dropout UpperCAmelCase_ : Optional[Any] = layerdrop UpperCAmelCase_ : Dict = layer_norm_eps UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : List[Any] = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," f" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase_ : Tuple = mask_time_prob UpperCAmelCase_ : int = mask_time_length UpperCAmelCase_ : Tuple = mask_time_min_masks UpperCAmelCase_ : Dict = mask_feature_prob UpperCAmelCase_ : List[str] = mask_feature_length UpperCAmelCase_ : Optional[Any] = mask_feature_min_masks # ctc loss UpperCAmelCase_ : Dict = ctc_loss_reduction UpperCAmelCase_ : Any = ctc_zero_infinity # adapter UpperCAmelCase_ : List[Any] = add_adapter UpperCAmelCase_ : Tuple = adapter_kernel_size UpperCAmelCase_ : Tuple = adapter_stride UpperCAmelCase_ : Any = num_adapter_layers UpperCAmelCase_ : List[str] = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCAmelCase_ : int = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCAmelCase_ : Dict = list(_UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = list(_UpperCamelCase ) UpperCAmelCase_ : Union[str, Any] = list(_UpperCamelCase ) UpperCAmelCase_ : int = xvector_output_dim @property def __UpperCAmelCase ( self ) -> str: return math.prod(self.conv_stride )
29
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'tensor(bool)': np.bool_, 'tensor(int8)': np.inta, 'tensor(uint8)': np.uinta, 'tensor(int16)': np.intaa, 'tensor(uint16)': np.uintaa, 'tensor(int32)': np.intaa, 'tensor(uint32)': np.uintaa, 'tensor(int64)': np.intaa, 'tensor(uint64)': np.uintaa, 'tensor(float16)': np.floataa, 'tensor(float)': np.floataa, 'tensor(double)': np.floataa, } class lowerCamelCase : '''simple docstring''' def __init__( self , _UpperCamelCase=None , **_UpperCamelCase ) -> Dict: logger.info('`diffusers.OnnxRuntimeModel` is experimental and might change in the future.' ) UpperCAmelCase_ : Any = model UpperCAmelCase_ : int = kwargs.get('model_save_dir' , _UpperCamelCase ) UpperCAmelCase_ : List[Any] = kwargs.get('latest_model_name' , _UpperCamelCase ) def __call__( self , **_UpperCamelCase ) -> str: UpperCAmelCase_ : Optional[int] = {k: np.array(_UpperCamelCase ) for k, v in kwargs.items()} return self.model.run(_UpperCamelCase , _UpperCamelCase ) @staticmethod def __UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=None ) -> List[Any]: if provider is None: logger.info('No onnxruntime provider specified, using CPUExecutionProvider' ) UpperCAmelCase_ : List[str] = 'CPUExecutionProvider' return ort.InferenceSession(_UpperCamelCase , providers=[provider] , sess_options=_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase ) -> Dict: UpperCAmelCase_ : Any = file_name if file_name is not None else ONNX_WEIGHTS_NAME UpperCAmelCase_ : Optional[Any] = self.model_save_dir.joinpath(self.latest_model_name ) UpperCAmelCase_ : str = Path(_UpperCamelCase ).joinpath(_UpperCamelCase ) try: shutil.copyfile(_UpperCamelCase , _UpperCamelCase ) except shutil.SameFileError: pass # copy external weights (for models >2GB) UpperCAmelCase_ : Optional[Any] = self.model_save_dir.joinpath(_UpperCamelCase ) if src_path.exists(): UpperCAmelCase_ : List[Any] = Path(_UpperCamelCase ).joinpath(_UpperCamelCase ) try: shutil.copyfile(_UpperCamelCase , _UpperCamelCase ) except shutil.SameFileError: pass def __UpperCAmelCase ( self , _UpperCamelCase , **_UpperCamelCase , ) -> List[str]: if os.path.isfile(_UpperCamelCase ): logger.error(f"Provided path ({save_directory}) should be a directory, not a file" ) return os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) # saving model weights/files self._save_pretrained(_UpperCamelCase , **_UpperCamelCase ) @classmethod def __UpperCAmelCase ( cls , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = False , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , **_UpperCamelCase , ) -> List[str]: UpperCAmelCase_ : List[str] = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(_UpperCamelCase ): UpperCAmelCase_ : Union[str, Any] = OnnxRuntimeModel.load_model( os.path.join(_UpperCamelCase , _UpperCamelCase ) , provider=_UpperCamelCase , sess_options=_UpperCamelCase ) UpperCAmelCase_ : Tuple = Path(_UpperCamelCase ) # load model from hub else: # download model UpperCAmelCase_ : List[str] = hf_hub_download( repo_id=_UpperCamelCase , filename=_UpperCamelCase , use_auth_token=_UpperCamelCase , revision=_UpperCamelCase , cache_dir=_UpperCamelCase , force_download=_UpperCamelCase , ) UpperCAmelCase_ : Union[str, Any] = Path(_UpperCamelCase ).parent UpperCAmelCase_ : List[str] = Path(_UpperCamelCase ).name UpperCAmelCase_ : Union[str, Any] = OnnxRuntimeModel.load_model(_UpperCamelCase , provider=_UpperCamelCase , sess_options=_UpperCamelCase ) return cls(model=_UpperCamelCase , **_UpperCamelCase ) @classmethod def __UpperCAmelCase ( cls , _UpperCamelCase , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = None , **_UpperCamelCase , ) -> Optional[int]: UpperCAmelCase_ : List[str] = None if len(str(_UpperCamelCase ).split('@' ) ) == 2: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = model_id.split('@' ) return cls._from_pretrained( model_id=_UpperCamelCase , revision=_UpperCamelCase , cache_dir=_UpperCamelCase , force_download=_UpperCamelCase , use_auth_token=_UpperCamelCase , **_UpperCamelCase , )
29
1
import sys lowercase__ : Any = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase = N) -> str: a = -sys.maxsize - 1 for i in range(len(__UpperCamelCase) - 12): a = 1 for j in range(13): product *= int(n[i + j]) if product > largest_product: a = product return largest_product if __name__ == "__main__": print(F'{solution() = }')
358
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(UpperCamelCase__ ) , """Tatoeba directory does not exist.""" ) class a__ ( unittest.TestCase ): @cached_property def lowerCAmelCase_ ( self ) -> List[str]: '''simple docstring''' a = tempfile.mkdtemp() return TatoebaConverter(save_dir=A ) @slow def lowerCAmelCase_ ( self ) -> int: '''simple docstring''' self.resolver.convert_models(["heb-eng"] ) @slow def lowerCAmelCase_ ( self ) -> Dict: '''simple docstring''' a , a = self.resolver.write_model_card("opus-mt-he-en" , dry_run=A ) assert mmeta["long_pair"] == "heb-eng"
180
0
import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def SCREAMING_SNAKE_CASE_ ( __A : List[str] , __A : Optional[Any] ) -> Dict: """simple docstring""" assert isinstance(__A , __A ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def SCREAMING_SNAKE_CASE_ ( __A : Optional[Any] , __A : List[Any] , __A : Tuple ) -> Optional[Any]: """simple docstring""" a_ : Any = tmp_path / 'cache' a_ : Optional[Any] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): a_ : str = JsonDatasetReader(__A , cache_dir=__A , keep_in_memory=__A ).read() _check_json_dataset(__A , __A ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def SCREAMING_SNAKE_CASE_ ( __A : Union[str, Any] , __A : Tuple , __A : Optional[int] ) -> Dict: """simple docstring""" a_ : Any = tmp_path / 'cache' a_ : Optional[int] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} a_ : int = features.copy() if features else default_expected_features a_ : str = ( Features({feature: Value(__A ) for feature, dtype in features.items()} ) if features is not None else None ) a_ : Any = JsonDatasetReader(__A , features=__A , cache_dir=__A ).read() _check_json_dataset(__A , __A ) @pytest.mark.parametrize( 'features' , [ None, {'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'}, ] , ) def SCREAMING_SNAKE_CASE_ ( __A : Any , __A : List[Any] , __A : str ) -> Any: """simple docstring""" a_ : Tuple = tmp_path / 'cache' a_ : str = {'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'} a_ : Tuple = features.copy() if features else default_expected_features a_ : str = ( Features({feature: Value(__A ) for feature, dtype in features.items()} ) if features is not None else None ) a_ : List[str] = JsonDatasetReader(__A , features=__A , cache_dir=__A ).read() assert isinstance(__A , __A ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def SCREAMING_SNAKE_CASE_ ( __A : str , __A : List[str] ) -> Any: """simple docstring""" a_ : Dict = {'col_2': 'int64', 'col_3': 'float64', 'col_1': 'string'} a_ : Optional[Any] = features.copy() a_ : List[str] = ( Features({feature: Value(__A ) for feature, dtype in features.items()} ) if features is not None else None ) a_ : List[Any] = tmp_path / 'cache' a_ : Any = JsonDatasetReader(__A , features=__A , cache_dir=__A ).read() assert isinstance(__A , __A ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def SCREAMING_SNAKE_CASE_ ( __A : Tuple , __A : Optional[int] , __A : Any ) -> List[Any]: """simple docstring""" a_ : List[Any] = tmp_path / 'cache' a_ : str = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} a_ : str = JsonDatasetReader(__A , cache_dir=__A , split=__A ).read() _check_json_dataset(__A , __A ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' , [str, list] ) def SCREAMING_SNAKE_CASE_ ( __A : Any , __A : Optional[Any] , __A : Optional[int] ) -> List[Any]: """simple docstring""" if issubclass(__A , __A ): a_ : Dict = jsonl_path elif issubclass(__A , __A ): a_ : Tuple = [jsonl_path] a_ : List[str] = tmp_path / 'cache' a_ : List[Any] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} a_ : int = JsonDatasetReader(__A , cache_dir=__A ).read() _check_json_dataset(__A , __A ) def SCREAMING_SNAKE_CASE_ ( __A : int , __A : Tuple , __A : Tuple=("train",) ) -> int: """simple docstring""" assert isinstance(__A , __A ) for split in splits: a_ : str = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def SCREAMING_SNAKE_CASE_ ( __A : Dict , __A : Dict , __A : Any ) -> Union[str, Any]: """simple docstring""" a_ : Any = tmp_path / 'cache' a_ : str = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): a_ : List[Any] = JsonDatasetReader({'train': jsonl_path} , cache_dir=__A , keep_in_memory=__A ).read() _check_json_datasetdict(__A , __A ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def SCREAMING_SNAKE_CASE_ ( __A : str , __A : Any , __A : List[Any] ) -> List[str]: """simple docstring""" a_ : List[Any] = tmp_path / 'cache' a_ : Optional[int] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} a_ : Union[str, Any] = features.copy() if features else default_expected_features a_ : Tuple = ( Features({feature: Value(__A ) for feature, dtype in features.items()} ) if features is not None else None ) a_ : Dict = JsonDatasetReader({'train': jsonl_path} , features=__A , cache_dir=__A ).read() _check_json_datasetdict(__A , __A ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def SCREAMING_SNAKE_CASE_ ( __A : Dict , __A : str , __A : List[str] ) -> Any: """simple docstring""" if split: a_ : Union[str, Any] = {split: jsonl_path} else: a_ : str = 'train' a_ : List[Any] = {'train': jsonl_path, 'test': jsonl_path} a_ : Optional[Any] = tmp_path / 'cache' a_ : Optional[Any] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} a_ : Optional[int] = JsonDatasetReader(__A , cache_dir=__A ).read() _check_json_datasetdict(__A , __A , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def SCREAMING_SNAKE_CASE_ ( __A : Union[str, Any] ) -> Optional[int]: """simple docstring""" return json.load(__A ) def SCREAMING_SNAKE_CASE_ ( __A : Tuple ) -> Union[str, Any]: """simple docstring""" return [json.loads(__A ) for line in buffer] class SCREAMING_SNAKE_CASE__ : @pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] ) def SCREAMING_SNAKE_CASE ( self : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Dict: with io.BytesIO() as buffer: JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ ).write() buffer.seek(0 ) a_ : Union[str, Any] = load_json_function(SCREAMING_SNAKE_CASE__ ) assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert isinstance(exported_content[0] , SCREAMING_SNAKE_CASE__ ) assert len(SCREAMING_SNAKE_CASE__ ) == 1_0 @pytest.mark.parametrize( 'orient, container, keys, len_at' , [ ('records', list, {'tokens', 'labels', 'answers', 'id'}, None), ('split', dict, {'columns', 'data'}, 'data'), ('index', dict, set('0123456789' ), None), ('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'), ('values', list, None, None), ('table', dict, {'schema', 'data'}, 'data'), ] , ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[Any]: with io.BytesIO() as buffer: JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ , orient=SCREAMING_SNAKE_CASE__ ).write() buffer.seek(0 ) a_ : List[Any] = load_json(SCREAMING_SNAKE_CASE__ ) assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(SCREAMING_SNAKE_CASE__ , 'keys' ) and not hasattr(exported_content[0] , 'keys' ) if len_at: assert len(exported_content[len_at] ) == 1_0 else: assert len(SCREAMING_SNAKE_CASE__ ) == 1_0 @pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] ) def SCREAMING_SNAKE_CASE ( self : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Any ) -> Optional[int]: with io.BytesIO() as buffer: JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ , num_proc=2 ).write() buffer.seek(0 ) a_ : Optional[int] = load_json_function(SCREAMING_SNAKE_CASE__ ) assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert isinstance(exported_content[0] , SCREAMING_SNAKE_CASE__ ) assert len(SCREAMING_SNAKE_CASE__ ) == 1_0 @pytest.mark.parametrize( 'orient, container, keys, len_at' , [ ('records', list, {'tokens', 'labels', 'answers', 'id'}, None), ('split', dict, {'columns', 'data'}, 'data'), ('index', dict, set('0123456789' ), None), ('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'), ('values', list, None, None), ('table', dict, {'schema', 'data'}, 'data'), ] , ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[str]: with io.BytesIO() as buffer: JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ , orient=SCREAMING_SNAKE_CASE__ , num_proc=2 ).write() buffer.seek(0 ) a_ : str = load_json(SCREAMING_SNAKE_CASE__ ) assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(SCREAMING_SNAKE_CASE__ , 'keys' ) and not hasattr(exported_content[0] , 'keys' ) if len_at: assert len(exported_content[len_at] ) == 1_0 else: assert len(SCREAMING_SNAKE_CASE__ ) == 1_0 def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Dict: with pytest.raises(SCREAMING_SNAKE_CASE__ ): with io.BytesIO() as buffer: JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , num_proc=0 ) @pytest.mark.parametrize('compression, extension' , [('gzip', 'gz'), ('bz2', 'bz2'), ('xz', 'xz')] ) def SCREAMING_SNAKE_CASE ( self : List[str] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[int]: a_ : Optional[int] = tmp_path_factory.mktemp('data' ) / F"""test.json.{extension}""" a_ : int = str(shared_datadir / F"""test_file.json.{extension}""" ) JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , compression=SCREAMING_SNAKE_CASE__ ).write() with fsspec.open(SCREAMING_SNAKE_CASE__ , 'rb' , compression='infer' ) as f: a_ : Optional[Any] = f.read() with fsspec.open(SCREAMING_SNAKE_CASE__ , 'rb' , compression='infer' ) as f: a_ : List[str] = f.read() assert exported_content == original_content
32
'''simple docstring''' # Algorithm for the pigeonhole sorting def lowercase__ ( __UpperCamelCase )-> Union[str, Any]: UpperCamelCase = min(__UpperCamelCase ) # min() finds the minimum value UpperCamelCase = max(__UpperCamelCase ) # max() finds the maximum value UpperCamelCase = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size UpperCamelCase = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(__UpperCamelCase , __UpperCamelCase ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. UpperCamelCase = 0 for count in range(__UpperCamelCase ): while holes[count] > 0: holes[count] -= 1 UpperCamelCase = count + min_val i += 1 def lowercase__ ( )-> Any: UpperCamelCase = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(__UpperCamelCase ) print("""Sorted order is:""" , """ """.join(__UpperCamelCase ) ) if __name__ == "__main__": main()
321
0
import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None ): # set parameter of one layer assert torch_layer.weight.shape == weight.shape, F'{torch_layer} layer.weight does not match' __snake_case : List[Any] = nn.Parameter(__lowerCamelCase ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F'{torch_layer} layer.bias does not match' __snake_case : Any = nn.Parameter(__lowerCamelCase ) def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): # set torch weights for 1-to-1 comparison __snake_case : List[Any] = np.asarray(weights[0] ) __snake_case : Optional[int] = np.asarray(weights[1] ) __snake_case : Union[str, Any] = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(__lowerCamelCase ).transpose(1 , 2 ).contiguous().view(-1 , __lowerCamelCase ) , ) set_param( torch_layer.self_attention.value , torch.tensor(__lowerCamelCase ).transpose(1 , 2 ).contiguous().view(-1 , __lowerCamelCase ) , ) set_param( torch_layer.output.dense , torch.tensor(__lowerCamelCase ).view(-1 , __lowerCamelCase ).contiguous().transpose(0 , 1 ) , ) def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): # set torch weights for 1-to-1 comparison __snake_case : int = np.asarray(weights[0] ) __snake_case : Any = np.asarray(weights[1] ) __snake_case : List[Any] = np.asarray(weights[2] ) __snake_case : int = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(__lowerCamelCase ).transpose(1 , 2 ).contiguous().view(-1 , __lowerCamelCase ) , ) set_param( torch_layer.self_attention.key , torch.tensor(__lowerCamelCase ).transpose(1 , 2 ).contiguous().view(-1 , __lowerCamelCase ) , ) set_param( torch_layer.self_attention.value , torch.tensor(__lowerCamelCase ).transpose(1 , 2 ).contiguous().view(-1 , __lowerCamelCase ) , ) set_param( torch_layer.output.dense , torch.tensor(__lowerCamelCase ).view(-1 , __lowerCamelCase ).contiguous().transpose(0 , 1 ) , ) def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): # layernorm 1 __snake_case : List[Any] = weights[0][0][0] __snake_case : Any = np.asarray(layer_norm_a[0] ) __snake_case : int = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(__lowerCamelCase ) , torch.tensor(__lowerCamelCase ) , ) # lsh weights + output __snake_case : Union[str, Any] = weights[0][1] if len(__lowerCamelCase ) < 4: set_layer_weights_in_torch_lsh(__lowerCamelCase , torch_block.attention , __lowerCamelCase ) else: set_layer_weights_in_torch_local(__lowerCamelCase , torch_block.attention , __lowerCamelCase ) # intermediate weighs __snake_case : Optional[int] = weights[2][0][1][2] # Chunked Feed Forward if len(__lowerCamelCase ) == 4: __snake_case : Dict = intermediate_weights[2] # layernorm 2 __snake_case : Tuple = np.asarray(intermediate_weights[0][0] ) __snake_case : Optional[int] = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(__lowerCamelCase ) , torch.tensor(__lowerCamelCase ) , ) # intermediate dense __snake_case : Optional[int] = np.asarray(intermediate_weights[1][0] ) __snake_case : List[Any] = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(__lowerCamelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(__lowerCamelCase ) , ) # intermediate out __snake_case : Union[str, Any] = np.asarray(intermediate_weights[4][0] ) __snake_case : List[str] = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(__lowerCamelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(__lowerCamelCase ) , ) def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): # reformer model __snake_case : Tuple = torch_model.reformer # word embeds __snake_case : Union[str, Any] = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(__lowerCamelCase ) , ) if isinstance(weights[3] , __lowerCamelCase ): __snake_case : List[Any] = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): __snake_case : Union[str, Any] = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F'{position_embeddings[emb_idx]} emb does not match' __snake_case : Optional[int] = nn.Parameter(torch.tensor(__lowerCamelCase ) ) __snake_case : Tuple = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( __lowerCamelCase ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): __snake_case : Optional[Any] = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # output layer norm __snake_case : Optional[int] = np.asarray(weights[7][0] ) __snake_case : List[str] = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(__lowerCamelCase ) , torch.tensor(__lowerCamelCase ) , ) # output embeddings __snake_case : List[str] = np.asarray(weights[9][0] ) __snake_case : str = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(__lowerCamelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(__lowerCamelCase ) , ) def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): # Initialise PyTorch model __snake_case : List[Any] = ReformerConfig.from_json_file(__lowerCamelCase ) print(F'Building PyTorch model from configuration: {config}' ) __snake_case : Optional[Any] = ReformerModelWithLMHead(__lowerCamelCase ) with open(__lowerCamelCase , "rb" ) as f: __snake_case : int = pickle.load(__lowerCamelCase )["weights"] set_model_weights_in_torch(__lowerCamelCase , __lowerCamelCase , config.hidden_size ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , __lowerCamelCase ) if __name__ == "__main__": _snake_case : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--trax_model_pkl_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained Reformer model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _snake_case : Union[str, Any] = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
367
import argparse import os import torch from transformers.utils import WEIGHTS_NAME _snake_case : Union[str, Any] = ["small", "medium", "large"] _snake_case : List[Any] = "lm_head.decoder.weight" _snake_case : Optional[Any] = "lm_head.weight" def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): __snake_case : Tuple = torch.load(__lowerCamelCase ) __snake_case : Dict = d.pop(__lowerCamelCase ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) torch.save(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) ) if __name__ == "__main__": _snake_case : Dict = argparse.ArgumentParser() parser.add_argument("--dialogpt_path", default=".", type=str) _snake_case : Any = parser.parse_args() for MODEL in DIALOGPT_MODELS: _snake_case : Dict = os.path.join(args.dialogpt_path, f'''{MODEL}_ft.pkl''') _snake_case : List[str] = f'''./DialoGPT-{MODEL}''' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
134
0
"""simple docstring""" import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( _a , _a , _a , unittest.TestCase ): _a = StableUnCLIPPipeline _a = TEXT_TO_IMAGE_PARAMS _a = TEXT_TO_IMAGE_BATCH_PARAMS _a = TEXT_TO_IMAGE_IMAGE_PARAMS _a = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false _a = False def __lowercase ( self : Any ): lowerCAmelCase = 32 lowerCAmelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) lowerCAmelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowerCAmelCase , projection_dim=lowerCAmelCase , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) lowerCAmelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=lowerCAmelCase , num_layers=1 , ) torch.manual_seed(0 ) lowerCAmelCase = DDPMScheduler( variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1000 , clip_sample=lowerCAmelCase , clip_sample_range=5.0 , beta_schedule="""squaredcos_cap_v2""" , ) # regular denoising components torch.manual_seed(0 ) lowerCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=lowerCAmelCase ) lowerCAmelCase = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" ) torch.manual_seed(0 ) lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) lowerCAmelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowerCAmelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) lowerCAmelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="""projection""" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowerCAmelCase , layers_per_block=1 , upcast_attention=lowerCAmelCase , use_linear_projection=lowerCAmelCase , ) torch.manual_seed(0 ) lowerCAmelCase = DDIMScheduler( beta_schedule="""scaled_linear""" , beta_start=0.0_0085 , beta_end=0.012 , prediction_type="""v_prediction""" , set_alpha_to_one=lowerCAmelCase , steps_offset=1 , ) torch.manual_seed(0 ) lowerCAmelCase = AutoencoderKL() lowerCAmelCase = { # prior components """prior_tokenizer""": prior_tokenizer, """prior_text_encoder""": prior_text_encoder, """prior""": prior, """prior_scheduler""": prior_scheduler, # image noising components """image_normalizer""": image_normalizer, """image_noising_scheduler""": image_noising_scheduler, # regular denoising components """tokenizer""": tokenizer, """text_encoder""": text_encoder, """unet""": unet, """scheduler""": scheduler, """vae""": vae, } return components def __lowercase ( self : Optional[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int]=0 ): if str(lowerCAmelCase ).startswith("""mps""" ): lowerCAmelCase = torch.manual_seed(lowerCAmelCase ) else: lowerCAmelCase = torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) lowerCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """prior_num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def __lowercase ( self : Union[str, Any] ): lowerCAmelCase = torch_device == """cpu""" self._test_attention_slicing_forward_pass(test_max_difference=lowerCAmelCase ) def __lowercase ( self : Tuple ): lowerCAmelCase = torch_device in ["""cpu""", """mps"""] self._test_inference_batch_single_identical(test_max_difference=lowerCAmelCase ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __lowercase ( self : List[str] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self : Any ): lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy""" ) lowerCAmelCase = StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""" , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowerCAmelCase = pipe("""anime turle""" , generator=lowerCAmelCase , output_type="""np""" ) lowerCAmelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCAmelCase , lowerCAmelCase ) def __lowercase ( self : List[Any] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCAmelCase = StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""" , torch_dtype=torch.floataa ) lowerCAmelCase = pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCAmelCase = pipe( """anime turtle""" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="""np""" , ) lowerCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
155
"""simple docstring""" def lowercase (snake_case__ : list[int] , snake_case__ : list[int] ) -> tuple[float, float]: '''simple docstring''' if not len(snake_case__ ) == len(snake_case__ ) == 3: raise ValueError("""Please enter a valid equation.""" ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError("""Both a & b of two equations can't be zero.""" ) # Extract the coefficients lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = equationa lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = equationa # Calculate the determinants of the matrices lowerCAmelCase = aa * ba - aa * ba lowerCAmelCase = ca * ba - ca * ba lowerCAmelCase = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError("""Infinite solutions. (Consistent system)""" ) else: raise ValueError("""No solution. (Inconsistent system)""" ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: lowerCAmelCase = determinant_x / determinant lowerCAmelCase = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
155
1
'''simple docstring''' from __future__ import annotations from typing import Generic, TypeVar lowercase =TypeVar('T') class __magic_name__ ( Generic[T] ): def __init__( self , snake_case) -> None: '''simple docstring''' _UpperCAmelCase : Dict =data _UpperCAmelCase : str =self _UpperCAmelCase : Tuple =0 class __magic_name__ ( Generic[T] ): def __init__( self) -> None: '''simple docstring''' # map from node name to the node object _UpperCAmelCase : dict[T, DisjointSetTreeNode[T]] ={} def lowerCAmelCase ( self , snake_case) -> None: '''simple docstring''' # create a new set with x as its member _UpperCAmelCase : Any =DisjointSetTreeNode(snake_case) def lowerCAmelCase ( self , snake_case) -> DisjointSetTreeNode[T]: '''simple docstring''' # find the set x belongs to (with path-compression) _UpperCAmelCase : Dict =self.map[data] if elem_ref != elem_ref.parent: _UpperCAmelCase : Dict =self.find_set(elem_ref.parent.data) return elem_ref.parent def lowerCAmelCase ( self , snake_case , snake_case) -> None: '''simple docstring''' # helper function for union operation if nodea.rank > nodea.rank: _UpperCAmelCase : str =nodea else: _UpperCAmelCase : Union[str, Any] =nodea if nodea.rank == nodea.rank: nodea.rank += 1 def lowerCAmelCase ( self , snake_case , snake_case) -> None: '''simple docstring''' # merge 2 disjoint sets self.link(self.find_set(snake_case) , self.find_set(snake_case)) class __magic_name__ ( Generic[T] ): def __init__( self) -> None: '''simple docstring''' # connections: map from the node to the neighbouring nodes (with weights) _UpperCAmelCase : dict[T, dict[T, int]] ={} def lowerCAmelCase ( self , snake_case) -> None: '''simple docstring''' # add a node ONLY if its not present in the graph if node not in self.connections: _UpperCAmelCase : Dict ={} def lowerCAmelCase ( self , snake_case , snake_case , snake_case) -> None: '''simple docstring''' # add an edge with the given weight self.add_node(snake_case) self.add_node(snake_case) _UpperCAmelCase : Any =weight _UpperCAmelCase : List[str] =weight def lowerCAmelCase ( self) -> GraphUndirectedWeighted[T]: '''simple docstring''' _UpperCAmelCase : List[Any] =[] _UpperCAmelCase : Union[str, Any] =set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start)) edges.append((start, end, self.connections[start][end])) edges.sort(key=lambda snake_case: x[2]) # creating the disjoint set _UpperCAmelCase : Any =DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(snake_case) # MST generation _UpperCAmelCase : Any =0 _UpperCAmelCase : Optional[Any] =0 _UpperCAmelCase : Dict =GraphUndirectedWeighted[T]() while num_edges < len(self.connections) - 1: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[Any] =edges[index] index += 1 _UpperCAmelCase : Optional[int] =disjoint_set.find_set(snake_case) _UpperCAmelCase : List[Any] =disjoint_set.find_set(snake_case) if parent_u != parent_v: num_edges += 1 graph.add_edge(snake_case , snake_case , snake_case) disjoint_set.union(snake_case , snake_case) return graph
242
'''simple docstring''' import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor lowercase =logging.get_logger(__name__) class __magic_name__ ( lowerCAmelCase ): def __init__( self , *snake_case , **snake_case) -> None: '''simple docstring''' warnings.warn( 'The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use DeformableDetrImageProcessor instead.' , snake_case , ) super().__init__(*snake_case , **snake_case)
242
1
'''simple docstring''' import math def __lowerCamelCase ( __snake_case : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(__snake_case ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __lowerCamelCase ( __snake_case : int = 10_001 ) -> int: """simple docstring""" try: A__ : List[Any] =int(__snake_case ) except (TypeError, ValueError): raise TypeError("""Parameter nth must be int or castable to int.""" ) from None if nth <= 0: raise ValueError("""Parameter nth must be greater than or equal to one.""" ) A__ : list[int] =[] A__ : Optional[Any] =2 while len(__snake_case ) < nth: if is_prime(__snake_case ): primes.append(__snake_case ) num += 1 else: num += 1 return primes[len(__snake_case ) - 1] if __name__ == "__main__": print(F"""{solution() = }""")
134
'''simple docstring''' from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline __snake_case : Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(lowercase_ ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def __init__( self : List[str] , **lowerCAmelCase_ : Any ) -> List[Any]: '''simple docstring''' super().__init__(**lowerCAmelCase_ ) if self.framework != "pt": raise ValueError(f"The {self.__class__} is only available in PyTorch." ) # No specific FOR_XXX available yet def __call__( self : int , lowerCAmelCase_ : Union[np.ndarray, bytes, str] , **lowerCAmelCase_ : Tuple ) -> Dict: '''simple docstring''' return super().__call__(lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase__ ( self : Optional[int] , **lowerCAmelCase_ : List[Any] ) -> Union[str, Any]: '''simple docstring''' A__ : Optional[Any] ={} if "candidate_labels" in kwargs: A__ : List[Any] =kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: A__ : Optional[Any] =kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : str="This is a sound of {}." ) -> Tuple: '''simple docstring''' if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): if audio.startswith("""http://""" ) or audio.startswith("""https://""" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png A__ : Any =requests.get(lowerCAmelCase_ ).content else: with open(lowerCAmelCase_ , """rb""" ) as f: A__ : Dict =f.read() if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): A__ : str =ffmpeg_read(lowerCAmelCase_ , self.feature_extractor.sampling_rate ) if not isinstance(lowerCAmelCase_ , np.ndarray ): raise ValueError("""We expect a numpy ndarray as input""" ) if len(audio.shape ) != 1: raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" ) A__ : int =self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="""pt""" ) A__ : Union[str, Any] =candidate_labels A__ : Tuple =[hypothesis_template.format(lowerCAmelCase_ ) for x in candidate_labels] A__ : Dict =self.tokenizer(lowerCAmelCase_ , return_tensors=self.framework , padding=lowerCAmelCase_ ) A__ : int =[text_inputs] return inputs def lowercase__ ( self : Tuple , lowerCAmelCase_ : Any ) -> Dict: '''simple docstring''' A__ : Optional[int] =model_inputs.pop("""candidate_labels""" ) A__ : List[str] =model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] , lowerCAmelCase_ ): A__ : List[str] =text_inputs[0] else: # Batching case. A__ : Optional[Any] =text_inputs[0][0] A__ : List[str] =self.model(**lowerCAmelCase_ , **lowerCAmelCase_ ) A__ : List[str] ={ """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_audio, } return model_outputs def lowercase__ ( self : Any , lowerCAmelCase_ : List[str] ) -> Tuple: '''simple docstring''' A__ : Any =model_outputs.pop("""candidate_labels""" ) A__ : str =model_outputs["""logits"""][0] if self.framework == "pt": A__ : str =logits.softmax(dim=0 ) A__ : List[str] =probs.tolist() else: raise ValueError("""`tf` framework not supported.""" ) A__ : List[str] =[ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(lowerCAmelCase_ , lowerCAmelCase_ ) , key=lambda lowerCAmelCase_ : -x[0] ) ] return result
134
1
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' if not head: return True # split the list to two parts __snake_case , __snake_case : int = head.next, head while fast and fast.next: __snake_case : str = fast.next.next __snake_case : Union[str, Any] = slow.next __snake_case : int = slow.next __snake_case : List[Any] = None # Don't forget here! But forget still works! # reverse the second part __snake_case : int = None while second: __snake_case : int = second.next __snake_case : List[Any] = node __snake_case : Any = second __snake_case : Tuple = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False __snake_case : Optional[Any] = node.next __snake_case : Optional[int] = head.next return True def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' if not head or not head.next: return True # 1. Get the midpoint (slow) __snake_case : Tuple = head while fast and fast.next: __snake_case , __snake_case : List[str] = fast.next.next, slow.next # 2. Push the second half into the stack __snake_case : Tuple = [slow.val] while slow.next: __snake_case : List[str] = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False __snake_case : List[Any] = cur.next return True def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' if not head or not head.next: return True __snake_case : Union[str, Any] = {} __snake_case : List[str] = 0 while head: if head.val in d: d[head.val].append(UpperCamelCase__ ) else: __snake_case : int = [pos] __snake_case : Union[str, Any] = head.next pos += 1 __snake_case : Optional[Any] = pos - 1 __snake_case : int = 0 for v in d.values(): if len(UpperCamelCase__ ) % 2 != 0: middle += 1 else: __snake_case : str = 0 for i in range(0 , len(UpperCamelCase__ ) ): if v[i] + v[len(UpperCamelCase__ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
366
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "xlm-mlm-en-2048": "https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json", "xlm-mlm-ende-1024": "https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json", "xlm-mlm-enfr-1024": "https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json", "xlm-mlm-enro-1024": "https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json", "xlm-mlm-tlm-xnli15-1024": "https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json", "xlm-mlm-xnli15-1024": "https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json", "xlm-clm-enfr-1024": "https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json", "xlm-clm-ende-1024": "https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json", "xlm-mlm-17-1280": "https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json", "xlm-mlm-100-1280": "https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json", } class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : List[str] = "xlm" A : List[str] = { "hidden_size": "emb_dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", "n_words": "vocab_size", # For backward compatibility } def __init__( self : List[Any] , _lowerCAmelCase : Optional[Any]=3_01_45 , _lowerCAmelCase : Optional[Any]=20_48 , _lowerCAmelCase : Dict=12 , _lowerCAmelCase : int=16 , _lowerCAmelCase : Tuple=0.1 , _lowerCAmelCase : List[Any]=0.1 , _lowerCAmelCase : str=True , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Tuple=False , _lowerCAmelCase : Dict=False , _lowerCAmelCase : Dict=1 , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : Optional[Any]=5_12 , _lowerCAmelCase : List[Any]=20_48**-0.5 , _lowerCAmelCase : List[str]=1e-12 , _lowerCAmelCase : List[Any]=0.02 , _lowerCAmelCase : List[str]=0 , _lowerCAmelCase : Optional[Any]=1 , _lowerCAmelCase : Dict=2 , _lowerCAmelCase : List[str]=3 , _lowerCAmelCase : Tuple=5 , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : Tuple="first" , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : Tuple=5 , _lowerCAmelCase : List[str]=5 , _lowerCAmelCase : Optional[Any]=0 , _lowerCAmelCase : Tuple=0 , _lowerCAmelCase : Union[str, Any]=2 , _lowerCAmelCase : Union[str, Any]=0 , **_lowerCAmelCase : Tuple , ): __snake_case : Optional[Any] = vocab_size __snake_case : Tuple = emb_dim __snake_case : int = n_layers __snake_case : List[str] = n_heads __snake_case : Union[str, Any] = dropout __snake_case : Optional[int] = attention_dropout __snake_case : Optional[Any] = gelu_activation __snake_case : Tuple = sinusoidal_embeddings __snake_case : List[Any] = causal __snake_case : Dict = asm __snake_case : int = n_langs __snake_case : str = use_lang_emb __snake_case : Dict = layer_norm_eps __snake_case : List[Any] = bos_index __snake_case : Union[str, Any] = eos_index __snake_case : Dict = pad_index __snake_case : Any = unk_index __snake_case : Dict = mask_index __snake_case : Any = is_encoder __snake_case : Dict = max_position_embeddings __snake_case : Optional[Any] = embed_init_std __snake_case : List[Any] = init_std __snake_case : str = summary_type __snake_case : Optional[Any] = summary_use_proj __snake_case : str = summary_activation __snake_case : Optional[int] = summary_proj_to_labels __snake_case : Dict = summary_first_dropout __snake_case : Dict = start_n_top __snake_case : int = end_n_top __snake_case : str = mask_token_id __snake_case : int = lang_id if "n_words" in kwargs: __snake_case : Dict = kwargs["""n_words"""] super().__init__(pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , **_lowerCAmelCase ) class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): @property def snake_case__ ( self : Dict ): if self.task == "multiple-choice": __snake_case : Optional[int] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __snake_case : Tuple = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
20
0
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): a__ : Any ='''pt''' elif is_tf_available(): a__ : Tuple ='''tf''' else: a__ : List[str] ='''jax''' class snake_case ( __lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any =PerceiverTokenizer SCREAMING_SNAKE_CASE_ : Optional[int] =False def _lowerCamelCase ( self : int ): super().setUp() __UpperCamelCase = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowerCamelCase ( self : Optional[Any] ): return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def _lowerCamelCase ( self : str , **__A : Tuple ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **__A ) def _lowerCamelCase ( self : List[str] , __A : Union[str, Any] , __A : Dict=False , __A : Any=2_0 , __A : Tuple=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. __UpperCamelCase = [] for i in range(len(__A ) ): try: __UpperCamelCase = tokenizer.decode([i] , clean_up_tokenization_spaces=__A ) except UnicodeDecodeError: pass toks.append((i, tok) ) __UpperCamelCase = list(filter(lambda __A : re.match(R'^[ a-zA-Z]+$' , t[1] ) , __A ) ) __UpperCamelCase = list(filter(lambda __A : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=__A ) , __A ) ) if max_length is not None and len(__A ) > max_length: __UpperCamelCase = toks[:max_length] if min_length is not None and len(__A ) < min_length and len(__A ) > 0: while len(__A ) < min_length: __UpperCamelCase = toks + toks # toks_str = [t[1] for t in toks] __UpperCamelCase = [t[0] for t in toks] # Ensure consistency __UpperCamelCase = tokenizer.decode(__A , clean_up_tokenization_spaces=__A ) if " " not in output_txt and len(__A ) > 1: __UpperCamelCase = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=__A ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=__A ) ) if with_prefix_space: __UpperCamelCase = ' ' + output_txt __UpperCamelCase = tokenizer.encode(__A , add_special_tokens=__A ) return output_txt, output_ids def _lowerCamelCase ( self : Union[str, Any] ): __UpperCamelCase = self.perceiver_tokenizer __UpperCamelCase = 'Unicode €.' __UpperCamelCase = tokenizer(__A ) __UpperCamelCase = [4, 9_1, 1_1_6, 1_1_1, 1_0_5, 1_1_7, 1_0_6, 1_0_7, 3_8, 2_3_2, 1_3_6, 1_7_8, 5_2, 5] self.assertEqual(encoded['input_ids'] , __A ) # decoding __UpperCamelCase = tokenizer.decode(__A ) self.assertEqual(__A , '[CLS]Unicode €.[SEP]' ) __UpperCamelCase = tokenizer('e è é ê ë' ) __UpperCamelCase = [4, 1_0_7, 3_8, 2_0_1, 1_7_4, 3_8, 2_0_1, 1_7_5, 3_8, 2_0_1, 1_7_6, 3_8, 2_0_1, 1_7_7, 5] self.assertEqual(encoded['input_ids'] , __A ) # decoding __UpperCamelCase = tokenizer.decode(__A ) self.assertEqual(__A , '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' ) def _lowerCamelCase ( self : List[Any] ): __UpperCamelCase = self.perceiver_tokenizer __UpperCamelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off __UpperCamelCase = [4, 7_1, 3_8, 1_1_4, 1_1_7, 1_1_6, 1_0_9, 3_8, 1_1_8, 1_0_3, 1_2_0, 1_0_3, 1_0_9, 1_2_0, 1_0_3, 1_1_8, 1_1_0, 3_8, 1_0_8, 1_1_7, 1_2_0, 3_8, 1_2_1, 1_2_3, 1_1_5, 1_1_5, 1_0_3, 1_2_0, 1_1_1, 1_2_8, 1_0_3, 1_2_2, 1_1_1, 1_1_7, 1_1_6, 5_2, 5, 0] # fmt: on __UpperCamelCase = tokenizer(__A , padding=__A , return_tensors=__A ) self.assertIsInstance(__A , __A ) if FRAMEWORK != "jax": __UpperCamelCase = list(batch.input_ids.numpy()[0] ) else: __UpperCamelCase = list(batch.input_ids.tolist()[0] ) self.assertListEqual(__A , __A ) self.assertEqual((2, 3_8) , batch.input_ids.shape ) self.assertEqual((2, 3_8) , batch.attention_mask.shape ) def _lowerCamelCase ( self : Dict ): __UpperCamelCase = self.perceiver_tokenizer __UpperCamelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __UpperCamelCase = tokenizer(__A , padding=__A , return_tensors=__A ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , __A ) self.assertIn('attention_mask' , __A ) self.assertNotIn('decoder_input_ids' , __A ) self.assertNotIn('decoder_attention_mask' , __A ) def _lowerCamelCase ( self : List[Any] ): __UpperCamelCase = self.perceiver_tokenizer __UpperCamelCase = [ 'Summary of the text.', 'Another summary.', ] __UpperCamelCase = tokenizer( text_target=__A , max_length=3_2 , padding='max_length' , truncation=__A , return_tensors=__A ) self.assertEqual(3_2 , targets['input_ids'].shape[1] ) def _lowerCamelCase ( self : Dict ): # safety check on max_len default value so we are sure the test works __UpperCamelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 4_2 ) # Now let's start the test __UpperCamelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __UpperCamelCase = tempfile.mkdtemp() __UpperCamelCase = ' He is very happy, UNwant\u00E9d,running' __UpperCamelCase = tokenizer.encode(__A , add_special_tokens=__A ) tokenizer.save_pretrained(__A ) __UpperCamelCase = tokenizer.__class__.from_pretrained(__A ) __UpperCamelCase = after_tokenizer.encode(__A , add_special_tokens=__A ) self.assertListEqual(__A , __A ) shutil.rmtree(__A ) __UpperCamelCase = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __UpperCamelCase = tempfile.mkdtemp() __UpperCamelCase = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) __UpperCamelCase = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) __UpperCamelCase = tokenizer.encode(__A , add_special_tokens=__A ) tokenizer.save_pretrained(__A ) __UpperCamelCase = tokenizer.__class__.from_pretrained(__A ) __UpperCamelCase = after_tokenizer.encode(__A , add_special_tokens=__A ) self.assertListEqual(__A , __A ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 4_2 ) __UpperCamelCase = tokenizer.__class__.from_pretrained(__A , model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length , 4_3 ) shutil.rmtree(__A ) def _lowerCamelCase ( self : Any ): __UpperCamelCase = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__A ) with open(os.path.join(__A , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: __UpperCamelCase = json.load(__A ) with open(os.path.join(__A , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: __UpperCamelCase = json.load(__A ) __UpperCamelCase = [f'''<extra_id_{i}>''' for i in range(1_2_5 )] __UpperCamelCase = added_tokens_extra_ids + [ 'an_additional_special_token' ] __UpperCamelCase = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(__A , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(__A , __A ) with open(os.path.join(__A , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(__A , __A ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __UpperCamelCase = tokenizer_class.from_pretrained( __A , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __UpperCamelCase = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=__A )] __UpperCamelCase = tokenizer_class.from_pretrained( __A , additional_special_tokens=__A , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def _lowerCamelCase ( self : Dict ): __UpperCamelCase = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_7_8] ) , '�' ) def _lowerCamelCase ( self : Dict ): pass def _lowerCamelCase ( self : List[str] ): pass def _lowerCamelCase ( self : Tuple ): pass def _lowerCamelCase ( self : Optional[Any] ): pass def _lowerCamelCase ( self : str ): # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens __UpperCamelCase = self.get_tokenizers(fast=__A , do_lower_case=__A ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCamelCase = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] __UpperCamelCase = tokenizer.convert_tokens_to_string(__A ) self.assertIsInstance(__A , __A )
53
def _SCREAMING_SNAKE_CASE ( lowercase : list ): '''simple docstring''' for i in range(len(lowercase ) - 1 , 0 , -1 ): lowerCamelCase_ = False for j in range(lowercase , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: lowerCamelCase_ , lowerCamelCase_ = unsorted[j - 1], unsorted[j] lowerCamelCase_ = True for j in range(lowercase ): if unsorted[j] > unsorted[j + 1]: lowerCamelCase_ , lowerCamelCase_ = unsorted[j + 1], unsorted[j] lowerCamelCase_ = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Any = input("Enter numbers separated by a comma:\n").strip() lowerCamelCase : Dict = [int(item) for item in user_input.split(",")] print(F"""{cocktail_shaker_sort(unsorted) = }""")
204
0
"""simple docstring""" import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets UpperCamelCase : str = "\\n@inproceedings{popovic-2015-chrf,\n title = \"chr{F}: character n-gram {F}-score for automatic {MT} evaluation\",\n author = \"Popovi{\'c}, Maja\",\n booktitle = \"Proceedings of the Tenth Workshop on Statistical Machine Translation\",\n month = sep,\n year = \"2015\",\n address = \"Lisbon, Portugal\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W15-3049\",\n doi = \"10.18653/v1/W15-3049\",\n pages = \"392--395\",\n}\n@inproceedings{popovic-2017-chrf,\n title = \"chr{F}++: words helping character n-grams\",\n author = \"Popovi{\'c}, Maja\",\n booktitle = \"Proceedings of the Second Conference on Machine Translation\",\n month = sep,\n year = \"2017\",\n address = \"Copenhagen, Denmark\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W17-4770\",\n doi = \"10.18653/v1/W17-4770\",\n pages = \"612--618\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" UpperCamelCase : Union[str, Any] = "\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n" UpperCamelCase : Any = "\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n 'score' (float): The chrF (chrF++) score,\n 'char_order' (int): The character n-gram order,\n 'word_order' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n 'beta' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {'score': 84.64214891738334, 'char_order': 6, 'word_order': 0, 'beta': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {'score': 82.87263732906315, 'char_order': 6, 'word_order': 2, 'beta': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {'score': 92.12853119829202, 'char_order': 6, 'word_order': 2, 'beta': 2}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): def UpperCAmelCase ( self ): '''simple docstring''' if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/mjpost/sacreBLEU#chrf--chrf' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#chrf--chrf'] , reference_urls=[ 'https://github.com/m-popovic/chrF', ] , ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = CHRF.CHAR_ORDER , __UpperCAmelCase = CHRF.WORD_ORDER , __UpperCAmelCase = CHRF.BETA , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , ): '''simple docstring''' __UpperCamelCase = len(references[0] ) if any(len(__UpperCAmelCase ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) __UpperCamelCase = [[refs[i] for refs in references] for i in range(__UpperCAmelCase )] __UpperCamelCase = CHRF(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = sb_chrf.corpus_score(__UpperCAmelCase , __UpperCAmelCase ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
358
"""simple docstring""" import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__UpperCAmelCase , 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(__UpperCAmelCase , 'num_attention_heads' ) ) class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=64 , __UpperCAmelCase=3 , __UpperCAmelCase=3 , __UpperCAmelCase=2 , __UpperCAmelCase=1 , __UpperCAmelCase=16 , __UpperCAmelCase=[128, 256, 384] , __UpperCAmelCase=[4, 6, 8] , __UpperCAmelCase=[2, 3, 4] , __UpperCAmelCase=[16, 16, 16] , __UpperCAmelCase=0 , __UpperCAmelCase=[2, 2, 2] , __UpperCAmelCase=[2, 2, 2] , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=2 , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = image_size __UpperCamelCase = num_channels __UpperCamelCase = kernel_size __UpperCamelCase = stride __UpperCamelCase = padding __UpperCamelCase = hidden_sizes __UpperCamelCase = num_attention_heads __UpperCamelCase = depths __UpperCamelCase = key_dim __UpperCamelCase = drop_path_rate __UpperCamelCase = patch_size __UpperCamelCase = attention_ratio __UpperCamelCase = mlp_ratio __UpperCamelCase = initializer_range __UpperCamelCase = [ ['Subsample', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['Subsample', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] __UpperCamelCase = is_training __UpperCamelCase = use_labels __UpperCamelCase = num_labels __UpperCamelCase = initializer_range def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels ) __UpperCamelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self ): '''simple docstring''' return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = LevitModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase ) __UpperCamelCase = (self.image_size, self.image_size) __UpperCamelCase , __UpperCamelCase = image_size[0], image_size[1] for _ in range(4 ): __UpperCamelCase = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) __UpperCamelCase = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = LevitForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = config_and_inputs __UpperCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) lowercase = ( { "feature-extraction": LevitModel, "image-classification": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = LevitModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 ) def UpperCAmelCase ( self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self ): '''simple docstring''' return @unittest.skip(reason='Levit does not use inputs_embeds' ) def UpperCAmelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='Levit does not support input and output embeddings' ) def UpperCAmelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='Levit does not output attentions' ) def UpperCAmelCase ( self ): '''simple docstring''' pass def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(__UpperCAmelCase ) __UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase = [*signature.parameters.keys()] __UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' def check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): __UpperCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __UpperCamelCase = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCamelCase = outputs.hidden_states __UpperCamelCase = len(self.model_tester.depths ) + 1 self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) __UpperCamelCase = (self.model_tester.image_size, self.model_tester.image_size) __UpperCamelCase , __UpperCamelCase = image_size[0], image_size[1] for _ in range(4 ): __UpperCamelCase = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) __UpperCamelCase = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCamelCase = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def UpperCAmelCase ( self ): '''simple docstring''' pass def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ): '''simple docstring''' __UpperCamelCase = super()._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' if not self.model_tester.is_training: return __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(__UpperCAmelCase ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue __UpperCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.train() __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) __UpperCamelCase = model(**__UpperCAmelCase ).loss loss.backward() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __UpperCamelCase = False __UpperCamelCase = True for model_class in self.all_model_classes: if model_class in get_values(__UpperCAmelCase ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue __UpperCamelCase = model_class(__UpperCAmelCase ) model.gradient_checkpointing_enable() model.to(__UpperCAmelCase ) model.train() __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) __UpperCamelCase = model(**__UpperCAmelCase ).loss loss.backward() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = [ {'title': 'multi_label_classification', 'num_labels': 2, 'dtype': torch.float}, {'title': 'single_label_classification', 'num_labels': 1, 'dtype': torch.long}, {'title': 'regression', 'num_labels': 1, 'dtype': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(__UpperCAmelCase ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F'Testing {model_class} with {problem_type["title"]}' ): __UpperCamelCase = problem_type['title'] __UpperCamelCase = problem_type['num_labels'] __UpperCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.train() __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) if problem_type["num_labels"] > 1: __UpperCamelCase = inputs['labels'].unsqueeze(1 ).repeat(1 , problem_type['num_labels'] ) __UpperCamelCase = inputs['labels'].to(problem_type['dtype'] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=__UpperCAmelCase ) as warning_list: __UpperCamelCase = model(**__UpperCAmelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F'Something is going wrong in the regression problem: intercepted {w.message}' ) loss.backward() @slow def UpperCAmelCase ( self ): '''simple docstring''' for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = LevitModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def A ( ) -> Union[str, Any]: __UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): @cached_property def UpperCAmelCase ( self ): '''simple docstring''' return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( __UpperCAmelCase ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) # verify the logits __UpperCamelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor([1.0_4_4_8, -0.3_7_4_5, -1.8_3_1_7] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) )
263
0
