code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __init__( self : str, lowerCamelCase : Union[str, Any], lowerCamelCase : Optional[Any]=7, lowerCamelCase : str=3, lowerCamelCase : Any=10, lowerCamelCase : Dict=18, lowerCamelCase : int=30, lowerCamelCase : Union[str, Any]=400, lowerCamelCase : Optional[Any]=True, lowerCamelCase : List[Any]=None, lowerCamelCase : List[str]=True, lowerCamelCase : List[str]=[0.5, 0.5, 0.5], lowerCamelCase : int=[0.5, 0.5, 0.5], lowerCamelCase : Tuple=None, )-> Union[str, Any]: lowerCamelCase__ : Union[str, Any] =size if size is not None else {'''shortest_edge''': 18} lowerCamelCase__ : Union[str, Any] =crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} lowerCamelCase__ : Optional[Any] =parent lowerCamelCase__ : Tuple =batch_size lowerCamelCase__ : int =num_channels lowerCamelCase__ : List[Any] =num_frames lowerCamelCase__ : List[Any] =image_size lowerCamelCase__ : List[str] =min_resolution lowerCamelCase__ : Any =max_resolution lowerCamelCase__ : Union[str, Any] =do_resize lowerCamelCase__ : Union[str, Any] =size lowerCamelCase__ : int =do_normalize lowerCamelCase__ : int =image_mean lowerCamelCase__ : Optional[int] =image_std lowerCamelCase__ : int =crop_size def snake_case ( self : Tuple )-> Tuple: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' _a = VivitImageProcessor if is_vision_available() else None def snake_case ( self : Tuple )-> Tuple: lowerCamelCase__ : str =VivitImageProcessingTester(self ) @property def snake_case ( self : Any )-> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def snake_case ( self : str )-> List[str]: lowerCamelCase__ : List[str] =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase, '''image_mean''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''image_std''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''do_normalize''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''do_resize''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''do_center_crop''' ) ) self.assertTrue(hasattr(lowerCamelCase, '''size''' ) ) def snake_case ( self : Union[str, Any] )-> Dict: lowerCamelCase__ : Optional[Any] =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size, {'''height''': 18, '''width''': 18} ) lowerCamelCase__ : List[Any] =self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84 ) self.assertEqual(image_processor.size, {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size, {'''height''': 84, '''width''': 84} ) def snake_case ( self : str )-> int: # Initialize image_processing lowerCamelCase__ : Any =self.image_processing_class(**self.image_processor_dict ) # create random PIL videos lowerCamelCase__ : Tuple =prepare_video_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase ) for video in video_inputs: self.assertIsInstance(lowerCamelCase, lowerCamelCase ) self.assertIsInstance(video[0], Image.Image ) # Test not batched input lowerCamelCase__ : Optional[Any] =image_processing(video_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape, ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched lowerCamelCase__ : Tuple =image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) def snake_case ( self : str )-> Dict: # Initialize image_processing lowerCamelCase__ : List[Any] =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase__ : Union[str, Any] =prepare_video_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase, numpify=lowerCamelCase ) for video in video_inputs: self.assertIsInstance(lowerCamelCase, lowerCamelCase ) self.assertIsInstance(video[0], np.ndarray ) # Test not batched input lowerCamelCase__ : Tuple =image_processing(video_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape, ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched lowerCamelCase__ : str =image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) def snake_case ( self : Tuple )-> Dict: # Initialize image_processing lowerCamelCase__ : Optional[int] =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase__ : Any =prepare_video_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase, torchify=lowerCamelCase ) for video in video_inputs: self.assertIsInstance(lowerCamelCase, lowerCamelCase ) self.assertIsInstance(video[0], torch.Tensor ) # Test not batched input lowerCamelCase__ : Any =image_processing(video_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape, ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched lowerCamelCase__ : List[Any] =image_processing(lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), )
238
"""simple docstring""" import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def snake_case__ ( __lowerCamelCase : List[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : List[Any] ): """simple docstring""" # Construct model if gpta_config_file == "": lowerCamelCase__ : Dict =GPTaConfig() else: lowerCamelCase__ : Tuple =GPTaConfig.from_json_file(__lowerCamelCase ) lowerCamelCase__ : Optional[Any] =GPTaModel(__lowerCamelCase ) # Load weights from numpy load_tf_weights_in_gpta(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Save pytorch-model lowerCamelCase__ : List[str] =pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME lowerCamelCase__ : int =pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(f'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(model.state_dict() , __lowerCamelCase ) print(f'''Save configuration file to {pytorch_config_dump_path}''' ) with open(__lowerCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _lowercase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--gpt2_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--gpt2_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained OpenAI model. \n" "This specifies the model architecture." ), ) _lowercase : Any = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
238
1
def _UpperCamelCase ( snake_case__ ) -> bool: if not isinstance(__lowerCAmelCase, __lowerCAmelCase ): raise ValueError("Input series is not valid, valid series - [2, 4, 6]" ) if len(__lowerCAmelCase ) == 0: raise ValueError("Input list must be a non empty list" ) if len(__lowerCAmelCase ) == 1: return True __UpperCAmelCase : Any = series[1] - series[0] for index in range(len(__lowerCAmelCase ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def _UpperCamelCase ( snake_case__ ) -> float: if not isinstance(__lowerCAmelCase, __lowerCAmelCase ): raise ValueError("Input series is not valid, valid series - [2, 4, 6]" ) if len(__lowerCAmelCase ) == 0: raise ValueError("Input list must be a non empty list" ) __UpperCAmelCase : Any = 0 for val in series: answer += val return answer / len(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
350
import math _snake_case = 10 _snake_case = 7 _snake_case = BALLS_PER_COLOUR * NUM_COLOURS def _UpperCamelCase ( snake_case__ = 20 ) -> str: __UpperCAmelCase : Optional[Any] = math.comb(snake_case__, snake_case__ ) __UpperCAmelCase : List[Any] = math.comb(NUM_BALLS - BALLS_PER_COLOUR, snake_case__ ) __UpperCAmelCase : Dict = NUM_COLOURS * (1 - missing_colour / total) return f'''{result:.9f}''' if __name__ == "__main__": print(solution(20))
342
0
import os from math import logaa def __magic_name__ ( __lowerCAmelCase : str = "base_exp.txt" ) -> int: __lowerCamelCase = 0 __lowerCamelCase = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(__lowerCAmelCase ) , __lowerCAmelCase ) ) ): __lowerCamelCase , __lowerCamelCase = list(map(__lowerCAmelCase , line.split(''',''' ) ) ) if x * logaa(__lowerCAmelCase ) > largest: __lowerCamelCase = x * logaa(__lowerCAmelCase ) __lowerCamelCase = i + 1 return result if __name__ == "__main__": print(solution())
270
from __future__ import annotations from statistics import mean def __magic_name__ ( __lowerCAmelCase : list[int] , __lowerCAmelCase : list[int] , __lowerCAmelCase : int ) -> list[int]: __lowerCamelCase = [0] * no_of_processes __lowerCamelCase = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(__lowerCAmelCase ): __lowerCamelCase = burst_time[i] __lowerCamelCase = [] __lowerCamelCase = 0 __lowerCamelCase = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: __lowerCamelCase = [] __lowerCamelCase = -1 for i in range(__lowerCAmelCase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: __lowerCamelCase = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: __lowerCamelCase = i total_time += burst_time[target_process] completed += 1 __lowerCamelCase = 0 __lowerCamelCase = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def __magic_name__ ( __lowerCAmelCase : list[int] , __lowerCAmelCase : int , __lowerCAmelCase : list[int] ) -> list[int]: __lowerCamelCase = [0] * no_of_processes for i in range(__lowerCAmelCase ): __lowerCamelCase = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("[TEST CASE 01]") SCREAMING_SNAKE_CASE__ : Tuple = 4 SCREAMING_SNAKE_CASE__ : Optional[int] = [2, 5, 3, 7] SCREAMING_SNAKE_CASE__ : List[str] = [0, 0, 0, 0] SCREAMING_SNAKE_CASE__ : str = calculate_waitingtime(arrival_time, burst_time, no_of_processes) SCREAMING_SNAKE_CASE__ : Union[str, Any] = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time") for i, process_id in enumerate(list(range(1, 5))): print( F'{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t' F'{waiting_time[i]}\t\t\t\t{turn_around_time[i]}' ) print(F'\nAverage waiting time = {mean(waiting_time):.5f}') print(F'Average turnaround time = {mean(turn_around_time):.5f}')
270
1
'''simple docstring''' def _A ( snake_case ) -> int: # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection _lowercase : Dict = len(__a ) _lowercase : Optional[int] = max(__a ) _lowercase : Optional[Any] = min(__a ) # create the counting array _lowercase : Any = coll_max + 1 - coll_min _lowercase : str = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , __a ): _lowercase : Optional[int] = counting_arr[i] + counting_arr[i - 1] # create the output collection _lowercase : List[Any] = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , __a ) ): _lowercase : int = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def _A ( snake_case ) -> Any: return "".join([chr(__a ) for i in counting_sort([ord(__a ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string('thisisthestring') == "eghhiiinrsssttt" _snake_case = input('Enter numbers separated by a comma:\n').strip() _snake_case = [int(item) for item in user_input.split(',')] print(counting_sort(unsorted))
350
'''simple docstring''' import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = {'vocab_file': 'spiece.model'} _snake_case = { 'vocab_file': { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model', 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model' ), } } _snake_case = { 'google/bigbird-roberta-base': 4_096, 'google/bigbird-roberta-large': 4_096, 'google/bigbird-base-trivia-itc': 4_096, } class a__ ( lowerCamelCase_ ): _SCREAMING_SNAKE_CASE : List[Any] = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : Optional[int] = ['input_ids', 'attention_mask'] _SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self , _UpperCamelCase , _UpperCamelCase="<unk>" , _UpperCamelCase="<s>" , _UpperCamelCase="</s>" , _UpperCamelCase="<pad>" , _UpperCamelCase="[SEP]" , _UpperCamelCase="[MASK]" , _UpperCamelCase="[CLS]" , _UpperCamelCase = None , **_UpperCamelCase , ): """simple docstring""" _lowercase : Optional[int] = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else bos_token _lowercase : Optional[int] = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else eos_token _lowercase : Optional[Any] = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else unk_token _lowercase : Union[str, Any] = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else pad_token _lowercase : Any = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else cls_token _lowercase : str = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else sep_token # Mask token behave like a normal word, i.e. include the space before it _lowercase : Any = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else mask_token _lowercase : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , pad_token=_UpperCamelCase , sep_token=_UpperCamelCase , mask_token=_UpperCamelCase , cls_token=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCamelCase , ) _lowercase : str = vocab_file _lowercase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCamelCase ) @property def _lowerCamelCase ( self ): """simple docstring""" return self.sp_model.get_piece_size() def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Dict = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): """simple docstring""" _lowercase : str = self.__dict__.copy() _lowercase : Union[str, Any] = None return state def __setstate__( self , _UpperCamelCase ): """simple docstring""" _lowercase : Dict = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _lowercase : Optional[Any] = {} _lowercase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" return self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" return self.sp_model.piece_to_id(_UpperCamelCase ) def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" _lowercase : List[Any] = self.sp_model.IdToPiece(_UpperCamelCase ) return token def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" _lowercase : Optional[int] = [] _lowercase : int = "" _lowercase : Tuple = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_UpperCamelCase ) + token _lowercase : Union[str, Any] = True _lowercase : Optional[int] = [] else: current_sub_tokens.append(_UpperCamelCase ) _lowercase : str = False out_string += self.sp_model.decode(_UpperCamelCase ) return out_string.strip() def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase = False , _UpperCamelCase = None , _UpperCamelCase = True , **_UpperCamelCase , ): """simple docstring""" _lowercase : Any = kwargs.pop("use_source_tokenizer" , _UpperCamelCase ) _lowercase : Dict = self.convert_ids_to_tokens(_UpperCamelCase , skip_special_tokens=_UpperCamelCase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 _lowercase : Dict = [] _lowercase : Any = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_UpperCamelCase ) ) _lowercase : Optional[Any] = [] sub_texts.append(_UpperCamelCase ) else: current_sub_text.append(_UpperCamelCase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_UpperCamelCase ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: _lowercase : List[str] = re.sub(R" (\[(MASK|SEP)\])" , R"\1" , " ".join(_UpperCamelCase ) ) else: _lowercase : List[Any] = "".join(_UpperCamelCase ) _lowercase : Optional[int] = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: _lowercase : Tuple = self.clean_up_tokenization(_UpperCamelCase ) return clean_text else: return text def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase = None ): """simple docstring""" if not os.path.isdir(_UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowercase : Optional[Any] = os.path.join( _UpperCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , "wb" ) as fi: _lowercase : List[str] = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowercase : str = [self.cls_token_id] _lowercase : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCamelCase )) + [1] return [1] + ([0] * len(_UpperCamelCase )) + [1] + ([0] * len(_UpperCamelCase )) + [1] def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase = None ): """simple docstring""" _lowercase : str = [self.sep_token_id] _lowercase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
199
0
'''simple docstring''' import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) _lowerCAmelCase = logging.getLogger() def __lowerCAmelCase ( ): __UpperCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument("-f" ) __UpperCamelCase : Any = parser.parse_args() return args.f def __lowerCAmelCase ( snake_case__ ): __UpperCamelCase : Dict = {} __UpperCamelCase : Dict = os.path.join(snake_case__ , "all_results.json" ) if os.path.exists(snake_case__ ): with open(snake_case__ , "r" ) as f: __UpperCamelCase : Any = json.load(snake_case__ ) else: raise ValueError(F"can't find {path}" ) return results def __lowerCAmelCase ( ): __UpperCamelCase : Any = torch.cuda.is_available() and torch_device == "cuda" return is_using_cuda and is_apex_available() _lowerCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class A ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' @classmethod def a_ (cls ) -> Union[str, Any]: # Write Accelerate config, will pick up on CPU, GPU, and multi-GPU __UpperCamelCase : Optional[Any] = tempfile.mkdtemp() __UpperCamelCase : List[str] = os.path.join(cls.tmpdir , "default_config.yml" ) write_basic_config(save_location=cls.configPath ) __UpperCamelCase : Optional[Any] = ["accelerate", "launch", "--config_file", cls.configPath] @classmethod def a_ (cls ) -> Union[str, Any]: shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def a_ (self ) -> Optional[int]: __UpperCamelCase : List[Any] = self.get_auto_remove_tmp_dir() __UpperCamelCase : List[Any] = f"\n {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --seed=42\n --checkpointing_steps epoch\n --with_tracking\n ".split() if is_cuda_and_apex_available(): testargs.append("--fp16" ) run_command(self._launch_args + testargs ) __UpperCamelCase : Tuple = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "glue_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def a_ (self ) -> Dict: __UpperCamelCase : Optional[Any] = self.get_auto_remove_tmp_dir() __UpperCamelCase : List[Any] = f"\n {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --block_size 128\n --per_device_train_batch_size 5\n --per_device_eval_batch_size 5\n --num_train_epochs 2\n --output_dir {tmp_dir}\n --checkpointing_steps epoch\n --with_tracking\n ".split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) __UpperCamelCase : int = get_results(_UpperCAmelCase ) self.assertLess(result["perplexity"] , 1_0_0 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "clm_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def a_ (self ) -> Any: __UpperCamelCase : List[Any] = self.get_auto_remove_tmp_dir() __UpperCamelCase : Optional[Any] = f"\n {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --num_train_epochs=1\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) __UpperCamelCase : Optional[Any] = get_results(_UpperCAmelCase ) self.assertLess(result["perplexity"] , 4_2 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "mlm_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def a_ (self ) -> int: # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu __UpperCamelCase : int = 7 if get_gpu_count() > 1 else 2 __UpperCamelCase : int = self.get_auto_remove_tmp_dir() __UpperCamelCase : str = f"\n {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) __UpperCamelCase : List[Any] = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertLess(result["train_loss"] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "ner_no_trainer" ) ) ) @unittest.skip(reason="Fix me @muellerzr" ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def a_ (self ) -> Any: __UpperCamelCase : Tuple = self.get_auto_remove_tmp_dir() __UpperCamelCase : str = f"\n {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --seed=42\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) __UpperCamelCase : Optional[int] = get_results(_UpperCAmelCase ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result["eval_f1"] , 2_8 ) self.assertGreaterEqual(result["eval_exact"] , 2_8 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "qa_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def a_ (self ) -> Dict: __UpperCamelCase : Tuple = self.get_auto_remove_tmp_dir() __UpperCamelCase : List[str] = f"\n {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/swag/sample.json\n --validation_file tests/fixtures/tests_samples/swag/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=20\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) __UpperCamelCase : Tuple = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_accuracy"] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "swag_no_trainer" ) ) ) @slow @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def a_ (self ) -> Union[str, Any]: __UpperCamelCase : str = self.get_auto_remove_tmp_dir() __UpperCamelCase : Dict = f"\n {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) __UpperCamelCase : Dict = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_rouge1"] , 1_0 ) self.assertGreaterEqual(result["eval_rouge2"] , 2 ) self.assertGreaterEqual(result["eval_rougeL"] , 7 ) self.assertGreaterEqual(result["eval_rougeLsum"] , 7 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "summarization_no_trainer" ) ) ) @slow @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def a_ (self ) -> Tuple: __UpperCamelCase : Optional[int] = self.get_auto_remove_tmp_dir() __UpperCamelCase : List[Any] = f"\n {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py\n --model_name_or_path sshleifer/student_marian_en_ro_6_1\n --source_lang en\n --target_lang ro\n --train_file tests/fixtures/tests_samples/wmt16/sample.json\n --validation_file tests/fixtures/tests_samples/wmt16/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --num_beams=6\n --learning_rate=3e-3\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --source_lang en_XX\n --target_lang ro_RO\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) __UpperCamelCase : List[Any] = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_bleu"] , 3_0 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "translation_no_trainer" ) ) ) @slow def a_ (self ) -> List[Any]: __UpperCamelCase : Tuple = logging.StreamHandler(sys.stdout ) logger.addHandler(_UpperCAmelCase ) __UpperCamelCase : Dict = self.get_auto_remove_tmp_dir() __UpperCamelCase : List[Any] = f"\n {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py\n --dataset_name huggingface/semantic-segmentation-test-sample\n --output_dir {tmp_dir}\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n ".split() run_command(self._launch_args + testargs ) __UpperCamelCase : Optional[int] = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_overall_accuracy"] , 0.10 ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def a_ (self ) -> Tuple: __UpperCamelCase : List[Any] = self.get_auto_remove_tmp_dir() __UpperCamelCase : Optional[Any] = f"\n {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py\n --model_name_or_path google/vit-base-patch16-224-in21k\n --dataset_name hf-internal-testing/cats_vs_dogs_sample\n --learning_rate 1e-4\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 1\n --max_train_steps 2\n --train_val_split 0.1\n --seed 42\n --output_dir {tmp_dir}\n --with_tracking\n --checkpointing_steps 1\n ".split() if is_cuda_and_apex_available(): testargs.append("--fp16" ) run_command(self._launch_args + testargs ) __UpperCamelCase : str = get_results(_UpperCAmelCase ) # The base model scores a 25% self.assertGreaterEqual(result["eval_accuracy"] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "step_1" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "image_classification_no_trainer" ) ) )
298
'''simple docstring''' import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow _lowerCAmelCase = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ '''text-classification''', '''language-modeling''', '''summarization''', '''token-classification''', '''question-answering''', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) _lowerCAmelCase = logging.getLogger() def __lowerCAmelCase ( ): __UpperCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument("-f" ) __UpperCamelCase : Optional[Any] = parser.parse_args() return args.f def __lowerCAmelCase ( snake_case__ , snake_case__="eval" ): __UpperCamelCase : List[str] = os.path.join(snake_case__ , F"{split}_results.json" ) if os.path.exists(snake_case__ ): with open(snake_case__ , "r" ) as f: return json.load(snake_case__ ) raise ValueError(F"can't find {path}" ) _lowerCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class A ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def a_ (self ) -> str: __UpperCamelCase : Any = self.get_auto_remove_tmp_dir() __UpperCamelCase : List[str] = f"\n run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --eval_steps=2\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n ".split() with patch.object(_UpperCAmelCase , "argv" , _UpperCAmelCase ): run_flax_glue.main() __UpperCamelCase : int = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) @slow def a_ (self ) -> Tuple: __UpperCamelCase : List[Any] = self.get_auto_remove_tmp_dir() __UpperCamelCase : Any = f"\n run_clm_flax.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --block_size 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split() with patch.object(_UpperCAmelCase , "argv" , _UpperCAmelCase ): run_clm_flax.main() __UpperCamelCase : Optional[int] = get_results(_UpperCAmelCase ) self.assertLess(result["eval_perplexity"] , 1_0_0 ) @slow def a_ (self ) -> str: __UpperCamelCase : Any = self.get_auto_remove_tmp_dir() __UpperCamelCase : Tuple = f"\n run_summarization.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --test_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=8\n --do_train\n --do_eval\n --do_predict\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --predict_with_generate\n ".split() with patch.object(_UpperCAmelCase , "argv" , _UpperCAmelCase ): run_summarization_flax.main() __UpperCamelCase : Tuple = get_results(_UpperCAmelCase , split="test" ) self.assertGreaterEqual(result["test_rouge1"] , 1_0 ) self.assertGreaterEqual(result["test_rouge2"] , 2 ) self.assertGreaterEqual(result["test_rougeL"] , 7 ) self.assertGreaterEqual(result["test_rougeLsum"] , 7 ) @slow def a_ (self ) -> int: __UpperCamelCase : int = self.get_auto_remove_tmp_dir() __UpperCamelCase : str = f"\n run_mlm.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --logging_steps 2 --eval_steps 2\n --do_train\n --do_eval\n --num_train_epochs=1\n ".split() with patch.object(_UpperCAmelCase , "argv" , _UpperCAmelCase ): run_mlm_flax.main() __UpperCamelCase : Optional[Any] = get_results(_UpperCAmelCase ) self.assertLess(result["eval_perplexity"] , 4_2 ) @slow def a_ (self ) -> Dict: __UpperCamelCase : Dict = self.get_auto_remove_tmp_dir() __UpperCamelCase : Tuple = f"\n run_t5_mlm_flax.py\n --model_name_or_path t5-small\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split() with patch.object(_UpperCAmelCase , "argv" , _UpperCAmelCase ): run_ta_mlm_flax.main() __UpperCamelCase : Tuple = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_accuracy"] , 0.42 ) @slow def a_ (self ) -> Union[str, Any]: # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu __UpperCamelCase : Union[str, Any] = 7 if get_gpu_count() > 1 else 2 __UpperCamelCase : Optional[Any] = self.get_auto_remove_tmp_dir() __UpperCamelCase : Optional[Any] = f"\n run_flax_ner.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --do_train\n --do_eval\n --warmup_steps=2\n --learning_rate=2e-4\n --logging_steps 2 --eval_steps 2\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n ".split() with patch.object(_UpperCAmelCase , "argv" , _UpperCAmelCase ): run_flax_ner.main() __UpperCamelCase : int = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertGreaterEqual(result["eval_f1"] , 0.3 ) @slow def a_ (self ) -> List[Any]: __UpperCamelCase : Optional[Any] = self.get_auto_remove_tmp_dir() __UpperCamelCase : Dict = f"\n run_qa.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=2\n --do_train\n --do_eval\n --logging_steps 2 --eval_steps 2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n ".split() with patch.object(_UpperCAmelCase , "argv" , _UpperCAmelCase ): run_qa.main() __UpperCamelCase : List[Any] = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_f1"] , 3_0 ) self.assertGreaterEqual(result["eval_exact"] , 3_0 )
298
1
import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor __UpperCAmelCase = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( A__ ): def __init__( self , *__A , **__A ) -> None: warnings.warn( """The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use FlavaImageProcessor instead.""" , _A , ) super().__init__(*_A , **_A )
356
"""simple docstring""" import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _SCREAMING_SNAKE_CASE ( A__ , unittest.TestCase ): UpperCAmelCase_ :str = GPTSanJapaneseTokenizer UpperCAmelCase_ :Optional[int] = False UpperCAmelCase_ :Optional[int] = {"do_clean_text": False, "add_prefix_space": False} def __lowerCAmelCase ( self ) -> Tuple: super().setUp() # fmt: off lowerCAmelCase_ :Dict = ["""こん""", """こんに""", """にちは""", """ばんは""", """世界,㔺界""", """、""", """。""", """<BR>""", """<SP>""", """<TAB>""", """<URL>""", """<EMAIL>""", """<TEL>""", """<DATE>""", """<PRICE>""", """<BLOCK>""", """<KIGOU>""", """<U2000U2BFF>""", """<|emoji1|>""", """<unk>""", """<|bagoftoken|>""", """<|endoftext|>"""] # fmt: on lowerCAmelCase_ :List[str] = {"""emoji""": {"""\ud83d\ude00""": """<|emoji1|>"""}, """emoji_inv""": {"""<|emoji1|>""": """\ud83d\ude00"""}} # 😀 lowerCAmelCase_ :int = {"""unk_token""": """<unk>"""} lowerCAmelCase_ :Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCAmelCase_ :int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""emoji_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) with open(self.emoji_file , """w""" ) as emoji_writer: emoji_writer.write(json.dumps(__A ) ) def __lowerCAmelCase ( self , **__A ) -> int: kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **__A ) def __lowerCAmelCase ( self , __A ) -> Dict: lowerCAmelCase_ :List[Any] = """こんにちは、世界。 \nこんばんは、㔺界。😀""" lowerCAmelCase_ :Optional[int] = """こんにちは、世界。 \nこんばんは、世界。😀""" return input_text, output_text def __lowerCAmelCase ( self , __A ) -> str: lowerCAmelCase_ , lowerCAmelCase_ :Tuple = self.get_input_output_texts(__A ) lowerCAmelCase_ :List[str] = tokenizer.encode(__A , add_special_tokens=__A ) lowerCAmelCase_ :str = tokenizer.decode(__A , clean_up_tokenization_spaces=__A ) return text, ids def __lowerCAmelCase ( self ) -> str: pass # TODO add if relevant def __lowerCAmelCase ( self ) -> Dict: pass # TODO add if relevant def __lowerCAmelCase ( self ) -> int: pass # TODO add if relevant def __lowerCAmelCase ( self ) -> Dict: lowerCAmelCase_ :Union[str, Any] = self.get_tokenizer() # Testing tokenization lowerCAmelCase_ :Optional[int] = """こんにちは、世界。 こんばんは、㔺界。""" lowerCAmelCase_ :Any = ["""こん""", """にちは""", """、""", """世界""", """。""", """<SP>""", """こん""", """ばんは""", """、""", """㔺界""", """。"""] lowerCAmelCase_ :Tuple = tokenizer.tokenize(__A ) self.assertListEqual(__A , __A ) # Testing conversion to ids without special tokens lowerCAmelCase_ :List[Any] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] lowerCAmelCase_ :List[str] = tokenizer.convert_tokens_to_ids(__A ) self.assertListEqual(__A , __A ) # Testing conversion to ids with special tokens lowerCAmelCase_ :Any = tokens + [tokenizer.unk_token] lowerCAmelCase_ :Union[str, Any] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] lowerCAmelCase_ :Union[str, Any] = tokenizer.convert_tokens_to_ids(__A ) self.assertListEqual(__A , __A ) def __lowerCAmelCase ( self ) -> Union[str, Any]: lowerCAmelCase_ :int = self.get_tokenizer() # Testing tokenization lowerCAmelCase_ :Optional[int] = """こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。""" lowerCAmelCase_ :str = """こんにちは、、、、世界。こんばんは、、、、世界。""" lowerCAmelCase_ :str = tokenizer.encode(__A ) lowerCAmelCase_ :Dict = tokenizer.decode(__A ) self.assertEqual(__A , __A ) @slow def __lowerCAmelCase ( self ) -> int: lowerCAmelCase_ :Tuple = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization lowerCAmelCase_ :Optional[Any] = """こんにちは、世界。""" lowerCAmelCase_ :Any = """こんばんは、㔺界。😀""" lowerCAmelCase_ :Optional[Any] = """こんにちは、世界。こんばんは、世界。😀""" lowerCAmelCase_ :List[Any] = tokenizer.encode(prefix_text + input_text ) lowerCAmelCase_ :List[str] = tokenizer.encode("""""" , prefix_text=prefix_text + input_text ) lowerCAmelCase_ :int = tokenizer.encode(__A , prefix_text=__A ) lowerCAmelCase_ :int = tokenizer.decode(__A ) lowerCAmelCase_ :Dict = tokenizer.decode(__A ) lowerCAmelCase_ :Tuple = tokenizer.decode(__A ) self.assertEqual(__A , __A ) self.assertEqual(__A , __A ) self.assertEqual(__A , __A ) @slow def __lowerCAmelCase ( self ) -> Any: lowerCAmelCase_ :int = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization lowerCAmelCase_ :List[Any] = """こんにちは、世界。""" lowerCAmelCase_ :Optional[int] = """こんばんは、㔺界。😀""" lowerCAmelCase_ :List[str] = len(tokenizer.encode(__A ) ) - 2 lowerCAmelCase_ :Dict = len(tokenizer.encode(__A ) ) - 2 lowerCAmelCase_ :int = [1] + [0] * (len_prefix + len_text + 1) lowerCAmelCase_ :List[Any] = [1] * (len_prefix + len_text + 1) + [0] lowerCAmelCase_ :Dict = [1] + [1] * (len_prefix) + [0] * (len_text + 1) lowerCAmelCase_ :List[Any] = tokenizer(prefix_text + input_text ).token_type_ids lowerCAmelCase_ :List[str] = tokenizer("""""" , prefix_text=prefix_text + input_text ).token_type_ids lowerCAmelCase_ :List[Any] = tokenizer(__A , prefix_text=__A ).token_type_ids self.assertListEqual(__A , __A ) self.assertListEqual(__A , __A ) self.assertListEqual(__A , __A ) @slow def __lowerCAmelCase ( self ) -> int: lowerCAmelCase_ :Dict = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) lowerCAmelCase_ :int = tokenizer.encode("""あンいワ""" ) lowerCAmelCase_ :Optional[Any] = tokenizer.encode("""""" , prefix_text="""あンいワ""" ) lowerCAmelCase_ :int = tokenizer.encode("""いワ""" , prefix_text="""あン""" ) self.assertEqual(tokenizer.decode(__A ) , tokenizer.decode(__A ) ) self.assertEqual(tokenizer.decode(__A ) , tokenizer.decode(__A ) ) self.assertNotEqual(__A , __A ) self.assertNotEqual(__A , __A ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def __lowerCAmelCase ( self ) -> Optional[Any]: lowerCAmelCase_ :Union[str, Any] = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) lowerCAmelCase_ :int = [["""武田信玄""", """は、"""], ["""織田信長""", """の配下の、"""]] lowerCAmelCase_ :Dict = tokenizer(__A , padding=__A ) lowerCAmelCase_ :Any = tokenizer.batch_encode_plus(__A , padding=__A ) # fmt: off lowerCAmelCase_ :int = [[3_5993, 8640, 2_5948, 3_5998, 3_0647, 3_5675, 3_5999, 3_5999], [3_5993, 1_0382, 9868, 3_5998, 3_0646, 9459, 3_0646, 3_5675]] lowerCAmelCase_ :List[str] = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] lowerCAmelCase_ :int = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , __A ) self.assertListEqual(x_token.token_type_ids , __A ) self.assertListEqual(x_token.attention_mask , __A ) self.assertListEqual(x_token_a.input_ids , __A ) self.assertListEqual(x_token_a.token_type_ids , __A ) self.assertListEqual(x_token_a.attention_mask , __A ) def __lowerCAmelCase ( self ) -> Tuple: # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def __lowerCAmelCase ( self ) -> str: # tokenizer has no padding token pass
1
0
from __future__ import annotations from scipy.special import comb # type: ignore class UpperCAmelCase_ : def __init__( self, __a): '''simple docstring''' _lowerCAmelCase : Optional[int] = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. _lowerCAmelCase : Optional[Any] = len(__a) - 1 def snake_case__ ( self, __a): '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." _lowerCAmelCase : list[float] = [] for i in range(len(self.list_of_points)): # basis function for each i output_values.append( comb(self.degree, __a) * ((1 - t) ** (self.degree - i)) * (t**i)) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(__a), 5) == 1 return output_values def snake_case__ ( self, __a): '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." _lowerCAmelCase : Tuple = self.basis_function(__a) _lowerCAmelCase : Any = 0.0 _lowerCAmelCase : Optional[int] = 0.0 for i in range(len(self.list_of_points)): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def snake_case__ ( self, __a = 0.01): '''simple docstring''' from matplotlib import pyplot as plt # type: ignore _lowerCAmelCase : list[float] = [] # x coordinates of points to plot _lowerCAmelCase : list[float] = [] # y coordinates of points to plot _lowerCAmelCase : List[str] = 0.0 while t <= 1: _lowerCAmelCase : int = self.bezier_curve_function(__a) to_plot_x.append(value[0]) to_plot_y.append(value[1]) t += step_size _lowerCAmelCase : List[Any] = [i[0] for i in self.list_of_points] _lowerCAmelCase : Union[str, Any] = [i[1] for i in self.list_of_points] plt.plot( __a, __a, color="blue", label="Curve of Degree " + str(self.degree), ) plt.scatter(__a, __a, color="red", label="Control Points") plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
36
import colorsys from PIL import Image # type: ignore def __UpperCamelCase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : int ): __a : Any = x __a : List[Any] = y for step in range(lowerCAmelCase__ ): # noqa: B007 __a : List[Any] = a * a - b * b + x __a : Tuple = 2 * a * b + y __a : Optional[int] = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def __UpperCamelCase ( lowerCAmelCase__ : float ): if distance == 1: return (0, 0, 0) else: return (2_5_5, 2_5_5, 2_5_5) def __UpperCamelCase ( lowerCAmelCase__ : float ): if distance == 1: return (0, 0, 0) else: return tuple(round(i * 2_5_5 ) for i in colorsys.hsv_to_rgb(lowerCAmelCase__ , 1 , 1 ) ) def __UpperCamelCase ( lowerCAmelCase__ : int = 8_0_0 , lowerCAmelCase__ : int = 6_0_0 , lowerCAmelCase__ : float = -0.6 , lowerCAmelCase__ : float = 0 , lowerCAmelCase__ : float = 3.2 , lowerCAmelCase__ : int = 5_0 , lowerCAmelCase__ : bool = True , ): __a : int = Image.new('''RGB''' , (image_width, image_height) ) __a : Dict = img.load() # loop through the image-coordinates for image_x in range(lowerCAmelCase__ ): for image_y in range(lowerCAmelCase__ ): # determine the figure-coordinates based on the image-coordinates __a : Optional[Any] = figure_width / image_width * image_height __a : str = figure_center_x + (image_x / image_width - 0.5) * figure_width __a : str = figure_center_y + (image_y / image_height - 0.5) * figure_height __a : Tuple = get_distance(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: __a : Optional[int] = get_color_coded_rgb(lowerCAmelCase__ ) else: __a : Optional[Any] = get_black_and_white_rgb(lowerCAmelCase__ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure lowercase__ =get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
216
0
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class __magic_name__ : def __init__( self : Dict , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Any=2 , lowerCamelCase__ : Dict=True , lowerCamelCase__ : Optional[Any]=False , lowerCamelCase__ : Dict=10 , lowerCamelCase__ : List[str]=3 , lowerCamelCase__ : Union[str, Any]=32 * 4 , lowerCamelCase__ : Optional[Any]=32 * 6 , lowerCamelCase__ : Optional[int]=4 , lowerCamelCase__ : Optional[int]=32 , ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ : Optional[int] = parent UpperCamelCase__ : Optional[Any] = batch_size UpperCamelCase__ : Any = is_training UpperCamelCase__ : Tuple = use_auxiliary_loss UpperCamelCase__ : str = num_queries UpperCamelCase__ : Dict = num_channels UpperCamelCase__ : List[str] = min_size UpperCamelCase__ : Optional[Any] = max_size UpperCamelCase__ : str = num_labels UpperCamelCase__ : str = mask_feature_size def UpperCAmelCase__ ( self : int ) -> int: '''simple docstring''' UpperCamelCase__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( lowerCamelCase__ ) UpperCamelCase__ : Optional[int] = torch.ones([self.batch_size, self.min_size, self.max_size] , device=lowerCamelCase__ ) UpperCamelCase__ : int = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=lowerCamelCase__ ) > 0.5 ).float() UpperCamelCase__ : Optional[int] = (torch.rand((self.batch_size, self.num_labels) , device=lowerCamelCase__ ) > 0.5).long() UpperCamelCase__ : Dict = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def UpperCAmelCase__ ( self : int ) -> List[str]: '''simple docstring''' return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def UpperCAmelCase__ ( self : str ) -> List[str]: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Tuple = self.prepare_config_and_inputs() UpperCamelCase__ : Optional[Any] = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def UpperCAmelCase__ ( self : Any , lowerCamelCase__ : Tuple , lowerCamelCase__ : Any ) -> int: '''simple docstring''' UpperCamelCase__ : Optional[int] = output.encoder_hidden_states UpperCamelCase__ : List[str] = output.pixel_decoder_hidden_states UpperCamelCase__ : Union[str, Any] = output.transformer_decoder_hidden_states self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCamelCase__ ) , config.decoder_config.decoder_layers ) def UpperCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Dict , lowerCamelCase__ : List[str] , lowerCamelCase__ : Tuple=False ) -> Optional[int]: '''simple docstring''' with torch.no_grad(): UpperCamelCase__ : List[Any] = MaskFormerModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ : Optional[Any] = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ ) UpperCamelCase__ : Optional[int] = model(lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase__ ( self : List[str] , lowerCamelCase__ : Any , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : str , lowerCamelCase__ : int , lowerCamelCase__ : List[Any] ) -> Any: '''simple docstring''' UpperCamelCase__ : int = MaskFormerForInstanceSegmentation(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() def comm_check_on_output(lowerCamelCase__ : Any ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): UpperCamelCase__ : Optional[Any] = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ ) UpperCamelCase__ : Union[str, Any] = model(lowerCamelCase__ ) comm_check_on_output(lowerCamelCase__ ) UpperCamelCase__ : Union[str, Any] = model( pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ) comm_check_on_output(lowerCamelCase__ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __magic_name__ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase): A: str = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () A: str = ( {"feature-extraction": MaskFormerModel, "image-segmentation": MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) A: List[str] = False A: List[Any] = False A: Any = False A: Optional[int] = False def UpperCAmelCase__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ : int = MaskFormerModelTester(self ) UpperCamelCase__ : int = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) def UpperCAmelCase__ ( self : List[str] ) -> Tuple: '''simple docstring''' UpperCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*lowerCamelCase__ ) @unittest.skip(reason='''MaskFormer does not use inputs_embeds''' ) def UpperCAmelCase__ ( self : List[Any] ) -> int: '''simple docstring''' pass @unittest.skip(reason='''MaskFormer does not have a get_input_embeddings method''' ) def UpperCAmelCase__ ( self : Dict ) -> int: '''simple docstring''' pass @unittest.skip(reason='''MaskFormer is not a generative model''' ) def UpperCAmelCase__ ( self : Optional[int] ) -> str: '''simple docstring''' pass @unittest.skip(reason='''MaskFormer does not use token embeddings''' ) def UpperCAmelCase__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason='''MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def UpperCAmelCase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def UpperCAmelCase__ ( self : List[Any] ) -> Tuple: '''simple docstring''' pass def UpperCAmelCase__ ( self : int ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Dict = model_class(lowerCamelCase__ ) UpperCamelCase__ : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ : Tuple = [*signature.parameters.keys()] UpperCamelCase__ : int = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) @slow def UpperCAmelCase__ ( self : int ) -> int: '''simple docstring''' for model_name in ["facebook/maskformer-swin-small-coco"]: UpperCamelCase__ : Any = MaskFormerModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def UpperCAmelCase__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ : Optional[Any] = (self.model_tester.min_size,) * 2 UpperCamelCase__ : Dict = { '''pixel_values''': torch.randn((2, 3, *size) , device=lowerCamelCase__ ), '''mask_labels''': torch.randn((2, 10, *size) , device=lowerCamelCase__ ), '''class_labels''': torch.zeros(2 , 10 , device=lowerCamelCase__ ).long(), } UpperCamelCase__ : List[Any] = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(lowerCamelCase__ ) UpperCamelCase__ : List[str] = model(**lowerCamelCase__ ) self.assertTrue(outputs.loss is not None ) def UpperCAmelCase__ ( self : str ) -> List[Any]: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) def UpperCAmelCase__ ( self : Any ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : List[Any] = model_class(lowerCamelCase__ ).to(lowerCamelCase__ ) UpperCamelCase__ : Tuple = model(**lowerCamelCase__ , output_attentions=lowerCamelCase__ ) self.assertTrue(outputs.attentions is not None ) def UpperCAmelCase__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss UpperCamelCase__ : List[str] = self.all_model_classes[1] UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() UpperCamelCase__ : str = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.train() UpperCamelCase__ : Optional[int] = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ).loss loss.backward() def UpperCAmelCase__ ( self : Optional[Any] ) -> Any: '''simple docstring''' UpperCamelCase__ : List[str] = self.all_model_classes[1] UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() UpperCamelCase__ : Optional[Any] = True UpperCamelCase__ : List[Any] = True UpperCamelCase__ : str = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.train() UpperCamelCase__ : str = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ) UpperCamelCase__ : Tuple = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() UpperCamelCase__ : Any = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't UpperCamelCase__ : List[str] = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() UpperCamelCase__ : int = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=lowerCamelCase__ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __UpperCamelCase : str = 1E-4 def _a ( ): """simple docstring""" UpperCamelCase__ : Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class __magic_name__ ( unittest.TestCase): @cached_property def UpperCAmelCase__ ( self : Any ) -> Tuple: '''simple docstring''' return ( MaskFormerImageProcessor.from_pretrained('''facebook/maskformer-swin-small-coco''' ) if is_vision_available() else None ) def UpperCAmelCase__ ( self : Dict ) -> str: '''simple docstring''' UpperCamelCase__ : Union[str, Any] = MaskFormerModel.from_pretrained('''facebook/maskformer-swin-small-coco''' ).to(lowerCamelCase__ ) UpperCamelCase__ : Dict = self.default_image_processor UpperCamelCase__ : int = prepare_img() UpperCamelCase__ : Any = image_processor(lowerCamelCase__ , return_tensors='''pt''' ).to(lowerCamelCase__ ) UpperCamelCase__ : int = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase__ , (1, 3, 800, 1088) ) with torch.no_grad(): UpperCamelCase__ : List[Any] = model(**lowerCamelCase__ ) UpperCamelCase__ : str = torch.tensor( [[-0.0482, 0.9228, 0.4951], [-0.2547, 0.8017, 0.8527], [-0.0069, 0.3385, -0.0089]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) UpperCamelCase__ : Dict = torch.tensor( [[-0.8422, -0.8434, -0.9718], [-1.0144, -0.5565, -0.4195], [-1.0038, -0.4484, -0.1961]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) UpperCamelCase__ : Tuple = torch.tensor( [[0.2852, -0.0159, 0.9735], [0.6254, 0.1858, 0.8529], [-0.0680, -0.4116, 1.8413]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) def UpperCAmelCase__ ( self : str ) -> Tuple: '''simple docstring''' UpperCamelCase__ : Tuple = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''' ) .to(lowerCamelCase__ ) .eval() ) UpperCamelCase__ : int = self.default_image_processor UpperCamelCase__ : Union[str, Any] = prepare_img() UpperCamelCase__ : Optional[int] = image_processor(lowerCamelCase__ , return_tensors='''pt''' ).to(lowerCamelCase__ ) UpperCamelCase__ : Optional[int] = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase__ , (1, 3, 800, 1088) ) with torch.no_grad(): UpperCamelCase__ : List[Any] = model(**lowerCamelCase__ ) # masks_queries_logits UpperCamelCase__ : Optional[int] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) UpperCamelCase__ : Union[str, Any] = [ [-1.373_7124, -1.772_4937, -1.936_4233], [-1.597_7281, -1.986_7939, -2.152_3695], [-1.579_5398, -1.926_9832, -2.09_3942], ] UpperCamelCase__ : str = torch.tensor(lowerCamelCase__ ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) # class_queries_logits UpperCamelCase__ : str = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) UpperCamelCase__ : Optional[int] = torch.tensor( [ [1.6_5_1_2E0_0, -5.2_5_7_2E0_0, -3.3_5_1_9E0_0], [3.6_1_6_9E-0_2, -5.9_0_2_5E0_0, -2.9_3_1_3E0_0], [1.0_7_6_6E-0_4, -7.7_6_3_0E0_0, -5.1_2_6_3E0_0], ] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' UpperCamelCase__ : Optional[Any] = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-resnet101-coco-stuff''' ) .to(lowerCamelCase__ ) .eval() ) UpperCamelCase__ : Tuple = self.default_image_processor UpperCamelCase__ : str = prepare_img() UpperCamelCase__ : Optional[Any] = image_processor(lowerCamelCase__ , return_tensors='''pt''' ).to(lowerCamelCase__ ) UpperCamelCase__ : int = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase__ , (1, 3, 800, 1088) ) with torch.no_grad(): UpperCamelCase__ : Optional[Any] = model(**lowerCamelCase__ ) # masks_queries_logits UpperCamelCase__ : str = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) UpperCamelCase__ : int = [[-0.9046, -2.6366, -4.6062], [-3.4179, -5.7890, -8.8057], [-4.9179, -7.6560, -10.7711]] UpperCamelCase__ : List[Any] = torch.tensor(lowerCamelCase__ ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) # class_queries_logits UpperCamelCase__ : Dict = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) UpperCamelCase__ : List[Any] = torch.tensor( [[4.7188, -3.2585, -2.8857], [6.6871, -2.9181, -1.2487], [7.2449, -2.2764, -2.1874]] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) def UpperCAmelCase__ ( self : Tuple ) -> List[Any]: '''simple docstring''' UpperCamelCase__ : List[Any] = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''' ) .to(lowerCamelCase__ ) .eval() ) UpperCamelCase__ : str = self.default_image_processor UpperCamelCase__ : Dict = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='''pt''' , ) UpperCamelCase__ : Optional[Any] = inputs['''pixel_values'''].to(lowerCamelCase__ ) UpperCamelCase__ : Optional[Any] = [el.to(lowerCamelCase__ ) for el in inputs['''mask_labels''']] UpperCamelCase__ : List[str] = [el.to(lowerCamelCase__ ) for el in inputs['''class_labels''']] with torch.no_grad(): UpperCamelCase__ : Optional[Any] = model(**lowerCamelCase__ ) self.assertTrue(outputs.loss is not None )
51
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : Optional[int] = logging.get_logger(__name__) def _a ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Any=False , SCREAMING_SNAKE_CASE : Any=False ): """simple docstring""" UpperCamelCase__ : str = '''backbone.''' if is_semantic else '''''' UpperCamelCase__ : Union[str, Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"{prefix}blocks.{i}.norm1.weight", F"beit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm1.bias", F"beit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.weight", F"beit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.bias", F"beit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.weight", F"beit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.bias", F"beit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.weight", F"beit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.bias", F"beit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.weight", F"beit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.bias", F"beit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ (F"{prefix}cls_token", '''beit.embeddings.cls_token'''), (F"{prefix}patch_embed.proj.weight", '''beit.embeddings.patch_embeddings.projection.weight'''), (F"{prefix}patch_embed.proj.bias", '''beit.embeddings.patch_embeddings.projection.bias'''), (F"{prefix}pos_embed", '''beit.embeddings.position_embeddings'''), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('''mask_token''', '''beit.embeddings.mask_token'''), ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) else: # layernorm + classification head rename_keys.extend( [ ('''fc_norm.weight''', '''beit.pooler.layernorm.weight'''), ('''fc_norm.bias''', '''beit.pooler.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def _a ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Any=False , SCREAMING_SNAKE_CASE : int=False ): """simple docstring""" for i in range(config.num_hidden_layers ): UpperCamelCase__ : Union[str, Any] = '''backbone.''' if is_semantic else '''''' # queries, keys and values UpperCamelCase__ : int = state_dict.pop(F"{prefix}blocks.{i}.attn.qkv.weight" ) UpperCamelCase__ : List[str] = state_dict.pop(F"{prefix}blocks.{i}.attn.q_bias" ) UpperCamelCase__ : Tuple = state_dict.pop(F"{prefix}blocks.{i}.attn.v_bias" ) UpperCamelCase__ : List[str] = in_proj_weight[ : config.hidden_size, : ] UpperCamelCase__ : Optional[int] = q_bias UpperCamelCase__ : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCamelCase__ : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] UpperCamelCase__ : Union[str, Any] = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained UpperCamelCase__ : List[Any] = state_dict.pop(F"{prefix}blocks.{i}.gamma_1" ) UpperCamelCase__ : List[str] = state_dict.pop(F"{prefix}blocks.{i}.gamma_2" ) UpperCamelCase__ : Any = gamma_a UpperCamelCase__ : str = gamma_a def _a ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" UpperCamelCase__ : Optional[Any] = dct.pop(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = val def _a ( ): """simple docstring""" UpperCamelCase__ : Any = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCamelCase__ : Optional[Any] = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict=False ): """simple docstring""" UpperCamelCase__ : Optional[Any] = False if '''rvlcdip''' in checkpoint_url else True UpperCamelCase__ : str = BeitConfig(use_absolute_position_embeddings=SCREAMING_SNAKE_CASE , use_mask_token=SCREAMING_SNAKE_CASE ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: UpperCamelCase__ : List[str] = 1024 UpperCamelCase__ : Union[str, Any] = 4096 UpperCamelCase__ : Optional[int] = 24 UpperCamelCase__ : List[str] = 16 # labels if "rvlcdip" in checkpoint_url: UpperCamelCase__ : Any = 16 UpperCamelCase__ : Optional[int] = '''huggingface/label-files''' UpperCamelCase__ : Union[str, Any] = '''rvlcdip-id2label.json''' UpperCamelCase__ : Dict = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) , '''r''' ) ) UpperCamelCase__ : Optional[Any] = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} UpperCamelCase__ : int = idalabel UpperCamelCase__ : Union[str, Any] = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys UpperCamelCase__ : Optional[int] = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE , map_location='''cpu''' )['''model'''] UpperCamelCase__ : str = create_rename_keys(SCREAMING_SNAKE_CASE , has_lm_head=SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) read_in_q_k_v(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , has_lm_head=SCREAMING_SNAKE_CASE ) # load HuggingFace model UpperCamelCase__ : Tuple = BeitForMaskedImageModeling(SCREAMING_SNAKE_CASE ) if has_lm_head else BeitForImageClassification(SCREAMING_SNAKE_CASE ) model.eval() model.load_state_dict(SCREAMING_SNAKE_CASE ) # Check outputs on an image UpperCamelCase__ : List[str] = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = prepare_img() UpperCamelCase__ : Union[str, Any] = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) UpperCamelCase__ : Union[str, Any] = encoding['''pixel_values'''] UpperCamelCase__ : str = model(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = outputs.logits # verify logits UpperCamelCase__ : Dict = [1, 16] if '''rvlcdip''' in checkpoint_url else [1, 196, 8192] assert logits.shape == torch.Size(SCREAMING_SNAKE_CASE ), "Shape of logits not as expected" Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if push_to_hub: if has_lm_head: UpperCamelCase__ : Any = '''dit-base''' if '''base''' in checkpoint_url else '''dit-large''' else: UpperCamelCase__ : Optional[Any] = '''dit-base-finetuned-rvlcdip''' if '''dit-b''' in checkpoint_url else '''dit-large-finetuned-rvlcdip''' image_processor.push_to_hub( repo_path_or_name=Path(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=SCREAMING_SNAKE_CASE , ) model.push_to_hub( repo_path_or_name=Path(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=SCREAMING_SNAKE_CASE , ) if __name__ == "__main__": __UpperCamelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", ) __UpperCamelCase : Dict = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
51
1
"""simple docstring""" import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase , a_ ): """simple docstring""" def __lowerCAmelCase ( self : int ): lowerCAmelCase__ : Dict = load_tool('''text-to-speech''' ) self.tool.setup() def __lowerCAmelCase ( self : Any ): # SpeechT5 isn't deterministic torch.manual_seed(0 ) lowerCAmelCase__ : Dict = self.tool('''hey''' ) lowerCAmelCase__ : Optional[Any] = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] ,torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) ,) ) def __lowerCAmelCase ( self : List[str] ): # SpeechT5 isn't deterministic torch.manual_seed(0 ) lowerCAmelCase__ : List[str] = self.tool('''hey''' ) lowerCAmelCase__ : Dict = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] ,torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) ,) )
106
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCamelCase : Dict = { '''configuration_clip''': [ '''CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPConfig''', '''CLIPOnnxConfig''', '''CLIPTextConfig''', '''CLIPVisionConfig''', ], '''processing_clip''': ['''CLIPProcessor'''], '''tokenization_clip''': ['''CLIPTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : int = ['''CLIPTokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = ['''CLIPFeatureExtractor'''] __UpperCamelCase : Optional[Any] = ['''CLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = [ '''CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPModel''', '''CLIPPreTrainedModel''', '''CLIPTextModel''', '''CLIPTextModelWithProjection''', '''CLIPVisionModel''', '''CLIPVisionModelWithProjection''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = [ '''TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFCLIPModel''', '''TFCLIPPreTrainedModel''', '''TFCLIPTextModel''', '''TFCLIPVisionModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = [ '''FlaxCLIPModel''', '''FlaxCLIPPreTrainedModel''', '''FlaxCLIPTextModel''', '''FlaxCLIPTextPreTrainedModel''', '''FlaxCLIPVisionModel''', '''FlaxCLIPVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys __UpperCamelCase : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
106
1
'''simple docstring''' def _lowerCAmelCase ( lowercase = 1 , lowercase = 1000 ) -> int: __lowerCAmelCase = 1 __lowerCAmelCase = 0 for divide_by_number in range(lowercase , digit + 1 ): __lowerCAmelCase = [] __lowerCAmelCase = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(lowercase ): __lowerCAmelCase = len(lowercase ) __lowerCAmelCase = divide_by_number else: has_been_divided.append(lowercase ) __lowerCAmelCase = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
363
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _UpperCAmelCase ( lowerCAmelCase_ , unittest.TestCase ): a : str =KandinskyVaaInpaintPipeline a : int =["""image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] a : str =[ """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] a : Optional[int] =[ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] a : Dict =False @property def lowerCamelCase__ ( self ): '''simple docstring''' return 32 @property def lowerCamelCase__ ( self ): '''simple docstring''' return 32 @property def lowerCamelCase__ ( self ): '''simple docstring''' return self.time_input_dim @property def lowerCamelCase__ ( self ): '''simple docstring''' return self.time_input_dim * 4 @property def lowerCamelCase__ ( self ): '''simple docstring''' return 1_00 @property def lowerCamelCase__ ( self ): '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __lowerCAmelCase = UNetaDConditionModel(**__SCREAMING_SNAKE_CASE ) return model @property def lowerCamelCase__ ( self ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCamelCase__ ( self ): '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase = VQModel(**self.dummy_movq_kwargs ) return model def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.dummy_unet __lowerCAmelCase = self.dummy_movq __lowerCAmelCase = DDIMScheduler( num_train_timesteps=10_00,beta_schedule="""linear""",beta_start=0.0_0085,beta_end=0.012,clip_sample=__SCREAMING_SNAKE_CASE,set_alpha_to_one=__SCREAMING_SNAKE_CASE,steps_offset=1,prediction_type="""epsilon""",thresholding=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=0 ): '''simple docstring''' __lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size),rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size),rng=random.Random(seed + 1 ) ).to( __SCREAMING_SNAKE_CASE ) # create init_image __lowerCAmelCase = floats_tensor((1, 3, 64, 64),rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = image.cpu().permute(0,2,3,1 )[0] __lowerCAmelCase = Image.fromarray(np.uinta(__SCREAMING_SNAKE_CASE ) ).convert("""RGB""" ).resize((2_56, 2_56) ) # create mask __lowerCAmelCase = np.ones((64, 64),dtype=np.floataa ) __lowerCAmelCase = 0 if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ): __lowerCAmelCase = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = { """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """cpu""" __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = self.pipeline_class(**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = pipe(**self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = output.images __lowerCAmelCase = pipe( **self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ),return_dict=__SCREAMING_SNAKE_CASE,)[0] __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] print(f'image.shape {image.shape}' ) assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = np.array( [0.5077_5903, 0.4952_7195, 0.4882_4543, 0.5019_2237, 0.4864_4906, 0.4937_3814, 0.478_0598, 0.4723_4827, 0.4832_7848] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def lowerCamelCase__ ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy""" ) __lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) __lowerCAmelCase = np.ones((7_68, 7_68),dtype=np.floataa ) __lowerCAmelCase = 0 __lowerCAmelCase = """a hat""" __lowerCAmelCase = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""",torch_dtype=torch.floataa ) pipe_prior.to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = KandinskyVaaInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder-inpaint""",torch_dtype=torch.floataa ) __lowerCAmelCase = pipeline.to(__SCREAMING_SNAKE_CASE ) pipeline.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowerCAmelCase , __lowerCAmelCase = pipe_prior( __SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=5,negative_prompt="""""",).to_tuple() __lowerCAmelCase = pipeline( image=__SCREAMING_SNAKE_CASE,mask_image=__SCREAMING_SNAKE_CASE,image_embeds=__SCREAMING_SNAKE_CASE,negative_image_embeds=__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=1_00,height=7_68,width=7_68,output_type="""np""",) __lowerCAmelCase = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
46
