code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case_ = { 'configuration_luke': ['LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LukeConfig'], 'tokenization_luke': ['LukeTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ 'LUKE_PRETRAINED_MODEL_ARCHIVE_LIST', 'LukeForEntityClassification', 'LukeForEntityPairClassification', 'LukeForEntitySpanClassification', 'LukeForMultipleChoice', 'LukeForQuestionAnswering', 'LukeForSequenceClassification', 'LukeForTokenClassification', 'LukeForMaskedLM', 'LukeModel', 'LukePreTrainedModel', ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
24
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml __snake_case = NewType("""DataClass""", Any) __snake_case = NewType("""DataClassType""", Any) def _lowercase ( UpperCamelCase_ ) -> int: '''simple docstring''' if isinstance(UpperCamelCase_ , UpperCamelCase_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F'Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).' ) def _lowercase ( UpperCamelCase_ ) -> Callable[[str], Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = {str(UpperCamelCase_ ): choice for choice in choices} return lambda UpperCamelCase_ : str_to_choice.get(UpperCamelCase_ , UpperCamelCase_ ) def _lowercase ( *, UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = dataclasses.MISSING , UpperCamelCase_ = dataclasses.MISSING , UpperCamelCase_ = None , **UpperCamelCase_ , ) -> dataclasses.Field: '''simple docstring''' if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls SCREAMING_SNAKE_CASE__ = {} if aliases is not None: SCREAMING_SNAKE_CASE__ = aliases if help is not None: SCREAMING_SNAKE_CASE__ = help return dataclasses.field(metadata=UpperCamelCase_ , default=UpperCamelCase_ , default_factory=UpperCamelCase_ , **UpperCamelCase_ ) class lowercase__ ( _UpperCAmelCase ): A__ : Iterable[DataClassType] def __init__( self : Union[str, Any] , UpperCAmelCase_ : Union[DataClassType, Iterable[DataClassType]] , **UpperCAmelCase_ : Optional[Any] ): # To make the default appear when using --help if "formatter_class" not in kwargs: SCREAMING_SNAKE_CASE__ = ArgumentDefaultsHelpFormatter super().__init__(**UpperCAmelCase_ ) if dataclasses.is_dataclass(UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ = [dataclass_types] SCREAMING_SNAKE_CASE__ = list(UpperCAmelCase_ ) for dtype in self.dataclass_types: self._add_dataclass_arguments(UpperCAmelCase_ ) @staticmethod def A_ ( UpperCAmelCase_ : ArgumentParser , UpperCAmelCase_ : dataclasses.Field ): SCREAMING_SNAKE_CASE__ = F'--{field.name}' SCREAMING_SNAKE_CASE__ = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , UpperCAmelCase_ ): raise RuntimeError( 'Unresolved type detected, which should have been done with the help of ' '`typing.get_type_hints` method by default' ) SCREAMING_SNAKE_CASE__ = kwargs.pop('aliases' , [] ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ = [aliases] SCREAMING_SNAKE_CASE__ = getattr(field.type , '__origin__' , field.type ) if origin_type is Union or (hasattr(UpperCAmelCase_ , 'UnionType' ) and isinstance(UpperCAmelCase_ , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(UpperCAmelCase_ ) not in field.type.__args__ ): raise ValueError( 'Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because' ' the argument parser only supports one type per argument.' F' Problem encountered in field \'{field.name}\'.' ) if type(UpperCAmelCase_ ) not in field.type.__args__: # filter `str` in Union SCREAMING_SNAKE_CASE__ = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] SCREAMING_SNAKE_CASE__ = getattr(field.type , '__origin__' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) SCREAMING_SNAKE_CASE__ = ( field.type.__args__[0] if isinstance(UpperCAmelCase_ , field.type.__args__[1] ) else field.type.__args__[1] ) SCREAMING_SNAKE_CASE__ = getattr(field.type , '__origin__' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) SCREAMING_SNAKE_CASE__ = {} if origin_type is Literal or (isinstance(field.type , UpperCAmelCase_ ) and issubclass(field.type , UpperCAmelCase_ )): if origin_type is Literal: SCREAMING_SNAKE_CASE__ = field.type.__args__ else: SCREAMING_SNAKE_CASE__ = [x.value for x in field.type] SCREAMING_SNAKE_CASE__ = make_choice_type_function(kwargs['choices'] ) if field.default is not dataclasses.MISSING: SCREAMING_SNAKE_CASE__ = field.default else: SCREAMING_SNAKE_CASE__ = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument SCREAMING_SNAKE_CASE__ = copy(UpperCAmelCase_ ) # Hack because type=bool in argparse does not behave as we want. SCREAMING_SNAKE_CASE__ = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. SCREAMING_SNAKE_CASE__ = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way SCREAMING_SNAKE_CASE__ = default # This tells argparse we accept 0 or 1 value after --field_name SCREAMING_SNAKE_CASE__ = '?' # This is the value that will get picked if we do --field_name (without value) SCREAMING_SNAKE_CASE__ = True elif isclass(UpperCAmelCase_ ) and issubclass(UpperCAmelCase_ , UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ = field.type.__args__[0] SCREAMING_SNAKE_CASE__ = '+' if field.default_factory is not dataclasses.MISSING: SCREAMING_SNAKE_CASE__ = field.default_factory() elif field.default is dataclasses.MISSING: SCREAMING_SNAKE_CASE__ = True else: SCREAMING_SNAKE_CASE__ = field.type if field.default is not dataclasses.MISSING: SCREAMING_SNAKE_CASE__ = field.default elif field.default_factory is not dataclasses.MISSING: SCREAMING_SNAKE_CASE__ = field.default_factory() else: SCREAMING_SNAKE_CASE__ = True parser.add_argument(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_ ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): SCREAMING_SNAKE_CASE__ = False parser.add_argument(F'--no_{field.name}' , action='store_false' , dest=field.name , **UpperCAmelCase_ ) def A_ ( self : List[Any] , UpperCAmelCase_ : DataClassType ): if hasattr(UpperCAmelCase_ , '_argument_group_name' ): SCREAMING_SNAKE_CASE__ = self.add_argument_group(dtype._argument_group_name ) else: SCREAMING_SNAKE_CASE__ = self try: SCREAMING_SNAKE_CASE__ = get_type_hints(UpperCAmelCase_ ) except NameError: raise RuntimeError( F'Type resolution failed for {dtype}. Try declaring the class in global scope or ' 'removing line of `from __future__ import annotations` which opts in Postponed ' 'Evaluation of Annotations (PEP 563)' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ = '.'.join(map(UpperCAmelCase_ , sys.version_info[:3] ) ) raise RuntimeError( F'Type resolution failed for {dtype} on Python {python_version}. Try removing ' 'line of `from __future__ import annotations` which opts in union types as ' '`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ' 'support Python versions that lower than 3.10, you need to use ' '`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ' '`X | None`.' ) from ex raise for field in dataclasses.fields(UpperCAmelCase_ ): if not field.init: continue SCREAMING_SNAKE_CASE__ = type_hints[field.name] self._parse_dataclass_field(UpperCAmelCase_ , UpperCAmelCase_ ) def A_ ( self : Dict , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : str=None , UpperCAmelCase_ : str=None , ): if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): SCREAMING_SNAKE_CASE__ = [] if args_filename: args_files.append(Path(UpperCAmelCase_ ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('.args' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values SCREAMING_SNAKE_CASE__ = ArgumentParser() args_file_parser.add_argument(UpperCAmelCase_ , type=UpperCAmelCase_ , action='append' ) # Use only remaining args for further parsing (remove the args_file_flag) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = args_file_parser.parse_known_args(args=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = vars(UpperCAmelCase_ ).get(args_file_flag.lstrip('-' ) , UpperCAmelCase_ ) if cmd_args_file_paths: args_files.extend([Path(UpperCAmelCase_ ) for p in cmd_args_file_paths] ) SCREAMING_SNAKE_CASE__ = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last SCREAMING_SNAKE_CASE__ = file_args + args if args is not None else file_args + sys.argv[1:] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.parse_known_args(args=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = [] for dtype in self.dataclass_types: SCREAMING_SNAKE_CASE__ = {f.name for f in dataclasses.fields(UpperCAmelCase_ ) if f.init} SCREAMING_SNAKE_CASE__ = {k: v for k, v in vars(UpperCAmelCase_ ).items() if k in keys} for k in keys: delattr(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = dtype(**UpperCAmelCase_ ) outputs.append(UpperCAmelCase_ ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(UpperCAmelCase_ ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F'Some specified arguments are not used by the HfArgumentParser: {remaining_args}' ) return (*outputs,) def A_ ( self : str , UpperCAmelCase_ : Dict[str, Any] , UpperCAmelCase_ : bool = False ): SCREAMING_SNAKE_CASE__ = set(args.keys() ) SCREAMING_SNAKE_CASE__ = [] for dtype in self.dataclass_types: SCREAMING_SNAKE_CASE__ = {f.name for f in dataclasses.fields(UpperCAmelCase_ ) if f.init} SCREAMING_SNAKE_CASE__ = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) SCREAMING_SNAKE_CASE__ = dtype(**UpperCAmelCase_ ) outputs.append(UpperCAmelCase_ ) if not allow_extra_keys and unused_keys: raise ValueError(F'Some keys are not used by the HfArgumentParser: {sorted(UpperCAmelCase_ )}' ) return tuple(UpperCAmelCase_ ) def A_ ( self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : bool = False ): with open(Path(UpperCAmelCase_ ) , encoding='utf-8' ) as open_json_file: SCREAMING_SNAKE_CASE__ = json.loads(open_json_file.read() ) SCREAMING_SNAKE_CASE__ = self.parse_dict(UpperCAmelCase_ , allow_extra_keys=UpperCAmelCase_ ) return tuple(UpperCAmelCase_ ) def A_ ( self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : bool = False ): SCREAMING_SNAKE_CASE__ = self.parse_dict(yaml.safe_load(Path(UpperCAmelCase_ ).read_text() ) , allow_extra_keys=UpperCAmelCase_ ) return tuple(UpperCAmelCase_ )
176
0
from __future__ import annotations def __lowercase ( lowerCamelCase : int ): UpperCamelCase_ : str = 2 UpperCamelCase_ : int = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(lowerCamelCase ) if n > 1: factors.append(lowerCamelCase ) return factors if __name__ == "__main__": import doctest doctest.testmod()
50
import math import flax.linen as nn import jax.numpy as jnp def __lowercase ( lowerCamelCase : jnp.ndarray , lowerCamelCase : int , lowerCamelCase : float = 1 , lowerCamelCase : float = 1 , lowerCamelCase : float = 1.0e4 , lowerCamelCase : bool = False , lowerCamelCase : float = 1.0 , ): assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, F"Embedding dimension {embedding_dim} should be even" UpperCamelCase_ : Dict = float(embedding_dim // 2 ) UpperCamelCase_ : Dict = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) UpperCamelCase_ : Optional[int] = min_timescale * jnp.exp(jnp.arange(lowerCamelCase , dtype=jnp.floataa ) * -log_timescale_increment ) UpperCamelCase_ : int = jnp.expand_dims(lowerCamelCase , 1 ) * jnp.expand_dims(lowerCamelCase , 0 ) # scale embeddings UpperCamelCase_ : Tuple = scale * emb if flip_sin_to_cos: UpperCamelCase_ : Tuple = jnp.concatenate([jnp.cos(lowerCamelCase ), jnp.sin(lowerCamelCase )] , axis=1 ) else: UpperCamelCase_ : Optional[int] = jnp.concatenate([jnp.sin(lowerCamelCase ), jnp.cos(lowerCamelCase )] , axis=1 ) UpperCamelCase_ : Optional[Any] = jnp.reshape(lowerCamelCase , [jnp.shape(lowerCamelCase )[0], embedding_dim] ) return signal class _lowercase ( nn.Module ): lowercase = 3_2 lowercase = jnp.floataa @nn.compact def __call__( self : str , snake_case : Union[str, Any] ) -> Dict: """simple docstring""" UpperCamelCase_ : str = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='linear_1' )(snake_case ) UpperCamelCase_ : int = nn.silu(snake_case ) UpperCamelCase_ : Optional[Any] = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='linear_2' )(snake_case ) return temb class _lowercase ( nn.Module ): lowercase = 3_2 lowercase = False lowercase = 1 @nn.compact def __call__( self : int , snake_case : Any ) -> str: """simple docstring""" return get_sinusoidal_embeddings( snake_case , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
50
1
import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class A__ ( lowerCAmelCase_ , unittest.TestCase ): lowercase = CpmAntTokenizer lowercase = False def _lowerCamelCase ( self : Any ): '''simple docstring''' super().setUp() lowerCAmelCase__ : Any = [ '<d>', '</d>', '<s>', '</s>', '</_>', '<unk>', '<pad>', '</n>', '我', '是', 'C', 'P', 'M', 'A', 'n', 't', ] lowerCAmelCase__ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) @tooslow def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = CpmAntTokenizer.from_pretrained('openbmb/cpm-ant-10b' ) lowerCAmelCase__ : Any = '今天天气真好!' lowerCAmelCase__ : int = ['今天', '天气', '真', '好', '!'] lowerCAmelCase__ : int = tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) lowerCAmelCase__ : int = '今天天气真好!' lowerCAmelCase__ : Tuple = [tokenizer.bos_token] + tokens lowerCAmelCase__ : Optional[Any] = [6, 9_802, 14_962, 2_082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) lowerCAmelCase__ : Tuple = tokenizer.decode(__a ) self.assertEqual(__a , __a )
212
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowercase : str = { 'configuration_data2vec_audio': ['DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecAudioConfig'], 'configuration_data2vec_text': [ 'DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecTextConfig', 'Data2VecTextOnnxConfig', ], 'configuration_data2vec_vision': [ 'DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecVisionConfig', 'Data2VecVisionOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : str = [ 'DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecAudioForAudioFrameClassification', 'Data2VecAudioForCTC', 'Data2VecAudioForSequenceClassification', 'Data2VecAudioForXVector', 'Data2VecAudioModel', 'Data2VecAudioPreTrainedModel', ] __lowercase : Tuple = [ 'DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecTextForCausalLM', 'Data2VecTextForMaskedLM', 'Data2VecTextForMultipleChoice', 'Data2VecTextForQuestionAnswering', 'Data2VecTextForSequenceClassification', 'Data2VecTextForTokenClassification', 'Data2VecTextModel', 'Data2VecTextPreTrainedModel', ] __lowercase : Dict = [ 'DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecVisionForImageClassification', 'Data2VecVisionForMaskedImageModeling', 'Data2VecVisionForSemanticSegmentation', 'Data2VecVisionModel', 'Data2VecVisionPreTrainedModel', ] if is_tf_available(): __lowercase : Optional[Any] = [ 'TFData2VecVisionForImageClassification', 'TFData2VecVisionForSemanticSegmentation', 'TFData2VecVisionModel', 'TFData2VecVisionPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys __lowercase : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
27
0
"""simple docstring""" def A ( snake_case :str ) -> list[int]: __UpperCamelCase = [0 for i in range(len(snake_case ) )] # initialize interval's left pointer and right pointer __UpperCamelCase , __UpperCamelCase = 0, 0 for i in range(1 , len(snake_case ) ): # case when current index is inside the interval if i <= right_pointer: __UpperCamelCase = min(right_pointer - i + 1 , z_result[i - left_pointer] ) __UpperCamelCase = min_edge while go_next(snake_case , snake_case , snake_case ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: __UpperCamelCase , __UpperCamelCase = i, i + z_result[i] - 1 return z_result def A ( snake_case :int , snake_case :list[int] , snake_case :str ) -> bool: return i + z_result[i] < len(snake_case ) and s[z_result[i]] == s[i + z_result[i]] def A ( snake_case :str , snake_case :str ) -> int: __UpperCamelCase = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string __UpperCamelCase = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(snake_case ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
263
"""simple docstring""" def A ( snake_case :int ) -> int: __UpperCamelCase = abs(snake_case ) __UpperCamelCase = 0 while n > 0: res += n % 1_0 n //= 1_0 return res def A ( snake_case :int ) -> int: __UpperCamelCase = abs(snake_case ) return n if n < 1_0 else n % 1_0 + sum_of_digits(n // 1_0 ) def A ( snake_case :int ) -> int: return sum(int(snake_case ) for c in str(abs(snake_case ) ) ) def A ( ) -> None: from collections.abc import Callable from timeit import timeit def benchmark_a_function(snake_case :Callable , snake_case :int ) -> None: __UpperCamelCase = f'{func.__name__}({value})' __UpperCamelCase = timeit(f'__main__.{call}' , setup='import __main__' ) print(f'{call:56} = {func(snake_case )} -- {timing:.4f} seconds' ) for value in (2_6_2_1_4_4, 1_1_2_5_8_9_9_9_0_6_8_4_2_6_2_4, 1_2_6_7_6_5_0_6_0_0_2_2_8_2_2_9_4_0_1_4_9_6_7_0_3_2_0_5_3_7_6): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(snake_case , snake_case ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
263
1
'''simple docstring''' import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class a_ ( lowercase_ ): '''simple docstring''' def __init__( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = [] def snake_case_( self , A , A , A , **A ) -> List[str]: self.events.append("""on_init_end""" ) def snake_case_( self , A , A , A , **A ) -> List[str]: self.events.append("""on_train_begin""" ) def snake_case_( self , A , A , A , **A ) -> int: self.events.append("""on_train_end""" ) def snake_case_( self , A , A , A , **A ) -> Any: self.events.append("""on_epoch_begin""" ) def snake_case_( self , A , A , A , **A ) -> Union[str, Any]: self.events.append("""on_epoch_end""" ) def snake_case_( self , A , A , A , **A ) -> Union[str, Any]: self.events.append("""on_step_begin""" ) def snake_case_( self , A , A , A , **A ) -> Optional[Any]: self.events.append("""on_step_end""" ) def snake_case_( self , A , A , A , **A ) -> Optional[int]: self.events.append("""on_evaluate""" ) def snake_case_( self , A , A , A , **A ) -> Union[str, Any]: self.events.append("""on_predict""" ) def snake_case_( self , A , A , A , **A ) -> str: self.events.append("""on_save""" ) def snake_case_( self , A , A , A , **A ) -> Tuple: self.events.append("""on_log""" ) def snake_case_( self , A , A , A , **A ) -> str: self.events.append("""on_prediction_step""" ) @require_torch class a_ ( unittest.TestCase ): '''simple docstring''' def snake_case_( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = tempfile.mkdtemp() def snake_case_( self ) -> List[str]: shutil.rmtree(self.output_dir ) def snake_case_( self , A=0 , A=0 , A=64 , A=64 , A=None , A=False , **A ) -> int: _SCREAMING_SNAKE_CASE = RegressionDataset(length=a__ ) _SCREAMING_SNAKE_CASE = RegressionDataset(length=a__ ) _SCREAMING_SNAKE_CASE = RegressionModelConfig(a=a__ , b=a__ ) _SCREAMING_SNAKE_CASE = RegressionPreTrainedModel(a__ ) _SCREAMING_SNAKE_CASE = TrainingArguments(self.output_dir , disable_tqdm=a__ , report_to=[] , **a__ ) return Trainer( a__ , a__ , train_dataset=a__ , eval_dataset=a__ , callbacks=a__ , ) def snake_case_( self , A , A ) -> Optional[int]: self.assertEqual(len(a__ ) , len(a__ ) ) # Order doesn't matter _SCREAMING_SNAKE_CASE = sorted(a__ , key=lambda A : cb.__name__ if isinstance(a__ , a__ ) else cb.__class__.__name__ ) _SCREAMING_SNAKE_CASE = sorted(a__ , key=lambda A : cb.__name__ if isinstance(a__ , a__ ) else cb.__class__.__name__ ) for cba, cba in zip(a__ , a__ ): if isinstance(a__ , a__ ) and isinstance(a__ , a__ ): self.assertEqual(a__ , a__ ) elif isinstance(a__ , a__ ) and not isinstance(a__ , a__ ): self.assertEqual(a__ , cba.__class__ ) elif not isinstance(a__ , a__ ) and isinstance(a__ , a__ ): self.assertEqual(cba.__class__ , a__ ) else: self.assertEqual(a__ , a__ ) def snake_case_( self , A ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = ["""on_init_end""", """on_train_begin"""] _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = len(trainer.get_eval_dataloader() ) _SCREAMING_SNAKE_CASE = ["""on_prediction_step"""] * len(trainer.get_eval_dataloader() ) + ["""on_log""", """on_evaluate"""] for _ in range(trainer.state.num_train_epochs ): expected_events.append("""on_epoch_begin""" ) for _ in range(a__ ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append("""on_log""" ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append("""on_save""" ) expected_events.append("""on_epoch_end""" ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def snake_case_( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = self.get_trainer() _SCREAMING_SNAKE_CASE = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , a__ ) # Callbacks passed at init are added to the default callbacks _SCREAMING_SNAKE_CASE = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(a__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a__ ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback _SCREAMING_SNAKE_CASE = self.get_trainer(disable_tqdm=a__ ) _SCREAMING_SNAKE_CASE = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , a__ ) def snake_case_( self ) -> str: _SCREAMING_SNAKE_CASE = DEFAULT_CALLBACKS.copy() + [ProgressCallback] _SCREAMING_SNAKE_CASE = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(a__ ) expected_callbacks.remove(a__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a__ ) _SCREAMING_SNAKE_CASE = self.get_trainer() _SCREAMING_SNAKE_CASE = trainer.pop_callback(a__ ) self.assertEqual(cb.__class__ , a__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a__ ) trainer.add_callback(a__ ) expected_callbacks.insert(0 , a__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a__ ) # We can also add, pop, or remove by instance _SCREAMING_SNAKE_CASE = self.get_trainer() _SCREAMING_SNAKE_CASE = trainer.callback_handler.callbacks[0] trainer.remove_callback(a__ ) expected_callbacks.remove(a__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a__ ) _SCREAMING_SNAKE_CASE = self.get_trainer() _SCREAMING_SNAKE_CASE = trainer.callback_handler.callbacks[0] _SCREAMING_SNAKE_CASE = trainer.pop_callback(a__ ) self.assertEqual(a__ , a__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a__ ) trainer.add_callback(a__ ) expected_callbacks.insert(0 , a__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a__ ) def snake_case_( self ) -> Optional[Any]: import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action="""ignore""" , category=a__ ) _SCREAMING_SNAKE_CASE = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() _SCREAMING_SNAKE_CASE = trainer.callback_handler.callbacks[-2].events self.assertEqual(a__ , self.get_expected_events(a__ ) ) # Independent log/save/eval _SCREAMING_SNAKE_CASE = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() _SCREAMING_SNAKE_CASE = trainer.callback_handler.callbacks[-2].events self.assertEqual(a__ , self.get_expected_events(a__ ) ) _SCREAMING_SNAKE_CASE = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() _SCREAMING_SNAKE_CASE = trainer.callback_handler.callbacks[-2].events self.assertEqual(a__ , self.get_expected_events(a__ ) ) _SCREAMING_SNAKE_CASE = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="""steps""" ) trainer.train() _SCREAMING_SNAKE_CASE = trainer.callback_handler.callbacks[-2].events self.assertEqual(a__ , self.get_expected_events(a__ ) ) _SCREAMING_SNAKE_CASE = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="""epoch""" ) trainer.train() _SCREAMING_SNAKE_CASE = trainer.callback_handler.callbacks[-2].events self.assertEqual(a__ , self.get_expected_events(a__ ) ) # A bit of everything _SCREAMING_SNAKE_CASE = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy="""steps""" , ) trainer.train() _SCREAMING_SNAKE_CASE = trainer.callback_handler.callbacks[-2].events self.assertEqual(a__ , self.get_expected_events(a__ ) ) # warning should be emitted for duplicated callbacks with patch("""transformers.trainer_callback.logger.warning""" ) as warn_mock: _SCREAMING_SNAKE_CASE = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(a__ ) in warn_mock.call_args[0][0]
58
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE : Optional[Any] = {"configuration_xglm": ["XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XGLMConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : List[Any] = ["XGLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : str = ["XGLMTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : List[str] = [ "XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XGLMForCausalLM", "XGLMModel", "XGLMPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[Any] = [ "FlaxXGLMForCausalLM", "FlaxXGLMModel", "FlaxXGLMPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Union[str, Any] = [ "TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXGLMForCausalLM", "TFXGLMModel", "TFXGLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure)
85
0
'''simple docstring''' import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() __lowerCamelCase = 2 class A__ : def __init__( self , *, # begin keyword-only arguments UpperCamelCase__="<s>" , UpperCamelCase__="<pad>" , UpperCamelCase__="</s>" , UpperCamelCase__="<unk>" , UpperCamelCase__=None , ) -> Union[str, Any]: '''simple docstring''' A_ , A_ , A_ , A_ = bos, unk, pad, eos A_ = [] A_ = [] A_ = {} A_ = self.add_symbol(UpperCamelCase__ ) A_ = self.add_symbol(UpperCamelCase__ ) A_ = self.add_symbol(UpperCamelCase__ ) A_ = self.add_symbol(UpperCamelCase__ ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(UpperCamelCase__ ) A_ = len(self.symbols ) def __eq__( self , UpperCamelCase__ ) -> str: '''simple docstring''' return self.indices == other.indices def __getitem__( self , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self ) -> List[str]: '''simple docstring''' return len(self.symbols ) def __contains__( self , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' return sym in self.indices @classmethod def snake_case_ ( cls , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' A_ = cls() d.add_from_file(UpperCamelCase__ ) return d def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=1 , UpperCamelCase__=False ) -> Tuple: '''simple docstring''' if word in self.indices and not overwrite: A_ = self.indices[word] A_ = self.count[idx] + n return idx else: A_ = len(self.symbols ) A_ = idx self.symbols.append(UpperCamelCase__ ) self.count.append(UpperCamelCase__ ) return idx def snake_case_ ( self , UpperCamelCase__ ) -> int: '''simple docstring''' return 0 def snake_case_ ( self , UpperCamelCase__ ) -> str: '''simple docstring''' if isinstance(UpperCamelCase__ , UpperCamelCase__ ): try: with open(UpperCamelCase__ , """r""" , encoding="""utf-8""" ) as fd: self.add_from_file(UpperCamelCase__ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("""Incorrect encoding detected in {}, please rebuild the dataset""".format(UpperCamelCase__ ) ) return A_ = f.readlines() A_ = self._load_meta(UpperCamelCase__ ) for line in lines[indices_start_line:]: try: A_ , A_ = line.rstrip().rsplit(""" """ , 1 ) if field == "#fairseq:overwrite": A_ = True A_ , A_ = line.rsplit(""" """ , 1 ) else: A_ = False A_ = int(UpperCamelCase__ ) A_ = line if word in self and not overwrite: raise RuntimeError( """Duplicate word found when loading Dictionary: '{}'. """ """Duplicate words can overwrite earlier ones by adding the """ """#fairseq:overwrite flag at the end of the corresponding row """ """in the dictionary file. If using the Camembert model, please """ """download an updated copy of the model file.""".format(UpperCamelCase__ ) ) self.add_symbol(UpperCamelCase__ , n=UpperCamelCase__ , overwrite=UpperCamelCase__ ) except ValueError: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt> [flags]'""" ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Union[str, Any]: # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} A_ = dict((re.sub(r"""@@$""", """""", UpperCAmelCase__ ), v) if k.endswith("""@@""" ) else (re.sub(r"""$""", """</w>""", UpperCAmelCase__ ), v) for k, v in d.items() ) A_ = """<s> <pad> </s> <unk>""".split() # restore the special tokens for k in keep_keys: del da[F'''{k}</w>'''] A_ = d[k] # restore return da def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Any: # prep if not os.path.exists(UpperCAmelCase__ ): raise ValueError(F'''path {biogpt_checkpoint_path} does not exist!''' ) os.makedirs(UpperCAmelCase__, exist_ok=UpperCAmelCase__ ) print(F'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models A_ = os.path.join(UpperCAmelCase__, """checkpoint.pt""" ) if not os.path.isfile(UpperCAmelCase__ ): raise ValueError(F'''path to the file {checkpoint_file} does not exist!''' ) A_ = torch.load(UpperCAmelCase__, map_location="""cpu""" ) A_ = chkpt["""cfg"""]["""model"""] # dicts A_ = os.path.join(UpperCAmelCase__, """dict.txt""" ) if not os.path.isfile(UpperCAmelCase__ ): raise ValueError(F'''path to the file {dict_file} does not exist!''' ) A_ = Dictionary.load(UpperCAmelCase__ ) A_ = rewrite_dict_keys(src_dict.indices ) A_ = len(UpperCAmelCase__ ) A_ = os.path.join(UpperCAmelCase__, VOCAB_FILES_NAMES["""vocab_file"""] ) print(F'''Generating {src_vocab_file} of {src_vocab_size} records''' ) with open(UpperCAmelCase__, """w""", encoding="""utf-8""" ) as f: f.write(json.dumps(UpperCAmelCase__, ensure_ascii=UpperCAmelCase__, indent=UpperCAmelCase__ ) ) # merges_file (bpecodes) A_ = os.path.join(UpperCAmelCase__, """bpecodes""" ) if not os.path.isfile(UpperCAmelCase__ ): raise ValueError(F'''path to the file {bpecodes_file} does not exist!''' ) A_ = os.path.join(UpperCAmelCase__, VOCAB_FILES_NAMES["""merges_file"""] ) shutil.copyfile(UpperCAmelCase__, UpperCAmelCase__ ) # model config A_ = os.path.join(UpperCAmelCase__, """config.json""" ) A_ = { """activation_dropout""": args["""activation_dropout"""], """architectures""": ["""BioGptForCausalLM"""], """attention_probs_dropout_prob""": args["""attention_dropout"""], """bos_token_id""": 0, """eos_token_id""": 2, """hidden_act""": args["""activation_fn"""], """hidden_dropout_prob""": args["""dropout"""], """hidden_size""": args["""decoder_embed_dim"""], """initializer_range""": 0.02, """intermediate_size""": args["""decoder_ffn_embed_dim"""], """layer_norm_eps""": 1e-12, """layerdrop""": args["""decoder_layerdrop"""], """max_position_embeddings""": args["""max_target_positions"""], """model_type""": """biogpt""", """num_attention_heads""": args["""decoder_attention_heads"""], """num_hidden_layers""": args["""decoder_layers"""], """pad_token_id""": 1, """scale_embedding""": not args["""no_scale_embedding"""], """tie_word_embeddings""": args["""share_decoder_input_output_embed"""], """vocab_size""": src_vocab_size, } # good hparam defaults to start with print(F'''Generating {biogpt_model_config_file}''' ) with open(UpperCAmelCase__, """w""", encoding="""utf-8""" ) as f: f.write(json.dumps(UpperCAmelCase__, ensure_ascii=UpperCAmelCase__, indent=UpperCAmelCase__ ) ) # tokenizer config A_ = os.path.join(UpperCAmelCase__, UpperCAmelCase__ ) A_ = { """bos_token""": """<s>""", """eos_token""": """</s>""", """model_max_length""": 10_24, """pad_token""": """<pad>""", """special_tokens_map_file""": None, """tokenizer_class""": """BioGptTokenizer""", """unk_token""": """<unk>""", } print(F'''Generating {biogpt_tokenizer_config_file}''' ) with open(UpperCAmelCase__, """w""", encoding="""utf-8""" ) as f: f.write(json.dumps(UpperCAmelCase__, ensure_ascii=UpperCAmelCase__, indent=UpperCAmelCase__ ) ) # model A_ = chkpt["""model"""] # remove unneeded keys A_ = [ """decoder.version""", ] for k in ignore_keys: model_state_dict.pop(UpperCAmelCase__, UpperCAmelCase__ ) A_ = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith("""output_projection.weight""" ): A_ = model_state_dict.pop(UpperCAmelCase__ ) else: A_ = model_state_dict.pop(UpperCAmelCase__ ) A_ = BioGptConfig.from_pretrained(UpperCAmelCase__ ) A_ = BioGptForCausalLM(UpperCAmelCase__ ) # check that it loads ok model_new.load_state_dict(UpperCAmelCase__ ) # save A_ = os.path.join(UpperCAmelCase__, UpperCAmelCase__ ) print(F'''Generating {pytorch_weights_dump_path}''' ) torch.save(UpperCAmelCase__, UpperCAmelCase__ ) print("""Conversion is done!""" ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--biogpt_checkpoint_path''', default=None, type=str, required=True, help=( '''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,''' ''' bpecodes, etc.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __lowerCamelCase = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
101
'''simple docstring''' import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class A__ ( _snake_case ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = False , **UpperCamelCase__ , ) -> Optional[Any]: '''simple docstring''' super().__init__(features=UpperCamelCase__ , cache_dir=UpperCamelCase__ , keep_in_memory=UpperCamelCase__ , **UpperCamelCase__ ) A_ = Sql( cache_dir=UpperCamelCase__ , features=UpperCamelCase__ , sql=UpperCamelCase__ , con=UpperCamelCase__ , **UpperCamelCase__ , ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = None A_ = None A_ = None A_ = None self.builder.download_and_prepare( download_config=UpperCamelCase__ , download_mode=UpperCamelCase__ , verification_mode=UpperCamelCase__ , base_path=UpperCamelCase__ , ) # Build dataset for splits A_ = self.builder.as_dataset( split="""train""" , verification_mode=UpperCamelCase__ , in_memory=self.keep_in_memory ) return dataset class A__ : def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> List[Any]: '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) A_ = dataset A_ = name A_ = con A_ = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE A_ = num_proc A_ = to_sql_kwargs def snake_case_ ( self ) -> int: '''simple docstring''' A_ = self.to_sql_kwargs.pop("""sql""" , UpperCamelCase__ ) A_ = self.to_sql_kwargs.pop("""con""" , UpperCamelCase__ ) A_ = self.to_sql_kwargs.pop("""index""" , UpperCamelCase__ ) A_ = self._write(index=UpperCamelCase__ , **self.to_sql_kwargs ) return written def snake_case_ ( self , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' A_ , A_ , A_ = args A_ = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs A_ = query_table( table=self.dataset.data , key=slice(UpperCamelCase__ , offset + self.batch_size ) , indices=self.dataset._indices , ) A_ = batch.to_pandas() A_ = df.to_sql(self.name , self.con , index=UpperCamelCase__ , **UpperCamelCase__ ) return num_rows or len(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , **UpperCamelCase__ ) -> int: '''simple docstring''' A_ = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: A_ , A_ = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , UpperCamelCase__ , UpperCamelCase__ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += num_rows return written