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Union[str, Any] = { 'google/efficientnet-b7': 'https://huggingface.co/google/efficientnet-b7/resolve/main/config.json', } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """efficientnet""" def __init__( self , A = 3 , A = 6_0_0 , A = 2.0 , A = 3.1 , A = 8 , A = [3, 3, 5, 3, 5, 5, 3] , A = [3_2, 1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2] , A = [1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2, 3_2_0] , A = [] , A = [1, 2, 2, 2, 1, 2, 1] , A = [1, 2, 2, 3, 3, 4, 1] , A = [1, 6, 6, 6, 6, 6, 6] , A = 0.25 , A = "swish" , A = 2_5_6_0 , A = "mean" , A = 0.02 , A = 0.0_01 , A = 0.99 , A = 0.5 , A = 0.2 , **A , ) -> int: super().__init__(**A ) snake_case : int = num_channels snake_case : int = image_size snake_case : Tuple = width_coefficient snake_case : Any = depth_coefficient snake_case : Tuple = depth_divisor snake_case : List[Any] = kernel_sizes snake_case : Union[str, Any] = in_channels snake_case : List[Any] = out_channels snake_case : Union[str, Any] = depthwise_padding snake_case : Tuple = strides snake_case : str = num_block_repeats snake_case : Tuple = expand_ratios snake_case : int = squeeze_expansion_ratio snake_case : Union[str, Any] = hidden_act snake_case : List[Any] = hidden_dim snake_case : List[Any] = pooling_type snake_case : Optional[Any] = initializer_range snake_case : Optional[Any] = batch_norm_eps snake_case : Union[str, Any] = batch_norm_momentum snake_case : int = dropout_rate snake_case : Union[str, Any] = drop_connect_rate snake_case : int = sum(A ) * 4 class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = version.parse("""1.11""" ) @property def UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCAmelCase ( self ) -> float: return 1e-5
124
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase : Optional[int] = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class __lowercase (UpperCamelCase__ , unittest.TestCase ): """simple docstring""" _snake_case = XLMRobertaTokenizer _snake_case = XLMRobertaTokenizerFast _snake_case = True _snake_case = True def UpperCAmelCase ( self ) -> str: super().setUp() # We have a SentencePiece fixture for testing snake_case : Tuple = XLMRobertaTokenizer(A , keep_accents=A ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase ( self ) -> int: snake_case : str = """<pad>""" snake_case : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def UpperCAmelCase ( self ) -> int: snake_case : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(A ) , 1_0_0_2 ) def UpperCAmelCase ( self ) -> Union[str, Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_2 ) def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Any = XLMRobertaTokenizer(A , keep_accents=A ) snake_case : Tuple = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(A , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(A ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) snake_case : List[str] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( A , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) snake_case : str = tokenizer.convert_tokens_to_ids(A ) self.assertListEqual( A , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) snake_case : Any = tokenizer.convert_ids_to_tokens(A ) self.assertListEqual( A , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def UpperCAmelCase ( self ) -> Optional[Any]: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return snake_case : List[Any] = (self.rust_tokenizer_class, """hf-internal-testing/tiny-xlm-roberta""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): snake_case : Dict = self.rust_tokenizer_class.from_pretrained(A , **A ) snake_case : int = self.tokenizer_class.from_pretrained(A , **A ) snake_case : Optional[int] = tempfile.mkdtemp() snake_case : List[Any] = tokenizer_r.save_pretrained(A ) snake_case : Optional[Any] = tokenizer_p.save_pretrained(A ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) snake_case : Union[str, Any] = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(A , A ) # Checks everything loads correctly in the same way snake_case : str = tokenizer_r.from_pretrained(A ) snake_case : Dict = tokenizer_p.from_pretrained(A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A , A ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(A ) # Save tokenizer rust, legacy_format=True snake_case : List[Any] = tempfile.mkdtemp() snake_case : Tuple = tokenizer_r.save_pretrained(A , legacy_format=A ) snake_case : Any = tokenizer_p.save_pretrained(A ) # Checks it save with the same files self.assertSequenceEqual(A , A ) # Checks everything loads correctly in the same way snake_case : int = tokenizer_r.from_pretrained(A ) snake_case : Any = tokenizer_p.from_pretrained(A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A , A ) ) shutil.rmtree(A ) # Save tokenizer rust, legacy_format=False snake_case : Tuple = tempfile.mkdtemp() snake_case : str = tokenizer_r.save_pretrained(A , legacy_format=A ) snake_case : Optional[int] = tokenizer_p.save_pretrained(A ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way snake_case : Dict = tokenizer_r.from_pretrained(A ) snake_case : List[Any] = tokenizer_p.from_pretrained(A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A , A ) ) shutil.rmtree(A ) @cached_property def UpperCAmelCase ( self ) -> str: return XLMRobertaTokenizer.from_pretrained("""xlm-roberta-base""" ) def UpperCAmelCase ( self ) -> Optional[int]: with tempfile.NamedTemporaryFile() as f: shutil.copyfile(A , f.name ) snake_case : Any = XLMRobertaTokenizer(f.name , keep_accents=A ) snake_case : List[Any] = pickle.dumps(A ) pickle.loads(A ) def UpperCAmelCase ( self ) -> Any: if not self.test_rust_tokenizer: return snake_case : str = self.get_tokenizer() snake_case : List[str] = self.get_rust_tokenizer() snake_case : str = """I was born in 92000, and this is falsé.""" snake_case : Optional[int] = tokenizer.tokenize(A ) snake_case : List[Any] = rust_tokenizer.tokenize(A ) self.assertListEqual(A , A ) snake_case : List[Any] = tokenizer.encode(A , add_special_tokens=A ) snake_case : Optional[int] = rust_tokenizer.encode(A , add_special_tokens=A ) self.assertListEqual(A , A ) snake_case : Optional[Any] = self.get_rust_tokenizer() snake_case : str = tokenizer.encode(A ) snake_case : Dict = rust_tokenizer.encode(A ) self.assertListEqual(A , A ) @slow def UpperCAmelCase ( self ) -> List[Any]: snake_case : Dict = """Hello World!""" snake_case : Union[str, Any] = [0, 3_5_3_7_8, 6_6_6_1, 3_8, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(A , self.big_tokenizer.encode(A ) ) @slow def UpperCAmelCase ( self ) -> str: snake_case : int = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) snake_case : Tuple = [ 0, 3_2_9_3, 8_3, 1_0, 4_5_5_2, 4_9_8_9, 7_9_8_6, 6_7_8, 1_0, 5_9_1_5, 1_1_1, 1_7_9_4_5_9, 1_2_4_8_5_0, 4, 6_0_4_4, 2_3_7, 1_2, 6, 5, 6, 4, 6_7_8_0, 7_0_5, 1_5, 1_3_8_8, 4_4, 3_7_8, 1_0_1_1_4, 7_1_1, 1_5_2, 2_0, 6, 5, 2_2_3_7_6, 6_4_2, 1_2_2_1, 1_5_1_9_0, 3_4_1_5_3, 4_5_0, 5_6_0_8, 9_5_9, 1_1_1_9, 5_7_7_0_2, 1_3_6, 1_8_6, 4_7, 1_0_9_8, 2_9_3_6_7, 4_7, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6_0_4_4, 2_3_7, 6_2_8_4, 5_0_9_0_1, 5_2_8, 3_1, 9_0, 3_4, 9_2_7, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(A , self.big_tokenizer.encode(A ) ) @slow def UpperCAmelCase ( self ) -> str: # fmt: off snake_case : Tuple = {"""input_ids""": [[0, 1_1_0_6_2, 8_2_7_7_2, 7, 1_5, 8_2_7_7_2, 5_3_8, 5_1_5_2_9, 2_3_7, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 2_1_5_1_7_5, 1_3_1_4, 1_3_6, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 5_6_3_5_9, 4_2, 1_2_2_0_0_9, 9, 1_6_4_6_6, 1_6, 8_7_3_4_4, 4_5_3_7, 9, 4_7_1_7, 7_8_3_8_1, 6, 1_5_9_9_5_8, 7, 1_5, 2_4_4_8_0, 6_1_8, 4, 5_2_7, 2_2_6_9_3, 5_4_2_8, 4, 2_7_7_7, 2_4_4_8_0, 9_8_7_4, 4, 4_3_5_2_3, 5_9_4, 4, 8_0_3, 1_8_3_9_2, 3_3_1_8_9, 1_8, 4, 4_3_5_2_3, 2_4_4_4_7, 1_2_3_9_9, 1_0_0, 2_4_9_5_5, 8_3_6_5_8, 9_6_2_6, 1_4_4_0_5_7, 1_5, 8_3_9, 2_2_3_3_5, 1_6, 1_3_6, 2_4_9_5_5, 8_3_6_5_8, 8_3_4_7_9, 1_5, 3_9_1_0_2, 7_2_4, 1_6, 6_7_8, 6_4_5, 2_7_8_9, 1_3_2_8, 4_5_8_9, 4_2, 1_2_2_0_0_9, 1_1_5_7_7_4, 2_3, 8_0_5, 1_3_2_8, 4_6_8_7_6, 7, 1_3_6, 5_3_8_9_4, 1_9_4_0, 4_2_2_2_7, 4_1_1_5_9, 1_7_7_2_1, 8_2_3, 4_2_5, 4, 2_7_5_1_2, 9_8_7_2_2, 2_0_6, 1_3_6, 5_5_3_1, 4_9_7_0, 9_1_9, 1_7_3_3_6, 5, 2], [0, 2_0_0_8_0, 6_1_8, 8_3, 8_2_7_7_5, 4_7, 4_7_9, 9, 1_5_1_7, 7_3, 5_3_8_9_4, 3_3_3, 8_0_5_8_1, 1_1_0_1_1_7, 1_8_8_1_1, 5_2_5_6, 1_2_9_5, 5_1, 1_5_2_5_2_6, 2_9_7, 7_9_8_6, 3_9_0, 1_2_4_4_1_6, 5_3_8, 3_5_4_3_1, 2_1_4, 9_8, 1_5_0_4_4, 2_5_7_3_7, 1_3_6, 7_1_0_8, 4_3_7_0_1, 2_3, 7_5_6, 1_3_5_3_5_5, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_8_1, 6_3_7_7_3, 1_1_9_4_5_5, 6, 1_4_7_7_9_7, 8_8_2_0_3, 7, 6_4_5, 7_0, 2_1, 3_2_8_5, 1_0_2_6_9, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name="""xlm-roberta-base""" , revision="""d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3""" , )
124
1
"""simple docstring""" import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def _UpperCAmelCase ( ): """simple docstring""" lowerCamelCase__ : Any ='''https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png''' lowerCamelCase__ : List[Any] =Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ).convert('''RGB''' ) return image def _UpperCAmelCase ( __lowerCamelCase : Any ): """simple docstring""" lowerCamelCase__ : Tuple =[] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') ) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') ) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') ) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.weight''', f'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.bias''', f'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.weight''', f'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.bias''', f'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.qkv.weight''', f'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.weight''', f'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.bias''', f'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.layernorm.weight''') ) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.layernorm.bias''') ) # fmt: on return rename_keys def _UpperCAmelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : int , __lowerCamelCase : int ): """simple docstring""" lowerCamelCase__ : str =dct.pop(snake_case_ ) lowerCamelCase__ : Any =val def _UpperCAmelCase ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] ): """simple docstring""" for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases lowerCamelCase__ : Optional[int] =state_dict.pop(f'''visual_encoder.blocks.{i}.attn.q_bias''' ) lowerCamelCase__ : Optional[Any] =state_dict.pop(f'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict lowerCamelCase__ : Optional[int] =torch.cat((q_bias, torch.zeros_like(snake_case_ , requires_grad=snake_case_ ), v_bias) ) lowerCamelCase__ : Optional[Any] =qkv_bias def _UpperCAmelCase ( __lowerCamelCase : List[str] , __lowerCamelCase : Optional[int] ): """simple docstring""" lowerCamelCase__ : int =364 if '''coco''' in model_name else 224 lowerCamelCase__ : List[Any] =BlipaVisionConfig(image_size=snake_case_ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: lowerCamelCase__ : List[Any] =OPTConfig.from_pretrained('''facebook/opt-2.7b''' , eos_token_id=snake_case_ ).to_dict() elif "opt-6.7b" in model_name: lowerCamelCase__ : Dict =OPTConfig.from_pretrained('''facebook/opt-6.7b''' , eos_token_id=snake_case_ ).to_dict() elif "t5-xl" in model_name: lowerCamelCase__ : Tuple =TaConfig.from_pretrained('''google/flan-t5-xl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: lowerCamelCase__ : int =TaConfig.from_pretrained('''google/flan-t5-xxl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() lowerCamelCase__ : Optional[Any] =BlipaConfig(vision_config=snake_case_ , text_config=snake_case_ ) return config, image_size @torch.no_grad() def _UpperCAmelCase ( __lowerCamelCase : int , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Optional[Any]=False ): """simple docstring""" lowerCamelCase__ : int =( AutoTokenizer.from_pretrained('''facebook/opt-2.7b''' ) if '''opt''' in model_name else AutoTokenizer.from_pretrained('''google/flan-t5-xl''' ) ) lowerCamelCase__ : str =tokenizer('''\n''' , add_special_tokens=snake_case_ ).input_ids[0] lowerCamelCase__ , lowerCamelCase__ : Dict =get_blipa_config(snake_case_ , eos_token_id=snake_case_ ) lowerCamelCase__ : Dict =BlipaForConditionalGeneration(snake_case_ ).eval() lowerCamelCase__ : str ={ '''blip2-opt-2.7b''': ('''blip2_opt''', '''pretrain_opt2.7b'''), '''blip2-opt-6.7b''': ('''blip2_opt''', '''pretrain_opt6.7b'''), '''blip2-opt-2.7b-coco''': ('''blip2_opt''', '''caption_coco_opt2.7b'''), '''blip2-opt-6.7b-coco''': ('''blip2_opt''', '''caption_coco_opt6.7b'''), '''blip2-flan-t5-xl''': ('''blip2_t5''', '''pretrain_flant5xl'''), '''blip2-flan-t5-xl-coco''': ('''blip2_t5''', '''caption_coco_flant5xl'''), '''blip2-flan-t5-xxl''': ('''blip2_t5''', '''pretrain_flant5xxl'''), } lowerCamelCase__ , lowerCamelCase__ : Tuple =model_name_to_original[model_name] # load original model print('''Loading original model...''' ) lowerCamelCase__ : List[Any] ='''cuda''' if torch.cuda.is_available() else '''cpu''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[str] =load_model_and_preprocess( name=snake_case_ , model_type=snake_case_ , is_eval=snake_case_ , device=snake_case_ ) original_model.eval() print('''Done!''' ) # update state dict keys lowerCamelCase__ : Optional[Any] =original_model.state_dict() lowerCamelCase__ : Tuple =create_rename_keys(snake_case_ ) for src, dest in rename_keys: rename_key(snake_case_ , snake_case_ , snake_case_ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): lowerCamelCase__ : Optional[int] =state_dict.pop(snake_case_ ) if key.startswith('''Qformer.bert''' ): lowerCamelCase__ : Optional[int] =key.replace('''Qformer.bert''' , '''qformer''' ) if "attention.self" in key: lowerCamelCase__ : Any =key.replace('''self''' , '''attention''' ) if "opt_proj" in key: lowerCamelCase__ : int =key.replace('''opt_proj''' , '''language_projection''' ) if "t5_proj" in key: lowerCamelCase__ : List[str] =key.replace('''t5_proj''' , '''language_projection''' ) if key.startswith('''opt''' ): lowerCamelCase__ : Dict =key.replace('''opt''' , '''language''' ) if key.startswith('''t5''' ): lowerCamelCase__ : List[str] =key.replace('''t5''' , '''language''' ) lowerCamelCase__ : int =val # read in qv biases read_in_q_v_bias(snake_case_ , snake_case_ ) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] =hf_model.load_state_dict(snake_case_ , strict=snake_case_ ) assert len(snake_case_ ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] lowerCamelCase__ : List[str] =load_demo_image() lowerCamelCase__ : str =vis_processors['''eval'''](snake_case_ ).unsqueeze(0 ).to(snake_case_ ) lowerCamelCase__ : Any =tokenizer(['''\n'''] , return_tensors='''pt''' ).input_ids.to(snake_case_ ) # create processor lowerCamelCase__ : Union[str, Any] =BlipImageProcessor( size={'''height''': image_size, '''width''': image_size} , image_mean=snake_case_ , image_std=snake_case_ ) lowerCamelCase__ : str =BlipaProcessor(image_processor=snake_case_ , tokenizer=snake_case_ ) lowerCamelCase__ : Union[str, Any] =processor(images=snake_case_ , return_tensors='''pt''' ).pixel_values.to(snake_case_ ) # make sure processor creates exact same pixel values assert torch.allclose(snake_case_ , snake_case_ ) original_model.to(snake_case_ ) hf_model.to(snake_case_ ) with torch.no_grad(): if "opt" in model_name: lowerCamelCase__ : str =original_model({'''image''': original_pixel_values, '''text_input''': ['''''']} ).logits lowerCamelCase__ : Any =hf_model(snake_case_ , snake_case_ ).logits else: lowerCamelCase__ : Union[str, Any] =original_model( {'''image''': original_pixel_values, '''text_input''': ['''\n'''], '''text_output''': ['''\n''']} ).logits lowerCamelCase__ : Union[str, Any] =input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) lowerCamelCase__ : str =hf_model(snake_case_ , snake_case_ , labels=snake_case_ ).logits assert original_logits.shape == logits.shape print('''First values of original logits:''' , original_logits[0, :3, :3] ) print('''First values of HF logits:''' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": lowerCamelCase__ : str =torch.tensor( [[-41.58_50, -4.44_40, -8.99_22], [-47.43_22, -5.91_43, -1.73_40]] , device=snake_case_ ) assert torch.allclose(logits[0, :3, :3] , snake_case_ , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": lowerCamelCase__ : Union[str, Any] =torch.tensor( [[-57.01_09, -9.89_67, -12.62_80], [-68.65_78, -12.71_91, -10.50_65]] , device=snake_case_ ) else: # cast to same type lowerCamelCase__ : str =logits.dtype assert torch.allclose(original_logits.to(snake_case_ ) , snake_case_ , atol=1e-2 ) print('''Looks ok!''' ) print('''Generating a caption...''' ) lowerCamelCase__ : str ='''''' lowerCamelCase__ : Tuple =tokenizer(snake_case_ , return_tensors='''pt''' ).input_ids.to(snake_case_ ) lowerCamelCase__ : Tuple =original_model.generate({'''image''': original_pixel_values} ) lowerCamelCase__ : Any =hf_model.generate( snake_case_ , snake_case_ , do_sample=snake_case_ , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('''Original generation:''' , snake_case_ ) lowerCamelCase__ : Dict =input_ids.shape[1] lowerCamelCase__ : int =processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=snake_case_ ) lowerCamelCase__ : Any =[text.strip() for text in output_text] print('''HF generation:''' , snake_case_ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(snake_case_ ) hf_model.save_pretrained(snake_case_ ) if push_to_hub: processor.push_to_hub(f'''nielsr/{model_name}''' ) hf_model.push_to_hub(f'''nielsr/{model_name}''' ) if __name__ == "__main__": _lowercase : Any = argparse.ArgumentParser() _lowercase : Optional[Any] = [ 'blip2-opt-2.7b', 'blip2-opt-6.7b', 'blip2-opt-2.7b-coco', 'blip2-opt-6.7b-coco', 'blip2-flan-t5-xl', 'blip2-flan-t5-xl-coco', 'blip2-flan-t5-xxl', ] parser.add_argument( "--model_name", default="blip2-opt-2.7b", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) _lowercase : List[str] = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
368
"""simple docstring""" import math import flax.linen as nn import jax.numpy as jnp def snake_case__ ( __lowerCamelCase : jnp.ndarray , __lowerCamelCase : int , __lowerCamelCase : float = 1 , __lowerCamelCase : float = 1 , __lowerCamelCase : float = 1.0e4 , __lowerCamelCase : bool = False , __lowerCamelCase : float = 1.0 , ): """simple docstring""" assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, f'''Embedding dimension {embedding_dim} should be even''' lowerCamelCase__ : Any =float(embedding_dim // 2 ) lowerCamelCase__ : List[str] =math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) lowerCamelCase__ : int =min_timescale * jnp.exp(jnp.arange(__lowerCamelCase , dtype=jnp.floataa ) * -log_timescale_increment ) lowerCamelCase__ : Tuple =jnp.expand_dims(__lowerCamelCase , 1 ) * jnp.expand_dims(__lowerCamelCase , 0 ) # scale embeddings lowerCamelCase__ : List[str] =scale * emb if flip_sin_to_cos: lowerCamelCase__ : int =jnp.concatenate([jnp.cos(__lowerCamelCase ), jnp.sin(__lowerCamelCase )] , axis=1 ) else: lowerCamelCase__ : List[str] =jnp.concatenate([jnp.sin(__lowerCamelCase ), jnp.cos(__lowerCamelCase )] , axis=1 ) lowerCamelCase__ : str =jnp.reshape(__lowerCamelCase , [jnp.shape(__lowerCamelCase )[0], embedding_dim] ) return signal class __SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' _a = 3_2 _a = jnp.floataa @nn.compact def __call__( self : Optional[Any], lowerCamelCase : int )-> Any: lowerCamelCase__ : Optional[Any] =nn.Dense(self.time_embed_dim, dtype=self.dtype, name='''linear_1''' )(lowerCamelCase ) lowerCamelCase__ : List[str] =nn.silu(lowerCamelCase ) lowerCamelCase__ : Any =nn.Dense(self.time_embed_dim, dtype=self.dtype, name='''linear_2''' )(lowerCamelCase ) return temb class __SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' _a = 3_2 _a = False _a = 1 @nn.compact def __call__( self : Any, lowerCamelCase : int )-> int: return get_sinusoidal_embeddings( lowerCamelCase, embedding_dim=self.dim, flip_sin_to_cos=self.flip_sin_to_cos, freq_shift=self.freq_shift )
272
0
'''simple docstring''' from math import isqrt, loga def __UpperCAmelCase ( A : int ) -> list[int]: UpperCAmelCase_ : List[str] = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , A , A ): UpperCAmelCase_ : int = False return [i for i in range(2 , A ) if is_prime[i]] def __UpperCAmelCase ( A : int = 8_0_0_8_0_0 , A : int = 8_0_0_8_0_0 ) -> int: UpperCAmelCase_ : Union[str, Any] = degree * loga(A ) UpperCAmelCase_ : Tuple = int(A ) UpperCAmelCase_ : Any = calculate_prime_numbers(A ) UpperCAmelCase_ : Optional[Any] = 0 UpperCAmelCase_ : str = 0 UpperCAmelCase_ : List[Any] = len(A ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(f'''{solution() = }''')
304
'''simple docstring''' import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def __UpperCAmelCase ( A : List[str] , A : Any , A : Optional[int] , A : Optional[int] ) -> Optional[Any]: if isinstance(A , A ): UpperCAmelCase_ : Any = np.full((len(A ), sequence_length, 2) , A ) else: UpperCAmelCase_ : int = np.full((len(A ), sequence_length) , A ) for i, tensor in enumerate(A ): if padding_side == "right": if isinstance(A , A ): UpperCAmelCase_ : Tuple = tensor[:sequence_length] else: UpperCAmelCase_ : Dict = tensor[:sequence_length] else: if isinstance(A , A ): UpperCAmelCase_ : Optional[Any] = tensor[:sequence_length] else: UpperCAmelCase_ : int = tensor[:sequence_length] return out_tensor.tolist() def __UpperCAmelCase ( A : List[Any] ) -> str: UpperCAmelCase_ : Dict = ord(A ) if (cp >= 3_3 and cp <= 4_7) or (cp >= 5_8 and cp <= 6_4) or (cp >= 9_1 and cp <= 9_6) or (cp >= 1_2_3 and cp <= 1_2_6): return True UpperCAmelCase_ : Union[str, Any] = unicodedata.category(A ) if cat.startswith('''P''' ): return True return False @dataclass class snake_case__ ( UpperCamelCase): a_ = 42 a_ = True a_ = None a_ = None a_ = -100 a_ = "pt" def A ( self : List[Any] , _A : Dict ) -> Tuple: import torch UpperCAmelCase_ : Dict = '''label''' if '''label''' in features[0].keys() else '''labels''' UpperCAmelCase_ : List[Any] = [feature[label_name] for feature in features] if label_name in features[0].keys() else None UpperCAmelCase_ : Tuple = self.tokenizer.pad( _A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , ) if labels is None: return batch UpperCAmelCase_ : Any = torch.tensor(batch['''entity_ids'''] ).shape[1] UpperCAmelCase_ : Union[str, Any] = self.tokenizer.padding_side if padding_side == "right": UpperCAmelCase_ : Optional[Any] = [ list(_A ) + [self.label_pad_token_id] * (sequence_length - len(_A )) for label in labels ] else: UpperCAmelCase_ : Any = [ [self.label_pad_token_id] * (sequence_length - len(_A )) + list(_A ) for label in labels ] UpperCAmelCase_ : Union[str, Any] = [feature['''ner_tags'''] for feature in features] UpperCAmelCase_ : Union[str, Any] = padding_tensor(_A , -1 , _A , _A ) UpperCAmelCase_ : List[str] = [feature['''original_entity_spans'''] for feature in features] UpperCAmelCase_ : int = padding_tensor(_A , (-1, -1) , _A , _A ) UpperCAmelCase_ : Union[str, Any] = {k: torch.tensor(_A , dtype=torch.intaa ) for k, v in batch.items()} return batch
304
1
def lowercase_ ( A__ ) -> list: """simple docstring""" if len(A__ ) <= 1: return [tuple(A__ )] snake_case = [] def generate(A__ , A__ ): snake_case = [0] * n res.append(tuple(A__ ) ) snake_case = 0 while i < n: if c[i] < i: if i % 2 == 0: snake_case , snake_case = arr[i], arr[0] else: snake_case , snake_case = arr[i], arr[c[i]] res.append(tuple(A__ ) ) c[i] += 1 snake_case = 0 else: snake_case = 0 i += 1 generate(len(A__ ) , A__ ) return res if __name__ == "__main__": _A = input("Enter numbers separated by a comma:\n").strip() _A = [int(item) for item in user_input.split(",")] print(heaps(arr))
137
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { "nvidia/segformer-b0-finetuned-ade-512-512": ( "https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class lowerCamelCase ( A_ ): UpperCAmelCase__ : List[Any] = "segformer" def __init__(self : List[Any] , _A : int=3 , _A : List[Any]=4 , _A : Any=[2, 2, 2, 2] , _A : Dict=[8, 4, 2, 1] , _A : List[Any]=[3_2, 6_4, 1_6_0, 2_5_6] , _A : Tuple=[7, 3, 3, 3] , _A : Optional[int]=[4, 2, 2, 2] , _A : Dict=[1, 2, 5, 8] , _A : int=[4, 4, 4, 4] , _A : Dict="gelu" , _A : Tuple=0.0 , _A : Optional[Any]=0.0 , _A : List[Any]=0.1 , _A : Union[str, Any]=0.02 , _A : Dict=0.1 , _A : List[Any]=1E-6 , _A : List[str]=2_5_6 , _A : Optional[Any]=2_5_5 , **_A : str , ) -> Tuple: super().__init__(**_A ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( "Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be" " removed, as the behaviour will default to that of reshape_last_stage = True." , _A , ) snake_case = num_channels snake_case = num_encoder_blocks snake_case = depths snake_case = sr_ratios snake_case = hidden_sizes snake_case = patch_sizes snake_case = strides snake_case = mlp_ratios snake_case = num_attention_heads snake_case = hidden_act snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = classifier_dropout_prob snake_case = initializer_range snake_case = drop_path_rate snake_case = layer_norm_eps snake_case = decoder_hidden_size snake_case = kwargs.get("reshape_last_stage" , _A ) snake_case = semantic_loss_ignore_index class lowerCamelCase ( A_ ): UpperCAmelCase__ : Optional[Any] = version.parse("1.11" ) @property def UpperCAmelCase(self : Tuple ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def UpperCAmelCase(self : Tuple ) -> float: return 1E-4 @property def UpperCAmelCase(self : List[str] ) -> int: return 1_2
137
1
from __future__ import annotations def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> list[tuple[int, int]]: lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = position lowerCamelCase__ : Optional[Any] = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] lowerCamelCase__ : Dict = [] for position in positions: lowerCamelCase__ , lowerCamelCase__ : Optional[int] = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(_UpperCAmelCase ) return permissible_positions def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> bool: return not any(elem == 0 for row in board for elem in row ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> bool: if is_complete(_UpperCAmelCase ): return True for position in get_valid_pos(_UpperCAmelCase , len(_UpperCAmelCase ) ): lowerCamelCase__ , lowerCamelCase__ : Optional[int] = position if board[y][x] == 0: lowerCamelCase__ : List[Any] = curr + 1 if open_knight_tour_helper(_UpperCAmelCase , _UpperCAmelCase , curr + 1 ): return True lowerCamelCase__ : Optional[Any] = 0 return False def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> list[list[int]]: lowerCamelCase__ : Any = [[0 for i in range(_UpperCAmelCase )] for j in range(_UpperCAmelCase )] for i in range(_UpperCAmelCase ): for j in range(_UpperCAmelCase ): lowerCamelCase__ : Optional[int] = 1 if open_knight_tour_helper(_UpperCAmelCase , (i, j) , 1 ): return board lowerCamelCase__ : Optional[Any] = 0 lowerCamelCase__ : Any = F"""Open Kight Tour cannot be performed on a board of size {n}""" raise ValueError(_UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
50
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = 42 class lowerCAmelCase ( __UpperCamelCase, __UpperCamelCase ): @register_to_config def __init__( self : List[str] , UpperCAmelCase : int = 65536 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 2 , UpperCAmelCase : int = 2 , UpperCAmelCase : int = 0 , UpperCAmelCase : str = "fourier" , UpperCAmelCase : bool = True , UpperCAmelCase : bool = False , UpperCAmelCase : float = 0.0 , UpperCAmelCase : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , UpperCAmelCase : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , UpperCAmelCase : Tuple[str] = "UNetMidBlock1D" , UpperCAmelCase : str = None , UpperCAmelCase : Tuple[int] = (32, 32, 64) , UpperCAmelCase : str = None , UpperCAmelCase : int = 8 , UpperCAmelCase : int = 1 , UpperCAmelCase : bool = False , ) -> List[Any]: super().__init__() lowerCamelCase__ : Optional[int] = sample_size # time if time_embedding_type == "fourier": lowerCamelCase__ : Optional[Any] = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=UpperCAmelCase , log=UpperCAmelCase , flip_sin_to_cos=UpperCAmelCase ) lowerCamelCase__ : Any = 2 * block_out_channels[0] elif time_embedding_type == "positional": lowerCamelCase__ : List[Any] = Timesteps( block_out_channels[0] , flip_sin_to_cos=UpperCAmelCase , downscale_freq_shift=UpperCAmelCase ) lowerCamelCase__ : Dict = block_out_channels[0] if use_timestep_embedding: lowerCamelCase__ : str = block_out_channels[0] * 4 lowerCamelCase__ : List[Any] = TimestepEmbedding( in_channels=UpperCAmelCase , time_embed_dim=UpperCAmelCase , act_fn=UpperCAmelCase , out_dim=block_out_channels[0] , ) lowerCamelCase__ : Any = nn.ModuleList([] ) lowerCamelCase__ : Tuple = None lowerCamelCase__ : List[str] = nn.ModuleList([] ) lowerCamelCase__ : Optional[int] = None # down lowerCamelCase__ : Optional[int] = in_channels for i, down_block_type in enumerate(UpperCAmelCase ): lowerCamelCase__ : Union[str, Any] = output_channel lowerCamelCase__ : Tuple = block_out_channels[i] if i == 0: input_channel += extra_in_channels lowerCamelCase__ : Union[str, Any] = i == len(UpperCAmelCase ) - 1 lowerCamelCase__ : Optional[int] = get_down_block( UpperCAmelCase , num_layers=UpperCAmelCase , in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(UpperCAmelCase ) # mid lowerCamelCase__ : Optional[int] = get_mid_block( UpperCAmelCase , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=UpperCAmelCase , add_downsample=UpperCAmelCase , ) # up lowerCamelCase__ : Optional[int] = list(reversed(UpperCAmelCase ) ) lowerCamelCase__ : Optional[int] = reversed_block_out_channels[0] if out_block_type is None: lowerCamelCase__ : List[str] = out_channels else: lowerCamelCase__ : Any = block_out_channels[0] for i, up_block_type in enumerate(UpperCAmelCase ): lowerCamelCase__ : Tuple = output_channel lowerCamelCase__ : Union[str, Any] = ( reversed_block_out_channels[i + 1] if i < len(UpperCAmelCase ) - 1 else final_upsample_channels ) lowerCamelCase__ : List[str] = i == len(UpperCAmelCase ) - 1 lowerCamelCase__ : Dict = get_up_block( UpperCAmelCase , num_layers=UpperCAmelCase , in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(UpperCAmelCase ) lowerCamelCase__ : int = output_channel # out lowerCamelCase__ : int = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) lowerCamelCase__ : List[Any] = get_out_block( out_block_type=UpperCAmelCase , num_groups_out=UpperCAmelCase , embed_dim=block_out_channels[0] , out_channels=UpperCAmelCase , act_fn=UpperCAmelCase , fc_dim=block_out_channels[-1] // 4 , ) def A_ ( self : List[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Union[torch.Tensor, float, int] , UpperCAmelCase : bool = True , ) -> Union[UNetaDOutput, Tuple]: lowerCamelCase__ : Optional[Any] = timestep if not torch.is_tensor(UpperCAmelCase ): lowerCamelCase__ : Optional[int] = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(UpperCAmelCase ) and len(timesteps.shape ) == 0: lowerCamelCase__ : List[str] = timesteps[None].to(sample.device ) lowerCamelCase__ : Optional[int] = self.time_proj(UpperCAmelCase ) if self.config.use_timestep_embedding: lowerCamelCase__ : str = self.time_mlp(UpperCAmelCase ) else: lowerCamelCase__ : List[str] = timestep_embed[..., None] lowerCamelCase__ : str = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) lowerCamelCase__ : str = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down lowerCamelCase__ : str = () for downsample_block in self.down_blocks: lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = downsample_block(hidden_states=UpperCAmelCase , temb=UpperCAmelCase ) down_block_res_samples += res_samples # 3. mid if self.mid_block: lowerCamelCase__ : Optional[Any] = self.mid_block(UpperCAmelCase , UpperCAmelCase ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): lowerCamelCase__ : Dict = down_block_res_samples[-1:] lowerCamelCase__ : Optional[Any] = down_block_res_samples[:-1] lowerCamelCase__ : Any = upsample_block(UpperCAmelCase , res_hidden_states_tuple=UpperCAmelCase , temb=UpperCAmelCase ) # 5. post-process if self.out_block: lowerCamelCase__ : Any = self.out_block(UpperCAmelCase , UpperCAmelCase ) if not return_dict: return (sample,) return UNetaDOutput(sample=UpperCAmelCase )
50
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : List[Any] = logging.get_logger(__name__) A : Tuple = { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/config.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/config.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/config.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/config.json', 'bert-base-multilingual-uncased': 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json', 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/config.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/config.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json' ), 'bert-base-cased-finetuned-mrpc': 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json', 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json', 'bert-base-german-dbmdz-uncased': 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json', 'cl-tohoku/bert-base-japanese': 'https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json', 'cl-tohoku/bert-base-japanese-whole-word-masking': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json' ), 'cl-tohoku/bert-base-japanese-char': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json' ), 'cl-tohoku/bert-base-japanese-char-whole-word-masking': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json' ), 'wietsedv/bert-base-dutch-cased': 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json', # See all BERT models at https://huggingface.co/models?filter=bert } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''bert''' def __init__(self : Optional[int] , _UpperCAmelCase : Optional[Any]=3_0522 , _UpperCAmelCase : Tuple=768 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : Dict=3072 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : List[str]=512 , _UpperCAmelCase : str=2 , _UpperCAmelCase : str=0.02 , _UpperCAmelCase : str=1E-1_2 , _UpperCAmelCase : List[str]=0 , _UpperCAmelCase : Union[str, Any]="absolute" , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Dict=None , **_UpperCAmelCase : List[Any] , ) -> List[str]: """simple docstring""" super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = use_cache lowercase__ = classifier_dropout class A ( UpperCAmelCase__ ): '''simple docstring''' @property def lowerCamelCase__ (self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": lowercase__ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase__ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
146
import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = OpenAIGPTTokenizer A__ = OpenAIGPTTokenizerFast A__ = True A__ = False def lowerCamelCase__ (self : List[str] ) -> int: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase__ = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] lowercase__ = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) lowercase__ = ["""#version: 0.2""", """l o""", """lo w""", """e r</w>""", """"""] lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" ) as fp: fp.write(json.dumps(_UpperCAmelCase ) ) with open(self.merges_file , """w""" ) as fp: fp.write("""\n""".join(_UpperCAmelCase ) ) def lowerCamelCase__ (self : Dict , _UpperCAmelCase : List[Any] ) -> Any: """simple docstring""" return "lower newer", "lower newer" def lowerCamelCase__ (self : Dict ) -> Tuple: """simple docstring""" lowercase__ = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) lowercase__ = """lower""" lowercase__ = ["""low""", """er</w>"""] lowercase__ = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = tokens + ["""<unk>"""] lowercase__ = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : Union[str, Any]=15 ) -> Optional[int]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase__ = self.rust_tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) # Simple input lowercase__ = """This is a simple input""" lowercase__ = ["""This is a simple input 1""", """This is a simple input 2"""] lowercase__ = ("""This is a simple input""", """This is a pair""") lowercase__ = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(_UpperCAmelCase , tokenizer_r.encode , _UpperCAmelCase , max_length=_UpperCAmelCase , padding="""max_length""" ) # Simple input self.assertRaises(_UpperCAmelCase , tokenizer_r.encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding="""max_length""" ) # Simple input self.assertRaises( _UpperCAmelCase , tokenizer_r.batch_encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding="""max_length""" , ) # Pair input self.assertRaises(_UpperCAmelCase , tokenizer_r.encode , _UpperCAmelCase , max_length=_UpperCAmelCase , padding="""max_length""" ) # Pair input self.assertRaises(_UpperCAmelCase , tokenizer_r.encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding="""max_length""" ) # Pair input self.assertRaises( _UpperCAmelCase , tokenizer_r.batch_encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding="""max_length""" , ) def lowerCamelCase__ (self : Tuple ) -> Any: """simple docstring""" pass @require_ftfy @require_spacy @require_tokenizers class A ( UpperCAmelCase__ ): '''simple docstring''' pass
146
1
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = """https://openaipublic.azureedge.net/jukebox/models/""" _SCREAMING_SNAKE_CASE = { """jukebox-1b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """1b_lyrics/prior_level_2.pth.tar""", ], """jukebox-5b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """5b_lyrics/prior_level_2.pth.tar""", ], } def lowercase( UpperCamelCase_ ) -> Optional[Any]: '''simple docstring''' if key.endswith(""".model.1.bias""" ) and len(key.split(""".""" ) ) > 10: UpperCamelCase = key.replace(""".model.1.bias""" , """.conv1d_1.bias""" ) elif key.endswith(""".model.1.weight""" ) and len(key.split(""".""" ) ) > 10: UpperCamelCase = key.replace(""".model.1.weight""" , """.conv1d_1.weight""" ) elif key.endswith(""".model.3.bias""" ) and len(key.split(""".""" ) ) > 10: UpperCamelCase = key.replace(""".model.3.bias""" , """.conv1d_2.bias""" ) elif key.endswith(""".model.3.weight""" ) and len(key.split(""".""" ) ) > 10: UpperCamelCase = key.replace(""".model.3.weight""" , """.conv1d_2.weight""" ) if "conditioner_blocks.0." in key: UpperCamelCase = key.replace("""conditioner_blocks.0""" , """conditioner_blocks""" ) if "prime_prior" in key: UpperCamelCase = key.replace("""prime_prior""" , """encoder""" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: UpperCamelCase = key.replace(""".emb.""" , """.""" ) if key.endswith("""k""" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(""".k""" , """.codebook""" ) if "y_emb." in key: return key.replace("""y_emb.""" , """metadata_embedding.""" ) if "x_emb.emb." in key: UpperCamelCase = key.replace("""0.x_emb.emb""" , """embed_tokens""" ) if "prime_state_ln" in key: return key.replace("""prime_state_ln""" , """encoder.final_layer_norm""" ) if ".ln" in key: return key.replace(""".ln""" , """.layer_norm""" ) if "_ln" in key: return key.replace("""_ln""" , """_layer_norm""" ) if "prime_state_proj" in key: return key.replace("""prime_state_proj""" , """encoder.proj_in""" ) if "prime_x_out" in key: return key.replace("""prime_x_out""" , """encoder.lm_head""" ) if "prior.x_out" in key: return key.replace("""x_out""" , """fc_proj_out""" ) if "x_emb" in key: return key.replace("""x_emb""" , """embed_tokens""" ) return key def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> str: '''simple docstring''' UpperCamelCase = {} import re UpperCamelCase = re.compile(R"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" ) UpperCamelCase = re.compile( R"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) UpperCamelCase = re.compile(R"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" ) UpperCamelCase = re.compile(R"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" ) UpperCamelCase = re.compile( R"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) UpperCamelCase = re.compile(R"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" ) UpperCamelCase = re.compile(R"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)""" ) UpperCamelCase = re.compile( R"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) UpperCamelCase = re.compile(R"""conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)""" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(UpperCamelCase_ ): UpperCamelCase = re_encoder_block_conv_in.match(UpperCamelCase_ ) UpperCamelCase = regex_match.groups() UpperCamelCase = int(groups[2] ) * 2 + int(groups[3] ) UpperCamelCase = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}""" UpperCamelCase = re_encoder_block_conv_in.sub(UpperCamelCase_ , UpperCamelCase_ ) elif re_encoder_block_resnet.fullmatch(UpperCamelCase_ ): UpperCamelCase = re_encoder_block_resnet.match(UpperCamelCase_ ) UpperCamelCase = regex_match.groups() UpperCamelCase = int(groups[2] ) * 2 + int(groups[3] ) UpperCamelCase = {"""1""": 1, """3""": 2}[groups[-2]] UpperCamelCase = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.""" UpperCamelCase = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" UpperCamelCase = prefix + resnet_block UpperCamelCase = re_encoder_block_resnet.sub(UpperCamelCase_ , UpperCamelCase_ ) elif re_encoder_block_proj_out.fullmatch(UpperCamelCase_ ): UpperCamelCase = re_encoder_block_proj_out.match(UpperCamelCase_ ) UpperCamelCase = regex_match.groups() UpperCamelCase = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}""" UpperCamelCase = re_encoder_block_proj_out.sub(UpperCamelCase_ , UpperCamelCase_ ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(UpperCamelCase_ ): UpperCamelCase = re_decoder_block_conv_out.match(UpperCamelCase_ ) UpperCamelCase = regex_match.groups() UpperCamelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 UpperCamelCase = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}""" UpperCamelCase = re_decoder_block_conv_out.sub(UpperCamelCase_ , UpperCamelCase_ ) elif re_decoder_block_resnet.fullmatch(UpperCamelCase_ ): UpperCamelCase = re_decoder_block_resnet.match(UpperCamelCase_ ) UpperCamelCase = regex_match.groups() UpperCamelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 UpperCamelCase = {"""1""": 1, """3""": 2}[groups[-2]] UpperCamelCase = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.""" UpperCamelCase = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" UpperCamelCase = prefix + resnet_block UpperCamelCase = re_decoder_block_resnet.sub(UpperCamelCase_ , UpperCamelCase_ ) elif re_decoder_block_proj_in.fullmatch(UpperCamelCase_ ): UpperCamelCase = re_decoder_block_proj_in.match(UpperCamelCase_ ) UpperCamelCase = regex_match.groups() UpperCamelCase = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}""" UpperCamelCase = re_decoder_block_proj_in.sub(UpperCamelCase_ , UpperCamelCase_ ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(UpperCamelCase_ ): UpperCamelCase = re_prior_cond_conv_out.match(UpperCamelCase_ ) UpperCamelCase = regex_match.groups() UpperCamelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 UpperCamelCase = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}""" UpperCamelCase = re_prior_cond_conv_out.sub(UpperCamelCase_ , UpperCamelCase_ ) elif re_prior_cond_resnet.fullmatch(UpperCamelCase_ ): UpperCamelCase = re_prior_cond_resnet.match(UpperCamelCase_ ) UpperCamelCase = regex_match.groups() UpperCamelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 UpperCamelCase = {"""1""": 1, """3""": 2}[groups[-2]] UpperCamelCase = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.""" UpperCamelCase = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" UpperCamelCase = prefix + resnet_block UpperCamelCase = re_prior_cond_resnet.sub(UpperCamelCase_ , UpperCamelCase_ ) elif re_prior_cond_proj_in.fullmatch(UpperCamelCase_ ): UpperCamelCase = re_prior_cond_proj_in.match(UpperCamelCase_ ) UpperCamelCase = regex_match.groups() UpperCamelCase = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}""" UpperCamelCase = re_prior_cond_proj_in.sub(UpperCamelCase_ , UpperCamelCase_ ) # keep original key else: UpperCamelCase = original_key UpperCamelCase = replace_key(UpperCamelCase_ ) if f"""{key_prefix}.{key}""" not in model_state_dict or key is None: print(f"""failed converting {original_key} to {key}, does not match""" ) # handle missmatched shape elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape: UpperCamelCase = model_state_dict[f"""{key_prefix}.{key}"""] print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" ) UpperCamelCase = original_key UpperCamelCase = original_key UpperCamelCase = value return new_dict @torch.no_grad() def lowercase( UpperCamelCase_=None , UpperCamelCase_=None ) -> Any: '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" ): UpperCamelCase = requests.get(f"""{PREFIX}{file}""" , allow_redirects=UpperCamelCase_ ) os.makedirs(f"""{pytorch_dump_folder_path}/""" , exist_ok=UpperCamelCase_ ) open(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" , """wb""" ).write(r.content ) UpperCamelCase = MODEL_MAPPING[model_name.split("""/""" )[-1]] UpperCamelCase = JukeboxConfig.from_pretrained(UpperCamelCase_ ) UpperCamelCase = JukeboxModel(UpperCamelCase_ ) UpperCamelCase = [] UpperCamelCase = {} for i, dict_name in enumerate(UpperCamelCase_ ): UpperCamelCase = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}""" )["""model"""] UpperCamelCase = {} for k in old_dic.keys(): if k.endswith(""".b""" ): UpperCamelCase = old_dic[k] elif k.endswith(""".w""" ): UpperCamelCase = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: UpperCamelCase = old_dic[k] else: UpperCamelCase = old_dic[k] UpperCamelCase = """vqvae""" if i == 0 else f"""priors.{3 - i}""" UpperCamelCase = fix_jukebox_keys(UpperCamelCase_ , model.state_dict() , UpperCamelCase_ , UpperCamelCase_ ) weight_dict.append(UpperCamelCase_ ) UpperCamelCase = weight_dict.pop(0 ) model.vqvae.load_state_dict(UpperCamelCase_ ) for i in range(len(UpperCamelCase_ ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(UpperCamelCase_ ).mkdir(exist_ok=UpperCamelCase_ ) with open(f"""{pytorch_dump_folder_path}/mapping.json""" , """w""" ) as txtfile: json.dump(UpperCamelCase_ , UpperCamelCase_ ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCamelCase_ ) return weight_dict if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""jukebox-5b-lyrics""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""jukebox-5b-lyrics-converted""", type=str, help="""Path to the output PyTorch model directory.""", ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
343
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 _SCREAMING_SNAKE_CASE = get_tests_dir("""fixtures""") _SCREAMING_SNAKE_CASE = get_tests_dir("""fixtures/dummy_feature_extractor_config.json""") _SCREAMING_SNAKE_CASE = get_tests_dir("""fixtures/dummy-config.json""") class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = 0 def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = AutoFeatureExtractor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : int ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ).to_dict() config_dict.pop("""feature_extractor_type""" ) UpperCamelCase = WavaVecaFeatureExtractor(**lowerCamelCase_ ) # save in new folder model_config.save_pretrained(lowerCamelCase_ ) config.save_pretrained(lowerCamelCase_ ) UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ) # make sure private variable is not incorrectly saved UpperCamelCase = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" with self.assertRaisesRegex( lowerCamelCase_ , """bert-base is not a local folder and is not a valid model identifier""" ): UpperCamelCase = AutoFeatureExtractor.from_pretrained("""bert-base""" ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" with self.assertRaisesRegex( lowerCamelCase_ , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ , revision="""aaaaaa""" ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" with self.assertRaisesRegex( lowerCamelCase_ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): UpperCamelCase = AutoFeatureExtractor.from_pretrained("""hf-internal-testing/config-no-model""" ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" with self.assertRaises(lowerCamelCase_ ): UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCamelCase_ ): UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase_ ) UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowerCamelCase_ ) UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ , trust_remote_code=lowerCamelCase_ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" try: AutoConfig.register("""custom""" , lowerCamelCase_ ) AutoFeatureExtractor.register(lowerCamelCase_ , lowerCamelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCamelCase_ ): AutoFeatureExtractor.register(lowerCamelCase_ , lowerCamelCase_ ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCamelCase = CustomFeatureExtractor.from_pretrained(lowerCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowerCamelCase_ ) UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def lowerCamelCase_ ( self : Any ): """simple docstring""" class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = True try: AutoConfig.register("""custom""" , lowerCamelCase_ ) AutoFeatureExtractor.register(lowerCamelCase_ , lowerCamelCase_ ) # If remote code is not set, the default is to use local UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(not hasattr(lowerCamelCase_ , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
343
1
"""simple docstring""" import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = VQModel SCREAMING_SNAKE_CASE_ = "sample" @property def a_ ( self, lowerCAmelCase__=(32, 32)) -> Dict: snake_case_ = 4 snake_case_ = 3 snake_case_ = floats_tensor((batch_size, num_channels) + sizes).to(lowerCAmelCase__) return {"sample": image} @property def a_ ( self) -> int: return (3, 32, 32) @property def a_ ( self) -> Dict: return (3, 32, 32) def a_ ( self) -> Dict: snake_case_ = { 'block_out_channels': [32, 64], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 3, } snake_case_ = self.dummy_input return init_dict, inputs_dict def a_ ( self) -> Dict: pass def a_ ( self) -> Any: pass def a_ ( self) -> List[Any]: snake_case_ , snake_case_ = VQModel.from_pretrained('fusing/vqgan-dummy', output_loading_info=lowerCAmelCase__) self.assertIsNotNone(lowerCAmelCase__) self.assertEqual(len(loading_info['missing_keys']), 0) model.to(lowerCAmelCase__) snake_case_ = model(**self.dummy_input) assert image is not None, "Make sure output is not None" def a_ ( self) -> Tuple: snake_case_ = VQModel.from_pretrained('fusing/vqgan-dummy') model.to(lowerCAmelCase__).eval() torch.manual_seed(0) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0) snake_case_ = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) snake_case_ = image.to(lowerCAmelCase__) with torch.no_grad(): snake_case_ = model(lowerCAmelCase__).sample snake_case_ = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off snake_case_ = torch.tensor([-0.0153, -0.4044, -0.1880, -0.5161, -0.2418, -0.4072, -0.1612, -0.0633, -0.0143]) # fmt: on self.assertTrue(torch.allclose(lowerCAmelCase__, lowerCAmelCase__, atol=1e-3))
312
"""simple docstring""" import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase=1 ) -> Optional[Any]: if n_shave_prefix_segments >= 0: return ".".join(path.split('.' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('.' )[:n_shave_prefix_segments] ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase=0 ) -> Dict: snake_case_ = [] for old_item in old_list: snake_case_ = old_item.replace('in_layers.0' , 'norm1' ) snake_case_ = new_item.replace('in_layers.2' , 'conv1' ) snake_case_ = new_item.replace('out_layers.0' , 'norm2' ) snake_case_ = new_item.replace('out_layers.3' , 'conv2' ) snake_case_ = new_item.replace('emb_layers.1' , 'time_emb_proj' ) snake_case_ = new_item.replace('skip_connection' , 'conv_shortcut' ) snake_case_ = shave_segments(UpperCAmelCase , n_shave_prefix_segments=UpperCAmelCase ) mapping.append({'old': old_item, 'new': new_item} ) return mapping def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase=0 ) -> Union[str, Any]: snake_case_ = [] for old_item in old_list: snake_case_ = old_item snake_case_ = new_item.replace('norm.weight' , 'group_norm.weight' ) snake_case_ = new_item.replace('norm.bias' , 'group_norm.bias' ) snake_case_ = new_item.replace('proj_out.weight' , 'proj_attn.weight' ) snake_case_ = new_item.replace('proj_out.bias' , 'proj_attn.bias' ) snake_case_ = shave_segments(UpperCAmelCase , n_shave_prefix_segments=UpperCAmelCase ) mapping.append({'old': old_item, 'new': new_item} ) return mapping def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None ) -> Optional[Any]: assert isinstance(UpperCAmelCase , UpperCAmelCase ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): snake_case_ = old_checkpoint[path] snake_case_ = old_tensor.shape[0] // 3 snake_case_ = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) snake_case_ = old_tensor.shape[0] // config['num_head_channels'] // 3 snake_case_ = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) snake_case_ , snake_case_ , snake_case_ = old_tensor.split(channels // num_heads , dim=1 ) snake_case_ = query.reshape(UpperCAmelCase ) snake_case_ = key.reshape(UpperCAmelCase ) snake_case_ = value.reshape(UpperCAmelCase ) for path in paths: snake_case_ = path['new'] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here snake_case_ = new_path.replace('middle_block.0' , 'mid_block.resnets.0' ) snake_case_ = new_path.replace('middle_block.1' , 'mid_block.attentions.0' ) snake_case_ = new_path.replace('middle_block.2' , 'mid_block.resnets.1' ) if additional_replacements is not None: for replacement in additional_replacements: snake_case_ = new_path.replace(replacement['old'] , replacement['new'] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: snake_case_ = old_checkpoint[path['old']][:, :, 0] else: snake_case_ = old_checkpoint[path['old']] def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[Any]: snake_case_ = {} snake_case_ = checkpoint['time_embed.0.weight'] snake_case_ = checkpoint['time_embed.0.bias'] snake_case_ = checkpoint['time_embed.2.weight'] snake_case_ = checkpoint['time_embed.2.bias'] snake_case_ = checkpoint['input_blocks.0.0.weight'] snake_case_ = checkpoint['input_blocks.0.0.bias'] snake_case_ = checkpoint['out.0.weight'] snake_case_ = checkpoint['out.0.bias'] snake_case_ = checkpoint['out.2.weight'] snake_case_ = checkpoint['out.2.bias'] # Retrieves the keys for the input blocks only snake_case_ = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'input_blocks' in layer} ) snake_case_ = { layer_id: [key for key in checkpoint if f'input_blocks.{layer_id}' in key] for layer_id in range(UpperCAmelCase ) } # Retrieves the keys for the middle blocks only snake_case_ = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'middle_block' in layer} ) snake_case_ = { layer_id: [key for key in checkpoint if f'middle_block.{layer_id}' in key] for layer_id in range(UpperCAmelCase ) } # Retrieves the keys for the output blocks only snake_case_ = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'output_blocks' in layer} ) snake_case_ = { layer_id: [key for key in checkpoint if f'output_blocks.{layer_id}' in key] for layer_id in range(UpperCAmelCase ) } for i in range(1 , UpperCAmelCase ): snake_case_ = (i - 1) // (config['num_res_blocks'] + 1) snake_case_ = (i - 1) % (config['num_res_blocks'] + 1) snake_case_ = [key for key in input_blocks[i] if f'input_blocks.{i}.0' in key] snake_case_ = [key for key in input_blocks[i] if f'input_blocks.{i}.1' in key] if f'input_blocks.{i}.0.op.weight' in checkpoint: snake_case_ = checkpoint[ f'input_blocks.{i}.0.op.weight' ] snake_case_ = checkpoint[ f'input_blocks.{i}.0.op.bias' ] continue snake_case_ = renew_resnet_paths(UpperCAmelCase ) snake_case_ = {'old': f'input_blocks.{i}.0', 'new': f'down_blocks.{block_id}.resnets.{layer_in_block_id}'} snake_case_ = {'old': 'resnets.2.op', 'new': 'downsamplers.0.op'} assign_to_checkpoint( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , additional_replacements=[meta_path, resnet_op] , config=UpperCAmelCase ) if len(UpperCAmelCase ): snake_case_ = renew_attention_paths(UpperCAmelCase ) snake_case_ = { 'old': f'input_blocks.{i}.1', 'new': f'down_blocks.{block_id}.attentions.{layer_in_block_id}', } snake_case_ = { f'input_blocks.{i}.1.qkv.bias': { 'key': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias', 'query': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias', 'value': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias', }, f'input_blocks.{i}.1.qkv.weight': { 'key': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight', 'query': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight', 'value': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight', }, } assign_to_checkpoint( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , additional_replacements=[meta_path] , attention_paths_to_split=UpperCAmelCase , config=UpperCAmelCase , ) snake_case_ = middle_blocks[0] snake_case_ = middle_blocks[1] snake_case_ = middle_blocks[2] snake_case_ = renew_resnet_paths(UpperCAmelCase ) assign_to_checkpoint(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , config=UpperCAmelCase ) snake_case_ = renew_resnet_paths(UpperCAmelCase ) assign_to_checkpoint(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , config=UpperCAmelCase ) snake_case_ = renew_attention_paths(UpperCAmelCase ) snake_case_ = { 'middle_block.1.qkv.bias': { 'key': 'mid_block.attentions.0.key.bias', 'query': 'mid_block.attentions.0.query.bias', 'value': 'mid_block.attentions.0.value.bias', }, 'middle_block.1.qkv.weight': { 'key': 'mid_block.attentions.0.key.weight', 'query': 'mid_block.attentions.0.query.weight', 'value': 'mid_block.attentions.0.value.weight', }, } assign_to_checkpoint( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , attention_paths_to_split=UpperCAmelCase , config=UpperCAmelCase ) for i in range(UpperCAmelCase ): snake_case_ = i // (config['num_res_blocks'] + 1) snake_case_ = i % (config['num_res_blocks'] + 1) snake_case_ = [shave_segments(UpperCAmelCase , 2 ) for name in output_blocks[i]] snake_case_ = {} for layer in output_block_layers: snake_case_ , snake_case_ = layer.split('.' )[0], shave_segments(UpperCAmelCase , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(UpperCAmelCase ) else: snake_case_ = [layer_name] if len(UpperCAmelCase ) > 1: snake_case_ = [key for key in output_blocks[i] if f'output_blocks.{i}.0' in key] snake_case_ = [key for key in output_blocks[i] if f'output_blocks.{i}.1' in key] snake_case_ = renew_resnet_paths(UpperCAmelCase ) snake_case_ = renew_resnet_paths(UpperCAmelCase ) snake_case_ = {'old': f'output_blocks.{i}.0', 'new': f'up_blocks.{block_id}.resnets.{layer_in_block_id}'} assign_to_checkpoint(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , additional_replacements=[meta_path] , config=UpperCAmelCase ) if ["conv.weight", "conv.bias"] in output_block_list.values(): snake_case_ = list(output_block_list.values() ).index(['conv.weight', 'conv.bias'] ) snake_case_ = checkpoint[ f'output_blocks.{i}.{index}.conv.weight' ] snake_case_ = checkpoint[ f'output_blocks.{i}.{index}.conv.bias' ] # Clear attentions as they have been attributed above. if len(UpperCAmelCase ) == 2: snake_case_ = [] if len(UpperCAmelCase ): snake_case_ = renew_attention_paths(UpperCAmelCase ) snake_case_ = { 'old': f'output_blocks.{i}.1', 'new': f'up_blocks.{block_id}.attentions.{layer_in_block_id}', } snake_case_ = { f'output_blocks.{i}.1.qkv.bias': { 'key': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias', 'query': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias', 'value': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias', }, f'output_blocks.{i}.1.qkv.weight': { 'key': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight', 'query': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight', 'value': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight', }, } assign_to_checkpoint( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('qkv' in key for key in attentions ) else None , config=UpperCAmelCase , ) else: snake_case_ = renew_resnet_paths(UpperCAmelCase , n_shave_prefix_segments=1 ) for path in resnet_0_paths: snake_case_ = '.'.join(['output_blocks', str(UpperCAmelCase ), path['old']] ) snake_case_ = '.'.join(['up_blocks', str(UpperCAmelCase ), 'resnets', str(UpperCAmelCase ), path['new']] ) snake_case_ = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the architecture.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') __UpperCamelCase = parser.parse_args() __UpperCamelCase = torch.load(args.checkpoint_path) with open(args.config_file) as f: __UpperCamelCase = json.loads(f.read()) __UpperCamelCase = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] __UpperCamelCase = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: __UpperCamelCase = DDPMScheduler.from_config('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) __UpperCamelCase = VQModel.from_pretrained('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) __UpperCamelCase = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