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() a_ = logging.get_logger(__name__) a_ = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def lowerCamelCase__ ( _a , _a , _a , _a , _a): for attribute in key.split("."): SCREAMING_SNAKE_CASE : List[str] = getattr(__lowerCamelCase , __lowerCamelCase) if weight_type is not None: SCREAMING_SNAKE_CASE : str = getattr(__lowerCamelCase , __lowerCamelCase).shape else: SCREAMING_SNAKE_CASE : Tuple = hf_pointer.shape assert hf_shape == value.shape, ( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": SCREAMING_SNAKE_CASE : int = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE : Any = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE : Optional[int] = value elif weight_type == "bias": SCREAMING_SNAKE_CASE : Dict = value else: SCREAMING_SNAKE_CASE : Union[str, Any] = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.") def lowerCamelCase__ ( _a , _a , _a): SCREAMING_SNAKE_CASE : int = [] SCREAMING_SNAKE_CASE : Tuple = fairseq_model.state_dict() SCREAMING_SNAKE_CASE : Tuple = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): SCREAMING_SNAKE_CASE : str = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == "group" , ) SCREAMING_SNAKE_CASE : Union[str, Any] = True else: for key, mapped_key in MAPPING.items(): SCREAMING_SNAKE_CASE : Optional[int] = '''hubert.''' + mapped_key if (is_finetuned and mapped_key != '''lm_head''') else mapped_key if key in name or (key.split("w2v_model.")[-1] == name.split(".")[0] and not is_finetuned): SCREAMING_SNAKE_CASE : List[str] = True if "*" in mapped_key: SCREAMING_SNAKE_CASE : Any = name.split(__lowerCamelCase)[0].split(".")[-2] SCREAMING_SNAKE_CASE : Tuple = mapped_key.replace("*" , __lowerCamelCase) if "weight_g" in name: SCREAMING_SNAKE_CASE : int = '''weight_g''' elif "weight_v" in name: SCREAMING_SNAKE_CASE : List[Any] = '''weight_v''' elif "weight" in name: SCREAMING_SNAKE_CASE : List[Any] = '''weight''' elif "bias" in name: SCREAMING_SNAKE_CASE : List[Any] = '''bias''' else: SCREAMING_SNAKE_CASE : List[Any] = None set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) continue if not is_used: unused_weights.append(__lowerCamelCase) logger.warning(f"Unused weights: {unused_weights}") def lowerCamelCase__ ( _a , _a , _a , _a , _a): SCREAMING_SNAKE_CASE : Union[str, Any] = full_name.split("conv_layers.")[-1] SCREAMING_SNAKE_CASE : Dict = name.split(".") SCREAMING_SNAKE_CASE : List[Any] = int(items[0]) SCREAMING_SNAKE_CASE : str = int(items[1]) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) SCREAMING_SNAKE_CASE : Union[str, Any] = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}.") elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) SCREAMING_SNAKE_CASE : List[Any] = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}.") elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) SCREAMING_SNAKE_CASE : Any = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.") elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) SCREAMING_SNAKE_CASE : Any = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.") else: unused_weights.append(__lowerCamelCase) @torch.no_grad() def lowerCamelCase__ ( _a , _a , _a=None , _a=None , _a=True): if config_path is not None: SCREAMING_SNAKE_CASE : Dict = HubertConfig.from_pretrained(__lowerCamelCase) else: SCREAMING_SNAKE_CASE : Union[str, Any] = HubertConfig() if is_finetuned: if dict_path: SCREAMING_SNAKE_CASE : Union[str, Any] = Dictionary.load(__lowerCamelCase) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq SCREAMING_SNAKE_CASE : Tuple = target_dict.pad_index SCREAMING_SNAKE_CASE : Tuple = target_dict.bos_index SCREAMING_SNAKE_CASE : int = target_dict.eos_index SCREAMING_SNAKE_CASE : List[Any] = len(target_dict.symbols) SCREAMING_SNAKE_CASE : Tuple = os.path.join(__lowerCamelCase , "vocab.json") if not os.path.isdir(__lowerCamelCase): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(__lowerCamelCase)) return os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase) with open(__lowerCamelCase , "w" , encoding="utf-8") as vocab_handle: json.dump(target_dict.indices , __lowerCamelCase) SCREAMING_SNAKE_CASE : List[Any] = WavaVecaCTCTokenizer( __lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=__lowerCamelCase , ) SCREAMING_SNAKE_CASE : Any = True if config.feat_extract_norm == '''layer''' else False SCREAMING_SNAKE_CASE : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) SCREAMING_SNAKE_CASE : Union[str, Any] = WavaVecaProcessor(feature_extractor=__lowerCamelCase , tokenizer=__lowerCamelCase) processor.save_pretrained(__lowerCamelCase) SCREAMING_SNAKE_CASE : str = HubertForCTC(__lowerCamelCase) else: SCREAMING_SNAKE_CASE : List[str] = HubertModel(__lowerCamelCase) if is_finetuned: SCREAMING_SNAKE_CASE : Tuple = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/")[:-1])}) else: SCREAMING_SNAKE_CASE : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path]) SCREAMING_SNAKE_CASE : List[Any] = model[0].eval() recursively_load_weights(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase) hf_wavavec.save_pretrained(__lowerCamelCase) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) a_ = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
76
"""simple docstring""" import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor _lowercase : Any = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self : Any, *lowerCamelCase : str, **lowerCamelCase : Optional[Any] )-> None: warnings.warn( '''The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use OwlViTImageProcessor instead.''', lowerCamelCase, ) super().__init__(*lowerCamelCase, **lowerCamelCase )
238
0
import torch from transformers import AutoModel class _snake_case ( torch.nn.Module ): def __init__( self , a="sayef/fsner-bert-base-uncased") -> Optional[Any]: super(__snake_case , self).__init__() SCREAMING_SNAKE_CASE = AutoModel.from_pretrained(__snake_case , return_dict=__snake_case) SCREAMING_SNAKE_CASE = torch.nn.CosineSimilarity(3 , 1E-08) SCREAMING_SNAKE_CASE = torch.nn.Softmax(dim=1) def SCREAMING_SNAKE_CASE__ ( self , **a) -> Dict: return self.bert(**__snake_case).last_hidden_state def SCREAMING_SNAKE_CASE__ ( self , a) -> Union[str, Any]: return token_embeddings.sum(2 , keepdim=__snake_case) def SCREAMING_SNAKE_CASE__ ( self , a , a , a=1) -> int: return self.softmax(T * self.cos(__snake_case , __snake_case)) def SCREAMING_SNAKE_CASE__ ( self , a , a) -> str: SCREAMING_SNAKE_CASE = W_supports['sizes'].tolist() SCREAMING_SNAKE_CASE = W_supports['start_token_id'].item() SCREAMING_SNAKE_CASE = W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] SCREAMING_SNAKE_CASE = self.BERT(**__snake_case) SCREAMING_SNAKE_CASE = self.BERT(**__snake_case) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = W_supports['input_ids'] == start_token_id SCREAMING_SNAKE_CASE = W_supports['input_ids'] == end_token_id for i, size in enumerate(__snake_case): if i == 0: SCREAMING_SNAKE_CASE = 0 else: SCREAMING_SNAKE_CASE = support_sizes[i - 1] SCREAMING_SNAKE_CASE = S[s : s + size][start_token_masks[s : s + size]] SCREAMING_SNAKE_CASE = S[s : s + size][end_token_masks[s : s + size]] SCREAMING_SNAKE_CASE = torch.matmul(q[i] , s_start.T).sum(1).softmax(0) SCREAMING_SNAKE_CASE = torch.matmul(q[i] , s_end.T).sum(1).softmax(0) if p_starts is not None: SCREAMING_SNAKE_CASE = torch.vstack((p_starts, p_start)) SCREAMING_SNAKE_CASE = torch.vstack((p_ends, p_end)) else: SCREAMING_SNAKE_CASE = p_start SCREAMING_SNAKE_CASE = p_end return p_starts, p_ends
358
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer a_ : List[Any] = logging.get_logger(__name__) a_ : Union[str, Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} a_ : str = { 'vocab_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json' }, 'merges_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt' }, } a_ : List[Any] = {'allegro/herbert-base-cased': 5_14} a_ : Dict = {} class _snake_case ( A__ ): _lowercase : Dict = VOCAB_FILES_NAMES _lowercase : int = PRETRAINED_VOCAB_FILES_MAP _lowercase : Any = PRETRAINED_INIT_CONFIGURATION _lowercase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Any = HerbertTokenizer def __init__( self , a=None , a=None , a=None , a="<s>" , a="<unk>" , a="<pad>" , a="<mask>" , a="</s>" , **a , ) -> Dict: super().__init__( a , a , tokenizer_file=a , cls_token=a , unk_token=a , pad_token=a , mask_token=a , sep_token=a , **a , ) def SCREAMING_SNAKE_CASE__ ( self , a , a = None) -> List[int]: SCREAMING_SNAKE_CASE = [self.cls_token_id] SCREAMING_SNAKE_CASE = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE__ ( self , a , a = None , a = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a , token_ids_a=a , already_has_special_tokens=a) if token_ids_a is None: return [1] + ([0] * len(a)) + [1] return [1] + ([0] * len(a)) + [1] + ([0] * len(a)) + [1] def SCREAMING_SNAKE_CASE__ ( self , a , a = None) -> List[int]: SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def SCREAMING_SNAKE_CASE__ ( self , a , a = None) -> Tuple[str]: SCREAMING_SNAKE_CASE = self._tokenizer.model.save(a , name=a) return tuple(a)
327
0
import logging import os from .state import PartialState class a__ ( logging.LoggerAdapter ): @staticmethod def __SCREAMING_SNAKE_CASE( _A ): """simple docstring""" __lowerCAmelCase = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def __SCREAMING_SNAKE_CASE( self , _A , _A , *_A , **_A ): """simple docstring""" if PartialState._shared_state == {}: raise RuntimeError( "You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility." ) __lowerCAmelCase = kwargs.pop("main_process_only" , _A ) __lowerCAmelCase = kwargs.pop("in_order" , _A ) if self.isEnabledFor(_A ): if self._should_log(_A ): __lowerCAmelCase , __lowerCAmelCase = self.process(_A , _A ) self.logger.log(_A , _A , *_A , **_A ) elif in_order: __lowerCAmelCase = PartialState() for i in range(state.num_processes ): if i == state.process_index: __lowerCAmelCase , __lowerCAmelCase = self.process(_A , _A ) self.logger.log(_A , _A , *_A , **_A ) state.wait_for_everyone() def _a ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str = None ): if log_level is None: __lowerCAmelCase = os.environ.get("ACCELERATE_LOG_LEVEL" , SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = logging.getLogger(SCREAMING_SNAKE_CASE_ ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(SCREAMING_SNAKE_CASE_ , {} )
92
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf UpperCamelCase__ = logging.get_logger(__name__) @dataclass class a__ ( snake_case__ ): _a : List[str] = [ """no_inference""", """no_cuda""", """no_tpu""", """no_speed""", """no_memory""", """no_env_print""", """no_multi_process""", ] def __init__( self , **_A ): """simple docstring""" for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: __lowerCAmelCase = deprecated_arg[3:] __lowerCAmelCase = not kwargs.pop(_A ) logger.warning( f"""{deprecated_arg} is depreciated. Please use --no-{positive_arg} or""" f""" {positive_arg}={kwargs[positive_arg]}""" ) __lowerCAmelCase = kwargs.pop("tpu_name" , self.tpu_name ) __lowerCAmelCase = kwargs.pop("device_idx" , self.device_idx ) __lowerCAmelCase = kwargs.pop("eager_mode" , self.eager_mode ) __lowerCAmelCase = kwargs.pop("use_xla" , self.use_xla ) super().__init__(**_A ) _a : str = field( default=snake_case__ , metadata={"""help""": """Name of TPU"""} , ) _a : int = field( default=0 , metadata={"""help""": """CPU / GPU device index. Defaults to 0."""} , ) _a : bool = field(default=snake_case__ , metadata={"""help""": """Benchmark models in eager model."""} ) _a : bool = field( default=snake_case__ , metadata={ """help""": """Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.""" } , ) @cached_property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" requires_backends(self , ["tf"] ) __lowerCAmelCase = None if self.tpu: try: if self.tpu_name: __lowerCAmelCase = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: __lowerCAmelCase = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: __lowerCAmelCase = None return tpu @cached_property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" requires_backends(self , ["tf"] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) __lowerCAmelCase = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , "GPU" ) __lowerCAmelCase = tf.distribute.OneDeviceStrategy(device=f"""/gpu:{self.device_idx}""" ) else: tf.config.set_visible_devices([] , "GPU" ) # disable GPU __lowerCAmelCase = tf.distribute.OneDeviceStrategy(device=f"""/cpu:{self.device_idx}""" ) return strategy @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" requires_backends(self , ["tf"] ) return self._setup_tpu is not None @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" requires_backends(self , ["tf"] ) return self._setup_strategy @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" requires_backends(self , ["tf"] ) return tf.config.list_physical_devices("GPU" ) @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" requires_backends(self , ["tf"] ) if self.cuda: return len(self.gpu_list ) return 0 @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return self.n_gpu > 0
92
1
import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class A_ ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self: Tuple ): __lowerCamelCase : Union[str, Any] = inspect.getfile(accelerate.test_utils ) __lowerCamelCase : List[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) __lowerCamelCase : Optional[int] = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_distributed_data_loop.py'] ) __lowerCamelCase : Tuple = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_ops.py'] ) @require_multi_gpu def _snake_case ( self: Tuple ): print(F'Found {torch.cuda.device_count()} devices.' ) __lowerCamelCase : Tuple = ['torchrun', F'--nproc_per_node={torch.cuda.device_count()}', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(a , env=os.environ.copy() ) @require_multi_gpu def _snake_case ( self: Dict ): print(F'Found {torch.cuda.device_count()} devices.' ) __lowerCamelCase : Tuple = ['torchrun', F'--nproc_per_node={torch.cuda.device_count()}', self.operation_file_path] print(F'Command: {cmd}' ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(a , env=os.environ.copy() ) @require_multi_gpu def _snake_case ( self: str ): __lowerCamelCase : Any = ['torchrun', F'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(a , env=os.environ.copy() ) @require_multi_gpu def _snake_case ( self: str ): print(F'Found {torch.cuda.device_count()} devices, using 2 devices only' ) __lowerCamelCase : str = ['torchrun', F'--nproc_per_node={torch.cuda.device_count()}', self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices='0,1' ): execute_subprocess_async(a , env=os.environ.copy() ) if __name__ == "__main__": lowercase_ = Accelerator() lowercase_ = (accelerator.state.process_index + 2, 1_0) lowercase_ = torch.randint(0, 1_0, shape).to(accelerator.device) lowercase_ = '' lowercase_ = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." lowercase_ = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." lowercase_ = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
194
def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : str = 0 __lowerCamelCase : Tuple = len(SCREAMING_SNAKE_CASE__ ) for i in range(n - 1 ): for j in range(i + 1 , SCREAMING_SNAKE_CASE__ ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ): if len(SCREAMING_SNAKE_CASE__ ) <= 1: return arr, 0 __lowerCamelCase : Optional[int] = len(SCREAMING_SNAKE_CASE__ ) // 2 __lowerCamelCase : Union[str, Any] = arr[0:mid] __lowerCamelCase : List[Any] = arr[mid:] __lowerCamelCase , __lowerCamelCase : Any = count_inversions_recursive(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase , __lowerCamelCase : List[str] = count_inversions_recursive(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase , __lowerCamelCase : Dict = _count_cross_inversions(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : List[str] = inversion_p + inversions_q + cross_inversions return c, num_inversions def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : Optional[int] = [] __lowerCamelCase : List[Any] = 0 while i < len(SCREAMING_SNAKE_CASE__ ) and j < len(SCREAMING_SNAKE_CASE__ ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(SCREAMING_SNAKE_CASE__ ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(SCREAMING_SNAKE_CASE__ ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def UpperCamelCase__ ( ): __lowerCamelCase : Optional[int] = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) __lowerCamelCase : Optional[Any] = count_inversions_bf(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase , __lowerCamelCase : Optional[Any] = count_inversions_recursive(SCREAMING_SNAKE_CASE__ ) assert num_inversions_bf == num_inversions_recursive == 8 print('number of inversions = ' , SCREAMING_SNAKE_CASE__ ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() __lowerCamelCase : Optional[Any] = count_inversions_bf(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase , __lowerCamelCase : int = count_inversions_recursive(SCREAMING_SNAKE_CASE__ ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ' , SCREAMING_SNAKE_CASE__ ) # an empty list should also have zero inversions __lowerCamelCase : List[str] = [] __lowerCamelCase : Dict = count_inversions_bf(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase , __lowerCamelCase : Dict = count_inversions_recursive(SCREAMING_SNAKE_CASE__ ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ' , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
194
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : Optional[int] = logging.get_logger(__name__) lowercase__ : str = { 'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json', } class __lowerCAmelCase ( snake_case__ ): """simple docstring""" _snake_case : Optional[Any] = "transfo-xl" _snake_case : Optional[Any] = ["mems"] _snake_case : List[str] = { "n_token": "vocab_size", "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Union[str, Any] , lowerCAmelCase__ : Tuple=267735 , lowerCAmelCase__ : List[str]=[20000, 40000, 200000] , lowerCAmelCase__ : Dict=1024 , lowerCAmelCase__ : List[str]=1024 , lowerCAmelCase__ : int=16 , lowerCAmelCase__ : Optional[int]=64 , lowerCAmelCase__ : int=4096 , lowerCAmelCase__ : Tuple=4 , lowerCAmelCase__ : Union[str, Any]=False , lowerCAmelCase__ : List[Any]=18 , lowerCAmelCase__ : List[Any]=1600 , lowerCAmelCase__ : Tuple=1000 , lowerCAmelCase__ : int=True , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : Optional[int]=0 , lowerCAmelCase__ : List[Any]=-1 , lowerCAmelCase__ : List[Any]=True , lowerCAmelCase__ : Any=0.1 , lowerCAmelCase__ : Tuple=0.0 , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : List[str]="normal" , lowerCAmelCase__ : Optional[int]=0.01 , lowerCAmelCase__ : int=0.01 , lowerCAmelCase__ : Union[str, Any]=0.02 , lowerCAmelCase__ : str=1e-5 , lowerCAmelCase__ : Dict=0 , **lowerCAmelCase__ : Optional[int] , ) -> str: '''simple docstring''' _UpperCamelCase = vocab_size _UpperCamelCase = [] self.cutoffs.extend(snake_case__ ) if proj_share_all_but_first: _UpperCamelCase = [False] + [True] * len(self.cutoffs ) else: _UpperCamelCase = [False] + [False] * len(self.cutoffs ) _UpperCamelCase = d_model _UpperCamelCase = d_embed _UpperCamelCase = d_head _UpperCamelCase = d_inner _UpperCamelCase = div_val _UpperCamelCase = pre_lnorm _UpperCamelCase = n_layer _UpperCamelCase = n_head _UpperCamelCase = mem_len _UpperCamelCase = same_length _UpperCamelCase = attn_type _UpperCamelCase = clamp_len _UpperCamelCase = sample_softmax _UpperCamelCase = adaptive _UpperCamelCase = dropout _UpperCamelCase = dropatt _UpperCamelCase = untie_r _UpperCamelCase = init _UpperCamelCase = init_range _UpperCamelCase = proj_init_std _UpperCamelCase = init_std _UpperCamelCase = layer_norm_epsilon super().__init__(eos_token_id=snake_case__ , **snake_case__ ) @property def snake_case__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : Union[str, Any] ) -> Tuple: '''simple docstring''' raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
324
"""simple docstring""" A__ : Optional[int] = { 'Pillow': 'Pillow<10.0.0', 'accelerate': 'accelerate>=0.20.3', 'av': 'av==9.2.0', 'beautifulsoup4': 'beautifulsoup4', 'black': 'black~=23.1', 'codecarbon': 'codecarbon==1.2.0', 'cookiecutter': 'cookiecutter==1.7.3', 'dataclasses': 'dataclasses', 'datasets': 'datasets!=2.5.0', 'decord': 'decord==0.6.0', 'deepspeed': 'deepspeed>=0.9.3', 'diffusers': 'diffusers', 'dill': 'dill<0.3.5', 'evaluate': 'evaluate>=0.2.0', 'fairscale': 'fairscale>0.3', 'faiss-cpu': 'faiss-cpu', 'fastapi': 'fastapi', 'filelock': 'filelock', 'flax': 'flax>=0.4.1,<=0.7.0', 'ftfy': 'ftfy', 'fugashi': 'fugashi>=1.0', 'GitPython': 'GitPython<3.1.19', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.14.1,<1.0', 'importlib_metadata': 'importlib_metadata', 'ipadic': 'ipadic>=1.0.0,<2.0', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2,<=0.4.13', 'jaxlib': 'jaxlib>=0.1.65,<=0.4.13', 'jieba': 'jieba', 'kenlm': 'kenlm', 'keras-nlp': 'keras-nlp>=0.3.1', 'librosa': 'librosa', 'nltk': 'nltk', 'natten': 'natten>=0.14.6', 'numpy': 'numpy>=1.17', 'onnxconverter-common': 'onnxconverter-common', 'onnxruntime-tools': 'onnxruntime-tools>=1.4.2', 'onnxruntime': 'onnxruntime>=1.4.0', 'opencv-python': 'opencv-python', 'optuna': 'optuna', 'optax': 'optax>=0.0.8,<=0.1.4', 'packaging': 'packaging>=20.0', 'parameterized': 'parameterized', 'phonemizer': 'phonemizer', 'protobuf': 'protobuf', 'psutil': 'psutil', 'pyyaml': 'pyyaml>=5.1', 'pydantic': 'pydantic<2', 'pytest': 'pytest>=7.2.0', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'python': 'python>=3.8.0', 'ray[tune]': 'ray[tune]', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'rhoknp': 'rhoknp>=1.1.0,<1.3.1', 'rjieba': 'rjieba', 'rouge-score': 'rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1', 'ruff': 'ruff>=0.0.241,<=0.0.259', 'sacrebleu': 'sacrebleu>=1.4.12,<2.0.0', 'sacremoses': 'sacremoses', 'safetensors': 'safetensors>=0.3.1', 'sagemaker': 'sagemaker>=2.31.0', 'scikit-learn': 'scikit-learn', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'sigopt': 'sigopt', 'starlette': 'starlette', 'sudachipy': 'sudachipy>=0.6.6', 'sudachidict_core': 'sudachidict_core>=20220729', 'tensorflow-cpu': 'tensorflow-cpu>=2.6,<2.14', 'tensorflow': 'tensorflow>=2.6,<2.14', 'tensorflow-text': 'tensorflow-text<2.14', 'tf2onnx': 'tf2onnx', 'timeout-decorator': 'timeout-decorator', 'timm': 'timm', 'tokenizers': 'tokenizers>=0.11.1,!=0.11.3,<0.14', 'torch': 'torch>=1.9,!=1.12.0', 'torchaudio': 'torchaudio', 'torchvision': 'torchvision', 'pyctcdecode': 'pyctcdecode>=0.4.0', 'tqdm': 'tqdm>=4.27', 'unidic': 'unidic>=1.0.2', 'unidic_lite': 'unidic_lite>=1.0.7', 'urllib3': 'urllib3<2.0.0', 'uvicorn': 'uvicorn', }
144
0
"""simple docstring""" import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node __lowerCAmelCase : Optional[Any] =4 __lowerCAmelCase : int =3 class _A ( lowerCAmelCase ): pass def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] ) -> str: '''simple docstring''' for shard in shards: for i in range(lowerCAmelCase__ ): yield {"i": i, "shard": shard} def UpperCAmelCase__ ( ) -> Union[str, Any]: '''simple docstring''' lowercase = int(os.environ["""RANK"""] ) lowercase = int(os.environ["""WORLD_SIZE"""] ) lowercase = ArgumentParser() parser.add_argument("""--streaming""" , type=lowerCAmelCase__ ) parser.add_argument("""--local_rank""" , type=lowerCAmelCase__ ) parser.add_argument("""--num_workers""" , type=lowerCAmelCase__ , default=0 ) lowercase = parser.parse_args() lowercase = args.streaming lowercase = args.num_workers lowercase = {"""shards""": [f'shard_{shard_idx}' for shard_idx in range(lowerCAmelCase__ )]} lowercase = IterableDataset.from_generator(lowerCAmelCase__ , gen_kwargs=lowerCAmelCase__ ) if not streaming: lowercase = Dataset.from_list(list(lowerCAmelCase__ ) ) lowercase = split_dataset_by_node(lowerCAmelCase__ , rank=lowerCAmelCase__ , world_size=lowerCAmelCase__ ) lowercase = torch.utils.data.DataLoader(lowerCAmelCase__ , num_workers=lowerCAmelCase__ ) lowercase = NUM_SHARDS * NUM_ITEMS_PER_SHARD lowercase = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) lowercase = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f'local_size {local_size} != expected_local_size {expected_local_size}' ) if __name__ == "__main__": main()
32
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING __lowerCAmelCase : Union[str, Any] =logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase ) class _A ( lowerCAmelCase ): def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" super().__init__(*__lowerCAmelCase , **__lowerCAmelCase ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def A__ ( self , __lowerCAmelCase=None ): """simple docstring""" lowercase = {} if top_k is not None: lowercase = top_k return {}, {}, postprocess_params def __call__( self , __lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" return super().__call__(__lowerCAmelCase , **__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = load_image(__lowerCAmelCase ) lowercase = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework ) return model_inputs def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = self.model(**__lowerCAmelCase ) return model_outputs def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=5 ): """simple docstring""" if top_k > self.model.config.num_labels: lowercase = self.model.config.num_labels if self.framework == "pt": lowercase = model_outputs.logits.softmax(-1 )[0] lowercase , lowercase = probs.topk(__lowerCAmelCase ) elif self.framework == "tf": lowercase = stable_softmax(model_outputs.logits , axis=-1 )[0] lowercase = tf.math.top_k(__lowerCAmelCase , k=__lowerCAmelCase ) lowercase , lowercase = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f'Unsupported framework: {self.framework}' ) lowercase = scores.tolist() lowercase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(__lowerCAmelCase , __lowerCAmelCase )]
32
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case__(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" lowercase_ = StableDiffusionInstructPixaPixPipeline lowercase_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width""", """cross_attention_kwargs"""} lowercase_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowercase_ = IMAGE_TO_IMAGE_IMAGE_PARAMS lowercase_ = IMAGE_TO_IMAGE_IMAGE_PARAMS def snake_case ( self : Union[str, Any] ): torch.manual_seed(0 ) lowercase__ : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) lowercase__ : Optional[Any] = PNDMScheduler(skip_prk_steps=SCREAMING_SNAKE_CASE ) torch.manual_seed(0 ) lowercase__ : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase__ : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) lowercase__ : List[str] = CLIPTextModel(SCREAMING_SNAKE_CASE ) lowercase__ : str = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowercase__ : Union[str, Any] = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def snake_case ( self : Tuple , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Any]=0 ): lowercase__ : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(SCREAMING_SNAKE_CASE ) ).to(SCREAMING_SNAKE_CASE ) lowercase__ : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__ : Any = Image.fromarray(np.uinta(SCREAMING_SNAKE_CASE ) ).convert("RGB" ) if str(SCREAMING_SNAKE_CASE ).startswith("mps" ): lowercase__ : Any = torch.manual_seed(SCREAMING_SNAKE_CASE ) else: lowercase__ : Optional[Any] = torch.Generator(device=SCREAMING_SNAKE_CASE ).manual_seed(SCREAMING_SNAKE_CASE ) lowercase__ : Optional[Any] = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "image_guidance_scale": 1, "output_type": "numpy", } return inputs def snake_case ( self : Dict ): lowercase__ : List[str] = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase__ : Optional[int] = self.get_dummy_components() lowercase__ : Any = StableDiffusionInstructPixaPixPipeline(**SCREAMING_SNAKE_CASE ) lowercase__ : Dict = sd_pipe.to(SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE ) lowercase__ : List[Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE ) lowercase__ : Tuple = sd_pipe(**SCREAMING_SNAKE_CASE ).images lowercase__ : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase__ : Optional[Any] = np.array([0.7_526, 0.3_750, 0.4_547, 0.6_117, 0.5_866, 0.5_016, 0.4_327, 0.5_642, 0.4_815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def snake_case ( self : Optional[Any] ): lowercase__ : Optional[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase__ : str = self.get_dummy_components() lowercase__ : Optional[Any] = StableDiffusionInstructPixaPixPipeline(**SCREAMING_SNAKE_CASE ) lowercase__ : List[str] = sd_pipe.to(SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE ) lowercase__ : Union[str, Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE ) lowercase__ : Union[str, Any] = "french fries" lowercase__ : Optional[int] = sd_pipe(**SCREAMING_SNAKE_CASE , negative_prompt=SCREAMING_SNAKE_CASE ) lowercase__ : Dict = output.images lowercase__ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase__ : List[Any] = np.array([0.7_511, 0.3_642, 0.4_553, 0.6_236, 0.5_797, 0.5_013, 0.4_343, 0.5_611, 0.4_831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def snake_case ( self : Dict ): lowercase__ : int = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase__ : List[Any] = self.get_dummy_components() lowercase__ : Union[str, Any] = StableDiffusionInstructPixaPixPipeline(**SCREAMING_SNAKE_CASE ) lowercase__ : Union[str, Any] = sd_pipe.to(SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE ) lowercase__ : int = self.get_dummy_inputs(SCREAMING_SNAKE_CASE ) lowercase__ : Optional[int] = [inputs["prompt"]] * 2 lowercase__ : Any = np.array(inputs["image"] ).astype(np.floataa ) / 255.0 lowercase__ : Any = torch.from_numpy(SCREAMING_SNAKE_CASE ).unsqueeze(0 ).to(SCREAMING_SNAKE_CASE ) lowercase__ : str = image / 2 + 0.5 lowercase__ : Any = image.permute(0 , 3 , 1 , 2 ) lowercase__ : Dict = image.repeat(2 , 1 , 1 , 1 ) lowercase__ : List[str] = sd_pipe(**SCREAMING_SNAKE_CASE ).images lowercase__ : Tuple = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) lowercase__ : Optional[int] = np.array([0.5_812, 0.5_748, 0.5_222, 0.5_908, 0.5_695, 0.7_174, 0.6_804, 0.5_523, 0.5_579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def snake_case ( self : List[str] ): lowercase__ : List[str] = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase__ : int = self.get_dummy_components() lowercase__ : Union[str, Any] = EulerAncestralDiscreteScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" ) lowercase__ : Union[str, Any] = StableDiffusionInstructPixaPixPipeline(**SCREAMING_SNAKE_CASE ) lowercase__ : int = sd_pipe.to(SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE ) lowercase__ : int = self.get_dummy_inputs(SCREAMING_SNAKE_CASE ) lowercase__ : Dict = sd_pipe(**SCREAMING_SNAKE_CASE ).images lowercase__ : Optional[Any] = image[0, -3:, -3:, -1] lowercase__ : int = [round(SCREAMING_SNAKE_CASE , 4 ) for x in image_slice.flatten().tolist()] print(",".join([str(SCREAMING_SNAKE_CASE ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) lowercase__ : List[Any] = np.array([0.7_417, 0.3_842, 0.4_732, 0.5_776, 0.5_891, 0.5_139, 0.4_052, 0.5_673, 0.4_986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def snake_case ( self : Tuple ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def snake_case ( self : List[Any] ): lowercase__ : Optional[Any] = self.get_dummy_components() lowercase__ : str = StableDiffusionInstructPixaPixPipeline(**SCREAMING_SNAKE_CASE ) lowercase__ : List[Any] = VaeImageProcessor(do_resize=SCREAMING_SNAKE_CASE , do_normalize=SCREAMING_SNAKE_CASE ) lowercase__ : Optional[Any] = pipe.to(SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE ) lowercase__ : Any = pipe(**self.get_dummy_inputs_by_type(SCREAMING_SNAKE_CASE , input_image_type="pt" ) )[0] lowercase__ : Optional[int] = components["vae"] lowercase__ : List[str] = self.get_dummy_inputs_by_type(SCREAMING_SNAKE_CASE , input_image_type="pt" ) for image_param in self.image_latents_params: if image_param in inputs.keys(): lowercase__ : Any = vae.encode(inputs[image_param] ).latent_dist.mode() lowercase__ : int = pipe(**SCREAMING_SNAKE_CASE )[0] lowercase__ : str = np.abs(out - out_latents_inputs ).max() self.assertLess(SCREAMING_SNAKE_CASE , 1E-4 , "passing latents as image input generate different result from passing image" ) @slow @require_torch_gpu class snake_case__(unittest.TestCase ): """simple docstring""" def snake_case ( self : Dict ): super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case ( self : int , SCREAMING_SNAKE_CASE : Any=0 ): lowercase__ : Optional[int] = torch.manual_seed(SCREAMING_SNAKE_CASE ) lowercase__ : List[Any] = load_image( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg" ) lowercase__ : Dict = { "prompt": "turn him into a cyborg", "image": image, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "image_guidance_scale": 1.0, "output_type": "numpy", } return inputs def snake_case ( self : Any ): lowercase__ : Union[str, Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=SCREAMING_SNAKE_CASE ) pipe.to(SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE ) pipe.enable_attention_slicing() lowercase__ : Tuple = self.get_inputs() lowercase__ : Dict = pipe(**SCREAMING_SNAKE_CASE ).images lowercase__ : Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) lowercase__ : Union[str, Any] = np.array([0.5_902, 0.6_015, 0.6_027, 0.5_983, 0.6_092, 0.6_061, 0.5_765, 0.5_785, 0.5_555] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def snake_case ( self : Optional[int] ): lowercase__ : Optional[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=SCREAMING_SNAKE_CASE ) lowercase__ : List[Any] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE ) pipe.enable_attention_slicing() lowercase__ : int = self.get_inputs() lowercase__ : Union[str, Any] = pipe(**SCREAMING_SNAKE_CASE ).images lowercase__ : Tuple = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) lowercase__ : Optional[Any] = np.array([0.6_578, 0.6_817, 0.6_972, 0.6_761, 0.6_856, 0.6_916, 0.6_428, 0.6_516, 0.6_301] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def snake_case ( self : Any ): lowercase__ : Optional[int] = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=SCREAMING_SNAKE_CASE ) lowercase__ : str = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE ) pipe.enable_attention_slicing() lowercase__ : Optional[Any] = self.get_inputs() lowercase__ : Any = pipe(**SCREAMING_SNAKE_CASE ).images lowercase__ : str = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) lowercase__ : Any = np.array([0.3_828, 0.3_834, 0.3_818, 0.3_792, 0.3_865, 0.3_752, 0.3_792, 0.3_847, 0.3_753] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def snake_case ( self : str ): lowercase__ : Dict = 0 def callback_fn(SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : torch.FloatTensor ) -> None: lowercase__ : int = True nonlocal number_of_steps number_of_steps += 1 if step == 1: lowercase__ : Dict = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) lowercase__ : Optional[Any] = latents[0, -3:, -3:, -1] lowercase__ : int = np.array([-0.2_463, -0.4_644, -0.9_756, 1.5_176, 1.4_414, 0.7_866, 0.9_897, 0.8_521, 0.7_983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: lowercase__ : Optional[Any] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) lowercase__ : str = latents[0, -3:, -3:, -1] lowercase__ : Tuple = np.array([-0.2_644, -0.4_626, -0.9_653, 1.5_176, 1.4_551, 0.7_686, 0.9_805, 0.8_452, 0.8_115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 lowercase__ : Any = False lowercase__ : List[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=SCREAMING_SNAKE_CASE , torch_dtype=torch.floataa ) lowercase__ : str = pipe.to(SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE ) pipe.enable_attention_slicing() lowercase__ : Any = self.get_inputs() pipe(**SCREAMING_SNAKE_CASE , callback=SCREAMING_SNAKE_CASE , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def snake_case ( self : Union[str, Any] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase__ : str = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=SCREAMING_SNAKE_CASE , torch_dtype=torch.floataa ) lowercase__ : Optional[int] = pipe.to(SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowercase__ : Optional[Any] = self.get_inputs() lowercase__ : List[str] = pipe(**SCREAMING_SNAKE_CASE ) lowercase__ : Any = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def snake_case ( self : Optional[int] ): lowercase__ : Optional[int] = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 lowercase__ : str = inputs["image"].resize((504, 504) ) lowercase__ : List[Any] = "timbrooks/instruct-pix2pix" lowercase__ : Any = StableDiffusionInstructPixaPixPipeline.from_pretrained( SCREAMING_SNAKE_CASE , safety_checker=SCREAMING_SNAKE_CASE , ) pipe.to(SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE ) pipe.enable_attention_slicing() lowercase__ : List[str] = pipe(**SCREAMING_SNAKE_CASE ) lowercase__ : str = output.images[0] lowercase__ : Tuple = image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) lowercase__ : Optional[Any] = np.array([0.2_726, 0.2_529, 0.2_664, 0.2_655, 0.2_641, 0.2_642, 0.2_591, 0.2_649, 0.2_590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
130
lowerCAmelCase__ = 0 # The first color of the flag. lowerCAmelCase__ = 1 # The second color of the flag. lowerCAmelCase__ = 2 # The third color of the flag. lowerCAmelCase__ = (red, white, blue) def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" if not sequence: return [] if len(lowerCamelCase__ ) == 1: return list(lowerCamelCase__ ) lowercase__ : List[Any] = 0 lowercase__ : Any = len(lowerCamelCase__ ) - 1 lowercase__ : Dict = 0 while mid <= high: if sequence[mid] == colors[0]: lowercase__ , lowercase__ : int = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: lowercase__ , lowercase__ : Union[str, Any] = sequence[high], sequence[mid] high -= 1 else: lowercase__ : Tuple = F"""The elements inside the sequence must contains only {colors} values""" raise ValueError(lowerCamelCase__ ) return sequence if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = input('''Enter numbers separated by commas:\n''').strip() lowerCAmelCase__ = [int(item.strip()) for item in user_input.split(''',''')] print(f'''{dutch_national_flag_sort(unsorted)}''')
130
1
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging a_ = logging.get_logger(__name__) class __snake_case ( _snake_case ): """simple docstring""" _lowerCamelCase = ["""pixel_values"""] def __init__( self , __lowerCamelCase = True , __lowerCamelCase = 32 , __lowerCamelCase=PILImageResampling.BILINEAR , __lowerCamelCase = True , **__lowerCamelCase , ): '''simple docstring''' __A : Any = do_resize __A : Any = do_rescale __A : Dict = size_divisor __A : List[str] = resample super().__init__(**UpperCamelCase__ ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = None , **__lowerCamelCase ): '''simple docstring''' __A , __A : str = get_image_size(UpperCamelCase__ ) # Rounds the height and width down to the closest multiple of size_divisor __A : int = height // size_divisor * size_divisor __A : List[Any] = width // size_divisor * size_divisor __A : int = resize(UpperCamelCase__ , (new_h, new_w) , resample=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) return image def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = None , **__lowerCamelCase ): '''simple docstring''' return rescale(image=UpperCamelCase__ , scale=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase=None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = ChannelDimension.FIRST , **__lowerCamelCase , ): '''simple docstring''' __A : List[str] = do_resize if do_resize is not None else self.do_resize __A : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale __A : Tuple = size_divisor if size_divisor is not None else self.size_divisor __A : int = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) __A : Union[str, Any] = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. __A : Union[str, Any] = [to_numpy_array(UpperCamelCase__ ) for img in images] if do_resize: __A : Union[str, Any] = [self.resize(UpperCamelCase__ , size_divisor=UpperCamelCase__ , resample=UpperCamelCase__ ) for image in images] if do_rescale: __A : Union[str, Any] = [self.rescale(UpperCamelCase__ , scale=1 / 255 ) for image in images] __A : Any = [to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__ ) for image in images] __A : Tuple = {'''pixel_values''': images} return BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__ )
363
"""simple docstring""" def __lowercase ( ) ->Tuple: '''simple docstring''' __A : str = [] __A : List[Any] = 1 while len(snake_case_ ) < 1e6: constant.append(str(snake_case_ ) ) i += 1 __A : Any = ''''''.join(snake_case_ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[99999] ) * int(constant[999999] ) ) if __name__ == "__main__": print(solution())
291
0
UpperCAmelCase : Tuple = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} UpperCAmelCase : Optional[int] = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def _A ( SCREAMING_SNAKE_CASE : dict[int, list[int]] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[bool] ): """simple docstring""" a__ : Union[str, Any] =True a__ : Any =[] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) order.append(SCREAMING_SNAKE_CASE ) return order def _A ( SCREAMING_SNAKE_CASE : dict[int, list[int]] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[bool] ): """simple docstring""" a__ : List[str] =True a__ : Tuple =[vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return component def _A ( SCREAMING_SNAKE_CASE : dict[int, list[int]] ): """simple docstring""" a__ : str =len(SCREAMING_SNAKE_CASE ) * [False] a__ : dict[int, list[int]] ={vert: [] for vert in range(len(SCREAMING_SNAKE_CASE ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(SCREAMING_SNAKE_CASE ) a__ : Optional[Any] =[] for i, was_visited in enumerate(SCREAMING_SNAKE_CASE ): if not was_visited: order += topology_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) a__ : List[str] =[] a__ : Optional[Any] =len(SCREAMING_SNAKE_CASE ) * [False] for i in range(len(SCREAMING_SNAKE_CASE ) ): a__ : Any =order[len(SCREAMING_SNAKE_CASE ) - i - 1] if not visited[vert]: a__ : List[str] =find_components(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) components_list.append(SCREAMING_SNAKE_CASE ) return components_list
95
'''simple docstring''' import math def lowerCAmelCase_ ( ) -> None: '''simple docstring''' UpperCAmelCase_ = input("Enter message: " ) UpperCAmelCase_ = int(input(f"""Enter key [2-{len(snake_case_ ) - 1}]: """ ) ) UpperCAmelCase_ = input("Encryption/Decryption [e/d]: " ) if mode.lower().startswith("e" ): UpperCAmelCase_ = encrypt_message(snake_case_ , snake_case_ ) elif mode.lower().startswith("d" ): UpperCAmelCase_ = decrypt_message(snake_case_ , snake_case_ ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(f"""Output:\n{text + "|"}""" ) def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : str ) -> str: '''simple docstring''' UpperCAmelCase_ = [""] * key for col in range(snake_case_ ): UpperCAmelCase_ = col while pointer < len(snake_case_ ): cipher_text[col] += message[pointer] pointer += key return "".join(snake_case_ ) def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : str ) -> str: '''simple docstring''' UpperCAmelCase_ = math.ceil(len(snake_case_ ) / key ) UpperCAmelCase_ = key UpperCAmelCase_ = (num_cols * num_rows) - len(snake_case_ ) UpperCAmelCase_ = [""] * num_cols UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): UpperCAmelCase_ = 0 row += 1 return "".join(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
1
0
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): return round(float(moles / volume) * nfactor) def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): return round(float((moles * 0.08_21 * temperature) / (volume))) def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): return round(float((moles * 0.08_21 * temperature) / (pressure))) def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): return round(float((pressure * volume) / (0.08_21 * moles))) if __name__ == "__main__": import doctest doctest.testmod()
327
from scipy.stats import pearsonr import datasets a_ : Optional[int] = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' a_ : Optional[int] = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' a_ : Any = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('float'), 'references': datasets.Value('float'), }) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'] , ) def SCREAMING_SNAKE_CASE__ ( self , a , a , a=False) -> Optional[Any]: if return_pvalue: SCREAMING_SNAKE_CASE = pearsonr(a , a) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(a , a)[0])}
327
1
"""simple docstring""" from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig _lowercase = logging.get_logger(__name__) # General docstring _lowercase = '''ResNetConfig''' # Base docstring _lowercase = '''microsoft/resnet-50''' _lowercase = [1, 20_48, 7, 7] # Image classification docstring _lowercase = '''microsoft/resnet-50''' _lowercase = '''tiger cat''' _lowercase = [ '''microsoft/resnet-50''', # See all resnet models at https://huggingface.co/models?filter=resnet ] class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] ,A_ : int ,A_ : int ,A_ : int = 3 ,A_ : int = 1 ,A_ : str = "relu" ) -> Tuple: super().__init__() A = nn.Convad( A_ ,A_ ,kernel_size=A_ ,stride=A_ ,padding=kernel_size // 2 ,bias=A_ ) A = nn.BatchNormad(A_ ) A = ACTaFN[activation] if activation is not None else nn.Identity() def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : Tensor ) -> Tensor: A = self.convolution(A_ ) A = self.normalization(A_ ) A = self.activation(A_ ) return hidden_state class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] ,A_ : ResNetConfig ) -> Union[str, Any]: super().__init__() A = ResNetConvLayer( config.num_channels ,config.embedding_size ,kernel_size=7 ,stride=2 ,activation=config.hidden_act ) A = nn.MaxPoolad(kernel_size=3 ,stride=2 ,padding=1 ) A = config.num_channels def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : Tensor ) -> Tensor: A = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) A = self.embedder(A_ ) A = self.pooler(A_ ) return embedding class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ,A_ : int ,A_ : int ,A_ : int = 2 ) -> Optional[int]: super().__init__() A = nn.Convad(A_ ,A_ ,kernel_size=1 ,stride=A_ ,bias=A_ ) A = nn.BatchNormad(A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Tensor ) -> Tensor: A = self.convolution(A_ ) A = self.normalization(A_ ) return hidden_state class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : str ,A_ : int ,A_ : int ,A_ : int = 1 ,A_ : str = "relu" ) -> Dict: super().__init__() A = in_channels != out_channels or stride != 1 A = ( ResNetShortCut(A_ ,A_ ,stride=A_ ) if should_apply_shortcut else nn.Identity() ) A = nn.Sequential( ResNetConvLayer(A_ ,A_ ,stride=A_ ) ,ResNetConvLayer(A_ ,A_ ,activation=A_ ) ,) A = ACTaFN[activation] def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Union[str, Any] ) -> Optional[Any]: A = hidden_state A = self.layer(A_ ) A = self.shortcut(A_ ) hidden_state += residual A = self.activation(A_ ) return hidden_state class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] ,A_ : int ,A_ : int ,A_ : int = 1 ,A_ : str = "relu" ,A_ : int = 4 ) -> Dict: super().__init__() A = in_channels != out_channels or stride != 1 A = out_channels // reduction A = ( ResNetShortCut(A_ ,A_ ,stride=A_ ) if should_apply_shortcut else nn.Identity() ) A = nn.Sequential( ResNetConvLayer(A_ ,A_ ,kernel_size=1 ) ,ResNetConvLayer(A_ ,A_ ,stride=A_ ) ,ResNetConvLayer(A_ ,A_ ,kernel_size=1 ,activation=A_ ) ,) A = ACTaFN[activation] def _SCREAMING_SNAKE_CASE ( self : str ,A_ : str ) -> List[Any]: A = hidden_state A = self.layer(A_ ) A = self.shortcut(A_ ) hidden_state += residual A = self.activation(A_ ) return hidden_state class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ,A_ : ResNetConfig ,A_ : int ,A_ : int ,A_ : int = 2 ,A_ : int = 2 ,) -> Tuple: super().__init__() A = ResNetBottleNeckLayer if config.layer_type == 'bottleneck' else ResNetBasicLayer A = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(A_ ,A_ ,stride=A_ ,activation=config.hidden_act ) ,*[layer(A_ ,A_ ,activation=config.hidden_act ) for _ in range(depth - 1 )] ,) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Tensor ) -> Tensor: A = input for layer in self.layers: A = layer(A_ ) return hidden_state class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] ,A_ : ResNetConfig ) -> Dict: super().__init__() A = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( A_ ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,) ) A = zip(config.hidden_sizes ,config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(A_ ,config.depths[1:] ): self.stages.append(ResNetStage(A_ ,A_ ,A_ ,depth=A_ ) ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : Tensor ,A_ : bool = False ,A_ : bool = True ) -> BaseModelOutputWithNoAttention: A = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: A = hidden_states + (hidden_state,) A = stage_module(A_ ) if output_hidden_states: A = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=A_ ,hidden_states=A_ ,) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: int = ResNetConfig _lowerCamelCase: List[Any] = '''resnet''' _lowerCamelCase: int = '''pixel_values''' _lowerCamelCase: int = True def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Any ) -> Any: if isinstance(A_ ,nn.Convad ): nn.init.kaiming_normal_(module.weight ,mode='fan_out' ,nonlinearity='relu' ) elif isinstance(A_ ,(nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight ,1 ) nn.init.constant_(module.bias ,0 ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[Any] ,A_ : Tuple=False ) -> str: if isinstance(A_ ,A_ ): A = value _lowercase = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' _lowercase = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( '''The bare ResNet model outputting raw features without any specific head on top.''' , _lowercase , ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' def __init__( self : List[Any] ,A_ : Dict ) -> Dict: super().__init__(A_ ) A = config A = ResNetEmbeddings(A_ ) A = ResNetEncoder(A_ ) A = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(A_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=A_ ,config_class=_CONFIG_FOR_DOC ,modality='vision' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Tensor ,A_ : Optional[bool] = None ,A_ : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: A = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) A = return_dict if return_dict is not None else self.config.use_return_dict A = self.embedder(A_ ) A = self.encoder( A_ ,output_hidden_states=A_ ,return_dict=A_ ) A = encoder_outputs[0] A = self.pooler(A_ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=A_ ,pooler_output=A_ ,hidden_states=encoder_outputs.hidden_states ,) @add_start_docstrings( ''' ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , _lowercase , ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' def __init__( self : List[Any] ,A_ : Any ) -> List[Any]: super().__init__(A_ ) A = config.num_labels A = ResNetModel(A_ ) # classification head A = nn.Sequential( nn.Flatten() ,nn.Linear(config.hidden_sizes[-1] ,config.num_labels ) if config.num_labels > 0 else nn.Identity() ,) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(A_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=A_ ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[torch.FloatTensor] = None ,A_ : Optional[torch.LongTensor] = None ,A_ : Optional[bool] = None ,A_ : Optional[bool] = None ,) -> ImageClassifierOutputWithNoAttention: A = return_dict if return_dict is not None else self.config.use_return_dict A = self.resnet(A_ ,output_hidden_states=A_ ,return_dict=A_ ) A = outputs.pooler_output if return_dict else outputs[1] A = self.classifier(A_ ) A = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: A = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): A = 'single_label_classification' else: A = 'multi_label_classification' if self.config.problem_type == "regression": A = MSELoss() if self.num_labels == 1: A = loss_fct(logits.squeeze() ,labels.squeeze() ) else: A = loss_fct(A_ ,A_ ) elif self.config.problem_type == "single_label_classification": A = CrossEntropyLoss() A = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": A = BCEWithLogitsLoss() A = loss_fct(A_ ,A_ ) if not return_dict: A = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=A_ ,logits=A_ ,hidden_states=outputs.hidden_states ) @add_start_docstrings( ''' ResNet backbone, to be used with frameworks like DETR and MaskFormer. ''' , _lowercase , ) class lowerCAmelCase_ ( _lowercase , _lowercase ): '''simple docstring''' def __init__( self : int ,A_ : Union[str, Any] ) -> Optional[int]: super().__init__(A_ ) super()._init_backbone(A_ ) A = [config.embedding_size] + config.hidden_sizes A = ResNetEmbeddings(A_ ) A = ResNetEncoder(A_ ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(A_ ) @replace_return_docstrings(output_type=A_ ,config_class=_CONFIG_FOR_DOC ) def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : Tensor ,A_ : Optional[bool] = None ,A_ : Optional[bool] = None ) -> BackboneOutput: A = return_dict if return_dict is not None else self.config.use_return_dict A = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) A = self.embedder(A_ ) A = self.encoder(A_ ,output_hidden_states=A_ ,return_dict=A_ ) A = outputs.hidden_states A = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: A = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=A_ ,hidden_states=outputs.hidden_states if output_hidden_states else None ,attentions=A_ ,)
74
'''simple docstring''' import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def __a(SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' _lowerCAmelCase = FunnelConfig.from_json_file(SCREAMING_SNAKE_CASE_ ) print(F'''Building PyTorch model from configuration: {config}''' ) _lowerCAmelCase = FunnelBaseModel(SCREAMING_SNAKE_CASE_ ) if base_model else FunnelModel(SCREAMING_SNAKE_CASE_ ) # Load weights from tf checkpoint load_tf_weights_in_funnel(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not." ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
158
0
def _lowerCAmelCase ( A__: int = 1000 ): '''simple docstring''' UpperCAmelCase = 2**power UpperCAmelCase = 0 while n: UpperCAmelCase , UpperCAmelCase = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
152
def _lowerCAmelCase ( A__: list[int] , A__: list[int] ): '''simple docstring''' UpperCAmelCase = len(A__ ) print('''The following activities are selected:''' ) # The first activity is always selected UpperCAmelCase = 0 print(A__ , end=''',''' ) # Consider rest of the activities for j in range(A__ ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(A__ , end=''',''' ) UpperCAmelCase = j if __name__ == "__main__": import doctest doctest.testmod() __magic_name__ = [1, 3, 0, 5, 8, 5] __magic_name__ = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
152
1
"""simple docstring""" from __future__ import annotations lowercase__ : Optional[int] = list[tuple[int, int]] lowercase__ : List[Any] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowercase__ : Optional[Any] = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class UpperCamelCase__ : """simple docstring""" def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any] , ): lowerCAmelCase_ : int = pos_x lowerCAmelCase_ : Optional[int] = pos_y lowerCAmelCase_ : Dict = (pos_y, pos_x) lowerCAmelCase_ : Union[str, Any] = goal_x lowerCAmelCase_ : List[str] = goal_y lowerCAmelCase_ : Dict = g_cost lowerCAmelCase_ : Any = parent lowerCAmelCase_ : List[Any] = self.calculate_heuristic() def SCREAMING_SNAKE_CASE__ ( self : str ): lowerCAmelCase_ : str = abs(self.pos_x - self.goal_x ) lowerCAmelCase_ : int = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self : List[Any] , SCREAMING_SNAKE_CASE_ : str ): return self.f_cost < other.f_cost class UpperCamelCase__ : """simple docstring""" def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any] ): lowerCAmelCase_ : Dict = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Union[str, Any] = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9_9_9_9 , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Union[str, Any] = [self.start] lowerCAmelCase_ : str = [] lowerCAmelCase_ : List[Any] = False def SCREAMING_SNAKE_CASE__ ( self : str ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() lowerCAmelCase_ : str = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: lowerCAmelCase_ : int = True return self.retrace_path(SCREAMING_SNAKE_CASE_ ) self.closed_nodes.append(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Union[str, Any] = self.get_successors(SCREAMING_SNAKE_CASE_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(SCREAMING_SNAKE_CASE_ ) else: # retrieve the best current path lowerCAmelCase_ : Any = self.open_nodes.pop(self.open_nodes.index(SCREAMING_SNAKE_CASE_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(SCREAMING_SNAKE_CASE_ ) else: self.open_nodes.append(SCREAMING_SNAKE_CASE_ ) if not self.reached: return [self.start.pos] return None def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any] ): lowerCAmelCase_ : Union[str, Any] = [] for action in delta: lowerCAmelCase_ : Optional[int] = parent.pos_x + action[1] lowerCAmelCase_ : List[str] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(SCREAMING_SNAKE_CASE_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , SCREAMING_SNAKE_CASE_ , ) ) return successors def SCREAMING_SNAKE_CASE__ ( self : List[str] , SCREAMING_SNAKE_CASE_ : List[Any] ): lowerCAmelCase_ : Optional[Any] = node lowerCAmelCase_ : int = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) lowerCAmelCase_ : Union[str, Any] = current_node.parent path.reverse() return path if __name__ == "__main__": lowercase__ : int = (0, 0) lowercase__ : Tuple = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print("""------""") lowercase__ : Dict = GreedyBestFirst(init, goal) lowercase__ : List[str] = greedy_bf.search() if path: for pos_x, pos_y in path: lowercase__ : Any = 2 for elem in grid: print(elem)
224
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { "openai/imagegpt-small": "", "openai/imagegpt-medium": "", "openai/imagegpt-large": "", } class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = 'imagegpt' _SCREAMING_SNAKE_CASE = ['past_key_values'] _SCREAMING_SNAKE_CASE = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , lowercase=512 + 1 , lowercase=32 * 32 , lowercase=512 , lowercase=24 , lowercase=8 , lowercase=None , lowercase="quick_gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=0.1 , lowercase=1e-5 , lowercase=0.02 , lowercase=True , lowercase=True , lowercase=False , lowercase=False , lowercase=False , **lowercase , ) -> Any: lowerCAmelCase = vocab_size lowerCAmelCase = n_positions lowerCAmelCase = n_embd lowerCAmelCase = n_layer lowerCAmelCase = n_head lowerCAmelCase = n_inner lowerCAmelCase = activation_function lowerCAmelCase = resid_pdrop lowerCAmelCase = embd_pdrop lowerCAmelCase = attn_pdrop lowerCAmelCase = layer_norm_epsilon lowerCAmelCase = initializer_range lowerCAmelCase = scale_attn_weights lowerCAmelCase = use_cache lowerCAmelCase = scale_attn_by_inverse_layer_idx lowerCAmelCase = reorder_and_upcast_attn lowerCAmelCase = tie_word_embeddings super().__init__(tie_word_embeddings=lowercase , **lowercase ) class lowercase ( _UpperCAmelCase ): @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ] ) def _snake_case ( self , lowercase , lowercase = 1 , lowercase = -1 , lowercase = False , lowercase = None , lowercase = 3 , lowercase = 32 , lowercase = 32 , ) -> Mapping[str, Any]: lowerCAmelCase = self._generate_dummy_images(lowercase , lowercase , lowercase , lowercase ) lowerCAmelCase = dict(preprocessor(images=lowercase , return_tensors=lowercase ) ) return inputs
46
0
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging lowerCamelCase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : Tuple = ['input_features', 'attention_mask'] def __init__( self : Optional[int] , lowerCamelCase__ : Tuple=80 , lowerCamelCase__ : List[str]=1_60_00 , lowerCamelCase__ : Optional[Any]=0.0 , lowerCamelCase__ : int=10 , lowerCamelCase__ : Optional[int]=25 , lowerCamelCase__ : Optional[int]="hamming_window" , lowerCamelCase__ : int=3_27_68.0 , lowerCamelCase__ : Union[str, Any]=0.9_7 , lowerCamelCase__ : int=1.0 , lowerCamelCase__ : str=True , lowerCamelCase__ : Tuple=True , lowerCamelCase__ : Union[str, Any]=False , **lowerCamelCase__ : Any , ) ->Any: '''simple docstring''' super().__init__(feature_size=_SCREAMING_SNAKE_CASE , sampling_rate=_SCREAMING_SNAKE_CASE , padding_value=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Any = feature_size _UpperCAmelCase : Optional[int] = sampling_rate _UpperCAmelCase : List[Any] = padding_value _UpperCAmelCase : List[Any] = hop_length _UpperCAmelCase : List[str] = win_length _UpperCAmelCase : Union[str, Any] = frame_signal_scale _UpperCAmelCase : List[Any] = preemphasis_coeff _UpperCAmelCase : List[str] = mel_floor _UpperCAmelCase : str = normalize_means _UpperCAmelCase : Dict = normalize_vars _UpperCAmelCase : Dict = win_function _UpperCAmelCase : Tuple = return_attention_mask _UpperCAmelCase : List[Any] = win_length * sampling_rate // 10_00 _UpperCAmelCase : Union[str, Any] = hop_length * sampling_rate // 10_00 _UpperCAmelCase : Tuple = optimal_fft_length(self.sample_size ) _UpperCAmelCase : Union[str, Any] = (self.n_fft // 2) + 1 def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : Tuple ) ->np.ndarray: '''simple docstring''' if self.win_function == "hamming_window": _UpperCAmelCase : Union[str, Any] = window_function(window_length=self.sample_size , name=self.win_function , periodic=_SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase : Any = window_function(window_length=self.sample_size , name=self.win_function ) _UpperCAmelCase : Union[str, Any] = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) _UpperCAmelCase : str = spectrogram( one_waveform * self.frame_signal_scale , window=_SCREAMING_SNAKE_CASE , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=_SCREAMING_SNAKE_CASE , preemphasis=self.preemphasis_coeff , mel_filters=_SCREAMING_SNAKE_CASE , mel_floor=self.mel_floor , log_mel="log" , ) return msfc_features.T def lowerCAmelCase__ ( self : Any , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : str , lowerCamelCase__ : Tuple ) ->Optional[Any]: '''simple docstring''' if self.normalize_means: _UpperCAmelCase : Optional[Any] = x[:input_length].mean(axis=0 ) _UpperCAmelCase : Union[str, Any] = np.subtract(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if self.normalize_vars: _UpperCAmelCase : Dict = x[:input_length].std(axis=0 ) _UpperCAmelCase : Optional[Any] = np.divide(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if input_length < x.shape[0]: _UpperCAmelCase : Optional[Any] = padding_value # make sure array is in float32 _UpperCAmelCase : Tuple = x.astype(np.floataa ) return x def lowerCAmelCase__ ( self : int , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Any = None ) ->List[np.ndarray]: '''simple docstring''' _UpperCAmelCase : Any = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.padding_value ) for x, n in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] def __call__( self : List[Any] , lowerCamelCase__ : Any , lowerCamelCase__ : int = False , lowerCamelCase__ : List[Any] = None , lowerCamelCase__ : Union[str, Any] = False , lowerCamelCase__ : List[Any] = None , lowerCamelCase__ : Tuple = None , lowerCamelCase__ : str = None , lowerCamelCase__ : Optional[Any] = None , **lowerCamelCase__ : Optional[int] , ) ->BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" F""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with""" F""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( "It is strongly recommended to pass the ``sampling_rate`` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) _UpperCAmelCase : Any = isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) _UpperCAmelCase : int = is_batched_numpy or ( isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _UpperCAmelCase : Tuple = [np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ): _UpperCAmelCase : List[Any] = np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.floataa ) elif isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _UpperCAmelCase : Optional[int] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _UpperCAmelCase : Any = [raw_speech] # extract fbank features _UpperCAmelCase : str = [self._extract_mfsc_features(_SCREAMING_SNAKE_CASE ) for one_waveform in raw_speech] # convert into correct format for padding _UpperCAmelCase : Dict = BatchFeature({"input_features": features} ) _UpperCAmelCase : str = self.pad( _SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , pad_to_multiple_of=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # make sure list is in array format _UpperCAmelCase : Any = padded_inputs.get("input_features" ) if isinstance(input_features[0] , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase : str = [np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.floataa ) for feature in input_features] _UpperCAmelCase : Optional[int] = padded_inputs.get("attention_mask" ) if attention_mask is not None: _UpperCAmelCase : Optional[Any] = [np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: _UpperCAmelCase : Optional[int] = ( np.array(_SCREAMING_SNAKE_CASE , dtype=np.intaa ) if self._get_padding_strategies(_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) _UpperCAmelCase : int = self.normalize( padded_inputs["input_features"] , attention_mask=_SCREAMING_SNAKE_CASE ) if return_tensors is not None: _UpperCAmelCase : Optional[Any] = padded_inputs.convert_to_tensors(_SCREAMING_SNAKE_CASE ) return padded_inputs
364