101
1
import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def A ( a_ ) -> List[Any]: __UpperCamelCase : int =checkpoints.load_tax_checkpoint(a_ ) __UpperCamelCase : List[str] =flatten_dict(a_ ) return flax_params def A ( a_ ) -> Optional[int]: __UpperCamelCase : Union[str, Any] ={} __UpperCamelCase : Any ={ 'token_embedder': 'embeddings', 'encoder_norm': 'layernorm', 'kernel': 'weight', '.out': '.output', 'scale': 'weight', 'embedders_0.pos_embedding': 'row_embedder.weight', 'embedders_1.pos_embedding': 'column_embedder.weight', } __UpperCamelCase : Any ={ 'query': 'attention.query', 'key': 'attention.key', 'value': 'attention.value', 'output.dense': 'output', 'encoder_decoder_attention.o': 'encoder_decoder_attention.attention.o', 'pre_self_attention_layer_norm': 'self_attention.layer_norm', 'pre_cross_attention_layer_norm': 'encoder_decoder_attention.layer_norm', 'mlp.': 'mlp.DenseReluDense.', 'pre_mlp_layer_norm': 'mlp.layer_norm', 'self_attention.o': 'self_attention.attention.o', 'decoder.embeddings.embedding': 'decoder.embed_tokens.weight', 'decoder.relpos_bias.rel_embedding': 'decoder.layer.0.self_attention.attention.relative_attention_bias.weight', 'decoder.decoder_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.logits_dense.weight': 'decoder.lm_head.weight', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key __UpperCamelCase : Tuple ='.'.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): __UpperCamelCase : Union[str, Any] =new_key.replace(a_ ,a_ ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): __UpperCamelCase : int =new_key.replace(a_ ,a_ ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number __UpperCamelCase : Dict =re.sub(r'layers_(\d+)' ,r'layer.\1' ,a_ ) __UpperCamelCase : int =new_key.replace('encoder' ,'encoder.encoder' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number __UpperCamelCase : Tuple =re.sub(r'layers_(\d+)' ,r'layer.\1' ,a_ ) __UpperCamelCase : Union[str, Any] =flax_dict[key] __UpperCamelCase : List[Any] ={} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): __UpperCamelCase : int =torch.from_numpy(converted_dict[key].T ) else: __UpperCamelCase : Any =torch.from_numpy(converted_dict[key] ) return converted_torch_dict def A ( a_ ,a_ ,a_=False ,a_=False ) -> Dict: __UpperCamelCase : Dict =get_flax_param(a_ ) if not use_large: __UpperCamelCase : Optional[Any] =PixaStructVisionConfig() __UpperCamelCase : int =PixaStructTextConfig() else: __UpperCamelCase : Dict =PixaStructVisionConfig( hidden_size=1_536 ,d_ff=3_968 ,num_attention_heads=24 ,num_hidden_layers=18 ) __UpperCamelCase : List[Any] =PixaStructTextConfig(hidden_size=1_536 ,d_ff=3_968 ,num_heads=24 ,num_layers=18 ) __UpperCamelCase : List[Any] =PixaStructConfig( vision_config=encoder_config.to_dict() ,text_config=decoder_config.to_dict() ,is_vqa=a_ ) __UpperCamelCase : Union[str, Any] =PixaStructForConditionalGeneration(a_ ) __UpperCamelCase : Union[str, Any] =rename_and_convert_flax_params(a_ ) model.load_state_dict(a_ ) __UpperCamelCase : List[Any] =AutoTokenizer.from_pretrained('ybelkada/test-pix2struct-tokenizer' ) __UpperCamelCase : Optional[int] =PixaStructImageProcessor() __UpperCamelCase : List[str] =PixaStructProcessor(image_processor=a_ ,tokenizer=a_ ) if use_large: __UpperCamelCase : int =4_096 __UpperCamelCase : Any =True # mkdir if needed os.makedirs(a_ ,exist_ok=a_ ) model.save_pretrained(a_ ) processor.save_pretrained(a_ ) print('Model saved in {}'.format(a_ ) ) if __name__ == "__main__": A_ :str = argparse.ArgumentParser() parser.add_argument('''--t5x_checkpoint_path''', default=None, type=str, help='''Path to the original T5x checkpoint.''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--use_large''', action='''store_true''', help='''Use large model.''') parser.add_argument('''--is_vqa''', action='''store_true''', help='''Use large model.''') A_ :List[Any] = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
71
import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration A_ :Optional[Any] = { '''tiny.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt''', '''tiny''': '''https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt''', '''base.en''': '''https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt''', '''base''': '''https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt''', '''small.en''': '''https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt''', '''small''': '''https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt''', '''medium.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt''', '''medium''': '''https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt''', '''large''': '''https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt''', '''large-v2''': '''https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt''', } def A ( a_ ) -> List[Any]: __UpperCamelCase : Any =['layers', 'blocks'] for k in ignore_keys: state_dict.pop(a_ ,a_ ) A_ :int = { '''blocks''': '''layers''', '''mlp.0''': '''fc1''', '''mlp.2''': '''fc2''', '''mlp_ln''': '''final_layer_norm''', '''.attn.query''': '''.self_attn.q_proj''', '''.attn.key''': '''.self_attn.k_proj''', '''.attn.value''': '''.self_attn.v_proj''', '''.attn_ln''': '''.self_attn_layer_norm''', '''.attn.out''': '''.self_attn.out_proj''', '''.cross_attn.query''': '''.encoder_attn.q_proj''', '''.cross_attn.key''': '''.encoder_attn.k_proj''', '''.cross_attn.value''': '''.encoder_attn.v_proj''', '''.cross_attn_ln''': '''.encoder_attn_layer_norm''', '''.cross_attn.out''': '''.encoder_attn.out_proj''', '''decoder.ln.''': '''decoder.layer_norm.''', '''encoder.ln.''': '''encoder.layer_norm.''', '''token_embedding''': '''embed_tokens''', '''encoder.positional_embedding''': '''encoder.embed_positions.weight''', '''decoder.positional_embedding''': '''decoder.embed_positions.weight''', '''ln_post''': '''layer_norm''', } def A ( a_ ) -> Union[str, Any]: __UpperCamelCase : str =list(s_dict.keys() ) for key in keys: __UpperCamelCase : str =key for k, v in WHISPER_MAPPING.items(): if k in key: __UpperCamelCase : Optional[Any] =new_key.replace(a_ ,a_ ) print(F'{key} -> {new_key}' ) __UpperCamelCase : Dict =s_dict.pop(a_ ) return s_dict def A ( a_ ) -> Optional[Any]: __UpperCamelCase , __UpperCamelCase : Tuple =emb.weight.shape __UpperCamelCase : Tuple =nn.Linear(a_ ,a_ ,bias=a_ ) __UpperCamelCase : List[Any] =emb.weight.data return lin_layer def A ( a_ ,a_ ) -> bytes: os.makedirs(a_ ,exist_ok=a_ ) __UpperCamelCase : Optional[int] =os.path.basename(a_ ) __UpperCamelCase : Union[str, Any] =url.split('/' )[-2] __UpperCamelCase : Union[str, Any] =os.path.join(a_ ,a_ ) if os.path.exists(a_ ) and not os.path.isfile(a_ ): raise RuntimeError(F'{download_target} exists and is not a regular file' ) if os.path.isfile(a_ ): __UpperCamelCase : str =open(a_ ,'rb' ).read() if hashlib.shaaaa(a_ ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(F'{download_target} exists, but the SHA256 checksum does not match; re-downloading the file' ) with urllib.request.urlopen(a_ ) as source, open(a_ ,'wb' ) as output: with tqdm( total=int(source.info().get('Content-Length' ) ) ,ncols=80 ,unit='iB' ,unit_scale=a_ ,unit_divisor=1_024 ) as loop: while True: __UpperCamelCase : Optional[Any] =source.read(8_192 ) if not buffer: break output.write(a_ ) loop.update(len(a_ ) ) __UpperCamelCase : List[Any] =open(a_ ,'rb' ).read() if hashlib.shaaaa(a_ ).hexdigest() != expected_shaaaa: raise RuntimeError( 'Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.' ) return model_bytes def A ( a_ ,a_ ) -> Optional[Any]: if ".pt" not in checkpoint_path: __UpperCamelCase : int =_download(_MODELS[checkpoint_path] ) else: __UpperCamelCase : List[str] =torch.load(a_ ,map_location='cpu' ) __UpperCamelCase : Union[str, Any] =original_checkpoint['dims'] __UpperCamelCase : List[Any] =original_checkpoint['model_state_dict'] __UpperCamelCase : Dict =state_dict['decoder.token_embedding.weight'] remove_ignore_keys_(a_ ) rename_keys(a_ ) __UpperCamelCase : List[str] =True __UpperCamelCase : str =state_dict['decoder.layers.0.fc1.weight'].shape[0] __UpperCamelCase : Optional[int] =WhisperConfig( vocab_size=dimensions['n_vocab'] ,encoder_ffn_dim=a_ ,decoder_ffn_dim=a_ ,num_mel_bins=dimensions['n_mels'] ,d_model=dimensions['n_audio_state'] ,max_target_positions=dimensions['n_text_ctx'] ,encoder_layers=dimensions['n_audio_layer'] ,encoder_attention_heads=dimensions['n_audio_head'] ,decoder_layers=dimensions['n_text_layer'] ,decoder_attention_heads=dimensions['n_text_state'] ,max_source_positions=dimensions['n_audio_ctx'] ,) __UpperCamelCase : List[str] =WhisperForConditionalGeneration(a_ ) __UpperCamelCase , __UpperCamelCase : Union[str, Any] =model.model.load_state_dict(a_ ,strict=a_ ) if len(a_ ) > 0 and not set(a_ ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( 'Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,' F' but all the following weights are missing {missing}' ) if tie_embeds: __UpperCamelCase : Optional[int] =make_linear_from_emb(model.model.decoder.embed_tokens ) else: __UpperCamelCase : List[str] =proj_out_weights model.save_pretrained(a_ ) if __name__ == "__main__": A_ :List[Any] = argparse.ArgumentParser() # # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Patht to the downloaded checkpoints''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') A_ :List[Any] = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
71
1
class __UpperCAmelCase : def __init__( self : List[str] ): UpperCAmelCase : Union[str, Any] = '''''' UpperCAmelCase : Optional[int] = '''''' UpperCAmelCase : str = [] def __magic_name__ ( self : Tuple, __A : Dict, __A : List[Any] ): if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: UpperCAmelCase : int = self.__min_dist_top_down_dp(m - 1, n - 1 ) else: UpperCAmelCase : Any = self.__min_dist_top_down_dp(__A, n - 1 ) UpperCAmelCase : Any = self.__min_dist_top_down_dp(m - 1, __A ) UpperCAmelCase : Tuple = self.__min_dist_top_down_dp(m - 1, n - 1 ) UpperCAmelCase : str = 1 + min(__A, __A, __A ) return self.dp[m][n] def __magic_name__ ( self : Tuple, __A : Union[str, Any], __A : int ): UpperCAmelCase : Optional[Any] = worda UpperCAmelCase : Dict = worda UpperCAmelCase : List[str] = [[-1 for _ in range(len(__A ) )] for _ in range(len(__A ) )] return self.__min_dist_top_down_dp(len(__A ) - 1, len(__A ) - 1 ) def __magic_name__ ( self : Any, __A : Dict, __A : str ): UpperCAmelCase : Dict = worda UpperCAmelCase : Any = worda UpperCAmelCase : List[str] = len(__A ) UpperCAmelCase : str = len(__A ) UpperCAmelCase : Optional[Any] = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty UpperCAmelCase : str = j elif j == 0: # second string is empty UpperCAmelCase : Dict = i elif worda[i - 1] == worda[j - 1]: # last characters are equal UpperCAmelCase : Dict = self.dp[i - 1][j - 1] else: UpperCAmelCase : Optional[int] = self.dp[i][j - 1] UpperCAmelCase : List[Any] = self.dp[i - 1][j] UpperCAmelCase : Union[str, Any] = self.dp[i - 1][j - 1] UpperCAmelCase : List[str] = 1 + min(__A, __A, __A ) return self.dp[m][n] if __name__ == "__main__": _lowerCamelCase : str = EditDistance() print("****************** Testing Edit Distance DP Algorithm ******************") print() _lowerCamelCase : List[str] = input("Enter the first string: ").strip() _lowerCamelCase : Union[str, Any] = input("Enter the second string: ").strip() print() print(f"""The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}""") print(f"""The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}""") print() print("*************** End of Testing Edit Distance DP Algorithm ***************")
356
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __UpperCAmelCase : def __init__( self : Any, __A : Optional[Any], __A : Optional[Any]=3, __A : Union[str, Any]=3_2, __A : Optional[int]=3, __A : str=1_0, __A : Union[str, Any]=[8, 1_6, 3_2, 6_4], __A : List[str]=[1, 1, 2, 1], __A : Dict=True, __A : List[Any]=True, __A : int="relu", __A : Optional[Any]=3, __A : Any=None, __A : Any=["stage2", "stage3", "stage4"], __A : Optional[int]=[2, 3, 4], __A : Any=1, ): UpperCAmelCase : Optional[int] = parent UpperCAmelCase : Union[str, Any] = batch_size UpperCAmelCase : Optional[int] = image_size UpperCAmelCase : List[Any] = num_channels UpperCAmelCase : Optional[Any] = embeddings_size UpperCAmelCase : List[Any] = hidden_sizes UpperCAmelCase : Any = depths UpperCAmelCase : int = is_training UpperCAmelCase : Optional[int] = use_labels UpperCAmelCase : Optional[Any] = hidden_act UpperCAmelCase : Any = num_labels UpperCAmelCase : List[Any] = scope UpperCAmelCase : int = len(__A ) UpperCAmelCase : Union[str, Any] = out_features UpperCAmelCase : List[str] = out_indices UpperCAmelCase : Tuple = num_groups def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : Dict = None if self.use_labels: UpperCAmelCase : List[str] = ids_tensor([self.batch_size], self.num_labels ) UpperCAmelCase : List[str] = self.get_config() return config, pixel_values, labels def __magic_name__ ( self : Tuple ): return BitConfig( num_channels=self.num_channels, embeddings_size=self.embeddings_size, hidden_sizes=self.hidden_sizes, depths=self.depths, hidden_act=self.hidden_act, num_labels=self.num_labels, out_features=self.out_features, out_indices=self.out_indices, num_groups=self.num_groups, ) def __magic_name__ ( self : int, __A : str, __A : List[Any], __A : Any ): UpperCAmelCase : Optional[int] = BitModel(config=__A ) model.to(__A ) model.eval() UpperCAmelCase : Optional[int] = model(__A ) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2), ) def __magic_name__ ( self : List[Any], __A : Any, __A : Union[str, Any], __A : Dict ): UpperCAmelCase : Optional[Any] = self.num_labels UpperCAmelCase : Union[str, Any] = BitForImageClassification(__A ) model.to(__A ) model.eval() UpperCAmelCase : Optional[int] = model(__A, labels=__A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def __magic_name__ ( self : Optional[int], __A : Any, __A : List[str], __A : str ): UpperCAmelCase : Any = BitBackbone(config=__A ) model.to(__A ) model.eval() UpperCAmelCase : Tuple = model(__A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ), len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ), len(config.out_features ) ) self.parent.assertListEqual(model.channels, config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCAmelCase : List[str] = None UpperCAmelCase : Optional[Any] = BitBackbone(config=__A ) model.to(__A ) model.eval() UpperCAmelCase : Tuple = model(__A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ), 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ), 1 ) self.parent.assertListEqual(model.channels, [config.hidden_sizes[-1]] ) def __magic_name__ ( self : Optional[int] ): UpperCAmelCase : str = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Union[str, Any] = config_and_inputs UpperCAmelCase : Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () UpperCamelCase = ( {"""feature-extraction""": BitModel, """image-classification""": BitForImageClassification} if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : Optional[int] = BitModelTester(self ) UpperCAmelCase : Any = ConfigTester(self, config_class=__A, has_text_modality=__A ) def __magic_name__ ( self : List[str] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __magic_name__ ( self : Union[str, Any] ): return @unittest.skip(reason='''Bit does not output attentions''' ) def __magic_name__ ( self : List[Any] ): pass @unittest.skip(reason='''Bit does not use inputs_embeds''' ) def __magic_name__ ( self : Dict ): pass @unittest.skip(reason='''Bit does not support input and output embeddings''' ) def __magic_name__ ( self : List[Any] ): pass def __magic_name__ ( self : List[Any] ): UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Optional[Any] = model_class(__A ) UpperCAmelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : List[str] = [*signature.parameters.keys()] UpperCAmelCase : List[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1], __A ) def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def __magic_name__ ( self : int ): UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__A ) def __magic_name__ ( self : int ): UpperCAmelCase , UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Dict = model_class(config=__A ) for name, module in model.named_modules(): if isinstance(__A, (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ), msg=F'''Parameter {name} of model {model_class} seems not properly initialized''', ) self.assertTrue( torch.all(module.bias == 0 ), msg=F'''Parameter {name} of model {model_class} seems not properly initialized''', ) def __magic_name__ ( self : Dict ): def check_hidden_states_output(__A : List[Any], __A : Optional[int], __A : int ): UpperCAmelCase : int = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): UpperCAmelCase : Any = model(**self._prepare_for_class(__A, __A ) ) UpperCAmelCase : Union[str, Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase : Any = self.model_tester.num_stages self.assertEqual(len(__A ), expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], ) UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Union[str, Any] = ['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: UpperCAmelCase : int = layer_type UpperCAmelCase : List[Any] = True check_hidden_states_output(__A, __A, __A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase : Dict = True check_hidden_states_output(__A, __A, __A ) @unittest.skip(reason='''Bit does not use feedforward chunking''' ) def __magic_name__ ( self : List[str] ): pass def __magic_name__ ( self : Optional[int] ): UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) @slow def __magic_name__ ( self : List[Any] ): for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : List[str] = BitModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def a__ ( ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __UpperCAmelCase ( unittest.TestCase ): @cached_property def __magic_name__ ( self : Union[str, Any] ): return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __magic_name__ ( self : str ): UpperCAmelCase : List[Any] = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__A ) UpperCAmelCase : str = self.default_image_processor UpperCAmelCase : Dict = prepare_img() UpperCAmelCase : Tuple = image_processor(images=__A, return_tensors='''pt''' ).to(__A ) # forward pass with torch.no_grad(): UpperCAmelCase : List[Any] = model(**__A ) # verify the logits UpperCAmelCase : Dict = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape, __A ) UpperCAmelCase : int = torch.tensor([[-0.6_5_2_6, -0.5_2_6_3, -1.4_3_9_8]] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3], __A, atol=1E-4 ) ) @require_torch class __UpperCAmelCase ( lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = (BitBackbone,) if is_torch_available() else () UpperCamelCase = BitConfig UpperCamelCase = False def __magic_name__ ( self : int ): UpperCAmelCase : int = BitModelTester(self )
99
0
"""simple docstring""" from random import randint, random def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = False , lowerCamelCase = False , lowerCamelCase = 5 , ): UpperCAmelCase__ = [[-1] * number_of_cells] # Create a highway without any car UpperCAmelCase__ = 0 UpperCAmelCase__ = max(lowerCamelCase , 0 ) while i < number_of_cells: UpperCAmelCase__ = ( randint(0 , lowerCamelCase ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def a_ ( lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = 0 UpperCAmelCase__ = highway_now[car_index + 1 :] for cell in range(len(lowerCamelCase ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(lowerCamelCase , -1 ) def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = len(lowerCamelCase ) # Beforce calculations, the highway is empty UpperCAmelCase__ = [-1] * number_of_cells for car_index in range(lowerCamelCase ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed UpperCAmelCase__ = min(highway_now[car_index] + 1 , lowerCamelCase ) # Number of empty cell before the next car UpperCAmelCase__ = get_distance(lowerCamelCase , lowerCamelCase ) - 1 # We can't have the car causing an accident UpperCAmelCase__ = min(next_highway[car_index] , lowerCamelCase ) if random() < probability: # Randomly, a driver will slow down UpperCAmelCase__ = max(next_highway[car_index] - 1 , 0 ) return next_highway def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = len(highway[0] ) for i in range(lowerCamelCase ): UpperCAmelCase__ = update(highway[i] , lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = [-1] * number_of_cells for car_index in range(lowerCamelCase ): UpperCAmelCase__ = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) UpperCAmelCase__ = (car_index + speed) % number_of_cells # Commit the change of position UpperCAmelCase__ = speed highway.append(lowerCamelCase ) return highway if __name__ == "__main__": import doctest doctest.testmod()
98
"""simple docstring""" from PIL import Image def a_ ( lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = (2_5_9 * (level + 2_5_5)) / (2_5_5 * (2_5_9 - level)) def contrast(lowerCamelCase ) -> int: return int(1_2_8 + factor * (c - 1_2_8) ) return img.point(lowerCamelCase ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change contrast to 170 lowerCAmelCase__ : Any = change_contrast(img, 170) cont_img.save('image_data/lena_high_contrast.png', format='png')
98
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase : int ={ "configuration_convbert": ["CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvBertConfig", "ConvBertOnnxConfig"], "tokenization_convbert": ["ConvBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : List[Any] =["ConvBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : int =[ "CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvBertForMaskedLM", "ConvBertForMultipleChoice", "ConvBertForQuestionAnswering", "ConvBertForSequenceClassification", "ConvBertForTokenClassification", "ConvBertLayer", "ConvBertModel", "ConvBertPreTrainedModel", "load_tf_weights_in_convbert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str =[ "TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFConvBertForMaskedLM", "TFConvBertForMultipleChoice", "TFConvBertForQuestionAnswering", "TFConvBertForSequenceClassification", "TFConvBertForTokenClassification", "TFConvBertLayer", "TFConvBertModel", "TFConvBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys __lowerCAmelCase : str =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
370
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase : Any ={ "configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Tuple =[ "SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST", "Swinv2ForImageClassification", "Swinv2ForMaskedImageModeling", "Swinv2Model", "Swinv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys __lowerCAmelCase : List[Any] =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
123
0
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'Helsinki-NLP/opus-mt-en-de': 'https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json', # See all Marian models at https://huggingface.co/models?filter=marian } class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : List[str] = """marian""" a_ : Optional[int] = ["""past_key_values"""] a_ : Optional[Any] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , __UpperCAmelCase=5_81_01 , __UpperCAmelCase=None , __UpperCAmelCase=10_24 , __UpperCAmelCase=12 , __UpperCAmelCase=40_96 , __UpperCAmelCase=16 , __UpperCAmelCase=12 , __UpperCAmelCase=40_96 , __UpperCAmelCase=16 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase="gelu" , __UpperCAmelCase=10_24 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=5_81_00 , __UpperCAmelCase=False , __UpperCAmelCase=5_81_00 , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=True , **__UpperCAmelCase , ) ->Union[str, Any]: a_ = vocab_size a_ = decoder_vocab_size or vocab_size a_ = max_position_embeddings a_ = d_model a_ = encoder_ffn_dim a_ = encoder_layers a_ = encoder_attention_heads a_ = decoder_ffn_dim a_ = decoder_layers a_ = decoder_attention_heads a_ = dropout a_ = attention_dropout a_ = activation_dropout a_ = activation_function a_ = init_std a_ = encoder_layerdrop a_ = decoder_layerdrop a_ = use_cache a_ = encoder_layers a_ = scale_embedding # scale factor will be sqrt(d_model) if True a_ = share_encoder_decoder_embeddings super().__init__( pad_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , decoder_start_token_id=__UpperCAmelCase , forced_eos_token_id=__UpperCAmelCase , **__UpperCAmelCase , ) class snake_case ( SCREAMING_SNAKE_CASE_ ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def UpperCAmelCase__ ( self) ->Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: a_ = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ]) if self.use_past: a_ = {0: "batch"} a_ = {0: "batch", 1: "past_decoder_sequence + sequence"} else: a_ = {0: "batch", 1: "decoder_sequence"} a_ = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(__UpperCAmelCase , direction="inputs") elif self.task == "causal-lm": # TODO: figure this case out. a_ = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ]) if self.use_past: a_ , a_ = self.num_layers for i in range(__UpperCAmelCase): a_ = {0: "batch", 2: "past_sequence + sequence"} a_ = {0: "batch", 2: "past_sequence + sequence"} else: a_ = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ]) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def UpperCAmelCase__ ( self) ->Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: a_ = super().outputs else: a_ = super(__UpperCAmelCase , self).outputs if self.use_past: a_ , a_ = self.num_layers for i in range(__UpperCAmelCase): a_ = {0: "batch", 2: "past_sequence + sequence"} a_ = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) ->Mapping[str, Any]: a_ = self._generate_dummy_inputs_for_encoder_and_decoder( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) # Generate decoder inputs a_ = seq_length if not self.use_past else 1 a_ = self._generate_dummy_inputs_for_encoder_and_decoder( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) a_ = {F'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} a_ = dict(**__UpperCAmelCase , **__UpperCAmelCase) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") else: import torch a_ , a_ = common_inputs["input_ids"].shape a_ = common_inputs["decoder_input_ids"].shape[1] a_ , a_ = self.num_attention_heads a_ = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) a_ = decoder_seq_length + 3 a_ = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) a_ = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(__UpperCAmelCase , __UpperCAmelCase)] , dim=1) a_ = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered a_ , a_ = self.num_layers a_ = min(__UpperCAmelCase , __UpperCAmelCase) a_ = max(__UpperCAmelCase , __UpperCAmelCase) - min_num_layers a_ = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(__UpperCAmelCase): common_inputs["past_key_values"].append( ( torch.zeros(__UpperCAmelCase), torch.zeros(__UpperCAmelCase), torch.zeros(__UpperCAmelCase), torch.zeros(__UpperCAmelCase), )) # TODO: test this. a_ = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(__UpperCAmelCase , __UpperCAmelCase): common_inputs["past_key_values"].append((torch.zeros(__UpperCAmelCase), torch.zeros(__UpperCAmelCase))) return common_inputs def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) ->Mapping[str, Any]: a_ = self._generate_dummy_inputs_for_encoder_and_decoder( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") else: import torch a_ , a_ = common_inputs["input_ids"].shape # Not using the same length for past_key_values a_ = seqlen + 2 a_ , a_ = self.num_layers a_ , a_ = self.num_attention_heads a_ = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) a_ = common_inputs["attention_mask"].dtype a_ = torch.cat( [common_inputs["attention_mask"], torch.ones(__UpperCAmelCase , __UpperCAmelCase , dtype=__UpperCAmelCase)] , dim=1) a_ = [ (torch.zeros(__UpperCAmelCase), torch.zeros(__UpperCAmelCase)) for _ in range(__UpperCAmelCase) ] return common_inputs def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) ->Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX a_ = compute_effective_axis_dimension( __UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX a_ = tokenizer.num_special_tokens_to_add(__UpperCAmelCase) a_ = compute_effective_axis_dimension( __UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__UpperCAmelCase) # Generate dummy inputs according to compute batch and sequence a_ = [" ".join([tokenizer.unk_token]) * seq_length] * batch_size a_ = dict(tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase)) return common_inputs def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) ->Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: a_ = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase) else: a_ = self._generate_dummy_inputs_for_causal_lm( __UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase) return common_inputs def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->str: if self.task in ["default", "seq2seq-lm"]: a_ = super()._flatten_past_key_values_(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) else: a_ = super(__UpperCAmelCase , self)._flatten_past_key_values_( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) @property def UpperCAmelCase__ ( self) ->float: return 1E-4
243
"""simple docstring""" def UpperCamelCase ( UpperCAmelCase = "The quick brown fox jumps over the lazy dog" , ) ->bool: """simple docstring""" a_ = set() # Replace all the whitespace in our sentence a_ = input_str.replace(" " , "" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(UpperCAmelCase ) == 26 def UpperCamelCase ( UpperCAmelCase = "The quick brown fox jumps over the lazy dog" , ) ->bool: """simple docstring""" a_ = [False] * 26 for char in input_str: if char.islower(): a_ = True elif char.isupper(): a_ = True return all(UpperCAmelCase ) def UpperCamelCase ( UpperCAmelCase = "The quick brown fox jumps over the lazy dog" , ) ->bool: """simple docstring""" return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def UpperCamelCase ( ) ->None: """simple docstring""" from timeit import timeit a_ = "from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest" print(timeit("is_pangram()" , setup=UpperCAmelCase ) ) print(timeit("is_pangram_faster()" , setup=UpperCAmelCase ) ) print(timeit("is_pangram_fastest()" , setup=UpperCAmelCase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
243
1
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class a__ : """simple docstring""" def __init__(self , __lowercase , __lowercase=13 , __lowercase=7 , __lowercase=True , __lowercase=True , __lowercase=True , __lowercase=99 , __lowercase=32 , __lowercase=5 , __lowercase=4 , __lowercase=37 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=5_12 , __lowercase=16 , __lowercase=2 , __lowercase=0.0_2 , __lowercase=3 , __lowercase=4 , __lowercase=None , ): __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_token_type_ids __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = num_labels __lowerCAmelCase = num_choices __lowerCAmelCase = scope __lowerCAmelCase = self.vocab_size - 1 def _snake_case (self ): __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase = None if self.use_token_type_ids: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) __lowerCAmelCase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , *__lowercase ): __lowerCAmelCase = OpenAIGPTModel(config=__lowercase ) model.to(__lowercase ) model.eval() __lowerCAmelCase = model(__lowercase , token_type_ids=__lowercase , head_mask=__lowercase ) __lowerCAmelCase = model(__lowercase , token_type_ids=__lowercase ) __lowerCAmelCase = model(__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , *__lowercase ): __lowerCAmelCase = OpenAIGPTLMHeadModel(__lowercase ) model.to(__lowercase ) model.eval() __lowerCAmelCase = model(__lowercase , token_type_ids=__lowercase , labels=__lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , *__lowercase ): __lowerCAmelCase = OpenAIGPTDoubleHeadsModel(__lowercase ) model.to(__lowercase ) model.eval() __lowerCAmelCase = model(__lowercase , token_type_ids=__lowercase , labels=__lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , *__lowercase ): __lowerCAmelCase = self.num_labels __lowerCAmelCase = OpenAIGPTForSequenceClassification(__lowercase ) model.to(__lowercase ) model.eval() __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = model(__lowercase , token_type_ids=__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case (self ): __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_torch class a__ ( __A , __A , __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : List[str] = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) __UpperCamelCase : List[Any] = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly __UpperCamelCase : Union[str, Any] = ( { 'feature-extraction': OpenAIGPTModel, 'text-classification': OpenAIGPTForSequenceClassification, 'text-generation': OpenAIGPTLMHeadModel, 'zero-shot': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def _snake_case (self , __lowercase , __lowercase , __lowercase=False ): __lowerCAmelCase = super()._prepare_for_class(__lowercase , __lowercase , return_labels=__lowercase ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": __lowerCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=__lowercase , ) __lowerCAmelCase = inputs_dict['''labels'''] __lowerCAmelCase = inputs_dict['''labels'''] __lowerCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=__lowercase , ) __lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowercase ) return inputs_dict def _snake_case (self ): __lowerCAmelCase = OpenAIGPTModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=__lowercase , n_embd=37 ) def _snake_case (self ): self.config_tester.run_common_tests() def _snake_case (self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*__lowercase ) def _snake_case (self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__lowercase ) def _snake_case (self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*__lowercase ) def _snake_case (self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*__lowercase ) @slow def _snake_case (self ): for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = OpenAIGPTModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) @require_torch class a__ ( unittest.TestCase ): """simple docstring""" @slow def _snake_case (self ): __lowerCAmelCase = OpenAIGPTLMHeadModel.from_pretrained('''openai-gpt''' ) model.to(__lowercase ) __lowerCAmelCase = torch.tensor([[4_81, 47_35, 5_44]] , dtype=torch.long , device=__lowercase ) # the president is __lowerCAmelCase = [ 4_81, 47_35, 5_44, 2_46, 9_63, 8_70, 7_62, 2_39, 2_44, 4_04_77, 2_44, 2_49, 7_19, 8_81, 4_87, 5_44, 2_40, 2_44, 6_03, 4_81, ] # the president is a very good man. " \n " i\'m sure he is, " said the __lowerCAmelCase = model.generate(__lowercase , do_sample=__lowercase ) self.assertListEqual(output_ids[0].tolist() , __lowercase )