312
1
"""simple docstring""" import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def lowercase ( _snake_case : str , _snake_case : Any , _snake_case : Optional[Any] , _snake_case : str=5 ) ->Tuple: """simple docstring""" assert masked_input.count('''<mask>''' ) == 1 __snake_case : Dict = torch.tensor(tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) ).unsqueeze(0 ) # Batch size 1 __snake_case : Optional[int] = model(_snake_case )[0] # The last hidden-state is the first element of the output tuple __snake_case : Union[str, Any] = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() __snake_case : Tuple = logits[0, masked_index, :] __snake_case : Any = logits.softmax(dim=0 ) __snake_case , __snake_case : List[Any] = prob.topk(k=_snake_case , dim=0 ) __snake_case : List[str] = ''' '''.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(_snake_case ) )] ) __snake_case : int = tokenizer.mask_token __snake_case : Optional[int] = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(''' ''' ) ): __snake_case : str = predicted_token_bpe.replace('''\u2581''' , ''' ''' ) if " {0}".format(_snake_case ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(''' {0}'''.format(_snake_case ) , _snake_case ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(_snake_case , _snake_case ), values[index].item(), predicted_token, ) ) return topk_filled_outputs SCREAMING_SNAKE_CASE : str = CamembertTokenizer.from_pretrained("""camembert-base""") SCREAMING_SNAKE_CASE : int = CamembertForMaskedLM.from_pretrained("""camembert-base""") model.eval() SCREAMING_SNAKE_CASE : Optional[int] = """Le camembert est <mask> :)""" print(fill_mask(masked_input, model, tokenizer, topk=3))
102
"""simple docstring""" from sklearn.metrics import recall_score import datasets SCREAMING_SNAKE_CASE : Dict = """ Recall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation: Recall = TP / (TP + FN) Where TP is the true positives and FN is the false negatives. """ SCREAMING_SNAKE_CASE : Any = """ Args: - **predictions** (`list` of `int`): The predicted labels. - **references** (`list` of `int`): The ground truth labels. - **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None. - **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`. - **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`. - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary. - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives. - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall. - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). - **sample_weight** (`list` of `float`): Sample weights Defaults to `None`. - **zero_division** (): Sets the value to return when there is a zero division. Defaults to . - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised. - `0`: If there is a zero division, the return value is `0`. - `1`: If there is a zero division, the return value is `1`. Returns: - **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better. Examples: Example 1-A simple example with some errors >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1]) >>> print(results) {'recall': 0.6666666666666666} Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`. >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0) >>> print(results) {'recall': 0.5} Example 3-The same example as Example 1, but with `sample_weight` included. >>> recall_metric = datasets.load_metric('recall') >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8] >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight) >>> print(results) {'recall': 0.55} Example 4-A multiclass example, using different averages. >>> recall_metric = datasets.load_metric('recall') >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {'recall': array([1., 0., 0.])} """ SCREAMING_SNAKE_CASE : Tuple = """ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html'''] , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_=None , a_=1 , a_="binary" , a_=None , a_="warn" , ): '''simple docstring''' __snake_case : Any = recall_score( a_ , a_ , labels=a_ , pos_label=a_ , average=a_ , sample_weight=a_ , zero_division=a_ , ) return {"recall": float(a_ ) if score.size == 1 else score}
102
1
"""simple docstring""" import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class a__ ( pl.LightningModule ): def __init__( self : str, lowerCAmelCase : Optional[Any] ) -> Any: super().__init__() lowercase : Union[str, Any] = model lowercase : Tuple = 2 lowercase : List[str] = nn.Linear(self.model.config.hidden_size, self.num_labels ) def lowercase ( self : List[str] ) -> Tuple: pass def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: '''simple docstring''' lowercase : List[str] = LongformerModel.from_pretrained(_UpperCAmelCase ) lowercase : int = LightningModel(_UpperCAmelCase ) lowercase : Union[str, Any] = torch.load(_UpperCAmelCase , map_location=torch.device('cpu' ) ) lightning_model.load_state_dict(ckpt['state_dict'] ) # init longformer question answering model lowercase : Any = LongformerForQuestionAnswering.from_pretrained(_UpperCAmelCase ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(_UpperCAmelCase ) print(f'''Conversion successful. Model saved under {pytorch_dump_folder_path}''' ) if __name__ == "__main__": _UpperCamelCase: Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--longformer_model', default=None, type=str, required=True, help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.', ) parser.add_argument( '--longformer_question_answering_ckpt_path', default=None, type=str, required=True, help='Path the official PyTorch Lightning Checkpoint.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _UpperCamelCase: str = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
53
"""simple docstring""" # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers _UpperCamelCase: Any = '3' print('Python version:', sys.version) print('transformers version:', transformers.__version__) try: import torch print('Torch version:', torch.__version__) print('Cuda available:', torch.cuda.is_available()) print('Cuda version:', torch.version.cuda) print('CuDNN version:', torch.backends.cudnn.version()) print('Number of GPUs available:', torch.cuda.device_count()) print('NCCL version:', torch.cuda.nccl.version()) except ImportError: print('Torch version:', None) try: import deepspeed print('DeepSpeed version:', deepspeed.__version__) except ImportError: print('DeepSpeed version:', None) try: import tensorflow as tf print('TensorFlow version:', tf.__version__) print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU'))) print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU'))) except ImportError: print('TensorFlow version:', None)
53
1
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata def SCREAMING_SNAKE_CASE_ ( __magic_name__ : str , __magic_name__ : Optional[int]=False ) -> Tuple: """simple docstring""" try: UpperCamelCase :str = os.environ[key] except KeyError: # KEY isn't set, default to `default`. UpperCamelCase :str = default else: # KEY is set, convert it to True or False. try: UpperCamelCase :Union[str, Any] = strtobool(__magic_name__ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f"""If set, {key} must be yes or no.""" ) return _value UpperCAmelCase_ : Any = parse_flag_from_env('''RUN_SLOW''', default=False) UpperCAmelCase_ : Optional[Any] = parse_flag_from_env('''RUN_REMOTE''', default=False) UpperCAmelCase_ : Dict = parse_flag_from_env('''RUN_LOCAL''', default=True) UpperCAmelCase_ : str = parse_flag_from_env('''RUN_PACKAGED''', default=True) # Compression UpperCAmelCase_ : str = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='''test requires lz4''') UpperCAmelCase_ : Optional[Any] = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='''test requires py7zr''') UpperCAmelCase_ : str = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='''test requires zstandard''') # Audio UpperCAmelCase_ : str = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('''soundfile''') is None or version.parse(importlib_metadata.version('''soundfile''')) < version.parse('''0.12.0'''), reason='''test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ''', ) # Beam UpperCAmelCase_ : Any = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('''0.3.2'''), reason='''test requires apache-beam and a compatible dill version''', ) # Dill-cloudpickle compatibility UpperCAmelCase_ : Optional[int] = pytest.mark.skipif( config.DILL_VERSION <= version.parse('''0.3.2'''), reason='''test requires dill>0.3.2 for cloudpickle compatibility''', ) # Windows UpperCAmelCase_ : Optional[Any] = pytest.mark.skipif( sys.platform == '''win32''', reason='''test should not be run on Windows''', ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Dict ) -> Any: """simple docstring""" try: import faiss # noqa except ImportError: UpperCamelCase :List[str] = unittest.skip("""test requires faiss""" )(__magic_name__ ) return test_case def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Tuple ) -> int: """simple docstring""" try: import regex # noqa except ImportError: UpperCamelCase :Dict = unittest.skip("""test requires regex""" )(__magic_name__ ) return test_case def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Any ) -> Dict: """simple docstring""" try: import elasticsearch # noqa except ImportError: UpperCamelCase :int = unittest.skip("""test requires elasticsearch""" )(__magic_name__ ) return test_case def SCREAMING_SNAKE_CASE_ ( __magic_name__ : str ) -> Dict: """simple docstring""" try: import sqlalchemy # noqa except ImportError: UpperCamelCase :Tuple = unittest.skip("""test requires sqlalchemy""" )(__magic_name__ ) return test_case def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Any ) -> List[Any]: """simple docstring""" if not config.TORCH_AVAILABLE: UpperCamelCase :int = unittest.skip("""test requires PyTorch""" )(__magic_name__ ) return test_case def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Optional[Any] ) -> List[Any]: """simple docstring""" if not config.TF_AVAILABLE: UpperCamelCase :str = unittest.skip("""test requires TensorFlow""" )(__magic_name__ ) return test_case def SCREAMING_SNAKE_CASE_ ( __magic_name__ : List[Any] ) -> Optional[Any]: """simple docstring""" if not config.JAX_AVAILABLE: UpperCamelCase :Optional[int] = unittest.skip("""test requires JAX""" )(__magic_name__ ) return test_case def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Optional[Any] ) -> Union[str, Any]: """simple docstring""" if not config.PIL_AVAILABLE: UpperCamelCase :int = unittest.skip("""test requires Pillow""" )(__magic_name__ ) return test_case def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Optional[int] ) -> Dict: """simple docstring""" try: import transformers # noqa F401 except ImportError: return unittest.skip("""test requires transformers""" )(__magic_name__ ) else: return test_case def SCREAMING_SNAKE_CASE_ ( __magic_name__ : str ) -> int: """simple docstring""" try: import tiktoken # noqa F401 except ImportError: return unittest.skip("""test requires tiktoken""" )(__magic_name__ ) else: return test_case def SCREAMING_SNAKE_CASE_ ( __magic_name__ : List[Any] ) -> List[str]: """simple docstring""" try: import spacy # noqa F401 except ImportError: return unittest.skip("""test requires spacy""" )(__magic_name__ ) else: return test_case def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Optional[Any] ) -> Tuple: """simple docstring""" def _require_spacy_model(__magic_name__ : List[str] ): try: import spacy # noqa F401 spacy.load(__magic_name__ ) except ImportError: return unittest.skip("""test requires spacy""" )(__magic_name__ ) except OSError: return unittest.skip("""test requires spacy model '{}'""".format(__magic_name__ ) )(__magic_name__ ) else: return test_case return _require_spacy_model def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Tuple ) -> List[Any]: """simple docstring""" try: import pyspark # noqa F401 except ImportError: return unittest.skip("""test requires pyspark""" )(__magic_name__ ) else: return test_case def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Tuple ) -> Optional[int]: """simple docstring""" try: import joblibspark # noqa F401 except ImportError: return unittest.skip("""test requires joblibspark""" )(__magic_name__ ) else: return test_case def SCREAMING_SNAKE_CASE_ ( __magic_name__ : str ) -> List[str]: """simple docstring""" if not _run_slow_tests or _run_slow_tests == 0: UpperCamelCase :Optional[int] = unittest.skip("""test is slow""" )(__magic_name__ ) return test_case def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Any ) -> Union[str, Any]: """simple docstring""" if not _run_local_tests or _run_local_tests == 0: UpperCamelCase :str = unittest.skip("""test is local""" )(__magic_name__ ) return test_case def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Any ) -> int: """simple docstring""" if not _run_packaged_tests or _run_packaged_tests == 0: UpperCamelCase :Optional[int] = unittest.skip("""test is packaged""" )(__magic_name__ ) return test_case def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Optional[Any] ) -> Union[str, Any]: """simple docstring""" if not _run_remote_tests or _run_remote_tests == 0: UpperCamelCase :Optional[int] = unittest.skip("""test requires remote""" )(__magic_name__ ) return test_case def SCREAMING_SNAKE_CASE_ ( *__magic_name__ : int ) -> List[str]: """simple docstring""" def decorate(cls : int ): for name, fn in cls.__dict__.items(): if callable(__magic_name__ ) and name.startswith("""test""" ): for decorator in decorators: UpperCamelCase :int = decorator(__magic_name__ ) setattr(cls , __magic_name__ , __magic_name__ ) return cls return decorate class _SCREAMING_SNAKE_CASE ( _a ): pass class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : Union[str, Any] = 0 snake_case__ : Union[str, Any] = 1 snake_case__ : List[str] = 2 @contextmanager def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Dict=OfflineSimulationMode.CONNECTION_FAILS , __magic_name__ : str=1E-16 ) -> Any: """simple docstring""" UpperCamelCase :Optional[int] = requests.Session().request def timeout_request(__magic_name__ : str , __magic_name__ : List[str] , __magic_name__ : Optional[int] , **__magic_name__ : Dict ): # Change the url to an invalid url so that the connection hangs UpperCamelCase :Dict = """https://10.255.255.1""" if kwargs.get("""timeout""" ) is None: raise RequestWouldHangIndefinitelyError( f"""Tried a call to {url} in offline mode with no timeout set. Please set a timeout.""" ) UpperCamelCase :List[str] = timeout try: return online_request(__magic_name__ , __magic_name__ , **__magic_name__ ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier UpperCamelCase :Any = url UpperCamelCase :Any = e.args[0] UpperCamelCase :Tuple = (max_retry_error.args[0].replace("""10.255.255.1""" , f"""OfflineMock[{url}]""" ),) UpperCamelCase :List[str] = (max_retry_error,) raise def raise_connection_error(__magic_name__ : Tuple , __magic_name__ : int , **__magic_name__ : str ): raise requests.ConnectionError("""Offline mode is enabled.""" , request=__magic_name__ ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch("""requests.Session.send""" , __magic_name__ ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch("""requests.Session.request""" , __magic_name__ ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch("""datasets.config.HF_DATASETS_OFFLINE""" , __magic_name__ ): yield else: raise ValueError("""Please use a value from the OfflineSimulationMode enum.""" ) @contextmanager def SCREAMING_SNAKE_CASE_ ( *__magic_name__ : str , **__magic_name__ : Dict ) -> List[Any]: """simple docstring""" UpperCamelCase :Optional[int] = str(Path().resolve() ) with tempfile.TemporaryDirectory(*__magic_name__ , **__magic_name__ ) as tmp_dir: try: os.chdir(__magic_name__ ) yield finally: os.chdir(__magic_name__ ) @contextmanager def SCREAMING_SNAKE_CASE_ ( ) -> Optional[int]: """simple docstring""" import gc gc.collect() UpperCamelCase :Tuple = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def SCREAMING_SNAKE_CASE_ ( ) -> Optional[Any]: """simple docstring""" import gc gc.collect() UpperCamelCase :Dict = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Dict , __magic_name__ : Dict ) -> Tuple: """simple docstring""" return deepcopy(__magic_name__ ).integers(0 , 100 , 10 ).tolist() == deepcopy(__magic_name__ ).integers(0 , 100 , 10 ).tolist() def SCREAMING_SNAKE_CASE_ ( __magic_name__ : List[str] ) -> Union[str, Any]: """simple docstring""" import decorator from requests.exceptions import HTTPError def _wrapper(__magic_name__ : Tuple , *__magic_name__ : List[str] , **__magic_name__ : List[Any] ): try: return func(*__magic_name__ , **__magic_name__ ) except HTTPError as err: if str(__magic_name__ ).startswith("""500""" ) or str(__magic_name__ ).startswith("""502""" ): pytest.xfail(str(__magic_name__ ) ) raise err return decorator.decorator(_wrapper , __magic_name__ ) class _SCREAMING_SNAKE_CASE : def __init__( self : Tuple , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Any ): UpperCamelCase :int = returncode UpperCamelCase :Tuple = stdout UpperCamelCase :List[str] = stderr async def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Dict , __magic_name__ : List[str] ) -> Union[str, Any]: """simple docstring""" while True: UpperCamelCase :List[str] = await stream.readline() if line: callback(__magic_name__ ) else: break async def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Tuple , __magic_name__ : List[str]=None , __magic_name__ : Optional[int]=None , __magic_name__ : int=None , __magic_name__ : int=False , __magic_name__ : str=False ) -> _RunOutput: """simple docstring""" if echo: print("""\nRunning: """ , """ """.join(__magic_name__ ) ) UpperCamelCase :List[str] = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__magic_name__ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__magic_name__ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) UpperCamelCase :List[Any] = [] UpperCamelCase :List[Any] = [] def tee(__magic_name__ : List[str] , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : Optional[Any]="" ): UpperCamelCase :List[Any] = line.decode("""utf-8""" ).rstrip() sink.append(__magic_name__ ) if not quiet: print(__magic_name__ , __magic_name__ , file=__magic_name__ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda __magic_name__ : tee(__magic_name__ , __magic_name__ , sys.stdout , label="""stdout:""" ) ), _read_stream(p.stderr , lambda __magic_name__ : tee(__magic_name__ , __magic_name__ , sys.stderr , label="""stderr:""" ) ), ] , timeout=__magic_name__ , ) return _RunOutput(await p.wait() , __magic_name__ , __magic_name__ ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int , __magic_name__ : List[Any]=None , __magic_name__ : Optional[Any]=None , __magic_name__ : List[str]=180 , __magic_name__ : Optional[Any]=False , __magic_name__ : Any=True ) -> _RunOutput: """simple docstring""" UpperCamelCase :str = asyncio.get_event_loop() UpperCamelCase :Optional[int] = loop.run_until_complete( _stream_subprocess(__magic_name__ , env=__magic_name__ , stdin=__magic_name__ , timeout=__magic_name__ , quiet=__magic_name__ , echo=__magic_name__ ) ) UpperCamelCase :Tuple = """ """.join(__magic_name__ ) if result.returncode > 0: UpperCamelCase :int = """\n""".join(result.stderr ) raise RuntimeError( f"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" f"""The combined stderr from workers follows:\n{stderr}""" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f"""'{cmd_str}' produced no output.""" ) return result def SCREAMING_SNAKE_CASE_ ( ) -> Union[str, Any]: """simple docstring""" UpperCamelCase :int = os.environ.get("""PYTEST_XDIST_WORKER""" , """gw0""" ) UpperCamelCase :str = re.sub(R"""^gw""" , """""" , __magic_name__ , 0 , re.M ) return int(__magic_name__ ) def SCREAMING_SNAKE_CASE_ ( ) -> Any: """simple docstring""" UpperCamelCase :Union[str, Any] = 2_9500 UpperCamelCase :Union[str, Any] = pytest_xdist_worker_id() return port + uniq_delta
38
from math import sqrt def _snake_case( SCREAMING_SNAKE_CASE__ ) -> bool: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( number >= 0 ), "'number' must been an int and positive" lowercase : Union[str, Any] = True # 0 and 1 are none primes. if number <= 1: lowercase : str = False for divisor in range(2 , int(round(sqrt(SCREAMING_SNAKE_CASE__ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowercase : Any = False break # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'status' must been from type bool" return status def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowercase : str = list(range(2 , n + 1 ) ) lowercase : Tuple = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(SCREAMING_SNAKE_CASE__ ) ): for j in range(i + 1 , len(SCREAMING_SNAKE_CASE__ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowercase : Tuple = 0 # filters actual prime numbers. lowercase : int = [x for x in begin_list if x != 0] # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'ans' must been from type list" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n > 2), "'N' must been an int and > 2" lowercase : Dict = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(SCREAMING_SNAKE_CASE__ ): ans.append(SCREAMING_SNAKE_CASE__ ) # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'ans' must been from type list" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Tuple: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and number >= 0, "'number' must been an int and >= 0" lowercase : Tuple = [] # this list will be returns of the function. # potential prime number factors. lowercase : Optional[Any] = 2 lowercase : Any = number if number == 0 or number == 1: ans.append(SCREAMING_SNAKE_CASE__ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(SCREAMING_SNAKE_CASE__ ): while quotient != 1: if is_prime(SCREAMING_SNAKE_CASE__ ) and (quotient % factor == 0): ans.append(SCREAMING_SNAKE_CASE__ ) quotient /= factor else: factor += 1 else: ans.append(SCREAMING_SNAKE_CASE__ ) # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'ans' must been from type list" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[Any]: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowercase : Tuple = 0 # prime factorization of 'number' lowercase : Optional[int] = prime_factorization(SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = max(SCREAMING_SNAKE_CASE__ ) # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'ans' must been from type int" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> str: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowercase : Union[str, Any] = 0 # prime factorization of 'number' lowercase : Tuple = prime_factorization(SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = min(SCREAMING_SNAKE_CASE__ ) # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'ans' must been from type int" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'number' must been an int" assert isinstance(number % 2 == 0 , SCREAMING_SNAKE_CASE__ ), "compare bust been from type bool" return number % 2 == 0 def _snake_case( SCREAMING_SNAKE_CASE__ ) -> int: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'number' must been an int" assert isinstance(number % 2 != 0 , SCREAMING_SNAKE_CASE__ ), "compare bust been from type bool" return number % 2 != 0 def _snake_case( SCREAMING_SNAKE_CASE__ ) -> int: assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (number > 2) and is_even(SCREAMING_SNAKE_CASE__ ) ), "'number' must been an int, even and > 2" lowercase : Union[str, Any] = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowercase : str = get_prime_numbers(SCREAMING_SNAKE_CASE__ ) lowercase : Any = len(SCREAMING_SNAKE_CASE__ ) # run variable for while-loops. lowercase : Optional[Any] = 0 lowercase : List[Any] = None # exit variable. for break up the loops lowercase : Any = True while i < len_pn and loop: lowercase : str = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowercase : Union[str, Any] = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (len(SCREAMING_SNAKE_CASE__ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowercase : Union[str, Any] = 0 while numbera != 0: lowercase : Optional[int] = numbera % numbera lowercase : Optional[int] = numbera lowercase : Dict = rest # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Tuple: assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowercase : Dict = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowercase : Optional[Any] = prime_factorization(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = prime_factorization(SCREAMING_SNAKE_CASE__ ) elif numbera == 1 or numbera == 1: lowercase : Union[str, Any] = [] lowercase : List[str] = [] lowercase : Dict = max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = 0 lowercase : Optional[Any] = 0 lowercase : List[str] = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowercase : Dict = prime_fac_a.count(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = prime_fac_a.count(SCREAMING_SNAKE_CASE__ ) for _ in range(max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): ans *= n else: lowercase : List[Any] = prime_fac_a.count(SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ ): ans *= n done.append(SCREAMING_SNAKE_CASE__ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowercase : Optional[int] = prime_fac_a.count(SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ ): ans *= n done.append(SCREAMING_SNAKE_CASE__ ) # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Any: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n >= 0), "'number' must been a positive int" lowercase : Dict = 0 lowercase : List[str] = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(SCREAMING_SNAKE_CASE__ ): ans += 1 # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and is_prime( SCREAMING_SNAKE_CASE__ ), "'ans' must been a prime number and from type int" return ans def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: assert ( is_prime(SCREAMING_SNAKE_CASE__ ) and is_prime(SCREAMING_SNAKE_CASE__ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowercase : List[str] = p_number_a + 1 # jump to the next number lowercase : List[Any] = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(SCREAMING_SNAKE_CASE__ ): number += 1 while number < p_number_a: ans.append(SCREAMING_SNAKE_CASE__ ) number += 1 # fetch the next prime number. while not is_prime(SCREAMING_SNAKE_CASE__ ): number += 1 # precondition assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ans[0] != p_number_a and ans[len(SCREAMING_SNAKE_CASE__ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Any: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n >= 1), "'n' must been int and >= 1" lowercase : Optional[Any] = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(SCREAMING_SNAKE_CASE__ ) # precondition assert ans[0] == 1 and ans[len(SCREAMING_SNAKE_CASE__ ) - 1] == n, "Error in function getDivisiors(...)" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Any: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( number > 1 ), "'number' must been an int and >= 1" lowercase : str = get_divisors(SCREAMING_SNAKE_CASE__ ) # precondition assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (divisors[0] == 1) and (divisors[len(SCREAMING_SNAKE_CASE__ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Dict: assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowercase : Tuple = gcd(abs(SCREAMING_SNAKE_CASE__ ) , abs(SCREAMING_SNAKE_CASE__ ) ) # precondition assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def _snake_case( SCREAMING_SNAKE_CASE__ ) -> int: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n >= 0), "'n' must been a int and >= 0" lowercase : List[str] = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n >= 0), "'n' must been an int and >= 0" lowercase : int = 0 lowercase : Union[str, Any] = 1 lowercase : int = 1 # this will be return for _ in range(n - 1 ): lowercase : Optional[int] = ans ans += fiba lowercase : Optional[int] = tmp return ans
20
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class __A( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = """vit_msn""" def __init__(self , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=1E-06 , SCREAMING_SNAKE_CASE_=2_24 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=True , **SCREAMING_SNAKE_CASE_ , ): super().__init__(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = image_size UpperCamelCase__ = patch_size UpperCamelCase__ = num_channels UpperCamelCase__ = qkv_bias
178
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def __magic_name__ ( __a : Any ): # picklable for multiprocessing '''simple docstring''' return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def __magic_name__ ( ): '''simple docstring''' with parallel_backend("""spark""" ): assert ParallelBackendConfig.backend_name == "spark" UpperCamelCase__ = [1, 2, 3] with pytest.raises(__a ): with parallel_backend("""unsupported backend""" ): map_nested(__a , __a , num_proc=2 ) with pytest.raises(__a ): with parallel_backend("""unsupported backend""" ): map_nested(__a , __a , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("""num_proc""" , [2, -1] ) def __magic_name__ ( __a : Optional[int] ): '''simple docstring''' UpperCamelCase__ = [1, 2] UpperCamelCase__ = {"""a""": 1, """b""": 2} UpperCamelCase__ = {"""a""": [1, 2], """b""": [3, 4]} UpperCamelCase__ = {"""a""": {"""1""": 1}, """b""": 2} UpperCamelCase__ = {"""a""": 1, """b""": 2, """c""": 3, """d""": 4} UpperCamelCase__ = [2, 3] UpperCamelCase__ = {"""a""": 2, """b""": 3} UpperCamelCase__ = {"""a""": [2, 3], """b""": [4, 5]} UpperCamelCase__ = {"""a""": {"""1""": 2}, """b""": 3} UpperCamelCase__ = {"""a""": 2, """b""": 3, """c""": 4, """d""": 5} with parallel_backend("""spark""" ): assert map_nested(__a , __a , num_proc=__a ) == expected_map_nested_sa assert map_nested(__a , __a , num_proc=__a ) == expected_map_nested_sa assert map_nested(__a , __a , num_proc=__a ) == expected_map_nested_sa assert map_nested(__a , __a , num_proc=__a ) == expected_map_nested_sa assert map_nested(__a , __a , num_proc=__a ) == expected_map_nested_sa
178
1
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig _a = logging.get_logger(__name__) _a = { 'Intel/dpt-large': 'https://huggingface.co/Intel/dpt-large/resolve/main/config.json', # See all DPT models at https://huggingface.co/models?filter=dpt } class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = """dpt""" def __init__( self , lowercase_=768 , lowercase_=12 , lowercase_=12 , lowercase_=3072 , lowercase_="gelu" , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=1E-1_2 , lowercase_=384 , lowercase_=16 , lowercase_=3 , lowercase_=False , lowercase_=True , lowercase_=[2, 5, 8, 11] , lowercase_="project" , lowercase_=[4, 2, 1, 0.5] , lowercase_=[96, 192, 384, 768] , lowercase_=256 , lowercase_=-1 , lowercase_=False , lowercase_=True , lowercase_=0.4 , lowercase_=255 , lowercase_=0.1 , lowercase_=[1, 1024, 24, 24] , lowercase_=[0, 1] , lowercase_=None , **lowercase_ , ): """simple docstring""" super().__init__(**lowercase_ ) UpperCAmelCase_ : int = hidden_size UpperCAmelCase_ : Optional[int] = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("Initializing the config with a `BiT` backbone." ) UpperCAmelCase_ : List[Any] = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, } UpperCAmelCase_ : Tuple = BitConfig(**lowercase_ ) elif isinstance(lowercase_ , lowercase_ ): logger.info("Initializing the config with a `BiT` backbone." ) UpperCAmelCase_ : int = BitConfig(**lowercase_ ) elif isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : Union[str, Any] = backbone_config else: raise ValueError( F"""backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.""" ) UpperCAmelCase_ : List[Any] = backbone_featmap_shape UpperCAmelCase_ : str = neck_ignore_stages if readout_type != "project": raise ValueError("Readout type must be 'project' when using `DPT-hybrid` mode." ) else: UpperCAmelCase_ : Any = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : int = num_hidden_layers UpperCAmelCase_ : List[Any] = num_attention_heads UpperCAmelCase_ : Dict = intermediate_size UpperCAmelCase_ : List[Any] = hidden_act UpperCAmelCase_ : Dict = hidden_dropout_prob UpperCAmelCase_ : Any = attention_probs_dropout_prob UpperCAmelCase_ : Optional[Any] = initializer_range UpperCAmelCase_ : int = layer_norm_eps UpperCAmelCase_ : Optional[int] = image_size UpperCAmelCase_ : int = patch_size UpperCAmelCase_ : str = num_channels UpperCAmelCase_ : Union[str, Any] = qkv_bias UpperCAmelCase_ : Optional[Any] = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("Readout_type must be one of ['ignore', 'add', 'project']" ) UpperCAmelCase_ : Any = readout_type UpperCAmelCase_ : str = reassemble_factors UpperCAmelCase_ : str = neck_hidden_sizes UpperCAmelCase_ : Optional[int] = fusion_hidden_size UpperCAmelCase_ : str = head_in_index UpperCAmelCase_ : Optional[Any] = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) UpperCAmelCase_ : Optional[Any] = use_auxiliary_head UpperCAmelCase_ : Any = auxiliary_loss_weight UpperCAmelCase_ : List[str] = semantic_loss_ignore_index UpperCAmelCase_ : Union[str, Any] = semantic_classifier_dropout def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: UpperCAmelCase_ : int = self.backbone_config.to_dict() UpperCAmelCase_ : str = self.__class__.model_type return output
61
"""simple docstring""" from __future__ import annotations import math def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Any = u for i in range(1, __lowerCamelCase ): UpperCAmelCase_ : int = temp * (u - i) return temp def __a ( ): UpperCAmelCase_ : str = int(input("enter the numbers of values: " ) ) UpperCAmelCase_ : list[list[float]] = [] for _ in range(__lowerCamelCase ): y.append([] ) for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): y[i].append(__lowerCamelCase ) UpperCAmelCase_ : Tuple = 0 print("enter the values of parameters in a list: " ) UpperCAmelCase_ : Union[str, Any] = list(map(__lowerCamelCase, input().split() ) ) print("enter the values of corresponding parameters: " ) for i in range(__lowerCamelCase ): UpperCAmelCase_ : int = float(input() ) UpperCAmelCase_ : Tuple = int(input("enter the value to interpolate: " ) ) UpperCAmelCase_ : Tuple = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1, __lowerCamelCase ): for j in range(n - i ): UpperCAmelCase_ : Union[str, Any] = y[j + 1][i - 1] - y[j][i - 1] UpperCAmelCase_ : Optional[int] = y[0][0] for i in range(1, __lowerCamelCase ): summ += (ucal(__lowerCamelCase, __lowerCamelCase ) * y[0][i]) / math.factorial(__lowerCamelCase ) print(f"""the value at {value} is {summ}""" ) if __name__ == "__main__": main()
61
1
'''simple docstring''' import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class __UpperCAmelCase : def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=13 , lowerCAmelCase_=7 , lowerCAmelCase_=6 , lowerCAmelCase_=17 , lowerCAmelCase_=23 , lowerCAmelCase_=11 , lowerCAmelCase_=True , ): """simple docstring""" _snake_case = parent _snake_case = batch_size _snake_case = seq_length _snake_case = act_dim _snake_case = state_dim _snake_case = hidden_size _snake_case = max_length _snake_case = is_training def lowerCamelCase ( self ): """simple docstring""" _snake_case = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) _snake_case = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) _snake_case = floats_tensor((self.batch_size, self.seq_length, 1) ) _snake_case = floats_tensor((self.batch_size, self.seq_length, 1) ) _snake_case = ids_tensor((self.batch_size, self.seq_length) , vocab_size=10_00 ) _snake_case = random_attention_mask((self.batch_size, self.seq_length) ) _snake_case = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def lowerCamelCase ( self ): """simple docstring""" return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ): """simple docstring""" _snake_case = DecisionTransformerModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.prepare_config_and_inputs() ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) = config_and_inputs _snake_case = { 'states': states, 'actions': actions, 'rewards': rewards, 'returns_to_go': returns_to_go, 'timesteps': timesteps, 'attention_mask': attention_mask, } return config, inputs_dict @require_torch class __UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): __lowercase = (DecisionTransformerModel,) if is_torch_available() else () __lowercase = () __lowercase = {"""feature-extraction""": DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids __lowercase = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features __lowercase = False __lowercase = False __lowercase = False __lowercase = False __lowercase = False __lowercase = False __lowercase = False __lowercase = False __lowercase = False def lowerCamelCase ( self ): """simple docstring""" _snake_case = DecisionTransformerModelTester(self ) _snake_case = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=37 ) def lowerCamelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) @slow def lowerCamelCase ( self ): """simple docstring""" for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = DecisionTransformerModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(lowerCAmelCase_ ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = [ 'states', 'actions', 'rewards', 'returns_to_go', 'timesteps', 'attention_mask', ] self.assertListEqual(arg_names[: len(lowerCAmelCase_ )] , lowerCAmelCase_ ) @require_torch class __UpperCAmelCase ( unittest.TestCase ): @slow def lowerCamelCase ( self ): """simple docstring""" _snake_case = 2 # number of steps of autoregressive prediction we will perform _snake_case = 10 # defined by the RL environment, may be normalized _snake_case = DecisionTransformerModel.from_pretrained('edbeeching/decision-transformer-gym-hopper-expert' ) _snake_case = model.to(lowerCAmelCase_ ) _snake_case = model.config torch.manual_seed(0 ) _snake_case = torch.randn(1 , 1 , config.state_dim ).to(device=lowerCAmelCase_ , dtype=torch.floataa ) # env.reset() _snake_case = torch.tensor( [[0.242793, -0.28693074, 0.8742613], [0.67815274, -0.08101085, -0.12952147]] , device=lowerCAmelCase_ ) _snake_case = torch.tensor(lowerCAmelCase_ , device=lowerCAmelCase_ , dtype=torch.floataa ).reshape(1 , 1 , 1 ) _snake_case = state _snake_case = torch.zeros(1 , 0 , config.act_dim , device=lowerCAmelCase_ , dtype=torch.floataa ) _snake_case = torch.zeros(1 , 0 , device=lowerCAmelCase_ , dtype=torch.floataa ) _snake_case = torch.tensor(0 , device=lowerCAmelCase_ , dtype=torch.long ).reshape(1 , 1 ) for step in range(lowerCAmelCase_ ): _snake_case = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=lowerCAmelCase_ )] , dim=1 ) _snake_case = torch.cat([rewards, torch.zeros(1 , 1 , device=lowerCAmelCase_ )] , dim=1 ) _snake_case = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): _snake_case , _snake_case , _snake_case = model( states=lowerCAmelCase_ , actions=lowerCAmelCase_ , rewards=lowerCAmelCase_ , returns_to_go=lowerCAmelCase_ , timesteps=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , return_dict=lowerCAmelCase_ , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1E-4 ) ) _snake_case , _snake_case , _snake_case , _snake_case = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=lowerCAmelCase_ , dtype=torch.floataa ), 1.0, False, {}, ) _snake_case = action_pred[0, -1] _snake_case = torch.cat([states, state] , dim=1 ) _snake_case = returns_to_go[0, -1] - reward _snake_case = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) _snake_case = torch.cat( [timesteps, torch.ones((1, 1) , device=lowerCAmelCase_ , dtype=torch.long ) * (step + 1)] , dim=1 )
160
'''simple docstring''' from __future__ import annotations from collections import namedtuple def SCREAMING_SNAKE_CASE__ ( __A , __A , __A ) -> tuple: _snake_case = namedtuple('result' , 'name value' ) if (voltage, current, power).count(0 ) != 1: raise ValueError('Only one argument must be 0' ) elif power < 0: raise ValueError( 'Power cannot be negative in any electrical/electronics system' ) elif voltage == 0: return result('voltage' , power / current ) elif current == 0: return result('current' , power / voltage ) elif power == 0: return result('power' , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
160
1
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : Any = ["image_processor", "tokenizer"] __UpperCAmelCase : Any = "BlipImageProcessor" __UpperCAmelCase : Dict = ("BertTokenizer", "BertTokenizerFast") def __init__( self : Optional[Any] , lowerCamelCase : List[str] , lowerCamelCase : Tuple ) -> str: __snake_case : int = False super().__init__(lowerCamelCase , lowerCamelCase ) __snake_case : int = self.image_processor def __call__( self : int , lowerCamelCase : ImageInput = None , lowerCamelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowerCamelCase : bool = True , lowerCamelCase : Union[bool, str, PaddingStrategy] = False , lowerCamelCase : Union[bool, str, TruncationStrategy] = None , lowerCamelCase : Optional[int] = None , lowerCamelCase : int = 0 , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[bool] = None , lowerCamelCase : bool = False , lowerCamelCase : bool = False , lowerCamelCase : bool = False , lowerCamelCase : bool = False , lowerCamelCase : bool = False , lowerCamelCase : bool = True , lowerCamelCase : Optional[Union[str, TensorType]] = None , **lowerCamelCase : Dict , ) -> BatchEncoding: if images is None and text is None: raise ValueError("You have to specify either images or text." ) # Get only text if images is None: __snake_case : List[Any] = self.tokenizer __snake_case : Dict = self.tokenizer( text=lowerCamelCase , add_special_tokens=lowerCamelCase , padding=lowerCamelCase , truncation=lowerCamelCase , max_length=lowerCamelCase , stride=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_attention_mask=lowerCamelCase , return_overflowing_tokens=lowerCamelCase , return_special_tokens_mask=lowerCamelCase , return_offsets_mapping=lowerCamelCase , return_token_type_ids=lowerCamelCase , return_length=lowerCamelCase , verbose=lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase , ) return text_encoding # add pixel_values __snake_case : Dict = self.image_processor(lowerCamelCase , return_tensors=lowerCamelCase ) if text is not None: __snake_case : int = self.tokenizer( text=lowerCamelCase , add_special_tokens=lowerCamelCase , padding=lowerCamelCase , truncation=lowerCamelCase , max_length=lowerCamelCase , stride=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_attention_mask=lowerCamelCase , return_overflowing_tokens=lowerCamelCase , return_special_tokens_mask=lowerCamelCase , return_offsets_mapping=lowerCamelCase , return_token_type_ids=lowerCamelCase , return_length=lowerCamelCase , verbose=lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase , ) else: __snake_case : List[Any] = None if text_encoding is not None: encoding_image_processor.update(lowerCamelCase ) return encoding_image_processor def __snake_case ( self : Any , *lowerCamelCase : List[Any] , **lowerCamelCase : Any ) -> Union[str, Any]: return self.tokenizer.batch_decode(*lowerCamelCase , **lowerCamelCase ) def __snake_case ( self : List[Any] , *lowerCamelCase : List[str] , **lowerCamelCase : int ) -> List[Any]: return self.tokenizer.decode(*lowerCamelCase , **lowerCamelCase ) @property def __snake_case ( self : List[str] ) -> Optional[Any]: __snake_case : int = self.tokenizer.model_input_names __snake_case : Any = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
123
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) _snake_case : Any = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation="relu") ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation="relu")) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation="relu")) classifier.add(layers.Dense(units=1, activation="sigmoid")) # Compiling the CNN classifier.compile( optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') _snake_case : int = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) _snake_case : Optional[Any] = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) _snake_case : List[str] = train_datagen.flow_from_directory( "dataset/training_set", target_size=(64, 64), batch_size=32, class_mode="binary" ) _snake_case : Any = test_datagen.flow_from_directory( "dataset/test_set", target_size=(64, 64), batch_size=32, class_mode="binary" ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save("cnn.h5") # Part 3 - Making new predictions _snake_case : Optional[Any] = tf.keras.preprocessing.image.load_img( "dataset/single_prediction/image.png", target_size=(64, 64) ) _snake_case : int = tf.keras.preprocessing.image.img_to_array(test_image) _snake_case : Tuple = np.expand_dims(test_image, axis=0) _snake_case : Any = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: _snake_case : Any = "Normal" if result[0][0] == 1: _snake_case : List[str] = "Abnormality detected"
123
1
import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup _snake_case : Dict = logging.get_logger(__name__) class _UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" def __init__( self : Optional[Any] , **lowerCAmelCase_ : Tuple ) -> Union[str, Any]: requires_backends(self , ['bs4'] ) super().__init__(**__a ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] ) -> Any: __lowerCAmelCase = [] __lowerCAmelCase = [] __lowerCAmelCase = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag __lowerCAmelCase = parent.find_all(child.name , recursive=__a ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(__a ) else next(i for i, s in enumerate(__a , 1 ) if s is child ) ) __lowerCAmelCase = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def lowercase ( self : Tuple , lowerCAmelCase_ : Optional[Any] ) -> Optional[int]: __lowerCAmelCase = BeautifulSoup(__a , 'html.parser' ) __lowerCAmelCase = [] __lowerCAmelCase = [] __lowerCAmelCase = [] for element in html_code.descendants: if type(__a ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue __lowerCAmelCase = html.unescape(__a ).strip() if not text_in_this_tag: continue all_doc_strings.append(__a ) __lowerCAmelCase , __lowerCAmelCase = self.xpath_soup(__a ) stringaxtag_seq.append(__a ) stringaxsubs_seq.append(__a ) if len(__a ) != len(__a ): raise ValueError('Number of doc strings and xtags does not correspond' ) if len(__a ) != len(__a ): raise ValueError('Number of doc strings and xsubs does not correspond' ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def lowercase ( self : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any ) -> List[Any]: __lowerCAmelCase = '' for tagname, subs in zip(__a , __a ): xpath += f"""/{tagname}""" if subs != 0: xpath += f"""[{subs}]""" return xpath def __call__( self : int , lowerCAmelCase_ : Tuple ) -> Optional[Any]: __lowerCAmelCase = False # Check that strings has a valid type if isinstance(__a , __a ): __lowerCAmelCase = True elif isinstance(__a , (list, tuple) ): if len(__a ) == 0 or isinstance(html_strings[0] , __a ): __lowerCAmelCase = True if not valid_strings: raise ValueError( 'HTML strings must of type `str`, `List[str]` (batch of examples), ' f"""but is of type {type(__a )}.""" ) __lowerCAmelCase = bool(isinstance(__a , (list, tuple) ) and (isinstance(html_strings[0] , __a )) ) if not is_batched: __lowerCAmelCase = [html_strings] # Get nodes + xpaths __lowerCAmelCase = [] __lowerCAmelCase = [] for html_string in html_strings: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self.get_three_from_single(__a ) nodes.append(__a ) __lowerCAmelCase = [] for node, tag_list, sub_list in zip(__a , __a , __a ): __lowerCAmelCase = self.construct_xpath(__a , __a ) xpath_strings.append(__a ) xpaths.append(__a ) # return as Dict __lowerCAmelCase = {'nodes': nodes, 'xpaths': xpaths} __lowerCAmelCase = BatchFeature(data=__a , tensor_type=__a ) return encoded_inputs
368
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = 42 class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" @register_to_config def __init__( self : List[Any] , lowerCAmelCase_ : int = 6_5_5_3_6 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : str = "fourier" , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : float = 0.0 , lowerCAmelCase_ : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , lowerCAmelCase_ : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , lowerCAmelCase_ : Tuple[str] = "UNetMidBlock1D" , lowerCAmelCase_ : str = None , lowerCAmelCase_ : Tuple[int] = (3_2, 3_2, 6_4) , lowerCAmelCase_ : str = None , lowerCAmelCase_ : int = 8 , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : bool = False , ) -> Optional[int]: super().__init__() __lowerCAmelCase = sample_size # time if time_embedding_type == "fourier": __lowerCAmelCase = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=lowerCAmelCase_ , log=lowerCAmelCase_ , flip_sin_to_cos=lowerCAmelCase_ ) __lowerCAmelCase = 2 * block_out_channels[0] elif time_embedding_type == "positional": __lowerCAmelCase = Timesteps( block_out_channels[0] , flip_sin_to_cos=lowerCAmelCase_ , downscale_freq_shift=lowerCAmelCase_ ) __lowerCAmelCase = block_out_channels[0] if use_timestep_embedding: __lowerCAmelCase = block_out_channels[0] * 4 __lowerCAmelCase = TimestepEmbedding( in_channels=lowerCAmelCase_ , time_embed_dim=lowerCAmelCase_ , act_fn=lowerCAmelCase_ , out_dim=block_out_channels[0] , ) __lowerCAmelCase = nn.ModuleList([] ) __lowerCAmelCase = None __lowerCAmelCase = nn.ModuleList([] ) __lowerCAmelCase = None # down __lowerCAmelCase = in_channels for i, down_block_type in enumerate(lowerCAmelCase_ ): __lowerCAmelCase = output_channel __lowerCAmelCase = block_out_channels[i] if i == 0: input_channel += extra_in_channels __lowerCAmelCase = i == len(lowerCAmelCase_ ) - 1 __lowerCAmelCase = get_down_block( lowerCAmelCase_ , num_layers=lowerCAmelCase_ , in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(lowerCAmelCase_ ) # mid __lowerCAmelCase = get_mid_block( lowerCAmelCase_ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=lowerCAmelCase_ , add_downsample=lowerCAmelCase_ , ) # up __lowerCAmelCase = list(reversed(lowerCAmelCase_ ) ) __lowerCAmelCase = reversed_block_out_channels[0] if out_block_type is None: __lowerCAmelCase = out_channels else: __lowerCAmelCase = block_out_channels[0] for i, up_block_type in enumerate(lowerCAmelCase_ ): __lowerCAmelCase = output_channel __lowerCAmelCase = ( reversed_block_out_channels[i + 1] if i < len(lowerCAmelCase_ ) - 1 else final_upsample_channels ) __lowerCAmelCase = i == len(lowerCAmelCase_ ) - 1 __lowerCAmelCase = get_up_block( lowerCAmelCase_ , num_layers=lowerCAmelCase_ , in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(lowerCAmelCase_ ) __lowerCAmelCase = output_channel # out __lowerCAmelCase = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 3_2 ) __lowerCAmelCase = get_out_block( out_block_type=lowerCAmelCase_ , num_groups_out=lowerCAmelCase_ , embed_dim=block_out_channels[0] , out_channels=lowerCAmelCase_ , act_fn=lowerCAmelCase_ , fc_dim=block_out_channels[-1] // 4 , ) def lowercase ( self : Optional[Any] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : Union[torch.Tensor, float, int] , lowerCAmelCase_ : bool = True , ) -> Union[UNetaDOutput, Tuple]: __lowerCAmelCase = timestep if not torch.is_tensor(lowerCAmelCase_ ): __lowerCAmelCase = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(lowerCAmelCase_ ) and len(timesteps.shape ) == 0: __lowerCAmelCase = timesteps[None].to(sample.device ) __lowerCAmelCase = self.time_proj(lowerCAmelCase_ ) if self.config.use_timestep_embedding: __lowerCAmelCase = self.time_mlp(lowerCAmelCase_ ) else: __lowerCAmelCase = timestep_embed[..., None] __lowerCAmelCase = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) __lowerCAmelCase = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down __lowerCAmelCase = () for downsample_block in self.down_blocks: __lowerCAmelCase , __lowerCAmelCase = downsample_block(hidden_states=lowerCAmelCase_ , temb=lowerCAmelCase_ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: __lowerCAmelCase = self.mid_block(lowerCAmelCase_ , lowerCAmelCase_ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): __lowerCAmelCase = down_block_res_samples[-1:] __lowerCAmelCase = down_block_res_samples[:-1] __lowerCAmelCase = upsample_block(lowerCAmelCase_ , res_hidden_states_tuple=lowerCAmelCase_ , temb=lowerCAmelCase_ ) # 5. post-process if self.out_block: __lowerCAmelCase = self.out_block(lowerCAmelCase_ , lowerCAmelCase_ ) if not return_dict: return (sample,) return UNetaDOutput(sample=lowerCAmelCase_ )
207
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a_ : Union[str, Any] = {'configuration_encoder_decoder': ['EncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Optional[int] = ['EncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[str] = ['TFEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Dict = ['FlaxEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys a_ : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
137
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class _snake_case ( unittest.TestCase ): def __init__( self , a , a=7 , a=3 , a=10 , a=18 , a=30 , a=400 , a=True , a=None , a=True , a=[0.5, 0.5, 0.5] , a=[0.5, 0.5, 0.5] , a=None , ) -> Dict: SCREAMING_SNAKE_CASE = size if size is not None else {'shortest_edge': 18} SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else {'height': 18, 'width': 18} SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = num_frames SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = min_resolution SCREAMING_SNAKE_CASE = max_resolution SCREAMING_SNAKE_CASE = do_resize SCREAMING_SNAKE_CASE = size SCREAMING_SNAKE_CASE = do_normalize SCREAMING_SNAKE_CASE = image_mean SCREAMING_SNAKE_CASE = image_std SCREAMING_SNAKE_CASE = crop_size def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class _snake_case ( A__ , unittest.TestCase ): _lowercase : List[str] = VivitImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: SCREAMING_SNAKE_CASE = VivitImageProcessingTester(self) @property def SCREAMING_SNAKE_CASE__ ( self) -> int: return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ ( self) -> Any: SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(a , 'image_mean')) self.assertTrue(hasattr(a , 'image_std')) self.assertTrue(hasattr(a , 'do_normalize')) self.assertTrue(hasattr(a , 'do_resize')) self.assertTrue(hasattr(a , 'do_center_crop')) self.assertTrue(hasattr(a , 'size')) def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'shortest_edge': 18}) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18}) SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84) self.assertEqual(image_processor.size , {'shortest_edge': 42}) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84}) def SCREAMING_SNAKE_CASE__ ( self) -> str: # Initialize image_processing SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict) # create random PIL videos SCREAMING_SNAKE_CASE = prepare_video_inputs(self.image_processor_tester , equal_resolution=a) for video in video_inputs: self.assertIsInstance(a , a) self.assertIsInstance(video[0] , Image.Image) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(video_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched SCREAMING_SNAKE_CASE = image_processing(a , return_tensors='pt').pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: # Initialize image_processing SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors SCREAMING_SNAKE_CASE = prepare_video_inputs(self.image_processor_tester , equal_resolution=a , numpify=a) for video in video_inputs: self.assertIsInstance(a , a) self.assertIsInstance(video[0] , np.ndarray) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(video_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched SCREAMING_SNAKE_CASE = image_processing(a , return_tensors='pt').pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: # Initialize image_processing SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors SCREAMING_SNAKE_CASE = prepare_video_inputs(self.image_processor_tester , equal_resolution=a , torchify=a) for video in video_inputs: self.assertIsInstance(a , a) self.assertIsInstance(video[0] , torch.Tensor) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(video_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched SCREAMING_SNAKE_CASE = image_processing(a , return_tensors='pt').pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