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { 'microsoft/resnet-50': 'https://huggingface.co/microsoft/resnet-50/blob/main/config.json', } class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ ): lowerCAmelCase : int = "resnet" lowerCAmelCase : Union[str, Any] = ["basic", "bottleneck"] def __init__( self : Dict , lowerCamelCase__ : Tuple=3 , lowerCamelCase__ : Any=64 , lowerCamelCase__ : Optional[int]=[2_56, 5_12, 10_24, 20_48] , lowerCamelCase__ : int=[3, 4, 6, 3] , lowerCamelCase__ : Dict="bottleneck" , lowerCamelCase__ : Dict="relu" , lowerCamelCase__ : List[Any]=False , lowerCamelCase__ : Any=None , lowerCamelCase__ : int=None , **lowerCamelCase__ : Tuple , ) ->List[str]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) if layer_type not in self.layer_types: raise ValueError(F"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" ) _UpperCAmelCase : str = num_channels _UpperCAmelCase : List[str] = embedding_size _UpperCAmelCase : Tuple = hidden_sizes _UpperCAmelCase : Dict = depths _UpperCAmelCase : List[Any] = layer_type _UpperCAmelCase : Optional[int] = hidden_act _UpperCAmelCase : Tuple = downsample_in_first_stage _UpperCAmelCase : str = ["stem"] + [F"""stage{idx}""" for idx in range(1 , len(lowerCamelCase__ ) + 1 )] _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = get_aligned_output_features_output_indices( out_features=lowerCamelCase__ , out_indices=lowerCamelCase__ , stage_names=self.stage_names ) class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Optional[Any] = version.parse("1.11" ) @property def lowerCAmelCase__ ( self : Optional[Any] ) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowerCAmelCase__ ( self : str ) ->float: '''simple docstring''' return 1E-3
322
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) def UpperCAmelCase ( UpperCAmelCase ) -> Any: snake_case_ = DPTConfig() if "large" in checkpoint_url: snake_case_ = 1024 snake_case_ = 4096 snake_case_ = 24 snake_case_ = 16 snake_case_ = [5, 11, 17, 23] snake_case_ = [256, 512, 1024, 1024] snake_case_ = (1, 384, 384) if "ade" in checkpoint_url: snake_case_ = True snake_case_ = 150 snake_case_ = 'huggingface/label-files' snake_case_ = 'ade20k-id2label.json' snake_case_ = json.load(open(cached_download(hf_hub_url(UpperCAmelCase , UpperCAmelCase , repo_type='dataset' ) ) , 'r' ) ) snake_case_ = {int(UpperCAmelCase ): v for k, v in idalabel.items()} snake_case_ = idalabel snake_case_ = {v: k for k, v in idalabel.items()} snake_case_ = [1, 150, 480, 480] return config, expected_shape def UpperCAmelCase ( UpperCAmelCase ) -> Optional[int]: snake_case_ = ['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( UpperCAmelCase ) -> Optional[int]: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): snake_case_ = name.replace('pretrained.model' , 'dpt.encoder' ) if "pretrained.model" in name: snake_case_ = name.replace('pretrained.model' , 'dpt.embeddings' ) if "patch_embed" in name: snake_case_ = name.replace('patch_embed' , 'patch_embeddings' ) if "pos_embed" in name: snake_case_ = name.replace('pos_embed' , 'position_embeddings' ) if "attn.proj" in name: snake_case_ = name.replace('attn.proj' , 'attention.output.dense' ) if "proj" in name and "project" not in name: snake_case_ = name.replace('proj' , 'projection' ) if "blocks" in name: snake_case_ = name.replace('blocks' , 'layer' ) if "mlp.fc1" in name: snake_case_ = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: snake_case_ = name.replace('mlp.fc2' , 'output.dense' ) if "norm1" in name: snake_case_ = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: snake_case_ = name.replace('norm2' , 'layernorm_after' ) if "scratch.output_conv" in name: snake_case_ = name.replace('scratch.output_conv' , 'head' ) if "scratch" in name: snake_case_ = name.replace('scratch' , 'neck' ) if "layer1_rn" in name: snake_case_ = name.replace('layer1_rn' , 'convs.0' ) if "layer2_rn" in name: snake_case_ = name.replace('layer2_rn' , 'convs.1' ) if "layer3_rn" in name: snake_case_ = name.replace('layer3_rn' , 'convs.2' ) if "layer4_rn" in name: snake_case_ = name.replace('layer4_rn' , 'convs.3' ) if "refinenet" in name: snake_case_ = int(name[len('neck.refinenet' ) : len('neck.refinenet' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 snake_case_ = name.replace(f'refinenet{layer_idx}' , f'fusion_stage.layers.{abs(layer_idx-4 )}' ) if "out_conv" in name: snake_case_ = name.replace('out_conv' , 'projection' ) if "resConfUnit1" in name: snake_case_ = name.replace('resConfUnit1' , 'residual_layer1' ) if "resConfUnit2" in name: snake_case_ = name.replace('resConfUnit2' , 'residual_layer2' ) if "conv1" in name: snake_case_ = name.replace('conv1' , 'convolution1' ) if "conv2" in name: snake_case_ = name.replace('conv2' , 'convolution2' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: snake_case_ = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0' ) if "pretrained.act_postprocess2.0.project.0" in name: snake_case_ = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0' ) if "pretrained.act_postprocess3.0.project.0" in name: snake_case_ = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0' ) if "pretrained.act_postprocess4.0.project.0" in name: snake_case_ = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0' ) # resize blocks if "pretrained.act_postprocess1.3" in name: snake_case_ = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection' ) if "pretrained.act_postprocess1.4" in name: snake_case_ = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize' ) if "pretrained.act_postprocess2.3" in name: snake_case_ = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection' ) if "pretrained.act_postprocess2.4" in name: snake_case_ = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize' ) if "pretrained.act_postprocess3.3" in name: snake_case_ = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection' ) if "pretrained.act_postprocess4.3" in name: snake_case_ = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection' ) if "pretrained.act_postprocess4.4" in name: snake_case_ = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize' ) if "pretrained" in name: snake_case_ = name.replace('pretrained' , 'dpt' ) if "bn" in name: snake_case_ = name.replace('bn' , 'batch_norm' ) if "head" in name: snake_case_ = name.replace('head' , 'head.head' ) if "encoder.norm" in name: snake_case_ = name.replace('encoder.norm' , 'layernorm' ) if "auxlayer" in name: snake_case_ = name.replace('auxlayer' , 'auxiliary_head.head' ) return name def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> int: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case_ = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.weight' ) snake_case_ = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict snake_case_ = in_proj_weight[: config.hidden_size, :] snake_case_ = in_proj_bias[: config.hidden_size] snake_case_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case_ = in_proj_weight[ -config.hidden_size :, : ] snake_case_ = in_proj_bias[-config.hidden_size :] def UpperCAmelCase ( ) -> Optional[int]: snake_case_ = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case_ = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) return im @torch.no_grad() def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Tuple: snake_case_ , snake_case_ = get_dpt_config(UpperCAmelCase ) # load original state_dict from URL snake_case_ = torch.hub.load_state_dict_from_url(UpperCAmelCase , map_location='cpu' ) # remove certain keys remove_ignore_keys_(UpperCAmelCase ) # rename keys for key in state_dict.copy().keys(): snake_case_ = state_dict.pop(UpperCAmelCase ) snake_case_ = val # read in qkv matrices read_in_q_k_v(UpperCAmelCase , UpperCAmelCase ) # load HuggingFace model snake_case_ = DPTForSemanticSegmentation(UpperCAmelCase ) if 'ade' in checkpoint_url else DPTForDepthEstimation(UpperCAmelCase ) model.load_state_dict(UpperCAmelCase ) model.eval() # Check outputs on an image snake_case_ = 480 if 'ade' in checkpoint_url else 384 snake_case_ = DPTImageProcessor(size=UpperCAmelCase ) snake_case_ = prepare_img() snake_case_ = image_processor(UpperCAmelCase , return_tensors='pt' ) # forward pass snake_case_ = model(**UpperCAmelCase ).logits if 'ade' in checkpoint_url else model(**UpperCAmelCase ).predicted_depth # Assert logits snake_case_ = torch.tensor([[6.3_199, 6.3_629, 6.4_148], [6.3_850, 6.3_615, 6.4_166], [6.3_519, 6.3_176, 6.3_575]] ) if "ade" in checkpoint_url: snake_case_ = torch.tensor([[4.0_480, 4.2_420, 4.4_360], [4.3_124, 4.5_693, 4.8_261], [4.5_768, 4.8_965, 5.2_163]] ) assert outputs.shape == torch.Size(UpperCAmelCase ) assert ( torch.allclose(outputs[0, 0, :3, :3] , UpperCAmelCase , atol=1e-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , UpperCAmelCase ) ) Path(UpperCAmelCase ).mkdir(exist_ok=UpperCAmelCase ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(UpperCAmelCase ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(UpperCAmelCase ) if push_to_hub: print('Pushing model to hub...' ) model.push_to_hub( repo_path_or_name=Path(UpperCAmelCase , UpperCAmelCase ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=UpperCAmelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(UpperCAmelCase , UpperCAmelCase ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=UpperCAmelCase , ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''', type=str, help='''URL of the original DPT checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) parser.add_argument( '''--model_name''', default='''dpt-large''', type=str, help='''Name of the model, in case you\'re pushing to the hub.''', ) __UpperCamelCase = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
69
"""simple docstring""" def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase = False ) -> bool: if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3317044064679887385961981 and not allow_probable: raise ValueError( 'Warning: upper bound of deterministic test is exceeded. ' 'Pass allow_probable=True to allow probabilistic test. ' 'A return value of True indicates a probable prime.' ) # array bounds provided by analysis snake_case_ = [ 2047, 1373653, 25326001, 3215031751, 2152302898747, 3474749660383, 341550071728321, 1, 3825123056546413051, 1, 1, 318665857834031151167461, 3317044064679887385961981, ] snake_case_ = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(UpperCAmelCase , 1 ): if n < _p: # then we have our last prime to check snake_case_ = primes[:idx] break snake_case_ , snake_case_ = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: snake_case_ = False for r in range(UpperCAmelCase ): snake_case_ = pow(UpperCAmelCase , d * 2**r , UpperCAmelCase ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): snake_case_ = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def UpperCAmelCase ( ) -> None: assert not miller_rabin(561 ) assert miller_rabin(563 ) # 2047 assert not miller_rabin(838201 ) assert miller_rabin(838207 ) # 1_373_653 assert not miller_rabin(17316001 ) assert miller_rabin(17316017 ) # 25_326_001 assert not miller_rabin(3078386641 ) assert miller_rabin(3078386653 ) # 3_215_031_751 assert not miller_rabin(1713045574801 ) assert miller_rabin(1713045574819 ) # 2_152_302_898_747 assert not miller_rabin(2779799728307 ) assert miller_rabin(2779799728327 ) # 3_474_749_660_383 assert not miller_rabin(113850023909441 ) assert miller_rabin(113850023909527 ) # 341_550_071_728_321 assert not miller_rabin(1275041018848804351 ) assert miller_rabin(1275041018848804391 ) # 3_825_123_056_546_413_051 assert not miller_rabin(79666464458507787791867 ) assert miller_rabin(79666464458507787791951 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(552840677446647897660333 ) assert miller_rabin(552840677446647897660359 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
69
1
def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int ): snake_case : Dict = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def UpperCamelCase ( ): print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
10
import fire from utils import calculate_rouge, save_json def UpperCamelCase ( __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Tuple=None , **__lowerCamelCase : Tuple ): snake_case : Optional[Any] = [x.strip() for x in open(__lowerCamelCase ).readlines()] snake_case : Union[str, Any] = [x.strip() for x in open(__lowerCamelCase ).readlines()][: len(__lowerCamelCase )] snake_case : List[Any] = calculate_rouge(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) if save_path is not None: save_json(__lowerCamelCase , __lowerCamelCase , indent=__lowerCamelCase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
10
1
'''simple docstring''' from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
297
'''simple docstring''' # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys a__ : Tuple ='''3''' print('''Python version:''', sys.version) print('''OS platform:''', platform.platform()) print('''OS architecture:''', platform.machine()) try: import torch print('''Torch version:''', torch.__version__) print('''Cuda available:''', torch.cuda.is_available()) print('''Cuda version:''', torch.version.cuda) print('''CuDNN version:''', torch.backends.cudnn.version()) print('''Number of GPUs available:''', torch.cuda.device_count()) except ImportError: print('''Torch version:''', None) try: import transformers print('''transformers version:''', transformers.__version__) except ImportError: print('''transformers version:''', None)
53
0
'''simple docstring''' def snake_case_ ( __SCREAMING_SNAKE_CASE : str ): """simple docstring""" assert column_title.isupper() lowercase_ : Dict = 0 lowercase_ : Tuple = len(__SCREAMING_SNAKE_CASE ) - 1 lowercase_ : Optional[int] = 0 while index >= 0: lowercase_ : Optional[Any] = (ord(column_title[index] ) - 64) * pow(26 , __SCREAMING_SNAKE_CASE ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
364
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Any = logging.get_logger(__name__) _lowercase : Dict = { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json", # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class lowerCAmelCase__ ( lowerCamelCase_ ): lowerCAmelCase_ = '''gpt_neox''' def __init__( self , __SCREAMING_SNAKE_CASE=5_04_32 , __SCREAMING_SNAKE_CASE=61_44 , __SCREAMING_SNAKE_CASE=44 , __SCREAMING_SNAKE_CASE=64 , __SCREAMING_SNAKE_CASE=2_45_76 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.25 , __SCREAMING_SNAKE_CASE=1_00_00 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=20_48 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1E-5 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = vocab_size lowercase_ : Optional[Any] = max_position_embeddings lowercase_ : Optional[int] = hidden_size lowercase_ : Tuple = num_hidden_layers lowercase_ : Any = num_attention_heads lowercase_ : str = intermediate_size lowercase_ : Any = hidden_act lowercase_ : Tuple = rotary_pct lowercase_ : Optional[Any] = rotary_emb_base lowercase_ : Any = attention_dropout lowercase_ : str = hidden_dropout lowercase_ : Dict = classifier_dropout lowercase_ : Tuple = initializer_range lowercase_ : List[str] = layer_norm_eps lowercase_ : Union[str, Any] = use_cache lowercase_ : int = tie_word_embeddings lowercase_ : Tuple = use_parallel_residual lowercase_ : Optional[Any] = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( '''The hidden size is not divisble by the number of attention heads! Make sure to update them!''' ) def _snake_case ( self ): """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __SCREAMING_SNAKE_CASE ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' F'''got {self.rope_scaling}''' ) lowercase_ : List[Any] = self.rope_scaling.get('''type''' , __SCREAMING_SNAKE_CASE ) lowercase_ : int = self.rope_scaling.get('''factor''' , __SCREAMING_SNAKE_CASE ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) or rope_scaling_factor <= 1.0: raise ValueError(F'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
264
0
import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer UpperCAmelCase_ : Dict = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : List[str] = '''AutoTokenizer''' snake_case__ : Optional[Any] = ['''tokenizer'''] snake_case__ : int = { '''semantic_prompt''': 1, '''coarse_prompt''': 2, '''fine_prompt''': 2, } def __init__( self : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any=None ) -> Optional[Any]: super().__init__(SCREAMING_SNAKE_CASE__ ) a_ : Tuple = speaker_embeddings @classmethod def SCREAMING_SNAKE_CASE ( cls : Any , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple="speaker_embeddings_path.json" , **SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: if speaker_embeddings_dict_path is not None: a_ : int = get_file_from_repo( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , subfolder=kwargs.pop('subfolder' , SCREAMING_SNAKE_CASE__ ) , cache_dir=kwargs.pop('cache_dir' , SCREAMING_SNAKE_CASE__ ) , force_download=kwargs.pop('force_download' , SCREAMING_SNAKE_CASE__ ) , proxies=kwargs.pop('proxies' , SCREAMING_SNAKE_CASE__ ) , resume_download=kwargs.pop('resume_download' , SCREAMING_SNAKE_CASE__ ) , local_files_only=kwargs.pop('local_files_only' , SCREAMING_SNAKE_CASE__ ) , use_auth_token=kwargs.pop('use_auth_token' , SCREAMING_SNAKE_CASE__ ) , revision=kwargs.pop('revision' , SCREAMING_SNAKE_CASE__ ) , ) if speaker_embeddings_path is None: logger.warning( F"""`{os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.""" ) a_ : Any = None else: with open(SCREAMING_SNAKE_CASE__ ) as speaker_embeddings_json: a_ : int = json.load(SCREAMING_SNAKE_CASE__ ) else: a_ : str = None a_ : List[str] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) return cls(tokenizer=SCREAMING_SNAKE_CASE__ , speaker_embeddings=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int]="speaker_embeddings_path.json" , SCREAMING_SNAKE_CASE__ : Dict="speaker_embeddings" , SCREAMING_SNAKE_CASE__ : bool = False , **SCREAMING_SNAKE_CASE__ : List[str] , ) -> Union[str, Any]: if self.speaker_embeddings is not None: os.makedirs(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'v2' ) , exist_ok=SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = {} a_ : List[str] = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": a_ : Tuple = self._load_voice_preset(SCREAMING_SNAKE_CASE__ ) a_ : Optional[int] = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict['repo_or_path'] , SCREAMING_SNAKE_CASE__ , F"""{prompt_key}_{key}""" ) , voice_preset[key] , allow_pickle=SCREAMING_SNAKE_CASE__ , ) a_ : List[str] = os.path.join(SCREAMING_SNAKE_CASE__ , F"""{prompt_key}_{key}.npy""" ) a_ : int = tmp_dict with open(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , 'w' ) as fp: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) super().save_pretrained(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str = None , **SCREAMING_SNAKE_CASE__ : List[Any] ) -> int: a_ : Union[str, Any] = self.speaker_embeddings[voice_preset] a_ : str = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F"""Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].""" ) a_ : Dict = get_file_from_repo( self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] , subfolder=kwargs.pop('subfolder' , SCREAMING_SNAKE_CASE__ ) , cache_dir=kwargs.pop('cache_dir' , SCREAMING_SNAKE_CASE__ ) , force_download=kwargs.pop('force_download' , SCREAMING_SNAKE_CASE__ ) , proxies=kwargs.pop('proxies' , SCREAMING_SNAKE_CASE__ ) , resume_download=kwargs.pop('resume_download' , SCREAMING_SNAKE_CASE__ ) , local_files_only=kwargs.pop('local_files_only' , SCREAMING_SNAKE_CASE__ ) , use_auth_token=kwargs.pop('use_auth_token' , SCREAMING_SNAKE_CASE__ ) , revision=kwargs.pop('revision' , SCREAMING_SNAKE_CASE__ ) , ) if path is None: raise ValueError( F"""`{os.path.join(self.speaker_embeddings.get("repo_or_path" , "/" ) , voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.""" ) a_ : str = np.load(SCREAMING_SNAKE_CASE__ ) return voice_preset_dict def SCREAMING_SNAKE_CASE ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[dict] = None ) -> int: for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F"""Voice preset unrecognized, missing {key} as a key.""" ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(F"""{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.""" ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F"""{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.""" ) def __call__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : Optional[int]="pt" , SCREAMING_SNAKE_CASE__ : Optional[Any]=2_5_6 , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : Any=False , **SCREAMING_SNAKE_CASE__ : List[str] , ) -> List[str]: if voice_preset is not None and not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): a_ : Optional[int] = self._load_voice_preset(SCREAMING_SNAKE_CASE__ ) else: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and not voice_preset.endswith('.npz' ): a_ : Optional[Any] = voice_preset + '.npz' a_ : Any = np.load(SCREAMING_SNAKE_CASE__ ) if voice_preset is not None: self._validate_voice_preset_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) a_ : Dict = BatchFeature(data=SCREAMING_SNAKE_CASE__ , tensor_type=SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = self.tokenizer( SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , padding='max_length' , max_length=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , return_token_type_ids=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) if voice_preset is not None: a_ : Optional[int] = voice_preset return encoded_text
32
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class SCREAMING_SNAKE_CASE__ ( lowercase__ , unittest.TestCase ): snake_case__ : Optional[Any] = TextToVideoSDPipeline snake_case__ : Optional[int] = TEXT_TO_IMAGE_PARAMS snake_case__ : str = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. snake_case__ : Optional[Any] = frozenset( [ '''num_inference_steps''', '''generator''', '''latents''', '''return_dict''', '''callback''', '''callback_steps''', ] ) def SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: torch.manual_seed(0 ) a_ : Optional[int] = UNetaDConditionModel( block_out_channels=(3_2, 6_4, 6_4, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D') , up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D') , cross_attention_dim=3_2 , attention_head_dim=4 , ) a_ : int = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=SCREAMING_SNAKE_CASE__ , set_alpha_to_one=SCREAMING_SNAKE_CASE__ , ) torch.manual_seed(0 ) a_ : int = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) a_ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='gelu' , projection_dim=5_1_2 , ) a_ : Dict = CLIPTextModel(SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) a_ : Union[str, Any] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def SCREAMING_SNAKE_CASE ( self : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any]=0 ) -> List[str]: if str(SCREAMING_SNAKE_CASE__ ).startswith('mps' ): a_ : Dict = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: a_ : Optional[Any] = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) a_ : int = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'pt', } return inputs def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: a_ : List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator a_ : Dict = self.get_dummy_components() a_ : str = TextToVideoSDPipeline(**SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = sd_pipe.to(SCREAMING_SNAKE_CASE__ ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) a_ : Tuple = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) a_ : Dict = 'np' a_ : Dict = sd_pipe(**SCREAMING_SNAKE_CASE__ ).frames a_ : int = frames[0][-3:, -3:, -1] assert frames[0].shape == (6_4, 6_4, 3) a_ : Union[str, Any] = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: self._test_attention_slicing_forward_pass(test_mean_pixel_difference=SCREAMING_SNAKE_CASE__ , expected_max_diff=3E-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def SCREAMING_SNAKE_CASE ( self : Any ) -> str: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=SCREAMING_SNAKE_CASE__ , expected_max_diff=1E-2 ) @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: pass @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: pass @unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' ) def SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: pass def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: return super().test_progress_bar() @slow @skip_mps class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: a_ : str = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy' ) a_ : Any = TextToVideoSDPipeline.from_pretrained('damo-vilab/text-to-video-ms-1.7b' ) a_ : Optional[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) a_ : Optional[Any] = pipe.to('cuda' ) a_ : Any = 'Spiderman is surfing' a_ : List[Any] = torch.Generator(device='cpu' ).manual_seed(0 ) a_ : Optional[Any] = pipe(SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=2_5 , output_type='pt' ).frames a_ : str = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2 def SCREAMING_SNAKE_CASE ( self : Any ) -> Any: a_ : Dict = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy' ) a_ : Tuple = TextToVideoSDPipeline.from_pretrained('damo-vilab/text-to-video-ms-1.7b' ) a_ : Tuple = pipe.to('cuda' ) a_ : Any = 'Spiderman is surfing' a_ : List[str] = torch.Generator(device='cpu' ).manual_seed(0 ) a_ : List[Any] = pipe(SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=2 , output_type='pt' ).frames a_ : List[str] = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2
32
1
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 A : List[str] = get_tests_dir('fixtures') class __A( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' __a = mock.Mock() __a = 500 __a = {} __a = HTTPError __a = {} # Download this model to make sure it's in the cache. __a = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=_snake_case ) as mock_head: __a = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''' ) # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' __a = ViTImageProcessor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json''' ) def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' with self.assertRaises(_snake_case ): # config is in subfolder, the following should not work without specifying the subfolder __a = AutoImageProcessor.from_pretrained('''hf-internal-testing/stable-diffusion-all-variants''' ) __a = AutoImageProcessor.from_pretrained( '''hf-internal-testing/stable-diffusion-all-variants''' , subfolder='''feature_extractor''' ) self.assertIsNotNone(_snake_case ) @is_staging_test class __A( unittest.TestCase ): @classmethod def SCREAMING_SNAKE_CASE_ ( cls ) -> Optional[Any]: '''simple docstring''' __a = TOKEN HfFolder.save_token(_snake_case ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls ) -> str: '''simple docstring''' try: delete_repo(token=cls._token , repo_id='''test-image-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-image-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-image-processor''' ) except HTTPError: pass def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' __a = ViTImageProcessor.from_pretrained(_snake_case ) image_processor.push_to_hub('''test-image-processor''' , use_auth_token=self._token ) __a = ViTImageProcessor.from_pretrained(F"""{USER}/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(_snake_case , getattr(_snake_case , _snake_case ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-image-processor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( _snake_case , repo_id='''test-image-processor''' , push_to_hub=_snake_case , use_auth_token=self._token ) __a = ViTImageProcessor.from_pretrained(F"""{USER}/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(_snake_case , getattr(_snake_case , _snake_case ) ) def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' __a = ViTImageProcessor.from_pretrained(_snake_case ) image_processor.push_to_hub('''valid_org/test-image-processor''' , use_auth_token=self._token ) __a = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_snake_case , getattr(_snake_case , _snake_case ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-image-processor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( _snake_case , repo_id='''valid_org/test-image-processor-org''' , push_to_hub=_snake_case , use_auth_token=self._token ) __a = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor-org''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_snake_case , getattr(_snake_case , _snake_case ) ) def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' CustomImageProcessor.register_for_auto_class() __a = CustomImageProcessor.from_pretrained(_snake_case ) image_processor.push_to_hub('''test-dynamic-image-processor''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {'''AutoImageProcessor''': '''custom_image_processing.CustomImageProcessor'''} , ) __a = AutoImageProcessor.from_pretrained( F"""{USER}/test-dynamic-image-processor""" , trust_remote_code=_snake_case ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , '''CustomImageProcessor''' )
371
from typing import List from .keymap import KEYMAP, get_character def __lowerCAmelCase ( a__ ) -> List[str]: def decorator(a__ ): __a = getattr(a__ , '''handle_key''' , [] ) handle += [key] setattr(a__ , '''handle_key''' , a__ ) return func return decorator def __lowerCAmelCase ( *a__ ) -> str: def decorator(a__ ): __a = getattr(a__ , '''handle_key''' , [] ) handle += keys setattr(a__ , '''handle_key''' , a__ ) return func return decorator class __A( a ): def __new__( cls , _snake_case , _snake_case , _snake_case ) -> Union[str, Any]: '''simple docstring''' __a = super().__new__(cls , _snake_case , _snake_case , _snake_case ) if not hasattr(_snake_case , '''key_handler''' ): setattr(_snake_case , '''key_handler''' , {} ) setattr(_snake_case , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): __a = getattr(_snake_case , '''handle_key''' , [] ) for key in handled_keys: __a = value return new_cls @staticmethod def SCREAMING_SNAKE_CASE_ ( cls ) -> List[str]: '''simple docstring''' __a = get_character() if char != KEYMAP["undefined"]: __a = ord(_snake_case ) __a = cls.key_handler.get(_snake_case ) if handler: __a = char return handler(cls ) else: return None def __lowerCAmelCase ( cls ) -> Union[str, Any]: return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
33
0
"""simple docstring""" import baseaa def lowerCAmelCase_ ( snake_case_ : str ) ->bytes: return baseaa.aaaencode(string.encode('utf-8' ) ) def lowerCAmelCase_ ( snake_case_ : bytes ) ->str: return baseaa.aaadecode(snake_case_ ).decode('utf-8' ) if __name__ == "__main__": import doctest doctest.testmod()
126
"""simple docstring""" import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( 'split_dict' , [ SplitDict(), SplitDict({'train': SplitInfo(name='train' , num_bytes=1_3_3_7 , num_examples=4_2 , dataset_name='my_dataset' )} ), SplitDict({'train': SplitInfo(name='train' , num_bytes=1_3_3_7 , num_examples=4_2 )} ), SplitDict({'train': SplitInfo()} ), ] , ) def lowerCAmelCase_ ( snake_case_ : SplitDict ) ->str: lowerCamelCase__ : str =split_dict._to_yaml_list() assert len(snake_case_ ) == len(snake_case_ ) lowerCamelCase__ : Optional[Any] =SplitDict._from_yaml_list(snake_case_ ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump lowerCamelCase__ : Dict =None # the split name of split_dict takes over the name of the split info object lowerCamelCase__ : Optional[int] =split_name assert split_dict == reloaded @pytest.mark.parametrize( 'split_info' , [SplitInfo(), SplitInfo(dataset_name=snake_case_ ), SplitInfo(dataset_name='my_dataset' )] ) def lowerCAmelCase_ ( snake_case_ : List[str] ) ->Union[str, Any]: # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files lowerCamelCase__ : List[str] =asdict(SplitDict({'train': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
126
1
import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def _A ( __magic_name__ ): print("Loading config file..." ) def flatten_yaml_as_dict(__magic_name__ , __magic_name__="" , __magic_name__="." ): lowercase__ = [] for k, v in d.items(): lowercase__ = parent_key + sep + k if parent_key else k if isinstance(__magic_name__ , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(__magic_name__ , __magic_name__ , sep=__magic_name__ ).items() ) else: items.append((new_key, v) ) return dict(__magic_name__ ) lowercase__ = argparse.Namespace() with open(__magic_name__ , "r" ) as yaml_file: try: lowercase__ = yaml.load(__magic_name__ , Loader=yaml.FullLoader ) lowercase__ = flatten_yaml_as_dict(__magic_name__ ) for k, v in flat_cfg.items(): setattr(__magic_name__ , __magic_name__ , __magic_name__ ) except yaml.YAMLError as exc: logger.error("Error while loading config file: {}. Error message: {}".format(__magic_name__ , str(__magic_name__ ) ) ) return config def _A ( __magic_name__ , __magic_name__ ): lowercase__ = MobileViTVaConfig() lowercase__ = False # dataset if task_name.startswith("imagenet1k_" ): lowercase__ = 1000 if int(task_name.strip().split("_" )[-1] ) == 384: lowercase__ = 384 else: lowercase__ = 256 lowercase__ = "imagenet-1k-id2label.json" elif task_name.startswith("imagenet21k_to_1k_" ): lowercase__ = 2_1000 if int(task_name.strip().split("_" )[-1] ) == 384: lowercase__ = 384 else: lowercase__ = 256 lowercase__ = "imagenet-22k-id2label.json" elif task_name.startswith("ade20k_" ): lowercase__ = 151 lowercase__ = 512 lowercase__ = "ade20k-id2label.json" lowercase__ = True elif task_name.startswith("voc_" ): lowercase__ = 21 lowercase__ = 512 lowercase__ = "pascal-voc-id2label.json" lowercase__ = True # orig_config lowercase__ = load_orig_config_file(__magic_name__ ) assert getattr(__magic_name__ , "model.classification.name" , -1 ) == "mobilevit_v2", "Invalid model" lowercase__ = getattr(__magic_name__ , "model.classification.mitv2.width_multiplier" , 1.0 ) assert ( getattr(__magic_name__ , "model.classification.mitv2.attn_norm_layer" , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" lowercase__ = getattr(__magic_name__ , "model.classification.activation.name" , "swish" ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: lowercase__ = getattr(__magic_name__ , "model.segmentation.output_stride" , 16 ) if "_deeplabv3" in task_name: lowercase__ = getattr(__magic_name__ , "model.segmentation.deeplabv3.aspp_rates" , [12, 24, 36] ) lowercase__ = getattr(__magic_name__ , "model.segmentation.deeplabv3.aspp_out_channels" , 512 ) lowercase__ = getattr(__magic_name__ , "model.segmentation.deeplabv3.aspp_dropout" , 0.1 ) # id2label lowercase__ = "huggingface/label-files" lowercase__ = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ , repo_type="dataset" ) , "r" ) ) lowercase__ = {int(__magic_name__ ): v for k, v in idalabel.items()} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} return config def _A ( __magic_name__ , __magic_name__ , __magic_name__ ): lowercase__ = dct.pop(__magic_name__ ) lowercase__ = val def _A ( __magic_name__ , __magic_name__=False ): if base_model: lowercase__ = "" else: lowercase__ = "mobilevitv2." lowercase__ = [] for k in state_dict.keys(): if k[:8] == "encoder.": lowercase__ = k[8:] else: lowercase__ = k if ".block." in k: lowercase__ = k_new.replace(".block." , "." ) if ".conv." in k: lowercase__ = k_new.replace(".conv." , ".convolution." ) if ".norm." in k: lowercase__ = k_new.replace(".norm." , ".normalization." ) if "conv_1." in k: lowercase__ = k_new.replace("conv_1." , f'''{model_prefix}conv_stem.''' ) for i in [1, 2]: if f'''layer_{i}.''' in k: lowercase__ = k_new.replace(f'''layer_{i}.''' , f'''{model_prefix}encoder.layer.{i-1}.layer.''' ) if ".exp_1x1." in k: lowercase__ = k_new.replace(".exp_1x1." , ".expand_1x1." ) if ".red_1x1." in k: lowercase__ = k_new.replace(".red_1x1." , ".reduce_1x1." ) for i in [3, 4, 5]: if f'''layer_{i}.0.''' in k: lowercase__ = k_new.replace(f'''layer_{i}.0.''' , f'''{model_prefix}encoder.layer.{i-1}.downsampling_layer.''' ) if f'''layer_{i}.1.local_rep.0.''' in k: lowercase__ = k_new.replace(f'''layer_{i}.1.local_rep.0.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_kxk.''' ) if f'''layer_{i}.1.local_rep.1.''' in k: lowercase__ = k_new.replace(f'''layer_{i}.1.local_rep.1.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_1x1.''' ) for i in [3, 4, 5]: if i == 3: lowercase__ = [0, 1] elif i == 4: lowercase__ = [0, 1, 2, 3] elif i == 5: lowercase__ = [0, 1, 2] for j in j_in: if f'''layer_{i}.1.global_rep.{j}.''' in k: lowercase__ = k_new.replace( f'''layer_{i}.1.global_rep.{j}.''' , f'''{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.''' ) if f'''layer_{i}.1.global_rep.{j+1}.''' in k: lowercase__ = k_new.replace( f'''layer_{i}.1.global_rep.{j+1}.''' , f'''{model_prefix}encoder.layer.{i-1}.layernorm.''' ) if f'''layer_{i}.1.conv_proj.''' in k: lowercase__ = k_new.replace(f'''layer_{i}.1.conv_proj.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_projection.''' ) if "pre_norm_attn.0." in k: lowercase__ = k_new.replace("pre_norm_attn.0." , "layernorm_before." ) if "pre_norm_attn.1." in k: lowercase__ = k_new.replace("pre_norm_attn.1." , "attention." ) if "pre_norm_ffn.0." in k: lowercase__ = k_new.replace("pre_norm_ffn.0." , "layernorm_after." ) if "pre_norm_ffn.1." in k: lowercase__ = k_new.replace("pre_norm_ffn.1." , "ffn.conv1." ) if "pre_norm_ffn.3." in k: lowercase__ = k_new.replace("pre_norm_ffn.3." , "ffn.conv2." ) if "classifier.1." in k: lowercase__ = k_new.replace("classifier.1." , "classifier." ) if "seg_head." in k: lowercase__ = k_new.replace("seg_head." , "segmentation_head." ) if ".aspp_layer." in k: lowercase__ = k_new.replace(".aspp_layer." , "." ) if ".aspp_pool." in k: lowercase__ = k_new.replace(".aspp_pool." , "." ) rename_keys.append((k, k_new) ) return rename_keys def _A ( __magic_name__ ): lowercase__ = [] for k in state_dict.keys(): if k.startswith("seg_head.aux_head." ): keys_to_ignore.append(__magic_name__ ) for k in keys_to_ignore: state_dict.pop(__magic_name__ , __magic_name__ ) def _A ( ): lowercase__ = "http://images.cocodataset.org/val2017/000000039769.jpg" # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" lowercase__ = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ) return im @torch.no_grad() def _A ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): lowercase__ = get_mobilevitva_config(__magic_name__ , __magic_name__ ) # load original state_dict lowercase__ = torch.load(__magic_name__ , map_location="cpu" ) # load huggingface model if task_name.startswith("ade20k_" ) or task_name.startswith("voc_" ): lowercase__ = MobileViTVaForSemanticSegmentation(__magic_name__ ).eval() lowercase__ = False else: lowercase__ = MobileViTVaForImageClassification(__magic_name__ ).eval() lowercase__ = False # remove and rename some keys of load the original model lowercase__ = checkpoint remove_unused_keys(__magic_name__ ) lowercase__ = create_rename_keys(__magic_name__ , base_model=__magic_name__ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(__magic_name__ , __magic_name__ , __magic_name__ ) # load modified state_dict model.load_state_dict(__magic_name__ ) # Check outputs on an image, prepared by MobileViTImageProcessor lowercase__ = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) lowercase__ = image_processor(images=prepare_img() , return_tensors="pt" ) lowercase__ = model(**__magic_name__ ) # verify classification model if task_name.startswith("imagenet" ): lowercase__ = outputs.logits lowercase__ = logits.argmax(-1 ).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx] ) if task_name.startswith("imagenet1k_256" ) and config.width_multiplier == 1.0: # expected_logits for base variant lowercase__ = torch.tensor([-1.6_336e00, -7.3_204e-02, -5.1_883e-01] ) assert torch.allclose(logits[0, :3] , __magic_name__ , atol=1e-4 ) Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) print(f'''Saving model {task_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__magic_name__ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__magic_name__ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( """--task""", default="""imagenet1k_256""", type=str, help=( """Name of the task for which the MobileViTV2 model you'd like to convert is trained on . """ """ Classification (ImageNet-1k) - MobileViTV2 (256x256) : imagenet1k_256 - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384 - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) : imagenet21k_to_1k_256 - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on ImageNet-1k 384x384) : imagenet21k_to_1k_384 Segmentation - ADE20K Dataset : ade20k_deeplabv3 - Pascal VOC 2012 Dataset: voc_deeplabv3 """ ), choices=[ """imagenet1k_256""", """imagenet1k_384""", """imagenet21k_to_1k_256""", """imagenet21k_to_1k_384""", """ade20k_deeplabv3""", """voc_deeplabv3""", ], ) parser.add_argument( """--orig_checkpoint_path""", required=True, type=str, help="""Path to the original state dict (.pt file).""" ) parser.add_argument("""--orig_config_path""", required=True, type=str, help="""Path to the original config file.""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) _snake_case = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
201
def _A ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): if height >= 1: move_tower(height - 1 , __magic_name__ , __magic_name__ , __magic_name__ ) move_disk(__magic_name__ , __magic_name__ ) move_tower(height - 1 , __magic_name__ , __magic_name__ , __magic_name__ ) def _A ( __magic_name__ , __magic_name__ ): print("moving disk from" , __magic_name__ , "to" , __magic_name__ ) def _A ( ): lowercase__ = int(input("Height of hanoi: " ).strip() ) move_tower(__magic_name__ , "A" , "B" , "C" ) if __name__ == "__main__": main()
201
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCAmelCase__ = { '''configuration_groupvit''': [ '''GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GroupViTConfig''', '''GroupViTOnnxConfig''', '''GroupViTTextConfig''', '''GroupViTVisionConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GroupViTModel''', '''GroupViTPreTrainedModel''', '''GroupViTTextModel''', '''GroupViTVisionModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFGroupViTModel''', '''TFGroupViTPreTrainedModel''', '''TFGroupViTTextModel''', '''TFGroupViTVisionModel''', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
108
def _SCREAMING_SNAKE_CASE ( a , a ) -> list[int]: __A : Optional[int] = int(a ) # Initialize Result __A : Optional[int] = [] # Traverse through all denomination for denomination in reversed(a ): # Find denominations while int(a ) >= int(a ): total_value -= int(a ) answer.append(a ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": UpperCAmelCase : List[str] = [] UpperCAmelCase : Optional[int] = '''0''' if ( input('''Do you want to enter your denominations ? (yY/n): ''').strip().lower() == "y" ): UpperCAmelCase : List[Any] = int(input('''Enter the number of denominations you want to add: ''').strip()) for i in range(0, n): denominations.append(int(input(F"""Denomination {i}: """).strip())) UpperCAmelCase : int = input('''Enter the change you want to make in Indian Currency: ''').strip() else: # All denominations of Indian Currency if user does not enter UpperCAmelCase : Optional[int] = [1, 2, 5, 10, 20, 50, 1_00, 5_00, 20_00] UpperCAmelCase : Tuple = input('''Enter the change you want to make: ''').strip() if int(value) == 0 or int(value) < 0: print('''The total value cannot be zero or negative.''') else: print(F"""Following is minimal change for {value}: """) UpperCAmelCase : Optional[int] = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=''' ''')
280
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = {'configuration_sew': ['SEW_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SEWConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'SEW_PRETRAINED_MODEL_ARCHIVE_LIST', 'SEWForCTC', 'SEWForSequenceClassification', 'SEWModel', 'SEWPreTrainedModel', ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
50
from manim import * class _lowercase ( snake_case_ ): def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Any: """simple docstring""" UpperCamelCase_ : str = Rectangle(height=0.5 , width=0.5 ) UpperCamelCase_ : Optional[Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCamelCase_ : int = [mem.copy() for i in range(6 )] UpperCamelCase_ : List[Any] = [mem.copy() for i in range(6 )] UpperCamelCase_ : Dict = VGroup(*snake_case ).arrange(snake_case , buff=0 ) UpperCamelCase_ : List[str] = VGroup(*snake_case ).arrange(snake_case , buff=0 ) UpperCamelCase_ : int = VGroup(snake_case , snake_case ).arrange(snake_case , buff=0 ) UpperCamelCase_ : int = Text('CPU' , font_size=2_4 ) UpperCamelCase_ : List[str] = Group(snake_case , snake_case ).arrange(snake_case , buff=0.5 , aligned_edge=snake_case ) cpu.move_to([-2.5, -0.5, 0] ) self.add(snake_case ) UpperCamelCase_ : Union[str, Any] = [mem.copy() for i in range(1 )] UpperCamelCase_ : Dict = VGroup(*snake_case ).arrange(snake_case , buff=0 ) UpperCamelCase_ : Union[str, Any] = Text('GPU' , font_size=2_4 ) UpperCamelCase_ : Optional[Any] = Group(snake_case , snake_case ).arrange(snake_case , buff=0.5 , aligned_edge=snake_case ) gpu.align_to(snake_case , snake_case ) gpu.set_x(gpu.get_x() - 1 ) self.add(snake_case ) UpperCamelCase_ : int = [mem.copy() for i in range(6 )] UpperCamelCase_ : int = VGroup(*snake_case ).arrange(snake_case , buff=0 ) UpperCamelCase_ : Tuple = Text('Model' , font_size=2_4 ) UpperCamelCase_ : Dict = Group(snake_case , snake_case ).arrange(snake_case , buff=0.5 , aligned_edge=snake_case ) model.move_to([3, -1.0, 0] ) self.play( Create(snake_case , run_time=1 ) , Create(snake_case , run_time=1 ) , Create(snake_case , run_time=1 ) , ) UpperCamelCase_ : Union[str, Any] = MarkupText( f"First, an empty model skeleton is loaded\ninto <span fgcolor='{YELLOW}'>memory</span> without using much RAM." , font_size=2_4 , ) UpperCamelCase_ : Tuple = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCamelCase_ : Dict = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=1_8 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(snake_case , run_time=2.5 ) , Write(snake_case ) , Write(snake_case ) ) self.add(snake_case ) UpperCamelCase_ : Tuple = [] UpperCamelCase_ : List[str] = [] UpperCamelCase_ : Tuple = [] for i, rect in enumerate(snake_case ): UpperCamelCase_ : Any = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(snake_case , opacity=0.7 ) cpu_target.move_to(snake_case ) cpu_target.generate_target() UpperCamelCase_ : int = 0.46 / 4 UpperCamelCase_ : Tuple = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=snake_case ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=snake_case , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=snake_case , buff=0.0 ) cpu_targs.append(snake_case ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(snake_case ) ) second_animations.append(MoveToTarget(snake_case , run_time=1.5 ) ) self.play(*snake_case ) self.play(*snake_case ) self.wait()
50
1
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[list[float]]: """simple docstring""" A__ = [] for data in source_data: for i, el in enumerate(lowercase_ ): if len(lowercase_ ) < i + 1: data_lists.append([] ) data_lists[i].append(float(lowercase_ ) ) return data_lists def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> list[list[float]]: """simple docstring""" A__ = [] for dlist, weight in zip(lowercase_ , lowercase_ ): A__ = min(lowercase_ ) A__ = max(lowercase_ ) A__ = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: A__ = f"""Invalid weight of {weight:f} provided""" raise ValueError(lowercase_ ) score_lists.append(lowercase_ ) return score_lists def SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[float]: """simple docstring""" A__ = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(lowercase_ ): A__ = final_scores[j] + ele return final_scores def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> list[list[float]]: """simple docstring""" A__ = get_data(lowercase_ ) A__ = calculate_each_score(lowercase_ , lowercase_ ) A__ = generate_final_scores(lowercase_ ) # append scores to source data for i, ele in enumerate(lowercase_ ): source_data[i].append(lowercase_ ) return source_data
14
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer a__ : Dict = logging.get_logger(__name__) a__ : Dict = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} a__ : str = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } a__ : Optional[int] = { '''allenai/led-base-16384''': 16_384, } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Union[str, Any] = LEDTokenizer __SCREAMING_SNAKE_CASE : Optional[int] = ['input_ids', 'attention_mask'] def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="replace" , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , _lowerCamelCase=False , _lowerCamelCase=True , **_lowerCamelCase , ) ->Union[str, Any]: super().__init__( _lowerCamelCase , _lowerCamelCase , tokenizer_file=_lowerCamelCase , errors=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , add_prefix_space=_lowerCamelCase , trim_offsets=_lowerCamelCase , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , _lowerCamelCase ) != add_prefix_space: SCREAMING_SNAKE_CASE : str = getattr(_lowerCamelCase , pre_tok_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : Optional[int] = add_prefix_space SCREAMING_SNAKE_CASE : str = pre_tok_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` SCREAMING_SNAKE_CASE : List[Any] = '''post_processor''' SCREAMING_SNAKE_CASE : int = getattr(self.backend_tokenizer , _lowerCamelCase , _lowerCamelCase ) if tokenizer_component_instance: SCREAMING_SNAKE_CASE : Any = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE : Optional[int] = tuple(state['''sep'''] ) if "cls" in state: SCREAMING_SNAKE_CASE : Optional[Any] = tuple(state['''cls'''] ) SCREAMING_SNAKE_CASE : Any = False if state.get('''add_prefix_space''' , _lowerCamelCase ) != add_prefix_space: SCREAMING_SNAKE_CASE : Union[str, Any] = add_prefix_space SCREAMING_SNAKE_CASE : Union[str, Any] = True if state.get('''trim_offsets''' , _lowerCamelCase ) != trim_offsets: SCREAMING_SNAKE_CASE : List[Any] = trim_offsets SCREAMING_SNAKE_CASE : Union[str, Any] = True if changes_to_apply: SCREAMING_SNAKE_CASE : List[str] = getattr(_lowerCamelCase , state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : List[Any] = component_class(**_lowerCamelCase ) setattr(self.backend_tokenizer , _lowerCamelCase , _lowerCamelCase ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def __lowerCAmelCase ( self ) ->str: if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[Any]: SCREAMING_SNAKE_CASE : str = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else value SCREAMING_SNAKE_CASE : List[Any] = value def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->BatchEncoding: SCREAMING_SNAKE_CASE : Tuple = kwargs.get('''is_split_into_words''' , _lowerCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._batch_encode_plus(*_lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->BatchEncoding: SCREAMING_SNAKE_CASE : List[Any] = kwargs.get('''is_split_into_words''' , _lowerCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._encode_plus(*_lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: SCREAMING_SNAKE_CASE : Any = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->Any: SCREAMING_SNAKE_CASE : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: SCREAMING_SNAKE_CASE : Any = [self.sep_token_id] SCREAMING_SNAKE_CASE : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = PaddingStrategy.DO_NOT_PAD , _lowerCamelCase = None , _lowerCamelCase = None , ) ->dict: SCREAMING_SNAKE_CASE : Tuple = super()._pad( encoded_inputs=_lowerCamelCase , max_length=_lowerCamelCase , padding_strategy=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) # Load from model defaults if return_attention_mask is None: SCREAMING_SNAKE_CASE : Optional[Any] = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: SCREAMING_SNAKE_CASE : int = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. SCREAMING_SNAKE_CASE : Tuple = len(encoded_inputs['''global_attention_mask'''] ) != len(_lowerCamelCase ) if needs_to_be_padded: SCREAMING_SNAKE_CASE : int = len(_lowerCamelCase ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` SCREAMING_SNAKE_CASE : str = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": SCREAMING_SNAKE_CASE : Optional[Any] = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
313
0
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=lowerCamelCase_ ) class __snake_case ( lowerCamelCase_ ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization lowerCAmelCase_ = field(default="question-answering-extractive" , metadata={"include_in_asdict_even_if_is_default": True} ) lowerCAmelCase_ = Features({"question": Value("string" ), "context": Value("string" )} ) lowerCAmelCase_ = Features( { "answers": Sequence( { "text": Value("string" ), "answer_start": Value("int32" ), } ) } ) lowerCAmelCase_ = "question" lowerCAmelCase_ = "context" lowerCAmelCase_ = "answers" @property def __a ( self : List[Any] ): """simple docstring""" return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
204
from __future__ import annotations __lowerCamelCase : Dict = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] __lowerCamelCase : Union[str, Any] = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : list[float] ) -> list[float]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = len(__UpperCamelCase ) for i in range(__UpperCamelCase ): SCREAMING_SNAKE_CASE__ = -1 for j in range(i + 1 , __UpperCamelCase ): if arr[i] < arr[j]: SCREAMING_SNAKE_CASE__ = arr[j] break result.append(__UpperCamelCase ) return result def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : list[float] ) -> list[float]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [] for i, outer in enumerate(__UpperCamelCase ): SCREAMING_SNAKE_CASE__ = -1 for inner in arr[i + 1 :]: if outer < inner: SCREAMING_SNAKE_CASE__ = inner break result.append(__UpperCamelCase ) return result def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : list[float] ) -> list[float]: """simple docstring""" SCREAMING_SNAKE_CASE__ = len(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [-1] * arr_size for index in reversed(range(__UpperCamelCase ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: SCREAMING_SNAKE_CASE__ = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) __lowerCamelCase : List[Any] = ( '''from __main__ import arr, next_greatest_element_slow, ''' '''next_greatest_element_fast, next_greatest_element''' ) print( '''next_greatest_element_slow():''', timeit('''next_greatest_element_slow(arr)''', setup=setup), ) print( '''next_greatest_element_fast():''', timeit('''next_greatest_element_fast(arr)''', setup=setup), ) print( ''' next_greatest_element():''', timeit('''next_greatest_element(arr)''', setup=setup), )
204
1
'''simple docstring''' import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class __magic_name__ ( _UpperCamelCase ): @require_torch def __lowercase ( self : Tuple ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _a : Optional[int] = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' _a : List[str] = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' _a : Tuple = '\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache _a : List[Any] = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(_UpperCAmelCase ) BertModel.from_pretrained(_UpperCAmelCase ) BertTokenizer.from_pretrained(_UpperCAmelCase ) pipeline(task='fill-mask' ,model=_UpperCAmelCase ) # baseline - just load from_pretrained with normal network _a : Optional[int] = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed _a : Tuple = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a : int = '1' _a : List[Any] = subprocess.run(_UpperCAmelCase ,env=_UpperCAmelCase ,check=_UpperCAmelCase ,capture_output=_UpperCAmelCase ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn('success' ,result.stdout.decode() ) @require_torch def __lowercase ( self : Any ): # python one-liner segments # this must be loaded before socket.socket is monkey-patched _a : Dict = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' _a : Optional[int] = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' _a : Optional[Any] = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache _a : int = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(_UpperCAmelCase ) BertModel.from_pretrained(_UpperCAmelCase ) BertTokenizer.from_pretrained(_UpperCAmelCase ) pipeline(task='fill-mask' ,model=_UpperCAmelCase ) # baseline - just load from_pretrained with normal network _a : Optional[int] = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed _a : str = self.get_env() _a : Optional[Any] = subprocess.run(_UpperCAmelCase ,env=_UpperCAmelCase ,check=_UpperCAmelCase ,capture_output=_UpperCAmelCase ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn('success' ,result.stdout.decode() ) @require_torch def __lowercase ( self : List[str] ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _a : Union[str, Any] = '\nfrom transformers import BertConfig, BertModel, BertTokenizer\n ' _a : Optional[Any] = '\nmname = "hf-internal-testing/tiny-random-bert-sharded"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint("success")\n ' _a : str = '\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")\nsocket.socket = offline_socket\n ' # baseline - just load from_pretrained with normal network _a : Optional[Any] = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed _a : Dict = self.get_env() _a : int = subprocess.run(_UpperCAmelCase ,env=_UpperCAmelCase ,check=_UpperCAmelCase ,capture_output=_UpperCAmelCase ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn('success' ,result.stdout.decode() ) # next emulate no network _a : List[Any] = [sys.executable, '-c', '\n'.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a : int = '1' _a : Any = subprocess.run(_UpperCAmelCase ,env=_UpperCAmelCase ,check=_UpperCAmelCase ,capture_output=_UpperCAmelCase ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn('success' ,result.stdout.decode() ) @require_torch def __lowercase ( self : int ): _a : Optional[Any] = '\nfrom transformers import pipeline\n ' _a : str = '\nmname = "hf-internal-testing/tiny-random-bert"\npipe = pipeline(model=mname)\n ' _a : List[str] = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")\nsocket.socket = offline_socket\n ' _a : List[Any] = self.get_env() _a : Dict = '1' _a : Dict = [sys.executable, '-c', '\n'.join([load, mock, run] )] _a : str = subprocess.run(_UpperCAmelCase ,env=_UpperCAmelCase ,check=_UpperCAmelCase ,capture_output=_UpperCAmelCase ) self.assertEqual(result.returncode ,1 ,result.stderr ) self.assertIn( 'You cannot infer task automatically within `pipeline` when using offline mode' ,result.stderr.decode().replace('\n' ,'' ) ,) @require_torch def __lowercase ( self : int ): _a : Optional[int] = '\nfrom transformers import AutoModel\n ' _a : List[Any] = '\nmname = "hf-internal-testing/test_dynamic_model"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint("success")\n ' # baseline - just load from_pretrained with normal network _a : Union[str, Any] = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed _a : Tuple = self.get_env() _a : List[str] = subprocess.run(_UpperCAmelCase ,env=_UpperCAmelCase ,check=_UpperCAmelCase ,capture_output=_UpperCAmelCase ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn('success' ,result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a : Optional[Any] = '1' _a : Any = subprocess.run(_UpperCAmelCase ,env=_UpperCAmelCase ,check=_UpperCAmelCase ,capture_output=_UpperCAmelCase ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn('success' ,result.stdout.decode() )
89
'''simple docstring''' import math def __lowerCamelCase ( lowerCAmelCase_ ) -> bool: _a : Optional[int] = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(lowerCAmelCase_ ) def __lowerCamelCase ( lowerCAmelCase_ = 1 / 12345 ) -> int: _a : int = 0 _a : Optional[Any] = 0 _a : int = 3 while True: _a : Tuple = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(lowerCAmelCase_ ): _a : Union[str, Any] = int(lowerCAmelCase_ ) total_partitions += 1 if check_partition_perfect(lowerCAmelCase_ ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(lowerCAmelCase_ ) integer += 1 if __name__ == "__main__": print(f"""{solution() = }""")
89
1
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal __A = datasets.utils.logging.get_logger(__name__) __A = ['''names''', '''prefix'''] __A = ['''warn_bad_lines''', '''error_bad_lines''', '''mangle_dupe_cols'''] __A = ['''encoding_errors''', '''on_bad_lines'''] __A = ['''date_format'''] @dataclass class lowercase ( datasets.BuilderConfig): """simple docstring""" a__ : str = "," a__ : Optional[str] = None a__ : Optional[Union[int, List[int], str]] = "infer" a__ : Optional[List[str]] = None a__ : Optional[List[str]] = None a__ : Optional[Union[int, str, List[int], List[str]]] = None a__ : Optional[Union[List[int], List[str]]] = None a__ : Optional[str] = None a__ : bool = True a__ : Optional[Literal["c", "python", "pyarrow"]] = None a__ : Dict[Union[int, str], Callable[[Any], Any]] = None a__ : Optional[list] = None a__ : Optional[list] = None a__ : bool = False a__ : Optional[Union[int, List[int]]] = None a__ : Optional[int] = None a__ : Optional[Union[str, List[str]]] = None a__ : bool = True a__ : bool = True a__ : bool = False a__ : bool = True a__ : Optional[str] = None a__ : str = "." a__ : Optional[str] = None a__ : str = '"' a__ : int = 0 a__ : Optional[str] = None a__ : Optional[str] = None a__ : Optional[str] = None a__ : Optional[str] = None a__ : bool = True a__ : bool = True a__ : int = 0 a__ : bool = True a__ : bool = False a__ : Optional[str] = None a__ : int = 1_0000 a__ : Optional[datasets.Features] = None a__ : Optional[str] = "strict" a__ : Literal["error", "warn", "skip"] = "error" a__ : Optional[str] = None def _SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: if self.delimiter is not None: UpperCAmelCase_= self.delimiter if self.column_names is not None: UpperCAmelCase_= self.column_names @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: UpperCAmelCase_= { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class lowercase ( datasets.ArrowBasedBuilder): """simple docstring""" a__ : int = CsvConfig def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: return datasets.DatasetInfo(features=self.config.features ) def _SCREAMING_SNAKE_CASE ( self : Tuple , __UpperCAmelCase : str ) -> List[str]: if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) UpperCAmelCase_= dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCAmelCase__ , (str, list, tuple) ): UpperCAmelCase_= data_files if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_= [files] UpperCAmelCase_= [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] UpperCAmelCase_= [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_= [files] UpperCAmelCase_= [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={"""files""": files} ) ) return splits def _SCREAMING_SNAKE_CASE ( self : List[Any] , __UpperCAmelCase : pa.Table ) -> pa.Table: if self.config.features is not None: UpperCAmelCase_= self.config.features.arrow_schema if all(not require_storage_cast(lowerCAmelCase__ ) for feature in self.config.features.values() ): # cheaper cast UpperCAmelCase_= pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example UpperCAmelCase_= table_cast(lowerCAmelCase__ , lowerCAmelCase__ ) return pa_table def _SCREAMING_SNAKE_CASE ( self : Dict , __UpperCAmelCase : Dict ) -> Dict: UpperCAmelCase_= self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str UpperCAmelCase_= ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase__ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ): UpperCAmelCase_= pd.read_csv(lowerCAmelCase__ , iterator=lowerCAmelCase__ , dtype=lowerCAmelCase__ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(lowerCAmelCase__ ): UpperCAmelCase_= pa.Table.from_pandas(lowerCAmelCase__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase__ ) except ValueError as e: logger.error(F"""Failed to read file '{file}' with error {type(lowerCAmelCase__ )}: {e}""" ) raise
367
def __a ( lowerCAmelCase_ : Dict ) -> Dict: '''simple docstring''' return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def __a ( lowerCAmelCase_ : dict[int, list[int]] ) -> list[tuple[int, int]]: '''simple docstring''' UpperCAmelCase_= 0 UpperCAmelCase_= len(lowerCAmelCase_ ) # No of vertices in graph UpperCAmelCase_= [0] * n UpperCAmelCase_= [False] * n def dfs(lowerCAmelCase_ : Optional[int] ,lowerCAmelCase_ : Dict ,lowerCAmelCase_ : Any ,lowerCAmelCase_ : int ): UpperCAmelCase_= True UpperCAmelCase_= id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,id_ ) UpperCAmelCase_= min(low[at] ,low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge UpperCAmelCase_= min(low[at] ,low[to] ) UpperCAmelCase_= [] for i in range(lowerCAmelCase_ ): if not visited[i]: dfs(lowerCAmelCase_ ,-1 ,lowerCAmelCase_ ,id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
277
0
def lowerCAmelCase_ ( __a , __a , __a ) -> float: """simple docstring""" lowerCamelCase__: str =(num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def lowerCAmelCase_ ( ) -> List[Any]: """simple docstring""" print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
10
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py __A = "." if __name__ == "__main__": __A = os.path.join(REPO_PATH, "utils/documentation_tests.txt") __A = [] __A = [] with open(doctest_file_path) as fp: for line in fp: __A = line.strip() __A = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: __A = "\n".join(non_existent_paths) raise ValueError(f'`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}') if all_paths != sorted(all_paths): raise ValueError("Files in `utils/documentation_tests.txt` are not in alphabetical order.")