9
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): __lowerCAmelCase = tempfile.mkdtemp() # fmt: off __lowerCAmelCase = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __lowerCAmelCase = {'''unk_token''': '''<unk>'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) __lowerCAmelCase = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __lowerCAmelCase = os.path.join(self.tmpdirname , __lowercase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowercase , __lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , **__lowercase ): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self ): shutil.rmtree(self.tmpdirname ) def _snake_case (self ): __lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCAmelCase = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_slow.save_pretrained(self.tmpdirname ) __lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__lowercase ) __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_fast.save_pretrained(self.tmpdirname ) __lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowercase ) self.assertIsInstance(processor_fast.tokenizer , __lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowercase ) self.assertIsInstance(processor_fast.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowerCAmelCase = self.get_image_processor(do_normalize=__lowercase , padding_value=1.0 ) __lowerCAmelCase = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowercase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = image_processor(__lowercase , return_tensors='''np''' ) __lowerCAmelCase = processor(images=__lowercase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = tokenizer(__lowercase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCAmelCase = processor.batch_decode(__lowercase ) __lowerCAmelCase = tokenizer.batch_decode(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
9
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCamelCase_ = { "configuration_vision_encoder_decoder": ["VisionEncoderDecoderConfig", "VisionEncoderDecoderOnnxConfig"] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ["VisionEncoderDecoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ["TFVisionEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ["FlaxVisionEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
191
"""simple docstring""" from manim import * class _SCREAMING_SNAKE_CASE( A ): def _UpperCamelCase ( self ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[Any] = Rectangle(height=0.5 ,width=0.5 ) __SCREAMING_SNAKE_CASE :List[str] = Rectangle(height=0.4_6 ,width=0.4_6 ).set_stroke(width=0 ) __SCREAMING_SNAKE_CASE :List[str] = [mem.copy() for i in range(6 )] __SCREAMING_SNAKE_CASE :List[str] = [mem.copy() for i in range(6 )] __SCREAMING_SNAKE_CASE :Optional[int] = VGroup(*SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ ,buff=0 ) __SCREAMING_SNAKE_CASE :Optional[Any] = VGroup(*SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ ,buff=0 ) __SCREAMING_SNAKE_CASE :Any = VGroup(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ ,buff=0 ) __SCREAMING_SNAKE_CASE :Tuple = Text('''CPU''' ,font_size=24 ) __SCREAMING_SNAKE_CASE :Optional[Any] = Group(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ ,buff=0.5 ,aligned_edge=SCREAMING_SNAKE_CASE__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :List[Any] = [mem.copy() for i in range(1 )] __SCREAMING_SNAKE_CASE :str = VGroup(*SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ ,buff=0 ) __SCREAMING_SNAKE_CASE :Union[str, Any] = Text('''GPU''' ,font_size=24 ) __SCREAMING_SNAKE_CASE :int = Group(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ ,buff=0.5 ,aligned_edge=SCREAMING_SNAKE_CASE__ ) gpu.align_to(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) gpu.set_x(gpu.get_x() - 1 ) self.add(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :str = [mem.copy() for i in range(6 )] __SCREAMING_SNAKE_CASE :int = VGroup(*SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ ,buff=0 ) __SCREAMING_SNAKE_CASE :List[Any] = Text('''Model''' ,font_size=24 ) __SCREAMING_SNAKE_CASE :int = Group(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ ,buff=0.5 ,aligned_edge=SCREAMING_SNAKE_CASE__ ) model.move_to([3, -1.0, 0] ) self.play( Create(SCREAMING_SNAKE_CASE__ ,run_time=1 ) ,Create(SCREAMING_SNAKE_CASE__ ,run_time=1 ) ,Create(SCREAMING_SNAKE_CASE__ ,run_time=1 ) ,) __SCREAMING_SNAKE_CASE :List[str] = MarkupText( f'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' ,font_size=24 ,) __SCREAMING_SNAKE_CASE :List[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __SCREAMING_SNAKE_CASE :Optional[Any] = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' ,font_size=18 ,) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(SCREAMING_SNAKE_CASE__ ,run_time=2.5 ) ,Write(SCREAMING_SNAKE_CASE__ ) ,Write(SCREAMING_SNAKE_CASE__ ) ) self.add(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Union[str, Any] = [] __SCREAMING_SNAKE_CASE :int = [] __SCREAMING_SNAKE_CASE :List[Any] = [] for i, rect in enumerate(SCREAMING_SNAKE_CASE__ ): __SCREAMING_SNAKE_CASE :Any = Rectangle(height=0.4_6 ,width=0.4_6 ).set_stroke(width=0.0 ).set_fill(SCREAMING_SNAKE_CASE__ ,opacity=0.7 ) cpu_target.move_to(SCREAMING_SNAKE_CASE__ ) cpu_target.generate_target() __SCREAMING_SNAKE_CASE :Union[str, Any] = 0.4_6 / 4 __SCREAMING_SNAKE_CASE :Tuple = 0.4_6 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) ,buff=0.0_2 ,direction=SCREAMING_SNAKE_CASE__ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target ,direction=SCREAMING_SNAKE_CASE__ ,buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target ,direction=SCREAMING_SNAKE_CASE__ ,buff=0.0 ) cpu_targs.append(SCREAMING_SNAKE_CASE__ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(SCREAMING_SNAKE_CASE__ ) ) second_animations.append(MoveToTarget(SCREAMING_SNAKE_CASE__ ,run_time=1.5 ) ) self.play(*SCREAMING_SNAKE_CASE__ ) self.play(*SCREAMING_SNAKE_CASE__ ) self.wait()
191
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def _UpperCAmelCase ( _UpperCamelCase : Optional[Any] ) -> Tuple: A_ = 3_84 A_ = 7 if "tiny" in model_name: A_ = 96 A_ = (2, 2, 6, 2) A_ = (3, 6, 12, 24) elif "small" in model_name: A_ = 96 A_ = (2, 2, 18, 2) A_ = (3, 6, 12, 24) elif "base" in model_name: A_ = 1_28 A_ = (2, 2, 18, 2) A_ = (4, 8, 16, 32) A_ = 12 A_ = 5_12 elif "large" in model_name: A_ = 1_92 A_ = (2, 2, 18, 2) A_ = (6, 12, 24, 48) A_ = 12 A_ = 7_68 # set label information A_ = 1_50 A_ = '''huggingface/label-files''' A_ = '''ade20k-id2label.json''' A_ = json.load(open(hf_hub_download(_UpperCamelCase, _UpperCamelCase, repo_type='''dataset''' ), '''r''' ) ) A_ = {int(_UpperCamelCase ): v for k, v in idalabel.items()} A_ = {v: k for k, v in idalabel.items()} A_ = SwinConfig( embed_dim=_UpperCamelCase, depths=_UpperCamelCase, num_heads=_UpperCamelCase, window_size=_UpperCamelCase, out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''], ) A_ = UperNetConfig( backbone_config=_UpperCamelCase, auxiliary_in_channels=_UpperCamelCase, num_labels=_UpperCamelCase, idalabel=_UpperCamelCase, labelaid=_UpperCamelCase, ) return config def _UpperCAmelCase ( _UpperCamelCase : Optional[Any] ) -> Tuple: A_ = [] # fmt: off # stem rename_keys.append(('''backbone.patch_embed.projection.weight''', '''backbone.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.patch_embed.projection.bias''', '''backbone.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''backbone.embeddings.norm.weight''') ) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''backbone.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm1.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm1.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm2.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm2.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((F'''backbone.stages.{i}.downsample.reduction.weight''', F'''backbone.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((F'''backbone.stages.{i}.downsample.norm.weight''', F'''backbone.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((F'''backbone.stages.{i}.downsample.norm.bias''', F'''backbone.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((F'''backbone.norm{i}.weight''', F'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((F'''backbone.norm{i}.bias''', F'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''), ('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''), ('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''), ('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''), ] ) # fmt: on return rename_keys def _UpperCAmelCase ( _UpperCamelCase : List[str], _UpperCamelCase : List[str], _UpperCamelCase : Dict ) -> Any: A_ = dct.pop(_UpperCamelCase ) A_ = val def _UpperCAmelCase ( _UpperCamelCase : str, _UpperCamelCase : List[str] ) -> List[Any]: A_ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): A_ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) A_ = state_dict.pop(F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight''' ) A_ = state_dict.pop(F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict A_ = in_proj_weight[:dim, :] A_ = in_proj_bias[: dim] A_ = in_proj_weight[ dim : dim * 2, : ] A_ = in_proj_bias[ dim : dim * 2 ] A_ = in_proj_weight[ -dim :, : ] A_ = in_proj_bias[-dim :] # fmt: on def _UpperCAmelCase ( _UpperCamelCase : Optional[int] ) -> Optional[Any]: A_ ,A_ = x.shape A_ = x.reshape(_UpperCamelCase, 4, in_channel // 4 ) A_ = x[:, [0, 2, 1, 3], :].transpose(1, 2 ).reshape(_UpperCamelCase, _UpperCamelCase ) return x def _UpperCAmelCase ( _UpperCamelCase : int ) -> Dict: A_ ,A_ = x.shape A_ = x.reshape(_UpperCamelCase, in_channel // 4, 4 ) A_ = x[:, :, [0, 2, 1, 3]].transpose(1, 2 ).reshape(_UpperCamelCase, _UpperCamelCase ) return x def _UpperCAmelCase ( _UpperCamelCase : List[Any] ) -> Dict: A_ = x.shape[0] A_ = x.reshape(4, in_channel // 4 ) A_ = x[[0, 2, 1, 3], :].transpose(0, 1 ).reshape(_UpperCamelCase ) return x def _UpperCAmelCase ( _UpperCamelCase : Optional[Any] ) -> List[str]: A_ = x.shape[0] A_ = x.reshape(in_channel // 4, 4 ) A_ = x[:, [0, 2, 1, 3]].transpose(0, 1 ).reshape(_UpperCamelCase ) return x def _UpperCAmelCase ( _UpperCamelCase : Any, _UpperCamelCase : int, _UpperCamelCase : Dict ) -> Union[str, Any]: A_ = { '''upernet-swin-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth''', '''upernet-swin-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth''', '''upernet-swin-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth''', '''upernet-swin-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth''', } A_ = model_name_to_url[model_name] A_ = torch.hub.load_state_dict_from_url(_UpperCamelCase, map_location='''cpu''', file_name=_UpperCamelCase )[ '''state_dict''' ] for name, param in state_dict.items(): print(_UpperCamelCase, param.shape ) A_ = get_upernet_config(_UpperCamelCase ) A_ = UperNetForSemanticSegmentation(_UpperCamelCase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): A_ = state_dict.pop(_UpperCamelCase ) if "bn" in key: A_ = key.replace('''bn''', '''batch_norm''' ) A_ = val # rename keys A_ = create_rename_keys(_UpperCamelCase ) for src, dest in rename_keys: rename_key(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) read_in_q_k_v(_UpperCamelCase, config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: A_ = reverse_correct_unfold_reduction_order(_UpperCamelCase ) if "norm" in key: A_ = reverse_correct_unfold_norm_order(_UpperCamelCase ) model.load_state_dict(_UpperCamelCase ) # verify on image A_ = '''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg''' A_ = Image.open(requests.get(_UpperCamelCase, stream=_UpperCamelCase ).raw ).convert('''RGB''' ) A_ = SegformerImageProcessor() A_ = processor(_UpperCamelCase, return_tensors='''pt''' ).pixel_values with torch.no_grad(): A_ = model(_UpperCamelCase ) A_ = outputs.logits print(logits.shape ) print('''First values of logits:''', logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": A_ = torch.tensor( [[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ) elif model_name == "upernet-swin-small": A_ = torch.tensor( [[-7.1_9_2_1, -7.1_9_2_1, -6.9_5_3_2], [-7.1_9_2_1, -7.1_9_2_1, -6.9_5_3_2], [-7.0_9_0_8, -7.0_9_0_8, -6.8_5_3_4]] ) elif model_name == "upernet-swin-base": A_ = torch.tensor( [[-6.5_8_5_1, -6.5_8_5_1, -6.4_3_3_0], [-6.5_8_5_1, -6.5_8_5_1, -6.4_3_3_0], [-6.4_7_6_3, -6.4_7_6_3, -6.3_2_5_4]] ) elif model_name == "upernet-swin-large": A_ = torch.tensor( [[-7.5_2_9_7, -7.5_2_9_7, -7.3_8_0_2], [-7.5_2_9_7, -7.5_2_9_7, -7.3_8_0_2], [-7.4_0_4_4, -7.4_0_4_4, -7.2_5_8_6]] ) print('''Logits:''', outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3], _UpperCamelCase, atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_UpperCamelCase ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(_UpperCamelCase ) if push_to_hub: print(F'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(F'''openmmlab/{model_name}''' ) processor.push_to_hub(F'''openmmlab/{model_name}''' ) if __name__ == "__main__": __snake_case : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='upernet-swin-tiny', type=str, choices=[F"""upernet-swin-{size}""" for size in ['tiny', 'small', 'base', 'large']], help='Name of the Swin + UperNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __snake_case : int = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
354
'''simple docstring''' import math def _UpperCAmelCase ( _UpperCamelCase : float, _UpperCamelCase : float ) -> float: if initial_intensity < 0: raise ValueError('''The value of intensity cannot be negative''' ) # handling of negative values of initial intensity if angle < 0 or angle > 3_60: raise ValueError('''In Malus Law, the angle is in the range 0-360 degrees''' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(_UpperCamelCase ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name='malus_law')
18
0
import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCAmelCase : int = logging.get_logger(__name__) __lowerCAmelCase : Any = {'vocab_file': 'sentencepiece.model'} __lowerCAmelCase : Any = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, } __lowerCAmelCase : str = { 'google/rembert': 256, } class snake_case__ (_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : List[str] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : str=False , __lowerCamelCase : int=True , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Optional[int]="[CLS]" , __lowerCamelCase : Dict="[SEP]" , __lowerCamelCase : Optional[Any]="[UNK]" , __lowerCamelCase : List[str]="[SEP]" , __lowerCamelCase : Union[str, Any]="[PAD]" , __lowerCamelCase : Tuple="[CLS]" , __lowerCamelCase : Union[str, Any]="[MASK]" , **__lowerCamelCase : int , ) -> Tuple: super().__init__( do_lower_case=__lowerCamelCase , remove_space=__lowerCamelCase , keep_accents=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , **__lowerCamelCase , ) a = do_lower_case a = remove_space a = keep_accents a = vocab_file a = spm.SentencePieceProcessor() self.sp_model.Load(__lowerCamelCase ) @property def __UpperCAmelCase ( self : Union[str, Any] ) -> str: return len(self.sp_model ) def __UpperCAmelCase ( self : List[str] ) -> List[Any]: a = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[Any] ) -> Dict: a = self.__dict__.copy() a = None return state def __setstate__( self : List[str] , __lowerCamelCase : Dict ) -> Any: a = d a = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def __UpperCAmelCase ( self : int , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int]=False ) -> str: a = self.sp_model.EncodeAsPieces(__lowerCamelCase ) return pieces def __UpperCAmelCase ( self : str , __lowerCamelCase : Dict ) -> Optional[int]: return self.sp_model.PieceToId(__lowerCamelCase ) def __UpperCAmelCase ( self : Optional[Any] , __lowerCamelCase : Tuple ) -> Optional[Any]: return self.sp_model.IdToPiece(__lowerCamelCase ) def __UpperCAmelCase ( self : Optional[int] , __lowerCamelCase : List[Any] ) -> List[str]: a = self.sp_model.decode_pieces(__lowerCamelCase ) return out_string def __UpperCAmelCase ( self : Dict , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]: a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __UpperCAmelCase ( self : Dict , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__lowerCamelCase )) + [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1] def __UpperCAmelCase ( self : Union[str, Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]: a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCAmelCase ( self : str , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase ): logger.error("Vocabulary path ({}) should be a directory".format(__lowerCamelCase ) ) return a = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ): copyfile(self.vocab_file , __lowerCamelCase ) return (out_vocab_file,)
107
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule A_ : int = {"""tokenization_bertweet""": ["""BertweetTokenizer"""]} if TYPE_CHECKING: from .tokenization_bertweet import BertweetTokenizer else: import sys A_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
215
0
"""simple docstring""" from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. lowercase__ :List[str] = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. lowercase__ :Dict = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. lowercase__ :List[Any] = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = len([g for position, g in enumerate(lowerCAmelCase_ ) if g == main_target[position]] ) return (item, float(lowerCAmelCase_ )) def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = random.randint(0 , len(lowerCAmelCase_ ) - 1 ) lowercase = parent_a[:random_slice] + parent_a[random_slice:] lowercase = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = list(lowerCAmelCase_ ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: lowercase = random.choice(lowerCAmelCase_ ) return "".join(lowerCAmelCase_ ) def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ): '''simple docstring''' lowercase = [] # Generate more children proportionally to the fitness score. lowercase = int(parent_a[1] * 100 ) + 1 lowercase = 10 if child_n >= 10 else child_n for _ in range(lowerCAmelCase_ ): lowercase = population_score[random.randint(0 , lowerCAmelCase_ )][0] lowercase = crossover(parent_a[0] , lowerCAmelCase_ ) # Append new string to the population list. pop.append(mutate(lowerCAmelCase_ , lowerCAmelCase_ ) ) pop.append(mutate(lowerCAmelCase_ , lowerCAmelCase_ ) ) return pop def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = True ): '''simple docstring''' # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: lowercase = f'{N_POPULATION} must be bigger than {N_SELECTED}' raise ValueError(lowerCAmelCase_ ) # Verify that the target contains no genes besides the ones inside genes variable. lowercase = sorted({c for c in target if c not in genes} ) if not_in_genes_list: lowercase = f'{not_in_genes_list} is not in genes list, evolution cannot converge' raise ValueError(lowerCAmelCase_ ) # Generate random starting population. lowercase = [] for _ in range(lowerCAmelCase_ ): population.append(''''''.join([random.choice(lowerCAmelCase_ ) for i in range(len(lowerCAmelCase_ ) )] ) ) # Just some logs to know what the algorithms is doing. lowercase = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(lowerCAmelCase_ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. lowercase = [evaluate(lowerCAmelCase_ , lowerCAmelCase_ ) for item in population] # Check if there is a matching evolution. lowercase = sorted(lowerCAmelCase_ , key=lambda lowerCAmelCase__ : x[1] , reverse=lowerCAmelCase_ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( f'\nGeneration: {generation}' f'\nTotal Population:{total_population}' f'\nBest score: {population_score[0][1]}' f'\nBest string: {population_score[0][0]}' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. lowercase = population[: int(N_POPULATION / 3 )] population.clear() population.extend(lowerCAmelCase_ ) # Normalize population score to be between 0 and 1. lowercase = [ (item, score / len(lowerCAmelCase_ )) for item, score in population_score ] # This is selection for i in range(lowerCAmelCase_ ): population.extend(select(population_score[int(lowerCAmelCase_ )] , lowerCAmelCase_ , lowerCAmelCase_ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(lowerCAmelCase_ ) > N_POPULATION: break if __name__ == "__main__": lowercase__ :Union[str, Any] = ( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) lowercase__ :Any = list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\" ) lowercase__ , lowercase__ , lowercase__ :Optional[Any] = basic(target_str, genes_list) print( F'\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}' )
368
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowercase__ :Optional[Any] = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. lowercase__ :int = direct_transformers_import(PATH_TO_TRANSFORMERS) lowercase__ :List[Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING lowercase__ :List[str] = { # used to compute the property `self.chunk_length` "EncodecConfig": ["overlap"], # used as `self.bert_model = BertModel(config, ...)` "DPRConfig": True, # not used in modeling files, but it's an important information "FSMTConfig": ["langs"], # used internally in the configuration class file "GPTNeoConfig": ["attention_types"], # used internally in the configuration class file "EsmConfig": ["is_folding_model"], # used during training (despite we don't have training script for these models yet) "Mask2FormerConfig": ["ignore_value"], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) "OneFormerConfig": ["ignore_value", "norm"], # used during preprocessing and collation, see `collating_graphormer.py` "GraphormerConfig": ["spatial_pos_max"], # used internally in the configuration class file "T5Config": ["feed_forward_proj"], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally "MT5Config": ["feed_forward_proj", "tokenizer_class"], "UMT5Config": ["feed_forward_proj", "tokenizer_class"], # used internally in the configuration class file "LongT5Config": ["feed_forward_proj"], # used internally in the configuration class file "SwitchTransformersConfig": ["feed_forward_proj"], # having default values other than `1e-5` - we can't fix them without breaking "BioGptConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "GLPNConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "SegformerConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "CvtConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "PerceiverConfig": ["layer_norm_eps"], # used internally to calculate the feature size "InformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "TimeSeriesTransformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "AutoformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate `mlp_dim` "SamVisionConfig": ["mlp_ratio"], # For (head) training, but so far not implemented "ClapAudioConfig": ["num_classes"], # Not used, but providing useful information to users "SpeechT5HifiGanConfig": ["sampling_rate"], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { "CLIPSegConfig": True, "DeformableDetrConfig": True, "DetaConfig": True, "DinatConfig": True, "DonutSwinConfig": True, "EfficientFormerConfig": True, "FSMTConfig": True, "JukeboxConfig": True, "LayoutLMv2Config": True, "MaskFormerSwinConfig": True, "MT5Config": True, "NatConfig": True, "OneFormerConfig": True, "PerceiverConfig": True, "RagConfig": True, "SpeechT5Config": True, "SwinConfig": True, "Swin2SRConfig": True, "Swinv2Config": True, "SwitchTransformersConfig": True, "TableTransformerConfig": True, "TapasConfig": True, "TransfoXLConfig": True, "UniSpeechConfig": True, "UniSpeechSatConfig": True, "WavLMConfig": True, "WhisperConfig": True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) "JukeboxPriorConfig": True, # TODO: @Younes (for `is_decoder`) "Pix2StructTextConfig": True, } ) def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f'config.{attribute}' in modeling_source or f'getattr(config, "{attribute}"' in modeling_source or f'getattr(self.config, "{attribute}"' in modeling_source ): lowercase = True # Deal with multi-line cases elif ( re.search( Rf'getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"' , lowerCAmelCase__ , ) is not None ): lowercase = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: lowercase = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files lowercase = [ '''bos_index''', '''eos_index''', '''pad_index''', '''unk_index''', '''mask_index''', '''image_size''', '''use_cache''', '''out_features''', '''out_indices''', ] lowercase = ['''encoder_no_repeat_ngram_size'''] # Special cases to be allowed lowercase = True if not attribute_used: lowercase = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: lowercase = True elif attribute in ["tie_word_embeddings"] and default_value is False: lowercase = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: lowercase = True elif attribute.endswith('''_token_id''' ): lowercase = True # configuration class specific cases if not case_allowed: lowercase = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) lowercase = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = dict(inspect.signature(config_class.__init__ ).parameters ) lowercase = [x for x in list(signature.keys() ) if x not in ['''self''', '''kwargs''']] lowercase = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass lowercase = {} if len(config_class.attribute_map ) > 0: lowercase = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files lowercase = inspect.getsourcefile(lowerCAmelCase__ ) lowercase = os.path.dirname(lowerCAmelCase__ ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. lowercase = [os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) for fn in os.listdir(lowerCAmelCase__ ) if fn.startswith('''modeling_''' )] # Get the source code strings lowercase = [] for path in modeling_paths: if os.path.isfile(lowerCAmelCase__ ): with open(lowerCAmelCase__ ) as fp: modeling_sources.append(fp.read() ) lowercase = [] for config_param, default_value in zip(lowerCAmelCase__ , lowerCAmelCase__ ): # `attributes` here is all the variant names for `config_param` lowercase = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): unused_attributes.append(attributes[0] ) return sorted(lowerCAmelCase__ ) def UpperCamelCase ( ): '''simple docstring''' lowercase = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) lowercase = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda lowerCAmelCase__ : inspect.isclass(lowerCAmelCase__ ) and issubclass(lowerCAmelCase__ , lowerCAmelCase__ ) and inspect.getmodule(lowerCAmelCase__ ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: lowercase = check_config_attributes_being_used(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: lowercase = unused_attributes if len(lowerCAmelCase__ ) > 0: lowercase = '''The following configuration classes contain unused attributes in the corresponding modeling files:\n''' for name, attributes in configs_with_unused_attributes.items(): error += f'{name}: {attributes}\n' raise ValueError(lowerCAmelCase__ ) if __name__ == "__main__": check_config_attributes()
97
0
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) lowercase_ = { "sample_size": 32, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": 1000, "block_out_channels": [32, 64], "attention_head_dim": 8, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } lowercase_ = { "sample_size": 64, "in_channels": 3, "out_channels": 3, "layers_per_block": 3, "num_class_embeds": 1000, "block_out_channels": [192, 192 * 2, 192 * 3, 192 * 4], "attention_head_dim": 64, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } lowercase_ = { "sample_size": 256, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": None, "block_out_channels": [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], "attention_head_dim": 64, "down_block_types": [ "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "default", "upsample_type": "resnet", "downsample_type": "resnet", } lowercase_ = { "num_train_timesteps": 40, "sigma_min": 0.002, "sigma_max": 80.0, } lowercase_ = { "num_train_timesteps": 201, "sigma_min": 0.002, "sigma_max": 80.0, } lowercase_ = { "num_train_timesteps": 151, "sigma_min": 0.002, "sigma_max": 80.0, } def _snake_case( SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[Any]: '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('boolean value expected' ) def _snake_case( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any]=False ) -> Any: '''simple docstring''' A__ = checkpoint[f'{old_prefix}.in_layers.0.weight'] A__ = checkpoint[f'{old_prefix}.in_layers.0.bias'] A__ = checkpoint[f'{old_prefix}.in_layers.2.weight'] A__ = checkpoint[f'{old_prefix}.in_layers.2.bias'] A__ = checkpoint[f'{old_prefix}.emb_layers.1.weight'] A__ = checkpoint[f'{old_prefix}.emb_layers.1.bias'] A__ = checkpoint[f'{old_prefix}.out_layers.0.weight'] A__ = checkpoint[f'{old_prefix}.out_layers.0.bias'] A__ = checkpoint[f'{old_prefix}.out_layers.3.weight'] A__ = checkpoint[f'{old_prefix}.out_layers.3.bias'] if has_skip: A__ = checkpoint[f'{old_prefix}.skip_connection.weight'] A__ = checkpoint[f'{old_prefix}.skip_connection.bias'] return new_checkpoint def _snake_case( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str]=None ) -> Tuple: '''simple docstring''' A__ , A__ , A__ = checkpoint[f'{old_prefix}.qkv.weight'].chunk(3 , dim=0 ) A__ , A__ , A__ = checkpoint[f'{old_prefix}.qkv.bias'].chunk(3 , dim=0 ) A__ = checkpoint[f'{old_prefix}.norm.weight'] A__ = checkpoint[f'{old_prefix}.norm.bias'] A__ = weight_q.squeeze(-1 ).squeeze(-1 ) A__ = bias_q.squeeze(-1 ).squeeze(-1 ) A__ = weight_k.squeeze(-1 ).squeeze(-1 ) A__ = bias_k.squeeze(-1 ).squeeze(-1 ) A__ = weight_v.squeeze(-1 ).squeeze(-1 ) A__ = bias_v.squeeze(-1 ).squeeze(-1 ) A__ = ( checkpoint[f'{old_prefix}.proj_out.weight'].squeeze(-1 ).squeeze(-1 ) ) A__ = checkpoint[f'{old_prefix}.proj_out.bias'].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def _snake_case( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict ) -> str: '''simple docstring''' A__ = torch.load(SCREAMING_SNAKE_CASE__ , map_location='cpu' ) A__ = {} A__ = checkpoint['time_embed.0.weight'] A__ = checkpoint['time_embed.0.bias'] A__ = checkpoint['time_embed.2.weight'] A__ = checkpoint['time_embed.2.bias'] if unet_config["num_class_embeds"] is not None: A__ = checkpoint['label_emb.weight'] A__ = checkpoint['input_blocks.0.0.weight'] A__ = checkpoint['input_blocks.0.0.bias'] A__ = unet_config['down_block_types'] A__ = unet_config['layers_per_block'] A__ = unet_config['attention_head_dim'] A__ = unet_config['block_out_channels'] A__ = 1 A__ = channels_list[0] for i, layer_type in enumerate(SCREAMING_SNAKE_CASE__ ): A__ = channels_list[i] A__ = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(SCREAMING_SNAKE_CASE__ ): A__ = f'down_blocks.{i}.resnets.{j}' A__ = f'input_blocks.{current_layer}.0' A__ = True if j == 0 and downsample_block_has_skip else False A__ = convert_resnet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , has_skip=SCREAMING_SNAKE_CASE__ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(SCREAMING_SNAKE_CASE__ ): A__ = f'down_blocks.{i}.resnets.{j}' A__ = f'input_blocks.{current_layer}.0' A__ = True if j == 0 and downsample_block_has_skip else False A__ = convert_resnet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , has_skip=SCREAMING_SNAKE_CASE__ ) A__ = f'down_blocks.{i}.attentions.{j}' A__ = f'input_blocks.{current_layer}.1' A__ = convert_attention( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) current_layer += 1 if i != len(SCREAMING_SNAKE_CASE__ ) - 1: A__ = f'down_blocks.{i}.downsamplers.0' A__ = f'input_blocks.{current_layer}.0' A__ = convert_resnet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) current_layer += 1 A__ = current_channels # hardcoded the mid-block for now A__ = 'mid_block.resnets.0' A__ = 'middle_block.0' A__ = convert_resnet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A__ = 'mid_block.attentions.0' A__ = 'middle_block.1' A__ = convert_attention(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A__ = 'mid_block.resnets.1' A__ = 'middle_block.2' A__ = convert_resnet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A__ = 0 A__ = unet_config['up_block_types'] for i, layer_type in enumerate(SCREAMING_SNAKE_CASE__ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): A__ = f'up_blocks.{i}.resnets.{j}' A__ = f'output_blocks.{current_layer}.0' A__ = convert_resnet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , has_skip=SCREAMING_SNAKE_CASE__ ) current_layer += 1 if i != len(SCREAMING_SNAKE_CASE__ ) - 1: A__ = f'up_blocks.{i}.upsamplers.0' A__ = f'output_blocks.{current_layer-1}.1' A__ = convert_resnet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): A__ = f'up_blocks.{i}.resnets.{j}' A__ = f'output_blocks.{current_layer}.0' A__ = convert_resnet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , has_skip=SCREAMING_SNAKE_CASE__ ) A__ = f'up_blocks.{i}.attentions.{j}' A__ = f'output_blocks.{current_layer}.1' A__ = convert_attention( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) current_layer += 1 if i != len(SCREAMING_SNAKE_CASE__ ) - 1: A__ = f'up_blocks.{i}.upsamplers.0' A__ = f'output_blocks.{current_layer-1}.2' A__ = convert_resnet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A__ = checkpoint['out.0.weight'] A__ = checkpoint['out.0.bias'] A__ = checkpoint['out.2.weight'] A__ = checkpoint['out.2.bias'] return new_checkpoint if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument("--unet_path", default=None, type=str, required=True, help="Path to the unet.pt to convert.") parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to output the converted UNet model." ) parser.add_argument("--class_cond", default=True, type=str, help="Whether the model is class-conditional.") lowercase_ = parser.parse_args() lowercase_ = strabool(args.class_cond) lowercase_ = os.path.basename(args.unet_path) print(f"""Checkpoint: {ckpt_name}""") # Get U-Net config if "imagenet64" in ckpt_name: lowercase_ = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): lowercase_ = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: lowercase_ = TEST_UNET_CONFIG else: raise ValueError(f"""Checkpoint type {ckpt_name} is not currently supported.""") if not args.class_cond: lowercase_ = None lowercase_ = con_pt_to_diffuser(args.unet_path, unet_config) lowercase_ = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: lowercase_ = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: lowercase_ = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): lowercase_ = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(f"""Checkpoint type {ckpt_name} is not currently supported.""") lowercase_ = CMStochasticIterativeScheduler(**scheduler_config) lowercase_ = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