137
1
"""simple docstring""" import re from filelock import FileLock try: import nltk A_ : Optional[int] = True except (ImportError, ModuleNotFoundError): A_ : List[str] = False if NLTK_AVAILABLE: with FileLock(".lock") as lock: nltk.download("punkt", quiet=True) def lowerCamelCase_ ( _lowerCamelCase ): re.sub('<n>' , '' , _lowerCamelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(_lowerCamelCase ) )
355
"""simple docstring""" import cva import numpy as np class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if k in (0.04, 0.06): lowerCamelCase__ : Tuple = k lowerCamelCase__ : Optional[Any] = window_size else: raise ValueError('invalid k value' ) def __str__(self ): '''simple docstring''' return str(self.k ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = cva.imread(lowerCamelCase_, 0 ) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = img.shape lowerCamelCase__ : list[list[int]] = [] lowerCamelCase__ : Optional[Any] = img.copy() lowerCamelCase__ : Optional[Any] = cva.cvtColor(lowerCamelCase_, cva.COLOR_GRAY2RGB ) lowerCamelCase__ , lowerCamelCase__ : Any = np.gradient(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = dx**2 lowerCamelCase__ : List[Any] = dy**2 lowerCamelCase__ : List[str] = dx * dy lowerCamelCase__ : Tuple = 0.04 lowerCamelCase__ : List[Any] = self.window_size // 2 for y in range(lowerCamelCase_, h - offset ): for x in range(lowerCamelCase_, w - offset ): lowerCamelCase__ : Union[str, Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : Optional[Any] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : List[Any] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : str = (wxx * wyy) - (wxy**2) lowerCamelCase__ : Dict = wxx + wyy lowerCamelCase__ : Union[str, Any] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0), 0 ) color_img.itemset((y, x, 1), 0 ) color_img.itemset((y, x, 2), 2_5_5 ) return color_img, corner_list if __name__ == "__main__": A_ : Optional[Any] = HarrisCorner(0.04, 3) A_, A_ : List[Any] = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
316
0
'''simple docstring''' def a_ ( _lowerCAmelCase ,_lowerCAmelCase ) -> Optional[Any]: __lowerCamelCase : Optional[int] = [1] for i in range(2 ,_lowerCAmelCase ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" __lowerCamelCase : Optional[int] = [] __lowerCamelCase : Optional[Any] = list(range(_lowerCAmelCase ) ) # Find permutation while factorials: __lowerCamelCase : Optional[int] = factorials.pop() __lowerCamelCase ,__lowerCamelCase : Union[str, Any] = divmod(_lowerCAmelCase ,_lowerCAmelCase ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
208
'''simple docstring''' from __future__ import annotations import math from collections.abc import Callable def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase = 100 ,) -> float: __lowerCamelCase : Dict = x_start __lowerCamelCase : int = fnc(_lowerCAmelCase ) __lowerCamelCase : Dict = 0.0 for _ in range(_lowerCAmelCase ): # Approximates curve as a sequence of linear lines and sums their length __lowerCamelCase : List[str] = (x_end - x_start) / steps + xa __lowerCamelCase : List[Any] = fnc(_lowerCAmelCase ) length += math.hypot(xa - xa ,fxa - fxa ) # Increment step __lowerCamelCase : Any = xa __lowerCamelCase : Tuple = fxa return length if __name__ == "__main__": def a_ ( _lowerCAmelCase ) -> Dict: return math.sin(10 * x ) print('f(x) = sin(10 * x)') print('The length of the curve from x = -10 to x = 10 is:') _UpperCamelCase = 10 while i <= 100000: print(f'''With {i} steps: {line_length(f, -10, 10, i)}''') i *= 10
208
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class A ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = tempfile.mkdtemp() # fmt: off lowerCAmelCase_ = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on lowerCAmelCase_ = dict(zip(UpperCamelCase__, range(len(UpperCamelCase__ ) ) ) ) lowerCAmelCase_ = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] lowerCAmelCase_ = {'''unk_token''': '''<unk>'''} lowerCAmelCase_ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCAmelCase_ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + '''\n''' ) with open(self.merges_file, '''w''', encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(UpperCamelCase__ ) ) lowerCAmelCase_ = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48_145_466, 0.4_578_275, 0.40_821_073], '''image_std''': [0.26_862_954, 0.26_130_258, 0.27_577_711], } lowerCAmelCase_ = os.path.join(self.tmpdirname, UpperCamelCase__ ) with open(self.image_processor_file, '''w''', encoding='''utf-8''' ) as fp: json.dump(UpperCamelCase__, UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, **UpperCamelCase__ ): """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname, **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, **UpperCamelCase__ ): """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, **UpperCamelCase__ ): """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname, **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta )] lowerCAmelCase_ = [Image.fromarray(np.moveaxis(UpperCamelCase__, 0, -1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = CLIPSegProcessor(tokenizer=UpperCamelCase__, image_processor=UpperCamelCase__ ) processor_slow.save_pretrained(self.tmpdirname ) lowerCAmelCase_ = CLIPSegProcessor.from_pretrained(self.tmpdirname, use_fast=UpperCamelCase__ ) lowerCAmelCase_ = CLIPSegProcessor(tokenizer=UpperCamelCase__, image_processor=UpperCamelCase__ ) processor_fast.save_pretrained(self.tmpdirname ) lowerCAmelCase_ = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer, UpperCamelCase__ ) self.assertIsInstance(processor_fast.tokenizer, UpperCamelCase__ ) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor, UpperCamelCase__ ) self.assertIsInstance(processor_fast.image_processor, UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = CLIPSegProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase_ = self.get_tokenizer(bos_token='''(BOS)''', eos_token='''(EOS)''' ) lowerCAmelCase_ = self.get_image_processor(do_normalize=UpperCamelCase__, padding_value=1.0 ) lowerCAmelCase_ = CLIPSegProcessor.from_pretrained( self.tmpdirname, bos_token='''(BOS)''', eos_token='''(EOS)''', do_normalize=UpperCamelCase__, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer, UpperCamelCase__ ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = CLIPSegProcessor(tokenizer=UpperCamelCase__, image_processor=UpperCamelCase__ ) lowerCAmelCase_ = self.prepare_image_inputs() lowerCAmelCase_ = image_processor(UpperCamelCase__, return_tensors='''np''' ) lowerCAmelCase_ = processor(images=UpperCamelCase__, return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1E-2 ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = CLIPSegProcessor(tokenizer=UpperCamelCase__, image_processor=UpperCamelCase__ ) lowerCAmelCase_ = '''lower newer''' lowerCAmelCase_ = processor(text=UpperCamelCase__ ) lowerCAmelCase_ = tokenizer(UpperCamelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = CLIPSegProcessor(tokenizer=UpperCamelCase__, image_processor=UpperCamelCase__ ) lowerCAmelCase_ = '''lower newer''' lowerCAmelCase_ = self.prepare_image_inputs() lowerCAmelCase_ = processor(text=UpperCamelCase__, images=UpperCamelCase__ ) self.assertListEqual(list(inputs.keys() ), ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase__ ): processor() def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = CLIPSegProcessor(tokenizer=UpperCamelCase__, image_processor=UpperCamelCase__ ) lowerCAmelCase_ = self.prepare_image_inputs() lowerCAmelCase_ = self.prepare_image_inputs() lowerCAmelCase_ = processor(images=UpperCamelCase__, visual_prompt=UpperCamelCase__ ) self.assertListEqual(list(inputs.keys() ), ['''pixel_values''', '''conditional_pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase__ ): processor() def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = CLIPSegProcessor(tokenizer=UpperCamelCase__, image_processor=UpperCamelCase__ ) lowerCAmelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase_ = processor.batch_decode(UpperCamelCase__ ) lowerCAmelCase_ = tokenizer.batch_decode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__, UpperCamelCase__ )
167
def __UpperCamelCase ( _A ): if length <= 0 or not isinstance(_A , _A ): raise ValueError('''Length must be a positive integer.''' ) return [n * (2 * n - 1) for n in range(_A )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
167
1
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class A_ : def __init__(self :Optional[int] , _UpperCamelCase :Optional[int] , _UpperCamelCase :int=13 , _UpperCamelCase :int=7 , _UpperCamelCase :List[str]=True , _UpperCamelCase :Optional[Any]=True , _UpperCamelCase :Union[str, Any]=True , _UpperCamelCase :int=True , _UpperCamelCase :List[Any]=99 , _UpperCamelCase :List[str]=32 , _UpperCamelCase :List[Any]=2 , _UpperCamelCase :Union[str, Any]=4 , _UpperCamelCase :int=37 , _UpperCamelCase :Optional[int]="gelu" , _UpperCamelCase :Union[str, Any]=0.1 , _UpperCamelCase :Tuple=0.1 , _UpperCamelCase :Optional[Any]=512 , _UpperCamelCase :Tuple=16 , _UpperCamelCase :Optional[int]=2 , _UpperCamelCase :Any=0.0_2 , _UpperCamelCase :List[str]=3 , _UpperCamelCase :Any=4 , _UpperCamelCase :List[Any]=None , )-> List[Any]: __A = parent __A = 13 __A = 7 __A = True __A = True __A = True __A = True __A = 99 __A = 384 __A = 2 __A = 4 __A = 37 __A = '''gelu''' __A = 0.1 __A = 0.1 __A = 512 __A = 16 __A = 2 __A = 0.0_2 __A = 3 __A = 4 __A = 128 __A = 2 __A = 9 __A = 1 __A = None def _lowerCAmelCase (self :Any )-> int: __A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __A = None if self.use_input_mask: __A = random_attention_mask([self.batch_size, self.seq_length] ) __A = None if self.use_token_type_ids: __A = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __A = None __A = None __A = None if self.use_labels: __A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __A = ids_tensor([self.batch_size] , self.num_choices ) __A = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_SCREAMING_SNAKE_CASE , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCAmelCase (self :Tuple , _UpperCamelCase :Any , _UpperCamelCase :str , _UpperCamelCase :Optional[Any] , _UpperCamelCase :List[str] , _UpperCamelCase :Tuple , _UpperCamelCase :Optional[Any] , _UpperCamelCase :str )-> int: __A = TFConvBertModel(config=_SCREAMING_SNAKE_CASE ) __A = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __A = [input_ids, input_mask] __A = model(_SCREAMING_SNAKE_CASE ) __A = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase (self :List[Any] , _UpperCamelCase :List[Any] , _UpperCamelCase :Dict , _UpperCamelCase :Optional[Any] , _UpperCamelCase :Optional[int] , _UpperCamelCase :Dict , _UpperCamelCase :Optional[Any] , _UpperCamelCase :List[Any] )-> List[Any]: __A = TFConvBertForMaskedLM(config=_SCREAMING_SNAKE_CASE ) __A = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __A = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCAmelCase (self :Optional[Any] , _UpperCamelCase :Optional[Any] , _UpperCamelCase :Optional[int] , _UpperCamelCase :List[str] , _UpperCamelCase :Optional[int] , _UpperCamelCase :Any , _UpperCamelCase :str , _UpperCamelCase :str )-> Optional[int]: __A = self.num_labels __A = TFConvBertForSequenceClassification(config=_SCREAMING_SNAKE_CASE ) __A = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __A = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCAmelCase (self :Tuple , _UpperCamelCase :List[str] , _UpperCamelCase :List[str] , _UpperCamelCase :int , _UpperCamelCase :Tuple , _UpperCamelCase :Optional[Any] , _UpperCamelCase :Dict , _UpperCamelCase :Optional[Any] )-> Optional[Any]: __A = self.num_choices __A = TFConvBertForMultipleChoice(config=_SCREAMING_SNAKE_CASE ) __A = tf.tile(tf.expand_dims(_SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) ) __A = tf.tile(tf.expand_dims(_SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) ) __A = tf.tile(tf.expand_dims(_SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) ) __A = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } __A = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCAmelCase (self :Dict , _UpperCamelCase :Union[str, Any] , _UpperCamelCase :Optional[Any] , _UpperCamelCase :str , _UpperCamelCase :List[str] , _UpperCamelCase :Tuple , _UpperCamelCase :Optional[Any] , _UpperCamelCase :List[str] )-> Any: __A = self.num_labels __A = TFConvBertForTokenClassification(config=_SCREAMING_SNAKE_CASE ) __A = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __A = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCAmelCase (self :Dict , _UpperCamelCase :List[Any] , _UpperCamelCase :Tuple , _UpperCamelCase :List[str] , _UpperCamelCase :List[Any] , _UpperCamelCase :Tuple , _UpperCamelCase :str , _UpperCamelCase :Optional[int] )-> Optional[int]: __A = TFConvBertForQuestionAnswering(config=_SCREAMING_SNAKE_CASE ) __A = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __A = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCAmelCase (self :List[str] )-> str: __A = self.prepare_config_and_inputs() ( ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ) = config_and_inputs __A = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class A_ ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): lowerCAmelCase__ = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase__ = ( { 'feature-extraction': TFConvBertModel, 'fill-mask': TFConvBertForMaskedLM, 'question-answering': TFConvBertForQuestionAnswering, 'text-classification': TFConvBertForSequenceClassification, 'token-classification': TFConvBertForTokenClassification, 'zero-shot': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def _lowerCAmelCase (self :Union[str, Any] )-> Optional[Any]: __A = TFConvBertModelTester(self ) __A = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def _lowerCAmelCase (self :Any )-> List[Any]: self.config_tester.run_common_tests() def _lowerCAmelCase (self :List[Any] )-> List[Any]: __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase (self :Union[str, Any] )-> List[Any]: __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase (self :Any )-> Union[str, Any]: __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase (self :List[Any] )-> int: __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase (self :Optional[Any] )-> Dict: __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase (self :int )-> Tuple: __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_SCREAMING_SNAKE_CASE ) @slow def _lowerCAmelCase (self :str )-> Optional[Any]: __A , __A = self.model_tester.prepare_config_and_inputs_for_common() __A = True __A = True if hasattr(_SCREAMING_SNAKE_CASE , '''use_cache''' ): __A = True __A = getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length ) __A = getattr(self.model_tester , '''key_length''' , _SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: __A = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __A = model_class(_SCREAMING_SNAKE_CASE ) __A = len(model(_SCREAMING_SNAKE_CASE ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_SCREAMING_SNAKE_CASE , saved_model=_SCREAMING_SNAKE_CASE ) __A = os.path.join(_SCREAMING_SNAKE_CASE , '''saved_model''' , '''1''' ) __A = tf.keras.models.load_model(_SCREAMING_SNAKE_CASE ) __A = model(_SCREAMING_SNAKE_CASE ) if self.is_encoder_decoder: __A = outputs['''encoder_hidden_states'''] __A = outputs['''encoder_attentions'''] else: __A = outputs['''hidden_states'''] __A = outputs['''attentions'''] self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) __A = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def _lowerCAmelCase (self :Dict )-> Any: __A = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase (self :Union[str, Any] )-> Optional[int]: __A , __A = self.model_tester.prepare_config_and_inputs_for_common() __A = True __A = getattr(self.model_tester , '''decoder_seq_length''' , self.model_tester.seq_length ) __A = getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length ) __A = getattr(self.model_tester , '''key_length''' , _SCREAMING_SNAKE_CASE ) __A = getattr(self.model_tester , '''key_length''' , _SCREAMING_SNAKE_CASE ) def check_decoder_attentions_output(_UpperCamelCase :List[Any] ): __A = len(_SCREAMING_SNAKE_CASE ) self.assertEqual(out_len % 2 , 0 ) __A = outputs.decoder_attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_UpperCamelCase :str ): __A = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __A = True __A = False __A = model_class(_SCREAMING_SNAKE_CASE ) __A = model(self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) __A = len(_SCREAMING_SNAKE_CASE ) self.assertEqual(config.output_hidden_states , _SCREAMING_SNAKE_CASE ) check_encoder_attentions_output(_SCREAMING_SNAKE_CASE ) if self.is_encoder_decoder: __A = model_class(_SCREAMING_SNAKE_CASE ) __A = model(self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) self.assertEqual(config.output_hidden_states , _SCREAMING_SNAKE_CASE ) check_decoder_attentions_output(_SCREAMING_SNAKE_CASE ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __A = True __A = model_class(_SCREAMING_SNAKE_CASE ) __A = model(self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) self.assertEqual(config.output_hidden_states , _SCREAMING_SNAKE_CASE ) check_encoder_attentions_output(_SCREAMING_SNAKE_CASE ) # Check attention is always last and order is fine __A = True __A = True __A = model_class(_SCREAMING_SNAKE_CASE ) __A = model(self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_SCREAMING_SNAKE_CASE ) ) self.assertEqual(model.config.output_hidden_states , _SCREAMING_SNAKE_CASE ) check_encoder_attentions_output(_SCREAMING_SNAKE_CASE ) @require_tf class A_ ( unittest.TestCase ): @slow def _lowerCAmelCase (self :Tuple )-> List[str]: __A = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) __A = tf.constant([[0, 1, 2, 3, 4, 5]] ) __A = model(_SCREAMING_SNAKE_CASE )[0] __A = [1, 6, 768] self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) __A = tf.constant( [ [ [-0.0_3_4_7_5_4_9_3, -0.4_6_8_6_0_3_4, -0.3_0_6_3_8_8_3_2], [0.2_2_6_3_7_2_4_8, -0.2_6_9_8_8_6_4_6, -0.7_4_2_3_4_2_4], [0.1_0_3_2_4_8_6_8, -0.4_5_0_1_3_5_0_8, -0.5_8_2_8_0_7_8_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 )
117
from collections.abc import Generator def lowerCAmelCase__ ( ) -> Generator[int, None, None]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = 0, 1 while True: _UpperCAmelCase , _UpperCAmelCase = b, a + b yield b def lowerCAmelCase__ ( a__: int = 1_0_0_0 ) -> int: '''simple docstring''' _UpperCAmelCase = 1 _UpperCAmelCase = fibonacci_generator() while len(str(next(a__ ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
329
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE_ ( __A : str , __A : List[str]=False ) -> str: """simple docstring""" a_ : Union[str, Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""deit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""deit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""deit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""deit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""deit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""deit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""deit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""deit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""deit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""deit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'deit.embeddings.cls_token'), ('dist_token', 'deit.embeddings.distillation_token'), ('patch_embed.proj.weight', 'deit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'deit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'deit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" a_ : List[str] = [(pair[0], pair[1][4:]) if pair[1].startswith('deit' ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ('norm.weight', 'deit.layernorm.weight'), ('norm.bias', 'deit.layernorm.bias'), ('head.weight', 'cls_classifier.weight'), ('head.bias', 'cls_classifier.bias'), ('head_dist.weight', 'distillation_classifier.weight'), ('head_dist.bias', 'distillation_classifier.bias'), ] ) return rename_keys def SCREAMING_SNAKE_CASE_ ( __A : str , __A : Optional[int] , __A : List[str]=False ) -> Optional[Any]: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: a_ : Any = '' else: a_ : List[Any] = 'deit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) a_ : int = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) a_ : Dict = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict a_ : List[str] = in_proj_weight[ : config.hidden_size, : ] a_ : Union[str, Any] = in_proj_bias[: config.hidden_size] a_ : Optional[int] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] a_ : Union[str, Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] a_ : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] a_ : List[Any] = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE_ ( __A : Optional[int] , __A : Union[str, Any] , __A : Optional[int] ) -> Union[str, Any]: """simple docstring""" a_ : Optional[Any] = dct.pop(__A ) a_ : List[str] = val def SCREAMING_SNAKE_CASE_ ( ) -> List[Any]: """simple docstring""" a_ : Union[str, Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' a_ : Dict = Image.open(requests.get(__A , stream=__A ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( __A : Optional[int] , __A : Union[str, Any] ) -> Dict: """simple docstring""" a_ : Optional[int] = DeiTConfig() # all deit models have fine-tuned heads a_ : List[str] = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size a_ : Optional[int] = 10_00 a_ : Dict = 'huggingface/label-files' a_ : Dict = 'imagenet-1k-id2label.json' a_ : List[Any] = json.load(open(hf_hub_download(__A , __A , repo_type='dataset' ) , 'r' ) ) a_ : Any = {int(__A ): v for k, v in idalabel.items()} a_ : List[Any] = idalabel a_ : Optional[int] = {v: k for k, v in idalabel.items()} a_ : List[Any] = int(deit_name[-6:-4] ) a_ : List[str] = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith('tiny' ): a_ : int = 1_92 a_ : Any = 7_68 a_ : Any = 12 a_ : Dict = 3 elif deit_name[9:].startswith('small' ): a_ : Tuple = 3_84 a_ : str = 15_36 a_ : Any = 12 a_ : Any = 6 if deit_name[9:].startswith('base' ): pass elif deit_name[4:].startswith('large' ): a_ : Union[str, Any] = 10_24 a_ : Optional[Any] = 40_96 a_ : Any = 24 a_ : int = 16 # load original model from timm a_ : Optional[int] = timm.create_model(__A , pretrained=__A ) timm_model.eval() # load state_dict of original model, remove and rename some keys a_ : Any = timm_model.state_dict() a_ : List[Any] = create_rename_keys(__A , __A ) for src, dest in rename_keys: rename_key(__A , __A , __A ) read_in_q_k_v(__A , __A , __A ) # load HuggingFace model a_ : Tuple = DeiTForImageClassificationWithTeacher(__A ).eval() model.load_state_dict(__A ) # Check outputs on an image, prepared by DeiTImageProcessor a_ : List[str] = int( (2_56 / 2_24) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 a_ : Tuple = DeiTImageProcessor(size=__A , crop_size=config.image_size ) a_ : Optional[Any] = image_processor(images=prepare_img() , return_tensors='pt' ) a_ : Any = encoding['pixel_values'] a_ : List[Any] = model(__A ) a_ : str = timm_model(__A ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__A , outputs.logits , atol=1e-3 ) Path(__A ).mkdir(exist_ok=__A ) print(F"""Saving model {deit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__A ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__A ) if __name__ == "__main__": UpperCAmelCase_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--deit_name', default='vit_deit_base_distilled_patch16_224', type=str, help='Name of the DeiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) UpperCAmelCase_ : Any = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
120
from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig UpperCAmelCase_ : Dict = [ 'openmmlab/upernet-convnext-tiny', # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring UpperCAmelCase_ : Dict = 'UperNetConfig' class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__( self : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[int, Tuple[int, int]] , SCREAMING_SNAKE_CASE__ : Union[int, Tuple[int, int], str] = 0 , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Union[int, Tuple[int, int]] = 1 , ) -> None: super().__init__() a_ : Dict = nn.Convad( in_channels=SCREAMING_SNAKE_CASE__ , out_channels=SCREAMING_SNAKE_CASE__ , kernel_size=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ , dilation=SCREAMING_SNAKE_CASE__ , ) a_ : List[str] = nn.BatchNormad(SCREAMING_SNAKE_CASE__ ) a_ : Tuple = nn.ReLU() def SCREAMING_SNAKE_CASE ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : torch.Tensor ) -> torch.Tensor: a_ : int = self.conv(SCREAMING_SNAKE_CASE__ ) a_ : Optional[int] = self.batch_norm(SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = self.activation(SCREAMING_SNAKE_CASE__ ) return output class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__( self : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> None: super().__init__() a_ : str = [ nn.AdaptiveAvgPoolad(SCREAMING_SNAKE_CASE__ ), UperNetConvModule(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Any , SCREAMING_SNAKE_CASE__ : torch.Tensor ) -> torch.Tensor: a_ : Optional[int] = input for layer in self.layers: a_ : int = layer(SCREAMING_SNAKE_CASE__ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : Tuple[int, ...] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : bool ) -> None: super().__init__() a_ : Tuple = pool_scales a_ : List[Any] = align_corners a_ : Tuple = in_channels a_ : Optional[Any] = channels a_ : Tuple = [] for i, pool_scale in enumerate(SCREAMING_SNAKE_CASE__ ): a_ : Optional[int] = UperNetPyramidPoolingBlock(pool_scale=SCREAMING_SNAKE_CASE__ , in_channels=SCREAMING_SNAKE_CASE__ , channels=SCREAMING_SNAKE_CASE__ ) self.blocks.append(SCREAMING_SNAKE_CASE__ ) self.add_module(str(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Any , SCREAMING_SNAKE_CASE__ : torch.Tensor ) -> List[torch.Tensor]: a_ : List[Any] = [] for ppm in self.blocks: a_ : List[Any] = ppm(SCREAMING_SNAKE_CASE__ ) a_ : str = nn.functional.interpolate( SCREAMING_SNAKE_CASE__ , size=x.size()[2:] , mode='bilinear' , align_corners=self.align_corners ) ppm_outs.append(SCREAMING_SNAKE_CASE__ ) return ppm_outs class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str ) -> Tuple: super().__init__() a_ : List[str] = config a_ : Optional[int] = config.pool_scales # e.g. (1, 2, 3, 6) a_ : int = in_channels a_ : Dict = config.hidden_size a_ : Optional[Any] = False a_ : Tuple = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module a_ : int = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) a_ : int = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module a_ : str = nn.ModuleList() a_ : Dict = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer a_ : str = UperNetConvModule(SCREAMING_SNAKE_CASE__ , self.channels , kernel_size=1 ) a_ : Union[str, Any] = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(SCREAMING_SNAKE_CASE__ ) self.fpn_convs.append(SCREAMING_SNAKE_CASE__ ) a_ : Optional[int] = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: self.apply(self._init_weights ) def SCREAMING_SNAKE_CASE ( self : List[str] , SCREAMING_SNAKE_CASE__ : Dict ) -> str: if isinstance(SCREAMING_SNAKE_CASE__ , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def SCREAMING_SNAKE_CASE ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Dict: a_ : Dict = inputs[-1] a_ : str = [x] psp_outs.extend(self.psp_modules(SCREAMING_SNAKE_CASE__ ) ) a_ : List[Any] = torch.cat(SCREAMING_SNAKE_CASE__ , dim=1 ) a_ : Dict = self.bottleneck(SCREAMING_SNAKE_CASE__ ) return output def SCREAMING_SNAKE_CASE ( self : str , SCREAMING_SNAKE_CASE__ : torch.Tensor ) -> torch.Tensor: # build laterals a_ : List[str] = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(SCREAMING_SNAKE_CASE__ ) ) # build top-down path a_ : List[str] = len(SCREAMING_SNAKE_CASE__ ) for i in range(used_backbone_levels - 1 , 0 , -1 ): a_ : Optional[Any] = laterals[i - 1].shape[2:] a_ : List[Any] = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=SCREAMING_SNAKE_CASE__ , mode='bilinear' , align_corners=self.align_corners ) # build outputs a_ : List[Any] = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): a_ : int = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode='bilinear' , align_corners=self.align_corners ) a_ : Optional[int] = torch.cat(SCREAMING_SNAKE_CASE__ , dim=1 ) a_ : Tuple = self.fpn_bottleneck(SCREAMING_SNAKE_CASE__ ) a_ : Dict = self.classifier(SCREAMING_SNAKE_CASE__ ) return output class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__( self : int , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : int = 3 , SCREAMING_SNAKE_CASE__ : Union[int, Tuple[int, int]] = 1 ) -> None: super().__init__() a_ : Optional[int] = config a_ : str = config.auxiliary_in_channels a_ : Optional[int] = config.auxiliary_channels a_ : List[str] = config.auxiliary_num_convs a_ : Dict = config.auxiliary_concat_input a_ : int = in_index a_ : List[Any] = (kernel_size // 2) * dilation a_ : List[Any] = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , dilation=SCREAMING_SNAKE_CASE__ ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , dilation=SCREAMING_SNAKE_CASE__ ) ) if self.num_convs == 0: a_ : Optional[int] = nn.Identity() else: a_ : int = nn.Sequential(*SCREAMING_SNAKE_CASE__ ) if self.concat_input: a_ : Union[str, Any] = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=SCREAMING_SNAKE_CASE__ , padding=kernel_size // 2 ) a_ : List[str] = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: self.apply(self._init_weights ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any ) -> List[str]: if isinstance(SCREAMING_SNAKE_CASE__ , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : torch.Tensor ) -> torch.Tensor: # just take the relevant feature maps a_ : Optional[int] = encoder_hidden_states[self.in_index] a_ : int = self.convs(SCREAMING_SNAKE_CASE__ ) if self.concat_input: a_ : Optional[Any] = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) a_ : Dict = self.classifier(SCREAMING_SNAKE_CASE__ ) return output class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : Any = UperNetConfig snake_case__ : Optional[int] = '''pixel_values''' snake_case__ : Optional[int] = True def SCREAMING_SNAKE_CASE ( self : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> str: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def SCREAMING_SNAKE_CASE ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int=False ) -> Any: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): a_ : Dict = value UpperCAmelCase_ : int = R'\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' UpperCAmelCase_ : Tuple = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( '''UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.''' , lowercase__ , ) class SCREAMING_SNAKE_CASE__ ( lowercase__ ): def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> str: super().__init__(SCREAMING_SNAKE_CASE__ ) a_ : List[str] = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) a_ : List[Any] = UperNetHead(SCREAMING_SNAKE_CASE__ , in_channels=self.backbone.channels ) a_ : Dict = UperNetFCNHead(SCREAMING_SNAKE_CASE__ ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('batch_size, sequence_length' ) ) @replace_return_docstrings(output_type=SCREAMING_SNAKE_CASE__ , config_class=_CONFIG_FOR_DOC ) def SCREAMING_SNAKE_CASE ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , ) -> Union[tuple, SemanticSegmenterOutput]: a_ : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict a_ : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a_ : int = output_attentions if output_attentions is not None else self.config.output_attentions a_ : str = self.backbone.forward_with_filtered_kwargs( SCREAMING_SNAKE_CASE__ , output_hidden_states=SCREAMING_SNAKE_CASE__ , output_attentions=SCREAMING_SNAKE_CASE__ ) a_ : Optional[int] = outputs.feature_maps a_ : Tuple = self.decode_head(SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = nn.functional.interpolate(SCREAMING_SNAKE_CASE__ , size=pixel_values.shape[2:] , mode='bilinear' , align_corners=SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = None if self.auxiliary_head is not None: a_ : Any = self.auxiliary_head(SCREAMING_SNAKE_CASE__ ) a_ : int = nn.functional.interpolate( SCREAMING_SNAKE_CASE__ , size=pixel_values.shape[2:] , mode='bilinear' , align_corners=SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = None if labels is not None: if self.config.num_labels == 1: raise ValueError('The number of labels should be greater than one' ) else: # compute weighted loss a_ : List[str] = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) a_ : Optional[Any] = loss_fct(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) a_ : str = loss_fct(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) a_ : str = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: a_ : Optional[Any] = (logits,) + outputs[1:] else: a_ : List[str] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=SCREAMING_SNAKE_CASE__ , logits=SCREAMING_SNAKE_CASE__ , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
120
1
"""simple docstring""" import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : Dict , _UpperCAmelCase : VQModel , _UpperCAmelCase : UNetaDModel , _UpperCAmelCase : DDIMScheduler ): super().__init__() self.register_modules(vqvae=_UpperCAmelCase , unet=_UpperCAmelCase , scheduler=_UpperCAmelCase ) @torch.no_grad() def __call__( self : Optional[int] , _UpperCAmelCase : int = 1 , _UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : int = 50 , _UpperCAmelCase : Optional[str] = "pil" , _UpperCAmelCase : bool = True , **_UpperCAmelCase : Dict , ): _A = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=_UpperCAmelCase , ) _A = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _A = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(_UpperCAmelCase ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature _A = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _A = {} if accepts_eta: _A = eta for t in self.progress_bar(self.scheduler.timesteps ): _A = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) # predict the noise residual _A = self.unet(_UpperCAmelCase , _UpperCAmelCase ).sample # compute the previous noisy sample x_t -> x_t-1 _A = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample # decode the image latents with the VAE _A = self.vqvae.decode(_UpperCAmelCase ).sample _A = (image / 2 + 0.5).clamp(0 , 1 ) _A = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _A = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_UpperCAmelCase )
315
"""simple docstring""" import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''', } class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : int = '''xlnet''' UpperCAmelCase : List[Any] = ['''mems'''] UpperCAmelCase : Any = { '''n_token''': '''vocab_size''', # Backward compatibility '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Union[str, Any] , _UpperCAmelCase : Dict=32_000 , _UpperCAmelCase : List[str]=1_024 , _UpperCAmelCase : Any=24 , _UpperCAmelCase : Union[str, Any]=16 , _UpperCAmelCase : Union[str, Any]=4_096 , _UpperCAmelCase : Tuple="gelu" , _UpperCAmelCase : Any=True , _UpperCAmelCase : str="bi" , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Optional[Any]=1E-1_2 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Any=512 , _UpperCAmelCase : Dict=None , _UpperCAmelCase : int=True , _UpperCAmelCase : int=False , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : int=-1 , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Union[str, Any]="last" , _UpperCAmelCase : int=True , _UpperCAmelCase : str="tanh" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Dict=5 , _UpperCAmelCase : Optional[Any]=5 , _UpperCAmelCase : Union[str, Any]=5 , _UpperCAmelCase : List[str]=1 , _UpperCAmelCase : Dict=2 , **_UpperCAmelCase : int , ): _A = vocab_size _A = d_model _A = n_layer _A = n_head if d_model % n_head != 0: raise ValueError(F'''\'d_model % n_head\' ({d_model % n_head}) should be equal to 0''' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F'''`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})''' ) _A = d_model // n_head _A = ff_activation _A = d_inner _A = untie_r _A = attn_type _A = initializer_range _A = layer_norm_eps _A = dropout _A = mem_len _A = reuse_len _A = bi_data _A = clamp_len _A = same_length _A = summary_type _A = summary_use_proj _A = summary_activation _A = summary_last_dropout _A = start_n_top _A = end_n_top _A = bos_token_id _A = pad_token_id _A = eos_token_id if "use_cache" in kwargs: warnings.warn( 'The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`' ' instead.' , _UpperCAmelCase , ) _A = kwargs['use_cache'] _A = use_mems_eval _A = use_mems_train super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) @property def lowerCAmelCase_ ( self : Tuple ): logger.info(F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Optional[Any] ): # Message copied from Transformer-XL documentation raise NotImplementedError( F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
315
1
import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib UpperCamelCase = threading.Lock() UpperCamelCase = None UpperCamelCase = { '''debug''': logging.DEBUG, '''info''': logging.INFO, '''warning''': logging.WARNING, '''error''': logging.ERROR, '''critical''': logging.CRITICAL, } UpperCamelCase = logging.WARNING UpperCamelCase = True def __lowerCamelCase ( ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE = os.getenv("""TRANSFORMERS_VERBOSITY""" ,snake_case__ ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F'Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, ' F'has to be one of: { ", ".join(log_levels.keys() ) }' ) return _default_log_level def __lowerCamelCase ( ) -> str: """simple docstring""" return __name__.split(""".""" )[0] def __lowerCamelCase ( ) -> logging.Logger: """simple docstring""" return logging.getLogger(_get_library_name() ) def __lowerCamelCase ( ) -> None: """simple docstring""" global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return _SCREAMING_SNAKE_CASE = logging.StreamHandler() # Set sys.stderr as stream. _SCREAMING_SNAKE_CASE = sys.stderr.flush # Apply our default configuration to the library root logger. _SCREAMING_SNAKE_CASE = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) _SCREAMING_SNAKE_CASE = False def __lowerCamelCase ( ) -> None: """simple docstring""" global _default_handler with _lock: if not _default_handler: return _SCREAMING_SNAKE_CASE = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) _SCREAMING_SNAKE_CASE = None def __lowerCamelCase ( ) -> Optional[int]: """simple docstring""" return log_levels def __lowerCamelCase ( snake_case__ = None ) -> logging.Logger: """simple docstring""" if name is None: _SCREAMING_SNAKE_CASE = _get_library_name() _configure_library_root_logger() return logging.getLogger(snake_case__ ) def __lowerCamelCase ( ) -> int: """simple docstring""" _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def __lowerCamelCase ( snake_case__ ) -> None: """simple docstring""" _configure_library_root_logger() _get_library_root_logger().setLevel(snake_case__ ) def __lowerCamelCase ( ) -> str: """simple docstring""" return set_verbosity(snake_case__ ) def __lowerCamelCase ( ) -> Dict: """simple docstring""" return set_verbosity(snake_case__ ) def __lowerCamelCase ( ) -> List[Any]: """simple docstring""" return set_verbosity(snake_case__ ) def __lowerCamelCase ( ) -> Optional[Any]: """simple docstring""" return set_verbosity(snake_case__ ) def __lowerCamelCase ( ) -> None: """simple docstring""" _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def __lowerCamelCase ( ) -> None: """simple docstring""" _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def __lowerCamelCase ( snake_case__ ) -> None: """simple docstring""" _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(snake_case__ ) def __lowerCamelCase ( snake_case__ ) -> None: """simple docstring""" _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(snake_case__ ) def __lowerCamelCase ( ) -> None: """simple docstring""" _configure_library_root_logger() _SCREAMING_SNAKE_CASE = False def __lowerCamelCase ( ) -> None: """simple docstring""" _configure_library_root_logger() _SCREAMING_SNAKE_CASE = True def __lowerCamelCase ( ) -> None: """simple docstring""" _SCREAMING_SNAKE_CASE = _get_library_root_logger().handlers for handler in handlers: _SCREAMING_SNAKE_CASE = logging.Formatter("""[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s""" ) handler.setFormatter(snake_case__ ) def __lowerCamelCase ( ) -> None: """simple docstring""" _SCREAMING_SNAKE_CASE = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(snake_case__ ) def __lowerCamelCase ( self ,*snake_case__ ,**snake_case__ ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = os.getenv("""TRANSFORMERS_NO_ADVISORY_WARNINGS""" ,snake_case__ ) if no_advisory_warnings: return self.warning(*snake_case__ ,**snake_case__ ) UpperCamelCase = warning_advice @functools.lru_cache(snake_case__ ) def __lowerCamelCase ( self ,*snake_case__ ,**snake_case__ ) -> str: """simple docstring""" self.warning(*snake_case__ ,**snake_case__ ) UpperCamelCase = warning_once class __UpperCAmelCase : def __init__( self: Optional[int] , *UpperCAmelCase_: Tuple , **UpperCAmelCase_: int ): # pylint: disable=unused-argument '''simple docstring''' _SCREAMING_SNAKE_CASE = args[0] if args else None def __iter__( self: Any ): '''simple docstring''' return iter(self._iterator ) def __getattr__( self: List[Any] , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' def empty_fn(*UpperCAmelCase_: Tuple , **UpperCAmelCase_: str ): # pylint: disable=unused-argument return return empty_fn def __enter__( self: str ): '''simple docstring''' return self def __exit__( self: Optional[int] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: str , UpperCAmelCase_: Optional[Any] ): '''simple docstring''' return class __UpperCAmelCase : def __call__( self: Tuple , *UpperCAmelCase_: List[Any] , **UpperCAmelCase_: int ): '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm(*UpperCAmelCase_ , **UpperCAmelCase_ ) else: return EmptyTqdm(*UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Union[str, Any] , *UpperCAmelCase_: Union[str, Any] , **UpperCAmelCase_: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm.get_lock() UpperCamelCase = _tqdm_cls() def __lowerCamelCase ( ) -> bool: """simple docstring""" global _tqdm_active return bool(_tqdm_active ) def __lowerCamelCase ( ) -> Optional[int]: """simple docstring""" global _tqdm_active _SCREAMING_SNAKE_CASE = True hf_hub_utils.enable_progress_bars() def __lowerCamelCase ( ) -> List[Any]: """simple docstring""" global _tqdm_active _SCREAMING_SNAKE_CASE = False hf_hub_utils.disable_progress_bars()
125
def __lowerCamelCase ( snake_case__ ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = len(snake_case__ ) for i in range(length - 1 ): _SCREAMING_SNAKE_CASE = i for k in range(i + 1 ,snake_case__ ): if collection[k] < collection[least]: _SCREAMING_SNAKE_CASE = k if least != i: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = (collection[i], collection[least]) return collection if __name__ == "__main__": UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase = [int(item) for item in user_input.split(''',''')] print(selection_sort(unsorted))
125
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase = { "configuration_altclip": [ "ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "AltCLIPConfig", "AltCLIPTextConfig", "AltCLIPVisionConfig", ], "processing_altclip": ["AltCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ "ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "AltCLIPPreTrainedModel", "AltCLIPModel", "AltCLIPTextModel", "AltCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys lowercase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
178
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable lowercase = {"configuration_gpt_neox": ["GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoXConfig"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ["GPTNeoXTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ "GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoXForCausalLM", "GPTNeoXForQuestionAnswering", "GPTNeoXForSequenceClassification", "GPTNeoXForTokenClassification", "GPTNeoXLayer", "GPTNeoXModel", "GPTNeoXPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys lowercase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
178
1
'''simple docstring''' import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowerCAmelCase: Union[str, Any] = logging.getLogger(__name__) lowerCAmelCase: Optional[Any] = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) lowerCAmelCase: Optional[int] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class a__: lowercase__ = field( default=lowerCamelCase__ , metadata={ """help""": ( """The model checkpoint for weights initialization. Leave None if you want to train a model from""" """ scratch.""" ) } , ) lowercase__ = field( default=lowerCamelCase__ , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(lowerCamelCase__ )} , ) lowercase__ = field( default=lowerCamelCase__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) lowercase__ = field( default=lowerCamelCase__ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) lowercase__ = field( default=lowerCamelCase__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class a__: lowercase__ = field( default=lowerCamelCase__ , metadata={"""help""": """The input training data file (a text file)."""} ) lowercase__ = field( default=lowerCamelCase__ , metadata={ """help""": ( """The input training data files (multiple files in glob format). """ """Very often splitting large files to smaller files can prevent tokenizer going out of memory""" ) } , ) lowercase__ = field( default=lowerCamelCase__ , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) lowercase__ = field( default=lowerCamelCase__ , metadata={"""help""": """An optional input train ref data file for whole word mask in Chinese."""} , ) lowercase__ = field( default=lowerCamelCase__ , metadata={"""help""": """An optional input eval ref data file for whole word mask in Chinese."""} , ) lowercase__ = field( default=lowerCamelCase__ , metadata={"""help""": """Whether distinct lines of text in the dataset are to be handled as distinct sequences."""} , ) lowercase__ = field( default=lowerCamelCase__ , metadata={"""help""": """Train with masked-language modeling loss instead of language modeling."""} ) lowercase__ = field(default=lowerCamelCase__ , metadata={"""help""": """Whether ot not to use whole word mask."""} ) lowercase__ = field( default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) lowercase__ = field( default=1 / 6 , metadata={ """help""": ( """Ratio of length of a span of masked tokens to surrounding context length for permutation language""" """ modeling.""" ) } , ) lowercase__ = field( default=5 , metadata={"""help""": """Maximum length of a span of masked tokens for permutation language modeling."""} ) lowercase__ = field( default=-1 , metadata={ """help""": ( """Optional input sequence length after tokenization.""" """The training dataset will be truncated in block of this size for training.""" """Default to the model max input length for single sentence inputs (take into account special tokens).""" ) } , ) lowercase__ = field( default=lowerCamelCase__ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def lowerCamelCase__ ( _A , _A , _A = False , _A = None , ): def _dataset(_A , _A=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('You need to set world whole masking and mlm to True for Chinese Whole Word Mask' ) return LineByLineWithRefDataset( tokenizer=_A , file_path=_A , block_size=args.block_size , ref_path=_A , ) return LineByLineTextDataset(tokenizer=_A , file_path=_A , block_size=args.block_size ) else: return TextDataset( tokenizer=_A , file_path=_A , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=_A , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(_A ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def lowerCamelCase__ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. a : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) a , a , a : Tuple = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( 'Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ' 'or remove the --do_eval argument.' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _A ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: a : Optional[Any] = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: a : List[Any] = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: a : Optional[int] = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.tokenizer_name: a : List[str] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: a : Optional[int] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another' ' script, save it,and load it from here, using --tokenizer_name' ) if model_args.model_name_or_path: a : List[Any] = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_A , cache_dir=model_args.cache_dir , ) else: logger.info('Training new model from scratch' ) a : List[str] = AutoModelWithLMHead.from_config(_A ) model.resize_token_embeddings(len(_A ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( 'BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the' '--mlm flag (masked language modeling).' ) if data_args.block_size <= 0: a : Optional[Any] = tokenizer.max_len # Our input block size will be the max possible for the model else: a : Any = min(data_args.block_size , tokenizer.max_len ) # Get datasets a : Union[str, Any] = ( get_dataset(_A , tokenizer=_A , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) a : str = ( get_dataset(_A , tokenizer=_A , evaluate=_A , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": a : int = DataCollatorForPermutationLanguageModeling( tokenizer=_A , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: a : int = DataCollatorForWholeWordMask( tokenizer=_A , mlm_probability=data_args.mlm_probability ) else: a : str = DataCollatorForLanguageModeling( tokenizer=_A , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer a : Optional[Any] = Trainer( model=_A , args=_A , data_collator=_A , train_dataset=_A , eval_dataset=_A , prediction_loss_only=_A , ) # Training if training_args.do_train: a : Optional[int] = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=_A ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation a : Any = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) a : List[str] = trainer.evaluate() a : Any = math.exp(eval_output['eval_loss'] ) a : Any = {'perplexity': perplexity} a : Union[str, Any] = os.path.join(training_args.output_dir , 'eval_results_lm.txt' ) if trainer.is_world_master(): with open(_A , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , _A , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) results.update(_A ) return results def lowerCamelCase__ ( _A ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
96