10
1
import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets UpperCAmelCase__ = "\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n" UpperCAmelCase__ = "\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") and then computes accuracy.\n" UpperCAmelCase__ = r"\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting \"1/2\" to \"\\frac{1}{2}\")\n\nExamples:\n >>> metric = datasets.load_metric(\"competition_math\")\n >>> results = metric.compute(references=[\"\\frac{1}{2}\"], predictions=[\"1/2\"])\n >>> print(results)\n {'accuracy': 1.0}\n" @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): def _lowerCamelCase ( self : int) -> int: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string'), 'references': datasets.Value('string'), }) , homepage='https://github.com/hendrycks/math' , codebase_urls=['https://github.com/hendrycks/math'] , ) def _lowerCamelCase ( self : Optional[int] , A : Union[str, Any] , A : Any) -> Optional[int]: """simple docstring""" _UpperCAmelCase = 0.0 for i, j in zip(A , A): n_correct += 1.0 if math_equivalence.is_equiv(A , A) else 0.0 _UpperCAmelCase = n_correct / len(A) return { "accuracy": accuracy, }
290
UpperCAmelCase__ = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } def A ( _UpperCAmelCase : dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] ) -> list[str]: '''simple docstring''' _UpperCAmelCase = set() # keep track of all the paths to be checked _UpperCAmelCase = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue _UpperCAmelCase = queue.pop(0 ) # get the last node from the path _UpperCAmelCase = path[-1] if node not in explored: _UpperCAmelCase = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: _UpperCAmelCase = list(_UpperCAmelCase ) new_path.append(_UpperCAmelCase ) queue.append(_UpperCAmelCase ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(_UpperCAmelCase ) # in case there's no path between the 2 nodes return [] def A ( _UpperCAmelCase : dict , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] ) -> int: '''simple docstring''' if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 _UpperCAmelCase = [start] _UpperCAmelCase = set(_UpperCAmelCase ) # Keep tab on distances from `start` node. _UpperCAmelCase = {start: 0, target: -1} while queue: _UpperCAmelCase = queue.pop(0 ) if node == target: _UpperCAmelCase = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(_UpperCAmelCase ) queue.append(_UpperCAmelCase ) _UpperCAmelCase = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, "G", "D")) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, "G", "D")) # returns 4
290
1
import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class _A ( unittest.TestCase ): def _lowerCamelCase ( self : Tuple): '''simple docstring''' __a = torch.nn.Linear(10 , 10) __a = torch.optim.SGD(model.parameters() , 0.1) __a = Accelerator() __a = accelerator.prepare(__SCREAMING_SNAKE_CASE) try: pickle.loads(pickle.dumps(__SCREAMING_SNAKE_CASE)) except Exception as e: self.fail(F'Accelerated optimizer pickling failed with {e}') AcceleratorState._reset_state()
49
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ : Dict = logging.get_logger(__name__) UpperCAmelCase_ : Tuple = """▁""" UpperCAmelCase_ : Optional[Any] = {"""vocab_file""": """sentencepiece.bpe.model"""} UpperCAmelCase_ : str = { """vocab_file""": { """facebook/xglm-564M""": """https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model""", } } UpperCAmelCase_ : str = { """facebook/xglm-564M""": 2048, } class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ["input_ids", "attention_mask"] def __init__( self : List[Any] , lowercase_ : str , lowercase_ : Tuple="<s>" , lowercase_ : Any="</s>" , lowercase_ : Optional[int]="</s>" , lowercase_ : List[Any]="<s>" , lowercase_ : Union[str, Any]="<unk>" , lowercase_ : Union[str, Any]="<pad>" , lowercase_ : Optional[Dict[str, Any]] = None , **lowercase_ : Tuple , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer SCREAMING_SNAKE_CASE_ : List[str] = 7 SCREAMING_SNAKE_CASE_ : Tuple = [F'<madeupword{i}>' for i in range(self.num_madeup_words)] SCREAMING_SNAKE_CASE_ : List[Any] = kwargs.get('''additional_special_tokens''' , []) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , cls_token=lowercase_ , pad_token=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , ) SCREAMING_SNAKE_CASE_ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(lowercase_)) SCREAMING_SNAKE_CASE_ : Union[str, Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab SCREAMING_SNAKE_CASE_ : Union[str, Any] = 1 # Mimic fairseq token-to-id alignment for the first 4 token SCREAMING_SNAKE_CASE_ : Optional[Any] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} SCREAMING_SNAKE_CASE_ : List[Any] = len(self.sp_model) SCREAMING_SNAKE_CASE_ : Optional[Any] = {F'<madeupword{i}>': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words)} self.fairseq_tokens_to_ids.update(lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = self.__dict__.copy() SCREAMING_SNAKE_CASE_ : str = None SCREAMING_SNAKE_CASE_ : Optional[int] = self.sp_model.serialized_model_proto() return state def __setstate__( self : Tuple , lowercase_ : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): SCREAMING_SNAKE_CASE_ : Union[str, Any] = {} SCREAMING_SNAKE_CASE_ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.LoadFromSerializedProto(self.sp_model_proto) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None): '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a SCREAMING_SNAKE_CASE_ : Dict = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None , lowercase_ : bool = False): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_) if token_ids_a is None: return [1] + ([0] * len(lowercase_)) return [1] + ([0] * len(lowercase_)) + [1, 1] + ([0] * len(lowercase_)) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a) * [0] @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' return len(self.sp_model) + self.fairseq_offset + self.num_madeup_words def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = {self.convert_ids_to_tokens(lowercase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def _SCREAMING_SNAKE_CASE ( self : Dict , lowercase_ : str): '''simple docstring''' return self.sp_model.encode(lowercase_ , out_type=lowercase_) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowercase_ : Union[str, Any]): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] SCREAMING_SNAKE_CASE_ : Optional[Any] = self.sp_model.PieceToId(lowercase_) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : Optional[Any]): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = ''''''.join(lowercase_).replace(lowercase_ , ''' ''').strip() return out_string def _SCREAMING_SNAKE_CASE ( self : str , lowercase_ : str , lowercase_ : Optional[str] = None): '''simple docstring''' if not os.path.isdir(lowercase_): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return SCREAMING_SNAKE_CASE_ : List[Any] = os.path.join( lowercase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowercase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , lowercase_) elif not os.path.isfile(self.vocab_file): with open(lowercase_ , '''wb''') as fi: SCREAMING_SNAKE_CASE_ : int = self.sp_model.serialized_model_proto() fi.write(lowercase_) return (out_vocab_file,)
91
0
'''simple docstring''' import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class lowercase_ ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict=7_6_8 ): """simple docstring""" super().__init__(__SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE = proj_size _SCREAMING_SNAKE_CASE = CLIPVisionModel(__SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE = PaintByExampleMapper(__SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE = nn.LayerNorm(config.hidden_size ) _SCREAMING_SNAKE_CASE = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling _SCREAMING_SNAKE_CASE = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def lowerCAmelCase_ ( self : Dict , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str]=False ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.model(pixel_values=__SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE = clip_output.pooler_output _SCREAMING_SNAKE_CASE = self.mapper(latent_states[:, None] ) _SCREAMING_SNAKE_CASE = self.final_layer_norm(__SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE = self.proj_out(__SCREAMING_SNAKE_CASE ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class lowercase_ ( nn.Module ): """simple docstring""" def __init__( self : Any , __lowerCamelCase : Optional[int] ): """simple docstring""" super().__init__() _SCREAMING_SNAKE_CASE = (config.num_hidden_layers + 1) // 5 _SCREAMING_SNAKE_CASE = config.hidden_size _SCREAMING_SNAKE_CASE = 1 _SCREAMING_SNAKE_CASE = nn.ModuleList( [ BasicTransformerBlock(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , activation_fn="gelu" , attention_bias=__SCREAMING_SNAKE_CASE ) for _ in range(__SCREAMING_SNAKE_CASE ) ] ) def lowerCAmelCase_ ( self : int , __lowerCamelCase : int ): """simple docstring""" for block in self.blocks: _SCREAMING_SNAKE_CASE = block(__SCREAMING_SNAKE_CASE ) return hidden_states
352
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging lowerCamelCase_ = logging.get_logger(__name__) class lowercase_ ( A ): """simple docstring""" lowerCamelCase_ = '''linear''' lowerCamelCase_ = '''cosine''' lowerCamelCase_ = '''cosine_with_restarts''' lowerCamelCase_ = '''polynomial''' lowerCamelCase_ = '''constant''' lowerCamelCase_ = '''constant_with_warmup''' lowerCamelCase_ = '''piecewise_constant''' def SCREAMING_SNAKE_CASE_ ( __A : Optimizer , __A : int = -1 ) -> Optional[int]: return LambdaLR(__A , lambda __A : 1 , last_epoch=__A ) def SCREAMING_SNAKE_CASE_ ( __A : Optimizer , __A : int , __A : int = -1 ) -> Dict: def lr_lambda(__A : int ): if current_step < num_warmup_steps: return float(__A ) / float(max(1.0 , __A ) ) return 1.0 return LambdaLR(__A , __A , last_epoch=__A ) def SCREAMING_SNAKE_CASE_ ( __A : Optimizer , __A : str , __A : int = -1 ) -> Tuple: _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = step_rules.split("," ) for rule_str in rule_list[:-1]: _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = rule_str.split(":" ) _SCREAMING_SNAKE_CASE = int(__A ) _SCREAMING_SNAKE_CASE = float(__A ) _SCREAMING_SNAKE_CASE = value _SCREAMING_SNAKE_CASE = float(rule_list[-1] ) def create_rules_function(__A : Tuple , __A : List[Any] ): def rule_func(__A : int ) -> float: _SCREAMING_SNAKE_CASE = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(__A ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func _SCREAMING_SNAKE_CASE = create_rules_function(__A , __A ) return LambdaLR(__A , __A , last_epoch=__A ) def SCREAMING_SNAKE_CASE_ ( __A : Union[str, Any] , __A : Optional[Any] , __A : List[str] , __A : Union[str, Any]=-1 ) -> str: def lr_lambda(__A : int ): if current_step < num_warmup_steps: return float(__A ) / float(max(1 , __A ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(__A , __A , __A ) def SCREAMING_SNAKE_CASE_ ( __A : Optimizer , __A : int , __A : int , __A : float = 0.5 , __A : int = -1 ) -> Any: def lr_lambda(__A : int ): if current_step < num_warmup_steps: return float(__A ) / float(max(1 , __A ) ) _SCREAMING_SNAKE_CASE = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(__A ) * 2.0 * progress )) ) return LambdaLR(__A , __A , __A ) def SCREAMING_SNAKE_CASE_ ( __A : Optimizer , __A : int , __A : int , __A : int = 1 , __A : int = -1 ) -> str: def lr_lambda(__A : Optional[int] ): if current_step < num_warmup_steps: return float(__A ) / float(max(1 , __A ) ) _SCREAMING_SNAKE_CASE = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(__A ) * progress) % 1.0) )) ) return LambdaLR(__A , __A , __A ) def SCREAMING_SNAKE_CASE_ ( __A : Optional[int] , __A : Optional[Any] , __A : List[str] , __A : Any=1e-7 , __A : Optional[Any]=1.0 , __A : List[Any]=-1 ) -> Tuple: _SCREAMING_SNAKE_CASE = optimizer.defaults["lr"] if not (lr_init > lr_end): raise ValueError(f"""lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})""" ) def lr_lambda(__A : int ): if current_step < num_warmup_steps: return float(__A ) / float(max(1 , __A ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: _SCREAMING_SNAKE_CASE = lr_init - lr_end _SCREAMING_SNAKE_CASE = num_training_steps - num_warmup_steps _SCREAMING_SNAKE_CASE = 1 - (current_step - num_warmup_steps) / decay_steps _SCREAMING_SNAKE_CASE = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(__A , __A , __A ) lowerCamelCase_ = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def SCREAMING_SNAKE_CASE_ ( __A : Union[str, SchedulerType] , __A : Optimizer , __A : Optional[str] = None , __A : Optional[int] = None , __A : Optional[int] = None , __A : int = 1 , __A : float = 1.0 , __A : int = -1 , ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = SchedulerType(__A ) _SCREAMING_SNAKE_CASE = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(__A , last_epoch=__A ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(__A , step_rules=__A , last_epoch=__A ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f"""{name} requires `num_warmup_steps`, please provide that argument.""" ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(__A , num_warmup_steps=__A , last_epoch=__A ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f"""{name} requires `num_training_steps`, please provide that argument.""" ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( __A , num_warmup_steps=__A , num_training_steps=__A , num_cycles=__A , last_epoch=__A , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( __A , num_warmup_steps=__A , num_training_steps=__A , power=__A , last_epoch=__A , ) return schedule_func( __A , num_warmup_steps=__A , num_training_steps=__A , last_epoch=__A )
111
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class __magic_name__ ( unittest.TestCase ): '''simple docstring''' def __init__( self , _a , _a=7 , _a=3 , _a=18 , _a=30 , _a=400 , _a=True , _a=32 , _a=True , ): """simple docstring""" lowerCamelCase = parent lowerCamelCase = batch_size lowerCamelCase = num_channels lowerCamelCase = image_size lowerCamelCase = min_resolution lowerCamelCase = max_resolution lowerCamelCase = do_resize lowerCamelCase = size_divisor lowerCamelCase = do_rescale def _lowerCAmelCase ( self ): """simple docstring""" return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class __magic_name__ ( _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = GLPNImageProcessor if is_vision_available() else None def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = GLPNImageProcessingTester(self ) @property def _lowerCAmelCase ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , """do_resize""" ) ) self.assertTrue(hasattr(_a , """size_divisor""" ) ) self.assertTrue(hasattr(_a , """resample""" ) ) self.assertTrue(hasattr(_a , """do_rescale""" ) ) def _lowerCAmelCase ( self ): """simple docstring""" pass def _lowerCAmelCase ( self ): """simple docstring""" # Initialize image_processing lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) lowerCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def _lowerCAmelCase ( self ): """simple docstring""" # Initialize image_processing lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , numpify=_a ) for image in image_inputs: self.assertIsInstance(_a , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) lowerCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def _lowerCAmelCase ( self ): """simple docstring""" # Initialize image_processing lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a ) for image in image_inputs: self.assertIsInstance(_a , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) lowerCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
291
"""simple docstring""" from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def lowercase ( __snake_case : str , __snake_case : str , __snake_case : Optional[str] = None ): if version.parse(hfh.__version__ ).release < version.parse('''0.11.0''' ).release: # old versions of hfh don't url-encode the file path lowercase_ : Union[str, Any] = quote(__snake_case ) return hfh.hf_hub_url(__snake_case , __snake_case , repo_type='''dataset''' , revision=__snake_case )
33
0
class SCREAMING_SNAKE_CASE__ : def __init__( self : str ): __snake_case : int = """""" __snake_case : Tuple = """""" __snake_case : List[str] = [] def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : int , _lowerCAmelCase : int ): if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: __snake_case : str = self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: __snake_case : Tuple = self.__min_dist_top_down_dp(_lowerCAmelCase , n - 1 ) __snake_case : List[Any] = self.__min_dist_top_down_dp(m - 1 , _lowerCAmelCase ) __snake_case : Any = self.__min_dist_top_down_dp(m - 1 , n - 1 ) __snake_case : List[Any] = 1 + min(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return self.dp[m][n] def snake_case__ ( self : Any , _lowerCAmelCase : str , _lowerCAmelCase : str ): __snake_case : Union[str, Any] = worda __snake_case : Dict = worda __snake_case : Optional[int] = [[-1 for _ in range(len(_lowerCAmelCase ) )] for _ in range(len(_lowerCAmelCase ) )] return self.__min_dist_top_down_dp(len(_lowerCAmelCase ) - 1 , len(_lowerCAmelCase ) - 1 ) def snake_case__ ( self : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : str ): __snake_case : Optional[int] = worda __snake_case : List[Any] = worda __snake_case : Optional[int] = len(_lowerCAmelCase ) __snake_case : str = len(_lowerCAmelCase ) __snake_case : Tuple = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty __snake_case : List[Any] = j elif j == 0: # second string is empty __snake_case : Any = i elif worda[i - 1] == worda[j - 1]: # last characters are equal __snake_case : List[Any] = self.dp[i - 1][j - 1] else: __snake_case : Optional[int] = self.dp[i][j - 1] __snake_case : Union[str, Any] = self.dp[i - 1][j] __snake_case : Dict = self.dp[i - 1][j - 1] __snake_case : int = 1 + min(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return self.dp[m][n] if __name__ == "__main__": lowercase_ = EditDistance() print("****************** Testing Edit Distance DP Algorithm ******************") print() lowercase_ = input("Enter the first string: ").strip() lowercase_ = input("Enter the second string: ").strip() print() print(F'''The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}''') print(F'''The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}''') print() print("*************** End of Testing Edit Distance DP Algorithm ***************")
20
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase_ = { "configuration_blenderbot_small": [ "BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotSmallConfig", "BlenderbotSmallOnnxConfig", ], "tokenization_blenderbot_small": ["BlenderbotSmallTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["BlenderbotSmallTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotSmallForCausalLM", "BlenderbotSmallForConditionalGeneration", "BlenderbotSmallModel", "BlenderbotSmallPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TFBlenderbotSmallForConditionalGeneration", "TFBlenderbotSmallModel", "TFBlenderbotSmallPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "FlaxBlenderbotSmallForConditionalGeneration", "FlaxBlenderbotSmallModel", "FlaxBlenderbotSmallPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
20
1
"""simple docstring""" _A = """Alexander Joslin""" import operator as op from .stack import Stack def a__ ( lowerCAmelCase ) -> int: UpperCAmelCase__ : Optional[Any] = {"""*""": op.mul, """/""": op.truediv, """+""": op.add, """-""": op.sub} UpperCAmelCase__ : Stack[int] = Stack() UpperCAmelCase__ : Stack[str] = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(lowerCAmelCase ) ) elif i in operators: # RULE 2 operator_stack.push(lowerCAmelCase ) elif i == ")": # RULE 4 UpperCAmelCase__ : List[Any] = operator_stack.peek() operator_stack.pop() UpperCAmelCase__ : Union[str, Any] = operand_stack.peek() operand_stack.pop() UpperCAmelCase__ : List[str] = operand_stack.peek() operand_stack.pop() UpperCAmelCase__ : str = operators[opr](lowerCAmelCase , lowerCAmelCase ) operand_stack.push(lowerCAmelCase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": _A = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(f'''{equation} = {dijkstras_two_stack_algorithm(equation)}''')
171
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCamelCase ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = ShapEImgaImgPipeline SCREAMING_SNAKE_CASE = ['image'] SCREAMING_SNAKE_CASE = ['image'] SCREAMING_SNAKE_CASE = [ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] SCREAMING_SNAKE_CASE = False @property def _a (self ): """simple docstring""" return 32 @property def _a (self ): """simple docstring""" return 32 @property def _a (self ): """simple docstring""" return self.time_input_dim * 4 @property def _a (self ): """simple docstring""" return 8 @property def _a (self ): """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase__ : str = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) UpperCAmelCase__ : Optional[int] = CLIPVisionModel(_lowerCamelCase ) return model @property def _a (self ): """simple docstring""" UpperCAmelCase__ : Tuple = CLIPImageProcessor( crop_size=224 , do_center_crop=_lowerCamelCase , do_normalize=_lowerCamelCase , do_resize=_lowerCamelCase , image_mean=[0.48_145_466, 0.4_578_275, 0.40_821_073] , image_std=[0.26_862_954, 0.26_130_258, 0.27_577_711] , resample=3 , size=224 , ) return image_processor @property def _a (self ): """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase__ : Tuple = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """embedding_proj_norm_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } UpperCAmelCase__ : int = PriorTransformer(**_lowerCamelCase ) return model @property def _a (self ): """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase__ : Optional[Any] = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } UpperCAmelCase__ : int = ShapERenderer(**_lowerCamelCase ) return model def _a (self ): """simple docstring""" UpperCAmelCase__ : Dict = self.dummy_prior UpperCAmelCase__ : str = self.dummy_image_encoder UpperCAmelCase__ : str = self.dummy_image_processor UpperCAmelCase__ : Dict = self.dummy_renderer UpperCAmelCase__ : int = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=_lowerCamelCase , clip_sample=_lowerCamelCase , clip_sample_range=1.0 , ) UpperCAmelCase__ : Optional[Any] = { """prior""": prior, """image_encoder""": image_encoder, """image_processor""": image_processor, """renderer""": renderer, """scheduler""": scheduler, } return components def _a (self , _lowerCamelCase , _lowerCamelCase=0 ): """simple docstring""" UpperCAmelCase__ : List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) if str(_lowerCamelCase ).startswith("""mps""" ): UpperCAmelCase__ : str = torch.manual_seed(_lowerCamelCase ) else: UpperCAmelCase__ : List[Any] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = { """image""": input_image, """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def _a (self ): """simple docstring""" UpperCAmelCase__ : int = """cpu""" UpperCAmelCase__ : Any = self.get_dummy_components() UpperCAmelCase__ : Optional[int] = self.pipeline_class(**_lowerCamelCase ) UpperCAmelCase__ : List[str] = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) UpperCAmelCase__ : Tuple = pipe(**self.get_dummy_inputs(_lowerCamelCase ) ) UpperCAmelCase__ : Tuple = output.images[0] UpperCAmelCase__ : Any = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) UpperCAmelCase__ : Optional[Any] = np.array( [ 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a (self ): """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Tuple = torch_device == """cpu""" UpperCAmelCase__ : int = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_lowerCamelCase , relax_max_difference=_lowerCamelCase , ) def _a (self ): """simple docstring""" UpperCAmelCase__ : List[str] = self.get_dummy_components() UpperCAmelCase__ : Optional[int] = self.pipeline_class(**_lowerCamelCase ) UpperCAmelCase__ : Optional[Any] = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) UpperCAmelCase__ : Optional[Any] = 1 UpperCAmelCase__ : Any = 2 UpperCAmelCase__ : Any = self.get_dummy_inputs(_lowerCamelCase ) for key in inputs.keys(): if key in self.batch_params: UpperCAmelCase__ : str = batch_size * [inputs[key]] UpperCAmelCase__ : Union[str, Any] = pipe(**_lowerCamelCase , num_images_per_prompt=_lowerCamelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def _a (self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _a (self ): """simple docstring""" UpperCAmelCase__ : str = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" ) UpperCAmelCase__ : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_img2img_out.npy""" ) UpperCAmelCase__ : Dict = ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" ) UpperCAmelCase__ : int = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) UpperCAmelCase__ : int = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) UpperCAmelCase__ : Dict = pipe( _lowerCamelCase , generator=_lowerCamelCase , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_lowerCamelCase , _lowerCamelCase )
171
1
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Any ) -> List[Any]: _UpperCAmelCase : Dict = r'''\w+[.]\d+''' _UpperCAmelCase : Tuple = re.findall(a__ , a__ ) for pat in pats: _UpperCAmelCase : Tuple = key.replace(a__ , "_".join(pat.split("." ) ) ) return key def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int , lowerCAmelCase: str , lowerCAmelCase: Union[str, Any] ) -> List[str]: _UpperCAmelCase : Optional[int] = pt_tuple_key[:-1] + ('''scale''',) if ( any("norm" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): _UpperCAmelCase : List[Any] = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: _UpperCAmelCase : int = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: _UpperCAmelCase : Optional[Any] = pt_tuple_key[:-1] + ('''embedding''',) return renamed_pt_tuple_key, pt_tensor # conv layer _UpperCAmelCase : str = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: _UpperCAmelCase : List[str] = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer _UpperCAmelCase : Dict = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight": _UpperCAmelCase : int = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight _UpperCAmelCase : Optional[Any] = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias _UpperCAmelCase : Tuple = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Any , lowerCAmelCase: str , lowerCAmelCase: Union[str, Any]=42 ) -> str: _UpperCAmelCase : str = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params _UpperCAmelCase : List[Any] = flax_model.init_weights(PRNGKey(a__ ) ) _UpperCAmelCase : List[str] = flatten_dict(a__ ) _UpperCAmelCase : Any = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): _UpperCAmelCase : List[str] = rename_key(a__ ) _UpperCAmelCase : Dict = tuple(renamed_pt_key.split("." ) ) # Correctly rename weight parameters _UpperCAmelCase : Union[str, Any] = rename_key_and_reshape_tensor(a__ , a__ , a__ ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # also add unexpected weight so that warning is thrown _UpperCAmelCase : str = jnp.asarray(a__ ) return unflatten_dict(a__ )
369
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool SCREAMING_SNAKE_CASE_ = { 'Acehnese Arabic': 'ace_Arab', 'Acehnese Latin': 'ace_Latn', 'Mesopotamian Arabic': 'acm_Arab', 'Ta\'izzi-Adeni Arabic': 'acq_Arab', 'Tunisian Arabic': 'aeb_Arab', 'Afrikaans': 'afr_Latn', 'South Levantine Arabic': 'ajp_Arab', 'Akan': 'aka_Latn', 'Amharic': 'amh_Ethi', 'North Levantine Arabic': 'apc_Arab', 'Modern Standard Arabic': 'arb_Arab', 'Modern Standard Arabic Romanized': 'arb_Latn', 'Najdi Arabic': 'ars_Arab', 'Moroccan Arabic': 'ary_Arab', 'Egyptian Arabic': 'arz_Arab', 'Assamese': 'asm_Beng', 'Asturian': 'ast_Latn', 'Awadhi': 'awa_Deva', 'Central Aymara': 'ayr_Latn', 'South Azerbaijani': 'azb_Arab', 'North Azerbaijani': 'azj_Latn', 'Bashkir': 'bak_Cyrl', 'Bambara': 'bam_Latn', 'Balinese': 'ban_Latn', 'Belarusian': 'bel_Cyrl', 'Bemba': 'bem_Latn', 'Bengali': 'ben_Beng', 'Bhojpuri': 'bho_Deva', 'Banjar Arabic': 'bjn_Arab', 'Banjar Latin': 'bjn_Latn', 'Standard Tibetan': 'bod_Tibt', 'Bosnian': 'bos_Latn', 'Buginese': 'bug_Latn', 'Bulgarian': 'bul_Cyrl', 'Catalan': 'cat_Latn', 'Cebuano': 'ceb_Latn', 'Czech': 'ces_Latn', 'Chokwe': 'cjk_Latn', 'Central Kurdish': 'ckb_Arab', 'Crimean Tatar': 'crh_Latn', 'Welsh': 'cym_Latn', 'Danish': 'dan_Latn', 'German': 'deu_Latn', 'Southwestern Dinka': 'dik_Latn', 'Dyula': 'dyu_Latn', 'Dzongkha': 'dzo_Tibt', 'Greek': 'ell_Grek', 'English': 'eng_Latn', 'Esperanto': 'epo_Latn', 'Estonian': 'est_Latn', 'Basque': 'eus_Latn', 'Ewe': 'ewe_Latn', 'Faroese': 'fao_Latn', 'Fijian': 'fij_Latn', 'Finnish': 'fin_Latn', 'Fon': 'fon_Latn', 'French': 'fra_Latn', 'Friulian': 'fur_Latn', 'Nigerian Fulfulde': 'fuv_Latn', 'Scottish Gaelic': 'gla_Latn', 'Irish': 'gle_Latn', 'Galician': 'glg_Latn', 'Guarani': 'grn_Latn', 'Gujarati': 'guj_Gujr', 'Haitian Creole': 'hat_Latn', 'Hausa': 'hau_Latn', 'Hebrew': 'heb_Hebr', 'Hindi': 'hin_Deva', 'Chhattisgarhi': 'hne_Deva', 'Croatian': 'hrv_Latn', 'Hungarian': 'hun_Latn', 'Armenian': 'hye_Armn', 'Igbo': 'ibo_Latn', 'Ilocano': 'ilo_Latn', 'Indonesian': 'ind_Latn', 'Icelandic': 'isl_Latn', 'Italian': 'ita_Latn', 'Javanese': 'jav_Latn', 'Japanese': 'jpn_Jpan', 'Kabyle': 'kab_Latn', 'Jingpho': 'kac_Latn', 'Kamba': 'kam_Latn', 'Kannada': 'kan_Knda', 'Kashmiri Arabic': 'kas_Arab', 'Kashmiri Devanagari': 'kas_Deva', 'Georgian': 'kat_Geor', 'Central Kanuri Arabic': 'knc_Arab', 'Central Kanuri Latin': 'knc_Latn', 'Kazakh': 'kaz_Cyrl', 'Kabiyè': 'kbp_Latn', 'Kabuverdianu': 'kea_Latn', 'Khmer': 'khm_Khmr', 'Kikuyu': 'kik_Latn', 'Kinyarwanda': 'kin_Latn', 'Kyrgyz': 'kir_Cyrl', 'Kimbundu': 'kmb_Latn', 'Northern Kurdish': 'kmr_Latn', 'Kikongo': 'kon_Latn', 'Korean': 'kor_Hang', 'Lao': 'lao_Laoo', 'Ligurian': 'lij_Latn', 'Limburgish': 'lim_Latn', 'Lingala': 'lin_Latn', 'Lithuanian': 'lit_Latn', 'Lombard': 'lmo_Latn', 'Latgalian': 'ltg_Latn', 'Luxembourgish': 'ltz_Latn', 'Luba-Kasai': 'lua_Latn', 'Ganda': 'lug_Latn', 'Luo': 'luo_Latn', 'Mizo': 'lus_Latn', 'Standard Latvian': 'lvs_Latn', 'Magahi': 'mag_Deva', 'Maithili': 'mai_Deva', 'Malayalam': 'mal_Mlym', 'Marathi': 'mar_Deva', 'Minangkabau Arabic ': 'min_Arab', 'Minangkabau Latin': 'min_Latn', 'Macedonian': 'mkd_Cyrl', 'Plateau Malagasy': 'plt_Latn', 'Maltese': 'mlt_Latn', 'Meitei Bengali': 'mni_Beng', 'Halh Mongolian': 'khk_Cyrl', 'Mossi': 'mos_Latn', 'Maori': 'mri_Latn', 'Burmese': 'mya_Mymr', 'Dutch': 'nld_Latn', 'Norwegian Nynorsk': 'nno_Latn', 'Norwegian Bokmål': 'nob_Latn', 'Nepali': 'npi_Deva', 'Northern Sotho': 'nso_Latn', 'Nuer': 'nus_Latn', 'Nyanja': 'nya_Latn', 'Occitan': 'oci_Latn', 'West Central Oromo': 'gaz_Latn', 'Odia': 'ory_Orya', 'Pangasinan': 'pag_Latn', 'Eastern Panjabi': 'pan_Guru', 'Papiamento': 'pap_Latn', 'Western Persian': 'pes_Arab', 'Polish': 'pol_Latn', 'Portuguese': 'por_Latn', 'Dari': 'prs_Arab', 'Southern Pashto': 'pbt_Arab', 'Ayacucho Quechua': 'quy_Latn', 'Romanian': 'ron_Latn', 'Rundi': 'run_Latn', 'Russian': 'rus_Cyrl', 'Sango': 'sag_Latn', 'Sanskrit': 'san_Deva', 'Santali': 'sat_Olck', 'Sicilian': 'scn_Latn', 'Shan': 'shn_Mymr', 'Sinhala': 'sin_Sinh', 'Slovak': 'slk_Latn', 'Slovenian': 'slv_Latn', 'Samoan': 'smo_Latn', 'Shona': 'sna_Latn', 'Sindhi': 'snd_Arab', 'Somali': 'som_Latn', 'Southern Sotho': 'sot_Latn', 'Spanish': 'spa_Latn', 'Tosk Albanian': 'als_Latn', 'Sardinian': 'srd_Latn', 'Serbian': 'srp_Cyrl', 'Swati': 'ssw_Latn', 'Sundanese': 'sun_Latn', 'Swedish': 'swe_Latn', 'Swahili': 'swh_Latn', 'Silesian': 'szl_Latn', 'Tamil': 'tam_Taml', 'Tatar': 'tat_Cyrl', 'Telugu': 'tel_Telu', 'Tajik': 'tgk_Cyrl', 'Tagalog': 'tgl_Latn', 'Thai': 'tha_Thai', 'Tigrinya': 'tir_Ethi', 'Tamasheq Latin': 'taq_Latn', 'Tamasheq Tifinagh': 'taq_Tfng', 'Tok Pisin': 'tpi_Latn', 'Tswana': 'tsn_Latn', 'Tsonga': 'tso_Latn', 'Turkmen': 'tuk_Latn', 'Tumbuka': 'tum_Latn', 'Turkish': 'tur_Latn', 'Twi': 'twi_Latn', 'Central Atlas Tamazight': 'tzm_Tfng', 'Uyghur': 'uig_Arab', 'Ukrainian': 'ukr_Cyrl', 'Umbundu': 'umb_Latn', 'Urdu': 'urd_Arab', 'Northern Uzbek': 'uzn_Latn', 'Venetian': 'vec_Latn', 'Vietnamese': 'vie_Latn', 'Waray': 'war_Latn', 'Wolof': 'wol_Latn', 'Xhosa': 'xho_Latn', 'Eastern Yiddish': 'ydd_Hebr', 'Yoruba': 'yor_Latn', 'Yue Chinese': 'yue_Hant', 'Chinese Simplified': 'zho_Hans', 'Chinese Traditional': 'zho_Hant', 'Standard Malay': 'zsm_Latn', 'Zulu': 'zul_Latn', } class a ( UpperCAmelCase ): _lowercase = "facebook/nllb-200-distilled-600M" _lowercase = ( "This is a tool that translates text from a language to another. It takes three inputs: `text`, which should " "be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, " "which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in " "plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`." ) _lowercase = "translator" _lowercase = AutoTokenizer _lowercase = AutoModelForSeqaSeqLM _lowercase = LANGUAGE_CODES _lowercase = ["text", "text", "text"] _lowercase = ["text"] def _UpperCAmelCase ( self , A_ , A_ , A_ ): '''simple docstring''' if src_lang not in self.lang_to_code: raise ValueError(f'{src_lang} is not a supported language.' ) if tgt_lang not in self.lang_to_code: raise ValueError(f'{tgt_lang} is not a supported language.' ) _UpperCAmelCase : int = self.lang_to_code[src_lang] _UpperCAmelCase : int = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( A_ , return_tensors="pt" , src_lang=A_ , tgt_lang=A_ ) def _UpperCAmelCase ( self , A_ ): '''simple docstring''' return self.model.generate(**A_ ) def _UpperCAmelCase ( self , A_ ): '''simple docstring''' return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=A_ )
189
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool __A = { "Acehnese Arabic": "ace_Arab", "Acehnese Latin": "ace_Latn", "Mesopotamian Arabic": "acm_Arab", "Ta'izzi-Adeni Arabic": "acq_Arab", "Tunisian Arabic": "aeb_Arab", "Afrikaans": "afr_Latn", "South Levantine Arabic": "ajp_Arab", "Akan": "aka_Latn", "Amharic": "amh_Ethi", "North Levantine Arabic": "apc_Arab", "Modern Standard Arabic": "arb_Arab", "Modern Standard Arabic Romanized": "arb_Latn", "Najdi Arabic": "ars_Arab", "Moroccan Arabic": "ary_Arab", "Egyptian Arabic": "arz_Arab", "Assamese": "asm_Beng", "Asturian": "ast_Latn", "Awadhi": "awa_Deva", "Central Aymara": "ayr_Latn", "South Azerbaijani": "azb_Arab", "North Azerbaijani": "azj_Latn", "Bashkir": "bak_Cyrl", "Bambara": "bam_Latn", "Balinese": "ban_Latn", "Belarusian": "bel_Cyrl", "Bemba": "bem_Latn", "Bengali": "ben_Beng", "Bhojpuri": "bho_Deva", "Banjar Arabic": "bjn_Arab", "Banjar Latin": "bjn_Latn", "Standard Tibetan": "bod_Tibt", "Bosnian": "bos_Latn", "Buginese": "bug_Latn", "Bulgarian": "bul_Cyrl", "Catalan": "cat_Latn", "Cebuano": "ceb_Latn", "Czech": "ces_Latn", "Chokwe": "cjk_Latn", "Central Kurdish": "ckb_Arab", "Crimean Tatar": "crh_Latn", "Welsh": "cym_Latn", "Danish": "dan_Latn", "German": "deu_Latn", "Southwestern Dinka": "dik_Latn", "Dyula": "dyu_Latn", "Dzongkha": "dzo_Tibt", "Greek": "ell_Grek", "English": "eng_Latn", "Esperanto": "epo_Latn", "Estonian": "est_Latn", "Basque": "eus_Latn", "Ewe": "ewe_Latn", "Faroese": "fao_Latn", "Fijian": "fij_Latn", "Finnish": "fin_Latn", "Fon": "fon_Latn", "French": "fra_Latn", "Friulian": "fur_Latn", "Nigerian Fulfulde": "fuv_Latn", "Scottish Gaelic": "gla_Latn", "Irish": "gle_Latn", "Galician": "glg_Latn", "Guarani": "grn_Latn", "Gujarati": "guj_Gujr", "Haitian Creole": "hat_Latn", "Hausa": "hau_Latn", "Hebrew": "heb_Hebr", "Hindi": "hin_Deva", "Chhattisgarhi": "hne_Deva", "Croatian": "hrv_Latn", "Hungarian": "hun_Latn", "Armenian": "hye_Armn", "Igbo": "ibo_Latn", "Ilocano": "ilo_Latn", "Indonesian": "ind_Latn", "Icelandic": "isl_Latn", "Italian": "ita_Latn", "Javanese": "jav_Latn", "Japanese": "jpn_Jpan", "Kabyle": "kab_Latn", "Jingpho": "kac_Latn", "Kamba": "kam_Latn", "Kannada": "kan_Knda", "Kashmiri Arabic": "kas_Arab", "Kashmiri Devanagari": "kas_Deva", "Georgian": "kat_Geor", "Central Kanuri Arabic": "knc_Arab", "Central Kanuri Latin": "knc_Latn", "Kazakh": "kaz_Cyrl", "Kabiyè": "kbp_Latn", "Kabuverdianu": "kea_Latn", "Khmer": "khm_Khmr", "Kikuyu": "kik_Latn", "Kinyarwanda": "kin_Latn", "Kyrgyz": "kir_Cyrl", "Kimbundu": "kmb_Latn", "Northern Kurdish": "kmr_Latn", "Kikongo": "kon_Latn", "Korean": "kor_Hang", "Lao": "lao_Laoo", "Ligurian": "lij_Latn", "Limburgish": "lim_Latn", "Lingala": "lin_Latn", "Lithuanian": "lit_Latn", "Lombard": "lmo_Latn", "Latgalian": "ltg_Latn", "Luxembourgish": "ltz_Latn", "Luba-Kasai": "lua_Latn", "Ganda": "lug_Latn", "Luo": "luo_Latn", "Mizo": "lus_Latn", "Standard Latvian": "lvs_Latn", "Magahi": "mag_Deva", "Maithili": "mai_Deva", "Malayalam": "mal_Mlym", "Marathi": "mar_Deva", "Minangkabau Arabic ": "min_Arab", "Minangkabau Latin": "min_Latn", "Macedonian": "mkd_Cyrl", "Plateau Malagasy": "plt_Latn", "Maltese": "mlt_Latn", "Meitei Bengali": "mni_Beng", "Halh Mongolian": "khk_Cyrl", "Mossi": "mos_Latn", "Maori": "mri_Latn", "Burmese": "mya_Mymr", "Dutch": "nld_Latn", "Norwegian Nynorsk": "nno_Latn", "Norwegian Bokmål": "nob_Latn", "Nepali": "npi_Deva", "Northern Sotho": "nso_Latn", "Nuer": "nus_Latn", "Nyanja": "nya_Latn", "Occitan": "oci_Latn", "West Central Oromo": "gaz_Latn", "Odia": "ory_Orya", "Pangasinan": "pag_Latn", "Eastern Panjabi": "pan_Guru", "Papiamento": "pap_Latn", "Western Persian": "pes_Arab", "Polish": "pol_Latn", "Portuguese": "por_Latn", "Dari": "prs_Arab", "Southern Pashto": "pbt_Arab", "Ayacucho Quechua": "quy_Latn", "Romanian": "ron_Latn", "Rundi": "run_Latn", "Russian": "rus_Cyrl", "Sango": "sag_Latn", "Sanskrit": "san_Deva", "Santali": "sat_Olck", "Sicilian": "scn_Latn", "Shan": "shn_Mymr", "Sinhala": "sin_Sinh", "Slovak": "slk_Latn", "Slovenian": "slv_Latn", "Samoan": "smo_Latn", "Shona": "sna_Latn", "Sindhi": "snd_Arab", "Somali": "som_Latn", "Southern Sotho": "sot_Latn", "Spanish": "spa_Latn", "Tosk Albanian": "als_Latn", "Sardinian": "srd_Latn", "Serbian": "srp_Cyrl", "Swati": "ssw_Latn", "Sundanese": "sun_Latn", "Swedish": "swe_Latn", "Swahili": "swh_Latn", "Silesian": "szl_Latn", "Tamil": "tam_Taml", "Tatar": "tat_Cyrl", "Telugu": "tel_Telu", "Tajik": "tgk_Cyrl", "Tagalog": "tgl_Latn", "Thai": "tha_Thai", "Tigrinya": "tir_Ethi", "Tamasheq Latin": "taq_Latn", "Tamasheq Tifinagh": "taq_Tfng", "Tok Pisin": "tpi_Latn", "Tswana": "tsn_Latn", "Tsonga": "tso_Latn", "Turkmen": "tuk_Latn", "Tumbuka": "tum_Latn", "Turkish": "tur_Latn", "Twi": "twi_Latn", "Central Atlas Tamazight": "tzm_Tfng", "Uyghur": "uig_Arab", "Ukrainian": "ukr_Cyrl", "Umbundu": "umb_Latn", "Urdu": "urd_Arab", "Northern Uzbek": "uzn_Latn", "Venetian": "vec_Latn", "Vietnamese": "vie_Latn", "Waray": "war_Latn", "Wolof": "wol_Latn", "Xhosa": "xho_Latn", "Eastern Yiddish": "ydd_Hebr", "Yoruba": "yor_Latn", "Yue Chinese": "yue_Hant", "Chinese Simplified": "zho_Hans", "Chinese Traditional": "zho_Hant", "Standard Malay": "zsm_Latn", "Zulu": "zul_Latn", } class snake_case ( __snake_case ): SCREAMING_SNAKE_CASE_ : str = """facebook/nllb-200-distilled-600M""" SCREAMING_SNAKE_CASE_ : List[str] = ( """This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """ """be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """ """which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """ """plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`.""" ) SCREAMING_SNAKE_CASE_ : str = """translator""" SCREAMING_SNAKE_CASE_ : Optional[int] = AutoTokenizer SCREAMING_SNAKE_CASE_ : str = AutoModelForSeqaSeqLM SCREAMING_SNAKE_CASE_ : Any = LANGUAGE_CODES SCREAMING_SNAKE_CASE_ : Optional[Any] = ["""text""", """text""", """text"""] SCREAMING_SNAKE_CASE_ : int = ["""text"""] def lowercase_ ( self : Dict , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any])-> int: '''simple docstring''' if src_lang not in self.lang_to_code: raise ValueError(f"{src_lang} is not a supported language.") if tgt_lang not in self.lang_to_code: raise ValueError(f"{tgt_lang} is not a supported language.") __lowerCAmelCase: int = self.lang_to_code[src_lang] __lowerCAmelCase: Tuple = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( UpperCamelCase__ , return_tensors="pt" , src_lang=UpperCamelCase__ , tgt_lang=UpperCamelCase__) def lowercase_ ( self : Optional[Any] , UpperCamelCase__ : Union[str, Any])-> str: '''simple docstring''' return self.model.generate(**UpperCamelCase__) def lowercase_ ( self : Union[str, Any] , UpperCamelCase__ : Optional[Any])-> List[Any]: '''simple docstring''' return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=UpperCamelCase__)
217
"""simple docstring""" import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[int]: # Construct model if gpta_config_file == "": __lowerCAmelCase: Optional[int] = GPTaConfig() else: __lowerCAmelCase: List[str] = GPTaConfig.from_json_file(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Optional[int] = GPTaModel(__SCREAMING_SNAKE_CASE ) # Load weights from numpy load_tf_weights_in_gpta(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Save pytorch-model __lowerCAmelCase: str = pytorch_dump_folder_path + "/" + WEIGHTS_NAME __lowerCAmelCase: List[Any] = pytorch_dump_folder_path + "/" + CONFIG_NAME print(F"Save PyTorch model to {pytorch_weights_dump_path}" ) torch.save(model.state_dict() , __SCREAMING_SNAKE_CASE ) print(F"Save configuration file to {pytorch_config_dump_path}" ) with open(__SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--gpt2_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--gpt2_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained OpenAI model. \n" "This specifies the model architecture." ), ) __A = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
217
1
def __a ( lowerCAmelCase_ : int ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_= (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def __a ( lowerCAmelCase_ : int = 50_00 ) -> str: '''simple docstring''' UpperCAmelCase_= [(i * (3 * i - 1)) // 2 for i in range(1 ,lowerCAmelCase__ )] for i, pentagonal_i in enumerate(lowerCAmelCase__ ): for j in range(lowerCAmelCase__ ,len(lowerCAmelCase__ ) ): UpperCAmelCase_= pentagonal_nums[j] UpperCAmelCase_= pentagonal_i + pentagonal_j UpperCAmelCase_= pentagonal_j - pentagonal_i if is_pentagonal(lowerCAmelCase__ ) and is_pentagonal(lowerCAmelCase__ ): return b return -1 if __name__ == "__main__": print(f'{solution() = }')
366
import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def __a ( ) -> str: '''simple docstring''' UpperCAmelCase_= torch.nn.Linear(2 ,4 ) UpperCAmelCase_= torch.optim.AdamW(model.parameters() ,lr=1.0 ) UpperCAmelCase_= torch.optim.lr_scheduler.OneCycleLR(lowerCAmelCase_ ,max_lr=0.01 ,steps_per_epoch=2 ,epochs=1 ) UpperCAmelCase_= DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) UpperCAmelCase_= DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def __a ( lowerCAmelCase_ : Any ) -> Union[str, Any]: '''simple docstring''' return (model.weight.abs().sum() + model.bias.abs().sum()).item() def __a ( lowerCAmelCase_ : Tuple ) -> Tuple: '''simple docstring''' UpperCAmelCase_= torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(lowerCAmelCase_ ) class lowercase ( snake_case__): """simple docstring""" @require_cuda def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: UpperCAmelCase_= Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(__UpperCAmelCase ): UpperCAmelCase_= Accelerator(cpu=__UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: UpperCAmelCase_= Accelerator() UpperCAmelCase_= GradientState() assert state.num_steps == 1 UpperCAmelCase_= 4 assert state.num_steps == 4 assert state.sync_gradients is True UpperCAmelCase_= False assert state.sync_gradients is False GradientState._reset_state() def _SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: UpperCAmelCase_= Accelerator() UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_= create_components() ( ( UpperCAmelCase_ ), ( UpperCAmelCase_ ), ( UpperCAmelCase_ ), ( UpperCAmelCase_ ), ( UpperCAmelCase_ ), )= accelerator.prepare(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Dict: UpperCAmelCase_= Accelerator() UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_= create_components() accelerator.prepare(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*__UpperCAmelCase : Dict , **__UpperCAmelCase : Tuple ): pass with patch("""torch.cuda.set_device""" , __UpperCAmelCase ), patch_environment(ACCELERATE_TORCH_DEVICE="""cuda:64""" ): UpperCAmelCase_= Accelerator() self.assertEqual(str(accelerator.state.device ) , """cuda:64""" ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: UpperCAmelCase_= Accelerator() UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_= create_components() accelerator.prepare(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase_= get_signature(__UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__UpperCAmelCase ) # make sure random weights don't match load_random_weights(__UpperCAmelCase ) self.assertTrue(abs(model_signature - get_signature(__UpperCAmelCase ) ) > 1E-3 ) # make sure loaded weights match accelerator.load_state(__UpperCAmelCase ) self.assertTrue(abs(model_signature - get_signature(__UpperCAmelCase ) ) < 1E-3 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: UpperCAmelCase_= Accelerator() UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_= create_components() accelerator.prepare(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase_= get_signature(__UpperCAmelCase ) # saving hook def save_config(__UpperCAmelCase : Tuple , __UpperCAmelCase : List[str] , __UpperCAmelCase : Tuple ): UpperCAmelCase_= {"""class_name""": models[0].__class__.__name__} with open(os.path.join(__UpperCAmelCase , """data.json""" ) , """w""" ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase ) # loading hook def load_config(__UpperCAmelCase : Tuple , __UpperCAmelCase : Union[str, Any] ): with open(os.path.join(__UpperCAmelCase , """data.json""" ) , """r""" ) as f: UpperCAmelCase_= json.load(__UpperCAmelCase ) UpperCAmelCase_= config["""class_name"""] UpperCAmelCase_= accelerator.register_save_state_pre_hook(__UpperCAmelCase ) UpperCAmelCase_= accelerator.register_load_state_pre_hook(__UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__UpperCAmelCase ) # make sure random weights don't match with hooks load_random_weights(__UpperCAmelCase ) self.assertTrue(abs(model_signature - get_signature(__UpperCAmelCase ) ) > 1E-3 ) # random class name to verify correct one is loaded UpperCAmelCase_= """random""" # make sure loaded weights match with hooks accelerator.load_state(__UpperCAmelCase ) self.assertTrue(abs(model_signature - get_signature(__UpperCAmelCase ) ) < 1E-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__UpperCAmelCase ) # make sure random weights don't match with hooks removed load_random_weights(__UpperCAmelCase ) self.assertTrue(abs(model_signature - get_signature(__UpperCAmelCase ) ) > 1E-3 ) # random class name to verify correct one is loaded UpperCAmelCase_= """random""" # make sure loaded weights match with hooks removed accelerator.load_state(__UpperCAmelCase ) self.assertTrue(abs(model_signature - get_signature(__UpperCAmelCase ) ) < 1E-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: UpperCAmelCase_= Accelerator() UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_= create_components() UpperCAmelCase_= None # This should work UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_= accelerator.prepare( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) self.assertTrue(dummy_obj is None ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: UpperCAmelCase_= Accelerator() UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_= create_components() UpperCAmelCase_= [1, 2, 3] # This should work UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_= accelerator.prepare( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) self.assertEqual( getattr(__UpperCAmelCase , """_is_accelerate_prepared""" , __UpperCAmelCase ) , __UpperCAmelCase , """Dummy object should have `_is_accelerate_prepared` set to `True`""" , ) self.assertEqual( getattr(__UpperCAmelCase , """_is_accelerate_prepared""" , __UpperCAmelCase ) , __UpperCAmelCase , """Model is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(__UpperCAmelCase , """_is_accelerate_prepared""" , __UpperCAmelCase ) , __UpperCAmelCase , """Optimizer is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(__UpperCAmelCase , """_is_accelerate_prepared""" , __UpperCAmelCase ) , __UpperCAmelCase , """Scheduler is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(__UpperCAmelCase , """_is_accelerate_prepared""" , __UpperCAmelCase ) , __UpperCAmelCase , """Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(__UpperCAmelCase , """_is_accelerate_prepared""" , __UpperCAmelCase ) , __UpperCAmelCase , """Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`""" , ) @slow @require_bnb def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: from transformers import AutoModelForCausalLM UpperCAmelCase_= AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , load_in_abit=__UpperCAmelCase , device_map={"""""": 0} , ) UpperCAmelCase_= Accelerator() # This should work UpperCAmelCase_= accelerator.prepare(__UpperCAmelCase ) @slow @require_bnb def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: from transformers import AutoModelForCausalLM UpperCAmelCase_= Accelerator() with init_empty_weights(): UpperCAmelCase_= AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , ) model.tie_weights() UpperCAmelCase_= infer_auto_device_map(__UpperCAmelCase ) UpperCAmelCase_= """cpu""" UpperCAmelCase_= AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , device_map=__UpperCAmelCase , load_in_abit=__UpperCAmelCase , llm_inta_enable_fpaa_cpu_offload=__UpperCAmelCase ) # This should not work and get value error with self.assertRaises(__UpperCAmelCase ): UpperCAmelCase_= accelerator.prepare(__UpperCAmelCase ) @slow @require_bnb @require_multi_gpu def _SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: from transformers import AutoModelForCausalLM UpperCAmelCase_= {"""distributed_type""": DistributedType.MULTI_GPU} with init_empty_weights(): UpperCAmelCase_= AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , ) model.tie_weights() UpperCAmelCase_= infer_auto_device_map(__UpperCAmelCase ) UpperCAmelCase_= 1 UpperCAmelCase_= AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , load_in_abit=__UpperCAmelCase , device_map=__UpperCAmelCase , ) UpperCAmelCase_= Accelerator() # This should not work and get value error with self.assertRaises(__UpperCAmelCase ): UpperCAmelCase_= accelerator.prepare(__UpperCAmelCase ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def _SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: from transformers import AutoModelForCausalLM with init_empty_weights(): UpperCAmelCase_= AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , ) UpperCAmelCase_= infer_auto_device_map(__UpperCAmelCase ) UpperCAmelCase_= 1 UpperCAmelCase_= AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , load_in_abit=__UpperCAmelCase , device_map=__UpperCAmelCase , ) UpperCAmelCase_= Accelerator() # This should work UpperCAmelCase_= accelerator.prepare(__UpperCAmelCase ) @require_cuda def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: UpperCAmelCase_= torch.nn.Linear(10 , 10 ) UpperCAmelCase_= torch.optim.SGD(model.parameters() , lr=0.01 ) UpperCAmelCase_= Accelerator(cpu=__UpperCAmelCase ) UpperCAmelCase_= accelerator.prepare(__UpperCAmelCase )
277
0
from __future__ import annotations def _lowerCAmelCase (_lowerCAmelCase): # This function is recursive UpperCamelCase_ = len(_lowerCAmelCase) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else UpperCamelCase_ = array[0] UpperCamelCase_ = False UpperCamelCase_ = 1 UpperCamelCase_ = [] while not is_found and i < array_length: if array[i] < pivot: UpperCamelCase_ = True UpperCamelCase_ = [element for element in array[i:] if element >= array[i]] UpperCamelCase_ = longest_subsequence(_lowerCAmelCase) if len(_lowerCAmelCase) > len(_lowerCAmelCase): UpperCamelCase_ = temp_array else: i += 1 UpperCamelCase_ = [element for element in array[1:] if element >= pivot] UpperCamelCase_ = [pivot, *longest_subsequence(_lowerCAmelCase)] if len(_lowerCAmelCase) > len(_lowerCAmelCase): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
128
from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) UpperCAmelCase : Optional[int] =logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase : Any =""" Examples: ```py >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline >>> from diffusers.utils import load_image >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior.to(\"cuda\") >>> prompt = \"A red cartoon frog, 4k\" >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False) >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16 ... ) >>> pipe.to(\"cuda\") >>> init_image = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/frog.png\" ... ) >>> image = pipe( ... image=init_image, ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... strength=0.2, ... ).images >>> image[0].save(\"red_frog.png\") ``` """ def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=8): UpperCamelCase_ = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCamelCase_ = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase=5_12 , _lowerCAmelCase=5_12): UpperCamelCase_ = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1) UpperCamelCase_ = np.array(pil_image.convert("RGB")) UpperCamelCase_ = arr.astype(np.floataa) / 127.5 - 1 UpperCamelCase_ = np.transpose(_lowerCAmelCase , [2, 0, 1]) UpperCamelCase_ = torch.from_numpy(_lowerCAmelCase).unsqueeze(0) return image class _lowercase (a_ ): '''simple docstring''' def __init__( self , snake_case__ , snake_case__ , snake_case__ , ): '''simple docstring''' super().__init__() self.register_modules( unet=snake_case__ , scheduler=snake_case__ , movq=snake_case__ , ) UpperCamelCase_ = 2 ** (len(self.movq.config.block_out_channels ) - 1) def _lowerCamelCase ( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' UpperCamelCase_ = min(int(num_inference_steps * strength ) , snake_case__ ) UpperCamelCase_ = max(num_inference_steps - init_timestep , 0 ) UpperCamelCase_ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _lowerCamelCase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=None ): '''simple docstring''' if not isinstance(snake_case__ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(snake_case__ )}""" ) UpperCamelCase_ = image.to(device=snake_case__ , dtype=snake_case__ ) UpperCamelCase_ = batch_size * num_images_per_prompt if image.shape[1] == 4: UpperCamelCase_ = image else: if isinstance(snake_case__ , snake_case__ ) and len(snake_case__ ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(snake_case__ )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) elif isinstance(snake_case__ , snake_case__ ): UpperCamelCase_ = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(snake_case__ ) ] UpperCamelCase_ = torch.cat(snake_case__ , dim=0 ) else: UpperCamelCase_ = self.movq.encode(snake_case__ ).latent_dist.sample(snake_case__ ) UpperCamelCase_ = self.movq.config.scaling_factor * init_latents UpperCamelCase_ = torch.cat([init_latents] , dim=0 ) UpperCamelCase_ = init_latents.shape UpperCamelCase_ = randn_tensor(snake_case__ , generator=snake_case__ , device=snake_case__ , dtype=snake_case__ ) # get latents UpperCamelCase_ = self.scheduler.add_noise(snake_case__ , snake_case__ , snake_case__ ) UpperCamelCase_ = init_latents return latents def _lowerCamelCase ( self , snake_case__=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) UpperCamelCase_ = torch.device(F"""cuda:{gpu_id}""" ) UpperCamelCase_ = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(snake_case__ , snake_case__ ) def _lowerCamelCase ( self , snake_case__=0 ): '''simple docstring''' if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) UpperCamelCase_ = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=snake_case__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCamelCase_ = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCamelCase_ , UpperCamelCase_ = cpu_offload_with_hook(snake_case__ , snake_case__ , prev_module_hook=snake_case__ ) # We'll offload the last model manually. UpperCamelCase_ = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _lowerCamelCase ( self ): '''simple docstring''' if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(snake_case__ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(snake_case__ ) def __call__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ = 512 , snake_case__ = 512 , snake_case__ = 100 , snake_case__ = 4.0 , snake_case__ = 0.3 , snake_case__ = 1 , snake_case__ = None , snake_case__ = "pil" , snake_case__ = True , ): '''simple docstring''' UpperCamelCase_ = self._execution_device UpperCamelCase_ = guidance_scale > 1.0 if isinstance(snake_case__ , snake_case__ ): UpperCamelCase_ = torch.cat(snake_case__ , dim=0 ) UpperCamelCase_ = image_embeds.shape[0] if isinstance(snake_case__ , snake_case__ ): UpperCamelCase_ = torch.cat(snake_case__ , dim=0 ) if do_classifier_free_guidance: UpperCamelCase_ = image_embeds.repeat_interleave(snake_case__ , dim=0 ) UpperCamelCase_ = negative_image_embeds.repeat_interleave(snake_case__ , dim=0 ) UpperCamelCase_ = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=snake_case__ ) if not isinstance(snake_case__ , snake_case__ ): UpperCamelCase_ = [image] if not all(isinstance(snake_case__ , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F"""Input is in incorrect format: {[type(snake_case__ ) for i in image]}. Currently, we only support PIL image and pytorch tensor""" ) UpperCamelCase_ = torch.cat([prepare_image(snake_case__ , snake_case__ , snake_case__ ) for i in image] , dim=0 ) UpperCamelCase_ = image.to(dtype=image_embeds.dtype , device=snake_case__ ) UpperCamelCase_ = self.movq.encode(snake_case__ )["latents"] UpperCamelCase_ = latents.repeat_interleave(snake_case__ , dim=0 ) self.scheduler.set_timesteps(snake_case__ , device=snake_case__ ) UpperCamelCase_ , UpperCamelCase_ = self.get_timesteps(snake_case__ , snake_case__ , snake_case__ ) UpperCamelCase_ = timesteps[:1].repeat(batch_size * num_images_per_prompt ) UpperCamelCase_ , UpperCamelCase_ = downscale_height_and_width(snake_case__ , snake_case__ , self.movq_scale_factor ) UpperCamelCase_ = self.prepare_latents( snake_case__ , snake_case__ , snake_case__ , snake_case__ , image_embeds.dtype , snake_case__ , snake_case__ ) for i, t in enumerate(self.progress_bar(snake_case__ ) ): # expand the latents if we are doing classifier free guidance UpperCamelCase_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCamelCase_ = {"image_embeds": image_embeds} UpperCamelCase_ = self.unet( sample=snake_case__ , timestep=snake_case__ , encoder_hidden_states=snake_case__ , added_cond_kwargs=snake_case__ , return_dict=snake_case__ , )[0] if do_classifier_free_guidance: UpperCamelCase_ , UpperCamelCase_ = noise_pred.split(latents.shape[1] , dim=1 ) UpperCamelCase_ , UpperCamelCase_ = noise_pred.chunk(2 ) UpperCamelCase_ , UpperCamelCase_ = variance_pred.chunk(2 ) UpperCamelCase_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCamelCase_ = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCamelCase_ , UpperCamelCase_ = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase_ = self.scheduler.step( snake_case__ , snake_case__ , snake_case__ , generator=snake_case__ , )[0] # post-processing UpperCamelCase_ = self.movq.decode(snake_case__ , force_not_quantize=snake_case__ )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: UpperCamelCase_ = image * 0.5 + 0.5 UpperCamelCase_ = image.clamp(0 , 1 ) UpperCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCamelCase_ = self.numpy_to_pil(snake_case__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case__ )
128
1
'''simple docstring''' from __future__ import annotations def __lowerCamelCase ( _lowercase ) -> list: if len(_lowercase ) == 0: return [] UpperCAmelCase : Union[str, Any] = min(_lowercase ), max(_lowercase ) UpperCAmelCase : str = int(max_value - min_value ) + 1 UpperCAmelCase : list[list] = [[] for _ in range(_lowercase )] for i in my_list: buckets[int(i - min_value )].append(_lowercase ) return [v for bucket in buckets for v in sorted(_lowercase )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -1_0, 1_5, 2, -2]) == [-1_0, -2, 0, 1, 2, 1_5]
350
'''simple docstring''' import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A , A = None , A = None , A = False , **A , ) -> Tuple: super().__init__(features=A , cache_dir=A , keep_in_memory=A , **A ) UpperCAmelCase : Any = Sql( cache_dir=A , features=A , sql=A , con=A , **A , ) def _lowercase( self ) -> Dict: UpperCAmelCase : Any = None UpperCAmelCase : Any = None UpperCAmelCase : int = None UpperCAmelCase : int = None self.builder.download_and_prepare( download_config=A , download_mode=A , verification_mode=A , base_path=A , ) # Build dataset for splits UpperCAmelCase : str = self.builder.as_dataset( split="""train""" , verification_mode=A , in_memory=self.keep_in_memory ) return dataset class UpperCamelCase_ : def __init__( self , A , A , A , A = None , A = None , **A , ) -> str: if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) UpperCAmelCase : Dict = dataset UpperCAmelCase : List[Any] = name UpperCAmelCase : Any = con UpperCAmelCase : Optional[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE UpperCAmelCase : Optional[Any] = num_proc UpperCAmelCase : str = to_sql_kwargs def _lowercase( self ) -> int: UpperCAmelCase : Any = self.to_sql_kwargs.pop("""sql""" , A ) UpperCAmelCase : str = self.to_sql_kwargs.pop("""con""" , A ) UpperCAmelCase : Union[str, Any] = self.to_sql_kwargs.pop("""index""" , A ) UpperCAmelCase : str = self._write(index=A , **self.to_sql_kwargs ) return written def _lowercase( self , A ) -> Any: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = args UpperCAmelCase : Union[str, Any] = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs UpperCAmelCase : int = query_table( table=self.dataset.data , key=slice(A , offset + self.batch_size ) , indices=self.dataset._indices , ) UpperCAmelCase : Any = batch.to_pandas() UpperCAmelCase : List[Any] = df.to_sql(self.name , self.con , index=A , **A ) return num_rows or len(A ) def _lowercase( self , A , **A ) -> int: UpperCAmelCase : Optional[int] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: UpperCAmelCase , UpperCAmelCase : List[str] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , A , A )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += num_rows return written
338
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a_ : int = logging.get_logger(__name__) a_ : List[str] = {"""vocab_file""": """sentencepiece.model"""} a_ : Union[str, Any] = { """vocab_file""": { """google/rembert""": """https://huggingface.co/google/rembert/resolve/main/sentencepiece.model""", }, } a_ : str = { """google/rembert""": 256, } class snake_case ( lowercase ): """simple docstring""" _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , UpperCamelCase , UpperCamelCase=False , UpperCamelCase=True , UpperCamelCase=True , UpperCamelCase="[CLS]" , UpperCamelCase="[SEP]" , UpperCamelCase="[UNK]" , UpperCamelCase="[SEP]" , UpperCamelCase="[PAD]" , UpperCamelCase="[CLS]" , UpperCamelCase="[MASK]" , **UpperCamelCase , ): """simple docstring""" super().__init__( do_lower_case=UpperCamelCase , remove_space=UpperCamelCase , keep_accents=UpperCamelCase , bos_token=UpperCamelCase , eos_token=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , **UpperCamelCase , ) lowerCamelCase_ = do_lower_case lowerCamelCase_ = remove_space lowerCamelCase_ = keep_accents lowerCamelCase_ = vocab_file lowerCamelCase_ = spm.SentencePieceProcessor() self.sp_model.Load(UpperCamelCase ) @property def snake_case ( self ): """simple docstring""" return len(self.sp_model ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = {self.convert_ids_to_tokens(UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): """simple docstring""" lowerCamelCase_ = self.__dict__.copy() lowerCamelCase_ = None return state def __setstate__( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = d lowerCamelCase_ = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def snake_case ( self , UpperCamelCase , UpperCamelCase=False ): """simple docstring""" lowerCamelCase_ = self.sp_model.EncodeAsPieces(UpperCamelCase ) return pieces def snake_case ( self , UpperCamelCase ): """simple docstring""" return self.sp_model.PieceToId(UpperCamelCase ) def snake_case ( self , UpperCamelCase ): """simple docstring""" return self.sp_model.IdToPiece(UpperCamelCase ) def snake_case ( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = self.sp_model.decode_pieces(UpperCamelCase ) return out_string def snake_case ( self , UpperCamelCase , UpperCamelCase = None ): """simple docstring""" lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def snake_case ( self , UpperCamelCase , UpperCamelCase = None , UpperCamelCase = False ): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(UpperCamelCase )) + [1] + ([0] * len(UpperCamelCase )) + [1] return [1] + ([0] * len(UpperCamelCase )) + [1] def snake_case ( self , UpperCamelCase , UpperCamelCase = None ): """simple docstring""" lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case ( self , UpperCamelCase , UpperCamelCase = None ): """simple docstring""" if not os.path.isdir(UpperCamelCase ): logger.error("Vocabulary path ({}) should be a directory".format(UpperCamelCase ) ) return lowerCamelCase_ = os.path.join( UpperCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase ): copyfile(self.vocab_file , UpperCamelCase ) return (out_vocab_file,)
55
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class snake_case ( lowercase ): """simple docstring""" _lowerCamelCase = 42 _lowerCamelCase = 42 def __init__( self , UpperCamelCase , UpperCamelCase ): """simple docstring""" super().__init__() self.register_modules(unet=UpperCamelCase , scheduler=UpperCamelCase ) @torch.no_grad() def __call__( self , UpperCamelCase = 1 , UpperCamelCase = 2000 , UpperCamelCase = None , UpperCamelCase = "pil" , UpperCamelCase = True , **UpperCamelCase , ): """simple docstring""" lowerCamelCase_ = self.unet.config.sample_size lowerCamelCase_ = (batch_size, 3, img_size, img_size) lowerCamelCase_ = self.unet lowerCamelCase_ = randn_tensor(UpperCamelCase , generator=UpperCamelCase ) * self.scheduler.init_noise_sigma lowerCamelCase_ = sample.to(self.device ) self.scheduler.set_timesteps(UpperCamelCase ) self.scheduler.set_sigmas(UpperCamelCase ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowerCamelCase_ = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): lowerCamelCase_ = self.unet(UpperCamelCase , UpperCamelCase ).sample lowerCamelCase_ = self.scheduler.step_correct(UpperCamelCase , UpperCamelCase , generator=UpperCamelCase ).prev_sample # prediction step lowerCamelCase_ = model(UpperCamelCase , UpperCamelCase ).sample lowerCamelCase_ = self.scheduler.step_pred(UpperCamelCase , UpperCamelCase , UpperCamelCase , generator=UpperCamelCase ) lowerCamelCase_ ,lowerCamelCase_ = output.prev_sample, output.prev_sample_mean lowerCamelCase_ = sample_mean.clamp(0 , 1 ) lowerCamelCase_ = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCamelCase_ = self.numpy_to_pil(UpperCamelCase ) if not return_dict: return (sample,) return ImagePipelineOutput(images=UpperCamelCase )
55
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : str = { 'google/mobilenet_v1_1.0_224': 'https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json', 'google/mobilenet_v1_0.75_192': 'https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : Dict = '''mobilenet_v1''' def __init__( self : int , SCREAMING_SNAKE_CASE__ : Tuple=3 , SCREAMING_SNAKE_CASE__ : Optional[Any]=2_2_4 , SCREAMING_SNAKE_CASE__ : int=1.0 , SCREAMING_SNAKE_CASE__ : Optional[int]=8 , SCREAMING_SNAKE_CASE__ : List[Any]="relu6" , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.999 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.02 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.001 , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ) -> Any: super().__init__(**SCREAMING_SNAKE_CASE__ ) if depth_multiplier <= 0: raise ValueError('depth_multiplier must be greater than zero.' ) a_ : List[Any] = num_channels a_ : Dict = image_size a_ : Dict = depth_multiplier a_ : Tuple = min_depth a_ : Tuple = hidden_act a_ : int = tf_padding a_ : int = classifier_dropout_prob a_ : List[Any] = initializer_range a_ : List[Any] = layer_norm_eps class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : str = version.parse('''1.11''' ) @property def SCREAMING_SNAKE_CASE ( self : Dict ) -> Mapping[str, Mapping[int, str]]: return OrderedDict([('pixel_values', {0: 'batch'})] ) @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([('logits', {0: 'batch'})] ) else: return OrderedDict([('last_hidden_state', {0: 'batch'}), ('pooler_output', {0: 'batch'})] ) @property def SCREAMING_SNAKE_CASE ( self : List[str] ) -> float: return 1E-4
120
from __future__ import annotations UpperCAmelCase_ : Dict = [True] * 100_0001 UpperCAmelCase_ : Any = 2 while i * i <= 100_0000: if seive[i]: for j in range(i * i, 100_0001, i): UpperCAmelCase_ : Tuple = False i += 1 def SCREAMING_SNAKE_CASE_ ( __A : int ) -> bool: """simple docstring""" return seive[n] def SCREAMING_SNAKE_CASE_ ( __A : int ) -> bool: """simple docstring""" return any(digit in '02468' for digit in str(__A ) ) def SCREAMING_SNAKE_CASE_ ( __A : int = 1_00_00_00 ) -> list[int]: """simple docstring""" a_ : Dict = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(__A ) and not contains_an_even_digit(__A ): a_ : Dict = str(__A ) a_ : Any = [int(str_num[j:] + str_num[:j] ) for j in range(len(__A ) )] if all(is_prime(__A ) for i in list_nums ): result.append(__A ) return result def SCREAMING_SNAKE_CASE_ ( ) -> int: """simple docstring""" return len(find_circular_primes() ) if __name__ == "__main__": print(F'{len(find_circular_primes()) = }')
120
1
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = ['''image_processor''', '''tokenizer'''] lowerCamelCase__ = '''OwlViTImageProcessor''' lowerCamelCase__ = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : int , __magic_name__ : List[Any]=None , __magic_name__ : str=None , **__magic_name__ : Tuple ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __magic_name__ , ) SCREAMING_SNAKE_CASE_ = kwargs.pop("feature_extractor" ) SCREAMING_SNAKE_CASE_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__magic_name__ , __magic_name__ ) def __call__( self : Dict , __magic_name__ : Optional[int]=None , __magic_name__ : Union[str, Any]=None , __magic_name__ : Union[str, Any]=None , __magic_name__ : Union[str, Any]="max_length" , __magic_name__ : List[Any]="np" , **__magic_name__ : Union[str, Any] ) -> Any: if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none." ) if text is not None: if isinstance(__magic_name__ , __magic_name__ ) or (isinstance(__magic_name__ , __magic_name__ ) and not isinstance(text[0] , __magic_name__ )): SCREAMING_SNAKE_CASE_ = [self.tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ )] elif isinstance(__magic_name__ , __magic_name__ ) and isinstance(text[0] , __magic_name__ ): SCREAMING_SNAKE_CASE_ = [] # Maximum number of queries across batch SCREAMING_SNAKE_CASE_ = max([len(__magic_name__ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(__magic_name__ ) != max_num_queries: SCREAMING_SNAKE_CASE_ = t + [" "] * (max_num_queries - len(__magic_name__ )) SCREAMING_SNAKE_CASE_ = self.tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ ) encodings.append(__magic_name__ ) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings" ) if return_tensors == "np": SCREAMING_SNAKE_CASE_ = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) SCREAMING_SNAKE_CASE_ = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp SCREAMING_SNAKE_CASE_ = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) SCREAMING_SNAKE_CASE_ = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch SCREAMING_SNAKE_CASE_ = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0 ) SCREAMING_SNAKE_CASE_ = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf SCREAMING_SNAKE_CASE_ = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0 ) SCREAMING_SNAKE_CASE_ = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0 ) else: raise ValueError("Target return tensor type could not be returned" ) SCREAMING_SNAKE_CASE_ = BatchEncoding() SCREAMING_SNAKE_CASE_ = input_ids SCREAMING_SNAKE_CASE_ = attention_mask if query_images is not None: SCREAMING_SNAKE_CASE_ = BatchEncoding() SCREAMING_SNAKE_CASE_ = self.image_processor( __magic_name__ , return_tensors=__magic_name__ , **__magic_name__ ).pixel_values SCREAMING_SNAKE_CASE_ = query_pixel_values if images is not None: SCREAMING_SNAKE_CASE_ = self.image_processor(__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ ) if text is not None and images is not None: SCREAMING_SNAKE_CASE_ = image_features.pixel_values return encoding elif query_images is not None and images is not None: SCREAMING_SNAKE_CASE_ = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__magic_name__ ) , tensor_type=__magic_name__ ) def __A ( self : List[Any] , *__magic_name__ : Dict , **__magic_name__ : List[Any] ) -> Optional[int]: return self.image_processor.post_process(*__magic_name__ , **__magic_name__ ) def __A ( self : Dict , *__magic_name__ : Optional[int] , **__magic_name__ : int ) -> List[str]: return self.image_processor.post_process_object_detection(*__magic_name__ , **__magic_name__ ) def __A ( self : Tuple , *__magic_name__ : Optional[Any] , **__magic_name__ : int ) -> Optional[int]: return self.image_processor.post_process_image_guided_detection(*__magic_name__ , **__magic_name__ ) def __A ( self : List[Any] , *__magic_name__ : Tuple , **__magic_name__ : Optional[int] ) -> Optional[Any]: return self.tokenizer.batch_decode(*__magic_name__ , **__magic_name__ ) def __A ( self : Tuple , *__magic_name__ : Dict , **__magic_name__ : int ) -> str: return self.tokenizer.decode(*__magic_name__ , **__magic_name__ ) @property def __A ( self : Union[str, Any] ) -> Optional[int]: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __magic_name__ , ) return self.image_processor_class @property def __A ( self : Union[str, Any] ) -> Optional[Any]: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __magic_name__ , ) return self.image_processor