7
'''simple docstring''' import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append('.') def _a( UpperCamelCase__ : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str =test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '''`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ''' f"{test_file} instead." ) SCREAMING_SNAKE_CASE__ : str =components[-1] if not test_fn.endswith('''py''' ): raise ValueError(f"`test_file` should be a python file. Got {test_fn} instead." ) if not test_fn.startswith('''test_modeling_''' ): raise ValueError( f"`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead." ) SCREAMING_SNAKE_CASE__ : Any =components[:-1] + [test_fn.replace('''.py''', '''''' )] SCREAMING_SNAKE_CASE__ : List[str] ='''.'''.join(UpperCamelCase__ ) return test_module_path def _a( UpperCamelCase__ : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int =get_module_path(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =importlib.import_module(UpperCamelCase__ ) return test_module def _a( UpperCamelCase__ : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] =[] SCREAMING_SNAKE_CASE__ : List[Any] =get_test_module(UpperCamelCase__ ) for attr in dir(UpperCamelCase__ ): if attr.endswith('''ModelTester''' ): tester_classes.append(getattr(UpperCamelCase__, UpperCamelCase__ ) ) # sort with class names return sorted(UpperCamelCase__, key=lambda UpperCamelCase__ : x.__name__ ) def _a( UpperCamelCase__ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] =[] SCREAMING_SNAKE_CASE__ : Any =get_test_module(UpperCamelCase__ ) for attr in dir(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : List[Any] =getattr(UpperCamelCase__, UpperCamelCase__ ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). SCREAMING_SNAKE_CASE__ : Any =getattr(UpperCamelCase__, '''all_model_classes''', [] ) if len(UpperCamelCase__ ) > 0: test_classes.append(UpperCamelCase__ ) # sort with class names return sorted(UpperCamelCase__, key=lambda UpperCamelCase__ : x.__name__ ) def _a( UpperCamelCase__ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] =get_test_classes(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : int =set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(UpperCamelCase__, key=lambda UpperCamelCase__ : x.__name__ ) def _a( UpperCamelCase__ : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any =test_class() if hasattr(UpperCamelCase__, '''setUp''' ): test.setUp() SCREAMING_SNAKE_CASE__ : List[Any] =None if hasattr(UpperCamelCase__, '''model_tester''' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: SCREAMING_SNAKE_CASE__ : Union[str, Any] =test.model_tester.__class__ return model_tester def _a( UpperCamelCase__ : Optional[Any], UpperCamelCase__ : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any =get_test_classes(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : str =[] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(UpperCamelCase__ ) # sort with class names return sorted(UpperCamelCase__, key=lambda UpperCamelCase__ : x.__name__ ) def _a( UpperCamelCase__ : Optional[Any], UpperCamelCase__ : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] =get_test_classes_for_model(UpperCamelCase__, UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Any =[] for test_class in test_classes: SCREAMING_SNAKE_CASE__ : List[str] =get_model_tester_from_test_class(UpperCamelCase__ ) if tester_class is not None: tester_classes.append(UpperCamelCase__ ) # sort with class names return sorted(UpperCamelCase__, key=lambda UpperCamelCase__ : x.__name__ ) def _a( UpperCamelCase__ : str ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict =get_test_classes(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] ={test_class: get_model_tester_from_test_class(UpperCamelCase__ ) for test_class in test_classes} return test_tester_mapping def _a( UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple =get_model_classes(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : int ={ model_class: get_test_classes_for_model(UpperCamelCase__, UpperCamelCase__ ) for model_class in model_classes } return model_test_mapping def _a( UpperCamelCase__ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] =get_model_classes(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Any ={ model_class: get_tester_classes_for_model(UpperCamelCase__, UpperCamelCase__ ) for model_class in model_classes } return model_to_tester_mapping def _a( UpperCamelCase__ : int ): '''simple docstring''' if isinstance(UpperCamelCase__, UpperCamelCase__ ): return o elif isinstance(UpperCamelCase__, UpperCamelCase__ ): return o.__name__ elif isinstance(UpperCamelCase__, (list, tuple) ): return [to_json(UpperCamelCase__ ) for x in o] elif isinstance(UpperCamelCase__, UpperCamelCase__ ): return {to_json(UpperCamelCase__ ): to_json(UpperCamelCase__ ) for k, v in o.items()} else: return o
152
0
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A : def __init__(self , lowerCAmelCase , lowerCAmelCase=3 , lowerCAmelCase=3_2 , lowerCAmelCase=3 , lowerCAmelCase=1_0 , lowerCAmelCase=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase=[1, 1, 2, 1] , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase="relu" , lowerCAmelCase=3 , lowerCAmelCase=None , ): __lowercase= parent __lowercase= batch_size __lowercase= image_size __lowercase= num_channels __lowercase= embeddings_size __lowercase= hidden_sizes __lowercase= depths __lowercase= is_training __lowercase= use_labels __lowercase= hidden_act __lowercase= num_labels __lowercase= scope __lowercase= len(lowerCAmelCase ) def _A (self ): __lowercase= floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase= None if self.use_labels: __lowercase= ids_tensor([self.batch_size] , self.num_labels ) __lowercase= self.get_config() return config, pixel_values, labels def _A (self ): return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= TFResNetModel(config=lowerCAmelCase ) __lowercase= model(lowerCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= self.num_labels __lowercase= TFResNetForImageClassification(lowerCAmelCase ) __lowercase= model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _A (self ): __lowercase= self.prepare_config_and_inputs() __lowercase, __lowercase, __lowercase= config_and_inputs __lowercase= {'pixel_values': pixel_values} return config, inputs_dict @require_tf class A ( A_ , A_ , unittest.TestCase ): UpperCamelCase_ : int =(TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () UpperCamelCase_ : Optional[int] =( {'''feature-extraction''': TFResNetModel, '''image-classification''': TFResNetForImageClassification} if is_tf_available() else {} ) UpperCamelCase_ : Any =False UpperCamelCase_ : Tuple =False UpperCamelCase_ : List[Any] =False UpperCamelCase_ : Union[str, Any] =False UpperCamelCase_ : int =False def _A (self ): __lowercase= TFResNetModelTester(self ) __lowercase= ConfigTester(self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase ) def _A (self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _A (self ): return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def _A (self ): pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def _A (self ): pass def _A (self ): __lowercase, __lowercase= self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase= model_class(lowerCAmelCase ) __lowercase= inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase= [*signature.parameters.keys()] __lowercase= ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def _A (self ): def check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= model_class(lowerCAmelCase ) __lowercase= model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) __lowercase= outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowercase= self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __lowercase, __lowercase= self.model_tester.prepare_config_and_inputs_for_common() __lowercase= ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: __lowercase= layer_type __lowercase= True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase= True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @slow def _A (self ): for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase= TFResNetModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) def _lowerCamelCase( ) -> Any: '''simple docstring''' __lowercase= Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class A ( unittest.TestCase ): @cached_property def _A (self ): return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _A (self ): __lowercase= TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) __lowercase= self.default_image_processor __lowercase= prepare_img() __lowercase= image_processor(images=lowerCAmelCase , return_tensors='tf' ) # forward pass __lowercase= model(**lowerCAmelCase ) # verify the logits __lowercase= tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) __lowercase= tf.constant([-11.10_69, -9.78_77, -8.37_77] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , lowerCAmelCase , atol=1E-4 ) )
304
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class A ( A_ ): UpperCamelCase_ : torch.FloatTensor UpperCamelCase_ : torch.FloatTensor class A ( A_ , A_ ): UpperCamelCase_ : Dict =1 @register_to_config def __init__(self , lowerCAmelCase = 2_0_0_0 , lowerCAmelCase = 0.15 , lowerCAmelCase = 0.01 , lowerCAmelCase = 13_48.0 , lowerCAmelCase = 1E-5 , lowerCAmelCase = 1 , ): # standard deviation of the initial noise distribution __lowercase= sigma_max # setable values __lowercase= None self.set_sigmas(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase = None ): return sample def _A (self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None ): __lowercase= sampling_eps if sampling_eps is not None else self.config.sampling_eps __lowercase= torch.linspace(1 , lowerCAmelCase , lowerCAmelCase , device=lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None ): __lowercase= sigma_min if sigma_min is not None else self.config.sigma_min __lowercase= sigma_max if sigma_max is not None else self.config.sigma_max __lowercase= sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(lowerCAmelCase , lowerCAmelCase ) __lowercase= sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) __lowercase= torch.exp(torch.linspace(math.log(lowerCAmelCase ) , math.log(lowerCAmelCase ) , lowerCAmelCase ) ) __lowercase= torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def _A (self , lowerCAmelCase , lowerCAmelCase ): return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = True , ): if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) __lowercase= timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) __lowercase= (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda __lowercase= timesteps.to(self.discrete_sigmas.device ) __lowercase= self.discrete_sigmas[timesteps].to(sample.device ) __lowercase= self.get_adjacent_sigma(lowerCAmelCase , lowerCAmelCase ).to(sample.device ) __lowercase= torch.zeros_like(lowerCAmelCase ) __lowercase= (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods __lowercase= diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): __lowercase= diffusion.unsqueeze(-1 ) __lowercase= drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of __lowercase= randn_tensor( sample.shape , layout=sample.layout , generator=lowerCAmelCase , device=sample.device , dtype=sample.dtype ) __lowercase= sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? __lowercase= prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=lowerCAmelCase , prev_sample_mean=lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = True , ): if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction __lowercase= randn_tensor(sample.shape , layout=sample.layout , generator=lowerCAmelCase ).to(sample.device ) # compute step size from the model_output, the noise, and the snr __lowercase= torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() __lowercase= torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() __lowercase= (self.config.snr * noise_norm / grad_norm) ** 2 * 2 __lowercase= step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term __lowercase= step_size.flatten() while len(step_size.shape ) < len(sample.shape ): __lowercase= step_size.unsqueeze(-1 ) __lowercase= sample + step_size * model_output __lowercase= prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples __lowercase= timesteps.to(original_samples.device ) __lowercase= self.discrete_sigmas.to(original_samples.device )[timesteps] __lowercase= ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(lowerCAmelCase ) * sigmas[:, None, None, None] ) __lowercase= noise + original_samples return noisy_samples def __len__(self ): return self.config.num_train_timesteps
304
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase_ : List[Any] = { '''configuration_xlm''': ['''XLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMConfig''', '''XLMOnnxConfig'''], '''tokenization_xlm''': ['''XLMTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[int] = [ '''XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMForMultipleChoice''', '''XLMForQuestionAnswering''', '''XLMForQuestionAnsweringSimple''', '''XLMForSequenceClassification''', '''XLMForTokenClassification''', '''XLMModel''', '''XLMPreTrainedModel''', '''XLMWithLMHeadModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Dict = [ '''TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMForMultipleChoice''', '''TFXLMForQuestionAnsweringSimple''', '''TFXLMForSequenceClassification''', '''TFXLMForTokenClassification''', '''TFXLMMainLayer''', '''TFXLMModel''', '''TFXLMPreTrainedModel''', '''TFXLMWithLMHeadModel''', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys UpperCAmelCase_ : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
38
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A: List[str] = { "configuration_clipseg": [ "CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPSegConfig", "CLIPSegTextConfig", "CLIPSegVisionConfig", ], "processing_clipseg": ["CLIPSegProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Optional[int] = [ "CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPSegModel", "CLIPSegPreTrainedModel", "CLIPSegTextModel", "CLIPSegVisionModel", "CLIPSegForImageSegmentation", ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys A: Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
109
0
"""simple docstring""" def _lowerCamelCase ( ): '''simple docstring''' for n in range(1 , 100_0000 ): yield n * (n + 1) // 2 def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = 1 __lowerCAmelCase = 2 while i * i <= n: __lowerCAmelCase = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def _lowerCamelCase ( ): '''simple docstring''' return next(i for i in triangle_number_generator() if count_divisors(_UpperCamelCase ) > 500 ) if __name__ == "__main__": print(solution())
259
"""simple docstring""" from ..utils import DummyObject, requires_backends class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Optional[Any] =["""transformers""", """torch""", """note_seq"""] def __init__( self , *__a , **__a ): requires_backends(self , ["transformers", "torch", "note_seq"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["transformers", "torch", "note_seq"] ) @classmethod def snake_case ( cls , *__a , **__a ): requires_backends(cls , ["transformers", "torch", "note_seq"] )
259
1
def _a ( SCREAMING_SNAKE_CASE_ : int ): __lowerCAmelCase = [[0 for _ in range(snake_case__ )] for _ in range(m + 1 )] for i in range(m + 1 ): __lowerCAmelCase = 1 for n in range(m + 1 ): for k in range(1 , snake_case__ ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: UpperCamelCase__ = int(input("""Enter a number: """).strip()) print(partition(n)) except ValueError: print("""Please enter a number.""") else: try: UpperCamelCase__ = int(sys.argv[1]) print(partition(n)) except ValueError: print("""Please pass a number.""")
92
import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def UpperCamelCase ( snake_case__ : str ) -> Optional[int]: monkeypatch.setattr('datasets.utils.deprecation_utils._emitted_deprecation_warnings' , set() ) @pytest.fixture def UpperCamelCase ( snake_case__ : str ) -> Any: class lowerCAmelCase_ : def __init__( self, SCREAMING_SNAKE_CASE_ ) -> Optional[int]: UpperCamelCase : Tuple = metric_id class lowerCAmelCase_ : UpperCAmelCase__ : Optional[int] = [MetricMock(a__ ) for metric_id in ["accuracy", "mse", "precision", "codeparrot/apps_metric"]] def snake_case_ ( self ) -> str: return self._metrics monkeypatch.setattr('datasets.inspect.huggingface_hub' , HfhMock() ) @pytest.mark.parametrize( 'func, args' , [(load_metric, ('metrics/mse',)), (list_metrics, ()), (inspect_metric, ('metrics/mse', 'tmp_path'))] ) def UpperCamelCase ( snake_case__ : str , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : Optional[int] , snake_case__ : Union[str, Any] ) -> int: if "tmp_path" in args: UpperCamelCase : Dict = tuple(arg if arg != 'tmp_path' else tmp_path for arg in args ) with pytest.warns(snake_case__ , match='https://huggingface.co/docs/evaluate' ): func(*snake_case__ )
119
0
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self : Optional[Any] , __magic_name__ : TransformeraDModel , __magic_name__ : AutoencoderKL , __magic_name__ : KarrasDiffusionSchedulers , __magic_name__ : Optional[Dict[int, str]] = None , ) -> Dict: super().__init__() self.register_modules(transformer=__magic_name__ , vae=__magic_name__ , scheduler=__magic_name__ ) # create a imagenet -> id dictionary for easier use SCREAMING_SNAKE_CASE_ = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split("," ): SCREAMING_SNAKE_CASE_ = int(__magic_name__ ) SCREAMING_SNAKE_CASE_ = dict(sorted(self.labels.items() ) ) def __A ( self : List[str] , __magic_name__ : Union[str, List[str]] ) -> List[int]: if not isinstance(__magic_name__ , __magic_name__ ): SCREAMING_SNAKE_CASE_ = list(__magic_name__ ) for l in label: if l not in self.labels: raise ValueError( F'''{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.''' ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self : Tuple , __magic_name__ : List[int] , __magic_name__ : float = 4.0 , __magic_name__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __magic_name__ : int = 50 , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: SCREAMING_SNAKE_CASE_ = len(__magic_name__ ) SCREAMING_SNAKE_CASE_ = self.transformer.config.sample_size SCREAMING_SNAKE_CASE_ = self.transformer.config.in_channels SCREAMING_SNAKE_CASE_ = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=__magic_name__ , device=self.device , dtype=self.transformer.dtype , ) SCREAMING_SNAKE_CASE_ = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents SCREAMING_SNAKE_CASE_ = torch.tensor(__magic_name__ , device=self.device ).reshape(-1 ) SCREAMING_SNAKE_CASE_ = torch.tensor([1_000] * batch_size , device=self.device ) SCREAMING_SNAKE_CASE_ = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(__magic_name__ ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: SCREAMING_SNAKE_CASE_ = latent_model_input[: len(__magic_name__ ) // 2] SCREAMING_SNAKE_CASE_ = torch.cat([half, half] , dim=0 ) SCREAMING_SNAKE_CASE_ = self.scheduler.scale_model_input(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = t if not torch.is_tensor(__magic_name__ ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) SCREAMING_SNAKE_CASE_ = latent_model_input.device.type == "mps" if isinstance(__magic_name__ , __magic_name__ ): SCREAMING_SNAKE_CASE_ = torch.floataa if is_mps else torch.floataa else: SCREAMING_SNAKE_CASE_ = torch.intaa if is_mps else torch.intaa SCREAMING_SNAKE_CASE_ = torch.tensor([timesteps] , dtype=__magic_name__ , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: SCREAMING_SNAKE_CASE_ = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML SCREAMING_SNAKE_CASE_ = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output SCREAMING_SNAKE_CASE_ = self.transformer( __magic_name__ , timestep=__magic_name__ , class_labels=__magic_name__ ).sample # perform guidance if guidance_scale > 1: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = torch.split(__magic_name__ , len(__magic_name__ ) // 2 , dim=0 ) SCREAMING_SNAKE_CASE_ = uncond_eps + guidance_scale * (cond_eps - uncond_eps) SCREAMING_SNAKE_CASE_ = torch.cat([half_eps, half_eps] , dim=0 ) SCREAMING_SNAKE_CASE_ = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = torch.split(__magic_name__ , __magic_name__ , dim=1 ) else: SCREAMING_SNAKE_CASE_ = noise_pred # compute previous image: x_t -> x_t-1 SCREAMING_SNAKE_CASE_ = self.scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ ).prev_sample if guidance_scale > 1: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = latent_model_input.chunk(2 , dim=0 ) else: SCREAMING_SNAKE_CASE_ = latent_model_input SCREAMING_SNAKE_CASE_ = 1 / self.vae.config.scaling_factor * latents SCREAMING_SNAKE_CASE_ = self.vae.decode(__magic_name__ ).sample SCREAMING_SNAKE_CASE_ = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 SCREAMING_SNAKE_CASE_ = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": SCREAMING_SNAKE_CASE_ = self.numpy_to_pil(__magic_name__ ) if not return_dict: return (samples,) return ImagePipelineOutput(images=__magic_name__ )
305
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging A : List[str] = logging.get_logger(__name__) A : int = { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''blenderbot-small''' lowerCamelCase__ = ['''past_key_values'''] lowerCamelCase__ = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Dict , __magic_name__ : Dict=50_265 , __magic_name__ : str=512 , __magic_name__ : List[Any]=8 , __magic_name__ : Any=2_048 , __magic_name__ : Dict=16 , __magic_name__ : Any=8 , __magic_name__ : Optional[int]=2_048 , __magic_name__ : Dict=16 , __magic_name__ : Tuple=0.0 , __magic_name__ : Dict=0.0 , __magic_name__ : Optional[int]=True , __magic_name__ : Any=True , __magic_name__ : Dict="gelu" , __magic_name__ : Tuple=512 , __magic_name__ : List[str]=0.1 , __magic_name__ : List[Any]=0.0 , __magic_name__ : List[Any]=0.0 , __magic_name__ : Tuple=0.02 , __magic_name__ : Union[str, Any]=1 , __magic_name__ : List[Any]=False , __magic_name__ : str=0 , __magic_name__ : Dict=1 , __magic_name__ : str=2 , __magic_name__ : Union[str, Any]=2 , **__magic_name__ : Optional[Any] , ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = d_model SCREAMING_SNAKE_CASE_ = encoder_ffn_dim SCREAMING_SNAKE_CASE_ = encoder_layers SCREAMING_SNAKE_CASE_ = encoder_attention_heads SCREAMING_SNAKE_CASE_ = decoder_ffn_dim SCREAMING_SNAKE_CASE_ = decoder_layers SCREAMING_SNAKE_CASE_ = decoder_attention_heads SCREAMING_SNAKE_CASE_ = dropout SCREAMING_SNAKE_CASE_ = attention_dropout SCREAMING_SNAKE_CASE_ = activation_dropout SCREAMING_SNAKE_CASE_ = activation_function SCREAMING_SNAKE_CASE_ = init_std SCREAMING_SNAKE_CASE_ = encoder_layerdrop SCREAMING_SNAKE_CASE_ = decoder_layerdrop SCREAMING_SNAKE_CASE_ = use_cache SCREAMING_SNAKE_CASE_ = encoder_layers SCREAMING_SNAKE_CASE_ = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=__magic_name__ , bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , is_encoder_decoder=__magic_name__ , decoder_start_token_id=__magic_name__ , forced_eos_token_id=__magic_name__ , **__magic_name__ , ) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" @property def __A ( self : str ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE_ = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: SCREAMING_SNAKE_CASE_ = {0: "batch"} SCREAMING_SNAKE_CASE_ = {0: "batch", 1: "past_decoder_sequence + sequence"} else: SCREAMING_SNAKE_CASE_ = {0: "batch", 1: "decoder_sequence"} SCREAMING_SNAKE_CASE_ = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(__magic_name__ , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. SCREAMING_SNAKE_CASE_ = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.num_layers for i in range(__magic_name__ ): SCREAMING_SNAKE_CASE_ = {0: "batch", 2: "past_sequence + sequence"} SCREAMING_SNAKE_CASE_ = {0: "batch", 2: "past_sequence + sequence"} else: SCREAMING_SNAKE_CASE_ = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def __A ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE_ = super().outputs else: SCREAMING_SNAKE_CASE_ = super(__magic_name__ , self ).outputs if self.use_past: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.num_layers for i in range(__magic_name__ ): SCREAMING_SNAKE_CASE_ = {0: "batch", 2: "past_sequence + sequence"} SCREAMING_SNAKE_CASE_ = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def __A ( self : int , __magic_name__ : PreTrainedTokenizer , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: SCREAMING_SNAKE_CASE_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # Generate decoder inputs SCREAMING_SNAKE_CASE_ = seq_length if not self.use_past else 1 SCREAMING_SNAKE_CASE_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = {F'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} SCREAMING_SNAKE_CASE_ = dict(**__magic_name__ , **__magic_name__ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = common_inputs["input_ids"].shape SCREAMING_SNAKE_CASE_ = common_inputs["decoder_input_ids"].shape[1] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.num_attention_heads SCREAMING_SNAKE_CASE_ = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) SCREAMING_SNAKE_CASE_ = decoder_seq_length + 3 SCREAMING_SNAKE_CASE_ = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) SCREAMING_SNAKE_CASE_ = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(__magic_name__ , __magic_name__ )] , dim=1 ) SCREAMING_SNAKE_CASE_ = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.num_layers SCREAMING_SNAKE_CASE_ = min(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = max(__magic_name__ , __magic_name__ ) - min_num_layers SCREAMING_SNAKE_CASE_ = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(__magic_name__ ): common_inputs["past_key_values"].append( ( torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ ), ) ) # TODO: test this. SCREAMING_SNAKE_CASE_ = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(__magic_name__ , __magic_name__ ): common_inputs["past_key_values"].append((torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) ) return common_inputs def __A ( self : Union[str, Any] , __magic_name__ : PreTrainedTokenizer , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: SCREAMING_SNAKE_CASE_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = common_inputs["input_ids"].shape # Not using the same length for past_key_values SCREAMING_SNAKE_CASE_ = seqlen + 2 SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.num_layers SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.num_attention_heads SCREAMING_SNAKE_CASE_ = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) SCREAMING_SNAKE_CASE_ = common_inputs["attention_mask"].dtype SCREAMING_SNAKE_CASE_ = torch.cat( [common_inputs["attention_mask"], torch.ones(__magic_name__ , __magic_name__ , dtype=__magic_name__ )] , dim=1 ) SCREAMING_SNAKE_CASE_ = [ (torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) for _ in range(__magic_name__ ) ] return common_inputs def __A ( self : Dict , __magic_name__ : PreTrainedTokenizer , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE_ = compute_effective_axis_dimension( __magic_name__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE_ = tokenizer.num_special_tokens_to_add(__magic_name__ ) SCREAMING_SNAKE_CASE_ = compute_effective_axis_dimension( __magic_name__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__magic_name__ ) # Generate dummy inputs according to compute batch and sequence SCREAMING_SNAKE_CASE_ = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size SCREAMING_SNAKE_CASE_ = dict(tokenizer(__magic_name__ , return_tensors=__magic_name__ ) ) return common_inputs def __A ( self : Optional[Any] , __magic_name__ : PreTrainedTokenizer , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE_ = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ ) elif self.task == "causal-lm": SCREAMING_SNAKE_CASE_ = self._generate_dummy_inputs_for_causal_lm( __magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ ) else: SCREAMING_SNAKE_CASE_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ ) return common_inputs def __A ( self : Optional[Any] , __magic_name__ : str , __magic_name__ : List[Any] , __magic_name__ : str , __magic_name__ : List[str] ) -> List[str]: if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE_ = super()._flatten_past_key_values_(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) else: SCREAMING_SNAKE_CASE_ = super(__magic_name__ , self )._flatten_past_key_values_( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
305
1
"""simple docstring""" import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase ( lowercase , unittest.TestCase ): UpperCAmelCase : Dict = OpenAIGPTTokenizer UpperCAmelCase : Tuple = OpenAIGPTTokenizerFast UpperCAmelCase : List[str] = True UpperCAmelCase : Dict = False def _lowercase (self : Optional[int]) -> List[str]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __snake_case : Union[str, Any] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] __snake_case : Optional[Any] = dict(zip(_A , range(len(_A)))) __snake_case : Tuple = ['#version: 0.2', 'l o', 'lo w', 'e r</w>', ''] __snake_case : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) __snake_case : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w') as fp: fp.write(json.dumps(_A)) with open(self.merges_file , 'w') as fp: fp.write('\n'.join(_A)) def _lowercase (self : Any , _A : str) -> str: return "lower newer", "lower newer" def _lowercase (self : Optional[Any]) -> Optional[Any]: __snake_case : Optional[int] = OpenAIGPTTokenizer(self.vocab_file , self.merges_file) __snake_case : Dict = 'lower' __snake_case : Any = ['low', 'er</w>'] __snake_case : str = tokenizer.tokenize(_A) self.assertListEqual(_A , _A) __snake_case : Dict = tokens + ['<unk>'] __snake_case : Tuple = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_A) , _A) def _lowercase (self : Optional[int] , _A : Optional[int]=15) -> str: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): __snake_case : str = self.rust_tokenizer_class.from_pretrained(_A , **_A) # Simple input __snake_case : Any = 'This is a simple input' __snake_case : Optional[Any] = ['This is a simple input 1', 'This is a simple input 2'] __snake_case : Dict = ('This is a simple input', 'This is a pair') __snake_case : Optional[int] = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(_A , tokenizer_r.encode , _A , max_length=_A , padding='max_length') # Simple input self.assertRaises(_A , tokenizer_r.encode_plus , _A , max_length=_A , padding='max_length') # Simple input self.assertRaises( _A , tokenizer_r.batch_encode_plus , _A , max_length=_A , padding='max_length' , ) # Pair input self.assertRaises(_A , tokenizer_r.encode , _A , max_length=_A , padding='max_length') # Pair input self.assertRaises(_A , tokenizer_r.encode_plus , _A , max_length=_A , padding='max_length') # Pair input self.assertRaises( _A , tokenizer_r.batch_encode_plus , _A , max_length=_A , padding='max_length' , ) def _lowercase (self : Union[str, Any]) -> int: pass @require_ftfy @require_spacy @require_tokenizers class UpperCamelCase ( lowercase ): pass