'''simple docstring''' import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class a__( lowerCamelCase__ , unittest.TestCase ): lowercase__ = BertJapaneseTokenizer lowercase__ = False lowercase__ = True def lowercase_ ( self : int ): super().setUp() a : List[Any] = [ '[UNK]', '[CLS]', '[SEP]', 'こんにちは', 'こん', 'にちは', 'ばんは', '##こん', '##にちは', '##ばんは', '世界', '##世界', '、', '##、', '。', '##。', ] a : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def lowercase_ ( self : Any , __snake_case : str ): a : Union[str, Any] = 'こんにちは、世界。 \nこんばんは、世界。' a : List[Any] = 'こんにちは 、 世界 。 こんばんは 、 世界 。' return input_text, output_text def lowercase_ ( self : Optional[Any] , __snake_case : Optional[Any] ): a , a : List[str] = self.get_input_output_texts(__snake_case ) a : Optional[int] = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) a : str = tokenizer.decode(__snake_case , clean_up_tokenization_spaces=__snake_case ) return text, ids def lowercase_ ( self : Optional[Any] ): pass # TODO add if relevant def lowercase_ ( self : List[Any] ): pass # TODO add if relevant def lowercase_ ( self : Dict ): pass # TODO add if relevant def lowercase_ ( self : List[Any] ): a : Optional[int] = self.tokenizer_class(self.vocab_file ) a : Optional[int] = tokenizer.tokenize('こんにちは、世界。\nこんばんは、世界。' ) self.assertListEqual(__snake_case , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) def lowercase_ ( self : Union[str, Any] ): a : Tuple = self.tokenizer_class(self.vocab_file , word_tokenizer_type='mecab' ) self.assertIsNotNone(__snake_case ) a : List[str] = 'こんにちは、世界。\nこんばんは、世界。' a : Tuple = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) a : Optional[int] = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(__snake_case , 'wb' ) as handle: pickle.dump(__snake_case , __snake_case ) with open(__snake_case , 'rb' ) as handle: a : Optional[Any] = pickle.load(__snake_case ) a : Tuple = tokenizer_new.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) def lowercase_ ( self : Dict ): a : List[str] = MecabTokenizer(mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def lowercase_ ( self : List[Any] ): try: a : int = MecabTokenizer(mecab_dic='unidic_lite' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def lowercase_ ( self : Any ): try: a : Union[str, Any] = MecabTokenizer(mecab_dic='unidic' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def lowercase_ ( self : str ): a : Tuple = MecabTokenizer(do_lower_case=__snake_case , mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iphone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def lowercase_ ( self : Union[str, Any] ): try: a : Any = MecabTokenizer( do_lower_case=__snake_case , normalize_text=__snake_case , mecab_option='-d /usr/local/lib/mecab/dic/jumandic' ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れた', '\u3000', '。'] , ) def lowercase_ ( self : List[Any] ): a : Dict = MecabTokenizer(normalize_text=__snake_case , mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', ' ', '。'] , ) @require_sudachi def lowercase_ ( self : str ): a : Optional[int] = self.tokenizer_class(self.vocab_file , word_tokenizer_type='sudachi' ) self.assertIsNotNone(__snake_case ) a : List[Any] = 'こんにちは、世界。\nこんばんは、世界。' a : int = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) a : Tuple = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(__snake_case , 'wb' ) as handle: pickle.dump(__snake_case , __snake_case ) with open(__snake_case , 'rb' ) as handle: a : Optional[int] = pickle.load(__snake_case ) a : List[Any] = tokenizer_new.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) @require_sudachi def lowercase_ ( self : List[Any] ): a : Optional[Any] = SudachiTokenizer(sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iPhone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', ' ', '。', ' ', ' '] , ) @require_sudachi def lowercase_ ( self : Any ): a : str = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='A' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国', '人', '参政', '権'] ) @require_sudachi def lowercase_ ( self : Optional[Any] ): a : Optional[int] = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='B' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国人', '参政権'] ) @require_sudachi def lowercase_ ( self : Optional[Any] ): a : Dict = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='C' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国人参政権'] ) @require_sudachi def lowercase_ ( self : Dict ): a : Optional[int] = SudachiTokenizer(do_lower_case=__snake_case , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iphone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', ' ', '。', ' ', ' '] , ) @require_sudachi def lowercase_ ( self : Tuple ): a : int = SudachiTokenizer(normalize_text=__snake_case , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iPhone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', '\u3000', '。', ' ', ' '] , ) @require_sudachi def lowercase_ ( self : Union[str, Any] ): a : List[str] = SudachiTokenizer(trim_whitespace=__snake_case , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) @require_jumanpp def lowercase_ ( self : List[Any] ): a : Optional[int] = self.tokenizer_class(self.vocab_file , word_tokenizer_type='jumanpp' ) self.assertIsNotNone(__snake_case ) a : str = 'こんにちは、世界。\nこんばんは、世界。' a : Tuple = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) a : Optional[Any] = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(__snake_case , 'wb' ) as handle: pickle.dump(__snake_case , __snake_case ) with open(__snake_case , 'rb' ) as handle: a : List[str] = pickle.load(__snake_case ) a : Any = tokenizer_new.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) @require_jumanpp def lowercase_ ( self : List[str] ): a : Any = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def lowercase_ ( self : List[str] ): a : List[Any] = JumanppTokenizer(do_lower_case=__snake_case ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iphone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def lowercase_ ( self : Any ): a : List[Any] = JumanppTokenizer(normalize_text=__snake_case ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['ア', 'ッ', 'フ', '゚', 'ル', 'ストア', 'で', 'iPhone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def lowercase_ ( self : Any ): a : str = JumanppTokenizer(trim_whitespace=__snake_case ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れた', '。'] , ) @require_jumanpp def lowercase_ ( self : Tuple ): a : int = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize('ありがとうございますm(_ _)m見つけるのが大変です。' ) , ['ありがとう', 'ございます', 'm(_ _)m', '見つける', 'の', 'が', '大変です', '。'] , ) def lowercase_ ( self : Any ): a : int = ['[UNK]', '[CLS]', '[SEP]', 'こんにちは', 'こん', 'にちは', 'ばんは', '##こん', '##にちは', '##ばんは'] a : Optional[int] = {} for i, token in enumerate(__snake_case ): a : Dict = i a : Optional[Any] = WordpieceTokenizer(vocab=__snake_case , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('こんにちは' ) , ['こんにちは'] ) self.assertListEqual(tokenizer.tokenize('こんばんは' ) , ['こん', '##ばんは'] ) self.assertListEqual(tokenizer.tokenize('こんばんは こんばんにちは こんにちは' ) , ['こん', '##ばんは', '[UNK]', 'こんにちは'] ) def lowercase_ ( self : Tuple ): a : List[Any] = BertJapaneseTokenizer.from_pretrained('nlp-waseda/roberta-base-japanese-with-auto-jumanpp' ) a : List[Any] = tokenizer.subword_tokenizer a : List[str] = subword_tokenizer.tokenize('国境 の 長い トンネル を 抜ける と 雪国 であった 。' ) self.assertListEqual(__snake_case , ['▁国境', '▁の', '▁長い', '▁トンネル', '▁を', '▁抜ける', '▁と', '▁雪', '国', '▁であった', '▁。'] ) a : Union[str, Any] = subword_tokenizer.tokenize('こんばんは こんばん にち は こんにちは' ) self.assertListEqual(__snake_case , ['▁こん', 'ばん', 'は', '▁こん', 'ばん', '▁に', 'ち', '▁は', '▁こんにちは'] ) def lowercase_ ( self : Union[str, Any] ): a : Optional[Any] = self.tokenizer_class.from_pretrained('cl-tohoku/bert-base-japanese' ) a : Dict = tokenizer.encode('ありがとう。' , add_special_tokens=__snake_case ) a : str = tokenizer.encode('どういたしまして。' , add_special_tokens=__snake_case ) a : Optional[int] = tokenizer.build_inputs_with_special_tokens(__snake_case ) a : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__snake_case , __snake_case ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class a__( lowerCamelCase__ , unittest.TestCase ): lowercase__ = BertJapaneseTokenizer lowercase__ = False def lowercase_ ( self : List[Any] ): super().setUp() a : List[Any] = ['[UNK]', '[CLS]', '[SEP]', 'こ', 'ん', 'に', 'ち', 'は', 'ば', '世', '界', '、', '。'] a : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def lowercase_ ( self : Optional[Any] , **__snake_case : List[Any] ): return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type='character' , **__snake_case ) def lowercase_ ( self : Tuple , __snake_case : List[str] ): a : int = 'こんにちは、世界。 \nこんばんは、世界。' a : Optional[Any] = 'こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。' return input_text, output_text def lowercase_ ( self : str ): pass # TODO add if relevant def lowercase_ ( self : List[str] ): pass # TODO add if relevant def lowercase_ ( self : Any ): pass # TODO add if relevant def lowercase_ ( self : Any ): a : Optional[int] = self.tokenizer_class(self.vocab_file , subword_tokenizer_type='character' ) a : Tuple = tokenizer.tokenize('こんにちは、世界。 \nこんばんは、世界。' ) self.assertListEqual( __snake_case , ['こ', 'ん', 'に', 'ち', 'は', '、', '世', '界', '。', 'こ', 'ん', 'ば', 'ん', 'は', '、', '世', '界', '。'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__snake_case ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def lowercase_ ( self : Any ): a : Union[str, Any] = ['[UNK]', '[CLS]', '[SEP]', 'こ', 'ん', 'に', 'ち', 'は', 'ば', '世', '界', '、', '。'] a : Optional[Any] = {} for i, token in enumerate(__snake_case ): a : Tuple = i a : Optional[int] = CharacterTokenizer(vocab=__snake_case , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('こんにちは' ) , ['こ', 'ん', 'に', 'ち', 'は'] ) self.assertListEqual(tokenizer.tokenize('こんにちほ' ) , ['こ', 'ん', 'に', 'ち', '[UNK]'] ) def lowercase_ ( self : Tuple ): a : List[Any] = self.tokenizer_class.from_pretrained('cl-tohoku/bert-base-japanese-char' ) a : Optional[int] = tokenizer.encode('ありがとう。' , add_special_tokens=__snake_case ) a : List[str] = tokenizer.encode('どういたしまして。' , add_special_tokens=__snake_case ) a : Optional[int] = tokenizer.build_inputs_with_special_tokens(__snake_case ) a : Dict = tokenizer.build_inputs_with_special_tokens(__snake_case , __snake_case ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class a__( unittest.TestCase ): def lowercase_ ( self : List[str] ): a : List[Any] = 'cl-tohoku/bert-base-japanese' a : Dict = AutoTokenizer.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) class a__( unittest.TestCase ): def lowercase_ ( self : Union[str, Any] ): a : List[str] = 'cl-tohoku/bert-base-japanese' with self.assertLogs('transformers' , level='WARNING' ) as cm: BertTokenizer.from_pretrained(__snake_case ) self.assertTrue( cm.records[0].message.startswith( 'The tokenizer class you load from this checkpoint is not the same type as the class this function' ' is called from.' ) ) a : Dict = 'bert-base-cased' with self.assertLogs('transformers' , level='WARNING' ) as cm: BertJapaneseTokenizer.from_pretrained(__snake_case ) self.assertTrue( cm.records[0].message.startswith( 'The tokenizer class you load from this checkpoint is not the same type as the class this function' ' is called from.' ) )
96
1
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Union[str, Any] = (DEISMultistepScheduler,) __lowerCamelCase : Union[str, Any] = (('''num_inference_steps''', 25),) def _snake_case ( self , **_lowerCAmelCase ) -> int: _lowerCAmelCase = { "num_train_timesteps": 1000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "solver_order": 2, } config.update(**__lowerCAmelCase ) return config def _snake_case ( self , _lowerCAmelCase=0 , **_lowerCAmelCase ) -> int: _lowerCAmelCase = dict(self.forward_default_kwargs ) _lowerCAmelCase = kwargs.pop("num_inference_steps" , __lowerCAmelCase ) _lowerCAmelCase = self.dummy_sample _lowerCAmelCase = 0.1 * sample _lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _lowerCAmelCase = self.get_scheduler_config(**__lowerCAmelCase ) _lowerCAmelCase = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(__lowerCAmelCase ) # copy over dummy past residuals _lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowerCAmelCase ) _lowerCAmelCase = scheduler_class.from_pretrained(__lowerCAmelCase ) new_scheduler.set_timesteps(__lowerCAmelCase ) # copy over dummy past residuals _lowerCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase , _lowerCAmelCase = sample, sample for t in range(__lowerCAmelCase , time_step + scheduler.config.solver_order + 1 ): _lowerCAmelCase = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample _lowerCAmelCase = new_scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _snake_case ( self ) -> List[Any]: pass def _snake_case ( self , _lowerCAmelCase=0 , **_lowerCAmelCase ) -> Dict: _lowerCAmelCase = dict(self.forward_default_kwargs ) _lowerCAmelCase = kwargs.pop("num_inference_steps" , __lowerCAmelCase ) _lowerCAmelCase = self.dummy_sample _lowerCAmelCase = 0.1 * sample _lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(__lowerCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) _lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowerCAmelCase ) _lowerCAmelCase = scheduler_class.from_pretrained(__lowerCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(__lowerCAmelCase ) # copy over dummy past residual (must be after setting timesteps) _lowerCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample _lowerCAmelCase = new_scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _snake_case ( self , _lowerCAmelCase=None , **_lowerCAmelCase ) -> Any: if scheduler is None: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(**__lowerCAmelCase ) _lowerCAmelCase = scheduler_class(**__lowerCAmelCase ) _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(**__lowerCAmelCase ) _lowerCAmelCase = scheduler_class(**__lowerCAmelCase ) _lowerCAmelCase = 10 _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(__lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase = model(__lowerCAmelCase , __lowerCAmelCase ) _lowerCAmelCase = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ).prev_sample return sample def _snake_case ( self ) -> Any: _lowerCAmelCase = dict(self.forward_default_kwargs ) _lowerCAmelCase = kwargs.pop("num_inference_steps" , __lowerCAmelCase ) for scheduler_class in self.scheduler_classes: _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**__lowerCAmelCase ) _lowerCAmelCase = self.dummy_sample _lowerCAmelCase = 0.1 * sample if num_inference_steps is not None and hasattr(__lowerCAmelCase , "set_timesteps" ): scheduler.set_timesteps(__lowerCAmelCase ) elif num_inference_steps is not None and not hasattr(__lowerCAmelCase , "set_timesteps" ): _lowerCAmelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] _lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] _lowerCAmelCase = scheduler.timesteps[5] _lowerCAmelCase = scheduler.timesteps[6] _lowerCAmelCase = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample _lowerCAmelCase = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _snake_case ( self ) -> Tuple: _lowerCAmelCase = DEISMultistepScheduler(**self.get_scheduler_config() ) _lowerCAmelCase = self.full_loop(scheduler=__lowerCAmelCase ) _lowerCAmelCase = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_mean.item() - 0.23916 ) < 1E-3 _lowerCAmelCase = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _lowerCAmelCase = DPMSolverMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase = UniPCMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase = DEISMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase = self.full_loop(scheduler=__lowerCAmelCase ) _lowerCAmelCase = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_mean.item() - 0.23916 ) < 1E-3 def _snake_case ( self ) -> List[Any]: for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=__lowerCAmelCase ) def _snake_case ( self ) -> int: self.check_over_configs(thresholding=__lowerCAmelCase ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=__lowerCAmelCase , prediction_type=__lowerCAmelCase , sample_max_value=__lowerCAmelCase , algorithm_type="deis" , solver_order=__lowerCAmelCase , solver_type=__lowerCAmelCase , ) def _snake_case ( self ) -> Optional[Any]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCAmelCase ) def _snake_case ( self ) -> Any: for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=__lowerCAmelCase , solver_type=__lowerCAmelCase , prediction_type=__lowerCAmelCase , algorithm_type=__lowerCAmelCase , ) _lowerCAmelCase = self.full_loop( solver_order=__lowerCAmelCase , solver_type=__lowerCAmelCase , prediction_type=__lowerCAmelCase , algorithm_type=__lowerCAmelCase , ) assert not torch.isnan(__lowerCAmelCase ).any(), "Samples have nan numbers" def _snake_case ( self ) -> Any: self.check_over_configs(lower_order_final=__lowerCAmelCase ) self.check_over_configs(lower_order_final=__lowerCAmelCase ) def _snake_case ( self ) -> Union[str, Any]: for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=__lowerCAmelCase , time_step=0 ) def _snake_case ( self ) -> Optional[Any]: _lowerCAmelCase = self.full_loop() _lowerCAmelCase = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_mean.item() - 0.23916 ) < 1E-3 def _snake_case ( self ) -> Dict: _lowerCAmelCase = self.full_loop(prediction_type="v_prediction" ) _lowerCAmelCase = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_mean.item() - 0.091 ) < 1E-3 def _snake_case ( self ) -> int: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(thresholding=__lowerCAmelCase , dynamic_thresholding_ratio=0 ) _lowerCAmelCase = scheduler_class(**__lowerCAmelCase ) _lowerCAmelCase = 10 _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter.half() scheduler.set_timesteps(__lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase = model(__lowerCAmelCase , __lowerCAmelCase ) _lowerCAmelCase = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ).prev_sample assert sample.dtype == torch.floataa
158
from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean A : str = 0 A : Any = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] A : Dict = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right A : Union[str, Any] = tuple[int, int] class A : '''simple docstring''' def __init__( self : int , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : Node | None , ) -> None: """simple docstring""" A__ = pos_x A__ = pos_y A__ = (pos_y, pos_x) A__ = goal_x A__ = goal_y A__ = g_cost A__ = parent A__ = self.calculate_heuristic() A__ = self.g_cost + self.h_cost def a_ ( self : Dict ) -> float: """simple docstring""" A__ = self.pos_x - self.goal_x A__ = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(__lowerCAmelCase ) + abs(__lowerCAmelCase ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self : int , __lowerCAmelCase : Node ) -> bool: """simple docstring""" return self.f_cost < other.f_cost class A : '''simple docstring''' def __init__( self : Union[str, Any] , __lowerCAmelCase : TPosition , __lowerCAmelCase : TPosition ) -> Tuple: """simple docstring""" A__ = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , __lowerCAmelCase ) A__ = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_99_99 , __lowerCAmelCase ) A__ = [self.start] A__ = [] A__ = False def a_ ( self : List[str] ) -> list[TPosition]: """simple docstring""" while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() A__ = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(__lowerCAmelCase ) self.closed_nodes.append(__lowerCAmelCase ) A__ = self.get_successors(__lowerCAmelCase ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(__lowerCAmelCase ) else: # retrieve the best current path A__ = self.open_nodes.pop(self.open_nodes.index(__lowerCAmelCase ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(__lowerCAmelCase ) else: self.open_nodes.append(__lowerCAmelCase ) return [self.start.pos] def a_ ( self : Optional[Any] , __lowerCAmelCase : Node ) -> list[Node]: """simple docstring""" A__ = [] for action in delta: A__ = parent.pos_x + action[1] A__ = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__lowerCAmelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( __lowerCAmelCase , __lowerCAmelCase , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , __lowerCAmelCase , ) ) return successors def a_ ( self : List[Any] , __lowerCAmelCase : Node | None ) -> list[TPosition]: """simple docstring""" A__ = node A__ = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) A__ = current_node.parent path.reverse() return path class A : '''simple docstring''' def __init__( self : Optional[Any] , __lowerCAmelCase : TPosition , __lowerCAmelCase : TPosition ) -> None: """simple docstring""" A__ = AStar(__lowerCAmelCase , __lowerCAmelCase ) A__ = AStar(__lowerCAmelCase , __lowerCAmelCase ) A__ = False def a_ ( self : int ) -> list[TPosition]: """simple docstring""" while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() A__ = self.fwd_astar.open_nodes.pop(0 ) A__ = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( __lowerCAmelCase , __lowerCAmelCase ) self.fwd_astar.closed_nodes.append(__lowerCAmelCase ) self.bwd_astar.closed_nodes.append(__lowerCAmelCase ) A__ = current_bwd_node A__ = current_fwd_node A__ = { self.fwd_astar: self.fwd_astar.get_successors(__lowerCAmelCase ), self.bwd_astar: self.bwd_astar.get_successors(__lowerCAmelCase ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(__lowerCAmelCase ) else: # retrieve the best current path A__ = astar.open_nodes.pop( astar.open_nodes.index(__lowerCAmelCase ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(__lowerCAmelCase ) else: astar.open_nodes.append(__lowerCAmelCase ) return [self.fwd_astar.start.pos] def a_ ( self : List[str] , __lowerCAmelCase : Node , __lowerCAmelCase : Node ) -> list[TPosition]: """simple docstring""" A__ = self.fwd_astar.retrace_path(__lowerCAmelCase ) A__ = self.bwd_astar.retrace_path(__lowerCAmelCase ) bwd_path.pop() bwd_path.reverse() A__ = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] A : Optional[int] = (0, 0) A : int = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) A : Dict = time.time() A : Optional[Any] = AStar(init, goal) A : Optional[int] = a_star.search() A : Optional[int] = time.time() - start_time print(F'''AStar execution time = {end_time:f} seconds''') A : Dict = time.time() A : Tuple = BidirectionalAStar(init, goal) A : List[Any] = time.time() - bd_start_time print(F'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
274
0
"""simple docstring""" from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) __lowercase = 299_792_458 # Symbols __lowercase , __lowercase , __lowercase , __lowercase = symbols('''ct x y z''') def lowerCAmelCase (__UpperCamelCase : float ): """simple docstring""" if velocity > c: raise ValueError('''Speed must not exceed light speed 299,792,458 [m/s]!''' ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError('''Speed must be greater than or equal to 1!''' ) return velocity / c def lowerCAmelCase (__UpperCamelCase : float ): """simple docstring""" return 1 / sqrt(1 - beta(__UpperCamelCase ) ** 2 ) def lowerCAmelCase (__UpperCamelCase : float ): """simple docstring""" return np.array( [ [gamma(__UpperCamelCase ), -gamma(__UpperCamelCase ) * beta(__UpperCamelCase ), 0, 0], [-gamma(__UpperCamelCase ) * beta(__UpperCamelCase ), gamma(__UpperCamelCase ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def lowerCAmelCase (__UpperCamelCase : float , __UpperCamelCase : np.ndarray | None = None ): """simple docstring""" if event is None: __UpperCamelCase =np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(__UpperCamelCase ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: __lowercase = transform(29_979_245) print('''Example of four vector: ''') print(f'''ct\' = {four_vector[0]}''') print(f'''x\' = {four_vector[1]}''') print(f'''y\' = {four_vector[2]}''') print(f'''z\' = {four_vector[3]}''') # Substitute symbols with numerical values __lowercase = {ct: c, x: 1, y: 1, z: 1} __lowercase = [four_vector[i].subs(sub_dict) for i in range(4)] print(f'''\n{numerical_vector}''')
85
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowercase = { '''configuration_conditional_detr''': [ '''CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConditionalDetrConfig''', '''ConditionalDetrOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = ['''ConditionalDetrFeatureExtractor'''] __lowercase = ['''ConditionalDetrImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConditionalDetrForObjectDetection''', '''ConditionalDetrForSegmentation''', '''ConditionalDetrModel''', '''ConditionalDetrPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
85
1
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class a : def __init__( self :Optional[int] ,__lowercase :Dict ,__lowercase :Optional[int]=1_3 ,__lowercase :Tuple=7 ,__lowercase :Optional[Any]=False ,__lowercase :Dict=True ,__lowercase :Any=False ,__lowercase :str=False ,__lowercase :Tuple=1_9 ,__lowercase :int=3_2 ,__lowercase :List[str]=5 ,__lowercase :int=4 ,__lowercase :str=3_7 ,__lowercase :Union[str, Any]="gelu" ,__lowercase :List[Any]=0.1 ,__lowercase :List[Any]=0.1 ,__lowercase :str=5_1_2 ,__lowercase :Any=1_6 ,__lowercase :Union[str, Any]=2 ,__lowercase :int=0.02 ,__lowercase :int=3 ,__lowercase :List[str]=4 ,__lowercase :Any=None ,): snake_case__ : str = parent snake_case__ : Any = batch_size snake_case__ : Dict = seq_length snake_case__ : Tuple = is_training snake_case__ : List[str] = use_input_mask snake_case__ : Any = use_token_type_ids snake_case__ : Union[str, Any] = use_labels snake_case__ : List[str] = vocab_size snake_case__ : Dict = hidden_size snake_case__ : Union[str, Any] = num_hidden_layers snake_case__ : Any = num_attention_heads snake_case__ : Optional[Any] = intermediate_size snake_case__ : int = hidden_act snake_case__ : List[str] = hidden_dropout_prob snake_case__ : str = attention_probs_dropout_prob snake_case__ : Tuple = max_position_embeddings snake_case__ : List[str] = type_vocab_size snake_case__ : Optional[int] = type_sequence_label_size snake_case__ : Tuple = initializer_range snake_case__ : int = num_labels snake_case__ : str = num_choices snake_case__ : int = scope def __lowerCamelCase ( self :int ): snake_case__ : Tuple = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) snake_case__ : int = None if self.use_input_mask: snake_case__ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ : Optional[Any] = None snake_case__ : Optional[int] = None snake_case__ : Optional[int] = None if self.use_labels: snake_case__ : List[str] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) snake_case__ : List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) snake_case__ : Any = ids_tensor([self.batch_size] ,self.num_choices ) snake_case__ : Tuple = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCamelCase ( self :Optional[int] ): snake_case__ : Optional[int] = EsmConfig( vocab_size=3_3 ,hidden_size=self.hidden_size ,pad_token_id=1 ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,is_folding_model=__lowercase ,esmfold_config={'''trunk''': {'''num_blocks''': 2}, '''fp16_esm''': False} ,) return config def __lowerCamelCase ( self :Any ,__lowercase :Union[str, Any] ,__lowercase :List[Any] ,__lowercase :Tuple ,__lowercase :Optional[Any] ,__lowercase :Union[str, Any] ,__lowercase :Optional[int] ): snake_case__ : List[str] = EsmForProteinFolding(config=__lowercase ).float() model.to(__lowercase ) model.eval() snake_case__ : Dict = model(__lowercase ,attention_mask=__lowercase ) snake_case__ : int = model(__lowercase ) snake_case__ : List[Any] = model(__lowercase ) self.parent.assertEqual(result.positions.shape ,(8, self.batch_size, self.seq_length, 1_4, 3) ) self.parent.assertEqual(result.angles.shape ,(8, self.batch_size, self.seq_length, 7, 2) ) def __lowerCamelCase ( self :List[Any] ): snake_case__ : List[str] = self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) : str = config_and_inputs snake_case__ : Union[str, Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class a ( A__ , A__ , unittest.TestCase ): __lowerCAmelCase : Any = False __lowerCAmelCase : Any = (EsmForProteinFolding,) if is_torch_available() else () __lowerCAmelCase : Any = () __lowerCAmelCase : List[Any] = {} if is_torch_available() else {} __lowerCAmelCase : Optional[int] = False def __lowerCamelCase ( self :Tuple ): snake_case__ : Any = EsmFoldModelTester(self ) snake_case__ : str = ConfigTester(self ,config_class=__lowercase ,hidden_size=3_7 ) def __lowerCamelCase ( self :List[str] ): self.config_tester.run_common_tests() def __lowerCamelCase ( self :List[Any] ): snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) @unittest.skip('''Does not support attention outputs''' ) def __lowerCamelCase ( self :Optional[Any] ): pass @unittest.skip def __lowerCamelCase ( self :Optional[int] ): pass @unittest.skip('''Esm does not support embedding resizing''' ) def __lowerCamelCase ( self :Optional[int] ): pass @unittest.skip('''Esm does not support embedding resizing''' ) def __lowerCamelCase ( self :List[Any] ): pass @unittest.skip('''ESMFold does not support passing input embeds!''' ) def __lowerCamelCase ( self :Tuple ): pass @unittest.skip('''ESMFold does not support head pruning.''' ) def __lowerCamelCase ( self :Tuple ): pass @unittest.skip('''ESMFold does not support head pruning.''' ) def __lowerCamelCase ( self :Dict ): pass @unittest.skip('''ESMFold does not support head pruning.''' ) def __lowerCamelCase ( self :int ): pass @unittest.skip('''ESMFold does not support head pruning.''' ) def __lowerCamelCase ( self :Any ): pass @unittest.skip('''ESMFold does not support head pruning.''' ) def __lowerCamelCase ( self :Any ): pass @unittest.skip('''ESMFold does not output hidden states in the normal way.''' ) def __lowerCamelCase ( self :Optional[Any] ): pass @unittest.skip('''ESMfold does not output hidden states in the normal way.''' ) def __lowerCamelCase ( self :Dict ): pass @unittest.skip('''ESMFold only has one output format.''' ) def __lowerCamelCase ( self :Tuple ): pass @unittest.skip('''This test doesn\'t work for ESMFold and doesn\'t test core functionality''' ) def __lowerCamelCase ( self :Optional[Any] ): pass @unittest.skip('''ESMFold does not support input chunking.''' ) def __lowerCamelCase ( self :Optional[int] ): pass @unittest.skip('''ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.''' ) def __lowerCamelCase ( self :Union[str, Any] ): pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def __lowerCamelCase ( self :Tuple ): pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def __lowerCamelCase ( self :List[Any] ): pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def __lowerCamelCase ( self :Optional[Any] ): pass @unittest.skip('''ESMFold doesn\'t support data parallel.''' ) def __lowerCamelCase ( self :Any ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowerCamelCase ( self :Any ): pass @require_torch class a ( A__ ): @slow def __lowerCamelCase ( self :Optional[int] ): snake_case__ : Union[str, Any] = EsmForProteinFolding.from_pretrained('''facebook/esmfold_v1''' ).float() model.eval() snake_case__ : Optional[int] = torch.tensor([[0, 6, 4, 1_3, 5, 4, 1_6, 1_2, 1_1, 7, 2]] ) snake_case__ : List[str] = model(__lowercase )['''positions'''] snake_case__ : str = torch.tensor([2.5828, 0.7993, -10.9334] ,dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] ,__lowercase ,atol=1e-4 ) )
230
from math import asin, atan, cos, radians, sin, sqrt, tan A__ : Optional[int] = 637_8137.0 A__ : List[str] = 635_6752.31_4245 A__ : Union[str, Any] = 6_37_81_37 def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = (AXIS_A - AXIS_B) / AXIS_A lowercase__ = atan((1 - flattening) * tan(radians(lowerCamelCase_ ) ) ) lowercase__ = atan((1 - flattening) * tan(radians(lowerCamelCase_ ) ) ) lowercase__ = radians(lowerCamelCase_ ) lowercase__ = radians(lowerCamelCase_ ) # Equation lowercase__ = sin((phi_a - phi_a) / 2 ) lowercase__ = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda lowercase__ = sqrt(sin_sq_phi + (cos(lowerCamelCase_ ) * cos(lowerCamelCase_ ) * sin_sq_lambda) ) return 2 * RADIUS * asin(lowerCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
207
0
import math from datetime import datetime, timedelta def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = year % 19 SCREAMING_SNAKE_CASE_ = year % 4 SCREAMING_SNAKE_CASE_ = year % 7 SCREAMING_SNAKE_CASE_ = math.floor(year / 1_00 ) SCREAMING_SNAKE_CASE_ = math.floor((13 + 8 * leap_day_inhibits) / 25 ) SCREAMING_SNAKE_CASE_ = leap_day_inhibits / 4 SCREAMING_SNAKE_CASE_ = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 SCREAMING_SNAKE_CASE_ = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 SCREAMING_SNAKE_CASE_ = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon SCREAMING_SNAKE_CASE_ = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(__lowerCamelCase, 4, 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(__lowerCamelCase, 4, 18 ) else: return datetime(__lowerCamelCase, 3, 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (19_94, 20_00, 20_10, 20_21, 20_23): __UpperCAmelCase = "will be" if year > datetime.now().year else "was" print(F"""Easter in {year} {tense} {gauss_easter(year)}""")
371
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py __UpperCAmelCase = "\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n" __UpperCAmelCase = "\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n" __UpperCAmelCase = "\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n 'bleu': bleu score,\n 'precisions': geometric mean of n-gram precisions,\n 'brevity_penalty': brevity penalty,\n 'length_ratio': ratio of lengths,\n 'translation_length': translation_length,\n 'reference_length': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): """simple docstring""" def _UpperCamelCase ( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def _UpperCamelCase ( self , _A , _A , _A=4 , _A=False ) -> List[str]: SCREAMING_SNAKE_CASE_ = compute_bleu( reference_corpus=_A , translation_corpus=_A , max_order=_A , smooth=_A ) ((SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_)) = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
257
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "megatron-bert" def __init__( self : int , lowercase_ : int=29056 , lowercase_ : Dict=1024 , lowercase_ : Optional[Any]=24 , lowercase_ : Union[str, Any]=16 , lowercase_ : Optional[int]=4096 , lowercase_ : Union[str, Any]="gelu" , lowercase_ : List[str]=0.1 , lowercase_ : Optional[Any]=0.1 , lowercase_ : int=512 , lowercase_ : Optional[Any]=2 , lowercase_ : Union[str, Any]=0.02 , lowercase_ : Optional[Any]=1e-12 , lowercase_ : Optional[Any]=0 , lowercase_ : Dict="absolute" , lowercase_ : Any=True , **lowercase_ : List[str] , ): '''simple docstring''' super().__init__(pad_token_id=lowercase_ , **lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = vocab_size SCREAMING_SNAKE_CASE_ : List[str] = hidden_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE_ : Any = num_attention_heads SCREAMING_SNAKE_CASE_ : str = hidden_act SCREAMING_SNAKE_CASE_ : Tuple = intermediate_size SCREAMING_SNAKE_CASE_ : int = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Tuple = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Dict = max_position_embeddings SCREAMING_SNAKE_CASE_ : Optional[int] = type_vocab_size SCREAMING_SNAKE_CASE_ : Optional[int] = initializer_range SCREAMING_SNAKE_CASE_ : Optional[int] = layer_norm_eps SCREAMING_SNAKE_CASE_ : Any = position_embedding_type SCREAMING_SNAKE_CASE_ : Union[str, Any] = use_cache
91
"""simple docstring""" import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = (PNDMScheduler,) __UpperCamelCase = (("num_inference_steps", 5_0),) def _SCREAMING_SNAKE_CASE ( self : Any , **lowercase_ : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = { '''num_train_timesteps''': 1000, '''beta_start''': 0.00_01, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**lowercase_) return config def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowercase_ : List[str]=0 , **lowercase_ : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = dict(self.forward_default_kwargs) SCREAMING_SNAKE_CASE_ : List[str] = kwargs.pop('''num_inference_steps''' , lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = self.dummy_sample SCREAMING_SNAKE_CASE_ : List[Any] = 0.1 * sample SCREAMING_SNAKE_CASE_ : Dict = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE_ : Tuple = self.get_scheduler_config(**lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = scheduler_class(**lowercase_) scheduler.set_timesteps(lowercase_) # copy over dummy past residuals SCREAMING_SNAKE_CASE_ : Dict = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = scheduler_class.from_pretrained(lowercase_) new_scheduler.set_timesteps(lowercase_) # copy over dummy past residuals SCREAMING_SNAKE_CASE_ : Optional[Any] = dummy_past_residuals[:] SCREAMING_SNAKE_CASE_ : Optional[Any] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_).prev_sample SCREAMING_SNAKE_CASE_ : Optional[Any] = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" SCREAMING_SNAKE_CASE_ : List[str] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_).prev_sample SCREAMING_SNAKE_CASE_ : Dict = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowercase_ : List[str]=0 , **lowercase_ : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = dict(self.forward_default_kwargs) SCREAMING_SNAKE_CASE_ : Optional[Any] = kwargs.pop('''num_inference_steps''' , lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = self.dummy_sample SCREAMING_SNAKE_CASE_ : Optional[Any] = 0.1 * sample SCREAMING_SNAKE_CASE_ : int = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE_ : Dict = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ : Union[str, Any] = scheduler_class(**lowercase_) scheduler.set_timesteps(lowercase_) # copy over dummy past residuals (must be after setting timesteps) SCREAMING_SNAKE_CASE_ : Dict = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_) SCREAMING_SNAKE_CASE_ : str = scheduler_class.from_pretrained(lowercase_) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase_) # copy over dummy past residual (must be after setting timesteps) SCREAMING_SNAKE_CASE_ : Any = dummy_past_residuals[:] SCREAMING_SNAKE_CASE_ : Optional[int] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_).prev_sample SCREAMING_SNAKE_CASE_ : Optional[Any] = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" SCREAMING_SNAKE_CASE_ : List[str] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_).prev_sample SCREAMING_SNAKE_CASE_ : Tuple = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def _SCREAMING_SNAKE_CASE ( self : str , **lowercase_ : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_scheduler_config(**lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = scheduler_class(**lowercase_) SCREAMING_SNAKE_CASE_ : Dict = 10 SCREAMING_SNAKE_CASE_ : List[Any] = self.dummy_model() SCREAMING_SNAKE_CASE_ : str = self.dummy_sample_deter scheduler.set_timesteps(lowercase_) for i, t in enumerate(scheduler.prk_timesteps): SCREAMING_SNAKE_CASE_ : Optional[Any] = model(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : str = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_).prev_sample for i, t in enumerate(scheduler.plms_timesteps): SCREAMING_SNAKE_CASE_ : List[Any] = model(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_).prev_sample return sample def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = dict(self.forward_default_kwargs) SCREAMING_SNAKE_CASE_ : Dict = kwargs.pop('''num_inference_steps''' , lowercase_) for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE_ : Tuple = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ : Optional[Any] = scheduler_class(**lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = self.dummy_sample SCREAMING_SNAKE_CASE_ : Any = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase_ , '''set_timesteps'''): scheduler.set_timesteps(lowercase_) elif num_inference_steps is not None and not hasattr(lowercase_ , '''set_timesteps'''): SCREAMING_SNAKE_CASE_ : Optional[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) SCREAMING_SNAKE_CASE_ : str = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] SCREAMING_SNAKE_CASE_ : Optional[int] = dummy_past_residuals[:] SCREAMING_SNAKE_CASE_ : Dict = scheduler.step_prk(lowercase_ , 0 , lowercase_ , **lowercase_).prev_sample SCREAMING_SNAKE_CASE_ : List[Any] = scheduler.step_prk(lowercase_ , 1 , lowercase_ , **lowercase_).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) SCREAMING_SNAKE_CASE_ : Optional[int] = scheduler.step_plms(lowercase_ , 0 , lowercase_ , **lowercase_).prev_sample SCREAMING_SNAKE_CASE_ : Any = scheduler.step_plms(lowercase_ , 1 , lowercase_ , **lowercase_).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=lowercase_) def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowercase_) SCREAMING_SNAKE_CASE_ : Dict = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : List[str] = self.get_scheduler_config(steps_offset=1) SCREAMING_SNAKE_CASE_ : Tuple = scheduler_class(**lowercase_) scheduler.set_timesteps(10) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1]) , ) def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' for beta_start, beta_end in zip([0.00_01, 0.0_01] , [0.0_02, 0.02]): self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowercase_) def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_) def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' for t in [1, 5, 10]: self.check_over_forward(time_step=lowercase_) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100]): self.check_over_forward(num_inference_steps=lowercase_) def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = 27 for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE_ : List[Any] = self.dummy_sample SCREAMING_SNAKE_CASE_ : str = 0.1 * sample SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ : Optional[int] = scheduler_class(**lowercase_) scheduler.set_timesteps(lowercase_) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2]): SCREAMING_SNAKE_CASE_ : int = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_).prev_sample def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' with self.assertRaises(lowercase_): SCREAMING_SNAKE_CASE_ : int = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : List[str] = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ : Dict = scheduler_class(**lowercase_) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample).prev_sample def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = self.full_loop() SCREAMING_SNAKE_CASE_ : List[Any] = torch.sum(torch.abs(lowercase_)) SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.mean(torch.abs(lowercase_)) assert abs(result_sum.item() - 1_98.13_18) < 1e-2 assert abs(result_mean.item() - 0.25_80) < 1e-3 def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = self.full_loop(prediction_type='''v_prediction''') SCREAMING_SNAKE_CASE_ : str = torch.sum(torch.abs(lowercase_)) SCREAMING_SNAKE_CASE_ : Any = torch.mean(torch.abs(lowercase_)) assert abs(result_sum.item() - 67.39_86) < 1e-2 assert abs(result_mean.item() - 0.08_78) < 1e-3 def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.sum(torch.abs(lowercase_)) SCREAMING_SNAKE_CASE_ : Any = torch.mean(torch.abs(lowercase_)) assert abs(result_sum.item() - 2_30.03_99) < 1e-2 assert abs(result_mean.item() - 0.29_95) < 1e-3 def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01) SCREAMING_SNAKE_CASE_ : int = torch.sum(torch.abs(lowercase_)) SCREAMING_SNAKE_CASE_ : List[str] = torch.mean(torch.abs(lowercase_)) assert abs(result_sum.item() - 1_86.94_82) < 1e-2 assert abs(result_mean.item() - 0.24_34) < 1e-3
91
1
import sys def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = len(a__ ) SCREAMING_SNAKE_CASE : Tuple = [[0 for x in range(a__ )] for x in range(a__ )] SCREAMING_SNAKE_CASE : Optional[Any] = [[0 for x in range(a__ )] for x in range(a__ )] for chain_length in range(2 , a__ ): for a in range(1 , n - chain_length + 1 ): SCREAMING_SNAKE_CASE : Dict = a + chain_length - 1 SCREAMING_SNAKE_CASE : Optional[int] = sys.maxsize for c in range(a__ , a__ ): SCREAMING_SNAKE_CASE : Union[str, Any] = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: SCREAMING_SNAKE_CASE : Union[str, Any] = cost SCREAMING_SNAKE_CASE : List[Any] = c return matrix, sol def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if i == j: print('''A''' + str(a__ ) , end=''' ''' ) else: print('''(''' , end=''' ''' ) print_optiomal_solution(a__ , a__ , optimal_solution[i][j] ) print_optiomal_solution(a__ , optimal_solution[i][j] + 1 , a__ ) print(''')''' , end=''' ''' ) def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = [30, 35, 15, 5, 10, 20, 25] SCREAMING_SNAKE_CASE : Dict = len(a__ ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = matrix_chain_order(a__ ) print('''No. of Operation required: ''' + str(matrix[1][n - 1] ) ) print_optiomal_solution(a__ , 1 , n - 1 ) if __name__ == "__main__": main()
359
import math from collections.abc import Iterator from itertools import takewhile def UpperCAmelCase_( a__ ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : str = 2 while True: if is_prime(a__ ): yield num num += 1 def UpperCAmelCase_( a__ = 2_000_000 ): """simple docstring""" return sum(takewhile(lambda a__ : x < n , prime_generator() ) ) if __name__ == "__main__": print(F"{solution() = }")
19
0
from __future__ import annotations from typing import Any def A__ ( SCREAMING_SNAKE_CASE__) -> Union[str, Any]: create_state_space_tree(__SCREAMING_SNAKE_CASE , [] , 0) def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) -> Optional[int]: if index == len(__SCREAMING_SNAKE_CASE): print(__SCREAMING_SNAKE_CASE) return create_state_space_tree(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , index + 1) current_subsequence.append(sequence[index]) create_state_space_tree(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , index + 1) current_subsequence.pop() if __name__ == "__main__": __UpperCAmelCase : str = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(["A", "B", "C"]) generate_all_subsequences(seq)
111
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def UpperCAmelCase_ ( ): lowercase = ArgumentParser( description=( 'PyTorch TPU distributed training launch ' 'helper utility that will spawn up ' 'multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores' , type=__SCREAMING_SNAKE_CASE , default=1 , help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script' , type=__SCREAMING_SNAKE_CASE , help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ) , ) # rest from the training program parser.add_argument('training_script_args' , nargs=__SCREAMING_SNAKE_CASE ) return parser.parse_args() def UpperCAmelCase_ ( ): lowercase = parse_args() # Import training_script as a module. lowercase = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowercase = script_fpath.stem lowercase = importlib.import_module(__SCREAMING_SNAKE_CASE ) # Patch sys.argv lowercase = [args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
195
0
import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig lowerCamelCase : Optional[Any] = { 'facebook/maskformer-swin-base-ade': ( 'https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """maskformer""" _snake_case = {"""hidden_size""": """mask_feature_size"""} _snake_case = ["""resnet""", """swin"""] _snake_case = ["""detr"""] def __init__( self , A = 2_5_6 , A = 2_5_6 , A = 0.1 , A = False , A = None , A = None , A = 0.02 , A = 1.0 , A = 1.0 , A = 1.0 , A = 20.0 , A = None , **A , ) -> int: if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k snake_case : Any = SwinConfig( image_size=3_8_4 , in_channels=3 , patch_size=4 , embed_dim=1_2_8 , depths=[2, 2, 1_8, 2] , num_heads=[4, 8, 1_6, 3_2] , window_size=1_2 , drop_path_rate=0.3 , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) if isinstance(A , A ): snake_case : List[Any] = backbone_config.pop("""model_type""" ) snake_case : Optional[int] = CONFIG_MAPPING[backbone_model_type] snake_case : Any = config_class.from_dict(A ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. """ f"""Supported model types: {",".join(self.backbones_supported )}""" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 snake_case : Tuple = DetrConfig() else: # verify that the decoder is supported snake_case : Union[str, Any] = ( decoder_config.pop("""model_type""" ) if isinstance(A , A ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f"""Transformer Decoder {decoder_type} not supported, please use one of""" f""" {",".join(self.decoders_supported )}""" ) if isinstance(A , A ): snake_case : List[str] = CONFIG_MAPPING[decoder_type] snake_case : Optional[Any] = config_class.from_dict(A ) snake_case : List[Any] = backbone_config snake_case : Tuple = decoder_config # main feature dimension for the model snake_case : str = fpn_feature_size snake_case : Optional[Any] = mask_feature_size # initializer snake_case : Union[str, Any] = init_std snake_case : Optional[int] = init_xavier_std # Hungarian matcher && loss snake_case : int = cross_entropy_weight snake_case : Union[str, Any] = dice_weight snake_case : int = mask_weight snake_case : Dict = use_auxiliary_loss snake_case : List[Any] = no_object_weight snake_case : str = output_auxiliary_logits snake_case : List[Any] = self.decoder_config.encoder_attention_heads snake_case : Tuple = self.decoder_config.num_hidden_layers super().__init__(**A ) @classmethod def UpperCAmelCase ( cls , A , A , **A ) -> Union[str, Any]: return cls( backbone_config=A , decoder_config=A , **A , ) def UpperCAmelCase ( self ) -> Dict[str, any]: snake_case : Union[str, Any] = copy.deepcopy(self.__dict__ ) snake_case : int = self.backbone_config.to_dict() snake_case : Optional[Any] = self.decoder_config.to_dict() snake_case : List[str] = self.__class__.model_type return output
176
from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING lowerCamelCase : int = logging.get_logger(__name__) @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" def __init__( self , *A , **A ) -> Optional[int]: super().__init__(*A , **A ) requires_backends(self , """decord""" ) self.check_model_type(A ) def UpperCAmelCase ( self , A=None , A=None , A=None ) -> int: snake_case : Any = {} if frame_sampling_rate is not None: snake_case : int = frame_sampling_rate if num_frames is not None: snake_case : Union[str, Any] = num_frames snake_case : str = {} if top_k is not None: snake_case : Optional[int] = top_k return preprocess_params, {}, postprocess_params def __call__( self , A , **A ) -> Dict: return super().__call__(A , **A ) def UpperCAmelCase ( self , A , A=None , A=1 ) -> Tuple: if num_frames is None: snake_case : Tuple = self.model.config.num_frames if video.startswith("""http://""" ) or video.startswith("""https://""" ): snake_case : Optional[int] = BytesIO(requests.get(A ).content ) snake_case : Optional[Any] = VideoReader(A ) videoreader.seek(0 ) snake_case : Optional[Any] = 0 snake_case : Optional[Any] = num_frames * frame_sampling_rate - 1 snake_case : Any = np.linspace(A , A , num=A , dtype=np.intaa ) snake_case : int = videoreader.get_batch(A ).asnumpy() snake_case : List[Any] = list(A ) snake_case : Optional[Any] = self.image_processor(A , return_tensors=self.framework ) return model_inputs def UpperCAmelCase ( self , A ) -> List[str]: snake_case : Dict = self.model(**A ) return model_outputs def UpperCAmelCase ( self , A , A=5 ) -> int: if top_k > self.model.config.num_labels: snake_case : str = self.model.config.num_labels if self.framework == "pt": snake_case : List[Any] = model_outputs.logits.softmax(-1 )[0] snake_case , snake_case : Tuple = probs.topk(A ) else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) snake_case : List[Any] = scores.tolist() snake_case : str = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(A , A )]
176
1
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class __snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self : Any): lowerCAmelCase_ : Any = inspect.getfile(accelerate.test_utils) lowerCAmelCase_ : Tuple = os.path.sep.join( mod_file.split(os.path.sep)[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py''']) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 lowerCAmelCase_ : int = test_metrics @require_cpu def UpperCAmelCase__ ( self : Union[str, Any]): debug_launcher(self.test_metrics.main , num_processes=1) @require_cpu def UpperCAmelCase__ ( self : List[str]): debug_launcher(self.test_metrics.main) @require_single_gpu def UpperCAmelCase__ ( self : Union[str, Any]): self.test_metrics.main() @require_multi_gpu def UpperCAmelCase__ ( self : str): print(F"""Found {torch.cuda.device_count()} devices.""") lowerCAmelCase_ : Optional[int] = ['''torchrun''', F"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1): execute_subprocess_async(A_ , env=os.environ.copy())
103
"""simple docstring""" def _snake_case ( UpperCamelCase : list ): if not isinstance(UpperCamelCase , UpperCamelCase ): raise ValueError("""Input series is not valid, valid series - [2, 4, 6]""" ) if len(UpperCamelCase ) == 0: raise ValueError("""Input list must be a non empty list""" ) if len(UpperCamelCase ) == 1: return True UpperCAmelCase : Union[str, Any] = series[1] - series[0] for index in range(len(UpperCamelCase ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def _snake_case ( UpperCamelCase : list ): if not isinstance(UpperCamelCase , UpperCamelCase ): raise ValueError("""Input series is not valid, valid series - [2, 4, 6]""" ) if len(UpperCamelCase ) == 0: raise ValueError("""Input list must be a non empty list""" ) UpperCAmelCase : Any = 0 for val in series: answer += val return answer / len(UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
109
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings a : Dict = r'\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `" / "`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `" // "`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `"wiki_dpr"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `"train"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `"compressed"`)\n The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and\n `"compressed"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a "dummy" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n' @add_start_docstrings(_lowerCAmelCase ) class _a ( _lowerCAmelCase ): A = '''rag''' A = True def __init__(self, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=" / ", SCREAMING_SNAKE_CASE_=" // ", SCREAMING_SNAKE_CASE_=5, SCREAMING_SNAKE_CASE_=300, SCREAMING_SNAKE_CASE_=768, SCREAMING_SNAKE_CASE_=8, SCREAMING_SNAKE_CASE_="wiki_dpr", SCREAMING_SNAKE_CASE_="train", SCREAMING_SNAKE_CASE_="compressed", SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=None, **SCREAMING_SNAKE_CASE_, ) -> str: super().__init__( bos_token_id=SCREAMING_SNAKE_CASE_, pad_token_id=SCREAMING_SNAKE_CASE_, eos_token_id=SCREAMING_SNAKE_CASE_, decoder_start_token_id=SCREAMING_SNAKE_CASE_, forced_eos_token_id=SCREAMING_SNAKE_CASE_, is_encoder_decoder=SCREAMING_SNAKE_CASE_, prefix=SCREAMING_SNAKE_CASE_, vocab_size=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" UpperCAmelCase_: Optional[Any] = kwargs.pop("""question_encoder""" ) UpperCAmelCase_: Tuple = question_encoder_config.pop("""model_type""" ) UpperCAmelCase_: List[Any] = kwargs.pop("""generator""" ) UpperCAmelCase_: List[Any] = decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig UpperCAmelCase_: List[str] = AutoConfig.for_model(SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: int = AutoConfig.for_model(SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: int = reduce_loss UpperCAmelCase_: List[Any] = label_smoothing UpperCAmelCase_: Optional[Any] = exclude_bos_score UpperCAmelCase_: Optional[Any] = do_marginalize UpperCAmelCase_: Union[str, Any] = title_sep UpperCAmelCase_: int = doc_sep UpperCAmelCase_: Dict = n_docs UpperCAmelCase_: List[Any] = max_combined_length UpperCAmelCase_: Dict = dataset UpperCAmelCase_: Optional[int] = dataset_split UpperCAmelCase_: Optional[int] = index_name UpperCAmelCase_: List[Any] = retrieval_vector_size UpperCAmelCase_: List[str] = retrieval_batch_size UpperCAmelCase_: Optional[int] = passages_path UpperCAmelCase_: Optional[int] = index_path UpperCAmelCase_: Optional[Any] = use_dummy_dataset UpperCAmelCase_: Optional[Any] = output_retrieved UpperCAmelCase_: Tuple = do_deduplication UpperCAmelCase_: Optional[int] = use_cache if self.forced_eos_token_id is None: UpperCAmelCase_: Optional[Any] = getattr(self.generator, """forced_eos_token_id""", SCREAMING_SNAKE_CASE_ ) @classmethod def __snake_case (cls, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> PretrainedConfig: return cls(question_encoder=question_encoder_config.to_dict(), generator=generator_config.to_dict(), **SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> Any: UpperCAmelCase_: str = copy.deepcopy(self.__dict__ ) UpperCAmelCase_: Optional[int] = self.question_encoder.to_dict() UpperCAmelCase_: Tuple = self.generator.to_dict() UpperCAmelCase_: Any = self.__class__.model_type return output
82
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class _a : def __init__(self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=13, SCREAMING_SNAKE_CASE_=7, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=99, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=5, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=37, SCREAMING_SNAKE_CASE_="gelu", SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=512, SCREAMING_SNAKE_CASE_=16, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=0.0_2, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=None, ) -> int: UpperCAmelCase_: List[Any] = parent UpperCAmelCase_: int = batch_size UpperCAmelCase_: Any = seq_length UpperCAmelCase_: Optional[int] = is_training UpperCAmelCase_: Dict = use_input_mask UpperCAmelCase_: Optional[int] = use_token_type_ids UpperCAmelCase_: Dict = use_labels UpperCAmelCase_: List[str] = vocab_size UpperCAmelCase_: Union[str, Any] = hidden_size UpperCAmelCase_: List[Any] = num_hidden_layers UpperCAmelCase_: Tuple = num_attention_heads UpperCAmelCase_: Optional[int] = intermediate_size UpperCAmelCase_: Tuple = hidden_act UpperCAmelCase_: Tuple = hidden_dropout_prob UpperCAmelCase_: List[str] = attention_probs_dropout_prob UpperCAmelCase_: Any = max_position_embeddings UpperCAmelCase_: List[Any] = type_vocab_size UpperCAmelCase_: List[str] = type_sequence_label_size UpperCAmelCase_: Tuple = initializer_range UpperCAmelCase_: Optional[int] = num_labels UpperCAmelCase_: Union[str, Any] = num_choices UpperCAmelCase_: Any = scope def __snake_case (self ) -> Tuple: UpperCAmelCase_: Tuple = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) UpperCAmelCase_: str = None if self.use_input_mask: UpperCAmelCase_: Dict = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_: int = None if self.use_token_type_ids: UpperCAmelCase_: int = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) UpperCAmelCase_: Dict = None UpperCAmelCase_: List[str] = None UpperCAmelCase_: Any = None if self.use_labels: UpperCAmelCase_: Tuple = ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCAmelCase_: Optional[int] = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) UpperCAmelCase_: Optional[int] = ids_tensor([self.batch_size], self.num_choices ) UpperCAmelCase_: List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __snake_case (self ) -> List[Any]: return OpenLlamaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=SCREAMING_SNAKE_CASE_, initializer_range=self.initializer_range, use_stable_embedding=SCREAMING_SNAKE_CASE_, ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> str: UpperCAmelCase_: List[Any] = OpenLlamaModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase_: int = model(SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[str] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, ) -> Optional[Any]: UpperCAmelCase_: Tuple = True UpperCAmelCase_: List[Any] = OpenLlamaModel(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase_: Any = model( SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, encoder_hidden_states=SCREAMING_SNAKE_CASE_, encoder_attention_mask=SCREAMING_SNAKE_CASE_, ) UpperCAmelCase_: Optional[int] = model( SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, encoder_hidden_states=SCREAMING_SNAKE_CASE_, ) UpperCAmelCase_: str = model(SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, ) -> List[Any]: UpperCAmelCase_: Any = OpenLlamaForCausalLM(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase_: Union[str, Any] = model(SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, ) -> Any: UpperCAmelCase_: Tuple = True UpperCAmelCase_: Optional[int] = True UpperCAmelCase_: Dict = OpenLlamaForCausalLM(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() # first forward pass UpperCAmelCase_: str = model( SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, encoder_hidden_states=SCREAMING_SNAKE_CASE_, encoder_attention_mask=SCREAMING_SNAKE_CASE_, use_cache=SCREAMING_SNAKE_CASE_, ) UpperCAmelCase_: Tuple = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase_: Tuple = ids_tensor((self.batch_size, 3), config.vocab_size ) UpperCAmelCase_: Optional[Any] = ids_tensor((self.batch_size, 3), vocab_size=2 ) # append to next input_ids and UpperCAmelCase_: str = torch.cat([input_ids, next_tokens], dim=-1 ) UpperCAmelCase_: str = torch.cat([input_mask, next_mask], dim=-1 ) UpperCAmelCase_: Dict = model( SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, encoder_hidden_states=SCREAMING_SNAKE_CASE_, encoder_attention_mask=SCREAMING_SNAKE_CASE_, output_hidden_states=SCREAMING_SNAKE_CASE_, )["""hidden_states"""][0] UpperCAmelCase_: Tuple = model( SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, encoder_hidden_states=SCREAMING_SNAKE_CASE_, encoder_attention_mask=SCREAMING_SNAKE_CASE_, past_key_values=SCREAMING_SNAKE_CASE_, output_hidden_states=SCREAMING_SNAKE_CASE_, )["""hidden_states"""][0] # select random slice UpperCAmelCase_: str = ids_tensor((1,), output_from_past.shape[-1] ).item() UpperCAmelCase_: str = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase_: Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1E-3 ) ) def __snake_case (self ) -> List[str]: UpperCAmelCase_: List[str] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ): List[Any] = config_and_inputs UpperCAmelCase_: List[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _a ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): A = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) A = (OpenLlamaForCausalLM,) if is_torch_available() else () A = ( { '''feature-extraction''': OpenLlamaModel, '''text-classification''': OpenLlamaForSequenceClassification, '''text-generation''': OpenLlamaForCausalLM, '''zero-shot''': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) A = False A = False def __snake_case (self ) -> int: UpperCAmelCase_: str = OpenLlamaModelTester(self ) UpperCAmelCase_: Any = ConfigTester(self, config_class=SCREAMING_SNAKE_CASE_, hidden_size=37 ) def __snake_case (self ) -> Optional[int]: self.config_tester.run_common_tests() def __snake_case (self ) -> Optional[int]: UpperCAmelCase_: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> Union[str, Any]: UpperCAmelCase_: List[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase_: Dict = type self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> str: UpperCAmelCase_ , UpperCAmelCase_: Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_: int = 3 UpperCAmelCase_: Tuple = input_dict["""input_ids"""] UpperCAmelCase_: Optional[int] = input_ids.ne(1 ).to(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Tuple = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size ) UpperCAmelCase_: Optional[int] = OpenLlamaForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase_: Union[str, Any] = model(SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ ) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels) ) def __snake_case (self ) -> int: UpperCAmelCase_ , UpperCAmelCase_: List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_: Dict = 3 UpperCAmelCase_: Optional[Any] = """single_label_classification""" UpperCAmelCase_: Optional[int] = input_dict["""input_ids"""] UpperCAmelCase_: str = input_ids.ne(1 ).to(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[int] = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size ) UpperCAmelCase_: List[str] = OpenLlamaForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase_: Optional[int] = model(SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ ) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels) ) def __snake_case (self ) -> Optional[int]: UpperCAmelCase_ , UpperCAmelCase_: Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_: Optional[int] = 3 UpperCAmelCase_: int = """multi_label_classification""" UpperCAmelCase_: Tuple = input_dict["""input_ids"""] UpperCAmelCase_: int = input_ids.ne(1 ).to(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Union[str, Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCAmelCase_: Optional[Any] = OpenLlamaForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase_: Any = model(SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ ) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" ) def __snake_case (self ) -> int: pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> Optional[int]: UpperCAmelCase_ , UpperCAmelCase_: Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_: Dict = ids_tensor([1, 10], config.vocab_size ) UpperCAmelCase_: Optional[Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )], config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase_: Any = OpenLlamaModel(SCREAMING_SNAKE_CASE_ ) original_model.to(SCREAMING_SNAKE_CASE_ ) original_model.eval() UpperCAmelCase_: Any = original_model(SCREAMING_SNAKE_CASE_ ).last_hidden_state UpperCAmelCase_: Tuple = original_model(SCREAMING_SNAKE_CASE_ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase_: Optional[Any] = {"""type""": scaling_type, """factor""": 1_0.0} UpperCAmelCase_: int = OpenLlamaModel(SCREAMING_SNAKE_CASE_ ) scaled_model.to(SCREAMING_SNAKE_CASE_ ) scaled_model.eval() UpperCAmelCase_: Union[str, Any] = scaled_model(SCREAMING_SNAKE_CASE_ ).last_hidden_state UpperCAmelCase_: Union[str, Any] = scaled_model(SCREAMING_SNAKE_CASE_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1E-5 ) ) else: self.assertFalse(torch.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1E-5 ) )