118
import math from datetime import datetime, timedelta def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = year % 1_9 SCREAMING_SNAKE_CASE_ = year % 4 SCREAMING_SNAKE_CASE_ = year % 7 SCREAMING_SNAKE_CASE_ = math.floor(year / 1_0_0 ) SCREAMING_SNAKE_CASE_ = math.floor((1_3 + 8 * leap_day_inhibits) / 2_5 ) SCREAMING_SNAKE_CASE_ = leap_day_inhibits / 4 SCREAMING_SNAKE_CASE_ = ( 1_5 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 3_0 SCREAMING_SNAKE_CASE_ = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 SCREAMING_SNAKE_CASE_ = (1_9 * metonic_cycle + secular_moon_shift) % 3_0 # PHM -> Paschal Full Moon SCREAMING_SNAKE_CASE_ = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 2_9 and days_from_phm_to_sunday == 6: return datetime(__UpperCamelCase , 4 , 1_9 ) elif days_to_add == 2_8 and days_from_phm_to_sunday == 6: return datetime(__UpperCamelCase , 4 , 1_8 ) else: return datetime(__UpperCamelCase , 3 , 2_2 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (19_94, 20_00, 20_10, 20_21, 20_23): A : Dict = "will be" if year > datetime.now().year else "was" print(f"Easter in {year} {tense} {gauss_easter(year)}")
118
1
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class __A ( a ): """simple docstring""" UpperCamelCase__ : BigBirdConfig UpperCamelCase__ : jnp.dtype =jnp.floataa UpperCamelCase__ : bool =True def __lowercase ( self ): """simple docstring""" super().setup() __UpperCamelCase : Optional[Any] =nn.Dense(5 , dtype=self.dtype ) def __call__( self , *lowerCamelCase__ , **lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : int =super().__call__(*lowerCamelCase__ , **lowerCamelCase__ ) __UpperCamelCase : Tuple =self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class __A ( a ): """simple docstring""" UpperCamelCase__ : int =FlaxBigBirdForNaturalQuestionsModule def A ( a_ ,a_ ,a_ ,a_ ,a_ ,a_ ) -> Any: def cross_entropy(a_ ,a_ ,a_=None ): __UpperCamelCase : List[Any] =logits.shape[-1] __UpperCamelCase : List[Any] =(labels[..., None] == jnp.arange(a_ )[None]).astype('f4' ) __UpperCamelCase : Union[str, Any] =jax.nn.log_softmax(a_ ,axis=-1 ) __UpperCamelCase : Tuple =-jnp.sum(labels * logits ,axis=-1 ) if reduction is not None: __UpperCamelCase : str =reduction(a_ ) return loss __UpperCamelCase : Dict =partial(a_ ,reduction=jnp.mean ) __UpperCamelCase : List[Any] =cross_entropy(a_ ,a_ ) __UpperCamelCase : int =cross_entropy(a_ ,a_ ) __UpperCamelCase : Optional[Any] =cross_entropy(a_ ,a_ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class __A : """simple docstring""" UpperCamelCase__ : str ="google/bigbird-roberta-base" UpperCamelCase__ : int =3_0_0_0 UpperCamelCase__ : int =1_0_5_0_0 UpperCamelCase__ : int =1_2_8 UpperCamelCase__ : int =3 UpperCamelCase__ : int =1 UpperCamelCase__ : int =5 # tx_args UpperCamelCase__ : float =3E-5 UpperCamelCase__ : float =0.0 UpperCamelCase__ : int =2_0_0_0_0 UpperCamelCase__ : float =0.0095 UpperCamelCase__ : str ="bigbird-roberta-natural-questions" UpperCamelCase__ : str ="training-expt" UpperCamelCase__ : str ="data/nq-training.jsonl" UpperCamelCase__ : str ="data/nq-validation.jsonl" def __lowercase ( self ): """simple docstring""" os.makedirs(self.base_dir , exist_ok=lowerCamelCase__ ) __UpperCamelCase : List[str] =os.path.join(self.base_dir , self.save_dir ) __UpperCamelCase : Tuple =self.batch_size_per_device * jax.device_count() @dataclass class __A : """simple docstring""" UpperCamelCase__ : int UpperCamelCase__ : int =4_0_9_6 # no dynamic padding on TPUs def __call__( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : int =self.collate_fn(lowerCamelCase__ ) __UpperCamelCase : Dict =jax.tree_util.tree_map(lowerCamelCase__ , lowerCamelCase__ ) return batch def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase , __UpperCamelCase : int =self.fetch_inputs(features['input_ids'] ) __UpperCamelCase : Any ={ 'input_ids': jnp.array(lowerCamelCase__ , dtype=jnp.intaa ), 'attention_mask': jnp.array(lowerCamelCase__ , dtype=jnp.intaa ), 'start_labels': jnp.array(features['start_token'] , dtype=jnp.intaa ), 'end_labels': jnp.array(features['end_token'] , dtype=jnp.intaa ), 'pooled_labels': jnp.array(features['category'] , dtype=jnp.intaa ), } return batch def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : List[Any] =[self._fetch_inputs(lowerCamelCase__ ) for ids in input_ids] return zip(*lowerCamelCase__ ) def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Any =[1 for _ in range(len(lowerCamelCase__ ) )] while len(lowerCamelCase__ ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def A ( a_ ,a_ ,a_=None ) -> Any: if seed is not None: __UpperCamelCase : Optional[int] =dataset.shuffle(seed=a_ ) for i in range(len(a_ ) // batch_size ): __UpperCamelCase : str =dataset[i * batch_size : (i + 1) * batch_size] yield dict(a_ ) @partial(jax.pmap ,axis_name='batch' ) def A ( a_ ,a_ ,**a_ ) -> List[Any]: def loss_fn(a_ ): __UpperCamelCase : List[str] =model_inputs.pop('start_labels' ) __UpperCamelCase : Union[str, Any] =model_inputs.pop('end_labels' ) __UpperCamelCase : List[str] =model_inputs.pop('pooled_labels' ) __UpperCamelCase : Any =state.apply_fn(**a_ ,params=a_ ,dropout_rng=a_ ,train=a_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Optional[Any] =outputs return state.loss_fn( a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,) __UpperCamelCase , __UpperCamelCase : List[str] =jax.random.split(a_ ) __UpperCamelCase : List[str] =jax.value_and_grad(a_ ) __UpperCamelCase , __UpperCamelCase : Dict =grad_fn(state.params ) __UpperCamelCase : List[Any] =jax.lax.pmean({'loss': loss} ,axis_name='batch' ) __UpperCamelCase : Union[str, Any] =jax.lax.pmean(a_ ,'batch' ) __UpperCamelCase : Union[str, Any] =state.apply_gradients(grads=a_ ) return state, metrics, new_drp_rng @partial(jax.pmap ,axis_name='batch' ) def A ( a_ ,**a_ ) -> Any: __UpperCamelCase : Union[str, Any] =model_inputs.pop('start_labels' ) __UpperCamelCase : int =model_inputs.pop('end_labels' ) __UpperCamelCase : List[str] =model_inputs.pop('pooled_labels' ) __UpperCamelCase : Union[str, Any] =state.apply_fn(**a_ ,params=state.params ,train=a_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : List[str] =outputs __UpperCamelCase : Dict =state.loss_fn(a_ ,a_ ,a_ ,a_ ,a_ ,a_ ) __UpperCamelCase : Tuple =jax.lax.pmean({'loss': loss} ,axis_name='batch' ) return metrics class __A ( train_state.TrainState ): """simple docstring""" UpperCamelCase__ : Callable =struct.field(pytree_node=a ) @dataclass class __A : """simple docstring""" UpperCamelCase__ : Args UpperCamelCase__ : Callable UpperCamelCase__ : Callable UpperCamelCase__ : Callable UpperCamelCase__ : Callable UpperCamelCase__ : wandb UpperCamelCase__ : Callable =None def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None ): """simple docstring""" __UpperCamelCase : Dict =model.params __UpperCamelCase : Tuple =TrainState.create( apply_fn=model.__call__ , params=lowerCamelCase__ , tx=lowerCamelCase__ , loss_fn=lowerCamelCase__ , ) if ckpt_dir is not None: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : int =restore_checkpoint(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Tuple ={ 'lr': args.lr, 'init_lr': args.init_lr, 'warmup_steps': args.warmup_steps, 'num_train_steps': num_train_steps, 'weight_decay': args.weight_decay, } __UpperCamelCase , __UpperCamelCase : List[Any] =build_tx(**lowerCamelCase__ ) __UpperCamelCase : Optional[Any] =train_state.TrainState( step=lowerCamelCase__ , apply_fn=model.__call__ , params=lowerCamelCase__ , tx=lowerCamelCase__ , opt_state=lowerCamelCase__ , ) __UpperCamelCase : int =args __UpperCamelCase : List[Any] =data_collator __UpperCamelCase : Union[str, Any] =lr __UpperCamelCase : Tuple =params __UpperCamelCase : Optional[int] =jax_utils.replicate(lowerCamelCase__ ) return state def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : int =self.args __UpperCamelCase : Optional[Any] =len(lowerCamelCase__ ) // args.batch_size __UpperCamelCase : Optional[Any] =jax.random.PRNGKey(0 ) __UpperCamelCase : Any =jax.random.split(lowerCamelCase__ , jax.device_count() ) for epoch in range(args.max_epochs ): __UpperCamelCase : Optional[Any] =jnp.array(0 , dtype=jnp.floataa ) __UpperCamelCase : Dict =get_batched_dataset(lowerCamelCase__ , args.batch_size , seed=lowerCamelCase__ ) __UpperCamelCase : Dict =0 for batch in tqdm(lowerCamelCase__ , total=lowerCamelCase__ , desc=f'Running EPOCH-{epoch}' ): __UpperCamelCase : str =self.data_collator(lowerCamelCase__ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Optional[Any] =self.train_step_fn(lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ) running_loss += jax_utils.unreplicate(metrics['loss'] ) i += 1 if i % args.logging_steps == 0: __UpperCamelCase : Optional[Any] =jax_utils.unreplicate(state.step ) __UpperCamelCase : Any =running_loss.item() / i __UpperCamelCase : int =self.scheduler_fn(state_step - 1 ) __UpperCamelCase : List[str] =self.evaluate(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] ={ 'step': state_step.item(), 'eval_loss': eval_loss.item(), 'tr_loss': tr_loss, 'lr': lr.item(), } tqdm.write(str(lowerCamelCase__ ) ) self.logger.log(lowerCamelCase__ , commit=lowerCamelCase__ ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f'-e{epoch}-s{i}' , state=lowerCamelCase__ ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Tuple =get_batched_dataset(lowerCamelCase__ , self.args.batch_size ) __UpperCamelCase : Optional[int] =len(lowerCamelCase__ ) // self.args.batch_size __UpperCamelCase : Optional[int] =jnp.array(0 , dtype=jnp.floataa ) __UpperCamelCase : List[Any] =0 for batch in tqdm(lowerCamelCase__ , total=lowerCamelCase__ , desc='Evaluating ... ' ): __UpperCamelCase : Optional[int] =self.data_collator(lowerCamelCase__ ) __UpperCamelCase : List[str] =self.val_step_fn(lowerCamelCase__ , **lowerCamelCase__ ) running_loss += jax_utils.unreplicate(metrics['loss'] ) i += 1 return running_loss / i def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : List[Any] =jax_utils.unreplicate(lowerCamelCase__ ) print(f'SAVING CHECKPOINT IN {save_dir}' , end=' ... ' ) self.model_save_fn(lowerCamelCase__ , params=state.params ) with open(os.path.join(lowerCamelCase__ , 'opt_state.msgpack' ) , 'wb' ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(lowerCamelCase__ , 'args.joblib' ) ) joblib.dump(self.data_collator , os.path.join(lowerCamelCase__ , 'data_collator.joblib' ) ) with open(os.path.join(lowerCamelCase__ , 'training_state.json' ) , 'w' ) as f: json.dump({'step': state.step.item()} , lowerCamelCase__ ) print('DONE' ) def A ( a_ ,a_ ) -> Tuple: print(F'RESTORING CHECKPOINT FROM {save_dir}' ,end=' ... ' ) with open(os.path.join(a_ ,'flax_model.msgpack' ) ,'rb' ) as f: __UpperCamelCase : str =from_bytes(state.params ,f.read() ) with open(os.path.join(a_ ,'opt_state.msgpack' ) ,'rb' ) as f: __UpperCamelCase : Tuple =from_bytes(state.opt_state ,f.read() ) __UpperCamelCase : Tuple =joblib.load(os.path.join(a_ ,'args.joblib' ) ) __UpperCamelCase : List[str] =joblib.load(os.path.join(a_ ,'data_collator.joblib' ) ) with open(os.path.join(a_ ,'training_state.json' ) ,'r' ) as f: __UpperCamelCase : Optional[Any] =json.load(a_ ) __UpperCamelCase : Optional[Any] =training_state['step'] print('DONE' ) return params, opt_state, step, args, data_collator def A ( a_ ,a_ ,a_ ,a_ ) -> List[Any]: __UpperCamelCase : List[str] =num_train_steps - warmup_steps __UpperCamelCase : Dict =optax.linear_schedule(init_value=a_ ,end_value=a_ ,transition_steps=a_ ) __UpperCamelCase : Union[str, Any] =optax.linear_schedule(init_value=a_ ,end_value=1e-7 ,transition_steps=a_ ) __UpperCamelCase : List[str] =optax.join_schedules(schedules=[warmup_fn, decay_fn] ,boundaries=[warmup_steps] ) return lr def A ( a_ ,a_ ,a_ ,a_ ,a_ ) -> int: def weight_decay_mask(a_ ): __UpperCamelCase : Any =traverse_util.flatten_dict(a_ ) __UpperCamelCase : Optional[int] ={k: (v[-1] != 'bias' and v[-2:] != ('LayerNorm', 'scale')) for k, v in params.items()} return traverse_util.unflatten_dict(a_ ) __UpperCamelCase : Dict =scheduler_fn(a_ ,a_ ,a_ ,a_ ) __UpperCamelCase : List[str] =optax.adamw(learning_rate=a_ ,weight_decay=a_ ,mask=a_ ) return tx, lr
245
import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): A_ :Any = yaml.safe_load( '''\ name: "" allow_empty: false allow_empty_text: true subsections: - name: "Dataset Card for X" # First-level markdown heading allow_empty: false allow_empty_text: true subsections: - name: "Table of Contents" allow_empty: false allow_empty_text: false subsections: null - name: "Dataset Description" allow_empty: false allow_empty_text: false subsections: - name: "Dataset Summary" allow_empty: false allow_empty_text: false subsections: null - name: "Supported Tasks and Leaderboards" allow_empty: true allow_empty_text: true subsections: null - name: Languages allow_empty: false allow_empty_text: true subsections: null ''' ) A_ :Dict = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } A_ :str = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' A_ :Dict = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. #### Extra Ignored Subsection ### Supported Tasks and Leaderboards ### Languages Language Text ''' A_ :List[str] = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Extra Ignored Subsection''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], } ], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } A_ :int = '''\ --- --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' A_ :Tuple = ( '''The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.''' ) A_ :Tuple = '''\ # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' A_ :Optional[int] = ( '''The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.''' ) A_ :Dict = '''\ --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' A_ :Optional[int] = '''The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.''' A_ :Optional[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary ### Supported Tasks and Leaderboards ### Languages Language Text ''' A_ :List[Any] = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).''' A_ :Dict = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ''' A_ :Union[str, Any] = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.''' A_ :Any = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Languages Language Text ''' A_ :Optional[Any] = '''The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.''' A_ :Tuple = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages ''' A_ :Union[str, Any] = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.''' A_ :Optional[Any] = '''\ --- language: - zh - en --- ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' A_ :Dict = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.''' A_ :Union[str, Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text # Dataset Card My Dataset ''' A_ :Any = '''The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.''' A_ :str = '''\ --- language: - zh - en --- # Dataset Card My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' A_ :str = '''The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.''' A_ :str = '''''' A_ :Optional[int] = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.''' A_ :Dict = '''\ --- language: - zh - en --- # Dataset Card for My Dataset # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' A_ :List[str] = '''The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.''' @pytest.mark.parametrize( 'readme_md, expected_dict' ,[ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] ,) def A ( a_ ,a_ ) -> List[str]: assert ReadMe.from_string(a_ ,a_ ).to_dict() == expected_dict @pytest.mark.parametrize( 'readme_md, expected_error' ,[ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] ,) def A ( a_ ,a_ ) -> int: with pytest.raises(a_ ,match=re.escape(expected_error.format(path='root' ) ) ): __UpperCamelCase : List[Any] =ReadMe.from_string(a_ ,a_ ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error' ,[ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] ,) def A ( a_ ,a_ ) -> Union[str, Any]: with pytest.raises(a_ ,match=re.escape(expected_error.format(path='root' ) ) ): ReadMe.from_string(a_ ,a_ ) @pytest.mark.parametrize( 'readme_md,' ,[ (README_MULTIPLE_SAME_HEADING_1), ] ,) def A ( a_ ) -> Tuple: ReadMe.from_string(a_ ,a_ ,suppress_parsing_errors=a_ ) @pytest.mark.parametrize( 'readme_md, expected_dict' ,[ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] ,) def A ( a_ ,a_ ) -> List[Any]: with tempfile.TemporaryDirectory() as tmp_dir: __UpperCamelCase : Dict =Path(a_ ) / 'README.md' with open(a_ ,'w+' ) as readme_file: readme_file.write(a_ ) __UpperCamelCase : Optional[Any] =ReadMe.from_readme(a_ ,a_ ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( 'readme_md, expected_error' ,[ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] ,) def A ( a_ ,a_ ) -> List[str]: with tempfile.TemporaryDirectory() as tmp_dir: __UpperCamelCase : Any =Path(a_ ) / 'README.md' with open(a_ ,'w+' ) as readme_file: readme_file.write(a_ ) __UpperCamelCase : Optional[int] =expected_error.format(path=a_ ) with pytest.raises(a_ ,match=re.escape(a_ ) ): __UpperCamelCase : List[str] =ReadMe.from_readme(a_ ,a_ ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error' ,[ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] ,) def A ( a_ ,a_ ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: __UpperCamelCase : Optional[Any] =Path(a_ ) / 'README.md' with open(a_ ,'w+' ) as readme_file: readme_file.write(a_ ) __UpperCamelCase : Optional[int] =expected_error.format(path=a_ ) with pytest.raises(a_ ,match=re.escape(a_ ) ): ReadMe.from_readme(a_ ,a_ ) @pytest.mark.parametrize( 'readme_md,' ,[ (README_MULTIPLE_SAME_HEADING_1), ] ,) def A ( a_ ) -> Any: with tempfile.TemporaryDirectory() as tmp_dir: __UpperCamelCase : Union[str, Any] =Path(a_ ) / 'README.md' with open(a_ ,'w+' ) as readme_file: readme_file.write(a_ ) ReadMe.from_readme(a_ ,a_ ,suppress_parsing_errors=a_ )
245
1
def _snake_case( SCREAMING_SNAKE_CASE__ : int ) -> int: '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or number < 0: raise ValueError('Input must be a non-negative integer' ) A__ = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
7
import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def snake_case( __magic_name__ ) -> Optional[Any]: '''simple docstring''' assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def snake_case( ) -> Optional[Any]: '''simple docstring''' assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def snake_case( ) -> int: '''simple docstring''' lowercase : List[str] = '''mock-s3-bucket''' lowercase : Optional[int] = F"""s3://{mock_bucket}""" lowercase : List[Any] = extract_path_from_uri(__magic_name__ ) assert dataset_path.startswith('''s3://''' ) is False lowercase : Optional[int] = '''./local/path''' lowercase : Dict = extract_path_from_uri(__magic_name__ ) assert dataset_path == new_dataset_path def snake_case( __magic_name__ ) -> Optional[Any]: '''simple docstring''' lowercase : Tuple = is_remote_filesystem(__magic_name__ ) assert is_remote is True lowercase : int = fsspec.filesystem('''file''' ) lowercase : Optional[Any] = is_remote_filesystem(__magic_name__ ) assert is_remote is False @pytest.mark.parametrize('''compression_fs_class''' , __magic_name__ ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[int]: '''simple docstring''' lowercase : Optional[Any] = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_file, '''bz2''': bza_file, '''lz4''': lza_file} lowercase : List[Any] = input_paths[compression_fs_class.protocol] if input_path is None: lowercase : Dict = F"""for '{compression_fs_class.protocol}' compression protocol, """ if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__magic_name__ ) lowercase : Any = fsspec.filesystem(compression_fs_class.protocol , fo=__magic_name__ ) assert isinstance(__magic_name__ , __magic_name__ ) lowercase : List[Any] = os.path.basename(__magic_name__ ) lowercase : Tuple = expected_filename[: expected_filename.rindex('''.''' )] assert fs.glob('''*''' ) == [expected_filename] with fs.open(__magic_name__ , '''r''' , encoding='''utf-8''' ) as f, open(__magic_name__ , encoding='''utf-8''' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('''protocol''' , ['''zip''', '''gzip'''] ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[int]: '''simple docstring''' lowercase : Optional[Any] = {'''zip''': zip_jsonl_path, '''gzip''': jsonl_gz_path} lowercase : List[str] = compressed_file_paths[protocol] lowercase : str = '''dataset.jsonl''' lowercase : List[str] = F"""{protocol}://{member_file_path}::{compressed_file_path}""" lowercase , *lowercase : Tuple = fsspec.get_fs_token_paths(__magic_name__ ) assert fs.isfile(__magic_name__ ) assert not fs.isfile('''non_existing_''' + member_file_path ) @pytest.mark.integration def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Dict: '''simple docstring''' lowercase : Optional[Any] = hf_api.dataset_info(__magic_name__ , token=__magic_name__ ) lowercase : int = HfFileSystem(repo_info=__magic_name__ , token=__magic_name__ ) assert sorted(hffs.glob('''*''' ) ) == [".gitattributes", "data"] assert hffs.isdir('''data''' ) assert hffs.isfile('''.gitattributes''' ) and hffs.isfile('''data/text_data.txt''' ) with open(__magic_name__ ) as f: assert hffs.open('''data/text_data.txt''' , '''r''' ).read() == f.read() def snake_case( ) -> List[Any]: '''simple docstring''' lowercase : List[Any] = '''bz2''' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(__magic_name__ , __magic_name__ , clobber=__magic_name__ ) with pytest.warns(__magic_name__ ) as warning_info: importlib.reload(datasets.filesystems ) assert len(__magic_name__ ) == 1 assert ( str(warning_info[0].message ) == F"""A filesystem protocol was already set for {protocol} and will be overwritten.""" )
308
0
'''simple docstring''' import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available __UpperCamelCase = logging.getLogger(__name__) @dataclass class _A : lowercase__: str lowercase__: List[str] lowercase__: Optional[List[str]] @dataclass class _A : lowercase__: List[int] lowercase__: List[int] lowercase__: Optional[List[int]] = None lowercase__: Optional[List[int]] = None class _A ( lowercase_ ): lowercase__: str = "train" lowercase__: Optional[int] = "dev" lowercase__: Union[str, Any] = "test" class _A : @staticmethod def lowercase__ ( __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] ) -> List[InputExample]: """simple docstring""" raise NotImplementedError @staticmethod def lowercase__ ( __magic_name__ : Any ) -> List[str]: """simple docstring""" raise NotImplementedError @staticmethod def lowercase__ ( __magic_name__ : str , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any]=False , __magic_name__ : Optional[int]="[CLS]" , __magic_name__ : Union[str, Any]=1 , __magic_name__ : str="[SEP]" , __magic_name__ : Union[str, Any]=False , __magic_name__ : int=False , __magic_name__ : Union[str, Any]=0 , __magic_name__ : Optional[Any]=0 , __magic_name__ : Dict=-1_00 , __magic_name__ : Any=0 , __magic_name__ : Any=True , ) -> List[InputFeatures]: """simple docstring""" __snake_case : Optional[int] = {label: i for i, label in enumerate(a__ )} __snake_case : Union[str, Any] = [] for ex_index, example in enumerate(a__ ): if ex_index % 1_00_00 == 0: logger.info("""Writing example %d of %d""" , a__ , len(a__ ) ) __snake_case : Dict = [] __snake_case : Union[str, Any] = [] for word, label in zip(example.words , example.labels ): __snake_case : List[str] = tokenizer.tokenize(a__ ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(a__ ) > 0: tokens.extend(a__ ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(a__ ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. __snake_case : Optional[int] = tokenizer.num_special_tokens_to_add() if len(a__ ) > max_seq_length - special_tokens_count: __snake_case : Tuple = tokens[: (max_seq_length - special_tokens_count)] __snake_case : Dict = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] __snake_case : Dict = [sequence_a_segment_id] * len(a__ ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: __snake_case : Any = [cls_token] + tokens __snake_case : Union[str, Any] = [pad_token_label_id] + label_ids __snake_case : List[str] = [cls_token_segment_id] + segment_ids __snake_case : Tuple = tokenizer.convert_tokens_to_ids(a__ ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. __snake_case : Any = [1 if mask_padding_with_zero else 0] * len(a__ ) # Zero-pad up to the sequence length. __snake_case : Tuple = max_seq_length - len(a__ ) if pad_on_left: __snake_case : Optional[Any] = ([pad_token] * padding_length) + input_ids __snake_case : List[Any] = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask __snake_case : Tuple = ([pad_token_segment_id] * padding_length) + segment_ids __snake_case : Tuple = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(a__ ) == max_seq_length assert len(a__ ) == max_seq_length assert len(a__ ) == max_seq_length assert len(a__ ) == max_seq_length if ex_index < 5: logger.info("""*** Example ***""" ) logger.info("""guid: %s""" , example.guid ) logger.info("""tokens: %s""" , """ """.join([str(a__ ) for x in tokens] ) ) logger.info("""input_ids: %s""" , """ """.join([str(a__ ) for x in input_ids] ) ) logger.info("""input_mask: %s""" , """ """.join([str(a__ ) for x in input_mask] ) ) logger.info("""segment_ids: %s""" , """ """.join([str(a__ ) for x in segment_ids] ) ) logger.info("""label_ids: %s""" , """ """.join([str(a__ ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: __snake_case : int = None features.append( InputFeatures( input_ids=a__ , attention_mask=a__ , token_type_ids=a__ , label_ids=a__ ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class _A ( lowercase_ ): lowercase__: List[InputFeatures] lowercase__: int = nn.CrossEntropyLoss().ignore_index def __init__( self : Optional[int] , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] , __magic_name__ : Dict , __magic_name__ : str , __magic_name__ : List[Any] = None , __magic_name__ : Any=False , __magic_name__ : Tuple = Split.train , ) -> str: """simple docstring""" __snake_case : Dict = os.path.join( a__ , """cached_{}_{}_{}""".format(mode.value , tokenizer.__class__.__name__ , str(a__ ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __snake_case : Optional[Any] = cached_features_file + """.lock""" with FileLock(a__ ): if os.path.exists(a__ ) and not overwrite_cache: logger.info(f'''Loading features from cached file {cached_features_file}''' ) __snake_case : str = torch.load(a__ ) else: logger.info(f'''Creating features from dataset file at {data_dir}''' ) __snake_case : Dict = token_classification_task.read_examples_from_file(a__ , a__ ) # TODO clean up all this to leverage built-in features of tokenizers __snake_case : Any = token_classification_task.convert_examples_to_features( a__ , a__ , a__ , a__ , cls_token_at_end=bool(model_type in ["""xlnet"""] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ["""xlnet"""] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=a__ , pad_on_left=bool(tokenizer.padding_side == """left""" ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(f'''Saving features into cached file {cached_features_file}''' ) torch.save(self.features , a__ ) def __len__( self : Dict ) -> List[Any]: """simple docstring""" return len(self.features ) def __getitem__( self : List[str] , __magic_name__ : List[str] ) -> InputFeatures: """simple docstring""" return self.features[i] if is_tf_available(): import tensorflow as tf class _A : lowercase__: List[InputFeatures] lowercase__: int = -100 def __init__( self : List[str] , __magic_name__ : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] , __magic_name__ : List[str] , __magic_name__ : Any , __magic_name__ : Dict = None , __magic_name__ : Dict=False , __magic_name__ : Optional[Any] = Split.train , ) -> Optional[int]: """simple docstring""" __snake_case : Tuple = token_classification_task.read_examples_from_file(a__ , a__ ) # TODO clean up all this to leverage built-in features of tokenizers __snake_case : str = token_classification_task.convert_examples_to_features( a__ , a__ , a__ , a__ , cls_token_at_end=bool(model_type in ["""xlnet"""] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ["""xlnet"""] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=a__ , pad_on_left=bool(tokenizer.padding_side == """left""" ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: __snake_case : Optional[int] = tf.data.Dataset.from_generator( a__ , ({"""input_ids""": tf.intaa, """attention_mask""": tf.intaa}, tf.intaa) , ( {"""input_ids""": tf.TensorShape([None] ), """attention_mask""": tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: __snake_case : Optional[int] = tf.data.Dataset.from_generator( a__ , ({"""input_ids""": tf.intaa, """attention_mask""": tf.intaa, """token_type_ids""": tf.intaa}, tf.intaa) , ( { """input_ids""": tf.TensorShape([None] ), """attention_mask""": tf.TensorShape([None] ), """token_type_ids""": tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def lowercase__ ( self : Any ) -> str: """simple docstring""" __snake_case : Optional[Any] = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self : str ) -> List[Any]: """simple docstring""" return len(self.features ) def __getitem__( self : Dict , __magic_name__ : Union[str, Any] ) -> InputFeatures: """simple docstring""" return self.features[i]
353
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ["ConditionalDetrFeatureExtractor"] __UpperCamelCase = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
13
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class __snake_case : def __init__( self ,snake_case ,): '''simple docstring''' lowercase : Any = parent lowercase : Tuple = 13 lowercase : str = 7 lowercase : Dict = True lowercase : Dict = True lowercase : str = True lowercase : List[str] = True lowercase : int = True lowercase : Union[str, Any] = False lowercase : Dict = False lowercase : List[Any] = False lowercase : List[Any] = 2 lowercase : Optional[Any] = 99 lowercase : int = 0 lowercase : Tuple = 32 lowercase : int = 2 lowercase : Tuple = 4 lowercase : List[Any] = 0.1 lowercase : Tuple = 0.1 lowercase : List[Any] = 512 lowercase : int = 16 lowercase : Dict = 2 lowercase : int = 0.02 lowercase : Union[str, Any] = 3 lowercase : Any = 4 lowercase : List[Any] = """last""" lowercase : Tuple = True lowercase : List[Any] = None lowercase : Any = 0 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ,dtype=tf.floataa ) lowercase : Tuple = None if self.use_input_lengths: lowercase : List[str] = ( ids_tensor([self.batch_size] ,vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowercase : Tuple = None if self.use_token_type_ids: lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.n_langs ) lowercase : List[str] = None lowercase : List[str] = None lowercase : Optional[Any] = None if self.use_labels: lowercase : List[str] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase : List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) lowercase : str = ids_tensor([self.batch_size] ,2 ,dtype=tf.floataa ) lowercase : Optional[Any] = ids_tensor([self.batch_size] ,self.num_choices ) lowercase : str = FlaubertConfig( vocab_size=self.vocab_size ,n_special=self.n_special ,emb_dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,gelu_activation=self.gelu_activation ,sinusoidal_embeddings=self.sinusoidal_embeddings ,asm=self.asm ,causal=self.causal ,n_langs=self.n_langs ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,summary_type=self.summary_type ,use_proj=self.use_proj ,bos_token_id=self.bos_token_id ,) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Tuple = TFFlaubertModel(config=snake_case ) lowercase : str = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} lowercase : Optional[Any] = model(snake_case ) lowercase : List[Any] = [input_ids, input_mask] lowercase : int = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : List[Any] = TFFlaubertWithLMHeadModel(snake_case ) lowercase : Optional[Any] = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} lowercase : int = model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Tuple = TFFlaubertForQuestionAnsweringSimple(snake_case ) lowercase : Union[str, Any] = {"""input_ids""": input_ids, """lengths""": input_lengths} lowercase : Tuple = model(snake_case ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Union[str, Any] = TFFlaubertForSequenceClassification(snake_case ) lowercase : str = {"""input_ids""": input_ids, """lengths""": input_lengths} lowercase : str = model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Any = self.num_labels lowercase : List[str] = TFFlaubertForTokenClassification(config=snake_case ) lowercase : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowercase : int = model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Any = self.num_choices lowercase : Dict = TFFlaubertForMultipleChoice(config=snake_case ) lowercase : Any = tf.tile(tf.expand_dims(snake_case ,1 ) ,(1, self.num_choices, 1) ) lowercase : Optional[Any] = tf.tile(tf.expand_dims(snake_case ,1 ) ,(1, self.num_choices, 1) ) lowercase : Dict = tf.tile(tf.expand_dims(snake_case ,1 ) ,(1, self.num_choices, 1) ) lowercase : Union[str, Any] = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } lowercase : int = model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Any = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : int = config_and_inputs lowercase : List[str] = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """langs""": token_type_ids, """lengths""": input_lengths, } return config, inputs_dict @require_tf class __snake_case ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): _a : Dict= ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) _a : Optional[Any]= ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _a : Any= ( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) _a : Tuple= False _a : int= False def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = TFFlaubertModelTester(self ) lowercase : List[Any] = ConfigTester(self ,config_class=snake_case ,emb_dim=37 ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*snake_case ) @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : Dict = TFFlaubertModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @require_tf @require_sentencepiece @require_tokenizers class __snake_case ( unittest.TestCase ): @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = TFFlaubertModel.from_pretrained("""jplu/tf-flaubert-small-cased""" ) lowercase : int = tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] ,dtype=tf.intaa ,) # "J'aime flaubert !" lowercase : Dict = model(snake_case )[0] lowercase : Union[str, Any] = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape ,snake_case ) # compare the actual values for a slice. lowercase : Tuple = tf.convert_to_tensor( [ [ [-1.8_768_773, -1.566_555, 0.27_072_418], [-1.6_920_038, -0.5_873_505, 1.9_329_599], [-2.9_563_985, -1.6_993_835, 1.7_972_052], ] ] ,dtype=tf.floataa ,) self.assertTrue(np.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1e-4 ) )
20
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class __snake_case ( lowerCAmelCase ): _a : Union[str, Any]= "microsoft/speecht5_tts" _a : Tuple= ( "This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " "text to read (in English) and returns a waveform object containing the sound." ) _a : Dict= "text_reader" _a : Optional[Any]= SpeechTaProcessor _a : Tuple= SpeechTaForTextToSpeech _a : Optional[int]= SpeechTaHifiGan _a : Union[str, Any]= ["text"] _a : Optional[int]= ["audio"] def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if self.post_processor is None: lowercase : Any = """microsoft/speecht5_hifigan""" super().setup() def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=None ): '''simple docstring''' lowercase : int = self.pre_processor(text=snake_case ,return_tensors="""pt""" ,truncation=snake_case ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("""Datasets needs to be installed if not passing speaker embeddings.""" ) lowercase : Tuple = load_dataset("""Matthijs/cmu-arctic-xvectors""" ,split="""validation""" ) lowercase : List[str] = torch.tensor(embeddings_dataset[7305]["""xvector"""] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' with torch.no_grad(): return self.model.generate_speech(**snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' with torch.no_grad(): return self.post_processor(snake_case ).cpu().detach()
20
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor UpperCAmelCase = logging.get_logger(__name__) class __magic_name__ ( __UpperCAmelCase ): def __init__( self : Dict , *snake_case__ : List[Any] , **snake_case__ : List[str] ): '''simple docstring''' warnings.warn( '''The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use DeformableDetrImageProcessor instead.''' , snake_case__ , ) super().__init__(*snake_case__ , **snake_case__ )
172
"""simple docstring""" import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __magic_name__ ( __UpperCAmelCase , unittest.TestCase ): __A : Tuple = KandinskyVaaPipeline __A : Any = [ "image_embeds", "negative_image_embeds", ] __A : Tuple = ["image_embeds", "negative_image_embeds"] __A : Tuple = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] __A : Union[str, Any] = False @property def __snake_case ( self : str ): '''simple docstring''' return 3_2 @property def __snake_case ( self : Any ): '''simple docstring''' return 3_2 @property def __snake_case ( self : List[Any] ): '''simple docstring''' return self.time_input_dim @property def __snake_case ( self : Any ): '''simple docstring''' return self.time_input_dim * 4 @property def __snake_case ( self : Optional[int] ): '''simple docstring''' return 1_0_0 @property def __snake_case ( self : str ): '''simple docstring''' torch.manual_seed(0 ) lowercase :Optional[Any] = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } lowercase :int = UNetaDConditionModel(**snake_case__ ) return model @property def __snake_case ( self : Dict ): '''simple docstring''' return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __snake_case ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) lowercase :Tuple = VQModel(**self.dummy_movq_kwargs ) return model def __snake_case ( self : List[Any] ): '''simple docstring''' lowercase :Optional[Any] = self.dummy_unet lowercase :List[Any] = self.dummy_movq lowercase :Optional[Any] = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='''linear''' , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , steps_offset=1 , prediction_type='''epsilon''' , thresholding=snake_case__ , ) lowercase :str = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __snake_case ( self : str , snake_case__ : Any , snake_case__ : str=0 ): '''simple docstring''' lowercase :Tuple = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) lowercase :Union[str, Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( snake_case__ ) if str(snake_case__ ).startswith('''mps''' ): lowercase :Optional[int] = torch.manual_seed(snake_case__ ) else: lowercase :Any = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowercase :List[Any] = { '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 6_4, '''width''': 6_4, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def __snake_case ( self : List[str] ): '''simple docstring''' lowercase :List[Any] = '''cpu''' lowercase :Tuple = self.get_dummy_components() lowercase :Any = self.pipeline_class(**snake_case__ ) lowercase :List[str] = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowercase :Optional[Any] = pipe(**self.get_dummy_inputs(snake_case__ ) ) lowercase :str = output.images lowercase :Dict = pipe( **self.get_dummy_inputs(snake_case__ ) , return_dict=snake_case__ , )[0] lowercase :Any = image[0, -3:, -3:, -1] lowercase :Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) lowercase :List[Any] = np.array( [0.6_23_79_76, 1.0, 0.36_44_13_32, 1.0, 0.70_63_96_34, 0.29_87_71_86, 0.85_65_21_25, 0.5_21_68_43, 0.54_45_40_46] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase ): def __snake_case ( self : int ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case ( self : Any ): '''simple docstring''' lowercase :Tuple = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy''' ) lowercase :int = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(snake_case__ ) lowercase :Tuple = KandinskyVaaPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder''' , torch_dtype=torch.floataa ) lowercase :str = pipeline.to(snake_case__ ) pipeline.set_progress_bar_config(disable=snake_case__ ) lowercase :int = '''red cat, 4k photo''' lowercase :str = torch.Generator(device='''cuda''' ).manual_seed(0 ) lowercase , lowercase :Union[str, Any] = pipe_prior( snake_case__ , generator=snake_case__ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() lowercase :Tuple = torch.Generator(device='''cuda''' ).manual_seed(0 ) lowercase :List[Any] = pipeline( image_embeds=snake_case__ , negative_image_embeds=snake_case__ , generator=snake_case__ , num_inference_steps=1_0_0 , output_type='''np''' , ) lowercase :Tuple = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ )
172
1
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path SCREAMING_SNAKE_CASE__ = Path(__file__).resolve().parents[3] / """src""" sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) SCREAMING_SNAKE_CASE__ = {"""base""": """patrickvonplaten/wav2vec2_tiny_random""", """robust""": """patrickvonplaten/wav2vec2_tiny_random_robust"""} SCREAMING_SNAKE_CASE__ = """zero2""" SCREAMING_SNAKE_CASE__ = """zero3""" SCREAMING_SNAKE_CASE__ = [ZEROa, ZEROa] def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : int ) -> Optional[int]: # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param __lowercase = parameterized.to_safe_name('_'.join(str(SCREAMING_SNAKE_CASE ) for x in param.args ) ) return F"""{func.__name__}_{param_based_name}""" # Cartesian-product of zero stages with models to test SCREAMING_SNAKE_CASE__ = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class A__ ( lowerCAmelCase__ ): @parameterized.expand(_UpperCAmelCase , name_func=_UpperCAmelCase ) def a__ ( self : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] ) -> List[str]: """simple docstring""" self.run_and_check( stage=_UpperCAmelCase , model=_UpperCAmelCase , distributed=_UpperCAmelCase , fpaa=_UpperCAmelCase , ) @require_torch_multi_gpu @parameterized.expand(_UpperCAmelCase , name_func=_UpperCAmelCase ) def a__ ( self : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] ) -> Dict: """simple docstring""" self.run_and_check( stage=_UpperCAmelCase , model=_UpperCAmelCase , distributed=_UpperCAmelCase , fpaa=_UpperCAmelCase , ) @parameterized.expand(_UpperCAmelCase , name_func=_UpperCAmelCase ) def a__ ( self : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str ) -> int: """simple docstring""" self.run_and_check( stage=_UpperCAmelCase , model=_UpperCAmelCase , distributed=_UpperCAmelCase , fpaa=_UpperCAmelCase , ) @require_torch_multi_gpu @parameterized.expand(_UpperCAmelCase , name_func=_UpperCAmelCase ) def a__ ( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] ) -> int: """simple docstring""" self.run_and_check( stage=_UpperCAmelCase , model=_UpperCAmelCase , distributed=_UpperCAmelCase , fpaa=_UpperCAmelCase , ) def a__ ( self : List[str] , _UpperCAmelCase : List[str] ) -> str: """simple docstring""" pass def a__ ( self : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : int = 10 , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = True , ) -> List[str]: """simple docstring""" __lowercase = models[model] __lowercase = self.run_trainer( stage=_UpperCAmelCase , model_name=_UpperCAmelCase , eval_steps=_UpperCAmelCase , num_train_epochs=1 , distributed=_UpperCAmelCase , fpaa=_UpperCAmelCase , ) self.do_checks(_UpperCAmelCase ) return output_dir def a__ ( self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : int = 10 , _UpperCAmelCase : int = 1 , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = True , ) -> List[Any]: """simple docstring""" __lowercase = self.get_auto_remove_tmp_dir('./xxx' , after=_UpperCAmelCase ) __lowercase = f""" --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(_UpperCAmelCase )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none """.split() if fpaa: args.extend(['--fp16'] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files __lowercase = f"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split() __lowercase = [f"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""] __lowercase = self.get_launcher(_UpperCAmelCase ) __lowercase = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(_UpperCAmelCase , env=self.get_env() ) return output_dir def a__ ( self : str , _UpperCAmelCase : List[Any]=False ) -> Tuple: """simple docstring""" __lowercase = min(2 , get_gpu_count() ) if distributed else 1 return f"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
325
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available SCREAMING_SNAKE_CASE__ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["""BartphoTokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
325
1
"""simple docstring""" import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets _a : int = '\\n @inproceedings{kakwani2020indicnlpsuite,\n title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}},\n author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar},\n year={2020},\n booktitle={Findings of EMNLP},\n}\n' _a : str = '\\n IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide\n variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te.\n' _a : List[Any] = '\nCompute IndicGLUE evaluation metric associated to each IndicGLUE dataset.\nArgs:\n predictions: list of predictions to score (as int64),\n except for \'cvit-mkb-clsr\' where each prediction is a vector (of float32).\n references: list of ground truth labels corresponding to the predictions (as int64),\n except for \'cvit-mkb-clsr\' where each reference is a vector (of float32).\nReturns: depending on the IndicGLUE subset, one or several of:\n "accuracy": Accuracy\n "f1": F1 score\n "precision": Precision@10\nExamples:\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wnli\') # \'wnli\' or any of ["copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wiki-ner\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'cvit-mkb-clsr\')\n >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'precision@10\': 1.0}\n\n' def _A ( UpperCamelCase_ : Optional[int], UpperCamelCase_ : int) -> str: '''simple docstring''' return float((preds == labels).mean()) def _A ( UpperCamelCase_ : Dict, UpperCamelCase_ : Any) -> List[str]: '''simple docstring''' __lowercase = simple_accuracy(UpperCamelCase_, UpperCamelCase_) __lowercase = float(fa_score(y_true=UpperCamelCase_, y_pred=UpperCamelCase_)) return { "accuracy": acc, "f1": fa, } def _A ( UpperCamelCase_ : Optional[Any], UpperCamelCase_ : int) -> Optional[int]: '''simple docstring''' __lowercase = np.array(UpperCamelCase_) __lowercase = np.array(UpperCamelCase_) __lowercase = en_sentvecs.shape[0] # mean centering __lowercase = en_sentvecs - np.mean(UpperCamelCase_, axis=0) __lowercase = in_sentvecs - np.mean(UpperCamelCase_, axis=0) __lowercase = cdist(UpperCamelCase_, UpperCamelCase_, "cosine") __lowercase = np.array(range(UpperCamelCase_)) __lowercase = sim.argsort(axis=1)[:, :10] __lowercase = np.any(preds == actual[:, None], axis=1) return float(matches.mean()) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def _lowercase ( self : List[str] ): if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( "You should supply a configuration name selected in " "[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", " "\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", " "\"wiki-ner\"]" ) return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Value("int64" ) if self.config_name != "cvit-mkb-clsr" else datasets.Sequence(datasets.Value("float32" ) ), "references": datasets.Value("int64" ) if self.config_name != "cvit-mkb-clsr" else datasets.Sequence(datasets.Value("float32" ) ), } ), codebase_urls=[], reference_urls=[], format="numpy" if self.config_name != "cvit-mkb-clsr" else None, ) def _lowercase ( self : Dict, UpperCAmelCase__ : str, UpperCAmelCase__ : Tuple ): if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(UpperCAmelCase__, UpperCAmelCase__ )} elif self.config_name in ["wiki-ner"]: return acc_and_fa(UpperCAmelCase__, UpperCAmelCase__ ) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(UpperCAmelCase__, UpperCAmelCase__ )} else: raise KeyError( "You should supply a configuration name selected in " "[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", " "\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", " "\"wiki-ner\"]" )
363
"""simple docstring""" from __future__ import annotations from typing import Any class _lowerCAmelCase : """simple docstring""" def __init__( self : Union[str, Any], UpperCAmelCase__ : int ): __lowercase = num_of_nodes __lowercase = [] __lowercase = {} def _lowercase ( self : Tuple, UpperCAmelCase__ : int, UpperCAmelCase__ : int, UpperCAmelCase__ : int ): self.m_edges.append([u_node, v_node, weight] ) def _lowercase ( self : Dict, UpperCAmelCase__ : int ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _lowercase ( self : Dict, UpperCAmelCase__ : int ): if self.m_component[u_node] != u_node: for k in self.m_component: __lowercase = self.find_component(UpperCAmelCase__ ) def _lowercase ( self : str, UpperCAmelCase__ : list[int], UpperCAmelCase__ : int, UpperCAmelCase__ : int ): if component_size[u_node] <= component_size[v_node]: __lowercase = v_node component_size[v_node] += component_size[u_node] self.set_component(UpperCAmelCase__ ) elif component_size[u_node] >= component_size[v_node]: __lowercase = self.find_component(UpperCAmelCase__ ) component_size[u_node] += component_size[v_node] self.set_component(UpperCAmelCase__ ) def _lowercase ( self : Tuple ): __lowercase = [] __lowercase = 0 __lowercase = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) __lowercase = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: __lowercase ,__lowercase ,__lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): __lowercase = [u, v, w] for edge in minimum_weight_edge: if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase ,__lowercase ,__lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: mst_weight += w self.union(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 __lowercase = [-1] * self.m_num_of_nodes print(F"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def _A ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
144
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ = { 'configuration_distilbert': [ 'DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DistilBertConfig', 'DistilBertOnnxConfig', ], 'tokenization_distilbert': ['DistilBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['DistilBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DistilBertForMaskedLM', 'DistilBertForMultipleChoice', 'DistilBertForQuestionAnswering', 'DistilBertForSequenceClassification', 'DistilBertForTokenClassification', 'DistilBertModel', 'DistilBertPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDistilBertForMaskedLM', 'TFDistilBertForMultipleChoice', 'TFDistilBertForQuestionAnswering', 'TFDistilBertForSequenceClassification', 'TFDistilBertForTokenClassification', 'TFDistilBertMainLayer', 'TFDistilBertModel', 'TFDistilBertPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'FlaxDistilBertForMaskedLM', 'FlaxDistilBertForMultipleChoice', 'FlaxDistilBertForQuestionAnswering', 'FlaxDistilBertForSequenceClassification', 'FlaxDistilBertForTokenClassification', 'FlaxDistilBertModel', 'FlaxDistilBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
249
"""simple docstring""" from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig a_ = { 'susnato/ernie-m-base_pytorch': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json', 'susnato/ernie-m-large_pytorch': 'https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json', } class UpperCAmelCase_ ( snake_case ): UpperCamelCase ="ernie_m" UpperCamelCase ={"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self , UpperCamelCase_ = 25_00_02 , UpperCamelCase_ = 7_68 , UpperCamelCase_ = 12 , UpperCamelCase_ = 12 , UpperCamelCase_ = 30_72 , UpperCamelCase_ = "gelu" , UpperCamelCase_ = 0.1 , UpperCamelCase_ = 0.1 , UpperCamelCase_ = 5_14 , UpperCamelCase_ = 0.0_2 , UpperCamelCase_ = 1 , UpperCamelCase_ = 1E-05 , UpperCamelCase_=None , UpperCamelCase_=False , UpperCamelCase_=0.0 , **UpperCamelCase_ , ) -> List[str]: super().__init__(pad_token_id=UpperCamelCase_ , **UpperCamelCase_ ) __lowercase : List[str] = vocab_size __lowercase : Optional[Any] = hidden_size __lowercase : List[Any] = num_hidden_layers __lowercase : Union[str, Any] = num_attention_heads __lowercase : Dict = intermediate_size __lowercase : Any = hidden_act __lowercase : List[str] = hidden_dropout_prob __lowercase : Optional[Any] = attention_probs_dropout_prob __lowercase : Dict = max_position_embeddings __lowercase : Optional[Any] = initializer_range __lowercase : int = layer_norm_eps __lowercase : Optional[int] = classifier_dropout __lowercase : List[Any] = is_decoder __lowercase : List[str] = act_dropout
249
1
"""simple docstring""" def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): return round(float(moles / volume ) * nfactor ) def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): return round(float((moles * 0.0821 * temperature) / (volume) ) ) def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): return round(float((moles * 0.0821 * temperature) / (pressure) ) ) def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): return round(float((pressure * volume) / (0.0821 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
354
"""simple docstring""" from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
182
0
"""simple docstring""" from typing import Any def lowercase__ ( snake_case_ :list ): if not input_list: return [] __UpperCAmelCase = [input_list.count(snake_case_ ) for value in input_list] __UpperCAmelCase = max(snake_case_ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(snake_case_ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
332
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule _lowercase : int = {'processing_wav2vec2_with_lm': ['Wav2Vec2ProcessorWithLM']} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys _lowercase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
332
1
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class A: '''simple docstring''' UpperCamelCase = XGLMConfig UpperCamelCase = {} UpperCamelCase = '''gelu''' def __init__( self : Union[str, Any] , A_ : int , A_ : Any=14 , A_ : Optional[Any]=7 , A_ : int=True , A_ : List[Any]=True , A_ : Optional[int]=True , A_ : Dict=99 , A_ : int=32 , A_ : Tuple=2 , A_ : List[Any]=4 , A_ : str=37 , A_ : Dict="gelu" , A_ : Optional[int]=0.1 , A_ : int=0.1 , A_ : str=512 , A_ : Dict=0.02 , ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = seq_length lowerCamelCase_ = is_training lowerCamelCase_ = use_input_mask lowerCamelCase_ = use_labels lowerCamelCase_ = vocab_size lowerCamelCase_ = d_model lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = ffn_dim lowerCamelCase_ = activation_function lowerCamelCase_ = activation_dropout lowerCamelCase_ = attention_dropout lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = initializer_range lowerCamelCase_ = None lowerCamelCase_ = 0 lowerCamelCase_ = 2 lowerCamelCase_ = 1 def a__ ( self : List[Any] ) -> int: """simple docstring""" return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def a__ ( self : Dict ) -> List[str]: """simple docstring""" lowerCamelCase_ = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) lowerCamelCase_ = None if self.use_input_mask: lowerCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ = self.get_config() lowerCamelCase_ = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def a__ ( self : int ) -> int: """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=A_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=A_ , ) def a__ ( self : List[str] ) -> Dict: """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) = config_and_inputs lowerCamelCase_ = { 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class A( UpperCamelCase , UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () UpperCamelCase = (TFXGLMForCausalLM,) if is_tf_available() else () UpperCamelCase = ( {'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def a__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = TFXGLMModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=A_ , n_embd=37 ) def a__ ( self : Optional[Any] ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() @slow def a__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = TFXGLMModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def a__ ( self : int ) -> Any: """simple docstring""" super().test_resize_token_embeddings() @require_tf class A( unittest.TestCase ): '''simple docstring''' @slow def a__ ( self : int , A_ : Dict=True ) -> Any: """simple docstring""" lowerCamelCase_ = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) lowerCamelCase_ = tf.convert_to_tensor([[2, 268, 9865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off lowerCamelCase_ = [2, 268, 9865, 67, 11, 1988, 57252, 9865, 5, 984, 67, 1988, 213838, 1658, 53, 70446, 33, 6657, 278, 1581] # fmt: on lowerCamelCase_ = model.generate(A_ , do_sample=A_ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , A_ ) @slow def a__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) lowerCamelCase_ = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) lowerCamelCase_ = tokenizer('Today is a nice day and' , return_tensors='tf' ) lowerCamelCase_ = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): lowerCamelCase_ = model.generate(A_ , do_sample=A_ , seed=[7, 0] ) lowerCamelCase_ = tokenizer.decode(output_ids[0] , skip_special_tokens=A_ ) lowerCamelCase_ = ( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(A_ , A_ ) @slow def a__ ( self : Dict ) -> str: """simple docstring""" lowerCamelCase_ = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) lowerCamelCase_ = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) lowerCamelCase_ = 'left' # use different length sentences to test batching lowerCamelCase_ = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] lowerCamelCase_ = tokenizer(A_ , return_tensors='tf' , padding=A_ ) lowerCamelCase_ = inputs['input_ids'] lowerCamelCase_ = model.generate(input_ids=A_ , attention_mask=inputs['attention_mask'] , max_new_tokens=12 ) lowerCamelCase_ = tokenizer(sentences[0] , return_tensors='tf' ).input_ids lowerCamelCase_ = model.generate(input_ids=A_ , max_new_tokens=12 ) lowerCamelCase_ = tokenizer(sentences[1] , return_tensors='tf' ).input_ids lowerCamelCase_ = model.generate(input_ids=A_ , max_new_tokens=12 ) lowerCamelCase_ = tokenizer.batch_decode(A_ , skip_special_tokens=A_ ) lowerCamelCase_ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=A_ ) lowerCamelCase_ = tokenizer.decode(output_padded[0] , skip_special_tokens=A_ ) lowerCamelCase_ = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(A_ , A_ ) self.assertListEqual(A_ , [non_padded_sentence, padded_sentence] )
350
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = ['''image_processor''', '''tokenizer'''] UpperCamelCase = '''OwlViTImageProcessor''' UpperCamelCase = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : Optional[Any] , A_ : Tuple=None , A_ : Tuple=None , **A_ : List[str] ) -> Any: """simple docstring""" lowerCamelCase_ = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , A_ , ) lowerCamelCase_ = kwargs.pop('feature_extractor' ) lowerCamelCase_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(A_ , A_ ) def __call__( self : List[str] , A_ : List[str]=None , A_ : List[Any]=None , A_ : Dict=None , A_ : Tuple="max_length" , A_ : int="np" , **A_ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" if text is None and query_images is None and images is None: raise ValueError( 'You have to specify at least one text or query image or image. All three cannot be none.' ) if text is not None: if isinstance(A_ , A_ ) or (isinstance(A_ , A_ ) and not isinstance(text[0] , A_ )): lowerCamelCase_ = [self.tokenizer(A_ , padding=A_ , return_tensors=A_ , **A_ )] elif isinstance(A_ , A_ ) and isinstance(text[0] , A_ ): lowerCamelCase_ = [] # Maximum number of queries across batch lowerCamelCase_ = max([len(A_ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(A_ ) != max_num_queries: lowerCamelCase_ = t + [' '] * (max_num_queries - len(A_ )) lowerCamelCase_ = self.tokenizer(A_ , padding=A_ , return_tensors=A_ , **A_ ) encodings.append(A_ ) else: raise TypeError('Input text should be a string, a list of strings or a nested list of strings' ) if return_tensors == "np": lowerCamelCase_ = np.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) lowerCamelCase_ = np.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp lowerCamelCase_ = jnp.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) lowerCamelCase_ = jnp.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch lowerCamelCase_ = torch.cat([encoding['input_ids'] for encoding in encodings] , dim=0 ) lowerCamelCase_ = torch.cat([encoding['attention_mask'] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf lowerCamelCase_ = tf.stack([encoding['input_ids'] for encoding in encodings] , axis=0 ) lowerCamelCase_ = tf.stack([encoding['attention_mask'] for encoding in encodings] , axis=0 ) else: raise ValueError('Target return tensor type could not be returned' ) lowerCamelCase_ = BatchEncoding() lowerCamelCase_ = input_ids lowerCamelCase_ = attention_mask if query_images is not None: lowerCamelCase_ = BatchEncoding() lowerCamelCase_ = self.image_processor( A_ , return_tensors=A_ , **A_ ).pixel_values lowerCamelCase_ = query_pixel_values if images is not None: lowerCamelCase_ = self.image_processor(A_ , return_tensors=A_ , **A_ ) if text is not None and images is not None: lowerCamelCase_ = image_features.pixel_values return encoding elif query_images is not None and images is not None: lowerCamelCase_ = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**A_ ) , tensor_type=A_ ) def a__ ( self : Tuple , *A_ : Dict , **A_ : Dict ) -> Any: """simple docstring""" return self.image_processor.post_process(*A_ , **A_ ) def a__ ( self : List[str] , *A_ : Any , **A_ : List[Any] ) -> Optional[int]: """simple docstring""" return self.image_processor.post_process_object_detection(*A_ , **A_ ) def a__ ( self : Any , *A_ : str , **A_ : List[Any] ) -> Any: """simple docstring""" return self.image_processor.post_process_image_guided_detection(*A_ , **A_ ) def a__ ( self : Union[str, Any] , *A_ : Any , **A_ : Union[str, Any] ) -> str: """simple docstring""" return self.tokenizer.batch_decode(*A_ , **A_ ) def a__ ( self : Optional[int] , *A_ : List[Any] , **A_ : int ) -> int: """simple docstring""" return self.tokenizer.decode(*A_ , **A_ ) @property def a__ ( self : List[Any] ) -> List[Any]: """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , A_ , ) return self.image_processor_class @property def a__ ( self : str ) -> List[str]: """simple docstring""" warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , A_ , ) return self.image_processor
208
0
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar A__ : Optional[int] = TypeVar('T') class lowercase__ ( Generic[T] ): def __init__( self : Tuple , snake_case__ : T ): lowerCamelCase_ : Optional[int] =data lowerCamelCase_ : Node[T] | None =None def __str__( self : Tuple ): return F"""{self.data}""" class lowercase__ ( Generic[T] ): def __init__( self : Optional[Any] ): lowerCamelCase_ : Node[T] | None =None def __iter__( self : Tuple ): lowerCamelCase_ : List[Any] =self.top while node: yield node.data lowerCamelCase_ : str =node.next def __str__( self : List[str] ): return "->".join([str(snake_case__ ) for item in self] ) def __len__( self : Any ): return len(tuple(iter(self ) ) ) def UpperCAmelCase__ ( self : int ): return self.top is None def UpperCAmelCase__ ( self : Optional[int] , snake_case__ : T ): lowerCamelCase_ : Union[str, Any] =Node(snake_case__ ) if not self.is_empty(): lowerCamelCase_ : Tuple =self.top lowerCamelCase_ : List[Any] =node def UpperCAmelCase__ ( self : Dict ): if self.is_empty(): raise IndexError("pop from empty stack" ) assert isinstance(self.top , snake_case__ ) lowerCamelCase_ : Dict =self.top lowerCamelCase_ : List[str] =self.top.next return pop_node.data def UpperCAmelCase__ ( self : Tuple ): if self.is_empty(): raise IndexError("peek from empty stack" ) assert self.top is not None return self.top.data def UpperCAmelCase__ ( self : Optional[Any] ): lowerCamelCase_ : Union[str, Any] =None if __name__ == "__main__": from doctest import testmod testmod()
144
"""simple docstring""" from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def __magic_name__ ( lowercase ): return {key.lstrip("""-""" ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: List[str] =ArgumentParser( """HuggingFace Datasets CLI tool""" , usage="""datasets-cli <command> [<args>]""" , allow_abbrev=lowercase ) SCREAMING_SNAKE_CASE_: List[Any] =parser.add_subparsers(help="""datasets-cli command helpers""" ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(lowercase ) EnvironmentCommand.register_subcommand(lowercase ) TestCommand.register_subcommand(lowercase ) RunBeamCommand.register_subcommand(lowercase ) DummyDataCommand.register_subcommand(lowercase ) # Parse args SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] =parser.parse_known_args() if not hasattr(lowercase , """func""" ): parser.print_help() exit(1 ) SCREAMING_SNAKE_CASE_: Dict =parse_unknown_args(lowercase ) # Run SCREAMING_SNAKE_CASE_: Tuple =args.func(lowercase , **lowercase ) service.run() if __name__ == "__main__": main()
173
0
import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class __A : def __init__( self : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any]=14 , UpperCAmelCase_ : int=7 , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Union[str, Any]=99 , UpperCAmelCase_ : Union[str, Any]=32 , UpperCAmelCase_ : List[Any]=5 , UpperCAmelCase_ : int=4 , UpperCAmelCase_ : Optional[int]=37 , UpperCAmelCase_ : Tuple="gelu" , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Optional[Any]=512 , UpperCAmelCase_ : Dict=16 , UpperCAmelCase_ : Any=2 , UpperCAmelCase_ : int=0.02 , UpperCAmelCase_ : Optional[Any]=3 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : int=None , ): lowerCAmelCase : List[Any] = parent lowerCAmelCase : str = batch_size lowerCAmelCase : List[Any] = seq_length lowerCAmelCase : Optional[int] = is_training lowerCAmelCase : List[Any] = use_token_type_ids lowerCAmelCase : Any = use_input_mask lowerCAmelCase : List[Any] = use_labels lowerCAmelCase : List[Any] = use_mc_token_ids lowerCAmelCase : List[Any] = vocab_size lowerCAmelCase : List[Any] = hidden_size lowerCAmelCase : Dict = num_hidden_layers lowerCAmelCase : Union[str, Any] = num_attention_heads lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : str = hidden_act lowerCAmelCase : Union[str, Any] = hidden_dropout_prob lowerCAmelCase : List[str] = attention_probs_dropout_prob lowerCAmelCase : Union[str, Any] = max_position_embeddings lowerCAmelCase : List[str] = type_vocab_size lowerCAmelCase : Optional[int] = type_sequence_label_size lowerCAmelCase : Optional[Any] = initializer_range lowerCAmelCase : Union[str, Any] = num_labels lowerCAmelCase : Union[str, Any] = num_choices lowerCAmelCase : List[str] = scope lowerCAmelCase : List[str] = self.vocab_size - 1 def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Optional[int] = None if self.use_input_mask: lowerCAmelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Optional[int] = None if self.use_token_type_ids: lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : List[Any] = None if self.use_mc_token_ids: lowerCAmelCase : str = ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) lowerCAmelCase : Optional[int] = None lowerCAmelCase : str = None lowerCAmelCase : Optional[int] = None if self.use_labels: lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : int = self.get_config() lowerCAmelCase : Tuple = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def lowercase__ ( self : List[str] ): return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def lowercase__ ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int , *UpperCAmelCase_ : List[Any] ): lowerCAmelCase : Optional[Any] = CTRLModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , head_mask=UpperCAmelCase_ ) model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) lowerCAmelCase : Dict = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def lowercase__ ( self : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] , *UpperCAmelCase_ : Tuple ): lowerCAmelCase : List[Any] = CTRLLMHeadModel(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowerCAmelCase : Optional[int] = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Any ): lowerCAmelCase : List[str] = self.prepare_config_and_inputs() ( lowerCAmelCase ) : Tuple = config_and_inputs lowerCAmelCase : Optional[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask} return config, inputs_dict def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , *UpperCAmelCase_ : Any ): lowerCAmelCase : Union[str, Any] = self.num_labels lowerCAmelCase : Union[str, Any] = CTRLForSequenceClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowerCAmelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class __A ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : Optional[int] = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () lowerCAmelCase_ : List[Any] = (CTRLLMHeadModel,) if is_torch_available() else () lowerCAmelCase_ : str = ( { "feature-extraction": CTRLModel, "text-classification": CTRLForSequenceClassification, "text-generation": CTRLLMHeadModel, "zero-shot": CTRLForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase_ : Dict = True lowerCAmelCase_ : Tuple = False lowerCAmelCase_ : str = False def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def lowercase__ ( self : Tuple ): lowerCAmelCase : Union[str, Any] = CTRLModelTester(self ) lowerCAmelCase : str = ConfigTester(self , config_class=UpperCAmelCase_ , n_embd=37 ) def lowercase__ ( self : Tuple ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Optional[int] ): self.config_tester.run_common_tests() def lowercase__ ( self : List[str] ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*UpperCAmelCase_ ) def lowercase__ ( self : List[Any] ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*UpperCAmelCase_ ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase__ ( self : Tuple ): pass @slow def lowercase__ ( self : List[str] ): for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : int = CTRLModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) @unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :) def lowercase__ ( self : List[str] ): pass @require_torch class __A ( unittest.TestCase ): def lowercase__ ( self : Dict ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def lowercase__ ( self : Any ): lowerCAmelCase : str = CTRLLMHeadModel.from_pretrained('ctrl' ) model.to(UpperCAmelCase_ ) lowerCAmelCase : List[str] = torch.tensor( [[11859, 0, 1611, 8]] , dtype=torch.long , device=UpperCAmelCase_ ) # Legal the president is lowerCAmelCase : Dict = [ 11859, 0, 1611, 8, 5, 150, 26449, 2, 19, 348, 469, 3, 2595, 48, 20740, 246533, 246533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a lowerCAmelCase : int = model.generate(UpperCAmelCase_ , do_sample=UpperCAmelCase_ ) self.assertListEqual(output_ids[0].tolist() , UpperCAmelCase_ )