172
"""simple docstring""" def __UpperCAmelCase ( UpperCAmelCase_ : Tuple ) -> Optional[int]: '''simple docstring''' __snake_case : List[str] = [] __snake_case : Optional[Any] = set({'(', '[', '{'} ) __snake_case : Union[str, Any] = set({')', ']', '}'} ) __snake_case : Tuple = {'{': '}', '[': ']', '(': ')'} for i in range(len(UpperCAmelCase_ ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(UpperCAmelCase_ ) == 0 or (len(UpperCAmelCase_ ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(UpperCAmelCase_ ) == 0 def __UpperCAmelCase ( ) -> Any: '''simple docstring''' __snake_case : Optional[Any] = input('Enter sequence of brackets: ' ) if is_balanced(UpperCAmelCase_ ): print(UpperCAmelCase_ , 'is balanced' ) else: print(UpperCAmelCase_ , 'is not balanced' ) if __name__ == "__main__": main()
172
1
'''simple docstring''' def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" A_ : Optional[int] = [], [] while len(a_ ) > 1: A_ : Dict = min(a_ ), max(a_ ) start.append(a_ ) end.append(a_ ) collection.remove(a_ ) collection.remove(a_ ) end.reverse() return start + collection + end if __name__ == "__main__": UpperCamelCase__ : Dict = input('Enter numbers separated by a comma:\n').strip() UpperCamelCase__ : Optional[Any] = [int(item) for item in user_input.split(',')] print(*merge_sort(unsorted), sep=',')
367
'''simple docstring''' UpperCamelCase__ : Optional[Any] = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] UpperCamelCase__ : List[Any] = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] UpperCamelCase__ : Optional[Any] = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] UpperCamelCase__ : List[Any] = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] UpperCamelCase__ : Optional[Any] = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] UpperCamelCase__ : str = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] UpperCamelCase__ : int = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] UpperCamelCase__ : List[Any] = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
164
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class _lowercase : '''simple docstring''' def __init__( self :Optional[int] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :int=13 , lowerCAmelCase__ :List[str]=7 , lowerCAmelCase__ :Dict=True , lowerCAmelCase__ :List[str]=True , lowerCAmelCase__ :str=True , lowerCAmelCase__ :List[Any]=99 , lowerCAmelCase__ :List[str]=32 , lowerCAmelCase__ :Any=5 , lowerCAmelCase__ :List[str]=4 , lowerCAmelCase__ :int=37 , lowerCAmelCase__ :Optional[int]="gelu" , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :Optional[Any]=512 , lowerCAmelCase__ :Union[str, Any]=16 , lowerCAmelCase__ :Dict=2 , lowerCAmelCase__ :Tuple=0.02 , lowerCAmelCase__ :List[Any]=3 , lowerCAmelCase__ :Tuple=4 , lowerCAmelCase__ :int=None , ) -> int: __SCREAMING_SNAKE_CASE : Dict = parent __SCREAMING_SNAKE_CASE : Any = batch_size __SCREAMING_SNAKE_CASE : Union[str, Any] = seq_length __SCREAMING_SNAKE_CASE : Optional[Any] = is_training __SCREAMING_SNAKE_CASE : int = use_token_type_ids __SCREAMING_SNAKE_CASE : Any = use_labels __SCREAMING_SNAKE_CASE : Any = vocab_size __SCREAMING_SNAKE_CASE : List[Any] = hidden_size __SCREAMING_SNAKE_CASE : int = num_hidden_layers __SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads __SCREAMING_SNAKE_CASE : str = intermediate_size __SCREAMING_SNAKE_CASE : Tuple = hidden_act __SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob __SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Optional[Any] = max_position_embeddings __SCREAMING_SNAKE_CASE : List[Any] = type_vocab_size __SCREAMING_SNAKE_CASE : List[str] = type_sequence_label_size __SCREAMING_SNAKE_CASE : List[str] = initializer_range __SCREAMING_SNAKE_CASE : Tuple = num_labels __SCREAMING_SNAKE_CASE : Union[str, Any] = num_choices __SCREAMING_SNAKE_CASE : Union[str, Any] = scope __SCREAMING_SNAKE_CASE : Union[str, Any] = self.vocab_size - 1 def __magic_name__( self :Optional[Any] ) -> List[Any]: __SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __SCREAMING_SNAKE_CASE : Dict = None __SCREAMING_SNAKE_CASE : Optional[int] = None __SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_labels: __SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __SCREAMING_SNAKE_CASE : Optional[int] = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) __SCREAMING_SNAKE_CASE : Any = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def __magic_name__( self :Tuple , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Any , *lowerCAmelCase__ :Union[str, Any] ) -> Any: __SCREAMING_SNAKE_CASE : Any = OpenAIGPTModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : Dict = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , head_mask=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Any , lowerCAmelCase__ :Dict , *lowerCAmelCase__ :List[Any] ) -> Dict: __SCREAMING_SNAKE_CASE : Optional[Any] = OpenAIGPTLMHeadModel(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : Tuple = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__( self :Tuple , lowerCAmelCase__ :Dict , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :List[str] , *lowerCAmelCase__ :Optional[Any] ) -> Any: __SCREAMING_SNAKE_CASE : Any = OpenAIGPTDoubleHeadsModel(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : Any = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__( self :Dict , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :str , *lowerCAmelCase__ :Optional[int] ) -> Dict: __SCREAMING_SNAKE_CASE : Optional[Any] = self.num_labels __SCREAMING_SNAKE_CASE : List[Any] = OpenAIGPTForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE : Optional[Any] = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__( self :Optional[Any] ) -> str: __SCREAMING_SNAKE_CASE : str = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) : List[str] = config_and_inputs __SCREAMING_SNAKE_CASE : List[str] = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_torch class _lowercase ( A__ , A__ , A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ : str = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly SCREAMING_SNAKE_CASE__ : str = ( { '''feature-extraction''': OpenAIGPTModel, '''text-classification''': OpenAIGPTForSequenceClassification, '''text-generation''': OpenAIGPTLMHeadModel, '''zero-shot''': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def __magic_name__( self :Optional[int] , lowerCAmelCase__ :str , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any] ) -> Tuple: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def __magic_name__( self :List[str] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :int , lowerCAmelCase__ :int=False ) -> Dict: __SCREAMING_SNAKE_CASE : Tuple = super()._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": __SCREAMING_SNAKE_CASE : Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : Tuple = inputs_dict['''labels'''] __SCREAMING_SNAKE_CASE : Dict = inputs_dict['''labels'''] __SCREAMING_SNAKE_CASE : List[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__ ) return inputs_dict def __magic_name__( self :Optional[int] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : int = OpenAIGPTModelTester(self ) __SCREAMING_SNAKE_CASE : Optional[Any] = ConfigTester(self , config_class=lowerCAmelCase__ , n_embd=37 ) def __magic_name__( self :Any ) -> Optional[Any]: self.config_tester.run_common_tests() def __magic_name__( self :List[str] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*lowerCAmelCase__ ) def __magic_name__( self :int ) -> int: __SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowerCAmelCase__ ) def __magic_name__( self :List[str] ) -> Dict: __SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*lowerCAmelCase__ ) def __magic_name__( self :List[str] ) -> str: __SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*lowerCAmelCase__ ) @slow def __magic_name__( self :Any ) -> List[Any]: for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE : Dict = OpenAIGPTModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @require_torch class _lowercase ( unittest.TestCase ): '''simple docstring''' @slow def __magic_name__( self :Union[str, Any] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : List[str] = OpenAIGPTLMHeadModel.from_pretrained('''openai-gpt''' ) model.to(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([[481, 4_735, 544]] , dtype=torch.long , device=lowerCAmelCase__ ) # the president is __SCREAMING_SNAKE_CASE : Dict = [ 481, 4_735, 544, 246, 963, 870, 762, 239, 244, 40_477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the __SCREAMING_SNAKE_CASE : Dict = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ ) self.assertListEqual(output_ids[0].tolist() , lowerCAmelCase__ )
9
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = TransfoXLTokenizer SCREAMING_SNAKE_CASE__ : int = False SCREAMING_SNAKE_CASE__ : Optional[Any] = False def __magic_name__( self :str ) -> Dict: super().setUp() __SCREAMING_SNAKE_CASE : List[str] = [ '''<unk>''', '''[CLS]''', '''[SEP]''', '''want''', '''unwanted''', '''wa''', '''un''', '''running''', ''',''', '''low''', '''l''', ] __SCREAMING_SNAKE_CASE : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __magic_name__( self :Any , **lowerCAmelCase__ :int ) -> str: __SCREAMING_SNAKE_CASE : Optional[Any] = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def __magic_name__( self :Union[str, Any] , lowerCAmelCase__ :List[Any] ) -> Tuple: __SCREAMING_SNAKE_CASE : Dict = '''<unk> UNwanted , running''' __SCREAMING_SNAKE_CASE : List[str] = '''<unk> unwanted, running''' return input_text, output_text def __magic_name__( self :Any ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : int = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = tokenizer.tokenize('''<unk> UNwanted , running''' ) self.assertListEqual(lowerCAmelCase__ , ['''<unk>''', '''unwanted''', ''',''', '''running'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [0, 4, 8, 7] ) def __magic_name__( self :Tuple ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Optional[int] = TransfoXLTokenizer(lower_case=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) def __magic_name__( self :Tuple ) -> List[Any]: __SCREAMING_SNAKE_CASE : Union[str, Any] = TransfoXLTokenizer(lower_case=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __magic_name__( self :Dict ) -> List[Any]: __SCREAMING_SNAKE_CASE : List[str] = TransfoXLTokenizer(lower_case=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = '''Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?''' __SCREAMING_SNAKE_CASE : Optional[int] = [ '''Hello''', '''(''', '''bracket''', ''')''', '''and''', '''side''', '''@-@''', '''scrolled''', '''[''', '''and''', ''']''', '''Henry''', '''\'s''', '''$''', '''5''', '''@,@''', '''000''', '''with''', '''3''', '''@.@''', '''34''', '''m''', '''.''', '''What''', '''\'s''', '''up''', '''!''', '''?''', ] self.assertListEqual(tokenizer.tokenize(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(tokenizer.convert_tokens_to_string(lowerCAmelCase__ ) , lowerCAmelCase__ ) def __magic_name__( self :str ) -> int: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Any = len(lowerCAmelCase__ ) tokenizer.add_tokens(['''new1''', '''new2'''] ) tokenizer.move_added_token('''new1''' , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(lowerCAmelCase__ ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('''new1''' ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , '''new1''' )
9
1
'''simple docstring''' from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class lowerCAmelCase__ ( _A ): """simple docstring""" def __lt__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self[-1] < other[-1] def __eq__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self[-1] == other[-1] def snake_case_ ( __SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" lowercase_ : str = [] # sort into stacks for element in collection: lowercase_ : str = Stack([element] ) lowercase_ : Dict = bisect_left(lowercase__ , lowercase__ ) if i != len(lowercase__ ): stacks[i].append(lowercase__ ) else: stacks.append(lowercase__ ) # use a heap-based merge to merge stack efficiently lowercase_ : str = merge(*(reversed(lowercase__ ) for stack in stacks) ) return collection if __name__ == "__main__": _lowercase : Union[str, Any] = input("Enter numbers separated by a comma:\n").strip() _lowercase : List[Any] = [int(item) for item in user_input.split(",")] print(patience_sort(unsorted))
363
'''simple docstring''' import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase__ ( lowerCamelCase_ , unittest.TestCase ): lowerCAmelCase_ = None lowerCAmelCase_ = BloomTokenizerFast lowerCAmelCase_ = BloomTokenizerFast lowerCAmelCase_ = True lowerCAmelCase_ = False lowerCAmelCase_ = '''tokenizer_file''' lowerCAmelCase_ = {'''bos_token''': '''<s>''', '''eos_token''': '''</s>''', '''unk_token''': '''<unk>''', '''pad_token''': '''<pad>'''} def _snake_case ( self ): """simple docstring""" super().setUp() lowercase_ : List[Any] = BloomTokenizerFast.from_pretrained('''bigscience/tokenizer''' ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" lowercase_ : Tuple = self.get_rust_tokenizer() lowercase_ : Optional[Any] = ['''The quick brown fox</s>''', '''jumps over the lazy dog</s>'''] lowercase_ : Union[str, Any] = [[21_75, 2_37_14, 7_31_73, 14_42_52, 2], [77, 13_26_19, 34_78, 3_68, 10_95_86, 3_54_33, 2]] lowercase_ : Dict = tokenizer.batch_encode_plus(__SCREAMING_SNAKE_CASE )['''input_ids'''] self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE=6 ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase_ : int = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input lowercase_ : Optional[int] = '''This is a simple input''' lowercase_ : List[str] = ['''This is a simple input 1''', '''This is a simple input 2'''] lowercase_ : List[str] = ('''This is a simple input''', '''This is a pair''') lowercase_ : Union[str, Any] = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests try: tokenizer_r.encode(__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE ) tokenizer_r.encode_plus(__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE ) tokenizer_r.batch_encode_plus(__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE ) tokenizer_r.encode(__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE ) tokenizer_r.batch_encode_plus(__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE ) except ValueError: self.fail('''Bloom Tokenizer should be able to deal with padding''' ) lowercase_ : Optional[Any] = None # Hotfixing padding = None self.assertRaises(__SCREAMING_SNAKE_CASE , tokenizer_r.encode , __SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , padding='''max_length''' ) # Simple input self.assertRaises(__SCREAMING_SNAKE_CASE , tokenizer_r.encode_plus , __SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , padding='''max_length''' ) # Simple input self.assertRaises( __SCREAMING_SNAKE_CASE , tokenizer_r.batch_encode_plus , __SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , padding='''max_length''' , ) # Pair input self.assertRaises(__SCREAMING_SNAKE_CASE , tokenizer_r.encode , __SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , padding='''max_length''' ) # Pair input self.assertRaises(__SCREAMING_SNAKE_CASE , tokenizer_r.encode_plus , __SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , padding='''max_length''' ) # Pair input self.assertRaises( __SCREAMING_SNAKE_CASE , tokenizer_r.batch_encode_plus , __SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , padding='''max_length''' , ) def _snake_case ( self ): """simple docstring""" lowercase_ : List[str] = self.get_rust_tokenizer() lowercase_ : Tuple = load_dataset('''xnli''' , '''all_languages''' , split='''test''' , streaming=__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = next(iter(__SCREAMING_SNAKE_CASE ) )['''premise'''] # pick up one data lowercase_ : List[Any] = list(sample_data.values() ) lowercase_ : Tuple = list(map(tokenizer.encode , __SCREAMING_SNAKE_CASE ) ) lowercase_ : Any = [tokenizer.decode(__SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=__SCREAMING_SNAKE_CASE ) for x in output_tokens] self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
264
0
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class UpperCAmelCase ( datasets.BuilderConfig ): _lowercase: Optional[datasets.Features] = None class UpperCAmelCase ( datasets.ArrowBasedBuilder ): _lowercase: Tuple = PandasConfig def lowercase__ ( self : Optional[Any] ) -> str: return datasets.DatasetInfo(features=self.config.features ) def lowercase__ ( self : List[str] , __snake_case : Dict ) -> int: if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}" ) _lowerCAmelCase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__snake_case , (str, list, tuple) ): _lowerCAmelCase = data_files if isinstance(__snake_case , __snake_case ): _lowerCAmelCase = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase = [dl_manager.iter_files(__snake_case ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] _lowerCAmelCase = [] for split_name, files in data_files.items(): if isinstance(__snake_case , __snake_case ): _lowerCAmelCase = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase = [dl_manager.iter_files(__snake_case ) for file in files] splits.append(datasets.SplitGenerator(name=__snake_case , gen_kwargs={"""files""": files} ) ) return splits def lowercase__ ( self : List[Any] , __snake_case : pa.Table ) -> pa.Table: if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _lowerCAmelCase = table_cast(__snake_case , self.config.features.arrow_schema ) return pa_table def lowercase__ ( self : Dict , __snake_case : Optional[Any] ) -> Any: for i, file in enumerate(itertools.chain.from_iterable(__snake_case ) ): with open(__snake_case , """rb""" ) as f: _lowerCAmelCase = pa.Table.from_pandas(pd.read_pickle(__snake_case ) ) yield i, self._cast_table(__snake_case )
70
from functools import lru_cache @lru_cache def _snake_case ( lowerCAmelCase : int ): """simple docstring""" if num < 0: raise ValueError("Number should not be negative." ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
18
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: _a : List[Any] = None _a : Dict = logging.get_logger(__name__) _a : Optional[Any] = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} _a : Tuple = { """vocab_file""": { """google/bigbird-roberta-base""": """https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model""", """google/bigbird-roberta-large""": ( """https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model""" ), """google/bigbird-base-trivia-itc""": ( """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model""" ), }, """tokenizer_file""": { """google/bigbird-roberta-base""": ( """https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json""" ), """google/bigbird-roberta-large""": ( """https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json""" ), """google/bigbird-base-trivia-itc""": ( """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json""" ), }, } _a : Dict = { """google/bigbird-roberta-base""": 4_0_9_6, """google/bigbird-roberta-large""": 4_0_9_6, """google/bigbird-base-trivia-itc""": 4_0_9_6, } _a : int = """▁""" class _UpperCAmelCase ( lowerCAmelCase_ ): a : List[str] =VOCAB_FILES_NAMES a : Optional[int] =PRETRAINED_VOCAB_FILES_MAP a : Any =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : Any =BigBirdTokenizer a : Union[str, Any] =["""input_ids""", """attention_mask"""] a : List[int] =[] def __init__( self : List[str],__SCREAMING_SNAKE_CASE : Dict=None,__SCREAMING_SNAKE_CASE : Optional[Any]=None,__SCREAMING_SNAKE_CASE : Any="<unk>",__SCREAMING_SNAKE_CASE : List[str]="<s>",__SCREAMING_SNAKE_CASE : str="</s>",__SCREAMING_SNAKE_CASE : Optional[Any]="<pad>",__SCREAMING_SNAKE_CASE : Tuple="[SEP]",__SCREAMING_SNAKE_CASE : Optional[int]="[MASK]",__SCREAMING_SNAKE_CASE : Any="[CLS]",**__SCREAMING_SNAKE_CASE : str,): '''simple docstring''' __lowerCAmelCase = AddedToken(__SCREAMING_SNAKE_CASE,lstrip=__SCREAMING_SNAKE_CASE,rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) else bos_token __lowerCAmelCase = AddedToken(__SCREAMING_SNAKE_CASE,lstrip=__SCREAMING_SNAKE_CASE,rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) else eos_token __lowerCAmelCase = AddedToken(__SCREAMING_SNAKE_CASE,lstrip=__SCREAMING_SNAKE_CASE,rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) else unk_token __lowerCAmelCase = AddedToken(__SCREAMING_SNAKE_CASE,lstrip=__SCREAMING_SNAKE_CASE,rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) else pad_token __lowerCAmelCase = AddedToken(__SCREAMING_SNAKE_CASE,lstrip=__SCREAMING_SNAKE_CASE,rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) else cls_token __lowerCAmelCase = AddedToken(__SCREAMING_SNAKE_CASE,lstrip=__SCREAMING_SNAKE_CASE,rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) else sep_token # Mask token behave like a normal word, i.e. include the space before it __lowerCAmelCase = AddedToken(__SCREAMING_SNAKE_CASE,lstrip=__SCREAMING_SNAKE_CASE,rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) else mask_token super().__init__( __SCREAMING_SNAKE_CASE,tokenizer_file=__SCREAMING_SNAKE_CASE,bos_token=__SCREAMING_SNAKE_CASE,eos_token=__SCREAMING_SNAKE_CASE,unk_token=__SCREAMING_SNAKE_CASE,sep_token=__SCREAMING_SNAKE_CASE,pad_token=__SCREAMING_SNAKE_CASE,cls_token=__SCREAMING_SNAKE_CASE,mask_token=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = vocab_file __lowerCAmelCase = False if not self.vocab_file else True def lowerCamelCase__ ( self : List[Any],__SCREAMING_SNAKE_CASE : Optional[int],__SCREAMING_SNAKE_CASE : int = None ): '''simple docstring''' __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase__ ( self : List[Any],__SCREAMING_SNAKE_CASE : List[Any],__SCREAMING_SNAKE_CASE : int = None,__SCREAMING_SNAKE_CASE : Optional[Any] = False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] def lowerCamelCase__ ( self : str,__SCREAMING_SNAKE_CASE : List[Any],__SCREAMING_SNAKE_CASE : Optional[int] = None ): '''simple docstring''' __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__ ( self : List[str],__SCREAMING_SNAKE_CASE : str,__SCREAMING_SNAKE_CASE : Tuple = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __lowerCAmelCase = os.path.join( __SCREAMING_SNAKE_CASE,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file,__SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
354
'''simple docstring''' import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort _a : List[Any] = logging.get_logger(__name__) _a : Union[str, Any] = { """tensor(bool)""": np.bool_, """tensor(int8)""": np.inta, """tensor(uint8)""": np.uinta, """tensor(int16)""": np.intaa, """tensor(uint16)""": np.uintaa, """tensor(int32)""": np.intaa, """tensor(uint32)""": np.uintaa, """tensor(int64)""": np.intaa, """tensor(uint64)""": np.uintaa, """tensor(float16)""": np.floataa, """tensor(float)""": np.floataa, """tensor(double)""": np.floataa, } class _UpperCAmelCase : def __init__( self,__SCREAMING_SNAKE_CASE=None,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' logger.info("""`diffusers.OnnxRuntimeModel` is experimental and might change in the future.""" ) __lowerCAmelCase = model __lowerCAmelCase = kwargs.get("""model_save_dir""",__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = kwargs.get("""latest_model_name""",__SCREAMING_SNAKE_CASE ) def __call__( self,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = {k: np.array(__SCREAMING_SNAKE_CASE ) for k, v in kwargs.items()} return self.model.run(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) @staticmethod def lowerCamelCase__ ( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' if provider is None: logger.info("""No onnxruntime provider specified, using CPUExecutionProvider""" ) __lowerCAmelCase = """CPUExecutionProvider""" return ort.InferenceSession(__SCREAMING_SNAKE_CASE,providers=[provider],sess_options=__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = file_name if file_name is not None else ONNX_WEIGHTS_NAME __lowerCAmelCase = self.model_save_dir.joinpath(self.latest_model_name ) __lowerCAmelCase = Path(__SCREAMING_SNAKE_CASE ).joinpath(__SCREAMING_SNAKE_CASE ) try: shutil.copyfile(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) except shutil.SameFileError: pass # copy external weights (for models >2GB) __lowerCAmelCase = self.model_save_dir.joinpath(__SCREAMING_SNAKE_CASE ) if src_path.exists(): __lowerCAmelCase = Path(__SCREAMING_SNAKE_CASE ).joinpath(__SCREAMING_SNAKE_CASE ) try: shutil.copyfile(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) except shutil.SameFileError: pass def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' if os.path.isfile(__SCREAMING_SNAKE_CASE ): logger.error(f'Provided path ({save_directory}) should be a directory, not a file' ) return os.makedirs(__SCREAMING_SNAKE_CASE,exist_ok=__SCREAMING_SNAKE_CASE ) # saving model weights/files self._save_pretrained(__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) @classmethod def lowerCamelCase__ ( cls,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = None,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = OnnxRuntimeModel.load_model( os.path.join(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ),provider=__SCREAMING_SNAKE_CASE,sess_options=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = Path(__SCREAMING_SNAKE_CASE ) # load model from hub else: # download model __lowerCAmelCase = hf_hub_download( repo_id=__SCREAMING_SNAKE_CASE,filename=__SCREAMING_SNAKE_CASE,use_auth_token=__SCREAMING_SNAKE_CASE,revision=__SCREAMING_SNAKE_CASE,cache_dir=__SCREAMING_SNAKE_CASE,force_download=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = Path(__SCREAMING_SNAKE_CASE ).parent __lowerCAmelCase = Path(__SCREAMING_SNAKE_CASE ).name __lowerCAmelCase = OnnxRuntimeModel.load_model(__SCREAMING_SNAKE_CASE,provider=__SCREAMING_SNAKE_CASE,sess_options=__SCREAMING_SNAKE_CASE ) return cls(model=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) @classmethod def lowerCamelCase__ ( cls,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = True,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = None,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = None if len(str(__SCREAMING_SNAKE_CASE ).split("""@""" ) ) == 2: __lowerCAmelCase , __lowerCAmelCase = model_id.split("""@""" ) return cls._from_pretrained( model_id=__SCREAMING_SNAKE_CASE,revision=__SCREAMING_SNAKE_CASE,cache_dir=__SCREAMING_SNAKE_CASE,force_download=__SCREAMING_SNAKE_CASE,use_auth_token=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE,)
46
0
import qiskit def __magic_name__ ( A : int, A : int ): '''simple docstring''' a = qiskit.Aer.get_backend("aer_simulator" ) # Create a Quantum Circuit acting on the q register a = qiskit.QuantumCircuit(A, A ) # Map the quantum measurement to the classical bits circuit.measure([0], [0] ) # Execute the circuit on the simulator a = qiskit.execute(A, A, shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(A ) if __name__ == "__main__": print(F'''Total count for various states are: {single_qubit_measure(1, 1)}''')
107
"""simple docstring""" from string import ascii_uppercase _lowercase = {char: i for i, char in enumerate(ascii_uppercase)} _lowercase = dict(enumerate(ascii_uppercase)) def _snake_case ( snake_case__ : str , snake_case__ : str ): A = len(snake_case__ ) A = 0 while True: if x == i: A = 0 if len(snake_case__ ) == len(snake_case__ ): break key += key[i] i += 1 return key def _snake_case ( snake_case__ : str , snake_case__ : str ): A = '' A = 0 for letter in message: if letter == " ": cipher_text += " " else: A = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def _snake_case ( snake_case__ : str , snake_case__ : str ): A = '' A = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: A = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def _snake_case ( ): A = 'THE GERMAN ATTACK' A = 'SECRET' A = generate_key(snake_case__ , snake_case__ ) A = cipher_text(snake_case__ , snake_case__ ) print(F'Encrypted Text = {s}' ) print(F'Original Text = {original_text(snake_case__ , snake_case__ )}' ) if __name__ == "__main__": import doctest doctest.testmod() main()
74
0
'''simple docstring''' import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class UpperCamelCase ( pl.LightningModule ): """simple docstring""" def __init__( self : Optional[int] , UpperCAmelCase_ : Dict): """simple docstring""" super().__init__() a : str = model a : Tuple = 2 a : Any = nn.Linear(self.model.config.hidden_size , self.num_labels) def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : str , snake_case : str ) -> int: """simple docstring""" # load longformer model from model identifier a : Optional[Any] = LongformerModel.from_pretrained(snake_case ) a : List[Any] = LightningModel(snake_case ) a : str = torch.load(snake_case , map_location=torch.device('cpu' ) ) lightning_model.load_state_dict(ckpt['state_dict'] ) # init longformer question answering model a : str = LongformerForQuestionAnswering.from_pretrained(snake_case ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(snake_case ) print(F"""Conversion successful. Model saved under {pytorch_dump_folder_path}""" ) if __name__ == "__main__": UpperCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--longformer_model""", default=None, type=str, required=True, help="""model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.""", ) parser.add_argument( """--longformer_question_answering_ckpt_path""", default=None, type=str, required=True, help="""Path the official PyTorch Lightning Checkpoint.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCamelCase : int = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
345
'''simple docstring''' from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class UpperCamelCase ( a_ ): """simple docstring""" A : Optional[int] = ["vqvae"] def __init__( self : List[str] , UpperCAmelCase_ : AutoencoderKL , UpperCAmelCase_ : UNetaDConditionModel , UpperCAmelCase_ : Mel , UpperCAmelCase_ : Union[DDIMScheduler, DDPMScheduler] , ): """simple docstring""" super().__init__() self.register_modules(unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , mel=UpperCAmelCase_ , vqvae=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" return 5_0 if isinstance(self.scheduler , UpperCAmelCase_) else 1_0_0_0 @torch.no_grad() def __call__( self : Dict , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : str = None , UpperCAmelCase_ : np.ndarray = None , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : int = None , UpperCAmelCase_ : torch.Generator = None , UpperCAmelCase_ : float = 0 , UpperCAmelCase_ : float = 0 , UpperCAmelCase_ : torch.Generator = None , UpperCAmelCase_ : float = 0 , UpperCAmelCase_ : torch.Tensor = None , UpperCAmelCase_ : torch.Tensor = None , UpperCAmelCase_ : Optional[Any]=True , ): """simple docstring""" a : Optional[Any] = steps or self.get_default_steps() self.scheduler.set_timesteps(UpperCAmelCase_) a : Optional[Any] = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size) == int: a : Dict = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: a : Dict = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=UpperCAmelCase_ , device=self.device , ) a : Tuple = noise a : Optional[int] = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(UpperCAmelCase_ , UpperCAmelCase_) a : List[Any] = self.mel.audio_slice_to_image(UpperCAmelCase_) a : str = np.frombuffer(input_image.tobytes() , dtype='uint8').reshape( (input_image.height, input_image.width)) a : List[str] = (input_image / 2_5_5) * 2 - 1 a : Any = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float).to(self.device) if self.vqvae is not None: a : List[Any] = self.vqvae.encode(torch.unsqueeze(UpperCAmelCase_ , 0)).latent_dist.sample( generator=UpperCAmelCase_)[0] a : str = self.vqvae.config.scaling_factor * input_images if start_step > 0: a : Union[str, Any] = self.scheduler.add_noise(UpperCAmelCase_ , UpperCAmelCase_ , self.scheduler.timesteps[start_step - 1]) a : Dict = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) a : List[Any] = int(mask_start_secs * pixels_per_second) a : Optional[Any] = int(mask_end_secs * pixels_per_second) a : Optional[int] = self.scheduler.add_noise(UpperCAmelCase_ , UpperCAmelCase_ , torch.tensor(self.scheduler.timesteps[start_step:])) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:])): if isinstance(self.unet , UpperCAmelCase_): a : Dict = self.unet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_)['sample'] else: a : str = self.unet(UpperCAmelCase_ , UpperCAmelCase_)['sample'] if isinstance(self.scheduler , UpperCAmelCase_): a : List[Any] = self.scheduler.step( model_output=UpperCAmelCase_ , timestep=UpperCAmelCase_ , sample=UpperCAmelCase_ , eta=UpperCAmelCase_ , generator=UpperCAmelCase_ , )['prev_sample'] else: a : Any = self.scheduler.step( model_output=UpperCAmelCase_ , timestep=UpperCAmelCase_ , sample=UpperCAmelCase_ , generator=UpperCAmelCase_ , )['prev_sample'] if mask is not None: if mask_start > 0: a : str = mask[:, step, :, :mask_start] if mask_end > 0: a : Dict = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance a : List[str] = 1 / self.vqvae.config.scaling_factor * images a : str = self.vqvae.decode(UpperCAmelCase_)['sample'] a : Tuple = (images / 2 + 0.5).clamp(0 , 1) a : Any = images.cpu().permute(0 , 2 , 3 , 1).numpy() a : List[str] = (images * 2_5_5).round().astype('uint8') a : Tuple = list( (Image.fromarray(_[:, :, 0]) for _ in images) if images.shape[3] == 1 else (Image.fromarray(UpperCAmelCase_ , mode='RGB').convert('L') for _ in images)) a : List[str] = [self.mel.image_to_audio(UpperCAmelCase_) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(UpperCAmelCase_)[:, np.newaxis, :]) , **ImagePipelineOutput(UpperCAmelCase_)) @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( self : List[Any] , UpperCAmelCase_ : List[Image.Image] , UpperCAmelCase_ : int = 5_0): """simple docstring""" assert isinstance(self.scheduler , UpperCAmelCase_) self.scheduler.set_timesteps(UpperCAmelCase_) a : Dict = np.array( [np.frombuffer(image.tobytes() , dtype='uint8').reshape((1, image.height, image.width)) for image in images]) a : Tuple = (sample / 2_5_5) * 2 - 1 a : int = torch.Tensor(UpperCAmelCase_).to(self.device) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,))): a : Optional[Any] = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps a : Optional[Any] = self.scheduler.alphas_cumprod[t] a : List[Any] = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) a : List[str] = 1 - alpha_prod_t a : Optional[Any] = self.unet(UpperCAmelCase_ , UpperCAmelCase_)['sample'] a : Union[str, Any] = (1 - alpha_prod_t_prev) ** 0.5 * model_output a : Dict = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) a : Union[str, Any] = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : torch.Tensor , UpperCAmelCase_ : torch.Tensor , UpperCAmelCase_ : float): """simple docstring""" a : List[Any] = acos(torch.dot(torch.flatten(UpperCAmelCase_) , torch.flatten(UpperCAmelCase_)) / torch.norm(UpperCAmelCase_) / torch.norm(UpperCAmelCase_)) return sin((1 - alpha) * theta) * xa / sin(UpperCAmelCase_) + sin(alpha * theta) * xa / sin(UpperCAmelCase_)