82
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class snake_case ( unittest.TestCase ): """simple docstring""" def __init__( self : Any , __A : Union[str, Any] , __A : Tuple=7 , __A : Tuple=3 , __A : Optional[int]=1_8 , __A : int=3_0 , __A : Any=4_0_0 , __A : Optional[Any]=True , __A : List[Any]=None , __A : Union[str, Any]=True , __A : Any=None , ): __UpperCamelCase = size if size is not None else {'shortest_edge': 2_0} __UpperCamelCase = crop_size if crop_size is not None else {'height': 1_8, 'width': 1_8} __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = num_channels __UpperCamelCase = image_size __UpperCamelCase = min_resolution __UpperCamelCase = max_resolution __UpperCamelCase = do_resize __UpperCamelCase = size __UpperCamelCase = do_center_crop __UpperCamelCase = crop_size def _lowerCamelCase ( self : Tuple ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class snake_case ( __lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str =MobileNetVaImageProcessor if is_vision_available() else None def _lowerCamelCase ( self : str ): __UpperCamelCase = MobileNetVaImageProcessingTester(self ) @property def _lowerCamelCase ( self : int ): return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self : List[Any] ): __UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , 'do_resize' ) ) self.assertTrue(hasattr(__A , 'size' ) ) self.assertTrue(hasattr(__A , 'do_center_crop' ) ) self.assertTrue(hasattr(__A , 'crop_size' ) ) def _lowerCamelCase ( self : Dict ): __UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 2_0} ) self.assertEqual(image_processor.crop_size , {'height': 1_8, 'width': 1_8} ) __UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {'shortest_edge': 4_2} ) self.assertEqual(image_processor.crop_size , {'height': 8_4, 'width': 8_4} ) def _lowerCamelCase ( self : List[str] ): pass def _lowerCamelCase ( self : Union[str, Any] ): # Initialize image_processing __UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input __UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __UpperCamelCase = image_processing(__A , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def _lowerCamelCase ( self : Union[str, Any] ): # Initialize image_processing __UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input __UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __UpperCamelCase = image_processing(__A , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def _lowerCamelCase ( self : Union[str, Any] ): # Initialize image_processing __UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input __UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __UpperCamelCase = image_processing(__A , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
53
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class lowerCAmelCase ( datasets.BeamBasedBuilder ): '''simple docstring''' def __A ( self ) -> Dict: return datasets.DatasetInfo( features=datasets.Features({'content': datasets.Value('string' )} ) , supervised_keys=lowerCAmelCase__ , ) def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'examples': get_test_dummy_examples()} )] def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(lowerCAmelCase__ ) class lowerCAmelCase ( datasets.BeamBasedBuilder ): '''simple docstring''' def __A ( self ) -> int: return datasets.DatasetInfo( features=datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) , supervised_keys=lowerCAmelCase__ , ) def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'examples': get_test_nested_examples()} ) ] def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(lowerCAmelCase__ ) def lowercase () -> str: return [(i, {"content": content}) for i, content in enumerate(['foo', 'bar', 'foobar'] )] def lowercase () -> Optional[Any]: return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['foo', 'bar', 'foobar'] )] class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' @require_beam def __A ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: SCREAMING_SNAKE_CASE = DummyBeamDataset(cache_dir=lowerCAmelCase__ , beam_runner='DirectRunner' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(lowerCAmelCase__ , builder.name , 'default' , '0.0.0' , F'{builder.name}-train.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'content': datasets.Value('string' )} ) ) SCREAMING_SNAKE_CASE = builder.as_dataset() self.assertEqual(dset['train'].num_rows , lowerCAmelCase__ ) self.assertEqual(dset['train'].info.splits['train'].num_examples , lowerCAmelCase__ ) self.assertDictEqual(dset['train'][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset['train'][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(lowerCAmelCase__ , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset @require_beam def __A ( self ) -> int: import apache_beam as beam SCREAMING_SNAKE_CASE = beam.io.parquetio.WriteToParquet SCREAMING_SNAKE_CASE = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: SCREAMING_SNAKE_CASE = DummyBeamDataset(cache_dir=lowerCAmelCase__ , beam_runner='DirectRunner' ) with patch('apache_beam.io.parquetio.WriteToParquet' ) as write_parquet_mock: SCREAMING_SNAKE_CASE = partial(lowerCAmelCase__ , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( lowerCAmelCase__ , builder.name , 'default' , '0.0.0' , F'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertTrue( os.path.exists( os.path.join( lowerCAmelCase__ , builder.name , 'default' , '0.0.0' , F'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'content': datasets.Value('string' )} ) ) SCREAMING_SNAKE_CASE = builder.as_dataset() self.assertEqual(dset['train'].num_rows , lowerCAmelCase__ ) self.assertEqual(dset['train'].info.splits['train'].num_examples , lowerCAmelCase__ ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset['train']['content'] ) , sorted(['foo', 'bar', 'foobar'] ) ) self.assertTrue( os.path.exists(os.path.join(lowerCAmelCase__ , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset @require_beam def __A ( self ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmp_cache_dir: SCREAMING_SNAKE_CASE = DummyBeamDataset(cache_dir=lowerCAmelCase__ ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def __A ( self ) -> int: SCREAMING_SNAKE_CASE = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: SCREAMING_SNAKE_CASE = NestedBeamDataset(cache_dir=lowerCAmelCase__ , beam_runner='DirectRunner' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(lowerCAmelCase__ , builder.name , 'default' , '0.0.0' , F'{builder.name}-train.arrow' ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) ) SCREAMING_SNAKE_CASE = builder.as_dataset() self.assertEqual(dset['train'].num_rows , lowerCAmelCase__ ) self.assertEqual(dset['train'].info.splits['train'].num_examples , lowerCAmelCase__ ) self.assertDictEqual(dset['train'][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset['train'][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(lowerCAmelCase__ , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset
113
0
from itertools import permutations def __lowercase ( _SCREAMING_SNAKE_CASE ) -> bool: '''simple docstring''' if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False SCREAMING_SNAKE_CASE = [7, 11, 13, 17] for i, test in enumerate(_SCREAMING_SNAKE_CASE ): if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def __lowercase ( _SCREAMING_SNAKE_CASE = 10 ) -> int: '''simple docstring''' return sum( int("""""".join(map(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) ) for num in permutations(range(_SCREAMING_SNAKE_CASE ) ) if is_substring_divisible(_SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": print(F'''{solution() = }''')
193
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) SCREAMING_SNAKE_CASE_ = """\ Text data. Second line of data.""" SCREAMING_SNAKE_CASE_ = """file""" @pytest.fixture(scope="""session""" ) def __lowercase ( _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp("""data""" ) / (FILE_PATH + """.zstd""") SCREAMING_SNAKE_CASE = bytes(_SCREAMING_SNAKE_CASE , """utf-8""" ) with zstd.open(_SCREAMING_SNAKE_CASE , """wb""" ) as f: f.write(_SCREAMING_SNAKE_CASE ) return path @pytest.fixture def __lowercase ( _SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' with open(os.path.join(tmpfs.local_root_dir , _SCREAMING_SNAKE_CASE ) , """w""" ) as f: f.write(_SCREAMING_SNAKE_CASE ) return FILE_PATH @pytest.mark.parametrize("""compression_format""" , ["""gzip""", """xz""", """zstd"""] ) def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_path} SCREAMING_SNAKE_CASE = input_paths[compression_format] SCREAMING_SNAKE_CASE = tmp_path / """cache""" SCREAMING_SNAKE_CASE = DownloadConfig(cache_dir=_SCREAMING_SNAKE_CASE , extract_compressed_file=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = cached_path(_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE ) with open(_SCREAMING_SNAKE_CASE ) as f: SCREAMING_SNAKE_CASE = f.read() with open(_SCREAMING_SNAKE_CASE ) as f: SCREAMING_SNAKE_CASE = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("""default_extracted""" , [True, False] ) @pytest.mark.parametrize("""default_cache_dir""" , [True, False] ) def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = """custom_cache""" SCREAMING_SNAKE_CASE = """custom_extracted_dir""" SCREAMING_SNAKE_CASE = tmp_path / """custom_extracted_path""" if default_extracted: SCREAMING_SNAKE_CASE = ("""downloads""" if default_cache_dir else custom_cache_dir, """extracted""") else: monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_DIR""" , _SCREAMING_SNAKE_CASE ) monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_PATH""" , str(_SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) SCREAMING_SNAKE_CASE = xz_file SCREAMING_SNAKE_CASE = ( DownloadConfig(extract_compressed_file=_SCREAMING_SNAKE_CASE ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=_SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE = cached_path(_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE ) assert Path(_SCREAMING_SNAKE_CASE ).parent.parts[-2:] == expected def __lowercase ( _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = str(Path(_SCREAMING_SNAKE_CASE ).resolve() ) assert cached_path(_SCREAMING_SNAKE_CASE ) == text_file # relative path SCREAMING_SNAKE_CASE = str(Path(_SCREAMING_SNAKE_CASE ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(_SCREAMING_SNAKE_CASE ) == text_file def __lowercase ( _SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = str(tmp_path.resolve() / """__missing_file__.txt""" ) with pytest.raises(_SCREAMING_SNAKE_CASE ): cached_path(_SCREAMING_SNAKE_CASE ) # relative path SCREAMING_SNAKE_CASE = """./__missing_file__.txt""" with pytest.raises(_SCREAMING_SNAKE_CASE ): cached_path(_SCREAMING_SNAKE_CASE ) def __lowercase ( _SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = get_from_cache(F"""tmp://{tmpfs_file}""" ) with open(_SCREAMING_SNAKE_CASE ) as f: SCREAMING_SNAKE_CASE = f.read() assert output_file_content == FILE_CONTENT @patch("""datasets.config.HF_DATASETS_OFFLINE""" , _SCREAMING_SNAKE_CASE ) def __lowercase ( ) -> Dict: '''simple docstring''' with pytest.raises(_SCREAMING_SNAKE_CASE ): cached_path("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , _SCREAMING_SNAKE_CASE ) def __lowercase ( _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(_SCREAMING_SNAKE_CASE ): http_get("""https://huggingface.co""" , temp_file=_SCREAMING_SNAKE_CASE ) with pytest.raises(_SCREAMING_SNAKE_CASE ): http_head("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , _SCREAMING_SNAKE_CASE ) def __lowercase ( _SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(_SCREAMING_SNAKE_CASE ): ftp_get("""ftp://huggingface.co""" , temp_file=_SCREAMING_SNAKE_CASE ) with pytest.raises(_SCREAMING_SNAKE_CASE ): ftp_head("""ftp://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , _SCREAMING_SNAKE_CASE ) def __lowercase ( _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(_SCREAMING_SNAKE_CASE ): fsspec_get("""s3://huggingface.co""" , temp_file=_SCREAMING_SNAKE_CASE ) with pytest.raises(_SCREAMING_SNAKE_CASE ): fsspec_head("""s3://huggingface.co""" )
193
1
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase : int =logging.get_logger(__name__) _lowercase : Union[str, Any] ={ "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } _lowercase : Dict ={ "vocab_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json" }, "merges_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt" }, "tokenizer_config_file": { "facebook/blenderbot_small-90M": ( "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json" ) }, } _lowercase : Any ={"facebook/blenderbot_small-90M": 512} def lowerCAmelCase_ ( _lowercase : Any) -> Optional[Any]: """simple docstring""" a__ : List[str] = set() a__ : int = word[0] for char in word[1:]: pairs.add((prev_char, char)) a__ : Optional[Any] = char a__ : Tuple = set(_lowercase) return pairs class snake_case__ (A__ ): """simple docstring""" __lowerCAmelCase :List[Any] = VOCAB_FILES_NAMES __lowerCAmelCase :Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase :List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase :Any = ["input_ids", "attention_mask"] def __init__( self , __lowercase , __lowercase , __lowercase="__start__" , __lowercase="__end__" , __lowercase="__unk__" , __lowercase="__null__" , **__lowercase , ) -> Optional[Any]: """simple docstring""" super().__init__(unk_token=__lowercase , bos_token=__lowercase , eos_token=__lowercase , pad_token=__lowercase , **__lowercase ) with open(__lowercase , encoding="""utf-8""" ) as vocab_handle: a__ : Optional[int] = json.load(__lowercase ) a__ : str = {v: k for k, v in self.encoder.items()} with open(__lowercase , encoding="""utf-8""" ) as merges_handle: a__ : Any = merges_handle.read().split("""\n""" )[1:-1] a__ : Optional[Any] = [tuple(merge.split() ) for merge in merges] a__ : Dict = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) a__ : Dict = {} @property def SCREAMING_SNAKE_CASE__( self ) -> int: """simple docstring""" return len(self.encoder ) def SCREAMING_SNAKE_CASE__( self ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> str: """simple docstring""" if token in self.cache: return self.cache[token] a__ : Any = re.sub("""([.,!?()])""" , r""" \1""" , __lowercase ) a__ : int = re.sub("""(')""" , r""" \1 """ , __lowercase ) a__ : Tuple = re.sub(r"""\s{2,}""" , """ """ , __lowercase ) if "\n" in token: a__ : Union[str, Any] = token.replace("""\n""" , """ __newln__""" ) a__ : Optional[int] = token.split(""" """ ) a__ : Union[str, Any] = [] for token in tokens: if not len(__lowercase ): continue a__ : Union[str, Any] = token.lower() a__ : List[Any] = tuple(__lowercase ) a__ : Optional[int] = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) a__ : Any = get_pairs(__lowercase ) if not pairs: words.append(__lowercase ) continue while True: a__ : Optional[int] = min(__lowercase , key=lambda __lowercase : self.bpe_ranks.get(__lowercase , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break a__ , a__ : str = bigram a__ : str = [] a__ : Optional[Any] = 0 while i < len(__lowercase ): try: a__ : Tuple = word.index(__lowercase , __lowercase ) new_word.extend(word[i:j] ) a__ : Optional[Any] = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(__lowercase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 a__ : List[Any] = tuple(__lowercase ) a__ : Any = new_word if len(__lowercase ) == 1: break else: a__ : Optional[int] = get_pairs(__lowercase ) a__ : List[Any] = """@@ """.join(__lowercase ) a__ : Optional[Any] = word[:-4] a__ : Any = word words.append(__lowercase ) return " ".join(__lowercase ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> List[str]: """simple docstring""" a__ : Dict = [] a__ : Optional[Any] = re.findall(r"""\S+\n?""" , __lowercase ) for token in words: split_tokens.extend(list(self.bpe(__lowercase ).split(""" """ ) ) ) return split_tokens def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> int: """simple docstring""" a__ : Tuple = token.lower() return self.encoder.get(__lowercase , self.encoder.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> str: """simple docstring""" return self.decoder.get(__lowercase , self.unk_token ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> str: """simple docstring""" a__ : int = """ """.join(__lowercase ).replace("""@@ """ , """""" ).strip() return out_string def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__lowercase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return a__ : Dict = os.path.join( __lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) a__ : List[Any] = os.path.join( __lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(__lowercase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowercase , ensure_ascii=__lowercase ) + """\n""" ) a__ : List[str] = 0 with open(__lowercase , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowercase : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' """ Please check that the tokenizer is not corrupted!""" ) a__ : Optional[int] = token_index writer.write(""" """.join(__lowercase ) + """\n""" ) index += 1 return vocab_file, merge_file
170
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class snake_case__ (A__ ): """simple docstring""" def SCREAMING_SNAKE_CASE__( self ) -> Tuple: """simple docstring""" a__ : int = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__lowercase , """tf_padding""" ) ) self.parent.assertTrue(hasattr(__lowercase , """depth_multiplier""" ) ) class snake_case__ : """simple docstring""" def __init__( self , __lowercase , __lowercase=1_3 , __lowercase=3 , __lowercase=3_2 , __lowercase=0.2_5 , __lowercase=8 , __lowercase=True , __lowercase=1_0_2_4 , __lowercase=3_2 , __lowercase="relu6" , __lowercase=0.1 , __lowercase=0.0_2 , __lowercase=True , __lowercase=True , __lowercase=1_0 , __lowercase=None , ) -> List[Any]: """simple docstring""" a__ : Tuple = parent a__ : Dict = batch_size a__ : Optional[int] = num_channels a__ : int = image_size a__ : Union[str, Any] = depth_multiplier a__ : int = min_depth a__ : List[str] = tf_padding a__ : Tuple = int(last_hidden_size * depth_multiplier ) a__ : Union[str, Any] = output_stride a__ : List[Any] = hidden_act a__ : int = classifier_dropout_prob a__ : str = use_labels a__ : Dict = is_training a__ : Dict = num_labels a__ : int = initializer_range a__ : List[Any] = scope def SCREAMING_SNAKE_CASE__( self ) -> List[str]: """simple docstring""" a__ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a__ : str = None a__ : List[str] = None if self.use_labels: a__ : Any = ids_tensor([self.batch_size] , self.num_labels ) a__ : List[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) a__ : str = self.get_config() return config, pixel_values, labels, pixel_labels def SCREAMING_SNAKE_CASE__( self ) -> List[str]: """simple docstring""" return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase , __lowercase , __lowercase ) -> Optional[int]: """simple docstring""" a__ : Dict = MobileNetVaModel(config=__lowercase ) model.to(__lowercase ) model.eval() a__ : List[Any] = model(__lowercase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase , __lowercase , __lowercase ) -> Optional[int]: """simple docstring""" a__ : int = self.num_labels a__ : Dict = MobileNetVaForImageClassification(__lowercase ) model.to(__lowercase ) model.eval() a__ : List[str] = model(__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__( self ) -> List[str]: """simple docstring""" a__ : Dict = self.prepare_config_and_inputs() a__ , a__ , a__ , a__ : Dict = config_and_inputs a__ : Dict = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class snake_case__ (A__ , A__ , unittest.TestCase ): """simple docstring""" __lowerCAmelCase :Any = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () __lowerCAmelCase :int = ( {"feature-extraction": MobileNetVaModel, "image-classification": MobileNetVaForImageClassification} if is_torch_available() else {} ) __lowerCAmelCase :List[Any] = False __lowerCAmelCase :Optional[Any] = False __lowerCAmelCase :Optional[Any] = False __lowerCAmelCase :Dict = False def SCREAMING_SNAKE_CASE__( self ) -> List[str]: """simple docstring""" a__ : List[Any] = MobileNetVaModelTester(self ) a__ : Tuple = MobileNetVaConfigTester(self , config_class=__lowercase , has_text_modality=__lowercase ) def SCREAMING_SNAKE_CASE__( self ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""MobileNetV1 does not use inputs_embeds""" ) def SCREAMING_SNAKE_CASE__( self ) -> Any: """simple docstring""" pass @unittest.skip(reason="""MobileNetV1 does not support input and output embeddings""" ) def SCREAMING_SNAKE_CASE__( self ) -> int: """simple docstring""" pass @unittest.skip(reason="""MobileNetV1 does not output attentions""" ) def SCREAMING_SNAKE_CASE__( self ) -> Any: """simple docstring""" pass def SCREAMING_SNAKE_CASE__( self ) -> List[Any]: """simple docstring""" a__ , a__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : str = model_class(__lowercase ) a__ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ : Optional[Any] = [*signature.parameters.keys()] a__ : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __lowercase ) def SCREAMING_SNAKE_CASE__( self ) -> Optional[int]: """simple docstring""" a__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def SCREAMING_SNAKE_CASE__( self ) -> Tuple: """simple docstring""" def check_hidden_states_output(__lowercase , __lowercase , __lowercase ): a__ : Dict = model_class(__lowercase ) model.to(__lowercase ) model.eval() with torch.no_grad(): a__ : int = model(**self._prepare_for_class(__lowercase , __lowercase ) ) a__ : List[Any] = outputs.hidden_states a__ : List[Any] = 2_6 self.assertEqual(len(__lowercase ) , __lowercase ) a__ , a__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : Union[str, Any] = True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a__ : Union[str, Any] = True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) def SCREAMING_SNAKE_CASE__( self ) -> Union[str, Any]: """simple docstring""" a__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowercase ) @slow def SCREAMING_SNAKE_CASE__( self ) -> Tuple: """simple docstring""" for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ : Dict = MobileNetVaModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) def lowerCAmelCase_ ( ) -> Tuple: """simple docstring""" a__ : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""") return image @require_torch @require_vision class snake_case__ (unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE__( self ) -> int: """simple docstring""" return ( MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v1_1.0_224""" ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE__( self ) -> Optional[Any]: """simple docstring""" a__ : List[str] = MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v1_1.0_224""" ).to(__lowercase ) a__ : Union[str, Any] = self.default_image_processor a__ : Optional[Any] = prepare_img() a__ : List[str] = image_processor(images=__lowercase , return_tensors="""pt""" ).to(__lowercase ) # forward pass with torch.no_grad(): a__ : Tuple = model(**__lowercase ) # verify the logits a__ : Tuple = torch.Size((1, 1_0_0_1) ) self.assertEqual(outputs.logits.shape , __lowercase ) a__ : Tuple = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ).to(__lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1E-4 ) )
170
1
import numpy as np class __SCREAMING_SNAKE_CASE : def __init__( self ): """simple docstring""" lowerCAmelCase__ = (0, 0) lowerCAmelCase__ = None lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 def __eq__( self , _UpperCamelCase ): """simple docstring""" return self.position == cell.position def UpperCamelCase__ ( self ): """simple docstring""" print(self.position ) class __SCREAMING_SNAKE_CASE : def __init__( self , _UpperCamelCase=(5, 5) ): """simple docstring""" lowerCAmelCase__ = np.zeros(_UpperCamelCase ) lowerCAmelCase__ = world_size[0] lowerCAmelCase__ = world_size[1] def UpperCamelCase__ ( self ): """simple docstring""" print(self.w ) def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] lowerCAmelCase__ = cell.position[0] lowerCAmelCase__ = cell.position[1] lowerCAmelCase__ = [] for n in neughbour_cord: lowerCAmelCase__ = current_x + n[0] lowerCAmelCase__ = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: lowerCAmelCase__ = Cell() lowerCAmelCase__ = (x, y) lowerCAmelCase__ = cell neighbours.append(_UpperCamelCase ) return neighbours def _UpperCamelCase ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[str] ) -> Tuple: """simple docstring""" lowerCAmelCase__ = [] lowerCAmelCase__ = [] _open.append(UpperCamelCase_ ) while _open: lowerCAmelCase__ = np.argmin([n.f for n in _open] ) lowerCAmelCase__ = _open[min_f] _closed.append(_open.pop(UpperCamelCase_ ) ) if current == goal: break for n in world.get_neigbours(UpperCamelCase_ ): for c in _closed: if c == n: continue lowerCAmelCase__ = current.g + 1 lowerCAmelCase__ , lowerCAmelCase__ = n.position lowerCAmelCase__ , lowerCAmelCase__ = goal.position lowerCAmelCase__ = (ya - ya) ** 2 + (xa - xa) ** 2 lowerCAmelCase__ = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(UpperCamelCase_ ) lowerCAmelCase__ = [] while current.parent is not None: path.append(current.position ) lowerCAmelCase__ = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": __snake_case : Any = Gridworld() # Start position and goal __snake_case : Union[str, Any] = Cell() __snake_case : str = (0, 0) __snake_case : Optional[Any] = Cell() __snake_case : Tuple = (4, 4) print(f'path from {start.position} to {goal.position}') __snake_case : str = astar(world, start, goal) # Just for visual reasons. for i in s: __snake_case : Tuple = 1 print(world.w)
122
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class __SCREAMING_SNAKE_CASE ( __lowercase): _SCREAMING_SNAKE_CASE : List[Any] = '''microsoft/speecht5_tts''' _SCREAMING_SNAKE_CASE : Any = ( '''This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ''' '''text to read (in English) and returns a waveform object containing the sound.''' ) _SCREAMING_SNAKE_CASE : int = '''text_reader''' _SCREAMING_SNAKE_CASE : List[str] = SpeechTaProcessor _SCREAMING_SNAKE_CASE : Optional[int] = SpeechTaForTextToSpeech _SCREAMING_SNAKE_CASE : List[Any] = SpeechTaHifiGan _SCREAMING_SNAKE_CASE : Optional[int] = ['''text'''] _SCREAMING_SNAKE_CASE : List[Any] = ['''audio'''] def UpperCamelCase__ ( self ): """simple docstring""" if self.post_processor is None: lowerCAmelCase__ = 'microsoft/speecht5_hifigan' super().setup() def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase=None ): """simple docstring""" lowerCAmelCase__ = self.pre_processor(text=_UpperCamelCase , return_tensors='pt' , truncation=_UpperCamelCase ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('Datasets needs to be installed if not passing speaker embeddings.' ) lowerCAmelCase__ = load_dataset('Matthijs/cmu-arctic-xvectors' , split='validation' ) lowerCAmelCase__ = torch.tensor(embeddings_dataset[73_05]['xvector'] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" with torch.no_grad(): return self.model.generate_speech(**_UpperCamelCase ) def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" with torch.no_grad(): return self.post_processor(_UpperCamelCase ).cpu().detach()
122
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCamelCase__ = { """configuration_transfo_xl""": ["""TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TransfoXLConfig"""], """tokenization_transfo_xl""": ["""TransfoXLCorpus""", """TransfoXLTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST""", """AdaptiveEmbedding""", """TransfoXLForSequenceClassification""", """TransfoXLLMHeadModel""", """TransfoXLModel""", """TransfoXLPreTrainedModel""", """load_tf_weights_in_transfo_xl""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFAdaptiveEmbedding""", """TFTransfoXLForSequenceClassification""", """TFTransfoXLLMHeadModel""", """TFTransfoXLMainLayer""", """TFTransfoXLModel""", """TFTransfoXLPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
86
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class A__ ( unittest.TestCase): @slow def __lowerCamelCase ( self ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __lowerCAmelCase : Tuple = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = TFAutoModel.from_pretrained(_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = AutoModel.from_pretrained(_SCREAMING_SNAKE_CASE , from_tf=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def __lowerCamelCase ( self ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __lowerCAmelCase : int = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = TFAutoModelForPreTraining.from_pretrained(_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : str = AutoModelForPreTraining.from_pretrained(_SCREAMING_SNAKE_CASE , from_tf=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def __lowerCamelCase ( self ): for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase : Dict = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = TFAutoModelForCausalLM.from_pretrained(_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase : List[str] = TFAutoModelForCausalLM.from_pretrained( _SCREAMING_SNAKE_CASE , output_loading_info=_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = AutoModelForCausalLM.from_pretrained(_SCREAMING_SNAKE_CASE , from_tf=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase : List[Any] = AutoModelForCausalLM.from_pretrained( _SCREAMING_SNAKE_CASE , output_loading_info=_SCREAMING_SNAKE_CASE , from_tf=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def __lowerCamelCase ( self ): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase : Dict = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = TFAutoModelWithLMHead.from_pretrained(_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = AutoModelWithLMHead.from_pretrained(_SCREAMING_SNAKE_CASE , from_tf=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def __lowerCamelCase ( self ): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase : Optional[Any] = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = TFAutoModelForMaskedLM.from_pretrained(_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase : int = TFAutoModelForMaskedLM.from_pretrained( _SCREAMING_SNAKE_CASE , output_loading_info=_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = AutoModelForMaskedLM.from_pretrained(_SCREAMING_SNAKE_CASE , from_tf=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase : str = AutoModelForMaskedLM.from_pretrained( _SCREAMING_SNAKE_CASE , output_loading_info=_SCREAMING_SNAKE_CASE , from_tf=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def __lowerCamelCase ( self ): for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase : Optional[int] = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained(_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained( _SCREAMING_SNAKE_CASE , output_loading_info=_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = AutoModelForSeqaSeqLM.from_pretrained(_SCREAMING_SNAKE_CASE , from_tf=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase : Dict = AutoModelForSeqaSeqLM.from_pretrained( _SCREAMING_SNAKE_CASE , output_loading_info=_SCREAMING_SNAKE_CASE , from_tf=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def __lowerCamelCase ( self ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __lowerCAmelCase : Dict = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = TFAutoModelForSequenceClassification.from_pretrained(_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained(_SCREAMING_SNAKE_CASE , from_tf=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def __lowerCamelCase ( self ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __lowerCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = TFAutoModelForQuestionAnswering.from_pretrained(_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = AutoModelForQuestionAnswering.from_pretrained(_SCREAMING_SNAKE_CASE , from_tf=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : List[Any] = TFAutoModelWithLMHead.from_pretrained(_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=_SCREAMING_SNAKE_CASE ) , 1_44_10 ) __lowerCAmelCase : Tuple = AutoModelWithLMHead.from_pretrained(_SCREAMING_SNAKE_CASE , from_tf=_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=_SCREAMING_SNAKE_CASE ) , 1_44_10 ) def __lowerCamelCase ( self ): __lowerCAmelCase : int = TFAutoModelWithLMHead.from_pretrained(_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=_SCREAMING_SNAKE_CASE ) , 1_44_10 ) __lowerCAmelCase : Tuple = AutoModelWithLMHead.from_pretrained(_SCREAMING_SNAKE_CASE , from_tf=_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=_SCREAMING_SNAKE_CASE ) , 1_44_10 )
86
1
def lowerCAmelCase_ ( snake_case_ : int = 1_00_00_00 ) -> int: '''simple docstring''' UpperCAmelCase_ = limit + 1 UpperCAmelCase_ = [0] * limit for first_term in range(1 , snake_case_ ): for n in range(snake_case_ , snake_case_ , snake_case_ ): UpperCAmelCase_ = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a UpperCAmelCase_ = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f"{solution() = }")
353
'''simple docstring''' from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def lowerCAmelCase_ ( ) -> str: '''simple docstring''' UpperCAmelCase_ = { "repo_name": ["test_repo1", "test_repo2", "test_repo3"], "path": ["test_1.py", "test_2.py", "unit_test.py"], "content": ["a " * 20, "a " * 30, "b " * 7], } UpperCAmelCase_ = Dataset.from_dict(snake_case_ ) return dataset class __A ( UpperCamelCase__ ): def _lowercase (self : str ): UpperCAmelCase_ = get_dataset() UpperCAmelCase_ = make_duplicate_clusters(__a , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = get_dataset() UpperCAmelCase_ , UpperCAmelCase_ = deduplicate_dataset(__a ) self.assertEqual(len(__a ) , 2 ) print(__a ) self.assertEqual(duplicate_clusters[0][0]["copies"] , 2 ) self.assertEqual(duplicate_clusters[0][0]["is_extreme"] , __a )
106
0
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def _A ( SCREAMING_SNAKE_CASE__ : Dict ): if is_torch_version('''<''' , '''2.0.0''' ) or not hasattr(SCREAMING_SNAKE_CASE__ , '''_dynamo''' ): return False return isinstance(SCREAMING_SNAKE_CASE__ , torch._dynamo.eval_frame.OptimizedModule ) def _A ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : bool = True ): UpperCamelCase :int = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) UpperCamelCase :Dict = is_compiled_module(SCREAMING_SNAKE_CASE__ ) if is_compiled: UpperCamelCase :List[str] = model UpperCamelCase :Dict = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): UpperCamelCase :Union[str, Any] = model.module if not keep_fpaa_wrapper: UpperCamelCase :Dict = getattr(SCREAMING_SNAKE_CASE__ , '''forward''' ) UpperCamelCase :Optional[int] = model.__dict__.pop('''_original_forward''' , SCREAMING_SNAKE_CASE__ ) if original_forward is not None: while hasattr(SCREAMING_SNAKE_CASE__ , '''__wrapped__''' ): UpperCamelCase :Union[str, Any] = forward.__wrapped__ if forward == original_forward: break UpperCamelCase :Dict = forward if getattr(SCREAMING_SNAKE_CASE__ , '''_converted_to_transformer_engine''' , SCREAMING_SNAKE_CASE__ ): convert_model(SCREAMING_SNAKE_CASE__ , to_transformer_engine=SCREAMING_SNAKE_CASE__ ) if is_compiled: UpperCamelCase :str = model UpperCamelCase :int = compiled_model return model def _A ( ): PartialState().wait_for_everyone() def _A ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple ): if PartialState().distributed_type == DistributedType.TPU: xm.save(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif PartialState().local_process_index == 0: torch.save(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @contextmanager def _A ( **SCREAMING_SNAKE_CASE__ : Dict ): for key, value in kwargs.items(): UpperCamelCase :Any = str(SCREAMING_SNAKE_CASE__ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def _A ( SCREAMING_SNAKE_CASE__ : int ): if not hasattr(SCREAMING_SNAKE_CASE__ , '''__qualname__''' ) and not hasattr(SCREAMING_SNAKE_CASE__ , '''__name__''' ): UpperCamelCase :Union[str, Any] = getattr(SCREAMING_SNAKE_CASE__ , '''__class__''' , SCREAMING_SNAKE_CASE__ ) if hasattr(SCREAMING_SNAKE_CASE__ , '''__qualname__''' ): return obj.__qualname__ if hasattr(SCREAMING_SNAKE_CASE__ , '''__name__''' ): return obj.__name__ return str(SCREAMING_SNAKE_CASE__ ) def _A ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple ): for key, value in source.items(): if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): UpperCamelCase :str = destination.setdefault(SCREAMING_SNAKE_CASE__ , {} ) merge_dicts(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: UpperCamelCase :Any = value return destination def _A ( SCREAMING_SNAKE_CASE__ : int = None ): if port is None: UpperCamelCase :Any = 29500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('''localhost''', port) ) == 0
259
import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin __snake_case = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class UpperCAmelCase_ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=14 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=19 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=[1, 2, 3, 4, 5] , SCREAMING_SNAKE_CASE_=25 , SCREAMING_SNAKE_CASE_=5 , ) -> str: UpperCamelCase :Any = d_model UpperCamelCase :List[str] = parent UpperCamelCase :List[Any] = batch_size UpperCamelCase :str = prediction_length UpperCamelCase :str = context_length UpperCamelCase :int = cardinality UpperCamelCase :Optional[Any] = num_time_features UpperCamelCase :Optional[Any] = lags_sequence UpperCamelCase :str = embedding_dimension UpperCamelCase :str = is_training UpperCamelCase :Optional[int] = hidden_size UpperCamelCase :List[Any] = num_hidden_layers UpperCamelCase :int = num_attention_heads UpperCamelCase :Tuple = intermediate_size UpperCamelCase :List[str] = hidden_act UpperCamelCase :List[str] = hidden_dropout_prob UpperCamelCase :List[Any] = attention_probs_dropout_prob UpperCamelCase :Optional[int] = context_length UpperCamelCase :Tuple = prediction_length + label_length UpperCamelCase :Optional[Any] = label_length UpperCamelCase :Optional[int] = moving_average UpperCamelCase :Union[str, Any] = autocorrelation_factor def UpperCAmelCase ( self ) -> Optional[int]: return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ ) -> List[str]: UpperCamelCase :Optional[Any] = config.context_length + max(config.lags_sequence ) UpperCamelCase :Union[str, Any] = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) UpperCamelCase :List[str] = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) UpperCamelCase :Union[str, Any] = floats_tensor([self.batch_size, _past_length] ) UpperCamelCase :Any = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs UpperCamelCase :Tuple = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) UpperCamelCase :int = floats_tensor([self.batch_size, config.prediction_length] ) UpperCamelCase :Union[str, Any] = { '''past_values''': past_values, '''static_categorical_features''': static_categorical_features, '''past_time_features''': past_time_features, '''past_observed_mask''': past_observed_mask, '''future_time_features''': future_time_features, '''future_values''': future_values, } return inputs_dict def UpperCAmelCase ( self ) -> Tuple: UpperCamelCase :int = self.get_config() UpperCamelCase :Union[str, Any] = self.prepare_autoformer_inputs_dict(SCREAMING_SNAKE_CASE_ ) return config, inputs_dict def UpperCAmelCase ( self ) -> Any: UpperCamelCase , UpperCamelCase :Optional[int] = self.prepare_config_and_inputs() return config, inputs_dict def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: UpperCamelCase :int = AutoformerModel(config=SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ).eval() UpperCamelCase :Any = model(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase :str = outputs.encoder_last_hidden_state UpperCamelCase :str = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase :Any = model.get_encoder() encoder.save_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Any = AutoformerEncoder.from_pretrained(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase :int = model.create_network_inputs(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase , UpperCamelCase :Tuple = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) UpperCamelCase :Tuple = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) UpperCamelCase :Optional[Any] = encoder(inputs_embeds=SCREAMING_SNAKE_CASE_ )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) UpperCamelCase :Optional[Any] = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) UpperCamelCase :Union[str, Any] = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) UpperCamelCase :Tuple = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) UpperCamelCase :Optional[Any] = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase :Union[str, Any] = model.get_decoder() decoder.save_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Optional[Any] = AutoformerDecoder.from_pretrained(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :str = decoder( trend=SCREAMING_SNAKE_CASE_ , inputs_embeds=SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class UpperCAmelCase_ ( lowercase, lowercase, unittest.TestCase ): """simple docstring""" UpperCamelCase_ : List[str] =(AutoformerModel, AutoformerForPrediction) if is_torch_available() else () UpperCamelCase_ : List[str] =(AutoformerForPrediction,) if is_torch_available() else () UpperCamelCase_ : Optional[Any] ={'feature-extraction': AutoformerModel} if is_torch_available() else {} UpperCamelCase_ : Any =False UpperCamelCase_ : List[str] =False UpperCamelCase_ : Dict =False UpperCamelCase_ : Dict =False UpperCamelCase_ : int =False UpperCamelCase_ : Optional[int] =False def UpperCAmelCase ( self ) -> Tuple: UpperCamelCase :str = AutoformerModelTester(self ) UpperCamelCase :int = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase , UpperCamelCase :str = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: UpperCamelCase :Optional[int] = model_class(SCREAMING_SNAKE_CASE_ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase , UpperCamelCase :List[str] = model_class.from_pretrained(SCREAMING_SNAKE_CASE_ , output_loading_info=SCREAMING_SNAKE_CASE_ ) self.assertEqual(info['''missing_keys'''] , [] ) def UpperCAmelCase ( self ) -> Dict: UpperCamelCase :Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*SCREAMING_SNAKE_CASE_ ) @unittest.skip(reason='''Model has no tokens embeddings''' ) def UpperCAmelCase ( self ) -> int: pass def UpperCAmelCase ( self ) -> Tuple: UpperCamelCase :str = inspect.signature(getattr(SCREAMING_SNAKE_CASE_ , '''forward''' ) ) # The main input is the name of the argument after `self` UpperCamelCase :List[str] = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> Tuple: UpperCamelCase , UpperCamelCase :Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase :List[Any] = model_class(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase :Tuple = [*signature.parameters.keys()] UpperCamelCase :Optional[Any] = [ '''past_values''', '''past_time_features''', '''past_observed_mask''', '''static_categorical_features''', '''static_real_features''', '''future_values''', '''future_time_features''', ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append('''future_observed_mask''' ) expected_arg_names.extend( [ '''decoder_attention_mask''', '''head_mask''', '''decoder_head_mask''', '''cross_attn_head_mask''', '''encoder_outputs''', '''past_key_values''', '''output_hidden_states''', '''output_attentions''', '''use_cache''', '''return_dict''', ] ) self.assertListEqual(arg_names[: len(SCREAMING_SNAKE_CASE_ )] , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> Dict: UpperCamelCase , UpperCamelCase :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase :Dict = True UpperCamelCase :Dict = getattr(self.model_tester , '''seq_length''' , SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Any = getattr(self.model_tester , '''decoder_seq_length''' , SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Union[str, Any] = getattr(self.model_tester , '''encoder_seq_length''' , SCREAMING_SNAKE_CASE_ ) UpperCamelCase :int = getattr(self.model_tester , '''d_model''' , SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Tuple = getattr(self.model_tester , '''num_attention_heads''' , SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Any = d_model // num_attention_heads for model_class in self.all_model_classes: UpperCamelCase :Tuple = True UpperCamelCase :Tuple = False UpperCamelCase :Any = True UpperCamelCase :List[Any] = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): UpperCamelCase :int = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase :Union[str, Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCamelCase :Dict = True UpperCamelCase :Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): UpperCamelCase :Optional[Any] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase :List[str] = outputs.encoder_attentions self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) UpperCamelCase :List[str] = len(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :List[Any] = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # decoder attentions UpperCamelCase :Union[str, Any] = outputs.decoder_attentions self.assertIsInstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions UpperCamelCase :Union[str, Any] = outputs.cross_attentions self.assertIsInstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine UpperCamelCase :Any = True UpperCamelCase :int = True UpperCamelCase :Any = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): UpperCamelCase :Optional[Any] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(out_len + 2 , len(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase :List[str] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def UpperCAmelCase ( self ) -> List[Any]: super().test_retain_grad_hidden_states_attentions() def _A ( SCREAMING_SNAKE_CASE__ : int="train-batch.pt" ): UpperCamelCase :Union[str, Any] = hf_hub_download(repo_id='''hf-internal-testing/tourism-monthly-batch''' , filename=SCREAMING_SNAKE_CASE__ , repo_type='''dataset''' ) UpperCamelCase :Tuple = torch.load(SCREAMING_SNAKE_CASE__ , map_location=SCREAMING_SNAKE_CASE__ ) return batch @require_torch @slow class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase :int = AutoformerModel.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Dict = prepare_batch() with torch.no_grad(): UpperCamelCase :Optional[Any] = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , future_values=batch['''future_values'''] , future_time_features=batch['''future_time_features'''] , )[0] UpperCamelCase :Union[str, Any] = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Tuple = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=SCREAMING_SNAKE_CASE_ ) ) def UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase :Any = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Union[str, Any] = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): UpperCamelCase :Dict = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , ).encoder_last_hidden_state UpperCamelCase :Union[str, Any] = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Any = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=SCREAMING_SNAKE_CASE_ ) ) def UpperCAmelCase ( self ) -> Tuple: UpperCamelCase :Optional[int] = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Optional[int] = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): UpperCamelCase :Tuple = model.generate( static_categorical_features=batch['''static_categorical_features'''] , past_time_features=batch['''past_time_features'''] , past_values=batch['''past_values'''] , future_time_features=batch['''future_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , ) UpperCamelCase :Optional[int] = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , SCREAMING_SNAKE_CASE_ ) UpperCamelCase :str = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :int = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , SCREAMING_SNAKE_CASE_ , rtol=1e-1 ) )
259
1
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class _lowerCAmelCase( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" a : Optional[Any] =IFPipeline a : str =TEXT_TO_IMAGE_PARAMS - {"width", "height", "latents"} a : Union[str, Any] =TEXT_TO_IMAGE_BATCH_PARAMS a : Optional[int] =PipelineTesterMixin.required_optional_params - {"latents"} def _a ( self ): return self._get_dummy_components() def _a ( self , _lowerCamelCase , _lowerCamelCase=0 ): if str(_snake_case ).startswith('mps' ): UpperCamelCase_: int = torch.manual_seed(_snake_case ) else: UpperCamelCase_: Dict = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) UpperCamelCase_: str = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def _a ( self ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def _a ( self ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def _a ( self ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _a ( self ): self._test_save_load_local() def _a ( self ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _a ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @slow @require_torch_gpu class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" def _a ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self ): # if UpperCamelCase_: List[Any] = IFPipeline.from_pretrained('DeepFloyd/IF-I-XL-v1.0' , variant='fp16' , torch_dtype=torch.floataa ) UpperCamelCase_: Dict = IFSuperResolutionPipeline.from_pretrained( 'DeepFloyd/IF-II-L-v1.0' , variant='fp16' , torch_dtype=torch.floataa , text_encoder=_snake_case , tokenizer=_snake_case ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('cuda' ) UpperCamelCase_: Union[str, Any] = pipe_a.encode_prompt('anime turtle' , device='cuda' ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() UpperCamelCase_: Tuple = None UpperCamelCase_: List[Any] = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(_snake_case , _snake_case , _snake_case , _snake_case ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img UpperCamelCase_: Dict = IFImgaImgPipeline(**pipe_a.components ) UpperCamelCase_: Any = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(_snake_case , _snake_case , _snake_case , _snake_case ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting UpperCamelCase_: str = IFInpaintingPipeline(**pipe_a.components ) UpperCamelCase_: Dict = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(_snake_case , _snake_case , _snake_case , _snake_case ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): # pipeline 1 _start_torch_memory_measurement() UpperCamelCase_: List[str] = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase_: Any = pipe_a( prompt_embeds=_snake_case , negative_prompt_embeds=_snake_case , num_inference_steps=2 , generator=_snake_case , output_type='np' , ) UpperCamelCase_: List[str] = output.images[0] assert image.shape == (6_4, 6_4, 3) UpperCamelCase_: Dict = torch.cuda.max_memory_allocated() assert mem_bytes < 1_3 * 1_0**9 UpperCamelCase_: List[str] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy' ) assert_mean_pixel_difference(_snake_case , _snake_case ) # pipeline 2 _start_torch_memory_measurement() UpperCamelCase_: Any = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase_: Optional[Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(_snake_case ) UpperCamelCase_: Dict = pipe_a( prompt_embeds=_snake_case , negative_prompt_embeds=_snake_case , image=_snake_case , generator=_snake_case , num_inference_steps=2 , output_type='np' , ) UpperCamelCase_: int = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) UpperCamelCase_: Tuple = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 UpperCamelCase_: Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy' ) assert_mean_pixel_difference(_snake_case , _snake_case ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): # pipeline 1 _start_torch_memory_measurement() UpperCamelCase_: str = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(_snake_case ) UpperCamelCase_: str = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase_: int = pipe_a( prompt_embeds=_snake_case , negative_prompt_embeds=_snake_case , image=_snake_case , num_inference_steps=2 , generator=_snake_case , output_type='np' , ) UpperCamelCase_: List[str] = output.images[0] assert image.shape == (6_4, 6_4, 3) UpperCamelCase_: Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 UpperCamelCase_: Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy' ) assert_mean_pixel_difference(_snake_case , _snake_case ) # pipeline 2 _start_torch_memory_measurement() UpperCamelCase_: List[str] = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase_: Optional[int] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0 ) ).to(_snake_case ) UpperCamelCase_: List[str] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(_snake_case ) UpperCamelCase_: Any = pipe_a( prompt_embeds=_snake_case , negative_prompt_embeds=_snake_case , image=_snake_case , original_image=_snake_case , generator=_snake_case , num_inference_steps=2 , output_type='np' , ) UpperCamelCase_: Optional[Any] = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) UpperCamelCase_: Dict = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 UpperCamelCase_: List[str] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy' ) assert_mean_pixel_difference(_snake_case , _snake_case ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): # pipeline 1 _start_torch_memory_measurement() UpperCamelCase_: List[Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(_snake_case ) UpperCamelCase_: Optional[Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(1 ) ).to(_snake_case ) UpperCamelCase_: Dict = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase_: Any = pipe_a( prompt_embeds=_snake_case , negative_prompt_embeds=_snake_case , image=_snake_case , mask_image=_snake_case , num_inference_steps=2 , generator=_snake_case , output_type='np' , ) UpperCamelCase_: Union[str, Any] = output.images[0] assert image.shape == (6_4, 6_4, 3) UpperCamelCase_: str = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 UpperCamelCase_: List[str] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy' ) assert_mean_pixel_difference(_snake_case , _snake_case ) # pipeline 2 _start_torch_memory_measurement() UpperCamelCase_: Tuple = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase_: Any = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(_snake_case ) UpperCamelCase_: str = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0 ) ).to(_snake_case ) UpperCamelCase_: int = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(1 ) ).to(_snake_case ) UpperCamelCase_: List[str] = pipe_a( prompt_embeds=_snake_case , negative_prompt_embeds=_snake_case , image=_snake_case , mask_image=_snake_case , original_image=_snake_case , generator=_snake_case , num_inference_steps=2 , output_type='np' , ) UpperCamelCase_: str = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) UpperCamelCase_: Dict = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 UpperCamelCase_: Dict = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy' ) assert_mean_pixel_difference(_snake_case , _snake_case ) def snake_case () -> Optional[int]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