371
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : List[Any] = { '''configuration_xlm_roberta''': [ '''XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaConfig''', '''XLMRobertaOnnxConfig''', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = ['''XLMRobertaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = ['''XLMRobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ '''XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaForCausalLM''', '''XLMRobertaForMaskedLM''', '''XLMRobertaForMultipleChoice''', '''XLMRobertaForQuestionAnswering''', '''XLMRobertaForSequenceClassification''', '''XLMRobertaForTokenClassification''', '''XLMRobertaModel''', '''XLMRobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ '''TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMRobertaForCausalLM''', '''TFXLMRobertaForMaskedLM''', '''TFXLMRobertaForMultipleChoice''', '''TFXLMRobertaForQuestionAnswering''', '''TFXLMRobertaForSequenceClassification''', '''TFXLMRobertaForTokenClassification''', '''TFXLMRobertaModel''', '''TFXLMRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ '''FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxXLMRobertaForMaskedLM''', '''FlaxXLMRobertaForCausalLM''', '''FlaxXLMRobertaForMultipleChoice''', '''FlaxXLMRobertaForQuestionAnswering''', '''FlaxXLMRobertaForSequenceClassification''', '''FlaxXLMRobertaForTokenClassification''', '''FlaxXLMRobertaModel''', '''FlaxXLMRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
0
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ : int = get_tests_dir('fixtures/test_sentencepiece_bpe_char.model') @require_sentencepiece @require_tokenizers class snake_case ( __lowerCamelCase , unittest.TestCase ): """simple docstring""" snake_case__ = SpeechTaTokenizer snake_case__ = False snake_case__ = True def __lowerCAmelCase ( self : Optional[Any] ): super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase__ = SpeechTaTokenizer(lowerCamelCase__ ) UpperCAmelCase__ = AddedToken('<mask>' ,lstrip=lowerCamelCase__ ,rstrip=lowerCamelCase__ ) UpperCAmelCase__ = mask_token tokenizer.add_special_tokens({'mask_token': mask_token} ) tokenizer.add_tokens(['<ctc_blank>'] ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self : List[str] ,lowerCamelCase__ : int ): UpperCAmelCase__ = '''this is a test''' UpperCAmelCase__ = '''this is a test''' return input_text, output_text def __lowerCAmelCase ( self : int ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : List[Any]=False ,lowerCamelCase__ : List[Any]=20 ,lowerCamelCase__ : str=5 ): UpperCAmelCase__ = self.get_input_output_texts(lowerCamelCase__ ) UpperCAmelCase__ = tokenizer.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) UpperCAmelCase__ = tokenizer.decode(lowerCamelCase__ ,clean_up_tokenization_spaces=lowerCamelCase__ ) return text, ids def __lowerCAmelCase ( self : Dict ): UpperCAmelCase__ = '''<pad>''' UpperCAmelCase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase__ ) ,lowerCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase__ ) ,lowerCamelCase__ ) def __lowerCAmelCase ( self : List[Any] ): UpperCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'<s>' ) self.assertEqual(vocab_keys[1] ,'<pad>' ) self.assertEqual(vocab_keys[-4] ,'œ' ) self.assertEqual(vocab_keys[-2] ,'<mask>' ) self.assertEqual(vocab_keys[-1] ,'<ctc_blank>' ) self.assertEqual(len(lowerCamelCase__ ) ,81 ) def __lowerCAmelCase ( self : str ): self.assertEqual(self.get_tokenizer().vocab_size ,79 ) def __lowerCAmelCase ( self : Optional[Any] ): UpperCAmelCase__ = self.get_tokenizers(do_lower_case=lowerCamelCase__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): UpperCAmelCase__ = tokenizer.vocab_size UpperCAmelCase__ = len(lowerCamelCase__ ) self.assertNotEqual(lowerCamelCase__ ,0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) UpperCAmelCase__ = ['''aaaaa bbbbbb''', '''cccccccccdddddddd'''] UpperCAmelCase__ = tokenizer.add_tokens(lowerCamelCase__ ) UpperCAmelCase__ = tokenizer.vocab_size UpperCAmelCase__ = len(lowerCamelCase__ ) self.assertNotEqual(lowerCamelCase__ ,0 ) self.assertEqual(lowerCamelCase__ ,lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ ,len(lowerCamelCase__ ) ) self.assertEqual(lowerCamelCase__ ,all_size + len(lowerCamelCase__ ) ) UpperCAmelCase__ = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' ,add_special_tokens=lowerCamelCase__ ) self.assertGreaterEqual(len(lowerCamelCase__ ) ,4 ) self.assertGreater(tokens[0] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] ,tokenizer.vocab_size - 1 ) UpperCAmelCase__ = {'''eos_token''': '''>>>>|||<||<<|<<''', '''pad_token''': '''<<<<<|||>|>>>>|>'''} UpperCAmelCase__ = tokenizer.add_special_tokens(lowerCamelCase__ ) UpperCAmelCase__ = tokenizer.vocab_size UpperCAmelCase__ = len(lowerCamelCase__ ) self.assertNotEqual(lowerCamelCase__ ,0 ) self.assertEqual(lowerCamelCase__ ,lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ ,len(lowerCamelCase__ ) ) self.assertEqual(lowerCamelCase__ ,all_size_a + len(lowerCamelCase__ ) ) UpperCAmelCase__ = tokenizer.encode( '>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' ,add_special_tokens=lowerCamelCase__ ) self.assertGreaterEqual(len(lowerCamelCase__ ) ,6 ) self.assertGreater(tokens[0] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] ,tokens[1] ) self.assertGreater(tokens[-3] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] ,tokens[-4] ) self.assertEqual(tokens[0] ,tokenizer.eos_token_id ) self.assertEqual(tokens[-3] ,tokenizer.pad_token_id ) def __lowerCAmelCase ( self : int ): pass def __lowerCAmelCase ( self : List[Any] ): pass def __lowerCAmelCase ( self : Optional[int] ): UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = tokenizer.tokenize('This is a test' ) # fmt: off self.assertListEqual(lowerCamelCase__ ,[SPIECE_UNDERLINE, 'T', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'a', SPIECE_UNDERLINE, 't', 'e', 's', 't'] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) ,[4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] ,) UpperCAmelCase__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowerCamelCase__ ,[SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '92000', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] ) UpperCAmelCase__ = tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) # fmt: off self.assertListEqual(lowerCamelCase__ ,[4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on UpperCAmelCase__ = tokenizer.convert_ids_to_tokens(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__ ,[SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '<unk>', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] ) @slow def __lowerCAmelCase ( self : Union[str, Any] ): UpperCAmelCase__ = [ '''Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides ''' '''general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural ''' '''Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained ''' '''models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.''', '''BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly ''' '''conditioning on both left and right context in all layers.''', '''The quick brown fox jumps over the lazy dog.''', ] # fmt: off UpperCAmelCase__ = { '''input_ids''': [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase__ ,model_name='microsoft/speecht5_asr' ,revision='c5ef64c71905caeccde0e4462ef3f9077224c524' ,sequences=lowerCamelCase__ ,)
98
import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder UpperCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase_ = 256 class lowercase__ ( __lowerCamelCase ): '''simple docstring''' a : List[str] = ["melgan"] def __init__( self, __magic_name__, __magic_name__, __magic_name__, __magic_name__, __magic_name__, ) -> None: """simple docstring""" super().__init__() # From MELGAN UpperCamelCase__ : Optional[int] = math.log(1E-5 ) # Matches MelGAN training. UpperCamelCase__ : int = 4.0 # Largest value for most examples UpperCamelCase__ : Optional[int] = 128 self.register_modules( notes_encoder=__magic_name__, continuous_encoder=__magic_name__, decoder=__magic_name__, scheduler=__magic_name__, melgan=__magic_name__, ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__=(-1.0, 1.0), __magic_name__=False ) -> Any: """simple docstring""" UpperCamelCase__ ,UpperCamelCase__ : str = output_range if clip: UpperCamelCase__ : Union[str, Any] = torch.clip(__magic_name__, self.min_value, self.max_value ) # Scale to [0, 1]. UpperCamelCase__ : List[str] = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def UpperCamelCase__ ( self, __magic_name__, __magic_name__=(-1.0, 1.0), __magic_name__=False ) -> Optional[int]: """simple docstring""" UpperCamelCase__ ,UpperCamelCase__ : List[str] = input_range UpperCamelCase__ : Any = torch.clip(__magic_name__, __magic_name__, __magic_name__ ) if clip else outputs # Scale to [0, 1]. UpperCamelCase__ : Any = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__ ) -> List[str]: """simple docstring""" UpperCamelCase__ : Union[str, Any] = input_tokens > 0 UpperCamelCase__ ,UpperCamelCase__ : Any = self.notes_encoder( encoder_input_tokens=__magic_name__, encoder_inputs_mask=__magic_name__ ) UpperCamelCase__ ,UpperCamelCase__ : Optional[Any] = self.continuous_encoder( encoder_inputs=__magic_name__, encoder_inputs_mask=__magic_name__ ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__ ) -> str: """simple docstring""" UpperCamelCase__ : Any = noise_time if not torch.is_tensor(__magic_name__ ): UpperCamelCase__ : Tuple = torch.tensor([timesteps], dtype=torch.long, device=input_tokens.device ) elif torch.is_tensor(__magic_name__ ) and len(timesteps.shape ) == 0: UpperCamelCase__ : Union[str, Any] = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML UpperCamelCase__ : Dict = timesteps * torch.ones(input_tokens.shape[0], dtype=timesteps.dtype, device=timesteps.device ) UpperCamelCase__ : List[str] = self.decoder( encodings_and_masks=__magic_name__, decoder_input_tokens=__magic_name__, decoder_noise_time=__magic_name__ ) return logits @torch.no_grad() def __call__( self, __magic_name__, __magic_name__ = None, __magic_name__ = 100, __magic_name__ = True, __magic_name__ = "numpy", __magic_name__ = None, __magic_name__ = 1, ) -> Union[AudioPipelineOutput, Tuple]: """simple docstring""" if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__magic_name__, __magic_name__ ) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(__magic_name__ )}." ) UpperCamelCase__ : Dict = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims], dtype=np.floataa ) UpperCamelCase__ : Tuple = np.zeros([1, 0, self.n_dims], np.floataa ) UpperCamelCase__ : List[Any] = torch.ones((1, TARGET_FEATURE_LENGTH), dtype=__magic_name__, device=self.device ) for i, encoder_input_tokens in enumerate(__magic_name__ ): if i == 0: UpperCamelCase__ : str = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device, dtype=self.decoder.dtype ) # The first chunk has no previous context. UpperCamelCase__ : Any = torch.zeros((1, TARGET_FEATURE_LENGTH), dtype=__magic_name__, device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. UpperCamelCase__ : List[str] = ones UpperCamelCase__ : int = self.scale_features( __magic_name__, output_range=[-1.0, 1.0], clip=__magic_name__ ) UpperCamelCase__ : Union[str, Any] = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ), continuous_inputs=__magic_name__, continuous_mask=__magic_name__, ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop UpperCamelCase__ : Optional[int] = randn_tensor( shape=encoder_continuous_inputs.shape, generator=__magic_name__, device=self.device, dtype=self.decoder.dtype, ) # set step values self.scheduler.set_timesteps(__magic_name__ ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): UpperCamelCase__ : Union[str, Any] = self.decode( encodings_and_masks=__magic_name__, input_tokens=__magic_name__, noise_time=t / self.scheduler.config.num_train_timesteps, ) # Compute previous output: x_t -> x_t-1 UpperCamelCase__ : List[Any] = self.scheduler.step(__magic_name__, __magic_name__, __magic_name__, generator=__magic_name__ ).prev_sample UpperCamelCase__ : List[Any] = self.scale_to_features(__magic_name__, input_range=[-1.0, 1.0] ) UpperCamelCase__ : List[Any] = mel[:1] UpperCamelCase__ : int = mel.cpu().float().numpy() UpperCamelCase__ : Union[str, Any] = np.concatenate([full_pred_mel, pred_mel[:1]], axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__magic_name__, __magic_name__ ) logger.info('''Generated segment''', __magic_name__ ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( '''Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.''' ) elif output_type == "numpy" and self.melgan is None: raise ValueError( '''Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.''' ) if output_type == "numpy": UpperCamelCase__ : Optional[int] = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: UpperCamelCase__ : Any = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=__magic_name__ )
201
0
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : str = logging.get_logger(__name__) lowercase__ : str = { """google/pix2struct-textcaps-base""": ( """https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json""" ), } class UpperCamelCase__ ( lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = """pix2struct_text_model""" _SCREAMING_SNAKE_CASE = ["""past_key_values"""] _SCREAMING_SNAKE_CASE = { """hidden_size""": """hidden_size""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : str , SCREAMING_SNAKE_CASE_ : Any=5_0_2_4_4 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=7_6_8 , SCREAMING_SNAKE_CASE_ : Tuple=6_4 , SCREAMING_SNAKE_CASE_ : Any=2_0_4_8 , SCREAMING_SNAKE_CASE_ : int=1_2 , SCREAMING_SNAKE_CASE_ : str=1_2 , SCREAMING_SNAKE_CASE_ : str=3_2 , SCREAMING_SNAKE_CASE_ : Tuple=1_2_8 , SCREAMING_SNAKE_CASE_ : Dict=0.1 , SCREAMING_SNAKE_CASE_ : int=1E-6 , SCREAMING_SNAKE_CASE_ : List[Any]=1.0 , SCREAMING_SNAKE_CASE_ : Optional[int]="gelu_new" , SCREAMING_SNAKE_CASE_ : int=0 , SCREAMING_SNAKE_CASE_ : Any=False , SCREAMING_SNAKE_CASE_ : int=0 , SCREAMING_SNAKE_CASE_ : List[Any]=1 , SCREAMING_SNAKE_CASE_ : Tuple=False , SCREAMING_SNAKE_CASE_ : Optional[Any]=True , **SCREAMING_SNAKE_CASE_ : List[Any] , ): lowerCAmelCase_ : Tuple = vocab_size lowerCAmelCase_ : int = hidden_size lowerCAmelCase_ : Optional[int] = d_kv lowerCAmelCase_ : Optional[int] = d_ff lowerCAmelCase_ : List[Any] = num_layers lowerCAmelCase_ : Optional[Any] = num_heads lowerCAmelCase_ : Optional[int] = relative_attention_num_buckets lowerCAmelCase_ : str = relative_attention_max_distance lowerCAmelCase_ : Tuple = dropout_rate lowerCAmelCase_ : int = layer_norm_epsilon lowerCAmelCase_ : Dict = initializer_factor lowerCAmelCase_ : int = use_cache lowerCAmelCase_ : Optional[int] = eos_token_id lowerCAmelCase_ : Any = decoder_start_token_id # for backwards compatibility lowerCAmelCase_ : int = dense_act_fn super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , decoder_start_token_id=SCREAMING_SNAKE_CASE_ , tie_word_embeddings=SCREAMING_SNAKE_CASE_ , is_decoder=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Dict , SCREAMING_SNAKE_CASE_ : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE_ : int ): cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ ,lowerCAmelCase_ : int = cls.get_config_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": lowerCAmelCase_ : List[str] = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) class UpperCamelCase__ ( lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = """pix2struct_vision_model""" def __init__( self : Any , SCREAMING_SNAKE_CASE_ : Optional[Any]=7_6_8 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=7_6_8 , SCREAMING_SNAKE_CASE_ : Any=2_0_4_8 , SCREAMING_SNAKE_CASE_ : Optional[int]=6_4 , SCREAMING_SNAKE_CASE_ : Any=1_2 , SCREAMING_SNAKE_CASE_ : Any=1_2 , SCREAMING_SNAKE_CASE_ : List[Any]="gelu_new" , SCREAMING_SNAKE_CASE_ : Any=1E-6 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.0 , SCREAMING_SNAKE_CASE_ : int=0.0 , SCREAMING_SNAKE_CASE_ : List[str]=1E-10 , SCREAMING_SNAKE_CASE_ : List[str]=1.0 , SCREAMING_SNAKE_CASE_ : Optional[int]=4_0_9_6 , SCREAMING_SNAKE_CASE_ : str=3_2 , SCREAMING_SNAKE_CASE_ : Dict=1_2_8 , **SCREAMING_SNAKE_CASE_ : Dict , ): super().__init__(**SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Any = hidden_size lowerCAmelCase_ : str = patch_embed_hidden_size lowerCAmelCase_ : Optional[int] = d_ff lowerCAmelCase_ : str = dropout_rate lowerCAmelCase_ : List[Any] = num_hidden_layers lowerCAmelCase_ : List[Any] = num_attention_heads lowerCAmelCase_ : List[Any] = initializer_range lowerCAmelCase_ : Any = initializer_factor lowerCAmelCase_ : Any = attention_dropout lowerCAmelCase_ : Any = layer_norm_eps lowerCAmelCase_ : Any = dense_act_fn lowerCAmelCase_ : int = seq_len lowerCAmelCase_ : List[Any] = relative_attention_num_buckets lowerCAmelCase_ : Tuple = relative_attention_max_distance lowerCAmelCase_ : Any = d_kv @classmethod def SCREAMING_SNAKE_CASE__ ( cls : str , SCREAMING_SNAKE_CASE_ : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE_ : str ): cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ ,lowerCAmelCase_ : Dict = cls.get_config_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": lowerCAmelCase_ : str = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) class UpperCamelCase__ ( lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = """pix2struct""" _SCREAMING_SNAKE_CASE = True def __init__( self : Any , SCREAMING_SNAKE_CASE_ : Dict=None , SCREAMING_SNAKE_CASE_ : Optional[Any]=None , SCREAMING_SNAKE_CASE_ : Tuple=1.0 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.02 , SCREAMING_SNAKE_CASE_ : Tuple=False , SCREAMING_SNAKE_CASE_ : str=False , SCREAMING_SNAKE_CASE_ : str=True , **SCREAMING_SNAKE_CASE_ : int , ): super().__init__(tie_word_embeddings=SCREAMING_SNAKE_CASE_ , is_encoder_decoder=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if text_config is None: lowerCAmelCase_ : Tuple = {} logger.info('text_config is None. Initializing the Pix2StructTextConfig with default values.' ) if vision_config is None: lowerCAmelCase_ : str = {} logger.info('vision_config is None. Initializing the Pix2StructVisionConfig with default values.' ) lowerCAmelCase_ : Optional[int] = PixaStructTextConfig(**SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : int = PixaStructVisionConfig(**SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[Any] = self.text_config.decoder_start_token_id lowerCAmelCase_ : str = self.text_config.pad_token_id lowerCAmelCase_ : int = self.text_config.eos_token_id lowerCAmelCase_ : int = initializer_factor lowerCAmelCase_ : Tuple = initializer_range lowerCAmelCase_ : List[str] = self.initializer_range lowerCAmelCase_ : Optional[Any] = self.initializer_range lowerCAmelCase_ : Optional[Any] = is_vqa @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Dict , SCREAMING_SNAKE_CASE_ : PixaStructTextConfig , SCREAMING_SNAKE_CASE_ : PixaStructVisionConfig , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowerCAmelCase_ : str = copy.deepcopy(self.__dict__ ) lowerCAmelCase_ : Any = self.text_config.to_dict() lowerCAmelCase_ : Tuple = self.vision_config.to_dict() lowerCAmelCase_ : Tuple = self.__class__.model_type return output
289
"""simple docstring""" def UpperCamelCase_ ( lowerCAmelCase__ : list[int] , lowerCAmelCase__ : list[int] ) -> None: """simple docstring""" lowerCAmelCase_ : List[Any] = len(lowerCAmelCase__ ) print('The following activities are selected:' ) # The first activity is always selected lowerCAmelCase_ : str = 0 print(lowerCAmelCase__ , end=',' ) # Consider rest of the activities for j in range(lowerCAmelCase__ ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(lowerCAmelCase__ , end=',' ) lowerCAmelCase_ : Tuple = j if __name__ == "__main__": import doctest doctest.testmod() lowercase__ : List[str] = [1, 3, 0, 5, 8, 5] lowercase__ : Dict = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
289
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) UpperCamelCase__ = {"""configuration_vit""": ["""VIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTConfig""", """ViTOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ["""ViTFeatureExtractor"""] UpperCamelCase__ = ["""ViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ """VIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTForImageClassification""", """ViTForMaskedImageModeling""", """ViTModel""", """ViTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ """TFViTForImageClassification""", """TFViTModel""", """TFViTPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ """FlaxViTForImageClassification""", """FlaxViTModel""", """FlaxViTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
92
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowerCAmelCase : Union[str, Any] = { """text_branch""": """text_model""", """audio_branch""": """audio_model.audio_encoder""", """attn""": """attention.self""", """self.proj""": """output.dense""", """attention.self_mask""": """attn_mask""", """mlp.fc1""": """intermediate.dense""", """mlp.fc2""": """output.dense""", """norm1""": """layernorm_before""", """norm2""": """layernorm_after""", """bn0""": """batch_norm""", } lowerCAmelCase : int = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""") def A_ ( _UpperCAmelCase , _UpperCAmelCase=False ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = create_model( "HTSAT-tiny" , "roberta" , _UpperCAmelCase , precision="fp32" , device="cuda:0" if torch.cuda.is_available() else "cpu" , enable_fusion=_UpperCAmelCase , fusion_type="aff_2d" if enable_fusion else None , ) return model, model_cfg def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = {} SCREAMING_SNAKE_CASE_: Tuple = R".*sequential.(\d+).*" SCREAMING_SNAKE_CASE_: Dict = R".*_projection.(\d+).*" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: SCREAMING_SNAKE_CASE_: Any = key.replace(_UpperCAmelCase , _UpperCAmelCase ) if re.match(_UpperCAmelCase , _UpperCAmelCase ): # replace sequential layers with list SCREAMING_SNAKE_CASE_: Optional[int] = re.match(_UpperCAmelCase , _UpperCAmelCase ).group(1 ) SCREAMING_SNAKE_CASE_: Dict = key.replace(f"sequential.{sequential_layer}." , f"layers.{int(_UpperCAmelCase )//3}.linear." ) elif re.match(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = int(re.match(_UpperCAmelCase , _UpperCAmelCase ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... SCREAMING_SNAKE_CASE_: Optional[int] = 1 if projecton_layer == 0 else 2 SCREAMING_SNAKE_CASE_: Dict = key.replace(f"_projection.{projecton_layer}." , f"_projection.linear{transformers_projection_layer}." ) if "audio" and "qkv" in key: # split qkv into query key and value SCREAMING_SNAKE_CASE_: Tuple = value SCREAMING_SNAKE_CASE_: List[str] = mixed_qkv.size(0 ) // 3 SCREAMING_SNAKE_CASE_: Any = mixed_qkv[:qkv_dim] SCREAMING_SNAKE_CASE_: Optional[int] = mixed_qkv[qkv_dim : qkv_dim * 2] SCREAMING_SNAKE_CASE_: Optional[Any] = mixed_qkv[qkv_dim * 2 :] SCREAMING_SNAKE_CASE_: str = query_layer SCREAMING_SNAKE_CASE_: int = key_layer SCREAMING_SNAKE_CASE_: List[Any] = value_layer else: SCREAMING_SNAKE_CASE_: int = value return model_state_dict def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = init_clap(_UpperCAmelCase , enable_fusion=_UpperCAmelCase ) clap_model.eval() SCREAMING_SNAKE_CASE_: Union[str, Any] = clap_model.state_dict() SCREAMING_SNAKE_CASE_: Optional[int] = rename_state_dict(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] = ClapConfig() SCREAMING_SNAKE_CASE_: Tuple = enable_fusion SCREAMING_SNAKE_CASE_: Tuple = ClapModel(_UpperCAmelCase ) # ignore the spectrogram embedding layer model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) transformers_config.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""") lowerCAmelCase : int = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
13
0
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers A__ = 'python tqdm regex requests packaging filelock numpy tokenizers'.split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append('''dataclasses''') if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append('''importlib_metadata''') for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase=None ): """simple docstring""" require_version(deps[pkg] , snake_case_ )
369
def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> bool: """simple docstring""" snake_case__ : Optional[int] = len(__lowerCAmelCase ) + 1 snake_case__ : Tuple = len(__lowerCAmelCase ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. snake_case__ : str = [[0 for i in range(__lowerCAmelCase )] for j in range(__lowerCAmelCase )] # since string of zero length match pattern of zero length snake_case__ : int = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , __lowerCAmelCase ): snake_case__ : Dict = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , __lowerCAmelCase ): snake_case__ : str = dp[0][j - 2] if pattern[j - 1] == '''*''' else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , __lowerCAmelCase ): for j in range(1 , __lowerCAmelCase ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": snake_case__ : Dict = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: snake_case__ : Union[str, Any] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): snake_case__ : List[str] = dp[i - 1][j] else: snake_case__ : Union[str, Any] = 0 else: snake_case__ : Tuple = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") A__ = '''aab''' A__ = '''c*a*b''' # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(f"""{input_string} matches the given pattern {pattern}""") else: print(f"""{input_string} does not match with the given pattern {pattern}""")
44
0
import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params UpperCAmelCase : List[str] = getLogger(__name__) UpperCAmelCase : List[str] = "cuda" if torch.cuda.is_available() else "cpu" def __lowerCamelCase ( lowerCamelCase__ : List[str] , lowerCamelCase__ : str , lowerCamelCase__ : str , lowerCamelCase__ : int = 8 , lowerCamelCase__ : str = DEFAULT_DEVICE , lowerCamelCase__ : int=False , lowerCamelCase__ : List[str]="summarization" , lowerCamelCase__ : List[str]=None , **lowerCamelCase__ : str , ): '''simple docstring''' lowerCamelCase = Path(_snake_case ).open("""w""" , encoding="""utf-8""" ) lowerCamelCase = str(_snake_case ) lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ).to(_snake_case ) if fpaa: lowerCamelCase = model.half() lowerCamelCase = AutoTokenizer.from_pretrained(_snake_case ) logger.info(f'Inferred tokenizer type: {tokenizer.__class__}' ) # if this is wrong, check config.model_type. lowerCamelCase = time.time() # update config with task specific params use_task_specific_params(_snake_case , _snake_case ) if prefix is None: lowerCamelCase = prefix or getattr(model.config , """prefix""" , """""" ) or """""" for examples_chunk in tqdm(list(chunks(_snake_case , _snake_case ) ) ): lowerCamelCase = [prefix + text for text in examples_chunk] lowerCamelCase = tokenizer(_snake_case , return_tensors="""pt""" , truncation=_snake_case , padding="""longest""" ).to(_snake_case ) lowerCamelCase = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **_snake_case , ) lowerCamelCase = tokenizer.batch_decode(_snake_case , skip_special_tokens=_snake_case , clean_up_tokenization_spaces=_snake_case ) for hypothesis in dec: fout.write(hypothesis + """\n""" ) fout.flush() fout.close() lowerCamelCase = int(time.time() - start_time ) # seconds lowerCamelCase = len(_snake_case ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def __lowerCamelCase ( ): '''simple docstring''' return datetime.datetime.now().strftime("""%Y-%m-%d %H:%M:%S""" ) def __lowerCamelCase ( lowerCamelCase__ : List[Any]=True ): '''simple docstring''' lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""model_name""" , type=_snake_case , help="""like facebook/bart-large-cnn,t5-base, etc.""" ) parser.add_argument("""input_path""" , type=_snake_case , help="""like cnn_dm/test.source""" ) parser.add_argument("""save_path""" , type=_snake_case , help="""where to save summaries""" ) parser.add_argument("""--reference_path""" , type=_snake_case , required=_snake_case , help="""like cnn_dm/test.target""" ) parser.add_argument("""--score_path""" , type=_snake_case , required=_snake_case , default="""metrics.json""" , help="""where to save metrics""" ) parser.add_argument("""--device""" , type=_snake_case , required=_snake_case , default=_snake_case , help="""cuda, cuda:1, cpu etc.""" ) parser.add_argument( """--prefix""" , type=_snake_case , required=_snake_case , default=_snake_case , help="""will be added to the begininng of src examples""" ) parser.add_argument("""--task""" , type=_snake_case , default="""summarization""" , help="""used for task_specific_params + metrics""" ) parser.add_argument("""--bs""" , type=_snake_case , default=8 , required=_snake_case , help="""batch size""" ) parser.add_argument( """--n_obs""" , type=_snake_case , default=-1 , required=_snake_case , help="""How many observations. Defaults to all.""" ) parser.add_argument("""--fp16""" , action="""store_true""" ) parser.add_argument("""--dump-args""" , action="""store_true""" , help="""print the custom hparams with the results""" ) parser.add_argument( """--info""" , nargs="""?""" , type=_snake_case , const=datetime_now() , help=( """use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.""" """ lang=en-ru. If no value is passed, the current datetime string will be used.""" ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate lowerCamelCase , lowerCamelCase = parser.parse_known_args() lowerCamelCase = parse_numeric_n_bool_cl_kwargs(_snake_case ) if parsed_args and verbose: print(f'parsed the following generate kwargs: {parsed_args}' ) lowerCamelCase = [""" """ + x.rstrip() if """t5""" in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: lowerCamelCase = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=_snake_case ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f'score_path {args.score_path} will be overwritten unless you type ctrl-c.' ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError("""Can\'t mix --fp16 and --device cpu""" ) lowerCamelCase = generate_summaries_or_translations( _snake_case , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **_snake_case , ) if args.reference_path is None: return {} # Compute scores lowerCamelCase = calculate_bleu if """translation""" in args.task else calculate_rouge lowerCamelCase = [x.rstrip() for x in open(args.save_path ).readlines()] lowerCamelCase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(_snake_case )] lowerCamelCase = score_fn(_snake_case , _snake_case ) scores.update(_snake_case ) if args.dump_args: scores.update(_snake_case ) if args.info: lowerCamelCase = args.info if verbose: print(_snake_case ) if args.score_path is not None: json.dump(_snake_case , open(args.score_path , """w""" ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
252
"""simple docstring""" import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class lowercase_ ( nn.Module ): '''simple docstring''' UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : float = 0.0 UpperCAmelCase : int = 1 UpperCAmelCase : int = 1 UpperCAmelCase : bool = True UpperCAmelCase : bool = False UpperCAmelCase : bool = False UpperCAmelCase : bool = False UpperCAmelCase : jnp.dtype = jnp.floataa def lowerCAmelCase_ ( self : List[str] ): _A = [] _A = [] for i in range(self.num_layers ): _A = self.in_channels if i == 0 else self.out_channels _A = FlaxResnetBlockaD( in_channels=_UpperCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCAmelCase ) _A = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_UpperCAmelCase ) _A = resnets _A = attentions if self.add_downsample: _A = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple=True ): _A = () for resnet, attn in zip(self.resnets , self.attentions ): _A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) _A = attn(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) output_states += (hidden_states,) if self.add_downsample: _A = self.downsamplers_a(_UpperCAmelCase ) output_states += (hidden_states,) return hidden_states, output_states class lowercase_ ( nn.Module ): '''simple docstring''' UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : float = 0.0 UpperCAmelCase : int = 1 UpperCAmelCase : bool = True UpperCAmelCase : jnp.dtype = jnp.floataa def lowerCAmelCase_ ( self : List[Any] ): _A = [] for i in range(self.num_layers ): _A = self.in_channels if i == 0 else self.out_channels _A = FlaxResnetBlockaD( in_channels=_UpperCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCAmelCase ) _A = resnets if self.add_downsample: _A = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[str]=True ): _A = () for resnet in self.resnets: _A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) output_states += (hidden_states,) if self.add_downsample: _A = self.downsamplers_a(_UpperCAmelCase ) output_states += (hidden_states,) return hidden_states, output_states class lowercase_ ( nn.Module ): '''simple docstring''' UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : float = 0.0 UpperCAmelCase : int = 1 UpperCAmelCase : int = 1 UpperCAmelCase : bool = True UpperCAmelCase : bool = False UpperCAmelCase : bool = False UpperCAmelCase : bool = False UpperCAmelCase : jnp.dtype = jnp.floataa def lowerCAmelCase_ ( self : Any ): _A = [] _A = [] for i in range(self.num_layers ): _A = self.in_channels if (i == self.num_layers - 1) else self.out_channels _A = self.prev_output_channel if i == 0 else self.out_channels _A = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCAmelCase ) _A = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_UpperCAmelCase ) _A = resnets _A = attentions if self.add_upsample: _A = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any]=True ): for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states _A = res_hidden_states_tuple[-1] _A = res_hidden_states_tuple[:-1] _A = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) _A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) _A = attn(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) if self.add_upsample: _A = self.upsamplers_a(_UpperCAmelCase ) return hidden_states class lowercase_ ( nn.Module ): '''simple docstring''' UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : float = 0.0 UpperCAmelCase : int = 1 UpperCAmelCase : bool = True UpperCAmelCase : jnp.dtype = jnp.floataa def lowerCAmelCase_ ( self : Any ): _A = [] for i in range(self.num_layers ): _A = self.in_channels if (i == self.num_layers - 1) else self.out_channels _A = self.prev_output_channel if i == 0 else self.out_channels _A = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCAmelCase ) _A = resnets if self.add_upsample: _A = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : int , _UpperCAmelCase : int , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[int]=True ): for resnet in self.resnets: # pop res hidden states _A = res_hidden_states_tuple[-1] _A = res_hidden_states_tuple[:-1] _A = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) _A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) if self.add_upsample: _A = self.upsamplers_a(_UpperCAmelCase ) return hidden_states class lowercase_ ( nn.Module ): '''simple docstring''' UpperCAmelCase : int UpperCAmelCase : float = 0.0 UpperCAmelCase : int = 1 UpperCAmelCase : int = 1 UpperCAmelCase : bool = False UpperCAmelCase : bool = False UpperCAmelCase : jnp.dtype = jnp.floataa def lowerCAmelCase_ ( self : Dict ): # there is always at least one resnet _A = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] _A = [] for _ in range(self.num_layers ): _A = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_UpperCAmelCase ) _A = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCAmelCase ) _A = resnets _A = attentions def __call__( self : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int]=True ): _A = self.resnets[0](_UpperCAmelCase , _UpperCAmelCase ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): _A = attn(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) _A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) return hidden_states
315
0
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class __a ( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self : Optional[int] , UpperCAmelCase : float , UpperCAmelCase : Callable , UpperCAmelCase : int , UpperCAmelCase : float = 1.0 , UpperCAmelCase : str = None , ): super().__init__() lowerCAmelCase_ : Optional[int] = initial_learning_rate lowerCAmelCase_ : Tuple = warmup_steps lowerCAmelCase_ : Dict = power lowerCAmelCase_ : List[Any] = decay_schedule_fn lowerCAmelCase_ : Any = name def __call__( self : Dict , UpperCAmelCase : Union[str, Any] ): with tf.name_scope(self.name or """WarmUp""" ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. lowerCAmelCase_ : Any = tf.cast(UpperCAmelCase , tf.floataa ) lowerCAmelCase_ : Optional[Any] = tf.cast(self.warmup_steps , tf.floataa ) lowerCAmelCase_ : Tuple = global_step_float / warmup_steps_float lowerCAmelCase_ : Tuple = self.initial_learning_rate * tf.math.pow(UpperCAmelCase , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=UpperCAmelCase , ) def A ( self : Any ): return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def __UpperCamelCase ( lowercase__ : float , lowercase__ : int , lowercase__ : int , lowercase__ : float = 0.0 , lowercase__ : float = 0.9 , lowercase__ : float = 0.999 , lowercase__ : float = 1E-8 , lowercase__ : Optional[float] = None , lowercase__ : Optional[float] = None , lowercase__ : float = 0.0 , lowercase__ : float = 1.0 , lowercase__ : Optional[List[str]] = None , ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : List[Any] = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=lowercase__ , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=lowercase__ , ) if num_warmup_steps: lowerCAmelCase_ : Optional[int] = WarmUp( initial_learning_rate=lowercase__ , decay_schedule_fn=lowercase__ , warmup_steps=lowercase__ , ) if weight_decay_rate > 0.0: lowerCAmelCase_ : Union[str, Any] = AdamWeightDecay( learning_rate=lowercase__ , weight_decay_rate=lowercase__ , beta_a=lowercase__ , beta_a=lowercase__ , epsilon=lowercase__ , clipnorm=lowercase__ , global_clipnorm=lowercase__ , exclude_from_weight_decay=["""LayerNorm""", """layer_norm""", """bias"""] , include_in_weight_decay=lowercase__ , ) else: lowerCAmelCase_ : Optional[Any] = tf.keras.optimizers.Adam( learning_rate=lowercase__ , beta_a=lowercase__ , beta_a=lowercase__ , epsilon=lowercase__ , clipnorm=lowercase__ , global_clipnorm=lowercase__ , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class __a ( __UpperCamelCase ): def __init__( self : Dict , UpperCAmelCase : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.001 , UpperCAmelCase : float = 0.9 , UpperCAmelCase : float = 0.999 , UpperCAmelCase : float = 1e-7 , UpperCAmelCase : bool = False , UpperCAmelCase : float = 0.0 , UpperCAmelCase : Optional[List[str]] = None , UpperCAmelCase : Optional[List[str]] = None , UpperCAmelCase : str = "AdamWeightDecay" , **UpperCAmelCase : List[str] , ): super().__init__(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = weight_decay_rate lowerCAmelCase_ : Tuple = include_in_weight_decay lowerCAmelCase_ : Optional[Any] = exclude_from_weight_decay @classmethod def A ( cls : Optional[int] , UpperCAmelCase : Any ): lowerCAmelCase_ : int = {"""WarmUp""": WarmUp} return super(UpperCAmelCase , cls ).from_config(UpperCAmelCase , custom_objects=UpperCAmelCase ) def A ( self : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[Any] ): super(UpperCAmelCase , self )._prepare_local(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = tf.constant( self.weight_decay_rate , name="""adam_weight_decay_rate""" ) def A ( self : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] ): lowerCAmelCase_ : Optional[int] = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]["""weight_decay_rate"""] , use_locking=self._use_locking , ) return tf.no_op() def A ( self : List[str] , UpperCAmelCase : int , UpperCAmelCase : List[Any]=None , **UpperCAmelCase : Tuple ): lowerCAmelCase_ : Optional[int] = list(zip(*UpperCAmelCase ) ) return super(UpperCAmelCase , self ).apply_gradients(zip(UpperCAmelCase , UpperCAmelCase ) , name=UpperCAmelCase , **UpperCAmelCase ) def A ( self : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : str ): if apply_state is None: return self._decayed_lr_t[var_dtype], {} lowerCAmelCase_ : Dict = apply_state or {} lowerCAmelCase_ : Optional[int] = apply_state.get((var_device, var_dtype) ) if coefficients is None: lowerCAmelCase_ : Any = self._fallback_apply_state(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : List[Any] = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def A ( self : Dict , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : str=None ): lowerCAmelCase_ : Optional[int] = self._get_lr(var.device , var.dtype.base_dtype , UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = self._decay_weights_op(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) with tf.control_dependencies([decay] ): return super(UpperCAmelCase , self )._resource_apply_dense(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def A ( self : Any , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any=None ): lowerCAmelCase_ : Union[str, Any] = self._get_lr(var.device , var.dtype.base_dtype , UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = self._decay_weights_op(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) with tf.control_dependencies([decay] ): return super(UpperCAmelCase , self )._resource_apply_sparse(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def A ( self : Any ): lowerCAmelCase_ : Tuple = super().get_config() config.update({"""weight_decay_rate""": self.weight_decay_rate} ) return config def A ( self : int , UpperCAmelCase : Union[str, Any] ): if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(UpperCAmelCase , UpperCAmelCase ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(UpperCAmelCase , UpperCAmelCase ) is not None: return False return True class __a ( __UpperCamelCase ): def __init__( self : List[Any] ): lowerCAmelCase_ : str = [] lowerCAmelCase_ : List[Any] = None @property def A ( self : Any ): if self._accum_steps is None: lowerCAmelCase_ : Dict = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=UpperCAmelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def A ( self : Tuple ): if not self._gradients: raise ValueError("""The accumulator should be called first to initialize the gradients""" ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : List[Any] , UpperCAmelCase : List[Any] ): if not self._gradients: lowerCAmelCase_ : str = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(UpperCAmelCase ) , trainable=UpperCAmelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(UpperCAmelCase ) != len(self._gradients ): raise ValueError(F'Expected {len(self._gradients )} gradients, but got {len(UpperCAmelCase )}' ) for accum_gradient, gradient in zip(self._gradients , UpperCAmelCase ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(UpperCAmelCase ) self._accum_steps.assign_add(1 ) def A ( self : Dict ): if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(UpperCAmelCase ) )
369
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class __a ( __UpperCamelCase ,__UpperCamelCase ): __snake_case : Union[str, Any] = """pixel_values""" __snake_case : Optional[Any] = False __snake_case : Dict = TimmBackboneConfig def __init__( self : List[str] , UpperCAmelCase : int , **UpperCAmelCase : List[str] ): requires_backends(self , """timm""" ) super().__init__(UpperCAmelCase ) lowerCAmelCase_ : List[Any] = config if config.backbone is None: raise ValueError("""backbone is not set in the config. Please set it to a timm model name.""" ) if config.backbone not in timm.list_models(): raise ValueError(F'backbone {config.backbone} is not supported by timm.' ) if hasattr(UpperCAmelCase , """out_features""" ) and config.out_features is not None: raise ValueError("""out_features is not supported by TimmBackbone. Please use out_indices instead.""" ) lowerCAmelCase_ : List[str] = getattr(UpperCAmelCase , """use_pretrained_backbone""" , UpperCAmelCase ) if pretrained is None: raise ValueError("""use_pretrained_backbone is not set in the config. Please set it to True or False.""" ) # We just take the final layer by default. This matches the default for the transformers models. lowerCAmelCase_ : str = config.out_indices if getattr(UpperCAmelCase , """out_indices""" , UpperCAmelCase ) is not None else (-1,) lowerCAmelCase_ : Optional[int] = timm.create_model( config.backbone , pretrained=UpperCAmelCase , features_only=config.features_only , in_chans=config.num_channels , out_indices=UpperCAmelCase , **UpperCAmelCase , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. lowerCAmelCase_ : Union[str, Any] = self._backbone.return_layers lowerCAmelCase_ : Dict = {layer["""module"""]: str(UpperCAmelCase ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(UpperCAmelCase ) @classmethod def A ( cls : Dict , UpperCAmelCase : Union[str, Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Dict ): requires_backends(cls , ["""vision""", """timm"""] ) from ...models.timm_backbone import TimmBackboneConfig lowerCAmelCase_ : Optional[Any] = kwargs.pop("""config""" , TimmBackboneConfig() ) lowerCAmelCase_ : Union[str, Any] = kwargs.pop("""use_timm_backbone""" , UpperCAmelCase ) if not use_timm: raise ValueError("""use_timm_backbone must be True for timm backbones""" ) lowerCAmelCase_ : Union[str, Any] = kwargs.pop("""num_channels""" , config.num_channels ) lowerCAmelCase_ : Tuple = kwargs.pop("""features_only""" , config.features_only ) lowerCAmelCase_ : List[str] = kwargs.pop("""use_pretrained_backbone""" , config.use_pretrained_backbone ) lowerCAmelCase_ : Optional[Any] = kwargs.pop("""out_indices""" , config.out_indices ) lowerCAmelCase_ : Optional[Any] = TimmBackboneConfig( backbone=UpperCAmelCase , num_channels=UpperCAmelCase , features_only=UpperCAmelCase , use_pretrained_backbone=UpperCAmelCase , out_indices=UpperCAmelCase , ) return super()._from_config(UpperCAmelCase , **UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ): pass def A ( self : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : int=None , **UpperCAmelCase : Any ): lowerCAmelCase_ : int = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase_ : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase_ : Any = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError("""Cannot output attentions for timm backbones at the moment""" ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone lowerCAmelCase_ : Optional[Any] = self._all_layers lowerCAmelCase_ : List[Any] = self._backbone(UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : str = self._return_layers lowerCAmelCase_ : Any = tuple(hidden_states[i] for i in self.out_indices ) else: lowerCAmelCase_ : Tuple = self._backbone(UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = None lowerCAmelCase_ : List[str] = tuple(UpperCAmelCase ) lowerCAmelCase_ : int = tuple(UpperCAmelCase ) if hidden_states is not None else None if not return_dict: lowerCAmelCase_ : Optional[Any] = (feature_maps,) if output_hidden_states: lowerCAmelCase_ : Tuple = output + (hidden_states,) return output return BackboneOutput(feature_maps=UpperCAmelCase , hidden_states=UpperCAmelCase , attentions=UpperCAmelCase )
28
0
"""simple docstring""" import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() A: Union[str, Any] = logging.get_logger(__name__) A: Optional[int] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } A: List[str] = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def _snake_case ( UpperCamelCase : str , UpperCamelCase : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : Optional[Any] , UpperCamelCase : Union[str, Any] ): for attribute in key.split(""".""" ): UpperCAmelCase : int = getattr(lowerCamelCase__ , lowerCamelCase__ ) if weight_type is not None: UpperCAmelCase : int = getattr(lowerCamelCase__ , lowerCamelCase__ ).shape else: UpperCAmelCase : Dict = hf_pointer.shape assert hf_shape == value.shape, ( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": UpperCAmelCase : List[Any] = value elif weight_type == "weight_g": UpperCAmelCase : Union[str, Any] = value elif weight_type == "weight_v": UpperCAmelCase : str = value elif weight_type == "bias": UpperCAmelCase : Dict = value else: UpperCAmelCase : Union[str, Any] = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def _snake_case ( UpperCamelCase : List[str] , UpperCamelCase : List[Any] ): UpperCAmelCase : int = [] UpperCAmelCase : Optional[int] = fairseq_model.state_dict() UpperCAmelCase : List[Any] = hf_model.feature_extractor UpperCAmelCase : List[Any] = hf_model.adapter for name, value in fairseq_dict.items(): UpperCAmelCase : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , hf_model.config.feat_extract_norm == """group""" , ) UpperCAmelCase : List[str] = True elif any(x in name for x in ["""adaptor""", """w2v_encoder.proj.""", """w2v_proj_ln."""] ): load_adapter(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) UpperCAmelCase : int = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: UpperCAmelCase : Union[str, Any] = True if "*" in mapped_key: UpperCAmelCase : Union[str, Any] = name.split(lowerCamelCase__ )[0].split(""".""" )[-2] UpperCAmelCase : Tuple = mapped_key.replace("""*""" , lowerCamelCase__ ) if "weight_g" in name: UpperCAmelCase : Optional[int] = "weight_g" elif "weight_v" in name: UpperCAmelCase : int = "weight_v" elif "bias" in name: UpperCAmelCase : Optional[int] = "bias" elif "weight" in name: UpperCAmelCase : List[Any] = "weight" else: UpperCAmelCase : Optional[Any] = None set_recursively(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) continue if not is_used: unused_weights.append(lowerCamelCase__ ) logger.warning(F"Unused weights: {unused_weights}" ) def _snake_case ( UpperCamelCase : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Any , UpperCamelCase : Optional[int] , UpperCamelCase : int ): UpperCAmelCase : Optional[Any] = full_name.split("""conv_layers.""" )[-1] UpperCAmelCase : Tuple = name.split(""".""" ) UpperCAmelCase : Any = int(items[0] ) UpperCAmelCase : List[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) UpperCAmelCase : Optional[int] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) UpperCAmelCase : Union[str, Any] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) UpperCAmelCase : List[Any] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) UpperCAmelCase : List[str] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(lowerCamelCase__ ) def _snake_case ( UpperCamelCase : Any , UpperCamelCase : int , UpperCamelCase : Dict , UpperCamelCase : str ): UpperCAmelCase : Union[str, Any] = full_name.split("""adaptor.""" )[-1] UpperCAmelCase : List[Any] = name.split(""".""" ) if items[1].isdigit(): UpperCAmelCase : int = int(items[1] ) else: UpperCAmelCase : Any = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found." UpperCAmelCase : Optional[int] = value logger.info(F"Adapter proj layer norm bias was initialized from {full_name}." ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found." UpperCAmelCase : Optional[int] = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found." UpperCAmelCase : int = value logger.info(F"Adapter proj layer bias was initialized from {full_name}." ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found." UpperCAmelCase : Any = value logger.info(F"Adapter proj layer weight was initialized from {full_name}." ) elif isinstance(lowerCamelCase__ , lowerCamelCase__ ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F"{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found." UpperCAmelCase : Tuple = value logger.info(F"Adapter layer {layer_id} bias was initialized from {full_name}." ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F"{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found." UpperCAmelCase : Any = value logger.info(F"Adapter layer {layer_id} bias was initialized from {full_name}." ) else: unused_weights.append(lowerCamelCase__ ) def _snake_case ( UpperCamelCase : Optional[int] ): UpperCAmelCase : Union[str, Any] = emb.weight.shape UpperCAmelCase : str = nn.Linear(lowerCamelCase__ , lowerCamelCase__ , bias=lowerCamelCase__ ) UpperCAmelCase : Optional[Any] = emb.weight.data return lin_layer @torch.no_grad() def _snake_case ( UpperCamelCase : Optional[Any] , UpperCamelCase : int , UpperCamelCase : str , UpperCamelCase : Any , UpperCamelCase : int , UpperCamelCase : Any , UpperCamelCase : List[str] , UpperCamelCase : str , UpperCamelCase : List[Any] , UpperCamelCase : int , UpperCamelCase : int , ): UpperCAmelCase : Union[str, Any] = WavaVecaConfig.from_pretrained( lowerCamelCase__ , add_adapter=lowerCamelCase__ , adapter_stride=lowerCamelCase__ , adapter_kernel_size=lowerCamelCase__ , use_auth_token=lowerCamelCase__ , output_hidden_size=lowerCamelCase__ , ) UpperCAmelCase : Optional[Any] = MBartConfig.from_pretrained(lowerCamelCase__ ) # load model UpperCAmelCase : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ """config_yaml""": config_yaml_path, """data""": """/""".join(dict_path.split("""/""" )[:-1] ), """w2v_path""": checkpoint_path, """load_pretrained_decoder_from""": None, } , ) UpperCAmelCase : List[Any] = model[0].eval() # load feature extractor UpperCAmelCase : List[Any] = WavaVecaFeatureExtractor.from_pretrained(lowerCamelCase__ , use_auth_token=lowerCamelCase__ ) # set weights for wav2vec2 encoder UpperCAmelCase : Any = WavaVecaModel(lowerCamelCase__ ) recursively_load_weights_wavaveca(model.encoder , lowerCamelCase__ ) # load decoder weights UpperCAmelCase : Union[str, Any] = MBartForCausalLM(lowerCamelCase__ ) UpperCAmelCase : Optional[Any] = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=lowerCamelCase__ ) logger.warning(F"The following keys are missing when loading the decoder weights: {missing_keys}" ) logger.warning(F"The following keys are unexpected when loading the decoder weights: {unexpected_keys}" ) UpperCAmelCase : Tuple = SpeechEncoderDecoderModel(encoder=lowerCamelCase__ , decoder=lowerCamelCase__ ) UpperCAmelCase : List[Any] = False UpperCAmelCase : Tuple = MBartaaTokenizer(lowerCamelCase__ ) tokenizer.save_pretrained(lowerCamelCase__ ) UpperCAmelCase : int = hf_wavavec.config.to_dict() UpperCAmelCase : List[Any] = tokenizer.pad_token_id UpperCAmelCase : List[str] = tokenizer.bos_token_id UpperCAmelCase : Optional[Any] = tokenizer.eos_token_id UpperCAmelCase : int = "mbart50" UpperCAmelCase : str = "wav2vec2" UpperCAmelCase : Tuple = tokenizer.eos_token_id UpperCAmelCase : Optional[int] = 250004 UpperCAmelCase : Any = tokenizer.eos_token_id UpperCAmelCase : Union[str, Any] = SpeechEncoderDecoderConfig.from_dict(lowerCamelCase__ ) hf_wavavec.save_pretrained(lowerCamelCase__ ) feature_extractor.save_pretrained(lowerCamelCase__ ) if __name__ == "__main__": A: Dict = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_yaml_path", default=None, type=str, help="Path to yaml file of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-xls-r-1b", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/mbart-large-50-one-to-many-mmt", type=str, help="Path to hf decoder checkpoint config", ) parser.add_argument("--add_adapter", default=True, type=bool, help="whethere to add model adapter layers") parser.add_argument("--adapter_stride", default=2, type=int, help="stride of adapter layers") parser.add_argument("--adapter_kernel_size", default=3, type=int, help="kernel size of adapter layers") parser.add_argument("--encoder_output_dim", default=1_0_2_4, type=int, help="encoder output dim") parser.add_argument("--start_token_id", default=2_5_0_0_0_4, type=int, help="`decoder_start_token_id` of model config") A: Tuple = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
109
"""simple docstring""" from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class lowercase__ ( snake_case__ ): _UpperCAmelCase :jnp.ndarray _UpperCAmelCase :jnp.ndarray class lowercase__ ( nn.Module ): _UpperCAmelCase :int _UpperCAmelCase :Tuple[int] = (16, 32, 96, 256) _UpperCAmelCase :jnp.dtype = jnp.floataa def UpperCAmelCase__ ( self : List[Any] ): lowerCamelCase_ : Optional[int] =nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowerCamelCase_ : Any =[] for i in range(len(self.block_out_channels ) - 1 ): lowerCamelCase_ : Union[str, Any] =self.block_out_channels[i] lowerCamelCase_ : Any =self.block_out_channels[i + 1] lowerCamelCase_ : List[str] =nn.Conv( snake_case__ , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(snake_case__ ) lowerCamelCase_ : List[str] =nn.Conv( snake_case__ , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(snake_case__ ) lowerCamelCase_ : Union[str, Any] =blocks lowerCamelCase_ : Optional[Any] =nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self : Tuple , snake_case__ : Union[str, Any] ): lowerCamelCase_ : int =self.conv_in(snake_case__ ) lowerCamelCase_ : List[Any] =nn.silu(snake_case__ ) for block in self.blocks: lowerCamelCase_ : Union[str, Any] =block(snake_case__ ) lowerCamelCase_ : List[str] =nn.silu(snake_case__ ) lowerCamelCase_ : Tuple =self.conv_out(snake_case__ ) return embedding @flax_register_to_config class lowercase__ ( nn.Module, snake_case__, snake_case__ ): _UpperCAmelCase :int = 32 _UpperCAmelCase :int = 4 _UpperCAmelCase :Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) _UpperCAmelCase :Union[bool, Tuple[bool]] = False _UpperCAmelCase :Tuple[int] = (320, 640, 1280, 1280) _UpperCAmelCase :int = 2 _UpperCAmelCase :Union[int, Tuple[int]] = 8 _UpperCAmelCase :Optional[Union[int, Tuple[int]]] = None _UpperCAmelCase :int = 1280 _UpperCAmelCase :float = 0.0 _UpperCAmelCase :bool = False _UpperCAmelCase :jnp.dtype = jnp.floataa _UpperCAmelCase :bool = True _UpperCAmelCase :int = 0 _UpperCAmelCase :str = "rgb" _UpperCAmelCase :Tuple[int] = (16, 32, 96, 256) def UpperCAmelCase__ ( self : int , snake_case__ : jax.random.KeyArray ): # init input tensors lowerCamelCase_ : str =(1, self.in_channels, self.sample_size, self.sample_size) lowerCamelCase_ : List[Any] =jnp.zeros(snake_case__ , dtype=jnp.floataa ) lowerCamelCase_ : int =jnp.ones((1,) , dtype=jnp.intaa ) lowerCamelCase_ : Union[str, Any] =jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) lowerCamelCase_ : Optional[int] =(1, 3, self.sample_size * 8, self.sample_size * 8) lowerCamelCase_ : Any =jnp.zeros(snake_case__ , dtype=jnp.floataa ) lowerCamelCase_ , lowerCamelCase_ : Any =jax.random.split(snake_case__ ) lowerCamelCase_ : Tuple ={"params": params_rng, "dropout": dropout_rng} return self.init(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ )["params"] def UpperCAmelCase__ ( self : List[Any] ): lowerCamelCase_ : Union[str, Any] =self.block_out_channels lowerCamelCase_ : Optional[int] =block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. lowerCamelCase_ : int =self.num_attention_heads or self.attention_head_dim # input lowerCamelCase_ : Any =nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time lowerCamelCase_ : Union[str, Any] =FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) lowerCamelCase_ : List[Any] =FlaxTimestepEmbedding(snake_case__ , dtype=self.dtype ) lowerCamelCase_ : List[str] =FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) lowerCamelCase_ : Optional[int] =self.only_cross_attention if isinstance(snake_case__ , snake_case__ ): lowerCamelCase_ : str =(only_cross_attention,) * len(self.down_block_types ) if isinstance(snake_case__ , snake_case__ ): lowerCamelCase_ : Any =(num_attention_heads,) * len(self.down_block_types ) # down lowerCamelCase_ : Optional[int] =[] lowerCamelCase_ : Optional[Any] =[] lowerCamelCase_ : str =block_out_channels[0] lowerCamelCase_ : str =nn.Conv( snake_case__ , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(snake_case__ ) for i, down_block_type in enumerate(self.down_block_types ): lowerCamelCase_ : Union[str, Any] =output_channel lowerCamelCase_ : Tuple =block_out_channels[i] lowerCamelCase_ : List[Any] =i == len(snake_case__ ) - 1 if down_block_type == "CrossAttnDownBlock2D": lowerCamelCase_ : Tuple =FlaxCrossAttnDownBlockaD( in_channels=snake_case__ , out_channels=snake_case__ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: lowerCamelCase_ : Union[str, Any] =FlaxDownBlockaD( in_channels=snake_case__ , out_channels=snake_case__ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(snake_case__ ) for _ in range(self.layers_per_block ): lowerCamelCase_ : List[Any] =nn.Conv( snake_case__ , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(snake_case__ ) if not is_final_block: lowerCamelCase_ : Any =nn.Conv( snake_case__ , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(snake_case__ ) lowerCamelCase_ : List[str] =down_blocks lowerCamelCase_ : int =controlnet_down_blocks # mid lowerCamelCase_ : int =block_out_channels[-1] lowerCamelCase_ : str =FlaxUNetMidBlockaDCrossAttn( in_channels=snake_case__ , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) lowerCamelCase_ : List[str] =nn.Conv( snake_case__ , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self : Tuple , snake_case__ : Dict , snake_case__ : str , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : float = 1.0 , snake_case__ : bool = True , snake_case__ : bool = False , ): lowerCamelCase_ : int =self.controlnet_conditioning_channel_order if channel_order == "bgr": lowerCamelCase_ : Optional[Any] =jnp.flip(snake_case__ , axis=1 ) # 1. time if not isinstance(snake_case__ , jnp.ndarray ): lowerCamelCase_ : Dict =jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(snake_case__ , jnp.ndarray ) and len(timesteps.shape ) == 0: lowerCamelCase_ : Any =timesteps.astype(dtype=jnp.floataa ) lowerCamelCase_ : Optional[Any] =jnp.expand_dims(snake_case__ , 0 ) lowerCamelCase_ : Any =self.time_proj(snake_case__ ) lowerCamelCase_ : Union[str, Any] =self.time_embedding(snake_case__ ) # 2. pre-process lowerCamelCase_ : List[str] =jnp.transpose(snake_case__ , (0, 2, 3, 1) ) lowerCamelCase_ : Union[str, Any] =self.conv_in(snake_case__ ) lowerCamelCase_ : List[str] =jnp.transpose(snake_case__ , (0, 2, 3, 1) ) lowerCamelCase_ : str =self.controlnet_cond_embedding(snake_case__ ) sample += controlnet_cond # 3. down lowerCamelCase_ : List[str] =(sample,) for down_block in self.down_blocks: if isinstance(snake_case__ , snake_case__ ): lowerCamelCase_ , lowerCamelCase_ : Union[str, Any] =down_block(snake_case__ , snake_case__ , snake_case__ , deterministic=not train ) else: lowerCamelCase_ , lowerCamelCase_ : Optional[int] =down_block(snake_case__ , snake_case__ , deterministic=not train ) down_block_res_samples += res_samples # 4. mid lowerCamelCase_ : Optional[int] =self.mid_block(snake_case__ , snake_case__ , snake_case__ , deterministic=not train ) # 5. contronet blocks lowerCamelCase_ : Dict =() for down_block_res_sample, controlnet_block in zip(snake_case__ , self.controlnet_down_blocks ): lowerCamelCase_ : Dict =controlnet_block(snake_case__ ) controlnet_down_block_res_samples += (down_block_res_sample,) lowerCamelCase_ : List[Any] =controlnet_down_block_res_samples lowerCamelCase_ : Tuple =self.controlnet_mid_block(snake_case__ ) # 6. scaling lowerCamelCase_ : Dict =[sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=snake_case__ , mid_block_res_sample=snake_case__ )
144
0
"""simple docstring""" import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging __SCREAMING_SNAKE_CASE : str = '\\n\n' __SCREAMING_SNAKE_CASE : Dict = '\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n' __SCREAMING_SNAKE_CASE : Tuple = '\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to \'cuda\' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 78.22\n >>> print(round(results["perplexities"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = datasets.load_dataset("wikitext",\n ... "wikitext-2-raw-v1",\n ... split="test")["text"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!=\'\']\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 60.35\n >>> print(round(results["perplexities"][0], 2))\n 81.12\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class __A (datasets.Metric): '''simple docstring''' def lowerCAmelCase ( self : Union[str, Any] ) ->Dict: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """input_texts""": datasets.Value("""string""" ), } ) , reference_urls=["""https://huggingface.co/docs/transformers/perplexity"""] , ) def lowerCAmelCase ( self : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int = 16 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Any=None ) ->Optional[int]: """simple docstring""" if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": snake_case_ = """cuda""" else: snake_case_ = """cuda""" if torch.cuda.is_available() else """cpu""" snake_case_ = AutoModelForCausalLM.from_pretrained(UpperCAmelCase_ ) snake_case_ = model.to(UpperCAmelCase_ ) snake_case_ = AutoTokenizer.from_pretrained(UpperCAmelCase_ ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: snake_case_ = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(UpperCAmelCase_ ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" snake_case_ = model.config.max_length - 1 else: snake_case_ = model.config.max_length snake_case_ = tokenizer( UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ , return_tensors="""pt""" , return_attention_mask=UpperCAmelCase_ , ).to(UpperCAmelCase_ ) snake_case_ = encodings["""input_ids"""] snake_case_ = encodings["""attention_mask"""] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." snake_case_ = [] snake_case_ = CrossEntropyLoss(reduction="""none""" ) for start_index in logging.tqdm(range(0 , len(UpperCAmelCase_ ) , UpperCAmelCase_ ) ): snake_case_ = min(start_index + batch_size , len(UpperCAmelCase_ ) ) snake_case_ = encoded_texts[start_index:end_index] snake_case_ = attn_masks[start_index:end_index] if add_start_token: snake_case_ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(UpperCAmelCase_ ) snake_case_ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) snake_case_ = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(UpperCAmelCase_ ), attn_mask] , dim=1 ) snake_case_ = encoded_batch with torch.no_grad(): snake_case_ = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ).logits snake_case_ = out_logits[..., :-1, :].contiguous() snake_case_ = labels[..., 1:].contiguous() snake_case_ = attn_mask[..., 1:].contiguous() snake_case_ = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , UpperCAmelCase_ ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(UpperCAmelCase_ )}
371
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Tuple = { 'google/mobilenet_v1_1.0_224': 'https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json', 'google/mobilenet_v1_0.75_192': 'https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class __A (snake_case__): '''simple docstring''' __lowercase: List[Any] = """mobilenet_v1""" def __init__( self : Union[str, Any] , UpperCAmelCase_ : str=3 , UpperCAmelCase_ : List[Any]=224 , UpperCAmelCase_ : List[Any]=1.0 , UpperCAmelCase_ : Any=8 , UpperCAmelCase_ : int="relu6" , UpperCAmelCase_ : str=True , UpperCAmelCase_ : List[str]=0.999 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : List[Any]=0.001 , **UpperCAmelCase_ : Any , ) ->Union[str, Any]: """simple docstring""" super().__init__(**UpperCAmelCase_ ) if depth_multiplier <= 0: raise ValueError("""depth_multiplier must be greater than zero.""" ) snake_case_ = num_channels snake_case_ = image_size snake_case_ = depth_multiplier snake_case_ = min_depth snake_case_ = hidden_act snake_case_ = tf_padding snake_case_ = classifier_dropout_prob snake_case_ = initializer_range snake_case_ = layer_norm_eps class __A (snake_case__): '''simple docstring''' __lowercase: int = version.parse("""1.11""") @property def lowerCAmelCase ( self : Union[str, Any] ) ->Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict([("""pixel_values""", {0: """batch"""})] ) @property def lowerCAmelCase ( self : int ) ->Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "image-classification": return OrderedDict([("""logits""", {0: """batch"""})] ) else: return OrderedDict([("""last_hidden_state""", {0: """batch"""}), ("""pooler_output""", {0: """batch"""})] ) @property def lowerCAmelCase ( self : int ) ->float: """simple docstring""" return 1E-4
233
0
from ...configuration_utils import PretrainedConfig from ...utils import logging a =logging.get_logger(__name__) a ={ """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : List[Any] = '''dpr''' def __init__( self : Any ,SCREAMING_SNAKE_CASE__ : Tuple=3_0_5_2_2 ,SCREAMING_SNAKE_CASE__ : Any=7_6_8 ,SCREAMING_SNAKE_CASE__ : str=1_2 ,SCREAMING_SNAKE_CASE__ : Tuple=1_2 ,SCREAMING_SNAKE_CASE__ : Any=3_0_7_2 ,SCREAMING_SNAKE_CASE__ : Dict="gelu" ,SCREAMING_SNAKE_CASE__ : Tuple=0.1 ,SCREAMING_SNAKE_CASE__ : str=0.1 ,SCREAMING_SNAKE_CASE__ : int=5_1_2 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 ,SCREAMING_SNAKE_CASE__ : Optional[int]=0.02 ,SCREAMING_SNAKE_CASE__ : Dict=1E-12 ,SCREAMING_SNAKE_CASE__ : Dict=0 ,SCREAMING_SNAKE_CASE__ : List[Any]="absolute" ,SCREAMING_SNAKE_CASE__ : int = 0 ,**SCREAMING_SNAKE_CASE__ : Dict ,): super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = vocab_size __lowerCamelCase : Optional[int] = hidden_size __lowerCamelCase : int = num_hidden_layers __lowerCamelCase : Any = num_attention_heads __lowerCamelCase : Dict = hidden_act __lowerCamelCase : str = intermediate_size __lowerCamelCase : Optional[Any] = hidden_dropout_prob __lowerCamelCase : Tuple = attention_probs_dropout_prob __lowerCamelCase : Tuple = max_position_embeddings __lowerCamelCase : int = type_vocab_size __lowerCamelCase : Tuple = initializer_range __lowerCamelCase : List[str] = layer_norm_eps __lowerCamelCase : Any = projection_dim __lowerCamelCase : Union[str, Any] = position_embedding_type
73
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase_ = { '''configuration_jukebox''': [ '''JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''JukeboxConfig''', '''JukeboxPriorConfig''', '''JukeboxVQVAEConfig''', ], '''tokenization_jukebox''': ['''JukeboxTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST''', '''JukeboxModel''', '''JukeboxPreTrainedModel''', '''JukeboxVQVAE''', '''JukeboxPrior''', ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
79
0
from sklearn.metrics import recall_score import datasets SCREAMING_SNAKE_CASE_ = '\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n' SCREAMING_SNAKE_CASE_ = '\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the \'positive class\' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.\n - `\'binary\'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `\'micro\'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `\'macro\'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `\'weighted\'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `\'samples\'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `\'warn\'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {\'recall\': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {\'recall\': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {\'recall\': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'macro\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'micro\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'weighted\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {\'recall\': array([1., 0., 0.])}\n' SCREAMING_SNAKE_CASE_ = '\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): def _UpperCAmelCase ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("int32" ) ), "references": datasets.Sequence(datasets.Value("int32" ) ), } if self.config_name == "multilabel" else { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) , reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"] , ) def _UpperCAmelCase ( self , A_ , A_ , A_=None , A_=1 , A_="binary" , A_=None , A_="warn" , ): '''simple docstring''' _UpperCAmelCase : Any = recall_score( lowerCAmelCase__ , lowerCAmelCase__ , labels=lowerCAmelCase__ , pos_label=lowerCAmelCase__ , average=lowerCAmelCase__ , sample_weight=lowerCAmelCase__ , zero_division=lowerCAmelCase__ , ) return {"recall": float(lowerCAmelCase__ ) if score.size == 1 else score}