345
1
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar _lowerCamelCase : str = TypeVar('T') class __UpperCAmelCase ( Generic[T] ): '''simple docstring''' def __init__(self : Union[str, Any] , _lowerCAmelCase : T ): A = data A = None def __str__(self : Union[str, Any] ): return F"""{self.data}""" class __UpperCAmelCase ( Generic[T] ): '''simple docstring''' def __init__(self : Optional[int] ): A = None def __iter__(self : Optional[int] ): A = self.top while node: yield node.data A = node.next def __str__(self : Optional[Any] ): return "->".join([str(_lowerCAmelCase ) for item in self] ) def __len__(self : Optional[int] ): return len(tuple(iter(self ) ) ) def A (self : int ): return self.top is None def A (self : List[Any] , _lowerCAmelCase : T ): A = Node(_lowerCAmelCase ) if not self.is_empty(): A = self.top A = node def A (self : Optional[Any] ): if self.is_empty(): raise IndexError("""pop from empty stack""" ) assert isinstance(self.top , _lowerCAmelCase ) A = self.top A = self.top.next return pop_node.data def A (self : Optional[int] ): if self.is_empty(): raise IndexError("""peek from empty stack""" ) assert self.top is not None return self.top.data def A (self : Dict ): A = None if __name__ == "__main__": from doctest import testmod testmod()
258
"""simple docstring""" from __future__ import annotations def lowercase (snake_case__ : list , snake_case__ : int , snake_case__ : int , snake_case__ : int ) -> list: '''simple docstring''' lowerCAmelCase = [] lowerCAmelCase , lowerCAmelCase = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) lowerCAmelCase = result + left + right return input_list def lowercase (snake_case__ : list ) -> list: '''simple docstring''' if len(snake_case__ ) <= 1: return input_list lowerCAmelCase = list(snake_case__ ) # iteration for two-way merging lowerCAmelCase = 2 while p <= len(snake_case__ ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(snake_case__ ) , snake_case__ ): lowerCAmelCase = i lowerCAmelCase = i + p - 1 lowerCAmelCase = (low + high + 1) // 2 lowerCAmelCase = merge(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # final merge of last two parts if p * 2 >= len(snake_case__ ): lowerCAmelCase = i lowerCAmelCase = merge(snake_case__ , 0 , snake_case__ , len(snake_case__ ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": a = input('Enter numbers separated by a comma:\n').strip() if user_input == "": a = [] else: a = [int(item.strip()) for item in user_input.split(',')] print(iter_merge_sort(unsorted))
155
0
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """huggingface/informer-tourism-monthly""": ( """https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json""" ), # See all Informer models at https://huggingface.co/models?filter=informer } class _snake_case ( lowercase__): UpperCamelCase__ : Dict ="""informer""" UpperCamelCase__ : int ={ """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self : Union[str, Any], __lowercase : Optional[int] = None, __lowercase : Optional[int] = None, __lowercase : str = "student_t", __lowercase : str = "nll", __lowercase : int = 1, __lowercase : List[int] = None, __lowercase : Optional[Union[str, bool]] = "mean", __lowercase : int = 0, __lowercase : int = 0, __lowercase : int = 0, __lowercase : int = 0, __lowercase : Optional[List[int]] = None, __lowercase : Optional[List[int]] = None, __lowercase : int = 64, __lowercase : int = 32, __lowercase : int = 32, __lowercase : int = 2, __lowercase : int = 2, __lowercase : int = 2, __lowercase : int = 2, __lowercase : bool = True, __lowercase : str = "gelu", __lowercase : float = 0.05, __lowercase : float = 0.1, __lowercase : float = 0.1, __lowercase : float = 0.1, __lowercase : float = 0.1, __lowercase : int = 100, __lowercase : float = 0.02, __lowercase : Any=True, __lowercase : str = "prob", __lowercase : int = 5, __lowercase : bool = True, **__lowercase : str, ): # time series specific configuration lowercase__ = prediction_length lowercase__ = context_length or prediction_length lowercase__ = distribution_output lowercase__ = loss lowercase__ = input_size lowercase__ = num_time_features lowercase__ = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] lowercase__ = scaling lowercase__ = num_dynamic_real_features lowercase__ = num_static_real_features lowercase__ = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(__lowercase ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) lowercase__ = cardinality else: lowercase__ = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(__lowercase ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) lowercase__ = embedding_dimension else: lowercase__ = [min(50, (cat + 1) // 2 ) for cat in self.cardinality] lowercase__ = num_parallel_samples # Transformer architecture configuration lowercase__ = input_size * len(self.lags_sequence ) + self._number_of_features lowercase__ = d_model lowercase__ = encoder_attention_heads lowercase__ = decoder_attention_heads lowercase__ = encoder_ffn_dim lowercase__ = decoder_ffn_dim lowercase__ = encoder_layers lowercase__ = decoder_layers lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = encoder_layerdrop lowercase__ = decoder_layerdrop lowercase__ = activation_function lowercase__ = init_std lowercase__ = use_cache # Informer lowercase__ = attention_type lowercase__ = sampling_factor lowercase__ = distil super().__init__(is_encoder_decoder=__lowercase, **__lowercase ) @property def A__ ( self : Tuple ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
356
import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": lowercase_ = argparse.ArgumentParser( description=( """Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned""" """ Distillation""" ) ) parser.add_argument("""--model_type""", default="""roberta""", choices=["""roberta""", """gpt2"""]) parser.add_argument("""--model_name""", default="""roberta-large""", type=str) parser.add_argument("""--dump_checkpoint""", default="""serialization_dir/tf_roberta_048131723.pth""", type=str) parser.add_argument("""--vocab_transform""", action="""store_true""") lowercase_ = parser.parse_args() if args.model_type == "roberta": lowercase_ = RobertaForMaskedLM.from_pretrained(args.model_name) lowercase_ = """roberta""" elif args.model_type == "gpt2": lowercase_ = GPTaLMHeadModel.from_pretrained(args.model_name) lowercase_ = """transformer""" lowercase_ = model.state_dict() lowercase_ = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: lowercase_ = state_dict[F'{prefix}.{param_name}'] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: lowercase_ = F'{prefix}.embeddings.{w}.weight' lowercase_ = state_dict[param_name] for w in ["weight", "bias"]: lowercase_ = F'{prefix}.embeddings.LayerNorm.{w}' lowercase_ = state_dict[param_name] # Transformer Blocks # lowercase_ = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: lowercase_ = state_dict[ F'{prefix}.h.{teacher_idx}.{layer}.{w}' ] lowercase_ = state_dict[F'{prefix}.h.{teacher_idx}.attn.bias'] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: lowercase_ = state_dict[ F'{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}' ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: lowercase_ = state_dict[F'{layer}'] if args.vocab_transform: for w in ["weight", "bias"]: lowercase_ = state_dict[F'lm_head.dense.{w}'] lowercase_ = state_dict[F'lm_head.layer_norm.{w}'] elif args.model_type == "gpt2": for w in ["weight", "bias"]: lowercase_ = state_dict[F'{prefix}.ln_f.{w}'] lowercase_ = state_dict["""lm_head.weight"""] print(F'N layers selected for distillation: {std_idx}') print(F'Number of params transferred for distillation: {len(compressed_sd.keys())}') print(F'Save transferred checkpoint to {args.dump_checkpoint}.') torch.save(compressed_sd, args.dump_checkpoint)
224
0
'''simple docstring''' import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCamelCase_ ( __a ): def __init__( self : Any , _A : Tuple , _A : Any=768 ): '''simple docstring''' super().__init__(_A ) UpperCAmelCase__ : int = proj_size UpperCAmelCase__ : List[str] = CLIPVisionModel(_A ) UpperCAmelCase__ : Any = PaintByExampleMapper(_A ) UpperCAmelCase__ : Optional[Any] = nn.LayerNorm(config.hidden_size ) UpperCAmelCase__ : int = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling UpperCAmelCase__ : Any = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def lowercase_ ( self : int , _A : Optional[Any] , _A : List[str]=False ): '''simple docstring''' UpperCAmelCase__ : List[str] = self.model(pixel_values=_A ) UpperCAmelCase__ : str = clip_output.pooler_output UpperCAmelCase__ : Optional[Any] = self.mapper(latent_states[:, None] ) UpperCAmelCase__ : Dict = self.final_layer_norm(_A ) UpperCAmelCase__ : Optional[int] = self.proj_out(_A ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class lowerCamelCase_ ( nn.Module ): def __init__( self : Dict , _A : Union[str, Any] ): '''simple docstring''' super().__init__() UpperCAmelCase__ : Dict = (config.num_hidden_layers + 1) // 5 UpperCAmelCase__ : List[Any] = config.hidden_size UpperCAmelCase__ : Union[str, Any] = 1 UpperCAmelCase__ : List[str] = nn.ModuleList( [ BasicTransformerBlock(_A , _A , _A , activation_fn='''gelu''' , attention_bias=_A ) for _ in range(_A ) ] ) def lowercase_ ( self : Dict , _A : Union[str, Any] ): '''simple docstring''' for block in self.blocks: UpperCAmelCase__ : Optional[Any] = block(_A ) return hidden_states
181
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = '''▁''' UpperCamelCase__ = {'''vocab_file''': '''sentencepiece.bpe.model'''} UpperCamelCase__ = { '''vocab_file''': { '''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model''', } } UpperCamelCase__ = { '''facebook/xglm-564M''': 2_0_4_8, } class lowerCamelCase_ ( __a ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ['input_ids', 'attention_mask'] def __init__( self : Optional[int] , _A : Optional[Any] , _A : Optional[Any]="<s>" , _A : List[str]="</s>" , _A : Optional[Any]="</s>" , _A : List[str]="<s>" , _A : Tuple="<unk>" , _A : List[str]="<pad>" , _A : Optional[Dict[str, Any]] = None , **_A : Union[str, Any] , ): '''simple docstring''' UpperCAmelCase__ : str = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer UpperCAmelCase__ : Optional[int] = 7 UpperCAmelCase__ : Optional[int] = [f"""<madeupword{i}>""" for i in range(self.num_madeup_words )] UpperCAmelCase__ : Tuple = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , cls_token=_A , pad_token=_A , sp_model_kwargs=self.sp_model_kwargs , **_A , ) UpperCAmelCase__ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_A ) ) UpperCAmelCase__ : List[str] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCAmelCase__ : Any = 1 # Mimic fairseq token-to-id alignment for the first 4 token UpperCAmelCase__ : Any = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} UpperCAmelCase__ : int = len(self.sp_model ) UpperCAmelCase__ : Optional[int] = {f"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(_A ) UpperCAmelCase__ : Tuple = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Any ): '''simple docstring''' UpperCAmelCase__ : Dict = self.__dict__.copy() UpperCAmelCase__ : Optional[int] = None UpperCAmelCase__ : Optional[Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self : Union[str, Any] , _A : int ): '''simple docstring''' UpperCAmelCase__ : List[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase__ : Dict = {} UpperCAmelCase__ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def lowercase_ ( self : Any , _A : List[int] , _A : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a UpperCAmelCase__ : Dict = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def lowercase_ ( self : str , _A : List[int] , _A : Optional[List[int]] = None , _A : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) if token_ids_a is None: return [1] + ([0] * len(_A )) return [1] + ([0] * len(_A )) + [1, 1] + ([0] * len(_A )) def lowercase_ ( self : Any , _A : List[int] , _A : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def lowercase_ ( self : Any ): '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : str = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase_ ( self : Optional[Any] , _A : str ): '''simple docstring''' return self.sp_model.encode(_A , out_type=_A ) def lowercase_ ( self : List[str] , _A : List[Any] ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase__ : Union[str, Any] = self.sp_model.PieceToId(_A ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowercase_ ( self : List[Any] , _A : str ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowercase_ ( self : int , _A : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[str] = ''''''.join(_A ).replace(_A , ''' ''' ).strip() return out_string def lowercase_ ( self : Any , _A : str , _A : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(_A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase__ : List[str] = os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _A ) elif not os.path.isfile(self.vocab_file ): with open(_A , '''wb''' ) as fi: UpperCAmelCase__ : List[Any] = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,)
181
1
"""simple docstring""" import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging UpperCAmelCase: Union[str, Any] = logging.get_logger(__name__) class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = ["input_features"] def __init__( self ,UpperCAmelCase_=80 ,UpperCAmelCase_=1_60_00 ,UpperCAmelCase_=1_60 ,UpperCAmelCase_=30 ,UpperCAmelCase_=4_00 ,UpperCAmelCase_=0.0 ,UpperCAmelCase_=False ,**UpperCAmelCase_ ,): super().__init__( feature_size=UpperCAmelCase_ ,sampling_rate=UpperCAmelCase_ ,padding_value=UpperCAmelCase_ ,return_attention_mask=UpperCAmelCase_ ,**UpperCAmelCase_ ,) _lowercase : str = n_fft _lowercase : Dict = hop_length _lowercase : List[Any] = chunk_length _lowercase : Dict = chunk_length * sampling_rate _lowercase : Any = self.n_samples // hop_length _lowercase : Optional[int] = sampling_rate _lowercase : int = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 ,num_mel_filters=UpperCAmelCase_ ,min_frequency=0.0 ,max_frequency=8000.0 ,sampling_rate=UpperCAmelCase_ ,norm="""slaney""" ,mel_scale="""slaney""" ,) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : Optional[Any] = spectrogram( UpperCAmelCase_ ,window_function(self.n_fft ,"""hann""" ) ,frame_length=self.n_fft ,hop_length=self.hop_length ,power=2.0 ,mel_filters=self.mel_filters ,log_mel="""log10""" ,) _lowercase : int = log_spec[:, :-1] _lowercase : Tuple = np.maximum(UpperCAmelCase_ ,log_spec.max() - 8.0 ) _lowercase : Tuple = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def lowerCamelCase__ ( UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = 0.0 ): if attention_mask is not None: _lowercase : Optional[Any] = np.array(UpperCAmelCase_ ,np.intaa ) _lowercase : Dict = [] for vector, length in zip(UpperCAmelCase_ ,attention_mask.sum(-1 ) ): _lowercase : Tuple = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: _lowercase : Optional[int] = padding_value normed_input_values.append(UpperCAmelCase_ ) else: _lowercase : Dict = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def __call__( self ,UpperCAmelCase_ ,UpperCAmelCase_ = True ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = "max_length" ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) _lowercase : Optional[int] = isinstance(UpperCAmelCase_ ,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) _lowercase : Optional[int] = is_batched_numpy or ( isinstance(UpperCAmelCase_ ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) )) ) if is_batched: _lowercase : Union[str, Any] = [np.asarray([speech] ,dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(UpperCAmelCase_ ,np.ndarray ): _lowercase : int = np.asarray(UpperCAmelCase_ ,dtype=np.floataa ) elif isinstance(UpperCAmelCase_ ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _lowercase : Optional[int] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _lowercase : Any = [np.asarray([raw_speech] ).T] _lowercase : str = BatchFeature({"""input_features""": raw_speech} ) # convert into correct format for padding _lowercase : Dict = self.pad( UpperCAmelCase_ ,padding=UpperCAmelCase_ ,max_length=max_length if max_length else self.n_samples ,truncation=UpperCAmelCase_ ,pad_to_multiple_of=UpperCAmelCase_ ,return_attention_mask=return_attention_mask or do_normalize ,) # zero-mean and unit-variance normalization if do_normalize: _lowercase : int = self.zero_mean_unit_var_norm( padded_inputs["""input_features"""] ,attention_mask=padded_inputs["""attention_mask"""] ,padding_value=self.padding_value ,) _lowercase : List[Any] = np.stack(padded_inputs["""input_features"""] ,axis=0 ) # make sure list is in array format _lowercase : Optional[Any] = padded_inputs.get("""input_features""" ).transpose(2 ,0 ,1 ) _lowercase : List[str] = [self._np_extract_fbank_features(UpperCAmelCase_ ) for waveform in input_features[0]] if isinstance(input_features[0] ,UpperCAmelCase_ ): _lowercase : Dict = [np.asarray(UpperCAmelCase_ ,dtype=np.floataa ) for feature in input_features] else: _lowercase : Any = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) _lowercase : str = padded_inputs["""attention_mask"""][:, :: self.hop_length] if return_tensors is not None: _lowercase : Dict = padded_inputs.convert_to_tensors(UpperCAmelCase_ ) return padded_inputs def lowerCamelCase__ ( self ): _lowercase : List[Any] = copy.deepcopy(self.__dict__ ) _lowercase : Optional[Any] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
336
"""simple docstring""" UpperCAmelCase: str = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ UpperCAmelCase: Any = [{"""type""": """code""", """content""": INSTALL_CONTENT}] UpperCAmelCase: int = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
336
1
from __future__ import annotations from math import pi def _a ( SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float ): if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if inductance < 0: raise ValueError("Inductance cannot be negative" ) if frequency < 0: raise ValueError("Frequency cannot be negative" ) if reactance < 0: raise ValueError("Inductive reactance cannot be negative" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
92
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase = {'''configuration_xlnet''': ['''XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLNetConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ['''XLNetTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ['''XLNetTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ '''XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLNetForMultipleChoice''', '''XLNetForQuestionAnswering''', '''XLNetForQuestionAnsweringSimple''', '''XLNetForSequenceClassification''', '''XLNetForTokenClassification''', '''XLNetLMHeadModel''', '''XLNetModel''', '''XLNetPreTrainedModel''', '''load_tf_weights_in_xlnet''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ '''TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLNetForMultipleChoice''', '''TFXLNetForQuestionAnsweringSimple''', '''TFXLNetForSequenceClassification''', '''TFXLNetForTokenClassification''', '''TFXLNetLMHeadModel''', '''TFXLNetMainLayer''', '''TFXLNetModel''', '''TFXLNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
188
0
import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC __lowercase = parse(importlib.metadata.version('''torch''')) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(f"""`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}""" ) __UpperCamelCase :Any = STR_OPERATION_TO_FUNC[operation] if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __UpperCamelCase :str = parse(importlib.metadata.version(SCREAMING_SNAKE_CASE ) ) return operation(SCREAMING_SNAKE_CASE , parse(SCREAMING_SNAKE_CASE ) ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' return compare_versions(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
366
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging __lowercase = logging.get_logger(__name__) logging.set_verbosity_info() def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' if "xprophetnet" in prophetnet_checkpoint_path: __UpperCamelCase :Dict = XLMProphetNetForConditionalGenerationOld.from_pretrained(SCREAMING_SNAKE_CASE ) __UpperCamelCase , __UpperCamelCase :int = XLMProphetNetForConditionalGeneration.from_pretrained( SCREAMING_SNAKE_CASE , output_loading_info=SCREAMING_SNAKE_CASE ) else: __UpperCamelCase :Union[str, Any] = ProphetNetForConditionalGenerationOld.from_pretrained(SCREAMING_SNAKE_CASE ) __UpperCamelCase , __UpperCamelCase :Union[str, Any] = ProphetNetForConditionalGeneration.from_pretrained( SCREAMING_SNAKE_CASE , output_loading_info=SCREAMING_SNAKE_CASE ) __UpperCamelCase :Dict = ['''key_proj''', '''value_proj''', '''query_proj'''] __UpperCamelCase :Optional[Any] = { '''self_attn''': '''ngram_self_attn''', '''cross_attn''': '''encoder_attn''', '''cross_attn_layer_norm''': '''encoder_attn_layer_norm''', '''feed_forward_layer_norm''': '''final_layer_norm''', '''feed_forward''': '''''', '''intermediate''': '''fc1''', '''output''': '''fc2''', '''key_proj''': '''k_proj''', '''query_proj''': '''q_proj''', '''value_proj''': '''v_proj''', '''word_embeddings''': '''embed_tokens''', '''embeddings_layer_norm''': '''emb_layer_norm''', '''relative_pos_embeddings''': '''relative_linear''', '''ngram_embeddings''': '''ngram_input_embed''', '''position_embeddings''': '''embed_positions''', } for key in loading_info["missing_keys"]: __UpperCamelCase :Tuple = key.split('''.''' ) if attributes[0] == "lm_head": __UpperCamelCase :Union[str, Any] = prophet __UpperCamelCase :Any = prophet_old else: __UpperCamelCase :Any = prophet.prophetnet __UpperCamelCase :int = prophet_old.model __UpperCamelCase :Optional[Any] = False for attribute in attributes: if attribute in mapping: __UpperCamelCase :str = mapping[attribute] if not hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and len(SCREAMING_SNAKE_CASE ) > 0: __UpperCamelCase :Optional[int] = attribute elif hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __UpperCamelCase :List[Any] = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" __UpperCamelCase :Tuple = old_model.weight logger.info(f"""{attribute} is initialized.""" ) __UpperCamelCase :Union[str, Any] = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" __UpperCamelCase :Union[str, Any] = old_model.bias logger.info(f"""{attribute} is initialized""" ) __UpperCamelCase :List[Any] = True break elif attribute in special_keys and hasattr(SCREAMING_SNAKE_CASE , '''in_proj_weight''' ): __UpperCamelCase :str = old_model.in_proj_weight.shape[0] // 3 __UpperCamelCase :Optional[Any] = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": __UpperCamelCase :Optional[int] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) __UpperCamelCase :Tuple = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": __UpperCamelCase :List[Any] = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) __UpperCamelCase :Dict = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": __UpperCamelCase :Tuple = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) __UpperCamelCase :Dict = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) __UpperCamelCase :Optional[int] = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." __UpperCamelCase :Optional[int] = nn.Parameter(old_model.embed_positions.weight[:512, :] ) __UpperCamelCase :List[Any] = True break if attribute.isdigit(): __UpperCamelCase :List[Any] = model[int(SCREAMING_SNAKE_CASE )] __UpperCamelCase :Optional[int] = old_model[int(SCREAMING_SNAKE_CASE )] else: __UpperCamelCase :Optional[Any] = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if old_attribute == "": __UpperCamelCase :Any = old_model else: if not hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise ValueError(f"""{old_model} does not have {old_attribute}""" ) __UpperCamelCase :Any = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if not is_key_init: raise ValueError(f"""{key} was not correctly initialized!""" ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) prophet.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--prophetnet_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __lowercase = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
105
0
"""simple docstring""" import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class a : def __init__( self : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int=2 , __lowerCAmelCase : Dict=32 , __lowerCAmelCase : str=16 , __lowerCAmelCase : Dict=3 , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : str=True , __lowerCAmelCase : Tuple=32 , __lowerCAmelCase : Dict=4 , __lowerCAmelCase : Dict=[0, 1, 2, 3] , __lowerCAmelCase : List[Any]=4 , __lowerCAmelCase : int=37 , __lowerCAmelCase : List[str]="gelu" , __lowerCAmelCase : Any=0.1 , __lowerCAmelCase : List[str]=0.1 , __lowerCAmelCase : List[str]=0.02 , __lowerCAmelCase : str=3 , __lowerCAmelCase : str=[1, 384, 24, 24] , __lowerCAmelCase : List[Any]=True , __lowerCAmelCase : List[str]=None , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = backbone_out_indices _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = backbone_featmap_shape _UpperCAmelCase = scope _UpperCAmelCase = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) _UpperCAmelCase = (image_size // patch_size) ** 2 _UpperCAmelCase = num_patches + 1 def lowerCAmelCase_ ( self : Any ): _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def lowerCAmelCase_ ( self : Optional[int] ): _UpperCAmelCase = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, """hidden_sizes""": [96, 192, 384, 768], """num_groups""": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=__lowerCAmelCase , backbone_featmap_shape=self.backbone_featmap_shape , ) def lowerCAmelCase_ ( self : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] ): _UpperCAmelCase = DPTModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : List[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = DPTForDepthEstimation(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def lowerCAmelCase_ ( self : List[str] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[int] ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = DPTForSemanticSegmentation(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _UpperCAmelCase = model(__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def lowerCAmelCase_ ( self : Any ): _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _snake_case : Optional[int] = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () _snake_case : Any = ( { 'depth-estimation': DPTForDepthEstimation, 'feature-extraction': DPTModel, 'image-segmentation': DPTForSemanticSegmentation, } if is_torch_available() else {} ) _snake_case : Dict = False _snake_case : str = False _snake_case : int = False def lowerCAmelCase_ ( self : int ): _UpperCAmelCase = DPTModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase , hidden_size=37 ) def lowerCAmelCase_ ( self : List[str] ): self.config_tester.run_common_tests() @unittest.skip(reason="""DPT does not use inputs_embeds""" ) def lowerCAmelCase_ ( self : str ): pass def lowerCAmelCase_ ( self : str ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(__lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCAmelCase , nn.Linear ) ) def lowerCAmelCase_ ( self : str ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(__lowerCAmelCase ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : Dict ): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = True if model_class in get_values(__lowerCAmelCase ): continue _UpperCAmelCase = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.train() _UpperCAmelCase = self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) _UpperCAmelCase = model(**__lowerCAmelCase ).loss loss.backward() def lowerCAmelCase_ ( self : Any ): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = False _UpperCAmelCase = True if model_class in get_values(__lowerCAmelCase ) or not model_class.supports_gradient_checkpointing: continue _UpperCAmelCase = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.gradient_checkpointing_enable() model.train() _UpperCAmelCase = self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) _UpperCAmelCase = model(**__lowerCAmelCase ).loss loss.backward() def lowerCAmelCase_ ( self : Any ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = _config_zero_init(__lowerCAmelCase ) for model_class in self.all_model_classes: _UpperCAmelCase = model_class(config=__lowerCAmelCase ) # Skip the check for the backbone _UpperCAmelCase = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": _UpperCAmelCase = [f'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase_ ( self : List[Any] ): pass @slow def lowerCAmelCase_ ( self : List[Any] ): for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: _UpperCAmelCase = DPTModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] ): # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = """add""" with self.assertRaises(__lowerCAmelCase ): _UpperCAmelCase = DPTForDepthEstimation(__lowerCAmelCase ) def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision @slow class a ( unittest.TestCase ): def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = DPTImageProcessor.from_pretrained("""Intel/dpt-hybrid-midas""" ) _UpperCAmelCase = DPTForDepthEstimation.from_pretrained("""Intel/dpt-hybrid-midas""" ).to(__lowerCAmelCase ) _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=__lowerCAmelCase , return_tensors="""pt""" ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**__lowerCAmelCase ) _UpperCAmelCase = outputs.predicted_depth # verify the predicted depth _UpperCAmelCase = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , __lowerCAmelCase ) _UpperCAmelCase = torch.tensor( [[[5.6_437, 5.6_146, 5.6_511], [5.4_371, 5.5_649, 5.5_958], [5.5_215, 5.5_184, 5.5_293]]] ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , __lowerCAmelCase , atol=1e-4 ) )
289
"""simple docstring""" from __future__ import annotations def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = get_failure_array(lowercase ) # 2) Step through text searching for pattern _UpperCAmelCase , _UpperCAmelCase = 0, 0 # index into text, pattern while i < len(lowercase ): if pattern[j] == text[i]: if j == (len(lowercase ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: _UpperCAmelCase = failure[j - 1] continue i += 1 return False def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = [0] _UpperCAmelCase = 0 _UpperCAmelCase = 1 while j < len(lowercase ): if pattern[i] == pattern[j]: i += 1 elif i > 0: _UpperCAmelCase = failure[i - 1] continue j += 1 failure.append(lowercase ) return failure if __name__ == "__main__": # Test 1) UpperCAmelCase__ = """abc1abc12""" UpperCAmelCase__ = """alskfjaldsabc1abc1abc12k23adsfabcabc""" UpperCAmelCase__ = """alskfjaldsk23adsfabcabc""" assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) UpperCAmelCase__ = """ABABX""" UpperCAmelCase__ = """ABABZABABYABABX""" assert kmp(pattern, text) # Test 3) UpperCAmelCase__ = """AAAB""" UpperCAmelCase__ = """ABAAAAAB""" assert kmp(pattern, text) # Test 4) UpperCAmelCase__ = """abcdabcy""" UpperCAmelCase__ = """abcxabcdabxabcdabcdabcy""" assert kmp(pattern, text) # Test 5) UpperCAmelCase__ = """aabaabaaa""" assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
289
1