351
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : Optional[Any] =CLIPTokenizer a : List[Any] =CLIPTokenizerFast a : str =True a : List[Any] ={} a : str =False def _a ( self ): super().setUp() # fmt: off UpperCamelCase_: str = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on UpperCamelCase_: Any = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) UpperCamelCase_: Optional[int] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>'] UpperCamelCase_: Any = {'unk_token': '<unk>'} UpperCamelCase_: List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) UpperCamelCase_: Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_lowerCamelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_lowerCamelCase ) ) def _a ( self , **_lowerCamelCase ): kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def _a ( self , **_lowerCamelCase ): kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def _a ( self , _lowerCamelCase ): UpperCamelCase_: Union[str, Any] = 'lower newer' UpperCamelCase_: Tuple = 'lower newer' return input_text, output_text def _a ( self ): UpperCamelCase_: Dict = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCamelCase_: Optional[int] = 'lower newer' UpperCamelCase_: Any = ['lo', 'w', 'er</w>', 'n', 'e', 'w', 'er</w>'] UpperCamelCase_: Union[str, Any] = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) UpperCamelCase_: str = tokens + [tokenizer.unk_token] UpperCamelCase_: Optional[Any] = [1_0, 2, 1_6, 9, 3, 2, 1_6, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , _lowerCamelCase ) @require_ftfy def _a ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCamelCase_: Optional[int] = self.tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) UpperCamelCase_: List[str] = self.rust_tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) UpperCamelCase_: Optional[int] = 'A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.' UpperCamelCase_: Tuple = tokenizer_s.tokenize(_lowerCamelCase ) UpperCamelCase_: Any = tokenizer_r.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways UpperCamelCase_: List[str] = 'xa\u0303y' + ' ' + 'x\xe3y' UpperCamelCase_: List[Any] = tokenizer_s.tokenize(_lowerCamelCase ) UpperCamelCase_: int = tokenizer_r.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) # Test that the tokenization is identical on unicode of space type UpperCamelCase_: Dict = [ '\u0009', # (horizontal tab, '\t') '\u000B', # (vertical tab) '\u000C', # (form feed) '\u0020', # (space, ' ') '\u200E', # (left-to-right mark):w '\u200F', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: UpperCamelCase_: int = tokenizer_s.tokenize(_lowerCamelCase ) UpperCamelCase_: Dict = tokenizer_r.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) # Test that the tokenization is identical on unicode of line break type UpperCamelCase_: List[str] = [ '\u000A', # (line feed, '\n') '\r\n', # (carriage return and line feed, '\r\n') '\u000D', # (carriage return, '\r') '\r', # (carriage return, '\r') '\u000D', # (carriage return, '\r') '\u2028', # (line separator) '\u2029', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: UpperCamelCase_: Optional[Any] = tokenizer_s.tokenize(_lowerCamelCase ) UpperCamelCase_: str = tokenizer_r.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCamelCase_: str = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` UpperCamelCase_: str = f'''{text_of_1_token} {text_of_1_token}''' UpperCamelCase_: Optional[Any] = self.rust_tokenizer_class.from_pretrained( _lowerCamelCase , use_fast=_lowerCamelCase , ) UpperCamelCase_: int = tokenizer_r(_lowerCamelCase , return_offsets_mapping=_lowerCamelCase , add_special_tokens=_lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_lowerCamelCase ) + 1, len(_lowerCamelCase ) + 1 + len(_lowerCamelCase )) , ) UpperCamelCase_: List[str] = f''' {text}''' UpperCamelCase_: str = self.rust_tokenizer_class.from_pretrained( _lowerCamelCase , use_fast=_lowerCamelCase , ) UpperCamelCase_: Dict = tokenizer_r(_lowerCamelCase , return_offsets_mapping=_lowerCamelCase , add_special_tokens=_lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_lowerCamelCase ) + 1, 1 + len(_lowerCamelCase ) + 1 + len(_lowerCamelCase )) , ) def _a ( self ): # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(_lowerCamelCase ) as context: self.rust_tokenizer_class.from_pretrained('robot-test/old-clip-tokenizer' ) self.assertTrue( context.exception.args[0].startswith( 'The `backend_tokenizer` provided does not match the expected format.' ) ) @require_ftfy def _a ( self ): super().test_tokenization_python_rust_equals() def _a ( self ): # CLIP always lower cases letters pass
292
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : Optional[int] =logging.get_logger(__name__) a__ : int ={ '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json''', } class snake_case ( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any ="gpt_neox_japanese" def __init__( self : Any , __A : List[Any]=3_2_0_0_0 , __A : Tuple=2_5_6_0 , __A : str=3_2 , __A : int=3_2 , __A : Optional[int]=4 , __A : Optional[Any]="gelu" , __A : List[Any]=1.00 , __A : str=1_0_0_0_0 , __A : Union[str, Any]=2_0_4_8 , __A : str=0.02 , __A : Optional[int]=1e-5 , __A : str=True , __A : Any=3_1_9_9_6 , __A : Union[str, Any]=3_1_9_9_9 , __A : Dict=0.1 , __A : str=0.0 , **__A : Dict , ): super().__init__(bos_token_id=__A , eos_token_id=__A , **__A ) __UpperCamelCase = vocab_size __UpperCamelCase = max_position_embeddings __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_multiple_size __UpperCamelCase = hidden_act __UpperCamelCase = rotary_pct __UpperCamelCase = rotary_emb_base __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = use_cache __UpperCamelCase = attention_dropout __UpperCamelCase = hidden_dropout
53
from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging __A =logging.get_logger(__name__) # pylint: disable=invalid-name class _SCREAMING_SNAKE_CASE ( snake_case_ ): def __init__( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> List[Any]: super().__init__() if hasattr(scheduler.config , "steps_offset" ) and scheduler.config.steps_offset != 1: lowerCamelCase_ = ( f'The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`' f' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure ' "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("steps_offset!=1" , "1.0.0" , lowercase , standard_warn=lowercase ) lowerCamelCase_ = dict(scheduler.config ) lowerCamelCase_ = 1 lowerCamelCase_ = FrozenDict(lowercase ) if hasattr(scheduler.config , "skip_prk_steps" ) and scheduler.config.skip_prk_steps is False: lowerCamelCase_ = ( f'The configuration file of this scheduler: {scheduler} has not set the configuration' " `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make" " sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to" " incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face" " Hub, it would be very nice if you could open a Pull request for the" " `scheduler/scheduler_config.json` file" ) deprecate("skip_prk_steps not set" , "1.0.0" , lowercase , standard_warn=lowercase ) lowerCamelCase_ = dict(scheduler.config ) lowerCamelCase_ = True lowerCamelCase_ = FrozenDict(lowercase ) if safety_checker is None: logger.warning( f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure' " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( segmentation_model=lowercase , segmentation_processor=lowercase , vae=lowercase , text_encoder=lowercase , tokenizer=lowercase , unet=lowercase , scheduler=lowercase , safety_checker=lowercase , feature_extractor=lowercase , ) def SCREAMING_SNAKE_CASE_( self , lowercase = "auto" ) -> Tuple: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowerCamelCase_ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: self.enable_attention_slicing(lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> str: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) lowerCamelCase_ = torch.device("cuda" ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(lowercase , lowercase ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: if self.device != torch.device("meta" ) or not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(lowercase , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self , lowercase , lowercase , lowercase , lowercase = 512 , lowercase = 512 , lowercase = 50 , lowercase = 7.5 , lowercase = None , lowercase = 1 , lowercase = 0.0 , lowercase = None , lowercase = None , lowercase = "pil" , lowercase = True , lowercase = None , lowercase = 1 , **lowercase , ) -> int: lowerCamelCase_ = self.segmentation_processor( text=[text] , images=[image] , padding="max_length" , return_tensors="pt" ).to(self.device ) lowerCamelCase_ = self.segmentation_model(**lowercase ) lowerCamelCase_ = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() lowerCamelCase_ = self.numpy_to_pil(lowercase )[0].resize(image.size ) # Run inpainting pipeline with the generated mask lowerCamelCase_ = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=lowercase , image=lowercase , mask_image=lowercase , height=lowercase , width=lowercase , num_inference_steps=lowercase , guidance_scale=lowercase , negative_prompt=lowercase , num_images_per_prompt=lowercase , eta=lowercase , generator=lowercase , latents=lowercase , output_type=lowercase , return_dict=lowercase , callback=lowercase , callback_steps=lowercase , )
19
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _lowercase : str = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt") @dataclass class __magic_name__ : UpperCamelCase__ = field( default='''cifar10''', metadata={'''help''': '''Name of a dataset from the datasets package'''}) UpperCamelCase__ = field( default=_UpperCAmelCase, metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''}) UpperCamelCase__ = field( default=_UpperCAmelCase, metadata={'''help''': '''The column name of the images in the files.'''}) UpperCamelCase__ = field(default=_UpperCAmelCase, metadata={'''help''': '''A folder containing the training data.'''}) UpperCamelCase__ = field(default=_UpperCAmelCase, metadata={'''help''': '''A folder containing the validation data.'''}) UpperCamelCase__ = field( default=0.15, metadata={'''help''': '''Percent to split off of train for validation.'''}) UpperCamelCase__ = field( default=_UpperCAmelCase, metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) }, ) UpperCamelCase__ = field( default=_UpperCAmelCase, metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) }, ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : int = {} if self.train_dir is not None: lowercase_ : int = self.train_dir if self.validation_dir is not None: lowercase_ : Optional[int] = self.validation_dir lowercase_ : Optional[Any] = data_files if data_files else None @dataclass class __magic_name__ : UpperCamelCase__ = field( default=_UpperCAmelCase, metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) }, ) UpperCamelCase__ = field( default=_UpperCAmelCase, metadata={'''help''': '''Pretrained config name or path if not the same as model_name_or_path'''}) UpperCamelCase__ = field( default=_UpperCAmelCase, metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) }, ) UpperCamelCase__ = field( default=_UpperCAmelCase, metadata={'''help''': '''Where do you want to store the pretrained models downloaded from s3'''}) UpperCamelCase__ = field( default='''main''', metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''}, ) UpperCamelCase__ = field(default=_UpperCAmelCase, metadata={'''help''': '''Name or path of preprocessor config.'''}) UpperCamelCase__ = field( default=_UpperCAmelCase, metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) }, ) UpperCamelCase__ = field( default=0.75, metadata={'''help''': '''The ratio of the number of masked tokens in the input sequence.'''}) UpperCamelCase__ = field( default=_UpperCAmelCase, metadata={'''help''': '''Whether or not to train with normalized pixel values as target.'''}) @dataclass class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = field( default=1e-3, metadata={'''help''': '''Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'''}) def lowerCamelCase ( UpperCAmelCase__ : Optional[Any] ) -> Optional[Any]: lowercase_ : List[Any] = torch.stack([example["""pixel_values"""] for example in examples] ) return {"pixel_values": pixel_values} def lowerCamelCase ( ) -> List[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase_ : Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase_ : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase_ : Tuple = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_mae""" , UpperCAmelCase__ , UpperCAmelCase__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase_ : str = training_args.get_process_log_level() logger.setLevel(UpperCAmelCase__ ) transformers.utils.logging.set_verbosity(UpperCAmelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. lowercase_ : str = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase_ : int = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset. lowercase_ : Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. lowercase_ : List[str] = None if """validation""" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , UpperCAmelCase__ ) and data_args.train_val_split > 0.0: lowercase_ : int = ds["""train"""].train_test_split(data_args.train_val_split ) lowercase_ : Union[str, Any] = split["""train"""] lowercase_ : Tuple = split["""test"""] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase_ : Any = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name: lowercase_ : Any = ViTMAEConfig.from_pretrained(model_args.config_name , **UpperCAmelCase__ ) elif model_args.model_name_or_path: lowercase_ : List[str] = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **UpperCAmelCase__ ) else: lowercase_ : Dict = ViTMAEConfig() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(F'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(F'''New config: {config}''' ) # adapt config config.update( { """mask_ratio""": model_args.mask_ratio, """norm_pix_loss""": model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: lowercase_ : Union[str, Any] = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **UpperCAmelCase__ ) elif model_args.model_name_or_path: lowercase_ : str = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **UpperCAmelCase__ ) else: lowercase_ : List[str] = ViTImageProcessor() # create model if model_args.model_name_or_path: lowercase_ : str = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=UpperCAmelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) lowercase_ : Optional[int] = ViTMAEForPreTraining(UpperCAmelCase__ ) if training_args.do_train: lowercase_ : Union[str, Any] = ds["""train"""].column_names else: lowercase_ : str = ds["""validation"""].column_names if data_args.image_column_name is not None: lowercase_ : Optional[int] = data_args.image_column_name elif "image" in column_names: lowercase_ : Tuple = """image""" elif "img" in column_names: lowercase_ : int = """img""" else: lowercase_ : List[Any] = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: lowercase_ : Union[str, Any] = image_processor.size["""shortest_edge"""] else: lowercase_ : str = (image_processor.size["""height"""], image_processor.size["""width"""]) lowercase_ : List[str] = Compose( [ Lambda(lambda UpperCAmelCase__ : img.convert("""RGB""" ) if img.mode != "RGB" else img ), RandomResizedCrop(UpperCAmelCase__ , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(UpperCAmelCase__ : List[str] ): lowercase_ : int = [transforms(UpperCAmelCase__ ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: lowercase_ : Optional[Any] = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(UpperCAmelCase__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: lowercase_ : Union[str, Any] = ( ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(UpperCAmelCase__ ) # Compute absolute learning rate lowercase_ : Union[str, Any] = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: lowercase_ : Union[str, Any] = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer lowercase_ : int = Trainer( model=UpperCAmelCase__ , args=UpperCAmelCase__ , train_dataset=ds["""train"""] if training_args.do_train else None , eval_dataset=ds["""validation"""] if training_args.do_eval else None , tokenizer=UpperCAmelCase__ , data_collator=UpperCAmelCase__ , ) # Training if training_args.do_train: lowercase_ : Union[str, Any] = None if training_args.resume_from_checkpoint is not None: lowercase_ : Optional[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase_ : List[Any] = last_checkpoint lowercase_ : str = trainer.train(resume_from_checkpoint=UpperCAmelCase__ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowercase_ : int = trainer.evaluate() trainer.log_metrics("""eval""" , UpperCAmelCase__ ) trainer.save_metrics("""eval""" , UpperCAmelCase__ ) # Write model card and (optionally) push to hub lowercase_ : Union[str, Any] = { """tasks""": """masked-auto-encoding""", """dataset""": data_args.dataset_name, """tags""": ["""masked-auto-encoding"""], } if training_args.push_to_hub: trainer.push_to_hub(**UpperCAmelCase__ ) else: trainer.create_model_card(**UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : Any ) -> str: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
364
'''simple docstring''' import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py _lowercase : Union[str, Any] = "src/transformers" _lowercase : str = "docs/source/en" _lowercase : Union[str, Any] = "." def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] ) -> int: with open(UpperCAmelCase__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowercase_ : Union[str, Any] = f.readlines() # Find the start prompt. lowercase_ : Optional[Any] = 0 while not lines[start_index].startswith(UpperCAmelCase__ ): start_index += 1 start_index += 1 lowercase_ : int = start_index while not lines[end_index].startswith(UpperCAmelCase__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | _lowercase : int = "Model|Encoder|Decoder|ForConditionalGeneration" # Regexes that match TF/Flax/PT model names. _lowercase : str = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") _lowercase : Optional[Any] = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _lowercase : int = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # This is to make sure the transformers module imported is the one in the repo. _lowercase : Optional[Any] = direct_transformers_import(TRANSFORMERS_PATH) def lowerCamelCase ( UpperCAmelCase__ : int ) -> Any: lowercase_ : str = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , UpperCAmelCase__ ) return [m.group(0 ) for m in matches] def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple ) -> List[Any]: lowercase_ : Dict = 2 if text == """✅""" or text == """❌""" else len(UpperCAmelCase__ ) lowercase_ : List[str] = (width - text_length) // 2 lowercase_ : Dict = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def lowerCamelCase ( ) -> Any: lowercase_ : int = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES lowercase_ : Any = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } lowercase_ : int = {name: config.replace("""Config""" , """""" ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. lowercase_ : List[Any] = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : List[str] = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : Any = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : Tuple = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : Optional[int] = collections.defaultdict(UpperCAmelCase__ ) # Let's lookup through all transformers object (once). for attr_name in dir(UpperCAmelCase__ ): lowercase_ : Union[str, Any] = None if attr_name.endswith("""Tokenizer""" ): lowercase_ : Optional[int] = slow_tokenizers lowercase_ : Union[str, Any] = attr_name[:-9] elif attr_name.endswith("""TokenizerFast""" ): lowercase_ : Optional[Any] = fast_tokenizers lowercase_ : Dict = attr_name[:-13] elif _re_tf_models.match(UpperCAmelCase__ ) is not None: lowercase_ : str = tf_models lowercase_ : str = _re_tf_models.match(UpperCAmelCase__ ).groups()[0] elif _re_flax_models.match(UpperCAmelCase__ ) is not None: lowercase_ : List[str] = flax_models lowercase_ : int = _re_flax_models.match(UpperCAmelCase__ ).groups()[0] elif _re_pt_models.match(UpperCAmelCase__ ) is not None: lowercase_ : Tuple = pt_models lowercase_ : Optional[int] = _re_pt_models.match(UpperCAmelCase__ ).groups()[0] if lookup_dict is not None: while len(UpperCAmelCase__ ) > 0: if attr_name in model_name_to_prefix.values(): lowercase_ : int = True break # Try again after removing the last word in the name lowercase_ : Optional[Any] = """""".join(camel_case_split(UpperCAmelCase__ )[:-1] ) # Let's build that table! lowercase_ : Dict = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) lowercase_ : Optional[Any] = ["""Model""", """Tokenizer slow""", """Tokenizer fast""", """PyTorch support""", """TensorFlow support""", """Flax Support"""] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). lowercase_ : Union[str, Any] = [len(UpperCAmelCase__ ) + 2 for c in columns] lowercase_ : int = max([len(UpperCAmelCase__ ) for name in model_names] ) + 2 # Build the table per se lowercase_ : Tuple = """|""" + """|""".join([_center_text(UpperCAmelCase__ , UpperCAmelCase__ ) for c, w in zip(UpperCAmelCase__ , UpperCAmelCase__ )] ) + """|\n""" # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([""":""" + """-""" * (w - 2) + """:""" for w in widths] ) + "|\n" lowercase_ : int = {True: """✅""", False: """❌"""} for name in model_names: lowercase_ : str = model_name_to_prefix[name] lowercase_ : Any = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(UpperCAmelCase__ , UpperCAmelCase__ ) for l, w in zip(UpperCAmelCase__ , UpperCAmelCase__ )] ) + "|\n" return table def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any]=False ) -> str: lowercase_ , lowercase_ , lowercase_ , lowercase_ : List[str] = _find_text_in_file( filename=os.path.join(UpperCAmelCase__ , """index.md""" ) , start_prompt="""<!--This table is updated automatically from the auto modules""" , end_prompt="""<!-- End table-->""" , ) lowercase_ : Dict = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(UpperCAmelCase__ , """index.md""" ) , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( """The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.""" ) if __name__ == "__main__": _lowercase : Any = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") _lowercase : Optional[Any] = parser.parse_args() check_model_table(args.fix_and_overwrite)
21
0
"""simple docstring""" import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params a :List[Any] = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["memory_attention", "encoder_attn"], ["attention", "attn"], ["/", "."], [".LayerNorm.gamma", "_layer_norm.weight"], [".LayerNorm.beta", "_layer_norm.bias"], ["r.layer_", "r.layers."], ["output_proj", "out_proj"], ["ffn.dense_1.", "fc2."], ["ffn.dense.", "fc1."], ["ffn_layer_norm", "final_layer_norm"], ["kernel", "weight"], ["encoder_layer_norm.", "encoder.layer_norm."], ["decoder_layer_norm.", "decoder.layer_norm."], ["embeddings.weights", "shared.weight"], ] def _lowercase ( __lowerCAmelCase ) -> List[str]: for pegasus_name, hf_name in PATTERNS: SCREAMING_SNAKE_CASE__ : Union[str, Any] = k.replace(__lowerCAmelCase , __lowerCAmelCase ) return k def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> PegasusForConditionalGeneration: SCREAMING_SNAKE_CASE__ : str = DEFAULTS.copy() cfg_kwargs.update(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : List[str] = PegasusConfig(**__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = PegasusForConditionalGeneration(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : str = torch_model.model.state_dict() SCREAMING_SNAKE_CASE__ : Any = {} for k, v in tf_weights.items(): SCREAMING_SNAKE_CASE__ : Optional[int] = rename_state_dict_key(__lowerCAmelCase ) if new_k not in sd: raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if "dense" in k or "proj" in new_k: SCREAMING_SNAKE_CASE__ : Tuple = v.T SCREAMING_SNAKE_CASE__ : Any = torch.tensor(__lowerCAmelCase , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F'''{new_k}, {k}, {v.shape}, {sd[new_k].shape}''' # make sure embedding.padding_idx is respected SCREAMING_SNAKE_CASE__ : Optional[int] = torch.zeros_like(mapping["""shared.weight"""][cfg.pad_token_id + 1] ) SCREAMING_SNAKE_CASE__ : Optional[int] = mapping["""shared.weight"""] SCREAMING_SNAKE_CASE__ : Any = mapping["""shared.weight"""] SCREAMING_SNAKE_CASE__ : int = {k: torch.zeros_like(__lowerCAmelCase ) for k, v in sd.items() if k.endswith("""bias""" ) and k not in mapping} mapping.update(**__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = torch_model.model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = [ k for k in missing if k not in ["""encoder.embed_positions.weight""", """decoder.embed_positions.weight"""] ] assert unexpected_missing == [], F'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], F'''no matches found for the following tf keys {extra}''' return torch_model def _lowercase ( __lowerCAmelCase="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: SCREAMING_SNAKE_CASE__ : List[Any] = tf.train.list_variables(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = {} SCREAMING_SNAKE_CASE__ : Any = ["""Adafactor""", """global_step"""] for name, shape in tqdm(__lowerCAmelCase , desc="""converting tf checkpoint to dict""" ): SCREAMING_SNAKE_CASE__ : Tuple = any(pat in name for pat in ignore_name ) if skip_key: continue SCREAMING_SNAKE_CASE__ : str = tf.train.load_variable(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = array return tf_weights def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> Any: # save tokenizer first SCREAMING_SNAKE_CASE__ : Any = Path(__lowerCAmelCase ).parent.name SCREAMING_SNAKE_CASE__ : Dict = task_specific_params[F'''summarization_{dataset}''']["""max_position_embeddings"""] SCREAMING_SNAKE_CASE__ : Tuple = PegasusTokenizer.from_pretrained("""sshleifer/pegasus""" , model_max_length=__lowerCAmelCase ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(__lowerCAmelCase ) # convert model SCREAMING_SNAKE_CASE__ : Optional[Any] = get_tf_weights_as_numpy(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Any = task_specific_params[F'''summarization_{dataset}'''] if dataset == "large": SCREAMING_SNAKE_CASE__ : Tuple = task_specific_params SCREAMING_SNAKE_CASE__ : str = convert_pegasus(__lowerCAmelCase , __lowerCAmelCase ) torch_model.save_pretrained(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = torch_model.state_dict() sd.pop("""model.decoder.embed_positions.weight""" ) sd.pop("""model.encoder.embed_positions.weight""" ) torch.save(__lowerCAmelCase , Path(__lowerCAmelCase ) / """pytorch_model.bin""" ) if __name__ == "__main__": a :List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.") a :Optional[Any] = parser.parse_args() if args.save_dir is None: a :List[Any] = Path(args.tf_ckpt_path).parent.name a :Optional[Any] = os.path.join("pegasus", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
132
"""simple docstring""" from __future__ import annotations from typing import TypedDict class __a (UpperCamelCase_): '''simple docstring''' _SCREAMING_SNAKE_CASE :str _SCREAMING_SNAKE_CASE :int def _lowercase ( __lowerCAmelCase ) -> list[str]: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError("""The parameter s type must be str.""" ) return [s[i:] + s[:i] for i in range(len(__lowerCAmelCase ) )] def _lowercase ( __lowerCAmelCase ) -> BWTTransformDict: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError("""The parameter s type must be str.""" ) if not s: raise ValueError("""The parameter s must not be empty.""" ) SCREAMING_SNAKE_CASE__ : str = all_rotations(__lowerCAmelCase ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation SCREAMING_SNAKE_CASE__ : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(__lowerCAmelCase ), } return response def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> str: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError("""The parameter bwt_string type must be str.""" ) if not bwt_string: raise ValueError("""The parameter bwt_string must not be empty.""" ) try: SCREAMING_SNAKE_CASE__ : List[Any] = int(__lowerCAmelCase ) except ValueError: raise TypeError( """The parameter idx_original_string type must be int or passive""" """ of cast to int.""" ) if idx_original_string < 0: raise ValueError("""The parameter idx_original_string must not be lower than 0.""" ) if idx_original_string >= len(__lowerCAmelCase ): raise ValueError( """The parameter idx_original_string must be lower than""" """ len(bwt_string).""" ) SCREAMING_SNAKE_CASE__ : str = [""""""] * len(__lowerCAmelCase ) for _ in range(len(__lowerCAmelCase ) ): for i in range(len(__lowerCAmelCase ) ): SCREAMING_SNAKE_CASE__ : str = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": a :Union[str, Any] = "Provide a string that I will generate its BWT transform: " a :str = input(entry_msg).strip() a :int = bwt_transform(s) print( f'Burrows Wheeler transform for string \'{s}\' results ' f'in \'{result["bwt_string"]}\'' ) a :int = reverse_bwt(result["bwt_string"], result["idx_original_string"]) print( f'Reversing Burrows Wheeler transform for entry \'{result["bwt_string"]}\' ' f'we get original string \'{original_string}\'' )
132
1
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def a( A : Tuple , A : List[str] , A : Tuple , A : int ) -> Union[str, Any]: """simple docstring""" if isinstance(A , A ): a = np.full((len(A ), sequence_length, 2) , A ) else: a = np.full((len(A ), sequence_length) , A ) for i, tensor in enumerate(A ): if padding_side == "right": if isinstance(A , A ): a = tensor[:sequence_length] else: a = tensor[:sequence_length] else: if isinstance(A , A ): a = tensor[:sequence_length] else: a = tensor[:sequence_length] return out_tensor.tolist() def a( A : Union[str, Any] ) -> Optional[int]: """simple docstring""" a = ord(A ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True a = unicodedata.category(A ) if cat.startswith("P" ): return True return False @dataclass class _lowercase ( lowerCAmelCase ): """simple docstring""" __A = 42 __A = True __A = None __A = None __A = -100 __A = "pt" def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" import torch a = "label" if "label" in features[0].keys() else "labels" a = [feature[label_name] for feature in features] if label_name in features[0].keys() else None a = self.tokenizer.pad( lowerCamelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" if labels is None else None , ) if labels is None: return batch a = torch.tensor(batch["entity_ids"] ).shape[1] a = self.tokenizer.padding_side if padding_side == "right": a = [ list(lowerCamelCase_ ) + [self.label_pad_token_id] * (sequence_length - len(lowerCamelCase_ )) for label in labels ] else: a = [ [self.label_pad_token_id] * (sequence_length - len(lowerCamelCase_ )) + list(lowerCamelCase_ ) for label in labels ] a = [feature["ner_tags"] for feature in features] a = padding_tensor(lowerCamelCase_ , -1 , lowerCamelCase_ , lowerCamelCase_ ) a = [feature["original_entity_spans"] for feature in features] a = padding_tensor(lowerCamelCase_ , (-1, -1) , lowerCamelCase_ , lowerCamelCase_ ) a = {k: torch.tensor(lowerCamelCase_ , dtype=torch.intaa ) for k, v in batch.items()} return batch
71
def a( A : int = 200 ) -> int: """simple docstring""" a = [1, 2, 5, 10, 20, 50, 100, 200] a = [0] * (pence + 1) a = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(A , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 73682
71
1
def __UpperCAmelCase ( __a : Union[str, Any] ,__a : Optional[Any] ) -> Optional[int]: """simple docstring""" print('''\nThe shortest path matrix using Floyd Warshall algorithm\n''' ) for i in range(__a ): for j in range(__a ): if dist[i][j] != float('''inf''' ): print(int(dist[i][j] ) ,end='''\t''' ) else: print('''INF''' ,end='''\t''' ) print() def __UpperCAmelCase ( __a : int ,__a : Optional[Any] ) -> Tuple: """simple docstring""" _a : Optional[Any] = [[float('''inf''' ) for _ in range(__a )] for _ in range(__a )] for i in range(__a ): for j in range(__a ): _a : Tuple = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(__a ): # looping through rows of graph array for i in range(__a ): # looping through columns of graph array for j in range(__a ): if ( dist[i][k] != float('''inf''' ) and dist[k][j] != float('''inf''' ) and dist[i][k] + dist[k][j] < dist[i][j] ): _a : Union[str, Any] = dist[i][k] + dist[k][j] _print_dist(__a ,__a ) return dist, v if __name__ == "__main__": a__ = int(input('''Enter number of vertices: ''')) a__ = int(input('''Enter number of edges: ''')) a__ = [[float('''inf''') for i in range(v)] for j in range(v)] for i in range(v): a__ = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('''\nEdge ''', i + 1) a__ = int(input('''Enter source:''')) a__ = int(input('''Enter destination:''')) a__ = float(input('''Enter weight:''')) a__ = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
235
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : List[Any] = (DDPMScheduler,) def __lowercase ( self , **_a ) -> Any: _a : List[Any] = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**_a ) return config def __lowercase ( self ) -> Any: for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=_a ) def __lowercase ( self ) -> List[Any]: for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_a , beta_end=_a ) def __lowercase ( self ) -> List[str]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_a ) def __lowercase ( self ) -> Optional[Any]: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_a ) def __lowercase ( self ) -> str: for clip_sample in [True, False]: self.check_over_configs(clip_sample=_a ) def __lowercase ( self ) -> Dict: self.check_over_configs(thresholding=_a ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_a , prediction_type=_a , sample_max_value=_a , ) def __lowercase ( self ) -> Optional[Any]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_a ) def __lowercase ( self ) -> int: for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=_a ) def __lowercase ( self ) -> int: _a : int = self.scheduler_classes[0] _a : List[Any] = self.get_scheduler_config() _a : Dict = scheduler_class(**_a ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.0_0979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1e-5 def __lowercase ( self ) -> Tuple: _a : int = self.scheduler_classes[0] _a : int = self.get_scheduler_config() _a : int = scheduler_class(**_a ) _a : Optional[int] = len(_a ) _a : Optional[Any] = self.dummy_model() _a : str = self.dummy_sample_deter _a : Union[str, Any] = torch.manual_seed(0 ) for t in reversed(range(_a ) ): # 1. predict noise residual _a : str = model(_a , _a ) # 2. predict previous mean of sample x_t-1 _a : Optional[int] = scheduler.step(_a , _a , _a , generator=_a ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _a : List[Any] = pred_prev_sample _a : str = torch.sum(torch.abs(_a ) ) _a : Optional[Any] = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def __lowercase ( self ) -> Optional[Any]: _a : Optional[int] = self.scheduler_classes[0] _a : Optional[Any] = self.get_scheduler_config(prediction_type='''v_prediction''' ) _a : Union[str, Any] = scheduler_class(**_a ) _a : Dict = len(_a ) _a : int = self.dummy_model() _a : Tuple = self.dummy_sample_deter _a : List[Any] = torch.manual_seed(0 ) for t in reversed(range(_a ) ): # 1. predict noise residual _a : Dict = model(_a , _a ) # 2. predict previous mean of sample x_t-1 _a : int = scheduler.step(_a , _a , _a , generator=_a ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _a : str = pred_prev_sample _a : str = torch.sum(torch.abs(_a ) ) _a : Tuple = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def __lowercase ( self ) -> Dict: _a : Union[str, Any] = self.scheduler_classes[0] _a : Tuple = self.get_scheduler_config() _a : Any = scheduler_class(**_a ) _a : Optional[Any] = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=_a ) _a : Optional[int] = scheduler.timesteps for i, timestep in enumerate(_a ): if i == len(_a ) - 1: _a : Dict = -1 else: _a : Tuple = timesteps[i + 1] _a : Optional[Any] = scheduler.previous_timestep(_a ) _a : Optional[Any] = prev_t.item() self.assertEqual(_a , _a ) def __lowercase ( self ) -> Optional[Any]: _a : Dict = self.scheduler_classes[0] _a : List[str] = self.get_scheduler_config() _a : Tuple = scheduler_class(**_a ) _a : str = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(_a , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=_a ) def __lowercase ( self ) -> str: _a : List[str] = self.scheduler_classes[0] _a : List[str] = self.get_scheduler_config() _a : Dict = scheduler_class(**_a ) _a : Union[str, Any] = [1_0_0, 8_7, 5_0, 1, 0] _a : Optional[Any] = len(_a ) with self.assertRaises(_a , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=_a , timesteps=_a ) def __lowercase ( self ) -> Optional[int]: _a : Dict = self.scheduler_classes[0] _a : Union[str, Any] = self.get_scheduler_config() _a : int = scheduler_class(**_a ) _a : str = [scheduler.config.num_train_timesteps] with self.assertRaises( _a , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=_a )
235
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __magic_name__ ( snake_case ): UpperCamelCase_ :List[Any] = """dandelin/vilt-b32-finetuned-vqa""" UpperCamelCase_ :Dict = ( """This is a tool that answers a question about an image. It takes an input named `image` which should be the """ """image containing the information, as well as a `question` which should be the question in English. It """ """returns a text that is the answer to the question.""" ) UpperCamelCase_ :Optional[int] = """image_qa""" UpperCamelCase_ :int = AutoProcessor UpperCamelCase_ :Tuple = AutoModelForVisualQuestionAnswering UpperCamelCase_ :Optional[int] = ["""image""", """text"""] UpperCamelCase_ :Tuple = ["""text"""] def __init__( self , *_lowercase , **_lowercase )-> Union[str, Any]: requires_backends(self , ["vision"] ) super().__init__(*_lowercase , **_lowercase ) def UpperCAmelCase_ ( self , _lowercase , _lowercase )-> str: return self.pre_processor(_lowercase , _lowercase , return_tensors="pt" ) def UpperCAmelCase_ ( self , _lowercase )-> str: with torch.no_grad(): return self.model(**_lowercase ).logits def UpperCAmelCase_ ( self , _lowercase )-> List[Any]: UpperCamelCase_ = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
60
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __magic_name__ : @staticmethod def UpperCAmelCase_ ( *_lowercase , **_lowercase )-> Optional[int]: pass @is_pipeline_test @require_vision class __magic_name__ ( unittest.TestCase ): @require_torch def UpperCAmelCase_ ( self )-> int: UpperCamelCase_ = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , ) UpperCamelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) UpperCamelCase_ = image_classifier(_lowercase , candidate_labels=["a", "b", "c"] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(_lowercase ) , [ [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}], [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}], ] , ) UpperCamelCase_ = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(_lowercase ) , [ [ {"score": 0.333, "label": ANY(_lowercase )}, {"score": 0.333, "label": ANY(_lowercase )}, {"score": 0.333, "label": ANY(_lowercase )}, ], [ {"score": 0.333, "label": ANY(_lowercase )}, {"score": 0.333, "label": ANY(_lowercase )}, {"score": 0.333, "label": ANY(_lowercase )}, ], [ {"score": 0.333, "label": ANY(_lowercase )}, {"score": 0.333, "label": ANY(_lowercase )}, {"score": 0.333, "label": ANY(_lowercase )}, ], [ {"score": 0.333, "label": ANY(_lowercase )}, {"score": 0.333, "label": ANY(_lowercase )}, {"score": 0.333, "label": ANY(_lowercase )}, ], [ {"score": 0.333, "label": ANY(_lowercase )}, {"score": 0.333, "label": ANY(_lowercase )}, {"score": 0.333, "label": ANY(_lowercase )}, ], ] , ) @require_tf def UpperCAmelCase_ ( self )-> Optional[Any]: UpperCamelCase_ = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , framework="tf" ) UpperCamelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) UpperCamelCase_ = image_classifier(_lowercase , candidate_labels=["a", "b", "c"] ) self.assertEqual( nested_simplify(_lowercase ) , [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}] , ) UpperCamelCase_ = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(_lowercase ) , [ [ {"score": 0.333, "label": ANY(_lowercase )}, {"score": 0.333, "label": ANY(_lowercase )}, {"score": 0.333, "label": ANY(_lowercase )}, ], [ {"score": 0.333, "label": ANY(_lowercase )}, {"score": 0.333, "label": ANY(_lowercase )}, {"score": 0.333, "label": ANY(_lowercase )}, ], [ {"score": 0.333, "label": ANY(_lowercase )}, {"score": 0.333, "label": ANY(_lowercase )}, {"score": 0.333, "label": ANY(_lowercase )}, ], [ {"score": 0.333, "label": ANY(_lowercase )}, {"score": 0.333, "label": ANY(_lowercase )}, {"score": 0.333, "label": ANY(_lowercase )}, ], [ {"score": 0.333, "label": ANY(_lowercase )}, {"score": 0.333, "label": ANY(_lowercase )}, {"score": 0.333, "label": ANY(_lowercase )}, ], ] , ) @slow @require_torch def UpperCAmelCase_ ( self )-> Optional[Any]: UpperCamelCase_ = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , ) # This is an image of 2 cats with remotes and no planes UpperCamelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) UpperCamelCase_ = image_classifier(_lowercase , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(_lowercase ) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) UpperCamelCase_ = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(_lowercase ) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , ) @slow @require_tf def UpperCAmelCase_ ( self )-> List[str]: UpperCamelCase_ = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , framework="tf" ) # This is an image of 2 cats with remotes and no planes UpperCamelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) UpperCamelCase_ = image_classifier(_lowercase , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(_lowercase ) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) UpperCamelCase_ = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(_lowercase ) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , )
60
1
a__: Union[str, Any] = { 'meter': 'm', 'kilometer': 'km', 'megametre': 'Mm', 'gigametre': 'Gm', 'terametre': 'Tm', 'petametre': 'Pm', 'exametre': 'Em', 'zettametre': 'Zm', 'yottametre': 'Ym', } # Exponent of the factor(meter) a__: Union[str, Any] = { 'm': 0, 'km': 3, 'Mm': 6, 'Gm': 9, 'Tm': 12, 'Pm': 15, 'Em': 18, 'Zm': 21, 'Ym': 24, } def UpperCamelCase__( UpperCamelCase__ : float , UpperCamelCase__ : str , UpperCamelCase__ : str )->float: A__ = from_type.lower().strip('''s''' ) A__ = to_type.lower().strip('''s''' ) A__ = UNIT_SYMBOL.get(UpperCamelCase__ , UpperCamelCase__ ) A__ = UNIT_SYMBOL.get(UpperCamelCase__ , UpperCamelCase__ ) if from_sanitized not in METRIC_CONVERSION: A__ = ( f"Invalid 'from_type' value: {from_type!r}.\n" f"Conversion abbreviations are: {', '.join(UpperCamelCase__ )}" ) raise ValueError(UpperCamelCase__ ) if to_sanitized not in METRIC_CONVERSION: A__ = ( f"Invalid 'to_type' value: {to_type!r}.\n" f"Conversion abbreviations are: {', '.join(UpperCamelCase__ )}" ) raise ValueError(UpperCamelCase__ ) A__ = METRIC_CONVERSION[from_sanitized] A__ = METRIC_CONVERSION[to_sanitized] A__ = 1 if from_exponent > to_exponent: A__ = from_exponent - to_exponent else: A__ = -(to_exponent - from_exponent) return value * pow(10 , UpperCamelCase__ ) if __name__ == "__main__": from doctest import testmod testmod()
193
def UpperCamelCase__( UpperCamelCase__ : Dict )->Dict: # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection A__ = len(UpperCamelCase__ ) A__ = max(UpperCamelCase__ ) A__ = min(UpperCamelCase__ ) # create the counting array A__ = coll_max + 1 - coll_min A__ = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , UpperCamelCase__ ): A__ = counting_arr[i] + counting_arr[i - 1] # create the output collection A__ = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , UpperCamelCase__ ) ): A__ = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def UpperCamelCase__( UpperCamelCase__ : Optional[int] )->Tuple: return "".join([chr(UpperCamelCase__ ) for i in counting_sort([ord(UpperCamelCase__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string('thisisthestring') == "eghhiiinrsssttt" a__: Dict = input('Enter numbers separated by a comma:\n').strip() a__: Any = [int(item) for item in user_input.split(',')] print(counting_sort(unsorted))
193
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class __SCREAMING_SNAKE_CASE ( __lowercase): _SCREAMING_SNAKE_CASE : List[Any] = '''microsoft/speecht5_tts''' _SCREAMING_SNAKE_CASE : Any = ( '''This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ''' '''text to read (in English) and returns a waveform object containing the sound.''' ) _SCREAMING_SNAKE_CASE : int = '''text_reader''' _SCREAMING_SNAKE_CASE : List[str] = SpeechTaProcessor _SCREAMING_SNAKE_CASE : Optional[int] = SpeechTaForTextToSpeech _SCREAMING_SNAKE_CASE : List[Any] = SpeechTaHifiGan _SCREAMING_SNAKE_CASE : Optional[int] = ['''text'''] _SCREAMING_SNAKE_CASE : List[Any] = ['''audio'''] def UpperCamelCase__ ( self ): """simple docstring""" if self.post_processor is None: lowerCAmelCase__ = 'microsoft/speecht5_hifigan' super().setup() def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase=None ): """simple docstring""" lowerCAmelCase__ = self.pre_processor(text=_UpperCamelCase , return_tensors='pt' , truncation=_UpperCamelCase ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('Datasets needs to be installed if not passing speaker embeddings.' ) lowerCAmelCase__ = load_dataset('Matthijs/cmu-arctic-xvectors' , split='validation' ) lowerCAmelCase__ = torch.tensor(embeddings_dataset[73_05]['xvector'] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" with torch.no_grad(): return self.model.generate_speech(**_UpperCamelCase ) def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" with torch.no_grad(): return self.post_processor(_UpperCamelCase ).cpu().detach()
359
import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json __snake_case : Tuple = """sshleifer/mar_enro_6_3_student""" class __SCREAMING_SNAKE_CASE ( __lowercase): def UpperCamelCase__ ( self ): """simple docstring""" super().setUp() lowerCAmelCase__ = cached_path( 'https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz' , extract_compressed_file=_UpperCamelCase , ) lowerCAmelCase__ = F"{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k" @slow @require_torch_gpu def UpperCamelCase__ ( self ): """simple docstring""" MarianMTModel.from_pretrained(_UpperCamelCase ) @slow @require_torch_gpu def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = { '$MAX_LEN': 64, '$BS': 64, '$GAS': 1, '$ENRO_DIR': self.data_dir, 'facebook/mbart-large-cc25': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '--learning_rate=3e-5': '--learning_rate 3e-4', '--num_train_epochs 6': '--num_train_epochs 1', } # Clean up bash script lowerCAmelCase__ = (self.test_file_dir / 'train_mbart_cc25_enro.sh').open().read().split('finetune.py' )[1].strip() lowerCAmelCase__ = bash_script.replace('\\\n' , '' ).strip().replace('"$@"' , '' ) for k, v in env_vars_to_replace.items(): lowerCAmelCase__ = bash_script.replace(_UpperCamelCase , str(_UpperCamelCase ) ) lowerCAmelCase__ = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") lowerCAmelCase__ = F"\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n ".split() # XXX: args.gpus > 1 : handle multi_gpu in the future lowerCAmelCase__ = ['finetune.py'] + bash_script.split() + args with patch.object(_UpperCamelCase , 'argv' , _UpperCamelCase ): lowerCAmelCase__ = argparse.ArgumentParser() lowerCAmelCase__ = pl.Trainer.add_argparse_args(_UpperCamelCase ) lowerCAmelCase__ = SummarizationModule.add_model_specific_args(_UpperCamelCase , os.getcwd() ) lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = main(_UpperCamelCase ) # Check metrics lowerCAmelCase__ = load_json(model.metrics_save_path ) lowerCAmelCase__ = metrics['val'][0] lowerCAmelCase__ = metrics['val'][-1] self.assertEqual(len(metrics['val'] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[F"val_avg_{model.val_metric}"] , _UpperCamelCase ) self.assertGreater(last_step_stats['val_avg_gen_time'] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['val_avg_gen_time'] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['val_avg_bleu'] - first_step_stats['val_avg_bleu'] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['val_avg_bleu'] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['val'][-1]['val_avg_bleu'] - metrics['test'][-1]['test_avg_bleu'] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict lowerCAmelCase__ = os.listdir(_UpperCamelCase ) lowerCAmelCase__ = [x for x in contents if x.endswith('.ckpt' )][0] lowerCAmelCase__ = os.path.join(args.output_dir , _UpperCamelCase ) lowerCAmelCase__ = torch.load(_UpperCamelCase , map_location='cpu' ) lowerCAmelCase__ = 'model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: lowerCAmelCase__ = {os.path.basename(_UpperCamelCase ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1 class __SCREAMING_SNAKE_CASE ( __lowercase): @timeout_decorator.timeout(6_00 ) @slow @require_torch_gpu def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = F"{self.test_file_dir_str}/test_data/wmt_en_ro" lowerCAmelCase__ = { '--fp16_opt_level=O1': '', '$MAX_LEN': 1_28, '$BS': 16, '$GAS': 1, '$ENRO_DIR': data_dir, '$m': 'sshleifer/student_marian_en_ro_6_1', 'val_check_interval=0.25': 'val_check_interval=1.0', } # Clean up bash script lowerCAmelCase__ = ( (self.test_file_dir / 'distil_marian_no_teacher.sh').open().read().split('distillation.py' )[1].strip() ) lowerCAmelCase__ = bash_script.replace('\\\n' , '' ).strip().replace('"$@"' , '' ) lowerCAmelCase__ = bash_script.replace('--fp16 ' , ' ' ) for k, v in env_vars_to_replace.items(): lowerCAmelCase__ = bash_script.replace(_UpperCamelCase , str(_UpperCamelCase ) ) lowerCAmelCase__ = self.get_auto_remove_tmp_dir() lowerCAmelCase__ = bash_script.replace('--fp16' , '' ) lowerCAmelCase__ = 6 lowerCAmelCase__ = ( ['distillation.py'] + bash_script.split() + [ F"--output_dir={output_dir}", '--gpus=1', '--learning_rate=1e-3', F"--num_train_epochs={epochs}", '--warmup_steps=10', '--val_check_interval=1.0', '--do_predict', ] ) with patch.object(_UpperCamelCase , 'argv' , _UpperCamelCase ): lowerCAmelCase__ = argparse.ArgumentParser() lowerCAmelCase__ = pl.Trainer.add_argparse_args(_UpperCamelCase ) lowerCAmelCase__ = SummarizationDistiller.add_model_specific_args(_UpperCamelCase , os.getcwd() ) lowerCAmelCase__ = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu lowerCAmelCase__ = distill_main(_UpperCamelCase ) # Check metrics lowerCAmelCase__ = load_json(model.metrics_save_path ) lowerCAmelCase__ = metrics['val'][0] lowerCAmelCase__ = metrics['val'][-1] assert len(metrics['val'] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[F"val_avg_{model.val_metric}"] , _UpperCamelCase ) # check lightning ckpt can be loaded and has a reasonable statedict lowerCAmelCase__ = os.listdir(_UpperCamelCase ) lowerCAmelCase__ = [x for x in contents if x.endswith('.ckpt' )][0] lowerCAmelCase__ = os.path.join(args.output_dir , _UpperCamelCase ) lowerCAmelCase__ = torch.load(_UpperCamelCase , map_location='cpu' ) lowerCAmelCase__ = 'model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: lowerCAmelCase__ = {os.path.basename(_UpperCamelCase ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1
122
0
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging _snake_case = logging.get_logger(__name__) _snake_case = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all LED models at https://huggingface.co/models?filter=LED _snake_case = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } _snake_case = { '''allenai/led-base-16384''': 1_63_84, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowercase_( ): '''simple docstring''' lowerCamelCase : Any = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) lowerCamelCase : List[str] = bs[:] lowerCamelCase : List[Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(a__ ) cs.append(2**8 + n ) n += 1 lowerCamelCase : List[str] = [chr(a__ ) for n in cs] return dict(zip(a__ , a__ ) ) def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : List[Any] = set() lowerCamelCase : str = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCamelCase : Optional[int] = char return pairs class UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __A : str = VOCAB_FILES_NAMES __A : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __A : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : Any = ["""input_ids""", """attention_mask"""] def __init__( self , __A , __A , __A="replace" , __A="<s>" , __A="</s>" , __A="</s>" , __A="<s>" , __A="<unk>" , __A="<pad>" , __A="<mask>" , __A=False , **__A , ): """simple docstring""" lowerCamelCase : Dict = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else bos_token lowerCamelCase : Dict = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else eos_token lowerCamelCase : List[Any] = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else sep_token lowerCamelCase : Dict = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else cls_token lowerCamelCase : List[str] = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else unk_token lowerCamelCase : Any = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase : List[Any] = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else mask_token super().__init__( errors=__UpperCamelCase , bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , sep_token=__UpperCamelCase , cls_token=__UpperCamelCase , pad_token=__UpperCamelCase , mask_token=__UpperCamelCase , add_prefix_space=__UpperCamelCase , **__UpperCamelCase , ) with open(__UpperCamelCase , encoding="utf-8" ) as vocab_handle: lowerCamelCase : Dict = json.load(__UpperCamelCase ) lowerCamelCase : Optional[Any] = {v: k for k, v in self.encoder.items()} lowerCamelCase : Any = errors # how to handle errors in decoding lowerCamelCase : Optional[Any] = bytes_to_unicode() lowerCamelCase : Tuple = {v: k for k, v in self.byte_encoder.items()} with open(__UpperCamelCase , encoding="utf-8" ) as merges_handle: lowerCamelCase : int = merges_handle.read().split("\n" )[1:-1] lowerCamelCase : int = [tuple(merge.split() ) for merge in bpe_merges] lowerCamelCase : Optional[int] = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) ) lowerCamelCase : List[Any] = {} lowerCamelCase : Union[str, Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCamelCase : int = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def _snake_case ( self ): """simple docstring""" return len(self.encoder ) def _snake_case ( self ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self , __A ): """simple docstring""" if token in self.cache: return self.cache[token] lowerCamelCase : str = tuple(__UpperCamelCase ) lowerCamelCase : int = get_pairs(__UpperCamelCase ) if not pairs: return token while True: lowerCamelCase : int = min(__UpperCamelCase , key=lambda __A : self.bpe_ranks.get(__UpperCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break lowerCamelCase , lowerCamelCase : Tuple = bigram lowerCamelCase : List[Any] = [] lowerCamelCase : Dict = 0 while i < len(__UpperCamelCase ): try: lowerCamelCase : List[Any] = word.index(__UpperCamelCase , __UpperCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCamelCase : int = j if word[i] == first and i < len(__UpperCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCamelCase : Union[str, Any] = tuple(__UpperCamelCase ) lowerCamelCase : List[str] = new_word if len(__UpperCamelCase ) == 1: break else: lowerCamelCase : Optional[Any] = get_pairs(__UpperCamelCase ) lowerCamelCase : Optional[Any] = " ".join(__UpperCamelCase ) lowerCamelCase : Union[str, Any] = word return word def _snake_case ( self , __A ): """simple docstring""" lowerCamelCase : Optional[int] = [] for token in re.findall(self.pat , __UpperCamelCase ): lowerCamelCase : Any = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__UpperCamelCase ).split(" " ) ) return bpe_tokens def _snake_case ( self , __A ): """simple docstring""" return self.encoder.get(__UpperCamelCase , self.encoder.get(self.unk_token ) ) def _snake_case ( self , __A ): """simple docstring""" return self.decoder.get(__UpperCamelCase ) def _snake_case ( self , __A ): """simple docstring""" lowerCamelCase : List[str] = "".join(__UpperCamelCase ) lowerCamelCase : Tuple = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _snake_case ( self , __A , __A = None ): """simple docstring""" if not os.path.isdir(__UpperCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase : Optional[Any] = os.path.join( __UpperCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowerCamelCase : List[str] = os.path.join( __UpperCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__UpperCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__UpperCamelCase , ensure_ascii=__UpperCamelCase ) + "\n" ) lowerCamelCase : str = 0 with open(__UpperCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __A : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) lowerCamelCase : Optional[Any] = token_index writer.write(" ".join(__UpperCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def _snake_case ( self , __A , __A = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase : Union[str, Any] = [self.cls_token_id] lowerCamelCase : List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self , __A , __A = None , __A = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCamelCase , token_ids_a=__UpperCamelCase , already_has_special_tokens=__UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCamelCase )) + [1] return [1] + ([0] * len(__UpperCamelCase )) + [1, 1] + ([0] * len(__UpperCamelCase )) + [1] def _snake_case ( self , __A , __A = None ): """simple docstring""" lowerCamelCase : Any = [self.sep_token_id] lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self , __A , __A=False , **__A ): """simple docstring""" lowerCamelCase : int = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__UpperCamelCase ) > 0 and not text[0].isspace()): lowerCamelCase : List[Any] = " " + text return (text, kwargs) def _snake_case ( self , __A , __A = None , __A = PaddingStrategy.DO_NOT_PAD , __A = None , __A = None , ): """simple docstring""" lowerCamelCase : str = super()._pad( encoded_inputs=__UpperCamelCase , max_length=__UpperCamelCase , padding_strategy=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_attention_mask=__UpperCamelCase , ) # Load from model defaults if return_attention_mask is None: lowerCamelCase : int = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowerCamelCase : int = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowerCamelCase : Optional[int] = len(encoded_inputs["global_attention_mask"] ) != len(__UpperCamelCase ) if needs_to_be_padded: lowerCamelCase : Dict = len(__UpperCamelCase ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowerCamelCase : int = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": lowerCamelCase : Any = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