366
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) # General docstring SCREAMING_SNAKE_CASE_ = 'ResNetConfig' # Base docstring SCREAMING_SNAKE_CASE_ = 'microsoft/resnet-50' SCREAMING_SNAKE_CASE_ = [1, 2048, 7, 7] # Image classification docstring SCREAMING_SNAKE_CASE_ = 'microsoft/resnet-50' SCREAMING_SNAKE_CASE_ = 'tiger cat' SCREAMING_SNAKE_CASE_ = [ 'microsoft/resnet-50', # See all resnet models at https://huggingface.co/models?filter=resnet ] class a ( nn.Module ): def __init__( self , A_ , A_ , A_ = 3 , A_ = 1 , A_ = "relu" ): '''simple docstring''' super().__init__() _UpperCAmelCase : Union[str, Any] = nn.Convad( A_ , A_ , kernel_size=A_ , stride=A_ , padding=kernel_size // 2 , bias=A_ ) _UpperCAmelCase : List[Any] = nn.BatchNormad(A_ ) _UpperCAmelCase : Union[str, Any] = ACTaFN[activation] if activation is not None else nn.Identity() def _UpperCAmelCase ( self , A_ ): '''simple docstring''' _UpperCAmelCase : List[Any] = self.convolution(A_ ) _UpperCAmelCase : Optional[int] = self.normalization(A_ ) _UpperCAmelCase : Optional[Any] = self.activation(A_ ) return hidden_state class a ( nn.Module ): def __init__( self , A_ ): '''simple docstring''' super().__init__() _UpperCAmelCase : Any = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) _UpperCAmelCase : List[str] = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) _UpperCAmelCase : List[Any] = config.num_channels def _UpperCAmelCase ( self , A_ ): '''simple docstring''' _UpperCAmelCase : int = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) _UpperCAmelCase : int = self.embedder(A_ ) _UpperCAmelCase : int = self.pooler(A_ ) return embedding class a ( nn.Module ): def __init__( self , A_ , A_ , A_ = 2 ): '''simple docstring''' super().__init__() _UpperCAmelCase : Union[str, Any] = nn.Convad(A_ , A_ , kernel_size=1 , stride=A_ , bias=A_ ) _UpperCAmelCase : Optional[int] = nn.BatchNormad(A_ ) def _UpperCAmelCase ( self , A_ ): '''simple docstring''' _UpperCAmelCase : str = self.convolution(A_ ) _UpperCAmelCase : List[str] = self.normalization(A_ ) return hidden_state class a ( nn.Module ): def __init__( self , A_ , A_ , A_ = 1 , A_ = "relu" ): '''simple docstring''' super().__init__() _UpperCAmelCase : Optional[int] = in_channels != out_channels or stride != 1 _UpperCAmelCase : Dict = ( ResNetShortCut(A_ , A_ , stride=A_ ) if should_apply_shortcut else nn.Identity() ) _UpperCAmelCase : int = nn.Sequential( ResNetConvLayer(A_ , A_ , stride=A_ ) , ResNetConvLayer(A_ , A_ , activation=A_ ) , ) _UpperCAmelCase : Dict = ACTaFN[activation] def _UpperCAmelCase ( self , A_ ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = hidden_state _UpperCAmelCase : Any = self.layer(A_ ) _UpperCAmelCase : Optional[int] = self.shortcut(A_ ) hidden_state += residual _UpperCAmelCase : Optional[int] = self.activation(A_ ) return hidden_state class a ( nn.Module ): def __init__( self , A_ , A_ , A_ = 1 , A_ = "relu" , A_ = 4 ): '''simple docstring''' super().__init__() _UpperCAmelCase : Optional[Any] = in_channels != out_channels or stride != 1 _UpperCAmelCase : Optional[int] = out_channels // reduction _UpperCAmelCase : List[str] = ( ResNetShortCut(A_ , A_ , stride=A_ ) if should_apply_shortcut else nn.Identity() ) _UpperCAmelCase : Dict = nn.Sequential( ResNetConvLayer(A_ , A_ , kernel_size=1 ) , ResNetConvLayer(A_ , A_ , stride=A_ ) , ResNetConvLayer(A_ , A_ , kernel_size=1 , activation=A_ ) , ) _UpperCAmelCase : List[str] = ACTaFN[activation] def _UpperCAmelCase ( self , A_ ): '''simple docstring''' _UpperCAmelCase : List[Any] = hidden_state _UpperCAmelCase : List[str] = self.layer(A_ ) _UpperCAmelCase : List[str] = self.shortcut(A_ ) hidden_state += residual _UpperCAmelCase : Dict = self.activation(A_ ) return hidden_state class a ( nn.Module ): def __init__( self , A_ , A_ , A_ , A_ = 2 , A_ = 2 , ): '''simple docstring''' super().__init__() _UpperCAmelCase : Any = ResNetBottleNeckLayer if config.layer_type == "bottleneck" else ResNetBasicLayer _UpperCAmelCase : Optional[Any] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(A_ , A_ , stride=A_ , activation=config.hidden_act ) , *[layer(A_ , A_ , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def _UpperCAmelCase ( self , A_ ): '''simple docstring''' _UpperCAmelCase : List[Any] = input for layer in self.layers: _UpperCAmelCase : Optional[Any] = layer(A_ ) return hidden_state class a ( nn.Module ): def __init__( self , A_ ): '''simple docstring''' super().__init__() _UpperCAmelCase : Any = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( A_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) _UpperCAmelCase : Union[str, Any] = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(A_ , config.depths[1:] ): self.stages.append(ResNetStage(A_ , A_ , A_ , depth=A_ ) ) def _UpperCAmelCase ( self , A_ , A_ = False , A_ = True ): '''simple docstring''' _UpperCAmelCase : List[Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _UpperCAmelCase : Dict = hidden_states + (hidden_state,) _UpperCAmelCase : str = stage_module(A_ ) if output_hidden_states: _UpperCAmelCase : int = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=A_ , hidden_states=A_ , ) class a ( UpperCAmelCase ): _lowercase = ResNetConfig _lowercase = "resnet" _lowercase = "pixel_values" _lowercase = True def _UpperCAmelCase ( self , A_ ): '''simple docstring''' if isinstance(A_ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode="fan_out" , nonlinearity="relu" ) elif isinstance(A_ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def _UpperCAmelCase ( self , A_ , A_=False ): '''simple docstring''' if isinstance(A_ , A_ ): _UpperCAmelCase : Optional[Any] = value SCREAMING_SNAKE_CASE_ = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' SCREAMING_SNAKE_CASE_ = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare ResNet model outputting raw features without any specific head on top." , UpperCAmelCase , ) class a ( UpperCAmelCase ): def __init__( self , A_ ): '''simple docstring''' super().__init__(A_ ) _UpperCAmelCase : List[str] = config _UpperCAmelCase : Any = ResNetEmbeddings(A_ ) _UpperCAmelCase : str = ResNetEncoder(A_ ) _UpperCAmelCase : Any = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(A_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=A_ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _UpperCAmelCase ( self , A_ , A_ = None , A_ = None ): '''simple docstring''' _UpperCAmelCase : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : List[Any] = self.embedder(A_ ) _UpperCAmelCase : str = self.encoder( A_ , output_hidden_states=A_ , return_dict=A_ ) _UpperCAmelCase : List[Any] = encoder_outputs[0] _UpperCAmelCase : int = self.pooler(A_ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=A_ , pooler_output=A_ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( "\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , UpperCAmelCase , ) class a ( UpperCAmelCase ): def __init__( self , A_ ): '''simple docstring''' super().__init__(A_ ) _UpperCAmelCase : Optional[int] = config.num_labels _UpperCAmelCase : str = ResNetModel(A_ ) # classification head _UpperCAmelCase : int = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(A_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=A_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _UpperCAmelCase ( self , A_ = None , A_ = None , A_ = None , A_ = None , ): '''simple docstring''' _UpperCAmelCase : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Tuple = self.resnet(A_ , output_hidden_states=A_ , return_dict=A_ ) _UpperCAmelCase : Optional[int] = outputs.pooler_output if return_dict else outputs[1] _UpperCAmelCase : int = self.classifier(A_ ) _UpperCAmelCase : Dict = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _UpperCAmelCase : Optional[Any] = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _UpperCAmelCase : Optional[Any] = "single_label_classification" else: _UpperCAmelCase : Any = "multi_label_classification" if self.config.problem_type == "regression": _UpperCAmelCase : str = MSELoss() if self.num_labels == 1: _UpperCAmelCase : Any = loss_fct(logits.squeeze() , labels.squeeze() ) else: _UpperCAmelCase : Optional[int] = loss_fct(A_ , A_ ) elif self.config.problem_type == "single_label_classification": _UpperCAmelCase : Any = CrossEntropyLoss() _UpperCAmelCase : Any = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _UpperCAmelCase : Any = BCEWithLogitsLoss() _UpperCAmelCase : Tuple = loss_fct(A_ , A_ ) if not return_dict: _UpperCAmelCase : Any = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=A_ , logits=A_ , hidden_states=outputs.hidden_states ) @add_start_docstrings( "\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n " , UpperCAmelCase , ) class a ( UpperCAmelCase , UpperCAmelCase ): def __init__( self , A_ ): '''simple docstring''' super().__init__(A_ ) super()._init_backbone(A_ ) _UpperCAmelCase : Optional[int] = [config.embedding_size] + config.hidden_sizes _UpperCAmelCase : str = ResNetEmbeddings(A_ ) _UpperCAmelCase : List[Any] = ResNetEncoder(A_ ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(A_ ) @replace_return_docstrings(output_type=A_ , config_class=_CONFIG_FOR_DOC ) def _UpperCAmelCase ( self , A_ , A_ = None , A_ = None ): '''simple docstring''' _UpperCAmelCase : Tuple = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : Tuple = self.embedder(A_ ) _UpperCAmelCase : Optional[int] = self.encoder(A_ , output_hidden_states=A_ , return_dict=A_ ) _UpperCAmelCase : Optional[int] = outputs.hidden_states _UpperCAmelCase : Any = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: _UpperCAmelCase : Union[str, Any] = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=A_ , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=A_ , )
189
0
import os def __lowerCamelCase ( ): """simple docstring""" lowercase__ : List[Any] = os.path.dirname(os.path.realpath(lowerCamelCase__ ) ) lowercase__ : int = os.path.join(lowerCamelCase__ , "triangle.txt" ) with open(lowerCamelCase__ ) as f: lowercase__ : Union[str, Any] = f.readlines() lowercase__ : int = [] for line in triangle: lowercase__ : Union[str, Any] = [] for number in line.strip().split(" " ): numbers_from_line.append(int(lowerCamelCase__ ) ) a.append(lowerCamelCase__ ) for i in range(1 , len(lowerCamelCase__ ) ): for j in range(len(a[i] ) ): lowercase__ : str = a[i - 1][j] if j != len(a[i - 1] ) else 0 lowercase__ : List[Any] = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(lowerCamelCase__ , lowerCamelCase__ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
130
"""simple docstring""" from ..utils import DummyObject, requires_backends class a ( metaclass=UpperCAmelCase__ ): UpperCamelCase : Optional[int] = ['torch', 'torchsde'] def __init__( self : Union[str, Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any] ) -> Dict: '''simple docstring''' requires_backends(self , ["""torch""", """torchsde"""] ) @classmethod def lowerCamelCase__ ( cls : Union[str, Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Tuple ) -> List[Any]: '''simple docstring''' requires_backends(cls , ["""torch""", """torchsde"""] ) @classmethod def lowerCamelCase__ ( cls : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any ) -> Tuple: '''simple docstring''' requires_backends(cls , ["""torch""", """torchsde"""] )
173
0
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''Salesforce/codegen-350M-nl''': '''https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json''', '''Salesforce/codegen-350M-multi''': '''https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json''', '''Salesforce/codegen-350M-mono''': '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json''', '''Salesforce/codegen-2B-nl''': '''https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json''', '''Salesforce/codegen-2B-multi''': '''https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json''', '''Salesforce/codegen-2B-mono''': '''https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json''', '''Salesforce/codegen-6B-nl''': '''https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json''', '''Salesforce/codegen-6B-multi''': '''https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json''', '''Salesforce/codegen-6B-mono''': '''https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json''', '''Salesforce/codegen-16B-nl''': '''https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json''', '''Salesforce/codegen-16B-multi''': '''https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json''', '''Salesforce/codegen-16B-mono''': '''https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json''', } class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = "codegen" SCREAMING_SNAKE_CASE_ = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self, lowerCAmelCase__=5_0400, lowerCAmelCase__=2048, lowerCAmelCase__=2048, lowerCAmelCase__=4096, lowerCAmelCase__=28, lowerCAmelCase__=16, lowerCAmelCase__=64, lowerCAmelCase__=None, lowerCAmelCase__="gelu_new", lowerCAmelCase__=0.0, lowerCAmelCase__=0.0, lowerCAmelCase__=0.0, lowerCAmelCase__=1e-5, lowerCAmelCase__=0.02, lowerCAmelCase__=True, lowerCAmelCase__=5_0256, lowerCAmelCase__=5_0256, lowerCAmelCase__=False, **lowerCAmelCase__, ) -> Optional[Any]: snake_case_ = vocab_size snake_case_ = n_ctx snake_case_ = n_positions snake_case_ = n_embd snake_case_ = n_layer snake_case_ = n_head snake_case_ = n_inner snake_case_ = rotary_dim snake_case_ = activation_function snake_case_ = resid_pdrop snake_case_ = embd_pdrop snake_case_ = attn_pdrop snake_case_ = layer_norm_epsilon snake_case_ = initializer_range snake_case_ = use_cache snake_case_ = bos_token_id snake_case_ = eos_token_id super().__init__( bos_token_id=lowerCAmelCase__, eos_token_id=lowerCAmelCase__, tie_word_embeddings=lowerCAmelCase__, **lowerCAmelCase__) class UpperCamelCase ( lowerCAmelCase__ ): def __init__( self, lowerCAmelCase__, lowerCAmelCase__ = "default", lowerCAmelCase__ = None, lowerCAmelCase__ = False, ) -> Tuple: super().__init__(lowerCAmelCase__, task=lowerCAmelCase__, patching_specs=lowerCAmelCase__, use_past=lowerCAmelCase__) if not getattr(self._config, 'pad_token_id', lowerCAmelCase__): # TODO: how to do that better? snake_case_ = 0 @property def a_ ( self) -> Mapping[str, Mapping[int, str]]: snake_case_ = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}}) if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase__, direction='inputs') snake_case_ = {0: 'batch', 1: 'past_sequence + sequence'} else: snake_case_ = {0: 'batch', 1: 'sequence'} return common_inputs @property def a_ ( self) -> int: return self._config.n_layer @property def a_ ( self) -> int: return self._config.n_head def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = -1, lowerCAmelCase__ = -1, lowerCAmelCase__ = False, lowerCAmelCase__ = None, ) -> Mapping[str, Any]: snake_case_ = super(lowerCAmelCase__, self).generate_dummy_inputs( lowerCAmelCase__, batch_size=lowerCAmelCase__, seq_length=lowerCAmelCase__, is_pair=lowerCAmelCase__, framework=lowerCAmelCase__) # We need to order the input in the way they appears in the forward() snake_case_ = OrderedDict({'input_ids': common_inputs['input_ids']}) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.') else: import torch snake_case_ , snake_case_ = common_inputs['input_ids'].shape # Not using the same length for past_key_values snake_case_ = seqlen + 2 snake_case_ = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) snake_case_ = [ (torch.zeros(lowerCAmelCase__), torch.zeros(lowerCAmelCase__)) for _ in range(self.num_layers) ] snake_case_ = common_inputs['attention_mask'] if self.use_past: snake_case_ = ordered_inputs['attention_mask'].dtype snake_case_ = torch.cat( [ordered_inputs['attention_mask'], torch.ones(lowerCAmelCase__, lowerCAmelCase__, dtype=lowerCAmelCase__)], dim=1) return ordered_inputs @property def a_ ( self) -> int: return 13
357
"""simple docstring""" import copy import re class UpperCamelCase : SCREAMING_SNAKE_CASE_ = "hp" SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = None @classmethod def a_ ( cls, lowerCAmelCase__, lowerCAmelCase__) -> Tuple: snake_case_ = prefix snake_case_ = defaults cls.build_naming_info() @staticmethod def a_ ( lowerCAmelCase__, lowerCAmelCase__) -> Optional[Any]: if len(lowerCAmelCase__) == 0: return "" snake_case_ = None if any(char.isdigit() for char in word): raise Exception(f'Parameters should not contain numbers: \'{word}\' contains a number') if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1, len(lowerCAmelCase__) + 1): snake_case_ = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: snake_case_ = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(lowerCAmelCase__): snake_case_ = '' while integer != 0: snake_case_ = chr(ord('A') + integer % 10) + s integer //= 10 return s snake_case_ = 0 while True: snake_case_ = word + '#' + int_to_alphabetic(lowerCAmelCase__) if sword in info["reverse_short_word"]: continue else: snake_case_ = sword break snake_case_ = short_word snake_case_ = word return short_word @staticmethod def a_ ( lowerCAmelCase__, lowerCAmelCase__) -> Dict: snake_case_ = param_name.split('_') snake_case_ = [TrialShortNamer.shortname_for_word(lowerCAmelCase__, lowerCAmelCase__) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name snake_case_ = ['', '_'] for separator in separators: snake_case_ = separator.join(lowerCAmelCase__) if shortname not in info["reverse_short_param"]: snake_case_ = shortname snake_case_ = param_name return shortname return param_name @staticmethod def a_ ( lowerCAmelCase__, lowerCAmelCase__) -> List[Any]: snake_case_ = TrialShortNamer.shortname_for_key(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = short_name snake_case_ = param_name @classmethod def a_ ( cls) -> List[str]: if cls.NAMING_INFO is not None: return snake_case_ = { 'short_word': {}, 'reverse_short_word': {}, 'short_param': {}, 'reverse_short_param': {}, } snake_case_ = list(cls.DEFAULTS.keys()) for k in field_keys: cls.add_new_param_name(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = info @classmethod def a_ ( cls, lowerCAmelCase__) -> List[Any]: cls.build_naming_info() assert cls.PREFIX is not None snake_case_ = [copy.copy(cls.PREFIX)] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(f'You should provide a default value for the param name {k} with value {v}') if v == cls.DEFAULTS[k]: # The default value is not added to the name continue snake_case_ = cls.NAMING_INFO['short_param'][k] if isinstance(lowerCAmelCase__, lowerCAmelCase__): snake_case_ = 1 if v else 0 snake_case_ = '' if isinstance(lowerCAmelCase__, (int, float)) else '-' snake_case_ = f'{key}{sep}{v}' name.append(lowerCAmelCase__) return "_".join(lowerCAmelCase__) @classmethod def a_ ( cls, lowerCAmelCase__) -> Optional[Any]: snake_case_ = repr[len(cls.PREFIX) + 1 :] if repr == "": snake_case_ = [] else: snake_case_ = repr.split('_') snake_case_ = {} for value in values: if "-" in value: snake_case_ , snake_case_ = value.split('-') else: snake_case_ = re.sub('[0-9.]', '', lowerCAmelCase__) snake_case_ = float(re.sub('[^0-9.]', '', lowerCAmelCase__)) snake_case_ = cls.NAMING_INFO['reverse_short_param'][p_k] snake_case_ = p_v for k in cls.DEFAULTS: if k not in parameters: snake_case_ = cls.DEFAULTS[k] return parameters
312
0
"""simple docstring""" from manim import * class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: A = Rectangle(height=0.5 ,width=0.5 ) A = Rectangle(height=0.25 ,width=0.25 ) A = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0 ) A = [mem.copy() for i in range(6 )] A = [mem.copy() for i in range(6 )] A = VGroup(*A_ ).arrange(A_ ,buff=0 ) A = VGroup(*A_ ).arrange(A_ ,buff=0 ) A = VGroup(A_ ,A_ ).arrange(A_ ,buff=0 ) A = Text('CPU' ,font_size=24 ) A = Group(A_ ,A_ ).arrange(A_ ,buff=0.5 ,aligned_edge=A_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(A_ ) A = [mem.copy() for i in range(4 )] A = VGroup(*A_ ).arrange(A_ ,buff=0 ) A = Text('GPU' ,font_size=24 ) A = Group(A_ ,A_ ).arrange(A_ ,buff=0.5 ,aligned_edge=A_ ) gpu.move_to([-1, -1, 0] ) self.add(A_ ) A = [mem.copy() for i in range(6 )] A = VGroup(*A_ ).arrange(A_ ,buff=0 ) A = Text('Model' ,font_size=24 ) A = Group(A_ ,A_ ).arrange(A_ ,buff=0.5 ,aligned_edge=A_ ) model.move_to([3, -1.0, 0] ) self.add(A_ ) A = [] A = [] A = [] for i, rect in enumerate(A_ ): rect.set_stroke(A_ ) A = Rectangle(height=0.46 / 4 ,width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(A_ ,opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) ,buff=0.02 ,direction=A_ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] ,direction=A_ ,buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] ,direction=A_ ,buff=0.0 ) self.add(A_ ) model_cpu_arr.append(A_ ) self.add(*A_ ,*A_ ,*A_ ) A = [mem.copy() for i in range(6 )] A = VGroup(*A_ ).arrange(A_ ,buff=0 ) A = Text('Loaded Checkpoint' ,font_size=24 ) A = Group(A_ ,A_ ).arrange(A_ ,buff=0.5 ,aligned_edge=A_ ) checkpoint.move_to([3, 0.5, 0] ) self.add(A_ ) A = [] A = [] for i, rect in enumerate(A_ ): A = fill.copy().set_fill(A_ ,opacity=0.7 ) target.move_to(A_ ) ckpt_arr.append(A_ ) A = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(A_ ) self.add(*A_ ,*A_ ) A = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) A = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' ,font_size=18 ,) key_text.move_to([-5, 2.4, 0] ) self.add(A_ ,A_ ) A = MarkupText( F'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' ,font_size=18 ,) blue_text.next_to(A_ ,DOWN * 2.4 ,aligned_edge=key_text.get_left() ) self.add(A_ ) A = MarkupText( F'Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.' ,font_size=24 ,) step_a.move_to([2, 2, 0] ) A = [meta_mem.copy() for i in range(6 )] A = [meta_mem.copy() for i in range(6 )] A = VGroup(*A_ ).arrange(A_ ,buff=0 ) A = VGroup(*A_ ).arrange(A_ ,buff=0 ) A = VGroup(A_ ,A_ ).arrange(A_ ,buff=0 ) A = Text('Disk' ,font_size=24 ) A = Group(A_ ,A_ ).arrange(A_ ,buff=0.5 ,aligned_edge=A_ ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(A_ ,run_time=3 ) ,Write(A_ ,run_time=1 ) ,Create(A_ ,run_time=1 ) ) A = [] for i, rect in enumerate(A_ ): A = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(A_ ,run_time=1.5 ) ) self.play(*A_ ) self.play(FadeOut(A_ ) ) A = MarkupText(F'Then, the checkpoint is removed from memory\nthrough garbage collection.' ,font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(A_ ,run_time=3 ) ) self.play( FadeOut(A_ ,A_ ,*A_ ,*A_ ) ,) self.wait()
74
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _lowercase = {'''configuration_deit''': ['''DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DeiTConfig''', '''DeiTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''DeiTFeatureExtractor'''] _lowercase = ['''DeiTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DeiTForImageClassification''', '''DeiTForImageClassificationWithTeacher''', '''DeiTForMaskedImageModeling''', '''DeiTModel''', '''DeiTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDeiTForImageClassification''', '''TFDeiTForImageClassificationWithTeacher''', '''TFDeiTForMaskedImageModeling''', '''TFDeiTModel''', '''TFDeiTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
74
1
"""simple docstring""" lowerCamelCase_ = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} lowerCamelCase_ = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def snake_case ( A__ ,A__ ,A__ ): UpperCAmelCase_ : Optional[Any] = True UpperCAmelCase_ : Dict = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(__a ,__a ,__a ) order.append(__a ) return order def snake_case ( A__ ,A__ ,A__ ): UpperCAmelCase_ : List[str] = True UpperCAmelCase_ : Tuple = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(__a ,__a ,__a ) return component def snake_case ( A__ ): UpperCAmelCase_ : Dict = len(__a ) * [False] UpperCAmelCase_ : dict[int, list[int]] = {vert: [] for vert in range(len(__a ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(__a ) UpperCAmelCase_ : Union[str, Any] = [] for i, was_visited in enumerate(__a ): if not was_visited: order += topology_sort(__a ,__a ,__a ) UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : Union[str, Any] = len(__a ) * [False] for i in range(len(__a ) ): UpperCAmelCase_ : List[str] = order[len(__a ) - i - 1] if not visited[vert]: UpperCAmelCase_ : List[str] = find_components(__a ,__a ,__a ) components_list.append(__a ) return components_list
355
"""simple docstring""" import numpy as np def snake_case ( A__ ,A__ ,A__ ,A__ ,A__ ): UpperCAmelCase_ : Tuple = int(np.ceil((x_end - xa) / h ) ) UpperCAmelCase_ : Optional[Any] = np.zeros((n + 1,) ) UpperCAmelCase_ : List[Any] = ya UpperCAmelCase_ : Optional[int] = xa for k in range(A__ ): UpperCAmelCase_ : List[str] = f(A__ ,y[k] ) UpperCAmelCase_ : Any = f(x + 0.5 * h ,y[k] + 0.5 * h * ka ) UpperCAmelCase_ : Union[str, Any] = f(x + 0.5 * h ,y[k] + 0.5 * h * ka ) UpperCAmelCase_ : Dict = f(x + h ,y[k] + h * ka ) UpperCAmelCase_ : Optional[int] = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
253
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A = { '''configuration_git''': ['''GIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GitConfig''', '''GitVisionConfig'''], '''processing_git''': ['''GitProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''GIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GitForCausalLM''', '''GitModel''', '''GitPreTrainedModel''', '''GitVisionModel''', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
160
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A = { '''configuration_git''': ['''GIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GitConfig''', '''GitVisionConfig'''], '''processing_git''': ['''GitProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''GIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GitForCausalLM''', '''GitModel''', '''GitPreTrainedModel''', '''GitVisionModel''', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
160
1
from __future__ import annotations import math def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' if depth < 0: raise ValueError('Depth cannot be less than 0' ) if len(_UpperCAmelCase ) == 0: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1, node_index * 2, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ), minimax(depth + 1, node_index * 2 + 1, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ), ) return min( minimax(depth + 1, node_index * 2, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ), minimax(depth + 1, node_index * 2 + 1, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ), ) def SCREAMING_SNAKE_CASE__ ( ) -> None: '''simple docstring''' lowerCAmelCase : List[str] = [90, 23, 6, 33, 21, 65, 123, 34_423] lowerCAmelCase : int = math.log(len(_UpperCAmelCase ), 2 ) print('Optimal value : ', end='' ) print(minimax(0, 0, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
323
import math def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase = 100 ) -> int: '''simple docstring''' lowerCAmelCase : Any = sum(i * i for i in range(1, n + 1 ) ) lowerCAmelCase : str = int(math.pow(sum(range(1, n + 1 ) ), 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F'{solution() = }')
323
1
'''simple docstring''' import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class a__: '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase=13 , __lowerCAmelCase=30 , __lowerCAmelCase=2 , __lowerCAmelCase=3 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=32 , __lowerCAmelCase=5 , __lowerCAmelCase=4 , __lowerCAmelCase=37 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=10 , __lowerCAmelCase=0.02 , __lowerCAmelCase=None , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = image_size lowerCAmelCase = patch_size lowerCAmelCase = num_channels lowerCAmelCase = is_training lowerCAmelCase = use_labels lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCAmelCase = (image_size // patch_size) ** 2 lowerCAmelCase = num_patches + 1 def a_ ( self): """simple docstring""" lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) lowerCAmelCase = self.get_config() return config, pixel_values, labels def a_ ( self): """simple docstring""" return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = ViTMSNModel(config=__lowerCAmelCase) model.to(__lowerCAmelCase) model.eval() lowerCAmelCase = model(__lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = self.type_sequence_label_size lowerCAmelCase = ViTMSNForImageClassification(__lowerCAmelCase) model.to(__lowerCAmelCase) model.eval() lowerCAmelCase = model(__lowerCAmelCase , labels=__lowerCAmelCase) print("""Pixel and labels shape: {pixel_values.shape}, {labels.shape}""") print("""Labels: {labels}""") self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images lowerCAmelCase = 1 lowerCAmelCase = ViTMSNForImageClassification(__lowerCAmelCase) model.to(__lowerCAmelCase) model.eval() lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) lowerCAmelCase = model(__lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def a_ ( self): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = config_and_inputs lowerCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a__( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : List[Any] = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () UpperCAmelCase_ : List[Any] = ( {'''feature-extraction''': ViTMSNModel, '''image-classification''': ViTMSNForImageClassification} if is_torch_available() else {} ) UpperCAmelCase_ : Optional[Any] = False UpperCAmelCase_ : List[str] = False UpperCAmelCase_ : Union[str, Any] = False UpperCAmelCase_ : Optional[int] = False def a_ ( self): """simple docstring""" lowerCAmelCase = ViTMSNModelTester(self) lowerCAmelCase = ConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase , hidden_size=37) def a_ ( self): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMSN does not use inputs_embeds""") def a_ ( self): """simple docstring""" pass def a_ ( self): """simple docstring""" lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(__lowerCAmelCase) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) lowerCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCAmelCase , nn.Linear)) def a_ ( self): """simple docstring""" lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(__lowerCAmelCase) lowerCAmelCase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase = [*signature.parameters.keys()] lowerCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __lowerCAmelCase) def a_ ( self): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase) def a_ ( self): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCAmelCase) @slow def a_ ( self): """simple docstring""" for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = ViTMSNModel.from_pretrained(__lowerCAmelCase) self.assertIsNotNone(__lowerCAmelCase) def snake_case__ ( ) -> int: '''simple docstring''' lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class a__( unittest.TestCase ): '''simple docstring''' @cached_property def a_ ( self): """simple docstring""" return ViTImageProcessor.from_pretrained("""facebook/vit-msn-small""") if is_vision_available() else None @slow def a_ ( self): """simple docstring""" torch.manual_seed(2) lowerCAmelCase = ViTMSNForImageClassification.from_pretrained("""facebook/vit-msn-small""").to(__lowerCAmelCase) lowerCAmelCase = self.default_image_processor lowerCAmelCase = prepare_img() lowerCAmelCase = image_processor(images=__lowerCAmelCase , return_tensors="""pt""").to(__lowerCAmelCase) # forward pass with torch.no_grad(): lowerCAmelCase = model(**__lowerCAmelCase) # verify the logits lowerCAmelCase = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , __lowerCAmelCase) lowerCAmelCase = torch.tensor([-0.0803, -0.4454, -0.2375]).to(__lowerCAmelCase) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCAmelCase , atol=1E-4))
272
'''simple docstring''' from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig __lowercase = logging.get_logger(__name__) __lowercase = '''T5Config''' class a__( lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase_ : List[str] = '''mt5''' UpperCAmelCase_ : Tuple = MTaConfig class a__( lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase_ : List[Any] = '''mt5''' UpperCAmelCase_ : int = MTaConfig class a__( lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase_ : Tuple = '''mt5''' UpperCAmelCase_ : Union[str, Any] = MTaConfig
272
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase : Tuple = {"configuration_xglm": ["XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XGLMConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : List[Any] = ["XGLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : List[Any] = ["XGLMTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : List[Any] = [ "XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XGLMForCausalLM", "XGLMModel", "XGLMPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : int = [ "FlaxXGLMForCausalLM", "FlaxXGLMModel", "FlaxXGLMPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : List[Any] = [ "TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXGLMForCausalLM", "TFXGLMModel", "TFXGLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys __UpperCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure)
293
import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class __snake_case ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = DownBlockaD # noqa F405 lowerCAmelCase__ = """down""" def UpperCAmelCase__ ( self : Any ): __snake_case: str = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904] super().test_output(A ) class __snake_case ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = ResnetDownsampleBlockaD # noqa F405 lowerCAmelCase__ = """down""" def UpperCAmelCase__ ( self : Optional[int] ): __snake_case: Union[str, Any] = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948] super().test_output(A ) class __snake_case ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = AttnDownBlockaD # noqa F405 lowerCAmelCase__ = """down""" def UpperCAmelCase__ ( self : Any ): __snake_case: Union[str, Any] = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957] super().test_output(A ) class __snake_case ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = CrossAttnDownBlockaD # noqa F405 lowerCAmelCase__ = """down""" def UpperCAmelCase__ ( self : List[str] ): __snake_case , __snake_case: List[str] = super().prepare_init_args_and_inputs_for_common() __snake_case: List[Any] = 32 return init_dict, inputs_dict def UpperCAmelCase__ ( self : Optional[Any] ): __snake_case: Optional[Any] = [0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983] super().test_output(A ) class __snake_case ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = SimpleCrossAttnDownBlockaD # noqa F405 lowerCAmelCase__ = """down""" @property def UpperCAmelCase__ ( self : Tuple ): return super().get_dummy_input(include_encoder_hidden_states=A ) def UpperCAmelCase__ ( self : int ): __snake_case , __snake_case: Union[str, Any] = super().prepare_init_args_and_inputs_for_common() __snake_case: Optional[Any] = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == """mps""" , """MPS result is not consistent""" ) def UpperCAmelCase__ ( self : List[Any] ): __snake_case: Optional[Any] = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338] super().test_output(A ) class __snake_case ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = SkipDownBlockaD # noqa F405 lowerCAmelCase__ = """down""" @property def UpperCAmelCase__ ( self : Any ): return super().get_dummy_input(include_skip_sample=A ) def UpperCAmelCase__ ( self : Any ): __snake_case: Optional[Any] = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069] super().test_output(A ) class __snake_case ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = AttnSkipDownBlockaD # noqa F405 lowerCAmelCase__ = """down""" @property def UpperCAmelCase__ ( self : List[Any] ): return super().get_dummy_input(include_skip_sample=A ) def UpperCAmelCase__ ( self : int ): __snake_case: str = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642] super().test_output(A ) class __snake_case ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = DownEncoderBlockaD # noqa F405 lowerCAmelCase__ = """down""" @property def UpperCAmelCase__ ( self : Union[str, Any] ): return super().get_dummy_input(include_temb=A ) def UpperCAmelCase__ ( self : Optional[int] ): __snake_case: str = { """in_channels""": 32, """out_channels""": 32, } __snake_case: Dict = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase__ ( self : str ): __snake_case: Optional[int] = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626] super().test_output(A ) class __snake_case ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = AttnDownEncoderBlockaD # noqa F405 lowerCAmelCase__ = """down""" @property def UpperCAmelCase__ ( self : List[str] ): return super().get_dummy_input(include_temb=A ) def UpperCAmelCase__ ( self : Optional[int] ): __snake_case: Optional[Any] = { """in_channels""": 32, """out_channels""": 32, } __snake_case: Tuple = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase__ ( self : Optional[int] ): __snake_case: Dict = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538] super().test_output(A ) class __snake_case ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = UNetMidBlockaD # noqa F405 lowerCAmelCase__ = """mid""" def UpperCAmelCase__ ( self : str ): __snake_case: Optional[int] = { """in_channels""": 32, """temb_channels""": 128, } __snake_case: List[str] = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase__ ( self : str ): __snake_case: Tuple = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028] super().test_output(A ) class __snake_case ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = UNetMidBlockaDCrossAttn # noqa F405 lowerCAmelCase__ = """mid""" def UpperCAmelCase__ ( self : str ): __snake_case , __snake_case: int = super().prepare_init_args_and_inputs_for_common() __snake_case: int = 32 return init_dict, inputs_dict def UpperCAmelCase__ ( self : Dict ): __snake_case: Optional[Any] = [0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335] super().test_output(A ) class __snake_case ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = UNetMidBlockaDSimpleCrossAttn # noqa F405 lowerCAmelCase__ = """mid""" @property def UpperCAmelCase__ ( self : Optional[int] ): return super().get_dummy_input(include_encoder_hidden_states=A ) def UpperCAmelCase__ ( self : str ): __snake_case , __snake_case: Any = super().prepare_init_args_and_inputs_for_common() __snake_case: str = 32 return init_dict, inputs_dict def UpperCAmelCase__ ( self : Dict ): __snake_case: Optional[Any] = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880] super().test_output(A ) class __snake_case ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = UpBlockaD # noqa F405 lowerCAmelCase__ = """up""" @property def UpperCAmelCase__ ( self : Tuple ): return super().get_dummy_input(include_res_hidden_states_tuple=A ) def UpperCAmelCase__ ( self : Tuple ): __snake_case: Tuple = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523] super().test_output(A ) class __snake_case ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = ResnetUpsampleBlockaD # noqa F405 lowerCAmelCase__ = """up""" @property def UpperCAmelCase__ ( self : Tuple ): return super().get_dummy_input(include_res_hidden_states_tuple=A ) def UpperCAmelCase__ ( self : Union[str, Any] ): __snake_case: int = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244] super().test_output(A ) class __snake_case ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = CrossAttnUpBlockaD # noqa F405 lowerCAmelCase__ = """up""" @property def UpperCAmelCase__ ( self : Optional[int] ): return super().get_dummy_input(include_res_hidden_states_tuple=A ) def UpperCAmelCase__ ( self : Dict ): __snake_case , __snake_case: Any = super().prepare_init_args_and_inputs_for_common() __snake_case: Optional[int] = 32 return init_dict, inputs_dict def UpperCAmelCase__ ( self : Union[str, Any] ): __snake_case: List[Any] = [-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582] super().test_output(A ) class __snake_case ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = SimpleCrossAttnUpBlockaD # noqa F405 lowerCAmelCase__ = """up""" @property def UpperCAmelCase__ ( self : Optional[Any] ): return super().get_dummy_input(include_res_hidden_states_tuple=A , include_encoder_hidden_states=A ) def UpperCAmelCase__ ( self : Dict ): __snake_case , __snake_case: Optional[Any] = super().prepare_init_args_and_inputs_for_common() __snake_case: str = 32 return init_dict, inputs_dict def UpperCAmelCase__ ( self : List[Any] ): __snake_case: Union[str, Any] = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402] super().test_output(A ) class __snake_case ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = AttnUpBlockaD # noqa F405 lowerCAmelCase__ = """up""" @property def UpperCAmelCase__ ( self : int ): return super().get_dummy_input(include_res_hidden_states_tuple=A ) @unittest.skipIf(torch_device == """mps""" , """MPS result is not consistent""" ) def UpperCAmelCase__ ( self : List[str] ): __snake_case: Optional[Any] = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033] super().test_output(A ) class __snake_case ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = SkipUpBlockaD # noqa F405 lowerCAmelCase__ = """up""" @property def UpperCAmelCase__ ( self : str ): return super().get_dummy_input(include_res_hidden_states_tuple=A ) def UpperCAmelCase__ ( self : Dict ): __snake_case: Optional[int] = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362] super().test_output(A ) class __snake_case ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = AttnSkipUpBlockaD # noqa F405 lowerCAmelCase__ = """up""" @property def UpperCAmelCase__ ( self : str ): return super().get_dummy_input(include_res_hidden_states_tuple=A ) def UpperCAmelCase__ ( self : Optional[Any] ): __snake_case: Optional[Any] = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015] super().test_output(A ) class __snake_case ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = UpDecoderBlockaD # noqa F405 lowerCAmelCase__ = """up""" @property def UpperCAmelCase__ ( self : Optional[int] ): return super().get_dummy_input(include_temb=A ) def UpperCAmelCase__ ( self : str ): __snake_case: Union[str, Any] = {"""in_channels""": 32, """out_channels""": 32} __snake_case: Dict = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase__ ( self : Any ): __snake_case: Dict = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137] super().test_output(A ) class __snake_case ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = AttnUpDecoderBlockaD # noqa F405 lowerCAmelCase__ = """up""" @property def UpperCAmelCase__ ( self : Optional[Any] ): return super().get_dummy_input(include_temb=A ) def UpperCAmelCase__ ( self : Optional[Any] ): __snake_case: Optional[Any] = {"""in_channels""": 32, """out_channels""": 32} __snake_case: Any = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase__ ( self : int ): __snake_case: Any = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568] super().test_output(A )
293
1
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters lowerCAmelCase__ = (720, 1280) # Height, Width lowerCAmelCase__ = (0.4, 0.6) # if height or width lower than this scale, drop it. lowerCAmelCase__ = 1 / 100 lowerCAmelCase__ = "" lowerCAmelCase__ = "" lowerCAmelCase__ = "" lowerCAmelCase__ = 250 def snake_case_ ( ): '''simple docstring''' _lowerCamelCase , _lowerCamelCase : Optional[Any] = get_dataset(A__, A__ ) for index in range(A__ ): _lowerCamelCase : Optional[Any] = random.sample(range(len(A__ ) ), 4 ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Any = update_image_and_anno( A__, A__, A__, A__, A__, filter_scale=A__, ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' _lowerCamelCase : str = random_chars(32 ) _lowerCamelCase : Union[str, Any] = path.split(os.sep )[-1].rsplit('''.''', 1 )[0] _lowerCamelCase : Tuple = F'''{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}''' cva.imwrite(F'''{file_root}.jpg''', A__, [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F'''Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}''' ) _lowerCamelCase : Optional[Any] = [] for anno in new_annos: _lowerCamelCase : Optional[int] = anno[3] - anno[1] _lowerCamelCase : List[str] = anno[4] - anno[2] _lowerCamelCase : int = anno[1] + width / 2 _lowerCamelCase : Dict = anno[2] + height / 2 _lowerCamelCase : List[Any] = F'''{anno[0]} {x_center} {y_center} {width} {height}''' annos_list.append(A__ ) with open(F'''{file_root}.txt''', '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def snake_case_ ( A_ : List[Any], A_ : List[Any] ): '''simple docstring''' _lowerCamelCase : str = [] _lowerCamelCase : Optional[Any] = [] for label_file in glob.glob(os.path.join(A__, '''*.txt''' ) ): _lowerCamelCase : List[str] = label_file.split(os.sep )[-1].rsplit('''.''', 1 )[0] with open(A__ ) as in_file: _lowerCamelCase : List[str] = in_file.readlines() _lowerCamelCase : Optional[Any] = os.path.join(A__, F'''{label_name}.jpg''' ) _lowerCamelCase : Tuple = [] for obj_list in obj_lists: _lowerCamelCase : int = obj_list.rstrip('''\n''' ).split(''' ''' ) _lowerCamelCase : Optional[int] = float(obj[1] ) - float(obj[3] ) / 2 _lowerCamelCase : str = float(obj[2] ) - float(obj[4] ) / 2 _lowerCamelCase : Dict = float(obj[1] ) + float(obj[3] ) / 2 _lowerCamelCase : int = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(A__ ) labels.append(A__ ) return img_paths, labels def snake_case_ ( A_ : Optional[Any], A_ : Dict, A_ : Optional[int], A_ : Optional[Any], A_ : Tuple, A_ : int = 0.0, ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = np.zeros([output_size[0], output_size[1], 3], dtype=np.uinta ) _lowerCamelCase : str = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) _lowerCamelCase : Dict = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) _lowerCamelCase : Dict = int(scale_x * output_size[1] ) _lowerCamelCase : Optional[int] = int(scale_y * output_size[0] ) _lowerCamelCase : str = [] _lowerCamelCase : List[str] = [] for i, index in enumerate(A__ ): _lowerCamelCase : List[Any] = all_img_list[index] path_list.append(A__ ) _lowerCamelCase : Any = all_annos[index] _lowerCamelCase : str = cva.imread(A__ ) if i == 0: # top-left _lowerCamelCase : Union[str, Any] = cva.resize(A__, (divid_point_x, divid_point_y) ) _lowerCamelCase : Any = img for bbox in img_annos: _lowerCamelCase : List[Any] = bbox[1] * scale_x _lowerCamelCase : Optional[int] = bbox[2] * scale_y _lowerCamelCase : Any = bbox[3] * scale_x _lowerCamelCase : List[Any] = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right _lowerCamelCase : Optional[int] = cva.resize(A__, (output_size[1] - divid_point_x, divid_point_y) ) _lowerCamelCase : Optional[Any] = img for bbox in img_annos: _lowerCamelCase : str = scale_x + bbox[1] * (1 - scale_x) _lowerCamelCase : Union[str, Any] = bbox[2] * scale_y _lowerCamelCase : List[Any] = scale_x + bbox[3] * (1 - scale_x) _lowerCamelCase : Dict = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left _lowerCamelCase : str = cva.resize(A__, (divid_point_x, output_size[0] - divid_point_y) ) _lowerCamelCase : Optional[Any] = img for bbox in img_annos: _lowerCamelCase : Dict = bbox[1] * scale_x _lowerCamelCase : List[Any] = scale_y + bbox[2] * (1 - scale_y) _lowerCamelCase : Optional[int] = bbox[3] * scale_x _lowerCamelCase : Dict = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right _lowerCamelCase : Tuple = cva.resize( A__, (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) _lowerCamelCase : Tuple = img for bbox in img_annos: _lowerCamelCase : Any = scale_x + bbox[1] * (1 - scale_x) _lowerCamelCase : Optional[Any] = scale_y + bbox[2] * (1 - scale_y) _lowerCamelCase : List[str] = scale_x + bbox[3] * (1 - scale_x) _lowerCamelCase : Any = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: _lowerCamelCase : Dict = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def snake_case_ ( A_ : Optional[Any] ): '''simple docstring''' assert number_char > 1, "The number of character should greater than 1" _lowerCamelCase : List[Any] = ascii_lowercase + digits return "".join(random.choice(A__ ) for _ in range(A__ ) ) if __name__ == "__main__": main() print('''DONE ✅''')
72
'''simple docstring''' from PIL import Image def __lowerCamelCase ( A__ , A__ ) -> Image: """simple docstring""" def brightness(A__ ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError('level must be between -255.0 (black) and 255.0 (white)' ) return img.point(A__ ) if __name__ == "__main__": # Load image with Image.open("image_data/lena.jpg") as img: # Change brightness to 100 _lowerCamelCase : List[str] = change_brightness(img, 100) brigt_img.save("image_data/lena_brightness.png", format="png")
28
0
'''simple docstring''' from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput __UpperCAmelCase =logging.get_logger(__name__) # pylint: disable=invalid-name class a__ ( UpperCAmelCase__ , UpperCAmelCase__ ): @register_to_config def __init__( self : Optional[Any] , a : bool , a : Optional[int] = None , a : Optional[int] = None ): """simple docstring""" super().__init__() __lowerCamelCase = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" __lowerCamelCase = torch.zeros(a , a ) else: __lowerCamelCase = None __lowerCamelCase = torch.nn.Parameter(a ) class a__ ( UpperCAmelCase__ ): lowerCamelCase : VQModel lowerCamelCase : CLIPTextModel lowerCamelCase : CLIPTokenizer lowerCamelCase : TransformeraDModel lowerCamelCase : LearnedClassifierFreeSamplingEmbeddings lowerCamelCase : VQDiffusionScheduler def __init__( self : List[str] , a : VQModel , a : CLIPTextModel , a : CLIPTokenizer , a : TransformeraDModel , a : VQDiffusionScheduler , a : LearnedClassifierFreeSamplingEmbeddings , ): """simple docstring""" super().__init__() self.register_modules( vqvae=a , transformer=a , text_encoder=a , tokenizer=a , scheduler=a , learned_classifier_free_sampling_embeddings=a , ) def SCREAMING_SNAKE_CASE__ ( self : Any , a : List[str] , a : Union[str, Any] , a : List[str] ): """simple docstring""" __lowerCamelCase = len(a ) if isinstance(a , a ) else 1 # get prompt text embeddings __lowerCamelCase = self.tokenizer( a , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) __lowerCamelCase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __lowerCamelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) __lowerCamelCase = text_input_ids[:, : self.tokenizer.model_max_length] __lowerCamelCase = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 __lowerCamelCase = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=a ) # duplicate text embeddings for each generation per prompt __lowerCamelCase = prompt_embeds.repeat_interleave(a , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: __lowerCamelCase = self.learned_classifier_free_sampling_embeddings.embeddings __lowerCamelCase = negative_prompt_embeds.unsqueeze(0 ).repeat(a , 1 , 1 ) else: __lowerCamelCase = [''''''] * batch_size __lowerCamelCase = text_input_ids.shape[-1] __lowerCamelCase = self.tokenizer( a , padding='''max_length''' , max_length=a , truncation=a , return_tensors='''pt''' , ) __lowerCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings __lowerCamelCase = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=a ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __lowerCamelCase = negative_prompt_embeds.shape[1] __lowerCamelCase = negative_prompt_embeds.repeat(1 , a , 1 ) __lowerCamelCase = negative_prompt_embeds.view(batch_size * num_images_per_prompt , a , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __lowerCamelCase = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self : Optional[int] , a : Union[str, List[str]] , a : int = 1_00 , a : float = 5.0 , a : float = 1.0 , a : int = 1 , a : Optional[Union[torch.Generator, List[torch.Generator]]] = None , a : Optional[torch.FloatTensor] = None , a : Optional[str] = "pil" , a : bool = True , a : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , a : int = 1 , ): """simple docstring""" if isinstance(a , a ): __lowerCamelCase = 1 elif isinstance(a , a ): __lowerCamelCase = len(a ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(a )}""" ) __lowerCamelCase = batch_size * num_images_per_prompt __lowerCamelCase = guidance_scale > 1.0 __lowerCamelCase = self._encode_prompt(a , a , a ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(a , a ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(a )}.""" ) # get the initial completely masked latents unless the user supplied it __lowerCamelCase = (batch_size, self.transformer.num_latent_pixels) if latents is None: __lowerCamelCase = self.transformer.num_vector_embeds - 1 __lowerCamelCase = torch.full(a , a ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( '''Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,''' f""" {self.transformer.num_vector_embeds - 1} (inclusive).""" ) __lowerCamelCase = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(a , device=self.device ) __lowerCamelCase = self.scheduler.timesteps.to(self.device ) __lowerCamelCase = latents for i, t in enumerate(self.progress_bar(a ) ): # expand the sample if we are doing classifier free guidance __lowerCamelCase = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` __lowerCamelCase = self.transformer(a , encoder_hidden_states=a , timestep=a ).sample if do_classifier_free_guidance: __lowerCamelCase , __lowerCamelCase = model_output.chunk(2 ) __lowerCamelCase = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(a , dim=1 , keepdim=a ) __lowerCamelCase = self.truncate(a , a ) # remove `log(0)`'s (`-inf`s) __lowerCamelCase = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 __lowerCamelCase = self.scheduler.step(a , timestep=a , sample=a , generator=a ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(a , a , a ) __lowerCamelCase = self.vqvae.config.vq_embed_dim __lowerCamelCase = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) __lowerCamelCase = self.vqvae.quantize.get_codebook_entry(a , shape=a ) __lowerCamelCase = self.vqvae.decode(a , force_not_quantize=a ).sample __lowerCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) __lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __lowerCamelCase = self.numpy_to_pil(a ) if not return_dict: return (image,) return ImagePipelineOutput(images=a ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , a : torch.FloatTensor , a : float ): """simple docstring""" __lowerCamelCase , __lowerCamelCase = torch.sort(a , 1 , descending=a ) __lowerCamelCase = torch.exp(a ) __lowerCamelCase = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out __lowerCamelCase = torch.full_like(keep_mask[:, 0:1, :] , a ) __lowerCamelCase = torch.cat((all_true, keep_mask) , dim=1 ) __lowerCamelCase = keep_mask[:, :-1, :] __lowerCamelCase = keep_mask.gather(1 , indices.argsort(1 ) ) __lowerCamelCase = log_p_x_0.clone() __lowerCamelCase = -torch.inf # -inf = log(0) return rv
237
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class a__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , a : int ): """simple docstring""" __lowerCamelCase = 3 __lowerCamelCase = 2_50 __lowerCamelCase = ids_tensor((batch_size, length) , a ) __lowerCamelCase = torch.ones((batch_size, length) , device=a , dtype=torch.float ) / length return input_ids, scores def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" __lowerCamelCase , __lowerCamelCase = self._get_tensors(5 ) __lowerCamelCase = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(a , a ) ) __lowerCamelCase , __lowerCamelCase = self._get_tensors(9 ) self.assertFalse(criteria(a , a ) ) __lowerCamelCase , __lowerCamelCase = self._get_tensors(10 ) self.assertTrue(criteria(a , a ) ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" __lowerCamelCase = MaxLengthCriteria(max_length=10 ) __lowerCamelCase , __lowerCamelCase = self._get_tensors(5 ) self.assertFalse(criteria(a , a ) ) __lowerCamelCase , __lowerCamelCase = self._get_tensors(9 ) self.assertFalse(criteria(a , a ) ) __lowerCamelCase , __lowerCamelCase = self._get_tensors(10 ) self.assertTrue(criteria(a , a ) ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" __lowerCamelCase = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) __lowerCamelCase , __lowerCamelCase = self._get_tensors(5 ) self.assertFalse(criteria(a , a ) ) __lowerCamelCase , __lowerCamelCase = self._get_tensors(9 ) self.assertFalse(criteria(a , a ) ) __lowerCamelCase , __lowerCamelCase = self._get_tensors(10 ) self.assertTrue(criteria(a , a ) ) __lowerCamelCase = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" __lowerCamelCase , __lowerCamelCase = self._get_tensors(5 ) __lowerCamelCase = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(a , a ) ) __lowerCamelCase = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(a , a ) ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(a ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) __lowerCamelCase = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(a ) , 1 )
237
1
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase : Union[str, Any] = 16 lowercase : Union[str, Any] = 32 def lowerCAmelCase_ ( snake_case__ , snake_case__ = 16 ): '''simple docstring''' A : str = AutoTokenizer.from_pretrained('''bert-base-cased''' ) A : Optional[Any] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(snake_case__ ): # max_length=None => use the model max length (it's actually the default) A : Optional[Any] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=snake_case__ , max_length=snake_case__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A : int = datasets.map( snake_case__ , batched=snake_case__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A : Union[str, Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(snake_case__ ): # On TPU it's best to pad everything to the same length or training will be very slow. A : Tuple = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A : int = 16 elif accelerator.mixed_precision != "no": A : Tuple = 8 else: A : Optional[int] = None return tokenizer.pad( snake_case__ , padding='''longest''' , max_length=snake_case__ , pad_to_multiple_of=snake_case__ , return_tensors='''pt''' , ) # Instantiate dataloaders. A : int = DataLoader( tokenized_datasets['''train'''] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ ) A : Optional[int] = DataLoader( tokenized_datasets['''validation'''] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowercase : List[Any] = mocked_dataloaders # noqa: F811 def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , snake_case__ ) == "1": A : int = 2 # New Code # A : Any = int(args.gradient_accumulation_steps ) A : Any = int(args.local_sgd_steps ) # Initialize accelerator A : List[str] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=snake_case__ ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError('''LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)''' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A : Union[str, Any] = config['''lr'''] A : Union[str, Any] = int(config['''num_epochs'''] ) A : List[Any] = int(config['''seed'''] ) A : Tuple = int(config['''batch_size'''] ) A : Dict = evaluate.load('''glue''' , '''mrpc''' ) set_seed(snake_case__ ) A, A : int = get_dataloaders(snake_case__ , snake_case__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A : List[Any] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=snake_case__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A : str = model.to(accelerator.device ) # Instantiate optimizer A : List[Any] = AdamW(params=model.parameters() , lr=snake_case__ ) # Instantiate scheduler A : Any = get_linear_schedule_with_warmup( optimizer=snake_case__ , num_warmup_steps=100 , num_training_steps=(len(snake_case__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A, A, A, A, A : List[Any] = accelerator.prepare( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # Now we train the model for epoch in range(snake_case__ ): model.train() with LocalSGD( accelerator=snake_case__ , model=snake_case__ , local_sgd_steps=snake_case__ , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(snake_case__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(snake_case__ ): A : List[str] = model(**snake_case__ ) A : Union[str, Any] = output.loss accelerator.backward(snake_case__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(snake_case__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A : List[str] = model(**snake_case__ ) A : Optional[int] = outputs.logits.argmax(dim=-1 ) A, A : str = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=snake_case__ , references=snake_case__ , ) A : Union[str, Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , snake_case__ ) def lowerCAmelCase_ ( ): '''simple docstring''' A : Optional[int] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=snake_case__ , default=snake_case__ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) # New Code # parser.add_argument( '''--gradient_accumulation_steps''' , type=snake_case__ , default=1 , help='''The number of minibatches to be ran before gradients are accumulated.''' , ) parser.add_argument( '''--local_sgd_steps''' , type=snake_case__ , default=8 , help='''Number of local SGD steps or None to disable local SGD''' ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) A : Dict = parser.parse_args() A : Dict = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(snake_case__ , snake_case__ ) if __name__ == "__main__": main()
3
UpperCAmelCase : dict[tuple[int, int, int], int] ={} def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase): # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on UpperCamelCase_ = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one UpperCamelCase_ = _calculate(days - 1 , _lowerCAmelCase , late + 1) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 UpperCamelCase_ = _calculate(days - 1 , absent + 1 , 0) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter UpperCamelCase_ = _calculate(days - 1 , _lowerCAmelCase , 0) UpperCamelCase_ = state_late + state_absent + state_ontime UpperCamelCase_ = prizestrings return prizestrings def _lowerCAmelCase (_lowerCAmelCase = 30): return _calculate(_lowerCAmelCase , absent=0 , late=0) if __name__ == "__main__": print(solution())
128
0
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class _lowerCamelCase( _a ): lowercase_ : Tuple = (PNDMScheduler,) lowercase_ : str = (("""num_inference_steps""", 50),) def UpperCamelCase ( self, **lowerCamelCase) -> Dict: """simple docstring""" _lowercase : Optional[int] = { 'num_train_timesteps': 10_00, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', } config.update(**lowerCamelCase) return config def UpperCamelCase ( self, lowerCamelCase=0, **lowerCamelCase) -> Optional[Any]: """simple docstring""" _lowercase : Optional[Any] = dict(self.forward_default_kwargs) _lowercase : int = kwargs.pop('num_inference_steps', lowerCamelCase) _lowercase : Optional[int] = self.dummy_sample _lowercase : List[str] = 0.1 * sample _lowercase : str = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: _lowercase : Any = self.get_scheduler_config(**lowerCamelCase) _lowercase : List[str] = scheduler_class(**lowerCamelCase) scheduler.set_timesteps(lowerCamelCase) # copy over dummy past residuals _lowercase : Optional[Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase) _lowercase : Optional[int] = scheduler_class.from_pretrained(lowerCamelCase) new_scheduler.set_timesteps(lowerCamelCase) # copy over dummy past residuals _lowercase : Optional[int] = dummy_past_residuals[:] _lowercase : List[Any] = scheduler.step_prk(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase).prev_sample _lowercase : Any = new_scheduler.step_prk(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" _lowercase : Union[str, Any] = scheduler.step_plms(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase).prev_sample _lowercase : Optional[int] = new_scheduler.step_plms(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" pass def UpperCamelCase ( self, lowerCamelCase=0, **lowerCamelCase) -> int: """simple docstring""" _lowercase : Dict = dict(self.forward_default_kwargs) _lowercase : Dict = kwargs.pop('num_inference_steps', lowerCamelCase) _lowercase : List[str] = self.dummy_sample _lowercase : List[Any] = 0.1 * sample _lowercase : Tuple = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: _lowercase : Union[str, Any] = self.get_scheduler_config() _lowercase : Any = scheduler_class(**lowerCamelCase) scheduler.set_timesteps(lowerCamelCase) # copy over dummy past residuals (must be after setting timesteps) _lowercase : List[str] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase) _lowercase : Any = scheduler_class.from_pretrained(lowerCamelCase) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCamelCase) # copy over dummy past residual (must be after setting timesteps) _lowercase : Optional[int] = dummy_past_residuals[:] _lowercase : Any = scheduler.step_prk(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase).prev_sample _lowercase : Union[str, Any] = new_scheduler.step_prk(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" _lowercase : Tuple = scheduler.step_plms(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase).prev_sample _lowercase : List[str] = new_scheduler.step_plms(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase ( self, **lowerCamelCase) -> str: """simple docstring""" _lowercase : List[str] = self.scheduler_classes[0] _lowercase : int = self.get_scheduler_config(**lowerCamelCase) _lowercase : Union[str, Any] = scheduler_class(**lowerCamelCase) _lowercase : Optional[Any] = 10 _lowercase : Tuple = self.dummy_model() _lowercase : Optional[Any] = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase) for i, t in enumerate(scheduler.prk_timesteps): _lowercase : Any = model(lowerCamelCase, lowerCamelCase) _lowercase : Union[str, Any] = scheduler.step_prk(lowerCamelCase, lowerCamelCase, lowerCamelCase).prev_sample for i, t in enumerate(scheduler.plms_timesteps): _lowercase : Union[str, Any] = model(lowerCamelCase, lowerCamelCase) _lowercase : Optional[int] = scheduler.step_plms(lowerCamelCase, lowerCamelCase, lowerCamelCase).prev_sample return sample def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : Dict = dict(self.forward_default_kwargs) _lowercase : Optional[Any] = kwargs.pop('num_inference_steps', lowerCamelCase) for scheduler_class in self.scheduler_classes: _lowercase : Dict = self.get_scheduler_config() _lowercase : List[str] = scheduler_class(**lowerCamelCase) _lowercase : Optional[Any] = self.dummy_sample _lowercase : Dict = 0.1 * sample if num_inference_steps is not None and hasattr(lowerCamelCase, 'set_timesteps'): scheduler.set_timesteps(lowerCamelCase) elif num_inference_steps is not None and not hasattr(lowerCamelCase, 'set_timesteps'): _lowercase : Any = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _lowercase : List[str] = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] _lowercase : List[Any] = dummy_past_residuals[:] _lowercase : Optional[int] = scheduler.step_prk(lowerCamelCase, 0, lowerCamelCase, **lowerCamelCase).prev_sample _lowercase : Union[str, Any] = scheduler.step_prk(lowerCamelCase, 1, lowerCamelCase, **lowerCamelCase).prev_sample self.assertEqual(output_a.shape, sample.shape) self.assertEqual(output_a.shape, output_a.shape) _lowercase : Tuple = scheduler.step_plms(lowerCamelCase, 0, lowerCamelCase, **lowerCamelCase).prev_sample _lowercase : Any = scheduler.step_plms(lowerCamelCase, 1, lowerCamelCase, **lowerCamelCase).prev_sample self.assertEqual(output_a.shape, sample.shape) self.assertEqual(output_a.shape, output_a.shape) def UpperCamelCase ( self) -> List[str]: """simple docstring""" for timesteps in [1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCamelCase) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowerCamelCase) _lowercase : Any = self.scheduler_classes[0] _lowercase : Union[str, Any] = self.get_scheduler_config(steps_offset=1) _lowercase : Any = scheduler_class(**lowerCamelCase) scheduler.set_timesteps(10) assert torch.equal( scheduler.timesteps, torch.LongTensor( [9_01, 8_51, 8_51, 8_01, 8_01, 7_51, 7_51, 7_01, 7_01, 6_51, 6_51, 6_01, 6_01, 5_01, 4_01, 3_01, 2_01, 1_01, 1]), ) def UpperCamelCase ( self) -> List[str]: """simple docstring""" for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1], [0.0_0_2, 0.0_2]): self.check_over_configs(beta_start=lowerCamelCase, beta_end=lowerCamelCase) def UpperCamelCase ( self) -> List[Any]: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCamelCase) def UpperCamelCase ( self) -> List[str]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase) def UpperCamelCase ( self) -> Any: """simple docstring""" for t in [1, 5, 10]: self.check_over_forward(time_step=lowerCamelCase) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" for t, num_inference_steps in zip([1, 5, 10], [10, 50, 1_00]): self.check_over_forward(num_inference_steps=lowerCamelCase) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Optional[int] = 27 for scheduler_class in self.scheduler_classes: _lowercase : Tuple = self.dummy_sample _lowercase : Union[str, Any] = 0.1 * sample _lowercase : int = self.get_scheduler_config() _lowercase : int = scheduler_class(**lowerCamelCase) scheduler.set_timesteps(lowerCamelCase) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2]): _lowercase : List[str] = scheduler.step_prk(lowerCamelCase, lowerCamelCase, lowerCamelCase).prev_sample def UpperCamelCase ( self) -> int: """simple docstring""" with self.assertRaises(lowerCamelCase): _lowercase : str = self.scheduler_classes[0] _lowercase : Optional[Any] = self.get_scheduler_config() _lowercase : List[Any] = scheduler_class(**lowerCamelCase) scheduler.step_plms(self.dummy_sample, 1, self.dummy_sample).prev_sample def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : Dict = self.full_loop() _lowercase : Tuple = torch.sum(torch.abs(lowerCamelCase)) _lowercase : str = torch.mean(torch.abs(lowerCamelCase)) assert abs(result_sum.item() - 1_9_8.1_3_1_8) < 1E-2 assert abs(result_mean.item() - 0.2_5_8_0) < 1E-3 def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : Dict = self.full_loop(prediction_type='v_prediction') _lowercase : Union[str, Any] = torch.sum(torch.abs(lowerCamelCase)) _lowercase : Optional[Any] = torch.mean(torch.abs(lowerCamelCase)) assert abs(result_sum.item() - 6_7.3_9_8_6) < 1E-2 assert abs(result_mean.item() - 0.0_8_7_8) < 1E-3 def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Any = self.full_loop(set_alpha_to_one=lowerCamelCase, beta_start=0.0_1) _lowercase : Tuple = torch.sum(torch.abs(lowerCamelCase)) _lowercase : str = torch.mean(torch.abs(lowerCamelCase)) assert abs(result_sum.item() - 2_3_0.0_3_9_9) < 1E-2 assert abs(result_mean.item() - 0.2_9_9_5) < 1E-3 def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : Any = self.full_loop(set_alpha_to_one=lowerCamelCase, beta_start=0.0_1) _lowercase : Tuple = torch.sum(torch.abs(lowerCamelCase)) _lowercase : List[str] = torch.mean(torch.abs(lowerCamelCase)) assert abs(result_sum.item() - 1_8_6.9_4_8_2) < 1E-2 assert abs(result_mean.item() - 0.2_4_3_4) < 1E-3
84
import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Optional[Any] = torch.nn.Linear(10, 10) _lowercase : Optional[int] = torch.optim.SGD(model.parameters(), 0.1) _lowercase : Optional[int] = Accelerator() _lowercase : Optional[int] = accelerator.prepare(lowerCamelCase) try: pickle.loads(pickle.dumps(lowerCamelCase)) except Exception as e: self.fail(F'''Accelerated optimizer pickling failed with {e}''') AcceleratorState._reset_state()
84
1