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __a ( __UpperCamelCase ): __snake_case : List[str] = ["""image_processor""", """tokenizer"""] __snake_case : Any = """LayoutLMv2ImageProcessor""" __snake_case : Optional[Any] = ("""LayoutXLMTokenizer""", """LayoutXLMTokenizerFast""") def __init__( self : Union[str, Any] , UpperCAmelCase : Dict=None , UpperCAmelCase : Optional[Any]=None , **UpperCAmelCase : Union[str, Any] ): if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , UpperCAmelCase , ) lowerCAmelCase_ : List[str] = kwargs.pop("""feature_extractor""" ) lowerCAmelCase_ : int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self : Tuple , UpperCAmelCase : List[str] , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Any , ): # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( """You cannot provide bounding boxes """ """if you initialized the image processor with apply_ocr set to True.""" ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( """You cannot provide word labels if you initialized the image processor with apply_ocr set to True.""" ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError("""You cannot return overflowing tokens without returning the offsets mapping.""" ) # first, apply the image processor lowerCAmelCase_ : List[Any] = self.image_processor(images=UpperCAmelCase , return_tensors=UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCAmelCase , UpperCAmelCase ): lowerCAmelCase_ : Optional[Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) lowerCAmelCase_ : Any = features["""words"""] lowerCAmelCase_ : str = self.tokenizer( text=text if text is not None else features["""words"""] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["""boxes"""] , word_labels=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) # add pixel values lowerCAmelCase_ : List[Any] = features.pop("""pixel_values""" ) if return_overflowing_tokens is True: lowerCAmelCase_ : Optional[Any] = self.get_overflowing_images(UpperCAmelCase , encoded_inputs["""overflow_to_sample_mapping"""] ) lowerCAmelCase_ : List[str] = images return encoded_inputs def A ( self : Tuple , UpperCAmelCase : List[str] , UpperCAmelCase : str ): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image lowerCAmelCase_ : List[str] = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(UpperCAmelCase ) != len(UpperCAmelCase ): raise ValueError( """Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got""" F' {len(UpperCAmelCase )} and {len(UpperCAmelCase )}' ) return images_with_overflow def A ( self : List[Any] , *UpperCAmelCase : List[str] , **UpperCAmelCase : str ): return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def A ( self : Any , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Dict ): return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def A ( self : str ): return ["input_ids", "bbox", "attention_mask", "image"] @property def A ( self : Dict ): warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , UpperCAmelCase , ) return self.image_processor_class @property def A ( self : List[str] ): warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , UpperCAmelCase , ) return self.image_processor
28
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : str=False ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'blocks.{i}.norm1.weight', f'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'blocks.{i}.norm1.bias', f'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((f'blocks.{i}.attn.proj.weight', f'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((f'blocks.{i}.attn.proj.bias', f'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'blocks.{i}.norm2.weight', f'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'blocks.{i}.norm2.bias', f'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase_ : int = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def __UpperCamelCase ( lowercase__ : int , lowercase__ : Dict , lowercase__ : Optional[Any]=False ) -> Optional[Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase_ : int = """""" else: lowerCAmelCase_ : Union[str, Any] = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase_ : str = state_dict.pop(f'blocks.{i}.attn.qkv.weight' ) lowerCAmelCase_ : Any = state_dict.pop(f'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase_ : Dict = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase_ : int = in_proj_bias[: config.hidden_size] lowerCAmelCase_ : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase_ : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase_ : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase_ : Dict = in_proj_bias[-config.hidden_size :] def __UpperCamelCase ( lowercase__ : Any ) -> Any: '''simple docstring''' lowerCAmelCase_ : Any = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(lowercase__ , lowercase__ ) def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : List[str] , lowercase__ : Optional[Any] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Dict = dct.pop(lowercase__ ) lowerCAmelCase_ : List[Any] = val def __UpperCamelCase ( ) -> str: '''simple docstring''' lowerCAmelCase_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase_ : List[str] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Any , lowercase__ : Any=True ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : List[Any] = ViTConfig() # patch_size if model_name[-1] == "8": lowerCAmelCase_ : Dict = 8 # set labels if required if not base_model: lowerCAmelCase_ : str = 1000 lowerCAmelCase_ : List[Any] = """huggingface/label-files""" lowerCAmelCase_ : Optional[int] = """imagenet-1k-id2label.json""" lowerCAmelCase_ : str = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase_ : List[str] = {int(lowercase__ ): v for k, v in idalabel.items()} lowerCAmelCase_ : Any = idalabel lowerCAmelCase_ : Union[str, Any] = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: lowerCAmelCase_ : Union[str, Any] = 384 lowerCAmelCase_ : Any = 1536 lowerCAmelCase_ : Union[str, Any] = 12 lowerCAmelCase_ : str = 6 # load original model from torch hub lowerCAmelCase_ : Any = torch.hub.load("""facebookresearch/dino:main""" , lowercase__ ) original_model.eval() # load state_dict of original model, remove and rename some keys lowerCAmelCase_ : Any = original_model.state_dict() if base_model: remove_classification_head_(lowercase__ ) lowerCAmelCase_ : Dict = create_rename_keys(lowercase__ , base_model=lowercase__ ) for src, dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__ ) read_in_q_k_v(lowercase__ , lowercase__ , lowercase__ ) # load HuggingFace model if base_model: lowerCAmelCase_ : int = ViTModel(lowercase__ , add_pooling_layer=lowercase__ ).eval() else: lowerCAmelCase_ : Union[str, Any] = ViTForImageClassification(lowercase__ ).eval() model.load_state_dict(lowercase__ ) # Check outputs on an image, prepared by ViTImageProcessor lowerCAmelCase_ : List[str] = ViTImageProcessor() lowerCAmelCase_ : List[Any] = image_processor(images=prepare_img() , return_tensors="""pt""" ) lowerCAmelCase_ : List[str] = encoding["""pixel_values"""] lowerCAmelCase_ : Optional[int] = model(lowercase__ ) if base_model: lowerCAmelCase_ : Union[str, Any] = original_model(lowercase__ ) assert torch.allclose(lowercase__ , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: lowerCAmelCase_ : int = original_model(lowercase__ ) assert logits.shape == outputs.logits.shape assert torch.allclose(lowercase__ , outputs.logits , atol=1E-3 ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowercase__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) __UpperCAmelCase = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
28
1
"""simple docstring""" import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) parser.add_argument( "--original_config_file", type=str, required=True, help="The YAML config file corresponding to the original architecture.", ) parser.add_argument( "--num_in_channels", default=None, type=int, help="The number of input channels. If `None` number of input channels will be automatically inferred.", ) parser.add_argument( "--image_size", default=5_12, type=int, help=( "The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2" " Base. Use 768 for Stable Diffusion v2." ), ) parser.add_argument( "--extract_ema", action="store_true", help=( "Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights" " or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield" " higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning." ), ) parser.add_argument( "--upcast_attention", action="store_true", help=( "Whether the attention computation should always be upcasted. This is necessary when running stable" " diffusion 2.1." ), ) parser.add_argument( "--from_safetensors", action="store_true", help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.", ) parser.add_argument( "--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") def A_ ( _lowercase ): '''simple docstring''' if string == "True": return True elif string == "False": return False else: raise ValueError(f"""could not parse string as bool {string}""" ) parser.add_argument( "--use_linear_projection", help="Override for use linear projection", required=False, type=parse_bool ) parser.add_argument("--cross_attention_dim", help="Override for cross attention_dim", required=False, type=int) __a = parser.parse_args() __a = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
66
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: lowercase__ : int = None lowercase__ : Any = logging.get_logger(__name__) lowercase__ : List[str] = '''▁''' lowercase__ : Optional[int] = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} lowercase__ : str = { '''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''}, '''tokenizer_file''': { '''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json''' }, } lowercase__ : List[Any] = { '''google/pegasus-xsum''': 5_12, } class _UpperCAmelCase ( lowerCAmelCase__): _lowerCAmelCase : List[str] = VOCAB_FILES_NAMES _lowerCAmelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase : Tuple = PegasusTokenizer _lowerCAmelCase : str = ["""input_ids""", """attention_mask"""] def __init__( self : Any , lowercase_ : Optional[Any]=None , lowercase_ : int=None , lowercase_ : Tuple="<pad>" , lowercase_ : int="</s>" , lowercase_ : Tuple="<unk>" , lowercase_ : str="<mask_2>" , lowercase_ : Optional[Any]="<mask_1>" , lowercase_ : str=None , lowercase_ : List[str]=103 , **lowercase_ : List[Any] , ): snake_case_ : Dict = offset if additional_special_tokens is not None: if not isinstance(lowercase_ , lowercase_ ): raise TypeError( f"additional_special_tokens should be of type {type(lowercase_ )}, but is" f" {type(lowercase_ )}" ) snake_case_ : str = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"<unk_{i}>" for i in range(len(lowercase_ ) , self.offset - 1 ) ] if len(set(lowercase_ ) ) != len(lowercase_ ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' f" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}." ) snake_case_ : Union[str, Any] = additional_special_tokens_extended else: snake_case_ : Dict = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"<unk_{i}>" for i in range(2 , self.offset )] super().__init__( lowercase_ , tokenizer_file=lowercase_ , pad_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , mask_token=lowercase_ , mask_token_sent=lowercase_ , offset=lowercase_ , additional_special_tokens=lowercase_ , **lowercase_ , ) snake_case_ : List[Any] = vocab_file snake_case_ : List[Any] = False if not self.vocab_file else True def _snake_case ( self : str , lowercase_ : Union[str, Any] ): snake_case_ : Any = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( '''There should be 3 special tokens: mask_token, pad_token, and eos_token +''' f" {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}" ) return [1 if x in all_special_ids else 0 for x in seq] def _snake_case ( self : int , lowercase_ : List , lowercase_ : Optional[List] = None , lowercase_ : bool = False ): if already_has_special_tokens: return self._special_token_mask(lowercase_ ) elif token_ids_a is None: return self._special_token_mask(lowercase_ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def _snake_case ( self : List[Any] , lowercase_ : Optional[int] , lowercase_ : str=None ): if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _snake_case ( self : Optional[Any] , lowercase_ : str , lowercase_ : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(lowercase_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return snake_case_ : Dict = os.path.join( lowercase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ): copyfile(self.vocab_file , lowercase_ ) return (out_vocab_file,)
264
0
import argparse import collections import json import os import re import string import sys import numpy as np lowercase__ : List[Any] = re.compile(R"\b(a|an|the)\b", re.UNICODE) lowercase__ : Optional[int] = None def SCREAMING_SNAKE_CASE ( ) -> Any: a = argparse.ArgumentParser("Official evaluation script for SQuAD version 2.0.") parser.add_argument("data_file" , metavar="data.json" , help="Input data JSON file.") parser.add_argument("pred_file" , metavar="pred.json" , help="Model predictions.") parser.add_argument( "--out-file" , "-o" , metavar="eval.json" , help="Write accuracy metrics to file (default is stdout).") parser.add_argument( "--na-prob-file" , "-n" , metavar="na_prob.json" , help="Model estimates of probability of no answer.") parser.add_argument( "--na-prob-thresh" , "-t" , type=__UpperCamelCase , default=1.0 , help="Predict \"\" if no-answer probability exceeds this (default = 1.0)." , ) parser.add_argument( "--out-image-dir" , "-p" , metavar="out_images" , default=__UpperCamelCase , help="Save precision-recall curves to directory.") parser.add_argument("--verbose" , "-v" , action="store_true") if len(sys.argv) == 1: parser.print_help() sys.exit(1) return parser.parse_args() def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> int: a = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: a = bool(qa["answers"]["text"]) return qid_to_has_ans def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> List[Any]: def remove_articles(__UpperCamelCase): return ARTICLES_REGEX.sub(" " , __UpperCamelCase) def white_space_fix(__UpperCamelCase): return " ".join(text.split()) def remove_punc(__UpperCamelCase): a = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(__UpperCamelCase): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__UpperCamelCase)))) def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> Tuple: if not s: return [] return normalize_answer(__UpperCamelCase).split() def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase) -> str: return int(normalize_answer(__UpperCamelCase) == normalize_answer(__UpperCamelCase)) def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase) -> str: a = get_tokens(__UpperCamelCase) a = get_tokens(__UpperCamelCase) a = collections.Counter(__UpperCamelCase) & collections.Counter(__UpperCamelCase) a = sum(common.values()) if len(__UpperCamelCase) == 0 or len(__UpperCamelCase) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks) if num_same == 0: return 0 a = 1.0 * num_same / len(__UpperCamelCase) a = 1.0 * num_same / len(__UpperCamelCase) a = (2 * precision * recall) / (precision + recall) return fa def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase) -> str: a = {} a = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: a = qa["id"] a = [t for t in qa["answers"]["text"] if normalize_answer(__UpperCamelCase)] if not gold_answers: # For unanswerable questions, only correct answer is empty string a = [""] if qid not in preds: print(f'''Missing prediction for {qid}''') continue a = preds[qid] # Take max over all gold answers a = max(compute_exact(__UpperCamelCase , __UpperCamelCase) for a in gold_answers) a = max(compute_fa(__UpperCamelCase , __UpperCamelCase) for a in gold_answers) return exact_scores, fa_scores def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase) -> List[Any]: a = {} for qid, s in scores.items(): a = na_probs[qid] > na_prob_thresh if pred_na: a = float(not qid_to_has_ans[qid]) else: a = s return new_scores def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None) -> str: if not qid_list: a = len(__UpperCamelCase) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores.values()) / total), ("f1", 100.0 * sum(fa_scores.values()) / total), ("total", total), ]) else: a = len(__UpperCamelCase) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores[k] for k in qid_list) / total), ("f1", 100.0 * sum(fa_scores[k] for k in qid_list) / total), ("total", total), ]) def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase) -> List[str]: for k in new_eval: a = new_eval[k] def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase) -> List[str]: plt.step(__UpperCamelCase , __UpperCamelCase , color="b" , alpha=0.2 , where="post") plt.fill_between(__UpperCamelCase , __UpperCamelCase , step="post" , alpha=0.2 , color="b") plt.xlabel("Recall") plt.ylabel("Precision") plt.xlim([0.0, 1.05]) plt.ylim([0.0, 1.05]) plt.title(__UpperCamelCase) plt.savefig(__UpperCamelCase) plt.clf() def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None) -> int: a = sorted(__UpperCamelCase , key=lambda __UpperCamelCase: na_probs[k]) a = 0.0 a = 1.0 a = 0.0 a = [1.0] a = [0.0] a = 0.0 for i, qid in enumerate(__UpperCamelCase): if qid_to_has_ans[qid]: true_pos += scores[qid] a = true_pos / float(i + 1) a = true_pos / float(__UpperCamelCase) if i == len(__UpperCamelCase) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(__UpperCamelCase) recalls.append(__UpperCamelCase) if out_image: plot_pr_curve(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase) return {"ap": 100.0 * avg_prec} def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase) -> int: if out_image_dir and not os.path.exists(__UpperCamelCase): os.makedirs(__UpperCamelCase) a = sum(1 for v in qid_to_has_ans.values() if v) if num_true_pos == 0: return a = make_precision_recall_eval( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , out_image=os.path.join(__UpperCamelCase , "pr_exact.png") , title="Precision-Recall curve for Exact Match score" , ) a = make_precision_recall_eval( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , out_image=os.path.join(__UpperCamelCase , "pr_f1.png") , title="Precision-Recall curve for F1 score" , ) a = {k: float(__UpperCamelCase) for k, v in qid_to_has_ans.items()} a = make_precision_recall_eval( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , out_image=os.path.join(__UpperCamelCase , "pr_oracle.png") , title="Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)" , ) merge_eval(__UpperCamelCase , __UpperCamelCase , "pr_exact") merge_eval(__UpperCamelCase , __UpperCamelCase , "pr_f1") merge_eval(__UpperCamelCase , __UpperCamelCase , "pr_oracle") def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase) -> Optional[Any]: if not qid_list: return a = [na_probs[k] for k in qid_list] a = np.ones_like(__UpperCamelCase) / float(len(__UpperCamelCase)) plt.hist(__UpperCamelCase , weights=__UpperCamelCase , bins=20 , range=(0.0, 1.0)) plt.xlabel("Model probability of no-answer") plt.ylabel("Proportion of dataset") plt.title(f'''Histogram of no-answer probability: {name}''') plt.savefig(os.path.join(__UpperCamelCase , f'''na_prob_hist_{name}.png''')) plt.clf() def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase) -> Optional[int]: a = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k]) a = num_no_ans a = cur_score a = 0.0 a = sorted(__UpperCamelCase , key=lambda __UpperCamelCase: na_probs[k]) for i, qid in enumerate(__UpperCamelCase): if qid not in scores: continue if qid_to_has_ans[qid]: a = scores[qid] else: if preds[qid]: a = -1 else: a = 0 cur_score += diff if cur_score > best_score: a = cur_score a = na_probs[qid] return 100.0 * best_score / len(__UpperCamelCase), best_thresh def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase) -> Any: a , a = find_best_thresh(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase) a , a = find_best_thresh(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase) a = best_exact a = exact_thresh a = best_fa a = fa_thresh def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: with open(OPTS.data_file) as f: a = json.load(__UpperCamelCase) a = dataset_json["data"] with open(OPTS.pred_file) as f: a = json.load(__UpperCamelCase) if OPTS.na_prob_file: with open(OPTS.na_prob_file) as f: a = json.load(__UpperCamelCase) else: a = {k: 0.0 for k in preds} a = make_qid_to_has_ans(__UpperCamelCase) # maps qid to True/False a = [k for k, v in qid_to_has_ans.items() if v] a = [k for k, v in qid_to_has_ans.items() if not v] a , a = get_raw_scores(__UpperCamelCase , __UpperCamelCase) a = apply_no_ans_threshold(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , OPTS.na_prob_thresh) a = apply_no_ans_threshold(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , OPTS.na_prob_thresh) a = make_eval_dict(__UpperCamelCase , __UpperCamelCase) if has_ans_qids: a = make_eval_dict(__UpperCamelCase , __UpperCamelCase , qid_list=__UpperCamelCase) merge_eval(__UpperCamelCase , __UpperCamelCase , "HasAns") if no_ans_qids: a = make_eval_dict(__UpperCamelCase , __UpperCamelCase , qid_list=__UpperCamelCase) merge_eval(__UpperCamelCase , __UpperCamelCase , "NoAns") if OPTS.na_prob_file: find_all_best_thresh(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , OPTS.out_image_dir) histogram_na_prob(__UpperCamelCase , __UpperCamelCase , OPTS.out_image_dir , "hasAns") histogram_na_prob(__UpperCamelCase , __UpperCamelCase , OPTS.out_image_dir , "noAns") if OPTS.out_file: with open(OPTS.out_file , "w") as f: json.dump(__UpperCamelCase , __UpperCamelCase) else: print(json.dumps(__UpperCamelCase , indent=2)) if __name__ == "__main__": lowercase__ : List[str] = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt main()
180
import math import sys def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> int: if number != int(__UpperCamelCase): raise ValueError("the value of input must be a natural number") if number < 0: raise ValueError("the value of input must not be a negative number") if number == 0: return 1 a = [-1] * (number + 1) a = 0 for i in range(1 , number + 1): a = sys.maxsize a = int(math.sqrt(__UpperCamelCase)) for j in range(1 , root + 1): a = 1 + answers[i - (j**2)] a = min(__UpperCamelCase , __UpperCamelCase) a = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
180
1
from ..utils import DummyObject, requires_backends class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : Any = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : Optional[int] = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : str = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : List[Any] = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : Optional[int] = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : Dict = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : Dict = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : Union[str, Any] = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : Optional[int] = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : Optional[Any] = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : Any = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : Optional[Any] = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : int = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] )
283
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline _snake_case = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False) parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''') parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''') _snake_case = parser.parse_args() _snake_case = '''cpu''' _snake_case = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' _snake_case = '''path-to-your-trained-model''' _snake_case = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: _snake_case = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) _snake_case = pipe.to(device) # to channels last _snake_case = pipe.unet.to(memory_format=torch.channels_last) _snake_case = pipe.vae.to(memory_format=torch.channels_last) _snake_case = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: _snake_case = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex _snake_case = torch.randn(2, 4, 64, 64) _snake_case = torch.rand(1) * 9_99 _snake_case = torch.randn(2, 77, 7_68) _snake_case = (sample, timestep, encoder_hidden_status) try: _snake_case = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: _snake_case = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) _snake_case = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) _snake_case = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: _snake_case = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute _snake_case = 6_66 _snake_case = torch.Generator(device).manual_seed(seed) _snake_case = {'''generator''': generator} if args.steps is not None: _snake_case = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): _snake_case = pipe(prompt, **generate_kwargs).images[0] # save image image.save('''generated.png''')
283
1
"""simple docstring""" import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class __lowerCamelCase ( _A ): def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """hidden_sizes""" ) ) self.parent.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """num_attention_heads""" ) ) class __lowerCamelCase : def __init__(self , lowerCamelCase , lowerCamelCase=13 , lowerCamelCase=64 , lowerCamelCase=3 , lowerCamelCase=3 , lowerCamelCase=2 , lowerCamelCase=1 , lowerCamelCase=16 , lowerCamelCase=[128, 256, 384] , lowerCamelCase=[4, 6, 8] , lowerCamelCase=[2, 3, 4] , lowerCamelCase=[16, 16, 16] , lowerCamelCase=0 , lowerCamelCase=[2, 2, 2] , lowerCamelCase=[2, 2, 2] , lowerCamelCase=0.02 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=2 , ): '''simple docstring''' _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = image_size _lowerCAmelCase = num_channels _lowerCAmelCase = kernel_size _lowerCAmelCase = stride _lowerCAmelCase = padding _lowerCAmelCase = hidden_sizes _lowerCAmelCase = num_attention_heads _lowerCAmelCase = depths _lowerCAmelCase = key_dim _lowerCAmelCase = drop_path_rate _lowerCAmelCase = patch_size _lowerCAmelCase = attention_ratio _lowerCAmelCase = mlp_ratio _lowerCAmelCase = initializer_range _lowerCAmelCase = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] _lowerCAmelCase = is_training _lowerCAmelCase = use_labels _lowerCAmelCase = num_labels _lowerCAmelCase = initializer_range def A__ (self ): '''simple docstring''' _lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) _lowerCAmelCase = self.get_config() return config, pixel_values, labels def A__ (self ): '''simple docstring''' return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = LevitModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() _lowerCAmelCase = model(__SCREAMING_SNAKE_CASE ) _lowerCAmelCase = (self.image_size, self.image_size) _lowerCAmelCase , _lowerCAmelCase = image_size[0], image_size[1] for _ in range(4 ): _lowerCAmelCase = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) _lowerCAmelCase = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.num_labels _lowerCAmelCase = LevitForImageClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() _lowerCAmelCase = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = config_and_inputs _lowerCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __lowerCamelCase ( _A , _A , unittest.TestCase ): __UpperCamelCase = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) __UpperCamelCase = ( { 'feature-extraction': LevitModel, 'image-classification': (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def A__ (self ): '''simple docstring''' _lowerCAmelCase = LevitModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE , hidden_size=37 ) def A__ (self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ (self ): '''simple docstring''' return @unittest.skip(reason="""Levit does not use inputs_embeds""" ) def A__ (self ): '''simple docstring''' pass @unittest.skip(reason="""Levit does not support input and output embeddings""" ) def A__ (self ): '''simple docstring''' pass @unittest.skip(reason="""Levit does not output attentions""" ) def A__ (self ): '''simple docstring''' pass def A__ (self ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(__SCREAMING_SNAKE_CASE ) _lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase = [*signature.parameters.keys()] _lowerCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE ) def A__ (self ): '''simple docstring''' def check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ): _lowerCAmelCase = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): _lowerCAmelCase = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) _lowerCAmelCase = outputs.hidden_states _lowerCAmelCase = len(self.model_tester.depths ) + 1 self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) _lowerCAmelCase = (self.model_tester.image_size, self.model_tester.image_size) _lowerCAmelCase , _lowerCAmelCase = image_size[0], image_size[1] for _ in range(4 ): _lowerCAmelCase = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) _lowerCAmelCase = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = True check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase = True check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def A__ (self ): '''simple docstring''' pass def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase = super()._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE ) def A__ (self ): '''simple docstring''' if not self.model_tester.is_training: return _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(__SCREAMING_SNAKE_CASE ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue _lowerCAmelCase = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.train() _lowerCAmelCase = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) _lowerCAmelCase = model(**__SCREAMING_SNAKE_CASE ).loss loss.backward() def A__ (self ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return _lowerCAmelCase = False _lowerCAmelCase = True for model_class in self.all_model_classes: if model_class in get_values(__SCREAMING_SNAKE_CASE ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue _lowerCAmelCase = model_class(__SCREAMING_SNAKE_CASE ) model.gradient_checkpointing_enable() model.to(__SCREAMING_SNAKE_CASE ) model.train() _lowerCAmelCase = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) _lowerCAmelCase = model(**__SCREAMING_SNAKE_CASE ).loss loss.backward() def A__ (self ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = [ {"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float}, {"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long}, {"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(__SCREAMING_SNAKE_CASE ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f"""Testing {model_class} with {problem_type["title"]}""" ): _lowerCAmelCase = problem_type["""title"""] _lowerCAmelCase = problem_type["""num_labels"""] _lowerCAmelCase = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.train() _lowerCAmelCase = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) if problem_type["num_labels"] > 1: _lowerCAmelCase = inputs["""labels"""].unsqueeze(1 ).repeat(1 , problem_type["""num_labels"""] ) _lowerCAmelCase = inputs["""labels"""].to(problem_type["""dtype"""] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=__SCREAMING_SNAKE_CASE ) as warning_list: _lowerCAmelCase = model(**__SCREAMING_SNAKE_CASE ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f"""Something is going wrong in the regression problem: intercepted {w.message}""" ) loss.backward() @slow def A__ (self ): '''simple docstring''' for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = LevitModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( ) -> str: """simple docstring""" _lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __lowerCamelCase ( unittest.TestCase ): @cached_property def A__ (self ): '''simple docstring''' return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def A__ (self ): '''simple docstring''' _lowerCAmelCase = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( __SCREAMING_SNAKE_CASE ) _lowerCAmelCase = self.default_image_processor _lowerCAmelCase = prepare_img() _lowerCAmelCase = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).to(__SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): _lowerCAmelCase = model(**__SCREAMING_SNAKE_CASE ) # verify the logits _lowerCAmelCase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE ) _lowerCAmelCase = torch.tensor([1.0448, -0.3745, -1.8317] ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
363
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. SCREAMING_SNAKE_CASE : Dict = abspath(join(dirname(dirname(__file__)), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def __UpperCAmelCase ( snake_case_ : Optional[int] ) -> List[str]: """simple docstring""" from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case_ ) def __UpperCAmelCase ( snake_case_ : Union[str, Any] ) -> int: """simple docstring""" from diffusers.utils.testing_utils import pytest_terminal_summary_main _lowerCAmelCase = terminalreporter.config.getoption("""--make-reports""" ) if make_reports: pytest_terminal_summary_main(snake_case_ , id=snake_case_ )
317
0