283
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowercase_ ( __SCREAMING_SNAKE_CASE ): A__ : int = ["""image_processor""", """tokenizer"""] A__ : Union[str, Any] = """LayoutLMv2ImageProcessor""" A__ : Optional[int] = ("""LayoutXLMTokenizer""", """LayoutXLMTokenizerFast""") def __init__( self , __UpperCamelCase=None , __UpperCamelCase=None , **__UpperCamelCase ): """simple docstring""" if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __UpperCamelCase , ) UpperCamelCase_ = kwargs.pop("""feature_extractor""" ) UpperCamelCase_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__UpperCamelCase , __UpperCamelCase ) def __call__( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = True , __UpperCamelCase = False , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = 0 , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = True , __UpperCamelCase = None , **__UpperCamelCase , ): """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( """You cannot provide bounding boxes """ """if you initialized the image processor with apply_ocr set to True.""" ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( """You cannot provide word labels if you initialized the image processor with apply_ocr set to True.""" ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError("""You cannot return overflowing tokens without returning the offsets mapping.""" ) # first, apply the image processor UpperCamelCase_ = self.image_processor(images=__UpperCamelCase , return_tensors=__UpperCamelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__UpperCamelCase , __UpperCamelCase ): UpperCamelCase_ = [text] # add batch dimension (as the image processor always adds a batch dimension) UpperCamelCase_ = features["""words"""] UpperCamelCase_ = self.tokenizer( text=text if text is not None else features["""words"""] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["""boxes"""] , word_labels=__UpperCamelCase , add_special_tokens=__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , stride=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_token_type_ids=__UpperCamelCase , return_attention_mask=__UpperCamelCase , return_overflowing_tokens=__UpperCamelCase , return_special_tokens_mask=__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , return_length=__UpperCamelCase , verbose=__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase , ) # add pixel values UpperCamelCase_ = features.pop("""pixel_values""" ) if return_overflowing_tokens is True: UpperCamelCase_ = self.get_overflowing_images(__UpperCamelCase , encoded_inputs["""overflow_to_sample_mapping"""] ) UpperCamelCase_ = images return encoded_inputs def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__UpperCamelCase ) != len(__UpperCamelCase ): raise ValueError( """Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got""" f''' {len(__UpperCamelCase )} and {len(__UpperCamelCase )}''' ) return images_with_overflow def lowerCamelCase_ ( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" return self.tokenizer.batch_decode(*__UpperCamelCase , **__UpperCamelCase ) def lowerCamelCase_ ( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" return self.tokenizer.decode(*__UpperCamelCase , **__UpperCamelCase ) @property def lowerCamelCase_ ( self ): """simple docstring""" return ["input_ids", "bbox", "attention_mask", "image"] @property def lowerCamelCase_ ( self ): """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __UpperCamelCase , ) return self.image_processor_class @property def lowerCamelCase_ ( self ): """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __UpperCamelCase , ) return self.image_processor
122
0
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) def __a ( lowerCAmelCase_ : str ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_= SwinConfig.from_pretrained( """microsoft/swin-tiny-patch4-window7-224""" ,out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) UpperCAmelCase_= MaskFormerConfig(backbone_config=lowerCAmelCase_ ) UpperCAmelCase_= """huggingface/label-files""" if "ade20k-full" in model_name: # this should be ok UpperCAmelCase_= 8_47 UpperCAmelCase_= """maskformer-ade20k-full-id2label.json""" elif "ade" in model_name: # this should be ok UpperCAmelCase_= 1_50 UpperCAmelCase_= """ade20k-id2label.json""" elif "coco-stuff" in model_name: # this should be ok UpperCAmelCase_= 1_71 UpperCAmelCase_= """maskformer-coco-stuff-id2label.json""" elif "coco" in model_name: # TODO UpperCAmelCase_= 1_33 UpperCAmelCase_= """coco-panoptic-id2label.json""" elif "cityscapes" in model_name: # this should be ok UpperCAmelCase_= 19 UpperCAmelCase_= """cityscapes-id2label.json""" elif "vistas" in model_name: # this should be ok UpperCAmelCase_= 65 UpperCAmelCase_= """mapillary-vistas-id2label.json""" UpperCAmelCase_= json.load(open(hf_hub_download(lowerCAmelCase_ ,lowerCAmelCase_ ,repo_type="""dataset""" ) ,"""r""" ) ) UpperCAmelCase_= {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} return config def __a ( lowerCAmelCase_ : str ) -> Tuple: '''simple docstring''' UpperCAmelCase_= [] # stem # fmt: off rename_keys.append(("""backbone.patch_embed.proj.weight""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.patch_embed.proj.bias""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.patch_embed.norm.weight""", """model.pixel_level_module.encoder.model.embeddings.norm.weight""") ) rename_keys.append(("""backbone.patch_embed.norm.bias""", """model.pixel_level_module.encoder.model.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((F"""backbone.layers.{i}.downsample.reduction.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(("""sem_seg_head.layer_4.weight""", """model.pixel_level_module.decoder.fpn.stem.0.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.weight""", """model.pixel_level_module.decoder.fpn.stem.1.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.bias""", """model.pixel_level_module.decoder.fpn.stem.1.bias""") ) for source_index, target_index in zip(range(3 ,0 ,-1 ) ,range(0 ,3 ) ): rename_keys.append((F"""sem_seg_head.adapter_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(("""sem_seg_head.mask_features.weight""", """model.pixel_level_module.decoder.mask_projection.weight""") ) rename_keys.append(("""sem_seg_head.mask_features.bias""", """model.pixel_level_module.decoder.mask_projection.bias""") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.weight""", """model.transformer_module.decoder.layernorm.weight""") ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.bias""", """model.transformer_module.decoder.layernorm.bias""") ) # heads on top rename_keys.append(("""sem_seg_head.predictor.query_embed.weight""", """model.transformer_module.queries_embedder.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.weight""", """model.transformer_module.input_projection.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.bias""", """model.transformer_module.input_projection.bias""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.weight""", """class_predictor.weight""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.bias""", """class_predictor.bias""") ) for i in range(3 ): rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", F"""mask_embedder.{i}.0.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", F"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def __a ( lowerCAmelCase_ : Union[str, Any] ,lowerCAmelCase_ : Any ,lowerCAmelCase_ : int ) -> List[str]: '''simple docstring''' UpperCAmelCase_= dct.pop(lowerCAmelCase_ ) UpperCAmelCase_= val def __a ( lowerCAmelCase_ : int ,lowerCAmelCase_ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_= [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): UpperCAmelCase_= num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) UpperCAmelCase_= state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) UpperCAmelCase_= state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_= in_proj_weight[:dim, :] UpperCAmelCase_= in_proj_bias[: dim] UpperCAmelCase_= in_proj_weight[ dim : dim * 2, : ] UpperCAmelCase_= in_proj_bias[ dim : dim * 2 ] UpperCAmelCase_= in_proj_weight[ -dim :, : ] UpperCAmelCase_= in_proj_bias[-dim :] # fmt: on def __a ( lowerCAmelCase_ : Tuple ,lowerCAmelCase_ : int ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_= config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) UpperCAmelCase_= state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) UpperCAmelCase_= state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_= in_proj_weight[: hidden_size, :] UpperCAmelCase_= in_proj_bias[:config.hidden_size] UpperCAmelCase_= in_proj_weight[hidden_size : hidden_size * 2, :] UpperCAmelCase_= in_proj_bias[hidden_size : hidden_size * 2] UpperCAmelCase_= in_proj_weight[-hidden_size :, :] UpperCAmelCase_= in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) UpperCAmelCase_= state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) UpperCAmelCase_= state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_= in_proj_weight[: hidden_size, :] UpperCAmelCase_= in_proj_bias[:config.hidden_size] UpperCAmelCase_= in_proj_weight[hidden_size : hidden_size * 2, :] UpperCAmelCase_= in_proj_bias[hidden_size : hidden_size * 2] UpperCAmelCase_= in_proj_weight[-hidden_size :, :] UpperCAmelCase_= in_proj_bias[-hidden_size :] # fmt: on def __a ( ) -> torch.Tensor: '''simple docstring''' UpperCAmelCase_= """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase_= Image.open(requests.get(lowerCAmelCase_ ,stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def __a ( lowerCAmelCase_ : str ,lowerCAmelCase_ : str ,lowerCAmelCase_ : str ,lowerCAmelCase_ : bool = False ) -> int: '''simple docstring''' UpperCAmelCase_= get_maskformer_config(lowerCAmelCase_ ) # load original state_dict with open(lowerCAmelCase_ ,"""rb""" ) as f: UpperCAmelCase_= pickle.load(lowerCAmelCase_ ) UpperCAmelCase_= data["""model"""] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys UpperCAmelCase_= create_rename_keys(lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ) read_in_swin_q_k_v(lowerCAmelCase_ ,config.backbone_config ) read_in_decoder_q_k_v(lowerCAmelCase_ ,lowerCAmelCase_ ) # update to torch tensors for key, value in state_dict.items(): UpperCAmelCase_= torch.from_numpy(lowerCAmelCase_ ) # load 🤗 model UpperCAmelCase_= MaskFormerForInstanceSegmentation(lowerCAmelCase_ ) model.eval() for name, param in model.named_parameters(): print(lowerCAmelCase_ ,param.shape ) UpperCAmelCase_, UpperCAmelCase_= model.load_state_dict(lowerCAmelCase_ ,strict=lowerCAmelCase_ ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowerCAmelCase_ ) == 0, F"""Unexpected keys: {unexpected_keys}""" # verify results UpperCAmelCase_= prepare_img() if "vistas" in model_name: UpperCAmelCase_= 65 elif "cityscapes" in model_name: UpperCAmelCase_= 6_55_35 else: UpperCAmelCase_= 2_55 UpperCAmelCase_= True if """ade""" in model_name else False UpperCAmelCase_= MaskFormerImageProcessor(ignore_index=lowerCAmelCase_ ,reduce_labels=lowerCAmelCase_ ) UpperCAmelCase_= image_processor(lowerCAmelCase_ ,return_tensors="""pt""" ) UpperCAmelCase_= model(**lowerCAmelCase_ ) print("""Logits:""" ,outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": UpperCAmelCase_= torch.tensor( [[3.6_353, -4.4_770, -2.6_065], [0.5_081, -4.2_394, -3.5_343], [2.1_909, -5.0_353, -1.9_323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] ,lowerCAmelCase_ ,atol=1E-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) image_processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: print("""Pushing model and image processor to the hub...""" ) model.push_to_hub(F"""nielsr/{model_name}""" ) image_processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''maskformer-swin-tiny-ade''', type=str, help=('''Name of the MaskFormer model you\'d like to convert''',), ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl''', type=str, help='''Path to the original state dict (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __A = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
277
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo __A = '''\ @misc{wu2016googles, title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } ''' __A = '''\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the \'GLEU score\'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score\'s range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. ''' __A = '''\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: \'google_bleu\': google_bleu score Examples: Example 1: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.44 Example 2: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.61 Example 3: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results["google_bleu"], 2)) 0.53 Example 4: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results["google_bleu"], 2)) 0.4 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class lowercase ( datasets.Metric): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> MetricInfo: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ), """references""": datasets.Sequence( datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ), } ) , ) def _SCREAMING_SNAKE_CASE ( self : Any , __UpperCAmelCase : List[List[List[str]]] , __UpperCAmelCase : List[List[str]] , __UpperCAmelCase : int = 1 , __UpperCAmelCase : int = 4 , ) -> Dict[str, float]: return { "google_bleu": gleu_score.corpus_gleu( list_of_references=__UpperCAmelCase , hypotheses=__UpperCAmelCase , min_len=__UpperCAmelCase , max_len=__UpperCAmelCase ) }
277
1
"""simple docstring""" def lowercase__ ( snake_case_ :float , snake_case_ :float , snake_case_ :int ): if principal <= 0: raise Exception('''Principal borrowed must be > 0''' ) if rate_per_annum < 0: raise Exception('''Rate of interest must be >= 0''' ) if years_to_repay <= 0 or not isinstance(snake_case_ , snake_case_ ): raise Exception('''Years to repay must be an integer > 0''' ) # Yearly rate is divided by 12 to get monthly rate __UpperCAmelCase = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly __UpperCAmelCase = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
332
"""simple docstring""" from __future__ import annotations class _UpperCAmelCase : def __init__( self : Tuple , _lowercase : str , _lowercase : str ): __UpperCAmelCase , __UpperCAmelCase = text, pattern __UpperCAmelCase , __UpperCAmelCase = len(_lowercase ), len(_lowercase ) def a ( self : Optional[int] , _lowercase : str ): for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def a ( self : int , _lowercase : int ): for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def a ( self : Optional[Any] ): # searches pattern in text and returns index positions __UpperCAmelCase = [] for i in range(self.textLen - self.patLen + 1 ): __UpperCAmelCase = self.mismatch_in_text(_lowercase ) if mismatch_index == -1: positions.append(_lowercase ) else: __UpperCAmelCase = self.match_in_pattern(self.text[mismatch_index] ) __UpperCAmelCase = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions _lowercase : str = 'ABAABA' _lowercase : Tuple = 'AB' _lowercase : Dict = BoyerMooreSearch(text, pattern) _lowercase : Any = bms.bad_character_heuristic() if len(positions) == 0: print('No match found') else: print('Pattern found in following positions: ') print(positions)
332
1
'''simple docstring''' import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel _lowercase : Union[str, Any] = logging.getLogger(__name__) def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : str ) -> int: """simple docstring""" if os.path.exists(SCREAMING_SNAKE_CASE_ ): if os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , """config.json""" ) ) and os.path.isfile( os.path.join(SCREAMING_SNAKE_CASE_ , """config.json""" ) ): os.remove(os.path.join(SCREAMING_SNAKE_CASE_ , """config.json""" ) ) if os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , """pytorch_model.bin""" ) ) and os.path.isfile( os.path.join(SCREAMING_SNAKE_CASE_ , """pytorch_model.bin""" ) ): os.remove(os.path.join(SCREAMING_SNAKE_CASE_ , """pytorch_model.bin""" ) ) else: os.makedirs(SCREAMING_SNAKE_CASE_ ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : List[str]=False ) -> List[str]: """simple docstring""" lowercase_ : Any = 2 if unlogit: lowercase_ : Optional[int] = torch.pow(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ : str = p * torch.log(SCREAMING_SNAKE_CASE_ ) lowercase_ : int = 0 return -plogp.sum(dim=-1 ) def lowerCamelCase ( UpperCAmelCase__ : str ) -> int: """simple docstring""" logger.info("""lv, h >\t""" + """\t""".join(F'''{x + 1}''' for x in range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) for row in range(len(SCREAMING_SNAKE_CASE_ ) ): if tensor.dtype != torch.long: logger.info(F'''layer {row + 1}:\t''' + """\t""".join(F'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(F'''layer {row + 1}:\t''' + """\t""".join(F'''{x:d}''' for x in tensor[row].cpu().data ) ) def lowerCamelCase ( UpperCAmelCase__ : Tuple , UpperCAmelCase__ : str , UpperCAmelCase__ : int , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : List[str]=False ) -> int: """simple docstring""" lowercase_ , lowercase_ : str = model.config.num_hidden_layers, model.config.num_attention_heads lowercase_ : int = torch.zeros(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).to(args.device ) lowercase_ : List[str] = torch.zeros(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).to(args.device ) if head_mask is None: lowercase_ : Union[str, Any] = torch.ones(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).to(args.device ) head_mask.requires_grad_(requires_grad=SCREAMING_SNAKE_CASE_ ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: lowercase_ : Any = None lowercase_ : Union[str, Any] = 0.0 lowercase_ : Any = 0.0 for step, inputs in enumerate(tqdm(SCREAMING_SNAKE_CASE_ , desc="""Iteration""" , disable=args.local_rank not in [-1, 0] ) ): lowercase_ : str = tuple(t.to(args.device ) for t in inputs ) ((lowercase_ ) , ) : Optional[int] = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) lowercase_ : Optional[int] = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , head_mask=SCREAMING_SNAKE_CASE_ ) # (loss), lm_logits, presents, (all hidden_states), (attentions) lowercase_ , lowercase_ , lowercase_ : List[str] = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(SCREAMING_SNAKE_CASE_ ): lowercase_ : Union[str, Any] = entropy(attn.detach() , SCREAMING_SNAKE_CASE_ ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(SCREAMING_SNAKE_CASE_ ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: lowercase_ : Optional[int] = 2 lowercase_ : Any = torch.pow(torch.pow(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-20 if not args.dont_normalize_global_importance: lowercase_ : Dict = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info("""Attention entropies""" ) print_ad_tensor(SCREAMING_SNAKE_CASE_ ) if compute_importance: logger.info("""Head importance scores""" ) print_ad_tensor(SCREAMING_SNAKE_CASE_ ) logger.info("""Head ranked by importance scores""" ) lowercase_ : Optional[Any] = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) lowercase_ : Dict = torch.arange( head_importance.numel() , device=args.device ) lowercase_ : str = head_ranks.view_as(SCREAMING_SNAKE_CASE_ ) print_ad_tensor(SCREAMING_SNAKE_CASE_ ) return attn_entropy, head_importance, total_loss def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Any , UpperCAmelCase__ : Tuple ) -> List[Any]: """simple docstring""" lowercase_ , lowercase_ , lowercase_ : Optional[int] = compute_heads_importance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , compute_entropy=SCREAMING_SNAKE_CASE_ ) lowercase_ : Union[str, Any] = 1 / loss # instead of downsteam score use the LM loss logger.info("""Pruning: original score: %f, threshold: %f""" , SCREAMING_SNAKE_CASE_ , original_score * args.masking_threshold ) lowercase_ : int = torch.ones_like(SCREAMING_SNAKE_CASE_ ) lowercase_ : Union[str, Any] = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) lowercase_ : Optional[int] = original_score while current_score >= original_score * args.masking_threshold: lowercase_ : Optional[int] = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads lowercase_ : Optional[Any] = float("""Inf""" ) lowercase_ : Union[str, Any] = head_importance.view(-1 ).sort()[1] if len(SCREAMING_SNAKE_CASE_ ) <= num_to_mask: print("""BREAK BY num_to_mask""" ) break # mask heads lowercase_ : Any = current_heads_to_mask[:num_to_mask] logger.info("""Heads to mask: %s""" , str(current_heads_to_mask.tolist() ) ) lowercase_ : Union[str, Any] = new_head_mask.view(-1 ) lowercase_ : List[str] = 0.0 lowercase_ : Dict = new_head_mask.view_as(SCREAMING_SNAKE_CASE_ ) lowercase_ : Tuple = new_head_mask.clone().detach() print_ad_tensor(SCREAMING_SNAKE_CASE_ ) # Compute metric and head importance again lowercase_ , lowercase_ , lowercase_ : Any = compute_heads_importance( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , compute_entropy=SCREAMING_SNAKE_CASE_ , head_mask=SCREAMING_SNAKE_CASE_ ) lowercase_ : Union[str, Any] = 1 / loss logger.info( """Masking: current score: %f, remaining heads %d (%.1f percents)""" , SCREAMING_SNAKE_CASE_ , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info("""Final head mask""" ) print_ad_tensor(SCREAMING_SNAKE_CASE_ ) np.save(os.path.join(args.output_dir , """head_mask.npy""" ) , head_mask.detach().cpu().numpy() ) return head_mask def lowerCamelCase ( UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[Any] ) -> Any: """simple docstring""" lowercase_ : Optional[int] = datetime.now() lowercase_ , lowercase_ , lowercase_ : int = compute_heads_importance( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , compute_entropy=SCREAMING_SNAKE_CASE_ , compute_importance=SCREAMING_SNAKE_CASE_ , head_mask=SCREAMING_SNAKE_CASE_ ) lowercase_ : int = 1 / loss lowercase_ : Any = datetime.now() - before_time lowercase_ : Dict = sum(p.numel() for p in model.parameters() ) lowercase_ : int = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(SCREAMING_SNAKE_CASE_ ) ) } for k, v in heads_to_prune.items(): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase_ : Optional[int] = [ v, ] assert sum(len(SCREAMING_SNAKE_CASE_ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(SCREAMING_SNAKE_CASE_ ) lowercase_ : Any = sum(p.numel() for p in model.parameters() ) lowercase_ : int = datetime.now() lowercase_ , lowercase_ , lowercase_ : Any = compute_heads_importance( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , compute_entropy=SCREAMING_SNAKE_CASE_ , compute_importance=SCREAMING_SNAKE_CASE_ , head_mask=SCREAMING_SNAKE_CASE_ , actually_pruned=SCREAMING_SNAKE_CASE_ , ) lowercase_ : Union[str, Any] = 1 / loss lowercase_ : Tuple = datetime.now() - before_time logger.info( """Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)""" , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , pruned_num_params / original_num_params * 100 , ) logger.info("""Pruning: score with masking: %f score with pruning: %f""" , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info("""Pruning: speed ratio (original timing / new timing): %f percents""" , original_time / new_time * 100 ) save_model(SCREAMING_SNAKE_CASE_ , args.output_dir ) def lowerCamelCase ( ) -> Union[str, Any]: """simple docstring""" lowercase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--data_dir""" , default=SCREAMING_SNAKE_CASE_ , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help="""The input data dir. Should contain the .tsv files (or other data files) for the task.""" , ) parser.add_argument( """--model_name_or_path""" , default=SCREAMING_SNAKE_CASE_ , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help="""Path to pretrained model or model identifier from huggingface.co/models""" , ) parser.add_argument( """--output_dir""" , default=SCREAMING_SNAKE_CASE_ , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help="""The output directory where the model predictions and checkpoints will be written.""" , ) # Other parameters parser.add_argument( """--config_name""" , default="""""" , type=SCREAMING_SNAKE_CASE_ , help="""Pretrained config name or path if not the same as model_name_or_path""" , ) parser.add_argument( """--tokenizer_name""" , default="""""" , type=SCREAMING_SNAKE_CASE_ , help="""Pretrained tokenizer name or path if not the same as model_name_or_path""" , ) parser.add_argument( """--cache_dir""" , default=SCREAMING_SNAKE_CASE_ , type=SCREAMING_SNAKE_CASE_ , help="""Where do you want to store the pre-trained models downloaded from s3""" , ) parser.add_argument( """--data_subset""" , type=SCREAMING_SNAKE_CASE_ , default=-1 , help="""If > 0: limit the data to a subset of data_subset instances.""" ) parser.add_argument( """--overwrite_output_dir""" , action="""store_true""" , help="""Whether to overwrite data in output directory""" ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" ) parser.add_argument( """--dont_normalize_importance_by_layer""" , action="""store_true""" , help="""Don't normalize importance score by layers""" ) parser.add_argument( """--dont_normalize_global_importance""" , action="""store_true""" , help="""Don't normalize all importance scores between 0 and 1""" , ) parser.add_argument( """--try_masking""" , action="""store_true""" , help="""Whether to try to mask head until a threshold of accuracy.""" ) parser.add_argument( """--masking_threshold""" , default=0.9 , type=SCREAMING_SNAKE_CASE_ , help="""masking threshold in term of metrics (stop masking when metric < threshold * original metric value).""" , ) parser.add_argument( """--masking_amount""" , default=0.1 , type=SCREAMING_SNAKE_CASE_ , help="""Amount to heads to masking at each masking step.""" ) parser.add_argument("""--metric_name""" , default="""acc""" , type=SCREAMING_SNAKE_CASE_ , help="""Metric to use for head masking.""" ) parser.add_argument( """--max_seq_length""" , default=128 , type=SCREAMING_SNAKE_CASE_ , help=( """The maximum total input sequence length after WordPiece tokenization. \n""" """Sequences longer than this will be truncated, sequences shorter padded.""" ) , ) parser.add_argument("""--batch_size""" , default=1 , type=SCREAMING_SNAKE_CASE_ , help="""Batch size.""" ) parser.add_argument("""--seed""" , type=SCREAMING_SNAKE_CASE_ , default=42 ) parser.add_argument("""--local_rank""" , type=SCREAMING_SNAKE_CASE_ , default=-1 , help="""local_rank for distributed training on gpus""" ) parser.add_argument("""--no_cuda""" , action="""store_true""" , help="""Whether not to use CUDA when available""" ) parser.add_argument("""--server_ip""" , type=SCREAMING_SNAKE_CASE_ , default="""""" , help="""Can be used for distant debugging.""" ) parser.add_argument("""--server_port""" , type=SCREAMING_SNAKE_CASE_ , default="""""" , help="""Can be used for distant debugging.""" ) lowercase_ : Optional[int] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("""Waiting for debugger attach""" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=SCREAMING_SNAKE_CASE_ ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: lowercase_ : List[Any] = torch.device("""cuda""" if torch.cuda.is_available() and not args.no_cuda else """cpu""" ) lowercase_ : str = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) lowercase_ : Any = torch.device("""cuda""" , args.local_rank ) lowercase_ : List[str] = 1 torch.distributed.init_process_group(backend="""nccl""" ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info("""device: {} n_gpu: {}, distributed: {}""".format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) lowercase_ : Union[str, Any] = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: lowercase_ : Optional[int] = nn.parallel.DistributedDataParallel( SCREAMING_SNAKE_CASE_ , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=SCREAMING_SNAKE_CASE_ ) elif args.n_gpu > 1: lowercase_ : Optional[Any] = nn.DataParallel(SCREAMING_SNAKE_CASE_ ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=SCREAMING_SNAKE_CASE_ ) torch.save(SCREAMING_SNAKE_CASE_ , os.path.join(args.output_dir , """run_args.bin""" ) ) logger.info("""Training/evaluation parameters %s""" , SCREAMING_SNAKE_CASE_ ) # Prepare dataset lowercase_ : List[Any] = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) lowercase_ : str = (torch.from_numpy(SCREAMING_SNAKE_CASE_ ),) lowercase_ : int = TensorDataset(*SCREAMING_SNAKE_CASE_ ) lowercase_ : str = RandomSampler(SCREAMING_SNAKE_CASE_ ) lowercase_ : str = DataLoader(SCREAMING_SNAKE_CASE_ , sampler=SCREAMING_SNAKE_CASE_ , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: lowercase_ : int = mask_heads(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) prune_heads(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
365
'''simple docstring''' import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class __magic_name__ ( ctypes.Structure): # _fields is a specific attr expected by ctypes UpperCamelCase__ = [('''size''', ctypes.c_int), ('''visible''', ctypes.c_byte)] def lowerCamelCase ( ) -> List[Any]: if os.name == "nt": lowercase_ : List[Any] = CursorInfo() lowercase_ : int = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) ) lowercase_ : List[str] = False ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) ) elif os.name == "posix": sys.stdout.write("""\033[?25l""" ) sys.stdout.flush() def lowerCamelCase ( ) -> str: if os.name == "nt": lowercase_ : int = CursorInfo() lowercase_ : Optional[Any] = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) ) lowercase_ : Optional[int] = True ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) ) elif os.name == "posix": sys.stdout.write("""\033[?25h""" ) sys.stdout.flush() @contextmanager def lowerCamelCase ( ) -> Any: try: hide_cursor() yield finally: show_cursor()
21
0
"""simple docstring""" from __future__ import annotations def a_ ( lowerCamelCase , lowerCamelCase ): if nth_term == "": return [""] UpperCAmelCase__ = int(lowerCamelCase ) UpperCAmelCase__ = int(lowerCamelCase ) UpperCAmelCase__ = [] for temp in range(int(lowerCamelCase ) ): series.append(f'''1 / {pow(temp + 1 , int(lowerCamelCase ) )}''' if series else '1' ) return series if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ : Optional[int] = int(input('Enter the last number (nth term) of the P-Series')) lowerCAmelCase__ : Optional[Any] = int(input('Enter the power for P-Series')) print('Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p') print(p_series(nth_term, power))
98
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def a( A : dict ) -> tuple: """simple docstring""" return (data["data"], data["target"]) def a( A : np.ndarray , A : np.ndarray ) -> XGBClassifier: """simple docstring""" a = XGBClassifier() classifier.fit(A , A ) return classifier def a( ) -> None: """simple docstring""" a = load_iris() a , a = data_handling(A ) a , a , a , a = train_test_split( A , A , test_size=0.25 ) a = iris["target_names"] # Create an XGBoost Classifier from the training data a = xgboost(A , A ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( A , A , A , display_labels=A , cmap="Blues" , normalize="true" , ) plt.title("Normalized Confusion Matrix - IRIS Dataset" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
227
0
"""simple docstring""" def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = abs(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = 0 while n > 0: res += n % 10 n //= 10 return res def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = abs(lowerCAmelCase_ ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' return sum(int(lowerCAmelCase_ ) for c in str(abs(lowerCAmelCase_ ) ) ) def UpperCAmelCase__ (): '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowerCAmelCase_ , lowerCAmelCase_ ) -> None: __SCREAMING_SNAKE_CASE = f"""{func.__name__}({value})""" __SCREAMING_SNAKE_CASE = timeit(f"""__main__.{call}""" , setup="import __main__" ) print(f"""{call:56} = {func(lowerCAmelCase_ )} -- {timing:.4f} seconds""" ) for value in (26_2144, 1125_8999_0684_2624, 126_7650_6002_2822_9401_4967_0320_5376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(lowerCAmelCase_ , lowerCAmelCase_ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
195
"""simple docstring""" from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : Tuple = logging.get_logger(__name__) a__ : List[Any] = { '''snap-research/efficientformer-l1-300''': ( '''https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json''' ), } class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" snake_case__ : Any = "efficientformer" def __init__( self : Any , UpperCAmelCase__ : List[int] = [3, 2, 6, 4] , UpperCAmelCase__ : List[int] = [4_8, 9_6, 2_2_4, 4_4_8] , UpperCAmelCase__ : List[bool] = [True, True, True, True] , UpperCAmelCase__ : int = 4_4_8 , UpperCAmelCase__ : int = 3_2 , UpperCAmelCase__ : int = 4 , UpperCAmelCase__ : int = 7 , UpperCAmelCase__ : int = 5 , UpperCAmelCase__ : int = 8 , UpperCAmelCase__ : int = 4 , UpperCAmelCase__ : float = 0.0 , UpperCAmelCase__ : int = 1_6 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : float = 0.0 , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : float = 1E-5 , UpperCAmelCase__ : str = "gelu" , UpperCAmelCase__ : float = 0.02 , UpperCAmelCase__ : float = 1E-12 , UpperCAmelCase__ : int = 2_2_4 , UpperCAmelCase__ : float = 1E-05 , **UpperCAmelCase__ : Tuple , ) -> None: super().__init__(**UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = hidden_sizes __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = patch_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = depths __SCREAMING_SNAKE_CASE = mlp_expansion_ratio __SCREAMING_SNAKE_CASE = downsamples __SCREAMING_SNAKE_CASE = dim __SCREAMING_SNAKE_CASE = key_dim __SCREAMING_SNAKE_CASE = attention_ratio __SCREAMING_SNAKE_CASE = resolution __SCREAMING_SNAKE_CASE = pool_size __SCREAMING_SNAKE_CASE = downsample_patch_size __SCREAMING_SNAKE_CASE = downsample_stride __SCREAMING_SNAKE_CASE = downsample_pad __SCREAMING_SNAKE_CASE = drop_path_rate __SCREAMING_SNAKE_CASE = num_metaad_blocks __SCREAMING_SNAKE_CASE = distillation __SCREAMING_SNAKE_CASE = use_layer_scale __SCREAMING_SNAKE_CASE = layer_scale_init_value __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = batch_norm_eps
195
1
def _SCREAMING_SNAKE_CASE ( a , a ) -> str: if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise ValueError('iterations must be defined as integers' ) if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or not number >= 1: raise ValueError( 'starting number must be\n and integer and be more than 0' ) if not iterations >= 1: raise ValueError('Iterations must be done more than 0 times to play FizzBuzz' ) __A : Tuple = '' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(lowerCamelCase_ ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
280
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE : str = { "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Tuple = ["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Optional[Any] = ["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : int = [ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys SCREAMING_SNAKE_CASE : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
0
"""simple docstring""" import argparse from collections import defaultdict import yaml _SCREAMING_SNAKE_CASE : List[Any] = """docs/source/en/_toctree.yml""" def _lowerCAmelCase ( UpperCAmelCase : Optional[Any] ): '''simple docstring''' UpperCamelCase__ : List[Any] =defaultdict(UpperCAmelCase ) UpperCamelCase__ : Union[str, Any] =[] UpperCamelCase__ : Optional[int] =[] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'''local''': doc['''local'''], '''title''': doc['''title''']} ) else: new_doc_list.append(UpperCAmelCase ) UpperCamelCase__ : List[str] =new_doc_list UpperCamelCase__ : Optional[Any] =[key for key, value in counts.items() if value > 1] UpperCamelCase__ : Any =[] for duplicate_key in duplicates: UpperCamelCase__ : Optional[Any] =list({doc['''title'''] for doc in doc_list if doc['''local'''] == duplicate_key} ) if len(UpperCAmelCase ) > 1: raise ValueError( F'''{duplicate_key} is present several times in the documentation table of content at ''' '''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ''' '''others.''' ) # Only add this once new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if '''local''' not in counts or counts[doc['''local''']] == 1] ) UpperCamelCase__ : Union[str, Any] =sorted(UpperCAmelCase , key=lambda UpperCAmelCase : s["title"].lower() ) # "overview" gets special treatment and is always first if len(UpperCAmelCase ) > 1: raise ValueError('''{doc_list} has two \'overview\' docs which is not allowed.''' ) overview_doc.extend(UpperCAmelCase ) # Sort return overview_doc def _lowerCAmelCase ( UpperCAmelCase : Optional[int]=False ): '''simple docstring''' with open(UpperCAmelCase , encoding='''utf-8''' ) as f: UpperCamelCase__ : int =yaml.safe_load(f.read() ) # Get to the API doc UpperCamelCase__ : Dict =0 while content[api_idx]["title"] != "API": api_idx += 1 UpperCamelCase__ : Tuple =content[api_idx]['''sections'''] # Then to the model doc UpperCamelCase__ : Dict =0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 UpperCamelCase__ : List[Any] =api_doc[scheduler_idx]['''sections'''] UpperCamelCase__ : Union[str, Any] =clean_doc_toc(UpperCAmelCase ) UpperCamelCase__ : Dict =False if new_scheduler_doc != scheduler_doc: UpperCamelCase__ : List[Any] =True if overwrite: UpperCamelCase__ : Union[str, Any] =new_scheduler_doc if diff: if overwrite: UpperCamelCase__ : Tuple =api_doc with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(UpperCAmelCase , allow_unicode=UpperCAmelCase ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) def _lowerCAmelCase ( UpperCAmelCase : Union[str, Any]=False ): '''simple docstring''' with open(UpperCAmelCase , encoding='''utf-8''' ) as f: UpperCamelCase__ : Dict =yaml.safe_load(f.read() ) # Get to the API doc UpperCamelCase__ : Union[str, Any] =0 while content[api_idx]["title"] != "API": api_idx += 1 UpperCamelCase__ : Tuple =content[api_idx]['''sections'''] # Then to the model doc UpperCamelCase__ : List[str] =0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 UpperCamelCase__ : Tuple =False UpperCamelCase__ : List[str] =api_doc[pipeline_idx]['''sections'''] UpperCamelCase__ : Union[str, Any] =[] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: UpperCamelCase__ : Tuple =pipeline_doc['''section'''] UpperCamelCase__ : Dict =clean_doc_toc(UpperCAmelCase ) if overwrite: UpperCamelCase__ : Optional[Any] =new_sub_pipeline_doc new_pipeline_docs.append(UpperCAmelCase ) # sort overall pipeline doc UpperCamelCase__ : Optional[Any] =clean_doc_toc(UpperCAmelCase ) if new_pipeline_docs != pipeline_docs: UpperCamelCase__ : Any =True if overwrite: UpperCamelCase__ : Optional[int] =new_pipeline_docs if diff: if overwrite: UpperCamelCase__ : List[Any] =api_doc with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(UpperCAmelCase , allow_unicode=UpperCAmelCase ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") _SCREAMING_SNAKE_CASE : str = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
157
"""simple docstring""" import os import time import numpy as np import onnxruntime as ort _SCREAMING_SNAKE_CASE : List[Any] = """1""" _SCREAMING_SNAKE_CASE : Union[str, Any] = """0""" _SCREAMING_SNAKE_CASE : List[str] = """1""" _SCREAMING_SNAKE_CASE : Optional[int] = ort.SessionOptions() _SCREAMING_SNAKE_CASE : Tuple = ort.GraphOptimizationLevel.ORT_DISABLE_ALL print("""Create inference session...""") _SCREAMING_SNAKE_CASE : int = ["""TensorrtExecutionProvider""", """CUDAExecutionProvider"""] _SCREAMING_SNAKE_CASE : Dict = ort.InferenceSession("""model.onnx""", sess_options=sess_opt, providers=execution_provider) _SCREAMING_SNAKE_CASE : Optional[int] = ort.RunOptions() _SCREAMING_SNAKE_CASE : Tuple = 1_2_8 _SCREAMING_SNAKE_CASE : List[Any] = 1 _SCREAMING_SNAKE_CASE : Union[str, Any] = np.ones((batch, sequence), dtype=np.intaa) _SCREAMING_SNAKE_CASE : str = np.ones((batch, sequence), dtype=np.intaa) _SCREAMING_SNAKE_CASE : int = np.ones((batch, sequence), dtype=np.intaa) print("""Warm up phase...""") sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print("""Start inference...""") _SCREAMING_SNAKE_CASE : Any = time.time() _SCREAMING_SNAKE_CASE : str = 2_0_0_0 _SCREAMING_SNAKE_CASE : List[Any] = {} for iter in range(max_iters): _SCREAMING_SNAKE_CASE : Any = sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print("""Average Inference Time = {:.3f} ms""".format((time.time() - start_time) * 1_0_0_0 / max_iters))
157
1
"""simple docstring""" def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_=0 ): '''simple docstring''' return sorted(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : x[column] ) def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=float("inf" ) ): '''simple docstring''' for i in range(points_counts - 1 ): for j in range(i + 1 , lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: __SCREAMING_SNAKE_CASE = current_dis return min_dis def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=float("inf" ) ): '''simple docstring''' for i in range(min(6 , points_counts - 1 ) , lowerCAmelCase_ ): for j in range(max(0 , i - 6 ) , lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: __SCREAMING_SNAKE_CASE = current_dis return min_dis def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' if points_counts <= 3: return dis_between_closest_pair(lowerCAmelCase_ , lowerCAmelCase_ ) # recursion __SCREAMING_SNAKE_CASE = points_counts // 2 __SCREAMING_SNAKE_CASE = closest_pair_of_points_sqr( lowerCAmelCase_ , points_sorted_on_y[:mid] , lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = closest_pair_of_points_sqr( lowerCAmelCase_ , points_sorted_on_y[mid:] , points_counts - mid ) __SCREAMING_SNAKE_CASE = min(lowerCAmelCase_ , lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = dis_between_closest_in_strip( lowerCAmelCase_ , len(lowerCAmelCase_ ) , lowerCAmelCase_ ) return min(lowerCAmelCase_ , lowerCAmelCase_ ) def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = column_based_sort(lowerCAmelCase_ , column=0 ) __SCREAMING_SNAKE_CASE = column_based_sort(lowerCAmelCase_ , column=1 ) return ( closest_pair_of_points_sqr( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) ) ** 0.5 if __name__ == "__main__": a__ : List[str] = [(2, 3), (1_2, 3_0), (4_0, 5_0), (5, 1), (1_2, 1_0), (3, 4)] print('''Distance:''', closest_pair_of_points(points, len(points)))
54
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType UpperCamelCase = None UpperCamelCase = """<""" if sys.byteorder == """little""" else """>""" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image UpperCamelCase = [ np.dtype("""|b1"""), np.dtype("""|u1"""), np.dtype("""<u2"""), np.dtype(""">u2"""), np.dtype("""<i2"""), np.dtype(""">i2"""), np.dtype("""<u4"""), np.dtype(""">u4"""), np.dtype("""<i4"""), np.dtype(""">i4"""), np.dtype("""<f4"""), np.dtype(""">f4"""), np.dtype("""<f8"""), np.dtype(""">f8"""), ] @dataclass class _lowerCamelCase : """simple docstring""" snake_case = True snake_case = None # Automatically constructed snake_case = "PIL.Image.Image" snake_case = pa.struct({"bytes": pa.binary(), "path": pa.string()} ) snake_case = field(default="Image" , init=UpperCamelCase , repr=UpperCamelCase ) def __call__( self )->int: '''simple docstring''' return self.pa_type def _snake_case ( self , _SCREAMING_SNAKE_CASE )->dict: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ : Optional[int] = np.array(_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return {"path": value, "bytes": None} elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return {"path": None, "bytes": value} elif isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(_SCREAMING_SNAKE_CASE ) elif isinstance(_SCREAMING_SNAKE_CASE , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(_SCREAMING_SNAKE_CASE ) elif value.get('''path''' ) is not None and os.path.isfile(value['''path'''] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get('''path''' )} elif value.get('''bytes''' ) is not None or value.get('''path''' ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get('''bytes''' ), "path": value.get('''path''' )} else: raise ValueError( F'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None )->"PIL.Image.Image": '''simple docstring''' if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Image(decode=True) instead.''' ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support decoding images, please install \'Pillow\'.''' ) if token_per_repo_id is None: A_ : List[str] = {} A_ , A_ : str = value['''path'''], value['''bytes'''] if bytes_ is None: if path is None: raise ValueError(F'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) else: if is_local_path(_SCREAMING_SNAKE_CASE ): A_ : List[str] = PIL.Image.open(_SCREAMING_SNAKE_CASE ) else: A_ : List[str] = path.split('''::''' )[-1] try: A_ : int = string_to_dict(_SCREAMING_SNAKE_CASE , config.HUB_DATASETS_URL )['''repo_id'''] A_ : Optional[int] = token_per_repo_id.get(_SCREAMING_SNAKE_CASE ) except ValueError: A_ : Any = None with xopen(_SCREAMING_SNAKE_CASE , '''rb''' , use_auth_token=_SCREAMING_SNAKE_CASE ) as f: A_ : Optional[Any] = BytesIO(f.read() ) A_ : Dict = PIL.Image.open(bytes_ ) else: A_ : Optional[int] = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def _snake_case ( self )->Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Value return ( self if self.decode else { "bytes": Value('''binary''' ), "path": Value('''string''' ), } ) def _snake_case ( self , _SCREAMING_SNAKE_CASE )->pa.StructArray: '''simple docstring''' if pa.types.is_string(storage.type ): A_ : Dict = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) , type=pa.binary() ) A_ : List[Any] = pa.StructArray.from_arrays([bytes_array, storage] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): A_ : Dict = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) , type=pa.string() ) A_ : List[str] = pa.StructArray.from_arrays([storage, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('''bytes''' ) >= 0: A_ : Tuple = storage.field('''bytes''' ) else: A_ : Optional[int] = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) , type=pa.binary() ) if storage.type.get_field_index('''path''' ) >= 0: A_ : Optional[Any] = storage.field('''path''' ) else: A_ : Optional[int] = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) , type=pa.string() ) A_ : Union[str, Any] = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): A_ : Optional[Any] = pa.array( [encode_np_array(np.array(_SCREAMING_SNAKE_CASE ) )['''bytes'''] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) A_ : str = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) , type=pa.string() ) A_ : List[Any] = pa.StructArray.from_arrays( [bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null() ) return array_cast(_SCREAMING_SNAKE_CASE , self.pa_type ) def _snake_case ( self , _SCREAMING_SNAKE_CASE )->pa.StructArray: '''simple docstring''' @no_op_if_value_is_null def path_to_bytes(_SCREAMING_SNAKE_CASE ): with xopen(_SCREAMING_SNAKE_CASE , '''rb''' ) as f: A_ : Any = f.read() return bytes_ A_ : Dict = pa.array( [ (path_to_bytes(x['''path'''] ) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) A_ : List[Any] = pa.array( [os.path.basename(_SCREAMING_SNAKE_CASE ) if path is not None else None for path in storage.field('''path''' ).to_pylist()] , type=pa.string() , ) A_ : str = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null() ) return array_cast(_SCREAMING_SNAKE_CASE , self.pa_type ) def _SCREAMING_SNAKE_CASE ( ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() A_ : Dict = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): A_ : Dict = BytesIO() if image.format in list_image_compression_formats(): A_ : Tuple = image.format else: A_ : List[str] = '''PNG''' if image.mode in ['''1''', '''L''', '''LA''', '''RGB''', '''RGBA'''] else '''TIFF''' image.save(SCREAMING_SNAKE_CASE , format=SCREAMING_SNAKE_CASE ) return buffer.getvalue() def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): if hasattr(SCREAMING_SNAKE_CASE , '''filename''' ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(SCREAMING_SNAKE_CASE )} def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) A_ : Union[str, Any] = array.dtype A_ : Dict = dtype.byteorder if dtype.byteorder != '''=''' else _NATIVE_BYTEORDER A_ : Any = dtype.kind A_ : Any = dtype.itemsize A_ : Dict = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: A_ : List[Any] = np.dtype('''|u1''' ) if dtype_kind not in ["u", "i"]: raise TypeError( f'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' ) if dtype is not dest_dtype: warnings.warn(f'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: A_ : int = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: A_ : Any = dtype_byteorder + dtype_kind + str(SCREAMING_SNAKE_CASE ) A_ : Optional[int] = np.dtype(SCREAMING_SNAKE_CASE ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(f'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( f'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' ) A_ : Tuple = PIL.Image.fromarray(array.astype(SCREAMING_SNAKE_CASE ) ) return {"path": None, "bytes": image_to_bytes(SCREAMING_SNAKE_CASE )} def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) if objs: A_ , A_ : Union[str, Any] = first_non_null_value(SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(SCREAMING_SNAKE_CASE , np.ndarray ): A_ : Tuple = no_op_if_value_is_null(SCREAMING_SNAKE_CASE ) return [obj_to_image_dict_func(SCREAMING_SNAKE_CASE ) for obj in objs] elif isinstance(SCREAMING_SNAKE_CASE , PIL.Image.Image ): A_ : List[str] = no_op_if_value_is_null(SCREAMING_SNAKE_CASE ) return [obj_to_image_dict_func(SCREAMING_SNAKE_CASE ) for obj in objs] else: return objs else: return objs
186
0
import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase__ ( a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = None lowerCAmelCase__ = BloomTokenizerFast lowerCAmelCase__ = BloomTokenizerFast lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = "tokenizer_file" lowerCAmelCase__ = {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"} def UpperCAmelCase__ ( self : Union[str, Any] ) -> str: """simple docstring""" super().setUp() __SCREAMING_SNAKE_CASE = BloomTokenizerFast.from_pretrained("""bigscience/tokenizer""" ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ ( self : List[Any] , **__SCREAMING_SNAKE_CASE : Tuple ) -> int: """simple docstring""" kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[int] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE = ["""The quick brown fox</s>""", """jumps over the lazy dog</s>"""] __SCREAMING_SNAKE_CASE = [[2_175, 23_714, 73_173, 144_252, 2], [77, 132_619, 3_478, 368, 109_586, 35_433, 2]] __SCREAMING_SNAKE_CASE = tokenizer.batch_encode_plus(__SCREAMING_SNAKE_CASE )["""input_ids"""] self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple=6 ) -> Dict: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input __SCREAMING_SNAKE_CASE = """This is a simple input""" __SCREAMING_SNAKE_CASE = ["""This is a simple input 1""", """This is a simple input 2"""] __SCREAMING_SNAKE_CASE = ("""This is a simple input""", """This is a pair""") __SCREAMING_SNAKE_CASE = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests try: tokenizer_r.encode(__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE ) tokenizer_r.encode_plus(__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE ) tokenizer_r.batch_encode_plus(__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE ) tokenizer_r.encode(__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE ) tokenizer_r.batch_encode_plus(__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE ) except ValueError: self.fail("""Bloom Tokenizer should be able to deal with padding""" ) __SCREAMING_SNAKE_CASE = None # Hotfixing padding = None self.assertRaises(__SCREAMING_SNAKE_CASE , tokenizer_r.encode , __SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , padding="""max_length""" ) # Simple input self.assertRaises(__SCREAMING_SNAKE_CASE , tokenizer_r.encode_plus , __SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , padding="""max_length""" ) # Simple input self.assertRaises( __SCREAMING_SNAKE_CASE , tokenizer_r.batch_encode_plus , __SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , padding="""max_length""" , ) # Pair input self.assertRaises(__SCREAMING_SNAKE_CASE , tokenizer_r.encode , __SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , padding="""max_length""" ) # Pair input self.assertRaises(__SCREAMING_SNAKE_CASE , tokenizer_r.encode_plus , __SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , padding="""max_length""" ) # Pair input self.assertRaises( __SCREAMING_SNAKE_CASE , tokenizer_r.batch_encode_plus , __SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , padding="""max_length""" , ) def UpperCAmelCase__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE = load_dataset("""xnli""" , """all_languages""" , split="""test""" , streaming=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = next(iter(__SCREAMING_SNAKE_CASE ) )["""premise"""] # pick up one data __SCREAMING_SNAKE_CASE = list(sample_data.values() ) __SCREAMING_SNAKE_CASE = list(map(tokenizer.encode , __SCREAMING_SNAKE_CASE ) ) __SCREAMING_SNAKE_CASE = [tokenizer.decode(__SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=__SCREAMING_SNAKE_CASE ) for x in output_tokens] self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Dict ) -> Optional[int]: """simple docstring""" self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
350
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : int = logging.get_logger(__name__) UpperCAmelCase : Union[str, Any] = { 'microsoft/markuplm-base': 'https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json', 'microsoft/markuplm-large': 'https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json', } class lowerCAmelCase__ ( a ): """simple docstring""" lowerCAmelCase__ = "markuplm" def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : Tuple=30_522 , __SCREAMING_SNAKE_CASE : Optional[Any]=768 , __SCREAMING_SNAKE_CASE : str=12 , __SCREAMING_SNAKE_CASE : List[Any]=12 , __SCREAMING_SNAKE_CASE : str=3_072 , __SCREAMING_SNAKE_CASE : Dict="gelu" , __SCREAMING_SNAKE_CASE : Optional[int]=0.1 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.1 , __SCREAMING_SNAKE_CASE : Optional[Any]=512 , __SCREAMING_SNAKE_CASE : str=2 , __SCREAMING_SNAKE_CASE : List[Any]=0.02 , __SCREAMING_SNAKE_CASE : Union[str, Any]=1E-12 , __SCREAMING_SNAKE_CASE : str=0 , __SCREAMING_SNAKE_CASE : Dict=0 , __SCREAMING_SNAKE_CASE : Union[str, Any]=2 , __SCREAMING_SNAKE_CASE : Union[str, Any]=256 , __SCREAMING_SNAKE_CASE : Union[str, Any]=1_024 , __SCREAMING_SNAKE_CASE : Dict=216 , __SCREAMING_SNAKE_CASE : Union[str, Any]=1_001 , __SCREAMING_SNAKE_CASE : Optional[int]=32 , __SCREAMING_SNAKE_CASE : str=50 , __SCREAMING_SNAKE_CASE : int="absolute" , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : int=None , **__SCREAMING_SNAKE_CASE : List[str] , ) -> Tuple: """simple docstring""" super().__init__( pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = position_embedding_type __SCREAMING_SNAKE_CASE = use_cache __SCREAMING_SNAKE_CASE = classifier_dropout # additional properties __SCREAMING_SNAKE_CASE = max_depth __SCREAMING_SNAKE_CASE = max_xpath_tag_unit_embeddings __SCREAMING_SNAKE_CASE = max_xpath_subs_unit_embeddings __SCREAMING_SNAKE_CASE = tag_pad_id __SCREAMING_SNAKE_CASE = subs_pad_id __SCREAMING_SNAKE_CASE = xpath_unit_hidden_size
331
0