import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights lowerCamelCase_ = FlaxDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=lowercase , cache_dir=lowercase ) lowerCamelCase_ = [t[-1] for t in os.walk(os.path.join(lowercase , os.listdir(lowercase )[0] , "snapshots" ) )] lowerCamelCase_ = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith(".bin" ) for f in files ) @slow @require_flax class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_( self ) -> Dict: lowerCamelCase_ , lowerCamelCase_ = FlaxStableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=lowercase ) lowerCamelCase_ = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) lowerCamelCase_ = jax.random.PRNGKey(0 ) lowerCamelCase_ = 4 lowerCamelCase_ = jax.device_count() lowerCamelCase_ = num_samples * [prompt] lowerCamelCase_ = pipeline.prepare_inputs(lowercase ) # shard inputs and rng lowerCamelCase_ = replicate(lowercase ) lowerCamelCase_ = jax.random.split(lowercase , lowercase ) lowerCamelCase_ = shard(lowercase ) lowerCamelCase_ = pipeline(lowercase , lowercase , lowercase , lowercase , jit=lowercase ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_5_1_4_7_4_5 ) < 1e-3 assert np.abs(np.abs(lowercase , dtype=np.floataa ).sum() - 4_9_9_4_7.8_7_5 ) < 5e-1 lowerCamelCase_ = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(lowercase ) == num_samples def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: lowerCamelCase_ , lowerCamelCase_ = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="flax" , safety_checker=lowercase ) lowerCamelCase_ = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) lowerCamelCase_ = jax.random.PRNGKey(0 ) lowerCamelCase_ = 50 lowerCamelCase_ = jax.device_count() lowerCamelCase_ = num_samples * [prompt] lowerCamelCase_ = pipeline.prepare_inputs(lowercase ) # shard inputs and rng lowerCamelCase_ = replicate(lowercase ) lowerCamelCase_ = jax.random.split(lowercase , lowercase ) lowerCamelCase_ = shard(lowercase ) lowerCamelCase_ = pipeline(lowercase , lowercase , lowercase , lowercase , jit=lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_5_6_5_2_4_0_1) ) < 1e-3 assert np.abs((np.abs(lowercase , dtype=np.floataa ).sum() - 2_3_8_3_8_0_8.2) ) < 5e-1 def SCREAMING_SNAKE_CASE_( self ) -> str: lowerCamelCase_ , lowerCamelCase_ = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowercase ) lowerCamelCase_ = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) lowerCamelCase_ = jax.random.PRNGKey(0 ) lowerCamelCase_ = 50 lowerCamelCase_ = jax.device_count() lowerCamelCase_ = num_samples * [prompt] lowerCamelCase_ = pipeline.prepare_inputs(lowercase ) # shard inputs and rng lowerCamelCase_ = replicate(lowercase ) lowerCamelCase_ = jax.random.split(lowercase , lowercase ) lowerCamelCase_ = shard(lowercase ) lowerCamelCase_ = pipeline(lowercase , lowercase , lowercase , lowercase , jit=lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_0_0_3_9_0_6) ) < 1e-3 assert np.abs((np.abs(lowercase , dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5e-1 def SCREAMING_SNAKE_CASE_( self ) -> int: lowerCamelCase_ , lowerCamelCase_ = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa ) lowerCamelCase_ = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) lowerCamelCase_ = jax.random.PRNGKey(0 ) lowerCamelCase_ = 50 lowerCamelCase_ = jax.device_count() lowerCamelCase_ = num_samples * [prompt] lowerCamelCase_ = pipeline.prepare_inputs(lowercase ) # shard inputs and rng lowerCamelCase_ = replicate(lowercase ) lowerCamelCase_ = jax.random.split(lowercase , lowercase ) lowerCamelCase_ = shard(lowercase ) lowerCamelCase_ = pipeline(lowercase , lowercase , lowercase , lowercase , jit=lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_0_0_3_9_0_6) ) < 1e-3 assert np.abs((np.abs(lowercase , dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5e-1 def SCREAMING_SNAKE_CASE_( self ) -> Dict: lowerCamelCase_ = FlaxDDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="scaled_linear" , set_alpha_to_one=lowercase , steps_offset=1 , ) lowerCamelCase_ , lowerCamelCase_ = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , scheduler=lowercase , safety_checker=lowercase , ) lowerCamelCase_ = scheduler.create_state() lowerCamelCase_ = scheduler_state lowerCamelCase_ = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) lowerCamelCase_ = jax.random.PRNGKey(0 ) lowerCamelCase_ = 50 lowerCamelCase_ = jax.device_count() lowerCamelCase_ = num_samples * [prompt] lowerCamelCase_ = pipeline.prepare_inputs(lowercase ) # shard inputs and rng lowerCamelCase_ = replicate(lowercase ) lowerCamelCase_ = jax.random.split(lowercase , lowercase ) lowerCamelCase_ = shard(lowercase ) lowerCamelCase_ = pipeline(lowercase , lowercase , lowercase , lowercase , jit=lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_5_0_4_3_9_4_5) ) < 1e-3 assert np.abs((np.abs(lowercase , dtype=np.floataa ).sum() - 2_3_4_7_6_9_3.5) ) < 5e-1 def SCREAMING_SNAKE_CASE_( self ) -> Any: lowerCamelCase_ = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) lowerCamelCase_ = jax.device_count() lowerCamelCase_ = num_samples * [prompt] lowerCamelCase_ = jax.random.split(jax.random.PRNGKey(0 ) , lowercase ) lowerCamelCase_ , lowerCamelCase_ = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowercase , ) lowerCamelCase_ = replicate(lowercase ) lowerCamelCase_ = pipeline.prepare_inputs(lowercase ) lowerCamelCase_ = shard(lowercase ) lowerCamelCase_ = pipeline(lowercase , lowercase , lowercase , jit=lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) lowerCamelCase_ = images[2, 0, 256, 10:17, 1] # With memory efficient attention lowerCamelCase_ , lowerCamelCase_ = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowercase , use_memory_efficient_attention=lowercase , ) lowerCamelCase_ = replicate(lowercase ) lowerCamelCase_ = pipeline.prepare_inputs(lowercase ) lowerCamelCase_ = shard(lowercase ) lowerCamelCase_ = pipeline(lowercase , lowercase , lowercase , jit=lowercase ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) lowerCamelCase_ = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
19
'''simple docstring''' lowerCamelCase : Any = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" lowerCamelCase : int = [{"type": "code", "content": INSTALL_CONTENT}] lowerCamelCase : str = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
47
0
"""simple docstring""" import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging snake_case_ = logging.get_logger(__name__) def _lowerCAmelCase ( lowercase_ ): UpperCAmelCase = R'\w+[.]\d+' UpperCAmelCase = re.findall(lowercase_ , lowercase_ ) for pat in pats: UpperCAmelCase = key.replace(lowercase_ , '_'.join(pat.split('.' ) ) ) return key def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ ): UpperCAmelCase = pt_tuple_key[:-1] + ('scale',) if ( any('norm' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): UpperCAmelCase = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: UpperCAmelCase = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: UpperCAmelCase = pt_tuple_key[:-1] + ('embedding',) return renamed_pt_tuple_key, pt_tensor # conv layer UpperCAmelCase = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: UpperCAmelCase = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCAmelCase = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight": UpperCAmelCase = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCAmelCase = pt_tuple_key[:-1] + ('weight',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCAmelCase = pt_tuple_key[:-1] + ('bias',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_=42 ): # Step 1: Convert pytorch tensor to numpy UpperCAmelCase = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params UpperCAmelCase = flax_model.init_weights(PRNGKey(lowercase_ ) ) UpperCAmelCase = flatten_dict(lowercase_ ) UpperCAmelCase = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCAmelCase = rename_key(lowercase_ ) UpperCAmelCase = tuple(renamed_pt_key.split('.' ) ) # Correctly rename weight parameters UpperCAmelCase , UpperCAmelCase = rename_key_and_reshape_tensor(lowercase_ , lowercase_ , lowercase_ ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ F"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # also add unexpected weight so that warning is thrown UpperCAmelCase = jnp.asarray(lowercase_ ) return unflatten_dict(lowercase_ )
181
"""simple docstring""" import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def _lowerCAmelCase ( lowercase_ ): random.seed(lowercase_ ) np.random.seed(lowercase_ ) torch.manual_seed(lowercase_ ) torch.cuda.manual_seed_all(lowercase_ ) # ^^ safe to call this function even if cuda is not available class A_ : """simple docstring""" def __init__( self :Any , lowercase_ :Iterable[torch.nn.Parameter] , lowercase_ :float = 0.9999 , lowercase_ :float = 0.0 , lowercase_ :int = 0 , lowercase_ :bool = False , lowercase_ :Union[float, int] = 1.0 , lowercase_ :Union[float, int] = 2 / 3 , lowercase_ :Optional[Any] = None , lowercase_ :Dict[str, Any] = None , **lowercase_ :Dict , ) -> Optional[int]: if isinstance(lowercase_ , torch.nn.Module ): UpperCAmelCase = ( 'Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. ' 'Please pass the parameters of the module instead.' ) deprecate( 'passing a `torch.nn.Module` to `ExponentialMovingAverage`' , '1.0.0' , lowercase_ , standard_warn=lowercase_ , ) UpperCAmelCase = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility UpperCAmelCase = True if kwargs.get('max_value' , lowercase_ ) is not None: UpperCAmelCase = 'The `max_value` argument is deprecated. Please use `decay` instead.' deprecate('max_value' , '1.0.0' , lowercase_ , standard_warn=lowercase_ ) UpperCAmelCase = kwargs['max_value'] if kwargs.get('min_value' , lowercase_ ) is not None: UpperCAmelCase = 'The `min_value` argument is deprecated. Please use `min_decay` instead.' deprecate('min_value' , '1.0.0' , lowercase_ , standard_warn=lowercase_ ) UpperCAmelCase = kwargs['min_value'] UpperCAmelCase = list(lowercase_ ) UpperCAmelCase = [p.clone().detach() for p in parameters] if kwargs.get('device' , lowercase_ ) is not None: UpperCAmelCase = 'The `device` argument is deprecated. Please use `to` instead.' deprecate('device' , '1.0.0' , lowercase_ , standard_warn=lowercase_ ) self.to(device=kwargs['device'] ) UpperCAmelCase = None UpperCAmelCase = decay UpperCAmelCase = min_decay UpperCAmelCase = update_after_step UpperCAmelCase = use_ema_warmup UpperCAmelCase = inv_gamma UpperCAmelCase = power UpperCAmelCase = 0 UpperCAmelCase = None # set in `step()` UpperCAmelCase = model_cls UpperCAmelCase = model_config @classmethod def UpperCAmelCase__ ( cls :int , lowercase_ :Union[str, Any] , lowercase_ :Any ) -> "EMAModel": UpperCAmelCase , UpperCAmelCase = model_cls.load_config(lowercase_ , return_unused_kwargs=lowercase_ ) UpperCAmelCase = model_cls.from_pretrained(lowercase_ ) UpperCAmelCase = cls(model.parameters() , model_cls=lowercase_ , model_config=model.config ) ema_model.load_state_dict(lowercase_ ) return ema_model def UpperCAmelCase__ ( self :List[Any] , lowercase_ :List[str] ) -> int: if self.model_cls is None: raise ValueError('`save_pretrained` can only be used if `model_cls` was defined at __init__.' ) if self.model_config is None: raise ValueError('`save_pretrained` can only be used if `model_config` was defined at __init__.' ) UpperCAmelCase = self.model_cls.from_config(self.model_config ) UpperCAmelCase = self.state_dict() state_dict.pop('shadow_params' , lowercase_ ) model.register_to_config(**lowercase_ ) self.copy_to(model.parameters() ) model.save_pretrained(lowercase_ ) def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :int ) -> float: UpperCAmelCase = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: UpperCAmelCase = 1 - (1 + step / self.inv_gamma) ** -self.power else: UpperCAmelCase = (1 + step) / (10 + step) UpperCAmelCase = min(lowercase_ , self.decay ) # make sure decay is not smaller than min_decay UpperCAmelCase = max(lowercase_ , self.min_decay ) return cur_decay_value @torch.no_grad() def UpperCAmelCase__ ( self :List[Any] , lowercase_ :Iterable[torch.nn.Parameter] ) -> Optional[int]: if isinstance(lowercase_ , torch.nn.Module ): UpperCAmelCase = ( 'Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. ' 'Please pass the parameters of the module instead.' ) deprecate( 'passing a `torch.nn.Module` to `ExponentialMovingAverage.step`' , '1.0.0' , lowercase_ , standard_warn=lowercase_ , ) UpperCAmelCase = parameters.parameters() UpperCAmelCase = list(lowercase_ ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. UpperCAmelCase = self.get_decay(self.optimization_step ) UpperCAmelCase = decay UpperCAmelCase = 1 - decay UpperCAmelCase = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , lowercase_ ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): UpperCAmelCase = deepspeed.zero.GatheredParameters(lowercase_ , modifier_rank=lowercase_ ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(lowercase_ ) def UpperCAmelCase__ ( self :Tuple , lowercase_ :Iterable[torch.nn.Parameter] ) -> None: UpperCAmelCase = list(lowercase_ ) for s_param, param in zip(self.shadow_params , lowercase_ ): param.data.copy_(s_param.to(param.device ).data ) def UpperCAmelCase__ ( self :Dict , lowercase_ :Tuple=None , lowercase_ :Union[str, Any]=None ) -> None: UpperCAmelCase = [ p.to(device=lowercase_ , dtype=lowercase_ ) if p.is_floating_point() else p.to(device=lowercase_ ) for p in self.shadow_params ] def UpperCAmelCase__ ( self :Union[str, Any] ) -> dict: return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :Iterable[torch.nn.Parameter] ) -> None: UpperCAmelCase = [param.detach().cpu().clone() for param in parameters] def UpperCAmelCase__ ( self :Optional[Any] , lowercase_ :Iterable[torch.nn.Parameter] ) -> None: if self.temp_stored_params is None: raise RuntimeError('This ExponentialMovingAverage has no `store()`ed weights ' 'to `restore()`' ) for c_param, param in zip(self.temp_stored_params , lowercase_ ): param.data.copy_(c_param.data ) # Better memory-wise. UpperCAmelCase = None def UpperCAmelCase__ ( self :Union[str, Any] , lowercase_ :dict ) -> None: UpperCAmelCase = copy.deepcopy(lowercase_ ) UpperCAmelCase = state_dict.get('decay' , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError('Decay must be between 0 and 1' ) UpperCAmelCase = state_dict.get('min_decay' , self.min_decay ) if not isinstance(self.min_decay , lowercase_ ): raise ValueError('Invalid min_decay' ) UpperCAmelCase = state_dict.get('optimization_step' , self.optimization_step ) if not isinstance(self.optimization_step , lowercase_ ): raise ValueError('Invalid optimization_step' ) UpperCAmelCase = state_dict.get('update_after_step' , self.update_after_step ) if not isinstance(self.update_after_step , lowercase_ ): raise ValueError('Invalid update_after_step' ) UpperCAmelCase = state_dict.get('use_ema_warmup' , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , lowercase_ ): raise ValueError('Invalid use_ema_warmup' ) UpperCAmelCase = state_dict.get('inv_gamma' , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError('Invalid inv_gamma' ) UpperCAmelCase = state_dict.get('power' , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError('Invalid power' ) UpperCAmelCase = state_dict.get('shadow_params' , lowercase_ ) if shadow_params is not None: UpperCAmelCase = shadow_params if not isinstance(self.shadow_params , lowercase_ ): raise ValueError('shadow_params must be a list' ) if not all(isinstance(lowercase_ , torch.Tensor ) for p in self.shadow_params ): raise ValueError('shadow_params must all be Tensors' )
181
1
import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def A_ ( A__ ) -> float: return np.dot(A__ , A__ ) class A__ : """simple docstring""" def __init__( self , *, lowercase = np.inf , lowercase = "linear" , lowercase = 0.0 , ) -> None: '''simple docstring''' a__ : Tuple = regularization a__ : Optional[Any] = gamma if kernel == "linear": a__ : Optional[Any] = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('rbf kernel requires gamma') if not isinstance(self.gamma , (float, int)): raise ValueError('gamma must be float or int') if not self.gamma > 0: raise ValueError('gamma must be > 0') a__ : str = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: a__ : Optional[int] = F'Unknown kernel: {kernel}' raise ValueError(lowercase) def __lowercase ( self , lowercase , lowercase) -> float: '''simple docstring''' return np.dot(lowercase , lowercase) def __lowercase ( self , lowercase , lowercase) -> float: '''simple docstring''' return np.exp(-(self.gamma * norm_squared(vectora - vectora))) def __lowercase ( self , lowercase , lowercase) -> None: '''simple docstring''' a__ : List[str] = observations a__ : Dict = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((a__) , ) : Optional[int] = np.shape(lowercase) def to_minimize(lowercase) -> float: a__ : Tuple = 0 ((a__) , ) : Optional[int] = np.shape(lowercase) for i in range(lowercase): for j in range(lowercase): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j]) ) return 1 / 2 * s - sum(lowercase) a__ : Optional[Any] = LinearConstraint(lowercase , 0 , 0) a__ : str = Bounds(0 , self.regularization) a__ : List[str] = minimize( lowercase , np.ones(lowercase) , bounds=lowercase , constraints=[ly_contraint]).x a__ : Dict = l_star # calculating mean offset of separation plane to points a__ : int = 0 for i in range(lowercase): for j in range(lowercase): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j]) a__ : List[str] = s / n def __lowercase ( self , lowercase) -> int: '''simple docstring''' a__ : int = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , lowercase) for n in range(len(self.classes))) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
99
"""simple docstring""" from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class __A (snake_case__): '''simple docstring''' @slow @require_torch def lowerCAmelCase ( self : Union[str, Any] ) ->Dict: """simple docstring""" snake_case_ = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" , """prajjwal1/bert-tiny""" ) snake_case_ = BertTokenizer.from_pretrained("""bert-base-uncased""" ) snake_case_ = bertabert.config.encoder.vocab_size snake_case_ = tokenizer.sep_token_id snake_case_ = tokenizer.cls_token_id snake_case_ = 128 snake_case_ = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""train[:1%]""" ) snake_case_ = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""validation[:1%]""" ) snake_case_ = train_dataset.select(range(32 ) ) snake_case_ = val_dataset.select(range(16 ) ) snake_case_ = 4 def _map_to_encoder_decoder_inputs(UpperCAmelCase_ : int ): # Tokenizer will automatically set [BOS] <text> [EOS] snake_case_ = tokenizer(batch["""article"""] , padding="""max_length""" , truncation=UpperCAmelCase_ , max_length=512 ) snake_case_ = tokenizer(batch["""highlights"""] , padding="""max_length""" , truncation=UpperCAmelCase_ , max_length=128 ) snake_case_ = inputs.input_ids snake_case_ = inputs.attention_mask snake_case_ = outputs.input_ids snake_case_ = outputs.input_ids.copy() snake_case_ = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] snake_case_ = outputs.attention_mask assert all(len(UpperCAmelCase_ ) == 512 for x in inputs.input_ids ) assert all(len(UpperCAmelCase_ ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(UpperCAmelCase_ : Union[str, Any] ): snake_case_ = pred.label_ids snake_case_ = pred.predictions # all unnecessary tokens are removed snake_case_ = tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) snake_case_ = tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) snake_case_ = sum([int(pred_str[i] == label_str[i] ) for i in range(len(UpperCAmelCase_ ) )] ) / len(UpperCAmelCase_ ) return {"accuracy": accuracy} # map train dataset snake_case_ = train_dataset.map( _map_to_encoder_decoder_inputs , batched=UpperCAmelCase_ , batch_size=UpperCAmelCase_ , remove_columns=["""article""", """highlights"""] , ) train_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) # same for validation dataset snake_case_ = val_dataset.map( _map_to_encoder_decoder_inputs , batched=UpperCAmelCase_ , batch_size=UpperCAmelCase_ , remove_columns=["""article""", """highlights"""] , ) val_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) snake_case_ = self.get_auto_remove_tmp_dir() snake_case_ = SeqaSeqTrainingArguments( output_dir=UpperCAmelCase_ , per_device_train_batch_size=UpperCAmelCase_ , per_device_eval_batch_size=UpperCAmelCase_ , predict_with_generate=UpperCAmelCase_ , evaluation_strategy="""steps""" , do_train=UpperCAmelCase_ , do_eval=UpperCAmelCase_ , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer snake_case_ = SeqaSeqTrainer( model=UpperCAmelCase_ , args=UpperCAmelCase_ , compute_metrics=_compute_metrics , train_dataset=UpperCAmelCase_ , eval_dataset=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , ) # start training trainer.train()
347
0
import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class A ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : List[str] )-> Union[str, Any]: '''simple docstring''' A__ = inspect.getfile(accelerate.test_utils ) A__ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) A__ = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_distributed_data_loop.py'] ) A__ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_ops.py'] ) @require_multi_gpu def snake_case__ ( self : str )-> int: '''simple docstring''' print(F'Found {torch.cuda.device_count()} devices.' ) A__ = ['torchrun', F'--nproc_per_node={torch.cuda.device_count()}', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowercase_,env=os.environ.copy() ) @require_multi_gpu def snake_case__ ( self : Optional[int] )-> List[Any]: '''simple docstring''' print(F'Found {torch.cuda.device_count()} devices.' ) A__ = ['torchrun', F'--nproc_per_node={torch.cuda.device_count()}', self.operation_file_path] print(F'Command: {cmd}' ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowercase_,env=os.environ.copy() ) @require_multi_gpu def snake_case__ ( self : Dict )-> Union[str, Any]: '''simple docstring''' A__ = ['torchrun', F'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowercase_,env=os.environ.copy() ) @require_multi_gpu def snake_case__ ( self : List[str] )-> Tuple: '''simple docstring''' print(F'Found {torch.cuda.device_count()} devices, using 2 devices only' ) A__ = ['torchrun', F'--nproc_per_node={torch.cuda.device_count()}', self.data_loop_file_path] with patch_environment(omp_num_threads=1,cuda_visible_devices='0,1' ): execute_subprocess_async(lowercase_,env=os.environ.copy() ) if __name__ == "__main__": lowercase_ = Accelerator() lowercase_ = (accelerator.state.process_index + 2, 10) lowercase_ = torch.randint(0, 10, shape).to(accelerator.device) lowercase_ = "" lowercase_ = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." lowercase_ = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." lowercase_ = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
282
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class A ( unittest.TestCase ): """simple docstring""" def __init__( self : List[str],lowercase_ : List[str],lowercase_ : bool = True,lowercase_ : Dict[str, int] = None,lowercase_ : int = 3_2,lowercase_ : bool = True,lowercase_ : Union[int, float] = 1 / 2_5_5,lowercase_ : bool = True,lowercase_ : bool = True,lowercase_ : Optional[Union[float, List[float]]] = [0.48_145_466, 0.4_578_275, 0.40_821_073],lowercase_ : Optional[Union[float, List[float]]] = [0.26_862_954, 0.26_130_258, 0.27_577_711],lowercase_ : bool = True,lowercase_ : Tuple=7,lowercase_ : str=3_0,lowercase_ : Union[str, Any]=4_0_0,lowercase_ : Dict=3,)-> List[Any]: '''simple docstring''' A__ = parent A__ = do_resize A__ = size if size is not None else {'shortest_edge': 2_8_8} A__ = size_divisor A__ = do_rescale A__ = rescale_factor A__ = do_normalize A__ = do_center_crop A__ = image_mean A__ = image_std A__ = do_pad A__ = batch_size A__ = num_channels A__ = min_resolution A__ = max_resolution def snake_case__ ( self : Optional[Any] )-> Optional[int]: '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def snake_case__ ( self : int,lowercase_ : Optional[int],lowercase_ : List[str]=False )-> Any: '''simple docstring''' if not batched: A__ = self.size['shortest_edge'] A__ = image_inputs[0] if isinstance(lowercase_,Image.Image ): A__ , A__ = image.size else: A__ , A__ = image.shape[1], image.shape[2] A__ = size / min(lowercase_,lowercase_ ) if h < w: A__ , A__ = size, scale * w else: A__ , A__ = scale * h, size A__ = int((1_3_3_3 / 8_0_0) * size ) if max(lowercase_,lowercase_ ) > max_size: A__ = max_size / max(lowercase_,lowercase_ ) A__ = newh * scale A__ = neww * scale A__ , A__ = int(newh + 0.5 ), int(neww + 0.5 ) A__ , A__ = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: A__ = [] for image in image_inputs: A__ , A__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) A__ = max(lowercase_,key=lambda lowercase_ : item[0] )[0] A__ = max(lowercase_,key=lambda lowercase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class A ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase = BridgeTowerImageProcessor if is_vision_available() else None def snake_case__ ( self : str )-> Optional[int]: '''simple docstring''' A__ = BridgeTowerImageProcessingTester(self ) @property def snake_case__ ( self : Dict )-> List[str]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def snake_case__ ( self : Optional[Any] )-> Tuple: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_,'image_mean' ) ) self.assertTrue(hasattr(lowercase_,'image_std' ) ) self.assertTrue(hasattr(lowercase_,'do_normalize' ) ) self.assertTrue(hasattr(lowercase_,'do_resize' ) ) self.assertTrue(hasattr(lowercase_,'size' ) ) self.assertTrue(hasattr(lowercase_,'size_divisor' ) ) def snake_case__ ( self : Any )-> List[str]: '''simple docstring''' pass def snake_case__ ( self : int )-> Any: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A__ = prepare_image_inputs(self.image_processor_tester,equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_,Image.Image ) # Test not batched input A__ = image_processing(image_inputs[0],return_tensors='pt' ).pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape,(1, self.image_processor_tester.num_channels, expected_height, expected_width),) # Test batched A__ = image_processing(lowercase_,return_tensors='pt' ).pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(lowercase_,batched=lowercase_ ) self.assertEqual( encoded_images.shape,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ),) def snake_case__ ( self : List[str] )-> Tuple: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A__ = prepare_image_inputs(self.image_processor_tester,equal_resolution=lowercase_,numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_,np.ndarray ) # Test not batched input A__ = image_processing(image_inputs[0],return_tensors='pt' ).pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape,(1, self.image_processor_tester.num_channels, expected_height, expected_width),) # Test batched A__ = image_processing(lowercase_,return_tensors='pt' ).pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(lowercase_,batched=lowercase_ ) self.assertEqual( encoded_images.shape,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ),) def snake_case__ ( self : Optional[Any] )-> List[Any]: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A__ = prepare_image_inputs(self.image_processor_tester,equal_resolution=lowercase_,torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_,torch.Tensor ) # Test not batched input A__ = image_processing(image_inputs[0],return_tensors='pt' ).pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape,(1, self.image_processor_tester.num_channels, expected_height, expected_width),) # Test batched A__ = image_processing(lowercase_,return_tensors='pt' ).pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(lowercase_,batched=lowercase_ ) self.assertEqual( encoded_images.shape,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ),)
282
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A__ : Any = { 'configuration_electra': ['ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ElectraConfig', 'ElectraOnnxConfig'], 'tokenization_electra': ['ElectraTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[int] = ['ElectraTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : List[Any] = [ 'ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'ElectraForCausalLM', 'ElectraForMaskedLM', 'ElectraForMultipleChoice', 'ElectraForPreTraining', 'ElectraForQuestionAnswering', 'ElectraForSequenceClassification', 'ElectraForTokenClassification', 'ElectraModel', 'ElectraPreTrainedModel', 'load_tf_weights_in_electra', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : List[Any] = [ 'TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFElectraForMaskedLM', 'TFElectraForMultipleChoice', 'TFElectraForPreTraining', 'TFElectraForQuestionAnswering', 'TFElectraForSequenceClassification', 'TFElectraForTokenClassification', 'TFElectraModel', 'TFElectraPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Union[str, Any] = [ 'FlaxElectraForCausalLM', 'FlaxElectraForMaskedLM', 'FlaxElectraForMultipleChoice', 'FlaxElectraForPreTraining', 'FlaxElectraForQuestionAnswering', 'FlaxElectraForSequenceClassification', 'FlaxElectraForTokenClassification', 'FlaxElectraModel', 'FlaxElectraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys A__ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
144
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. __lowercase = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. __lowercase = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. __lowercase = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Any = len([g for position, g in enumerate(SCREAMING_SNAKE_CASE ) if g == main_target[position]] ) return (item, float(SCREAMING_SNAKE_CASE )) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Optional[Any] = random.randint(0 , len(SCREAMING_SNAKE_CASE ) - 1 ) __UpperCamelCase :Tuple = parent_a[:random_slice] + parent_a[random_slice:] __UpperCamelCase :Union[str, Any] = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :int = list(SCREAMING_SNAKE_CASE ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: __UpperCamelCase :str = random.choice(SCREAMING_SNAKE_CASE ) return "".join(SCREAMING_SNAKE_CASE ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ): '''simple docstring''' __UpperCamelCase :int = [] # Generate more children proportionally to the fitness score. __UpperCamelCase :int = int(parent_a[1] * 100 ) + 1 __UpperCamelCase :List[str] = 10 if child_n >= 10 else child_n for _ in range(SCREAMING_SNAKE_CASE ): __UpperCamelCase :Optional[Any] = population_score[random.randint(0 , SCREAMING_SNAKE_CASE )][0] __UpperCamelCase , __UpperCamelCase :Any = crossover(parent_a[0] , SCREAMING_SNAKE_CASE ) # Append new string to the population list. pop.append(mutate(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) pop.append(mutate(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) return pop def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = True ): '''simple docstring''' if N_POPULATION < N_SELECTED: __UpperCamelCase :List[Any] = f"""{N_POPULATION} must be bigger than {N_SELECTED}""" raise ValueError(SCREAMING_SNAKE_CASE ) # Verify that the target contains no genes besides the ones inside genes variable. __UpperCamelCase :List[str] = sorted({c for c in target if c not in genes} ) if not_in_genes_list: __UpperCamelCase :Optional[int] = f"""{not_in_genes_list} is not in genes list, evolution cannot converge""" raise ValueError(SCREAMING_SNAKE_CASE ) # Generate random starting population. __UpperCamelCase :int = [] for _ in range(SCREAMING_SNAKE_CASE ): population.append(''''''.join([random.choice(SCREAMING_SNAKE_CASE ) for i in range(len(SCREAMING_SNAKE_CASE ) )] ) ) # Just some logs to know what the algorithms is doing. __UpperCamelCase , __UpperCamelCase :List[Any] = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(SCREAMING_SNAKE_CASE ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. __UpperCamelCase :Tuple = [evaluate(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for item in population] # Check if there is a matching evolution. __UpperCamelCase :Tuple = sorted(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : x[1] , reverse=SCREAMING_SNAKE_CASE ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( f"""\nGeneration: {generation}""" f"""\nTotal Population:{total_population}""" f"""\nBest score: {population_score[0][1]}""" f"""\nBest string: {population_score[0][0]}""" ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. __UpperCamelCase :str = population[: int(N_POPULATION / 3 )] population.clear() population.extend(SCREAMING_SNAKE_CASE ) # Normalize population score to be between 0 and 1. __UpperCamelCase :Union[str, Any] = [ (item, score / len(SCREAMING_SNAKE_CASE )) for item, score in population_score ] # This is selection for i in range(SCREAMING_SNAKE_CASE ): population.extend(select(population_score[int(SCREAMING_SNAKE_CASE )] , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(SCREAMING_SNAKE_CASE ) > N_POPULATION: break if __name__ == "__main__": __lowercase = ( '''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!''' ) __lowercase = list( ''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm''' '''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\''' ) __lowercase , __lowercase , __lowercase = basic(target_str, genes_list) print( F'\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}' )
43
0
"""simple docstring""" import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None ): '''simple docstring''' assert torch_layer.weight.shape == weight.shape, F"""{torch_layer} layer.weight does not match""" _a : Optional[Any] = nn.Parameter(UpperCamelCase__ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F"""{torch_layer} layer.bias does not match""" _a : Optional[int] = nn.Parameter(UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Any = np.asarray(weights[0] ) _a : str = np.asarray(weights[1] ) _a : List[str] = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(UpperCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(UpperCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase__ ) , ) set_param( torch_layer.output.dense , torch.tensor(UpperCamelCase__ ).view(-1 , UpperCamelCase__ ).contiguous().transpose(0 , 1 ) , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : List[Any] = np.asarray(weights[0] ) _a : Dict = np.asarray(weights[1] ) _a : Any = np.asarray(weights[2] ) _a : List[Any] = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(UpperCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase__ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(UpperCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(UpperCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase__ ) , ) set_param( torch_layer.output.dense , torch.tensor(UpperCamelCase__ ).view(-1 , UpperCamelCase__ ).contiguous().transpose(0 , 1 ) , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Any = weights[0][0][0] _a : str = np.asarray(layer_norm_a[0] ) _a : int = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(UpperCamelCase__ ) , torch.tensor(UpperCamelCase__ ) , ) # lsh weights + output _a : Optional[int] = weights[0][1] if len(UpperCamelCase__ ) < 4: set_layer_weights_in_torch_lsh(UpperCamelCase__ , torch_block.attention , UpperCamelCase__ ) else: set_layer_weights_in_torch_local(UpperCamelCase__ , torch_block.attention , UpperCamelCase__ ) # intermediate weighs _a : int = weights[2][0][1][2] # Chunked Feed Forward if len(UpperCamelCase__ ) == 4: _a : int = intermediate_weights[2] # layernorm 2 _a : List[str] = np.asarray(intermediate_weights[0][0] ) _a : Any = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(UpperCamelCase__ ) , torch.tensor(UpperCamelCase__ ) , ) # intermediate dense _a : Optional[Any] = np.asarray(intermediate_weights[1][0] ) _a : Tuple = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(UpperCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(UpperCamelCase__ ) , ) # intermediate out _a : Optional[Any] = np.asarray(intermediate_weights[4][0] ) _a : List[str] = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(UpperCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(UpperCamelCase__ ) , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : int = torch_model.reformer # word embeds _a : Any = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(UpperCamelCase__ ) , ) if isinstance(weights[3] , UpperCamelCase__ ): _a : Union[str, Any] = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): _a : List[str] = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F"""{position_embeddings[emb_idx]} emb does not match""" _a : List[str] = nn.Parameter(torch.tensor(UpperCamelCase__ ) ) _a : str = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( UpperCamelCase__ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): _a : int = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # output layer norm _a : Optional[int] = np.asarray(weights[7][0] ) _a : Dict = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(UpperCamelCase__ ) , torch.tensor(UpperCamelCase__ ) , ) # output embeddings _a : List[str] = np.asarray(weights[9][0] ) _a : str = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(UpperCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(UpperCamelCase__ ) , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : List[Any] = ReformerConfig.from_json_file(UpperCamelCase__ ) print(F"""Building PyTorch model from configuration: {config}""" ) _a : Any = ReformerModelWithLMHead(UpperCamelCase__ ) with open(UpperCamelCase__ , """rb""" ) as f: _a : Union[str, Any] = pickle.load(UpperCamelCase__ )["""weights"""] set_model_weights_in_torch(UpperCamelCase__ , UpperCamelCase__ , config.hidden_size ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , UpperCamelCase__ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '--trax_model_pkl_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained Reformer model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _snake_case = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
365
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _snake_case = { 'configuration_vision_encoder_decoder': ['VisionEncoderDecoderConfig', 'VisionEncoderDecoderOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['VisionEncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['TFVisionEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['FlaxVisionEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys _snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
324
0
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def A ( _UpperCAmelCase : str = "isbn/0140328726" ) -> dict: '''simple docstring''' _UpperCAmelCase = olid.strip().strip('/' ) # Remove leading/trailing whitespace & slashes if new_olid.count('/' ) != 1: _UpperCAmelCase = F"{olid} is not a valid Open Library olid" raise ValueError(_UpperCAmelCase ) return requests.get(F"https://openlibrary.org/{new_olid}.json" ).json() def A ( _UpperCAmelCase : dict ) -> dict: '''simple docstring''' _UpperCAmelCase = { 'title': 'Title', 'publish_date': 'Publish date', 'authors': 'Authors', 'number_of_pages': 'Number of pages:', 'first_sentence': 'First sentence', 'isbn_10': 'ISBN (10)', 'isbn_13': 'ISBN (13)', } _UpperCAmelCase = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} _UpperCAmelCase = [ get_openlibrary_data(author['key'] )['name'] for author in data['Authors'] ] _UpperCAmelCase = data['First sentence']['value'] for key, value in data.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _UpperCAmelCase = ', '.join(_UpperCAmelCase ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: UpperCAmelCase__ = input("\nEnter the ISBN code to search (or 'quit' to stop): ").strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(f"""Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.""") continue print(f"""\nSearching Open Library for ISBN: {isbn}...\n""") try: UpperCAmelCase__ = summarize_book(get_openlibrary_data(f"""isbn/{isbn}""")) print("\n".join(f"""{key}: {value}""" for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(f"""Sorry, there are no results for ISBN: {isbn}.""")
339
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo UpperCAmelCase__ = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" UpperCAmelCase__ = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" UpperCAmelCase__ = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): def _lowerCamelCase ( self : str) -> MetricInfo: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token') , id='sequence'), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token') , id='sequence') , id='references'), }) , ) def _lowerCamelCase ( self : Union[str, Any] , A : List[List[List[str]]] , A : List[List[str]] , A : int = 1 , A : int = 4 , ) -> Dict[str, float]: """simple docstring""" return { "google_bleu": gleu_score.corpus_gleu( list_of_references=A , hypotheses=A , min_len=A , max_len=A) }
339
1
'''simple docstring''' import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def snake_case_ ( __SCREAMING_SNAKE_CASE : List[str] ): # picklable for multiprocessing """simple docstring""" return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def snake_case_ ( ): """simple docstring""" with parallel_backend('''spark''' ): assert ParallelBackendConfig.backend_name == "spark" lowercase_ : str = [1, 2, 3] with pytest.raises(__SCREAMING_SNAKE_CASE ): with parallel_backend('''unsupported backend''' ): map_nested(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , num_proc=2 ) with pytest.raises(__SCREAMING_SNAKE_CASE ): with parallel_backend('''unsupported backend''' ): map_nested(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize('''num_proc''' , [2, -1] ) def snake_case_ ( __SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" lowercase_ : List[str] = [1, 2] lowercase_ : Any = {'''a''': 1, '''b''': 2} lowercase_ : Dict = {'''a''': [1, 2], '''b''': [3, 4]} lowercase_ : Any = {'''a''': {'''1''': 1}, '''b''': 2} lowercase_ : List[str] = {'''a''': 1, '''b''': 2, '''c''': 3, '''d''': 4} lowercase_ : int = [2, 3] lowercase_ : Optional[int] = {'''a''': 2, '''b''': 3} lowercase_ : Optional[Any] = {'''a''': [2, 3], '''b''': [4, 5]} lowercase_ : Union[str, Any] = {'''a''': {'''1''': 2}, '''b''': 3} lowercase_ : Optional[Any] = {'''a''': 2, '''b''': 3, '''c''': 4, '''d''': 5} with parallel_backend('''spark''' ): assert map_nested(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , num_proc=__SCREAMING_SNAKE_CASE ) == expected_map_nested_sa assert map_nested(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , num_proc=__SCREAMING_SNAKE_CASE ) == expected_map_nested_sa assert map_nested(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , num_proc=__SCREAMING_SNAKE_CASE ) == expected_map_nested_sa assert map_nested(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , num_proc=__SCREAMING_SNAKE_CASE ) == expected_map_nested_sa assert map_nested(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , num_proc=__SCREAMING_SNAKE_CASE ) == expected_map_nested_sa
264
'''simple docstring''' import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings _lowercase : Tuple = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class lowerCAmelCase__ ( lowerCamelCase_ ): lowerCAmelCase_ = field(default=lowerCamelCase_ , metadata={'''help''': '''Whether to use SortishSampler or not.'''} ) lowerCAmelCase_ = field( default=lowerCamelCase_ , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) lowerCAmelCase_ = field( default=lowerCamelCase_ , metadata={ '''help''': ( '''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `max_length` value of the model configuration.''' ) } , ) lowerCAmelCase_ = field( default=lowerCamelCase_ , metadata={ '''help''': ( '''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `num_beams` value of the model configuration.''' ) } , ) lowerCAmelCase_ = field( default=lowerCamelCase_ , metadata={ '''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.''' } , ) def _snake_case ( self ): """simple docstring""" lowercase_ : Dict = super().to_dict() for k, v in d.items(): if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase_ : str = v.to_dict() return d
264
1
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase ) -> int: lowercase__ : Optional[Any] = 1 for i in range(1 , num + 1 ): fact *= i return fact def __UpperCAmelCase ( __lowerCamelCase ) -> int: lowercase__ : Optional[int] = 0 while number > 0: lowercase__ : List[Any] = number % 10 sum_of_digits += last_digit lowercase__ : List[str] = number // 10 # Removing the last_digit from the given number return sum_of_digits def __UpperCAmelCase ( __lowerCamelCase = 1_00 ) -> int: lowercase__ : Any = factorial(__lowerCamelCase ) lowercase__ : Dict = split_and_add(__lowerCamelCase ) return result if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
16
from abc import ABC, abstractmethod from argparse import ArgumentParser class snake_case_ (lowerCamelCase_ ): @staticmethod @abstractmethod def lowerCamelCase__( __snake_case :ArgumentParser ) -> Dict: raise NotImplementedError() @abstractmethod def lowerCamelCase__( self :Union[str, Any] ) -> Dict: raise NotImplementedError()
240
0
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def lowerCAmelCase( SCREAMING_SNAKE_CASE_ )-> Any: """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE_ , collections.abc.Iterable ): return x return (x, x) @require_flax class __magic_name__ : def UpperCAmelCase_ ( self , _lowercase , _lowercase )-> List[str]: pass def UpperCAmelCase_ ( self )-> Optional[int]: pass def UpperCAmelCase_ ( self )-> Dict: pass def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase )-> Optional[Any]: UpperCamelCase_ = np.abs((a - b) ).max() self.assertLessEqual(_lowercase , _lowercase , F"Difference between torch and flax is {diff} (>= {tol})." ) def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=None , **_lowercase )-> List[Any]: UpperCamelCase_ = VisionTextDualEncoderConfig.from_vision_text_configs(_lowercase , _lowercase ) UpperCamelCase_ = FlaxVisionTextDualEncoderModel(_lowercase ) UpperCamelCase_ = model(input_ids=_lowercase , pixel_values=_lowercase , attention_mask=_lowercase ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], config.projection_dim) ) def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=None , **_lowercase )-> List[Any]: UpperCamelCase_ , UpperCamelCase_ = self.get_vision_text_model(_lowercase , _lowercase ) UpperCamelCase_ = {"vision_model": vision_model, "text_model": text_model} UpperCamelCase_ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowercase ) UpperCamelCase_ = model(input_ids=_lowercase , pixel_values=_lowercase , attention_mask=_lowercase ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], model.config.projection_dim) ) def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=None , **_lowercase )-> int: UpperCamelCase_ , UpperCamelCase_ = self.get_vision_text_model(_lowercase , _lowercase ) UpperCamelCase_ = {"vision_model": vision_model, "text_model": text_model} UpperCamelCase_ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowercase ) UpperCamelCase_ = model(input_ids=_lowercase , pixel_values=_lowercase , attention_mask=_lowercase ) UpperCamelCase_ = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowercase ) UpperCamelCase_ = FlaxVisionTextDualEncoderModel.from_pretrained(_lowercase ) UpperCamelCase_ = model(input_ids=_lowercase , pixel_values=_lowercase , attention_mask=_lowercase ) UpperCamelCase_ = after_output[0] UpperCamelCase_ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowercase , 1e-3 ) def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=None , **_lowercase )-> Optional[Any]: UpperCamelCase_ , UpperCamelCase_ = self.get_vision_text_model(_lowercase , _lowercase ) UpperCamelCase_ = {"vision_model": vision_model, "text_model": text_model} UpperCamelCase_ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowercase ) UpperCamelCase_ = model( input_ids=_lowercase , pixel_values=_lowercase , attention_mask=_lowercase , output_attentions=_lowercase ) UpperCamelCase_ = output.vision_model_output.attentions self.assertEqual(len(_lowercase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCamelCase_ = to_atuple(vision_model.config.image_size ) UpperCamelCase_ = to_atuple(vision_model.config.patch_size ) UpperCamelCase_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) UpperCamelCase_ = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) UpperCamelCase_ = output.text_model_output.attentions self.assertEqual(len(_lowercase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase )-> Optional[Any]: pt_model.to(_lowercase ) pt_model.eval() # prepare inputs UpperCamelCase_ = inputs_dict UpperCamelCase_ = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): UpperCamelCase_ = pt_model(**_lowercase ).to_tuple() UpperCamelCase_ = fx_model(**_lowercase ).to_tuple() self.assertEqual(len(_lowercase ) , len(_lowercase ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(_lowercase , pt_output.numpy() , 4e-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(_lowercase ) UpperCamelCase_ = FlaxVisionTextDualEncoderModel.from_pretrained(_lowercase , from_pt=_lowercase ) UpperCamelCase_ = fx_model_loaded(**_lowercase ).to_tuple() self.assertEqual(len(_lowercase ) , len(_lowercase ) , "Output lengths differ between Flax and PyTorch" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(_lowercase , pt_output.numpy() , 4e-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(_lowercase ) UpperCamelCase_ = VisionTextDualEncoderModel.from_pretrained(_lowercase , from_flax=_lowercase ) pt_model_loaded.to(_lowercase ) pt_model_loaded.eval() with torch.no_grad(): UpperCamelCase_ = pt_model_loaded(**_lowercase ).to_tuple() self.assertEqual(len(_lowercase ) , len(_lowercase ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(_lowercase , pt_output_loaded.numpy() , 4e-2 ) def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase )-> Union[str, Any]: UpperCamelCase_ = VisionTextDualEncoderConfig.from_vision_text_configs(_lowercase , _lowercase ) UpperCamelCase_ = VisionTextDualEncoderModel(_lowercase ) UpperCamelCase_ = FlaxVisionTextDualEncoderModel(_lowercase ) UpperCamelCase_ = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , _lowercase ) UpperCamelCase_ = fx_state self.check_pt_flax_equivalence(_lowercase , _lowercase , _lowercase ) def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase )-> List[Any]: UpperCamelCase_ = VisionTextDualEncoderConfig.from_vision_text_configs(_lowercase , _lowercase ) UpperCamelCase_ = VisionTextDualEncoderModel(_lowercase ) UpperCamelCase_ = FlaxVisionTextDualEncoderModel(_lowercase ) UpperCamelCase_ = load_flax_weights_in_pytorch_model(_lowercase , fx_model.params ) self.check_pt_flax_equivalence(_lowercase , _lowercase , _lowercase ) def UpperCAmelCase_ ( self )-> List[str]: UpperCamelCase_ = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_lowercase ) def UpperCAmelCase_ ( self )-> Dict: UpperCamelCase_ = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_lowercase ) def UpperCAmelCase_ ( self )-> Optional[Any]: UpperCamelCase_ = self.prepare_config_and_inputs() self.check_save_load(**_lowercase ) def UpperCAmelCase_ ( self )-> Tuple: UpperCamelCase_ = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_lowercase ) @is_pt_flax_cross_test def UpperCAmelCase_ ( self )-> List[Any]: UpperCamelCase_ = self.prepare_config_and_inputs() UpperCamelCase_ = config_inputs_dict.pop("vision_config" ) UpperCamelCase_ = config_inputs_dict.pop("text_config" ) UpperCamelCase_ = config_inputs_dict self.check_equivalence_pt_to_flax(_lowercase , _lowercase , _lowercase ) self.check_equivalence_flax_to_pt(_lowercase , _lowercase , _lowercase ) @slow def UpperCAmelCase_ ( self )-> Tuple: UpperCamelCase_ , UpperCamelCase_ = self.get_pretrained_model_and_inputs() UpperCamelCase_ = model_a(**_lowercase ) UpperCamelCase_ = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_lowercase ) UpperCamelCase_ = FlaxVisionTextDualEncoderModel.from_pretrained(_lowercase ) UpperCamelCase_ = model_a(**_lowercase ) UpperCamelCase_ = after_outputs[0] UpperCamelCase_ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowercase , 1e-5 ) @require_flax class __magic_name__ ( snake_case , unittest.TestCase ): def UpperCAmelCase_ ( self )-> Any: UpperCamelCase_ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-vit" , "hf-internal-testing/tiny-bert" , vision_from_pt=_lowercase , text_from_pt=_lowercase , ) UpperCamelCase_ = 13 UpperCamelCase_ = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) UpperCamelCase_ = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) UpperCamelCase_ = random_attention_mask([batch_size, 4] ) UpperCamelCase_ = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def UpperCAmelCase_ ( self , _lowercase , _lowercase )-> Union[str, Any]: UpperCamelCase_ = FlaxViTModel(_lowercase ) UpperCamelCase_ = FlaxBertModel(_lowercase ) return vision_model, text_model def UpperCAmelCase_ ( self )-> Optional[Any]: UpperCamelCase_ = FlaxViTModelTester(self ) UpperCamelCase_ = FlaxBertModelTester(self ) UpperCamelCase_ = vit_model_tester.prepare_config_and_inputs() UpperCamelCase_ = bert_model_tester.prepare_config_and_inputs() UpperCamelCase_ , UpperCamelCase_ = vision_config_and_inputs UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class __magic_name__ ( snake_case , unittest.TestCase ): def UpperCAmelCase_ ( self )-> Optional[Any]: UpperCamelCase_ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-clip" , "hf-internal-testing/tiny-bert" , vision_from_pt=_lowercase , text_from_pt=_lowercase , ) UpperCamelCase_ = 13 UpperCamelCase_ = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) UpperCamelCase_ = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) UpperCamelCase_ = random_attention_mask([batch_size, 4] ) UpperCamelCase_ = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def UpperCAmelCase_ ( self , _lowercase , _lowercase )-> str: UpperCamelCase_ = FlaxCLIPVisionModel(_lowercase ) UpperCamelCase_ = FlaxBertModel(_lowercase ) return vision_model, text_model def UpperCAmelCase_ ( self )-> Any: UpperCamelCase_ = FlaxCLIPVisionModelTester(self ) UpperCamelCase_ = FlaxBertModelTester(self ) UpperCamelCase_ = clip_model_tester.prepare_config_and_inputs() UpperCamelCase_ = bert_model_tester.prepare_config_and_inputs() UpperCamelCase_ , UpperCamelCase_ = vision_config_and_inputs UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class __magic_name__ ( unittest.TestCase ): @slow def UpperCAmelCase_ ( self )-> str: UpperCamelCase_ = FlaxVisionTextDualEncoderModel.from_pretrained("clip-italian/clip-italian" , logit_scale_init_value=1.0 ) UpperCamelCase_ = VisionTextDualEncoderProcessor.from_pretrained("clip-italian/clip-italian" ) UpperCamelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) UpperCamelCase_ = processor( text=["una foto di un gatto", "una foto di un cane"] , images=_lowercase , padding=_lowercase , return_tensors="np" ) UpperCamelCase_ = model(**_lowercase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) UpperCamelCase_ = np.array([[1.2_284_727, 0.3_104_122]] ) self.assertTrue(np.allclose(outputs.logits_per_image , _lowercase , atol=1e-3 ) )
60
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __magic_name__ ( snake_case ): UpperCamelCase_ :List[Any] = """dandelin/vilt-b32-finetuned-vqa""" UpperCamelCase_ :Dict = ( """This is a tool that answers a question about an image. It takes an input named `image` which should be the """ """image containing the information, as well as a `question` which should be the question in English. It """ """returns a text that is the answer to the question.""" ) UpperCamelCase_ :Optional[int] = """image_qa""" UpperCamelCase_ :int = AutoProcessor UpperCamelCase_ :Tuple = AutoModelForVisualQuestionAnswering UpperCamelCase_ :Optional[int] = ["""image""", """text"""] UpperCamelCase_ :Tuple = ["""text"""] def __init__( self , *_lowercase , **_lowercase )-> Union[str, Any]: requires_backends(self , ["vision"] ) super().__init__(*_lowercase , **_lowercase ) def UpperCAmelCase_ ( self , _lowercase , _lowercase )-> str: return self.pre_processor(_lowercase , _lowercase , return_tensors="pt" ) def UpperCAmelCase_ ( self , _lowercase )-> str: with torch.no_grad(): return self.model(**_lowercase ).logits def UpperCAmelCase_ ( self , _lowercase )-> List[Any]: UpperCamelCase_ = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
60
1
"""simple docstring""" import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class lowerCAmelCase_ ( A__ ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_=None , snake_case_=True , snake_case_=None , **snake_case_ ) -> Optional[Any]: __lowerCAmelCase = parent __lowerCAmelCase = config_class __lowerCAmelCase = has_text_modality __lowerCAmelCase = kwargs __lowerCAmelCase = common_properties def A__ ( self ) -> int: __lowerCAmelCase = self.config_class(**self.inputs_dict ) __lowerCAmelCase = ( ["""hidden_size""", """num_attention_heads""", """num_hidden_layers"""] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(["""vocab_size"""] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(snake_case_ , snake_case_ ) , msg=f"""`{prop}` does not exist""" ) # Test that config has the common properties as setter for idx, name in enumerate(snake_case_ ): try: setattr(snake_case_ , snake_case_ , snake_case_ ) self.parent.assertEqual( getattr(snake_case_ , snake_case_ ) , snake_case_ , msg=f"""`{name} value {idx} expected, but was {getattr(snake_case_ , snake_case_ )}""" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(snake_case_ ): try: __lowerCAmelCase = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(snake_case_ , snake_case_ ) , snake_case_ , msg=f"""`{name} value {idx} expected, but was {getattr(snake_case_ , snake_case_ )}""" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def A__ ( self ) -> Optional[Any]: __lowerCAmelCase = self.config_class(**self.inputs_dict ) __lowerCAmelCase = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , snake_case_ ) def A__ ( self ) -> str: __lowerCAmelCase = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = os.path.join(snake_case_ , """config.json""" ) config_first.to_json_file(snake_case_ ) __lowerCAmelCase = self.config_class.from_json_file(snake_case_ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def A__ ( self ) -> str: __lowerCAmelCase = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(snake_case_ ) __lowerCAmelCase = self.config_class.from_pretrained(snake_case_ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def A__ ( self ) -> int: __lowerCAmelCase = self.config_class(**self.inputs_dict ) __lowerCAmelCase = """test""" with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = os.path.join(snake_case_ , snake_case_ ) config_first.save_pretrained(snake_case_ ) __lowerCAmelCase = self.config_class.from_pretrained(snake_case_ , subfolder=snake_case_ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def A__ ( self ) -> int: __lowerCAmelCase = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) __lowerCAmelCase = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def A__ ( self ) -> Tuple: if self.config_class.is_composition: return __lowerCAmelCase = self.config_class() self.parent.assertIsNotNone(snake_case_ ) def A__ ( self ) -> List[Any]: __lowerCAmelCase = copy.deepcopy(snake_case_ ) __lowerCAmelCase = self.config_class(**snake_case_ ) __lowerCAmelCase = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(("""torch_dtype""", config.torch_dtype, torch.floataa) ) elif getattr(snake_case_ , snake_case_ ) != value: wrong_values.append((key, getattr(snake_case_ , snake_case_ ), value) ) if len(snake_case_ ) > 0: __lowerCAmelCase = """\n""".join([f"""- {v[0]}: got {v[1]} instead of {v[2]}""" for v in wrong_values] ) raise ValueError(f"""The following keys were not properly set in the config:\n{errors}""" ) def A__ ( self ) -> str: self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
301
"""simple docstring""" import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params SCREAMING_SNAKE_CASE_ = getLogger(__name__) SCREAMING_SNAKE_CASE_ = '''cuda''' if torch.cuda.is_available() else '''cpu''' def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 8 , _lowerCAmelCase = DEFAULT_DEVICE , _lowerCAmelCase=False , _lowerCAmelCase="summarization" , _lowerCAmelCase=None , **_lowerCAmelCase , ): __lowerCAmelCase = Path(_lowerCAmelCase ).open("""w""" , encoding="""utf-8""" ) __lowerCAmelCase = str(_lowerCAmelCase ) __lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(_lowerCAmelCase ).to(_lowerCAmelCase ) if fpaa: __lowerCAmelCase = model.half() __lowerCAmelCase = AutoTokenizer.from_pretrained(_lowerCAmelCase ) logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. __lowerCAmelCase = time.time() # update config with task specific params use_task_specific_params(_lowerCAmelCase , _lowerCAmelCase ) if prefix is None: __lowerCAmelCase = prefix or getattr(model.config , """prefix""" , """""" ) or """""" for examples_chunk in tqdm(list(chunks(_lowerCAmelCase , _lowerCAmelCase ) ) ): __lowerCAmelCase = [prefix + text for text in examples_chunk] __lowerCAmelCase = tokenizer(_lowerCAmelCase , return_tensors="""pt""" , truncation=_lowerCAmelCase , padding="""longest""" ).to(_lowerCAmelCase ) __lowerCAmelCase = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **_lowerCAmelCase , ) __lowerCAmelCase = tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) for hypothesis in dec: fout.write(hypothesis + """\n""" ) fout.flush() fout.close() __lowerCAmelCase = int(time.time() - start_time ) # seconds __lowerCAmelCase = len(_lowerCAmelCase ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def lowercase (): return datetime.datetime.now().strftime("""%Y-%m-%d %H:%M:%S""" ) def lowercase (_lowerCAmelCase=True ): __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""model_name""" , type=_lowerCAmelCase , help="""like facebook/bart-large-cnn,t5-base, etc.""" ) parser.add_argument("""input_path""" , type=_lowerCAmelCase , help="""like cnn_dm/test.source""" ) parser.add_argument("""save_path""" , type=_lowerCAmelCase , help="""where to save summaries""" ) parser.add_argument("""--reference_path""" , type=_lowerCAmelCase , required=_lowerCAmelCase , help="""like cnn_dm/test.target""" ) parser.add_argument("""--score_path""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default="""metrics.json""" , help="""where to save metrics""" ) parser.add_argument("""--device""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default=_lowerCAmelCase , help="""cuda, cuda:1, cpu etc.""" ) parser.add_argument( """--prefix""" , type=_lowerCAmelCase , required=_lowerCAmelCase , default=_lowerCAmelCase , help="""will be added to the begininng of src examples""" ) parser.add_argument("""--task""" , type=_lowerCAmelCase , default="""summarization""" , help="""used for task_specific_params + metrics""" ) parser.add_argument("""--bs""" , type=_lowerCAmelCase , default=8 , required=_lowerCAmelCase , help="""batch size""" ) parser.add_argument( """--n_obs""" , type=_lowerCAmelCase , default=-1 , required=_lowerCAmelCase , help="""How many observations. Defaults to all.""" ) parser.add_argument("""--fp16""" , action="""store_true""" ) parser.add_argument("""--dump-args""" , action="""store_true""" , help="""print the custom hparams with the results""" ) parser.add_argument( """--info""" , nargs="""?""" , type=_lowerCAmelCase , const=datetime_now() , help=( """use in conjunction w/ --dump-args to print with the results whatever other info you'd like, e.g.""" """ lang=en-ru. If no value is passed, the current datetime string will be used.""" ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate __lowerCAmelCase , __lowerCAmelCase = parser.parse_known_args() __lowerCAmelCase = parse_numeric_n_bool_cl_kwargs(_lowerCAmelCase ) if parsed_args and verbose: print(f"""parsed the following generate kwargs: {parsed_args}""" ) __lowerCAmelCase = [""" """ + x.rstrip() if """t5""" in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: __lowerCAmelCase = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=_lowerCAmelCase ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError("""Can't mix --fp16 and --device cpu""" ) __lowerCAmelCase = generate_summaries_or_translations( _lowerCAmelCase , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **_lowerCAmelCase , ) if args.reference_path is None: return {} # Compute scores __lowerCAmelCase = calculate_bleu if """translation""" in args.task else calculate_rouge __lowerCAmelCase = [x.rstrip() for x in open(args.save_path ).readlines()] __lowerCAmelCase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(_lowerCAmelCase )] __lowerCAmelCase = score_fn(_lowerCAmelCase , _lowerCAmelCase ) scores.update(_lowerCAmelCase ) if args.dump_args: scores.update(_lowerCAmelCase ) if args.info: __lowerCAmelCase = args.info if verbose: print(_lowerCAmelCase ) if args.score_path is not None: json.dump(_lowerCAmelCase , open(args.score_path , """w""" ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
301
1
import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib lowerCamelCase : Dict ={ '''debug''': logging.DEBUG, '''info''': logging.INFO, '''warning''': logging.WARNING, '''error''': logging.ERROR, '''critical''': logging.CRITICAL, } lowerCamelCase : List[Any] =logging.WARNING def SCREAMING_SNAKE_CASE ( ) -> int: UpperCamelCase__ : int = os.getenv("DATASETS_VERBOSITY" , __lowerCAmelCase ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f'Unknown option DATASETS_VERBOSITY={env_level_str}, ' f'has to be one of: { ", ".join(log_levels.keys() ) }' ) return _default_log_level def SCREAMING_SNAKE_CASE ( ) -> str: return __name__.split("." )[0] def SCREAMING_SNAKE_CASE ( ) -> logging.Logger: return logging.getLogger(_get_library_name() ) def SCREAMING_SNAKE_CASE ( ) -> None: # Apply our default configuration to the library root logger. UpperCamelCase__ : Optional[Any] = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def SCREAMING_SNAKE_CASE ( ) -> None: UpperCamelCase__ : Any = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase = None ) -> logging.Logger: if name is None: UpperCamelCase__ : List[Any] = _get_library_name() return logging.getLogger(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( ) -> int: return _get_library_root_logger().getEffectiveLevel() def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> None: _get_library_root_logger().setLevel(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: return set_verbosity(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( ) -> Tuple: return set_verbosity(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( ) -> List[Any]: return set_verbosity(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: return set_verbosity(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( ) -> None: UpperCamelCase__ : List[str] = False def SCREAMING_SNAKE_CASE ( ) -> None: UpperCamelCase__ : str = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class __a : def __init__( self : Optional[Any] , *SCREAMING_SNAKE_CASE : Optional[int] , **SCREAMING_SNAKE_CASE : Optional[int] ): # pylint: disable=unused-argument '''simple docstring''' UpperCamelCase__ : List[str] = args[0] if args else None def __iter__( self : Union[str, Any] ): '''simple docstring''' return iter(self._iterator ) def __getattr__( self : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' def empty_fn(*SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : List[str] ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : Optional[int] ): '''simple docstring''' return self def __exit__( self : Any , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : str ): '''simple docstring''' return lowerCamelCase : str =True class __a : def __call__( self : int , *SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Union[str, Any]=False , **SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' if _tqdm_active and not disable: return tqdm_lib.tqdm(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) else: return EmptyTqdm(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowercase ( self : Tuple , *SCREAMING_SNAKE_CASE : Optional[Any] , **SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' UpperCamelCase__ : Optional[Any] = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm.get_lock() lowerCamelCase : List[str] =_tqdm_cls() def SCREAMING_SNAKE_CASE ( ) -> bool: global _tqdm_active return bool(_tqdm_active ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: global _tqdm_active UpperCamelCase__ : Tuple = True def SCREAMING_SNAKE_CASE ( ) -> Any: global _tqdm_active UpperCamelCase__ : List[str] = False
196
import argparse import os import re import packaging.version lowerCamelCase : Optional[Any] ='''examples/''' lowerCamelCase : List[Any] ={ '''examples''': (re.compile(R'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(R'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(R'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), R'''\1version="VERSION",'''), '''doc''': (re.compile(R'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } lowerCamelCase : List[str] ={ '''init''': '''src/transformers/__init__.py''', '''setup''': '''setup.py''', } lowerCamelCase : int ='''README.md''' def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]: with open(__lowerCAmelCase , "r" , encoding="utf-8" , newline="\n" ) as f: UpperCamelCase__ : List[Any] = f.read() UpperCamelCase__ , UpperCamelCase__ : List[str] = REPLACE_PATTERNS[pattern] UpperCamelCase__ : Union[str, Any] = replace.replace("VERSION" , __lowerCAmelCase ) UpperCamelCase__ : Tuple = re_pattern.sub(__lowerCAmelCase , __lowerCAmelCase ) with open(__lowerCAmelCase , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Union[str, Any]: for folder, directories, fnames in os.walk(__lowerCAmelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("research_projects" ) if "legacy" in directories: directories.remove("legacy" ) for fname in fnames: if fname.endswith(".py" ): update_version_in_file(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase , pattern="examples" ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase=False ) -> Optional[int]: for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if not patch: update_version_in_examples(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: UpperCamelCase__ : Tuple = "🤗 Transformers currently provides the following architectures" UpperCamelCase__ : Tuple = "1. Want to contribute a new model?" with open(__lowerCAmelCase , "r" , encoding="utf-8" , newline="\n" ) as f: UpperCamelCase__ : Optional[int] = f.readlines() # Find the start of the list. UpperCamelCase__ : List[Any] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 UpperCamelCase__ : Dict = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("1." ): UpperCamelCase__ : str = lines[index].replace( "https://huggingface.co/docs/transformers/main/model_doc" , "https://huggingface.co/docs/transformers/model_doc" , ) index += 1 with open(__lowerCAmelCase , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( ) -> Tuple: with open(REPLACE_FILES["init"] , "r" ) as f: UpperCamelCase__ : str = f.read() UpperCamelCase__ : Dict = REPLACE_PATTERNS["init"][0].search(__lowerCAmelCase ).groups()[0] return packaging.version.parse(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase=False ) -> Optional[int]: UpperCamelCase__ : Dict = get_version() if patch and default_version.is_devrelease: raise ValueError("Can't create a patch version from the dev branch, checkout a released version!" ) if default_version.is_devrelease: UpperCamelCase__ : List[str] = default_version.base_version elif patch: UpperCamelCase__ : int = f'{default_version.major}.{default_version.minor}.{default_version.micro + 1}' else: UpperCamelCase__ : Tuple = f'{default_version.major}.{default_version.minor + 1}.0' # Now let's ask nicely if that's the right one. UpperCamelCase__ : Tuple = input(f'Which version are you releasing? [{default_version}]' ) if len(__lowerCAmelCase ) == 0: UpperCamelCase__ : Any = default_version print(f'Updating version to {version}.' ) global_version_update(__lowerCAmelCase , patch=__lowerCAmelCase ) if not patch: print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() def SCREAMING_SNAKE_CASE ( ) -> int: UpperCamelCase__ : str = get_version() UpperCamelCase__ : Dict = f'{current_version.major}.{current_version.minor + 1}.0.dev0' UpperCamelCase__ : int = current_version.base_version # Check with the user we got that right. UpperCamelCase__ : List[str] = input(f'Which version are we developing now? [{dev_version}]' ) if len(__lowerCAmelCase ) == 0: UpperCamelCase__ : Optional[Any] = dev_version print(f'Updating version to {version}.' ) global_version_update(__lowerCAmelCase ) print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() if __name__ == "__main__": lowerCamelCase : List[Any] =argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') lowerCamelCase : Optional[Any] =parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
196
1