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def _lowerCAmelCase ( __snake_case : Dict ) -> Optional[int]: __A ,__A : Union[str, Any] = image.size __A ,__A : List[str] = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 __A : Optional[Any] = image.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) __A : Optional[Any] = np.array(__snake_case ).astype(np.floataa ) / 255.0 __A : int = image[None].transpose(0 , 3 , 1 , 2 ) __A : Tuple = torch.from_numpy(__snake_case ) return 2.0 * image - 1.0 class SCREAMING_SNAKE_CASE (a__ ): def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): '''simple docstring''' super().__init__() self.register_modules(vqvae=_UpperCAmelCase , unet=_UpperCAmelCase , scheduler=_UpperCAmelCase) @torch.no_grad() def __call__( self , _UpperCAmelCase = None , _UpperCAmelCase = 1 , _UpperCAmelCase = 100 , _UpperCAmelCase = 0.0 , _UpperCAmelCase = None , _UpperCAmelCase = "pil" , _UpperCAmelCase = True , ): '''simple docstring''' if isinstance(_UpperCAmelCase , PIL.Image.Image): __A : Any = 1 elif isinstance(_UpperCAmelCase , torch.Tensor): __A : Optional[int] = image.shape[0] else: raise ValueError(F'`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(_UpperCAmelCase)}') if isinstance(_UpperCAmelCase , PIL.Image.Image): __A : List[str] = preprocess(_UpperCAmelCase) __A ,__A : List[str] = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image __A : List[Any] = (batch_size, self.unet.config.in_channels // 2, height, width) __A : Union[str, Any] = next(self.unet.parameters()).dtype __A : str = randn_tensor(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=_UpperCAmelCase) __A : List[Any] = image.to(device=self.device , dtype=_UpperCAmelCase) # set timesteps and move to the correct device self.scheduler.set_timesteps(_UpperCAmelCase , device=self.device) __A : List[Any] = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler __A : Union[str, Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __A : Union[str, Any] = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) __A : Optional[Any] = {} if accepts_eta: __A : Union[str, Any] = eta for t in self.progress_bar(_UpperCAmelCase): # concat latents and low resolution image in the channel dimension. __A : Any = torch.cat([latents, image] , dim=1) __A : Dict = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase) # predict the noise residual __A : List[str] = self.unet(_UpperCAmelCase , _UpperCAmelCase).sample # compute the previous noisy sample x_t -> x_t-1 __A : int = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase).prev_sample # decode the image latents with the VQVAE __A : List[str] = self.vqvae.decode(_UpperCAmelCase).sample __A : List[Any] = torch.clamp(_UpperCAmelCase , -1.0 , 1.0) __A : Tuple = image / 2 + 0.5 __A : Tuple = image.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": __A : Dict = self.numpy_to_pil(_UpperCAmelCase) if not return_dict: return (image,) return ImagePipelineOutput(images=_UpperCAmelCase)
190
'''simple docstring''' import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights __A : Union[str, Any] = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_UpperCAmelCase , cache_dir=_UpperCAmelCase) __A : Optional[Any] = [t[-1] for t in os.walk(os.path.join(_UpperCAmelCase , os.listdir(_UpperCAmelCase)[0] , 'snapshots'))] __A : int = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin') for f in files) @slow @require_flax class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_UpperCAmelCase) __A : Dict = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) __A : Optional[Any] = jax.random.PRNGKey(0) __A : int = 4 __A : Tuple = jax.device_count() __A : Union[str, Any] = num_samples * [prompt] __A : Tuple = pipeline.prepare_inputs(_UpperCAmelCase) # shard inputs and rng __A : str = replicate(_UpperCAmelCase) __A : Tuple = jax.random.split(_UpperCAmelCase , _UpperCAmelCase) __A : Union[str, Any] = shard(_UpperCAmelCase) __A : Union[str, Any] = pipeline(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , jit=_UpperCAmelCase).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 4.1514745) < 1e-3 assert np.abs(np.abs(_UpperCAmelCase , dtype=np.floataa).sum() - 49947.875) < 5e-1 __A : List[str] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:]))) assert len(_UpperCAmelCase) == num_samples def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : str = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=_UpperCAmelCase) __A : List[Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) __A : Tuple = jax.random.PRNGKey(0) __A : Any = 50 __A : str = jax.device_count() __A : Union[str, Any] = num_samples * [prompt] __A : List[str] = pipeline.prepare_inputs(_UpperCAmelCase) # shard inputs and rng __A : Dict = replicate(_UpperCAmelCase) __A : Optional[Any] = jax.random.split(_UpperCAmelCase , _UpperCAmelCase) __A : int = shard(_UpperCAmelCase) __A : Tuple = pipeline(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , jit=_UpperCAmelCase).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.05652401)) < 1e-3 assert np.abs((np.abs(_UpperCAmelCase , dtype=np.floataa).sum() - 2383808.2)) < 5e-1 def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : List[str] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_UpperCAmelCase) __A : List[Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) __A : str = jax.random.PRNGKey(0) __A : Any = 50 __A : Optional[int] = jax.device_count() __A : int = num_samples * [prompt] __A : Optional[int] = pipeline.prepare_inputs(_UpperCAmelCase) # shard inputs and rng __A : Optional[int] = replicate(_UpperCAmelCase) __A : List[str] = jax.random.split(_UpperCAmelCase , _UpperCAmelCase) __A : Dict = shard(_UpperCAmelCase) __A : str = pipeline(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , jit=_UpperCAmelCase).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.04003906)) < 1e-3 assert np.abs((np.abs(_UpperCAmelCase , dtype=np.floataa).sum() - 2373516.75)) < 5e-1 def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Optional[Any] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa) __A : Union[str, Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) __A : Any = jax.random.PRNGKey(0) __A : List[str] = 50 __A : Optional[int] = jax.device_count() __A : List[Any] = num_samples * [prompt] __A : List[Any] = pipeline.prepare_inputs(_UpperCAmelCase) # shard inputs and rng __A : Union[str, Any] = replicate(_UpperCAmelCase) __A : Optional[Any] = jax.random.split(_UpperCAmelCase , _UpperCAmelCase) __A : List[str] = shard(_UpperCAmelCase) __A : int = pipeline(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , jit=_UpperCAmelCase).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.04003906)) < 1e-3 assert np.abs((np.abs(_UpperCAmelCase , dtype=np.floataa).sum() - 2373516.75)) < 5e-1 def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = FlaxDDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , set_alpha_to_one=_UpperCAmelCase , steps_offset=1 , ) __A ,__A : Any = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase , ) __A : Optional[Any] = scheduler.create_state() __A : Any = scheduler_state __A : List[str] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) __A : Union[str, Any] = jax.random.PRNGKey(0) __A : Optional[int] = 50 __A : Optional[Any] = jax.device_count() __A : Any = num_samples * [prompt] __A : Optional[Any] = pipeline.prepare_inputs(_UpperCAmelCase) # shard inputs and rng __A : int = replicate(_UpperCAmelCase) __A : Any = jax.random.split(_UpperCAmelCase , _UpperCAmelCase) __A : Tuple = shard(_UpperCAmelCase) __A : Union[str, Any] = pipeline(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , jit=_UpperCAmelCase).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.045043945)) < 1e-3 assert np.abs((np.abs(_UpperCAmelCase , dtype=np.floataa).sum() - 2347693.5)) < 5e-1 def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) __A : int = jax.device_count() __A : List[Any] = num_samples * [prompt] __A : List[Any] = jax.random.split(jax.random.PRNGKey(0) , _UpperCAmelCase) __A ,__A : Tuple = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_UpperCAmelCase , ) __A : str = replicate(_UpperCAmelCase) __A : str = pipeline.prepare_inputs(_UpperCAmelCase) __A : str = shard(_UpperCAmelCase) __A : int = pipeline(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , jit=_UpperCAmelCase).images assert images.shape == (num_samples, 1, 512, 512, 3) __A : Any = images[2, 0, 256, 10:17, 1] # With memory efficient attention __A ,__A : str = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_UpperCAmelCase , use_memory_efficient_attention=_UpperCAmelCase , ) __A : Any = replicate(_UpperCAmelCase) __A : List[Any] = pipeline.prepare_inputs(_UpperCAmelCase) __A : Optional[Any] = shard(_UpperCAmelCase) __A : List[Any] = pipeline(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , jit=_UpperCAmelCase).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) __A : List[Any] = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice).max() < 1e-2
190
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a_ : Union[str, Any] = {'configuration_vit_mae': ['VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMAEConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Dict = [ 'VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMAEForPreTraining', 'ViTMAELayer', 'ViTMAEModel', 'ViTMAEPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Tuple = [ 'TFViTMAEForPreTraining', 'TFViTMAEModel', 'TFViTMAEPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys a_ : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
327
import argparse import datetime def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = { '0': 'Sunday', '1': 'Monday', '2': 'Tuesday', '3': 'Wednesday', '4': 'Thursday', '5': 'Friday', '6': 'Saturday', } SCREAMING_SNAKE_CASE = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(_UpperCAmelCase) < 11: raise ValueError('Must be 10 characters long') # Get month SCREAMING_SNAKE_CASE = int(date_input[0] + date_input[1]) # Validate if not 0 < m < 13: raise ValueError('Month must be between 1 - 12') SCREAMING_SNAKE_CASE = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'') # Get day SCREAMING_SNAKE_CASE = int(date_input[3] + date_input[4]) # Validate if not 0 < d < 32: raise ValueError('Date must be between 1 - 31') # Get second separator SCREAMING_SNAKE_CASE = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'') # Get year SCREAMING_SNAKE_CASE = int(date_input[6] + date_input[7] + date_input[8] + date_input[9]) # Arbitrary year range if not 45 < y < 8500: raise ValueError( 'Year out of range. There has to be some sort of limit...right?') # Get datetime obj for validation SCREAMING_SNAKE_CASE = datetime.date(int(_UpperCAmelCase) , int(_UpperCAmelCase) , int(_UpperCAmelCase)) # Start math if m <= 2: SCREAMING_SNAKE_CASE = y - 1 SCREAMING_SNAKE_CASE = m + 12 # maths var SCREAMING_SNAKE_CASE = int(str(_UpperCAmelCase)[:2]) SCREAMING_SNAKE_CASE = int(str(_UpperCAmelCase)[2:]) SCREAMING_SNAKE_CASE = int(2.6 * m - 5.39) SCREAMING_SNAKE_CASE = int(c / 4) SCREAMING_SNAKE_CASE = int(k / 4) SCREAMING_SNAKE_CASE = int(d + k) SCREAMING_SNAKE_CASE = int(t + u + v + x) SCREAMING_SNAKE_CASE = int(z - (2 * c)) SCREAMING_SNAKE_CASE = round(w % 7) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('The date was evaluated incorrectly. Contact developer.') # Response SCREAMING_SNAKE_CASE = F'''Your date {date_input}, is a {days[str(_UpperCAmelCase)]}!''' return response if __name__ == "__main__": import doctest doctest.testmod() a_ : Tuple = argparse.ArgumentParser( description=( 'Find out what day of the week nearly any date is or was. Enter ' 'date as a string in the mm-dd-yyyy or mm/dd/yyyy format' ) ) parser.add_argument( 'date_input', type=str, help='Date as a string (mm-dd-yyyy or mm/dd/yyyy)' ) a_ : Any = parser.parse_args() zeller(args.date_input)
327
1
from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class _A ( lowercase_): SCREAMING_SNAKE_CASE : Optional[Any] = '''Salesforce/blip-image-captioning-base''' SCREAMING_SNAKE_CASE : Dict = ( '''This is a tool that generates a description of an image. It takes an input named `image` which should be the ''' '''image to caption, and returns a text that contains the description in English.''' ) SCREAMING_SNAKE_CASE : int = '''image_captioner''' SCREAMING_SNAKE_CASE : Any = AutoModelForVisionaSeq SCREAMING_SNAKE_CASE : str = ['''image'''] SCREAMING_SNAKE_CASE : List[Any] = ['''text'''] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ['vision'] ) super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" return self.pre_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='pt' ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" return self.model.generate(**SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" return self.pre_processor.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ )[0].strip()
253
"""simple docstring""" import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) lowercase__ : List[str] = logging.getLogger() def UpperCamelCase_ ( lowerCAmelCase__ : str ) -> Dict: """simple docstring""" lowerCAmelCase_ : Dict = {} lowerCAmelCase_ : Union[str, Any] = os.path.join(lowerCAmelCase__ , 'all_results.json' ) if os.path.exists(lowerCAmelCase__ ): with open(lowerCAmelCase__ , 'r' ) as f: lowerCAmelCase_ : Any = json.load(lowerCAmelCase__ ) else: raise ValueError(f"can't find {path}" ) return results lowercase__ : Optional[int] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self : Any ): import xla_spawn lowerCAmelCase_ : Union[str, Any] = self.get_auto_remove_tmp_dir() lowerCAmelCase_ : Optional[Any] = F"\n ./examples/pytorch/text-classification/run_glue.py\n --num_cores=8\n ./examples/pytorch/text-classification/run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --do_train\n --do_eval\n --debug tpu_metrics_debug\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --max_steps=10\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n ".split() with patch.object(SCREAMING_SNAKE_CASE_ , 'argv' , SCREAMING_SNAKE_CASE_ ): lowerCAmelCase_ : Optional[Any] = time() xla_spawn.main() lowerCAmelCase_ : Any = time() lowerCAmelCase_ : Dict = get_results(SCREAMING_SNAKE_CASE_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 5_0_0 ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): import xla_spawn lowerCAmelCase_ : Dict = '\n ./tests/test_trainer_tpu.py\n --num_cores=8\n ./tests/test_trainer_tpu.py\n '.split() with patch.object(SCREAMING_SNAKE_CASE_ , 'argv' , SCREAMING_SNAKE_CASE_ ): xla_spawn.main()
224
0
"""simple docstring""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , ): '''simple docstring''' __SCREAMING_SNAKE_CASE = {} if train_file is not None: __SCREAMING_SNAKE_CASE = [train_file] if eval_file is not None: __SCREAMING_SNAKE_CASE = [eval_file] if test_file is not None: __SCREAMING_SNAKE_CASE = [test_file] __SCREAMING_SNAKE_CASE = datasets.load_dataset("csv" , data_files=lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = list(ds[list(files.keys() )[0]].features.keys() ) __SCREAMING_SNAKE_CASE = features_name.pop(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = list(set(ds[list(files.keys() )[0]][label_name] ) ) __SCREAMING_SNAKE_CASE = {label: i for i, label in enumerate(lowerCAmelCase_ )} __SCREAMING_SNAKE_CASE = tokenizer.model_input_names __SCREAMING_SNAKE_CASE = {} if len(lowerCAmelCase_ ) == 1: for k in files.keys(): __SCREAMING_SNAKE_CASE = ds[k].map( lambda lowerCAmelCase_ : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding="max_length" ) , batched=lowerCAmelCase_ , ) elif len(lowerCAmelCase_ ) == 2: for k in files.keys(): __SCREAMING_SNAKE_CASE = ds[k].map( lambda lowerCAmelCase_ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding="max_length" , ) , batched=lowerCAmelCase_ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: __SCREAMING_SNAKE_CASE = {k: v for k, v in ex.items() if k in input_names} __SCREAMING_SNAKE_CASE = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: __SCREAMING_SNAKE_CASE = {k: v for k, v in ex.items() if k in input_names} __SCREAMING_SNAKE_CASE = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: __SCREAMING_SNAKE_CASE = {k: v for k, v in ex.items() if k in input_names} __SCREAMING_SNAKE_CASE = labelaid[ex[label_name]] yield (d, label) __SCREAMING_SNAKE_CASE = ( tf.data.Dataset.from_generator( lowerCAmelCase_ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: __SCREAMING_SNAKE_CASE = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) __SCREAMING_SNAKE_CASE = ( tf.data.Dataset.from_generator( lowerCAmelCase_ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: __SCREAMING_SNAKE_CASE = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) __SCREAMING_SNAKE_CASE = ( tf.data.Dataset.from_generator( lowerCAmelCase_ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: __SCREAMING_SNAKE_CASE = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid a__ : int = logging.getLogger(__name__) @dataclass class UpperCamelCase_ : """simple docstring""" snake_case__ : int = field(metadata={"help": "Which column contains the label"}) snake_case__ : str = field(default=UpperCamelCase , metadata={"help": "The path of the training file"}) snake_case__ : Optional[str] = field(default=UpperCamelCase , metadata={"help": "The path of the development file"}) snake_case__ : Optional[str] = field(default=UpperCamelCase , metadata={"help": "The path of the test file"}) snake_case__ : int = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) snake_case__ : bool = field( default=UpperCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"}) @dataclass class UpperCamelCase_ : """simple docstring""" snake_case__ : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}) snake_case__ : Optional[str] = field( default=UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"}) snake_case__ : Optional[str] = field( default=UpperCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}) snake_case__ : bool = field(default=UpperCamelCase , metadata={"help": "Set this flag to use fast tokenization."}) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. snake_case__ : Optional[str] = field( default=UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) def UpperCAmelCase__ (): '''simple docstring''' __SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info( f"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ f"""16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=lowerCAmelCase_ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(lowerCAmelCase_ ) , labelaid=lowerCAmelCase_ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="text-classification" , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): __SCREAMING_SNAKE_CASE = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool(".bin" in model_args.model_name_or_path ) , config=lowerCAmelCase_ , cache_dir=model_args.cache_dir , ) def compute_metrics(lowerCAmelCase_ ) -> Dict: __SCREAMING_SNAKE_CASE = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer __SCREAMING_SNAKE_CASE = TFTrainer( model=lowerCAmelCase_ , args=lowerCAmelCase_ , train_dataset=lowerCAmelCase_ , eval_dataset=lowerCAmelCase_ , compute_metrics=lowerCAmelCase_ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __SCREAMING_SNAKE_CASE = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) __SCREAMING_SNAKE_CASE = trainer.evaluate() __SCREAMING_SNAKE_CASE = os.path.join(training_args.output_dir , "eval_results.txt" ) with open(lowerCAmelCase_ , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(f""" {key} = {value}""" ) writer.write(f"""{key} = {value}\n""" ) results.update(lowerCAmelCase_ ) return results if __name__ == "__main__": main()
195
"""simple docstring""" from datetime import datetime import requests def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = "https://downloadgram.net/wp-json/wppress/video-downloader/video?url=" __SCREAMING_SNAKE_CASE = requests.get(base_url + url ).json()[0]["urls"][0]["src"] return requests.get(lowerCAmelCase_ ).content if __name__ == "__main__": a__ : str = input('''Enter Video/IGTV url: ''').strip() a__ : List[Any] = F"{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4" with open(file_name, '''wb''') as fp: fp.write(download_video(url)) print(F"Done. Video saved to disk as {file_name}.")
195
1
"""simple docstring""" import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : str ,lowercase_ : List[str] ,lowercase_ : Optional[int]=1_4 ,lowercase_ : Any=7 ,lowercase_ : List[Any]=True ,lowercase_ : Union[str, Any]=True ,lowercase_ : Any=True ,lowercase_ : Optional[int]=True ,lowercase_ : Union[str, Any]=True ,lowercase_ : Union[str, Any]=9_9 ,lowercase_ : Any=3_2 ,lowercase_ : str=5 ,lowercase_ : int=4 ,lowercase_ : str=3_7 ,lowercase_ : Optional[Any]="gelu" ,lowercase_ : Any=0.1 ,lowercase_ : Any=0.1 ,lowercase_ : Tuple=5_1_2 ,lowercase_ : str=1_6 ,lowercase_ : str=2 ,lowercase_ : List[Any]=0.02 ,lowercase_ : int=3 ,lowercase_ : List[str]=4 ,lowercase_ : int=None ,): lowerCAmelCase__ : Union[str, Any] = parent lowerCAmelCase__ : Union[str, Any] = batch_size lowerCAmelCase__ : Optional[Any] = seq_length lowerCAmelCase__ : Any = is_training lowerCAmelCase__ : int = use_token_type_ids lowerCAmelCase__ : Optional[int] = use_input_mask lowerCAmelCase__ : List[str] = use_labels lowerCAmelCase__ : Optional[Any] = use_mc_token_ids lowerCAmelCase__ : List[str] = vocab_size lowerCAmelCase__ : int = hidden_size lowerCAmelCase__ : Optional[int] = num_hidden_layers lowerCAmelCase__ : Tuple = num_attention_heads lowerCAmelCase__ : Tuple = intermediate_size lowerCAmelCase__ : List[str] = hidden_act lowerCAmelCase__ : Optional[Any] = hidden_dropout_prob lowerCAmelCase__ : int = attention_probs_dropout_prob lowerCAmelCase__ : List[Any] = max_position_embeddings lowerCAmelCase__ : Optional[int] = type_vocab_size lowerCAmelCase__ : int = type_sequence_label_size lowerCAmelCase__ : List[str] = initializer_range lowerCAmelCase__ : Optional[Any] = num_labels lowerCAmelCase__ : Optional[int] = num_choices lowerCAmelCase__ : Dict = scope lowerCAmelCase__ : List[Any] = self.vocab_size - 1 def __lowerCAmelCase ( self : Optional[Any] ): lowerCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowerCAmelCase__ : str = None if self.use_input_mask: lowerCAmelCase__ : str = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ : int = None if self.use_token_type_ids: lowerCAmelCase__ : int = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) lowerCAmelCase__ : Optional[int] = None if self.use_mc_token_ids: lowerCAmelCase__ : int = ids_tensor([self.batch_size, self.num_choices] ,self.seq_length ) lowerCAmelCase__ : Tuple = None lowerCAmelCase__ : Optional[Any] = None lowerCAmelCase__ : int = None if self.use_labels: lowerCAmelCase__ : List[str] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowerCAmelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) lowerCAmelCase__ : Tuple = ids_tensor([self.batch_size] ,self.num_choices ) lowerCAmelCase__ : Optional[int] = self.get_config() lowerCAmelCase__ : Dict = ids_tensor([self.num_hidden_layers, self.num_attention_heads] ,2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def __lowerCAmelCase ( self : int ): return CTRLConfig( vocab_size=self.vocab_size ,n_embd=self.hidden_size ,n_layer=self.num_hidden_layers ,n_head=self.num_attention_heads ,n_positions=self.max_position_embeddings ,pad_token_id=self.pad_token_id ,) def __lowerCAmelCase ( self : Any ,lowercase_ : Optional[int] ,lowercase_ : Dict ,lowercase_ : List[Any] ,lowercase_ : Any ,lowercase_ : str ,*lowercase_ : str ): lowerCAmelCase__ : Tuple = CTRLModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() model(lowercase_ ,token_type_ids=lowercase_ ,head_mask=lowercase_ ) model(lowercase_ ,token_type_ids=lowercase_ ) lowerCAmelCase__ : Tuple = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) ,config.n_layer ) def __lowerCAmelCase ( self : Optional[int] ,lowercase_ : Dict ,lowercase_ : Tuple ,lowercase_ : Dict ,lowercase_ : List[str] ,lowercase_ : Any ,*lowercase_ : Optional[Any] ): lowerCAmelCase__ : List[str] = CTRLLMHeadModel(lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase__ : Optional[Any] = model(lowercase_ ,token_type_ids=lowercase_ ,labels=lowercase_ ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self : Optional[Any] ): lowerCAmelCase__ : int = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) , ) : Tuple = config_and_inputs lowerCAmelCase__ : Tuple = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask} return config, inputs_dict def __lowerCAmelCase ( self : Any ,lowercase_ : str ,lowercase_ : str ,lowercase_ : str ,lowercase_ : Optional[int] ,*lowercase_ : Optional[Any] ): lowerCAmelCase__ : List[str] = self.num_labels lowerCAmelCase__ : Optional[Any] = CTRLForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase__ : Dict = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowerCAmelCase__ : Dict = model(lowercase_ ,token_type_ids=lowercase_ ,labels=lowercase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) @require_torch class SCREAMING_SNAKE_CASE ( a_ , a_ , a_ , unittest.TestCase ): """simple docstring""" lowercase__ = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () lowercase__ = (CTRLLMHeadModel,) if is_torch_available() else () lowercase__ = ( { "feature-extraction": CTRLModel, "text-classification": CTRLForSequenceClassification, "text-generation": CTRLLMHeadModel, "zero-shot": CTRLForSequenceClassification, } if is_torch_available() else {} ) lowercase__ = True lowercase__ = False lowercase__ = False def __lowerCAmelCase ( self : Dict ,lowercase_ : Dict ,lowercase_ : Any ,lowercase_ : List[str] ,lowercase_ : str ,lowercase_ : Optional[Any] ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def __lowerCAmelCase ( self : Optional[Any] ): lowerCAmelCase__ : Optional[Any] = CTRLModelTester(self ) lowerCAmelCase__ : Any = ConfigTester(self ,config_class=lowercase_ ,n_embd=3_7 ) def __lowerCAmelCase ( self : Optional[int] ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self : Dict ): self.config_tester.run_common_tests() def __lowerCAmelCase ( self : int ): lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*lowercase_ ) def __lowerCAmelCase ( self : Any ): lowerCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowercase_ ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowerCAmelCase ( self : List[str] ): pass @slow def __lowerCAmelCase ( self : Any ): for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ : int = CTRLModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def __lowerCAmelCase ( self : Any ): pass @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : str ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def __lowerCAmelCase ( self : Optional[int] ): lowerCAmelCase__ : List[str] = CTRLLMHeadModel.from_pretrained('''ctrl''' ) model.to(lowercase_ ) lowerCAmelCase__ : str = torch.tensor( [[1_1_8_5_9, 0, 1_6_1_1, 8]] ,dtype=torch.long ,device=lowercase_ ) # Legal the president is lowerCAmelCase__ : List[str] = [ 1_1_8_5_9, 0, 1_6_1_1, 8, 5, 1_5_0, 2_6_4_4_9, 2, 1_9, 3_4_8, 4_6_9, 3, 2_5_9_5, 4_8, 2_0_7_4_0, 2_4_6_5_3_3, 2_4_6_5_3_3, 1_9, 3_0, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a lowerCAmelCase__ : List[Any] = model.generate(lowercase_ ,do_sample=lowercase_ ) self.assertListEqual(output_ids[0].tolist() ,lowercase_ )
106
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __UpperCamelCase : str = { '''configuration_longt5''': ['''LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LongT5Config''', '''LongT5OnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : str = [ '''LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LongT5EncoderModel''', '''LongT5ForConditionalGeneration''', '''LongT5Model''', '''LongT5PreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : int = [ '''FlaxLongT5ForConditionalGeneration''', '''FlaxLongT5Model''', '''FlaxLongT5PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys __UpperCamelCase : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
106
1
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowercase (self ) -> Any: # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. _snake_case = [[1, 2, 4], [1, 2, 3, 4]] _snake_case = DisjunctiveConstraint(UpperCAmelCase ) self.assertTrue(isinstance(dc.token_ids , UpperCAmelCase ) ) with self.assertRaises(UpperCAmelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(UpperCAmelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def lowercase (self ) -> str: # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). _snake_case = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(UpperCAmelCase ): DisjunctiveConstraint(UpperCAmelCase ) # fails here def lowercase (self ) -> Tuple: _snake_case = [[1, 2, 3], [1, 2, 4]] _snake_case = DisjunctiveConstraint(UpperCAmelCase ) _snake_case, _snake_case, _snake_case = dc.update(1 ) _snake_case = stepped is True and completed is False and reset is False self.assertTrue(UpperCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) _snake_case, _snake_case, _snake_case = dc.update(2 ) _snake_case = stepped is True and completed is False and reset is False self.assertTrue(UpperCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) _snake_case, _snake_case, _snake_case = dc.update(3 ) _snake_case = stepped is True and completed is True and reset is False self.assertTrue(UpperCAmelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def lowercase (self ) -> Optional[Any]: _snake_case = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] _snake_case = DisjunctiveConstraint(UpperCAmelCase ) _snake_case, _snake_case, _snake_case = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) _snake_case, _snake_case, _snake_case = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) _snake_case, _snake_case, _snake_case = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) _snake_case, _snake_case, _snake_case = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() _snake_case, _snake_case, _snake_case = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) _snake_case, _snake_case, _snake_case = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) _snake_case, _snake_case, _snake_case = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
270
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
270
1
"""simple docstring""" import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html _a = 'platform' import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, ): if attention_mask is None: UpperCAmelCase_ : Union[str, Any] = np.where(input_ids != config.pad_token_id, 1, 0 ) if decoder_attention_mask is None: UpperCAmelCase_ : Optional[int] = np.where(decoder_input_ids != config.pad_token_id, 1, 0 ) if head_mask is None: UpperCAmelCase_ : int = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase_ : Union[str, Any] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase_ : List[Any] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class A_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_=13 , lowercase_=7 , lowercase_=True , lowercase_=False , lowercase_=99 , lowercase_=16 , lowercase_=2 , lowercase_=4 , lowercase_=4 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=32 , lowercase_=2 , lowercase_=1 , lowercase_=0 , lowercase_=0.02 , ): """simple docstring""" UpperCAmelCase_ : List[str] = parent UpperCAmelCase_ : Tuple = batch_size UpperCAmelCase_ : str = seq_length UpperCAmelCase_ : Dict = is_training UpperCAmelCase_ : List[Any] = use_labels UpperCAmelCase_ : Optional[int] = vocab_size UpperCAmelCase_ : int = hidden_size UpperCAmelCase_ : Optional[Any] = num_hidden_layers UpperCAmelCase_ : Dict = num_attention_heads UpperCAmelCase_ : List[str] = intermediate_size UpperCAmelCase_ : Optional[int] = hidden_act UpperCAmelCase_ : str = hidden_dropout_prob UpperCAmelCase_ : int = attention_probs_dropout_prob UpperCAmelCase_ : Optional[Any] = max_position_embeddings UpperCAmelCase_ : str = eos_token_id UpperCAmelCase_ : str = pad_token_id UpperCAmelCase_ : str = bos_token_id UpperCAmelCase_ : List[Any] = initializer_range def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) UpperCAmelCase_ : Any = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) UpperCAmelCase_ : str = shift_tokens_right(lowercase_ , 1 , 2 ) UpperCAmelCase_ : str = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=lowercase_ , ) UpperCAmelCase_ : Optional[int] = prepare_blenderbot_inputs_dict(lowercase_ , lowercase_ , lowercase_ ) return config, inputs_dict def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.prepare_config_and_inputs() return config, inputs_dict def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[str] = 20 UpperCAmelCase_ : int = model_class_name(lowercase_ ) UpperCAmelCase_ : Optional[int] = model.encode(inputs_dict["input_ids"] ) UpperCAmelCase_ , UpperCAmelCase_ : Any = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) UpperCAmelCase_ : Any = model.init_cache(decoder_input_ids.shape[0] , lowercase_ , lowercase_ ) UpperCAmelCase_ : Tuple = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" ) UpperCAmelCase_ : Union[str, Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCAmelCase_ : int = model.decode( decoder_input_ids[:, :-1] , lowercase_ , decoder_attention_mask=lowercase_ , past_key_values=lowercase_ , decoder_position_ids=lowercase_ , ) UpperCAmelCase_ : int = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) UpperCAmelCase_ : Dict = model.decode( decoder_input_ids[:, -1:] , lowercase_ , decoder_attention_mask=lowercase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowercase_ , ) UpperCAmelCase_ : Optional[Any] = model.decode(lowercase_ , lowercase_ ) UpperCAmelCase_ : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[str] = 20 UpperCAmelCase_ : Any = model_class_name(lowercase_ ) UpperCAmelCase_ : Tuple = model.encode(inputs_dict["input_ids"] ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) UpperCAmelCase_ : Optional[Any] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) UpperCAmelCase_ : int = model.init_cache(decoder_input_ids.shape[0] , lowercase_ , lowercase_ ) UpperCAmelCase_ : List[str] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCAmelCase_ : List[str] = model.decode( decoder_input_ids[:, :-1] , lowercase_ , decoder_attention_mask=lowercase_ , past_key_values=lowercase_ , decoder_position_ids=lowercase_ , ) UpperCAmelCase_ : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) UpperCAmelCase_ : Dict = model.decode( decoder_input_ids[:, -1:] , lowercase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowercase_ , decoder_position_ids=lowercase_ , ) UpperCAmelCase_ : Dict = model.decode(lowercase_ , lowercase_ , decoder_attention_mask=lowercase_ ) UpperCAmelCase_ : Optional[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) @require_flax class A_ (unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = 99 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) UpperCAmelCase_ : Any = input_ids.shape[0] UpperCAmelCase_ : Dict = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self._get_config_and_data() UpperCAmelCase_ : List[str] = FlaxBlenderbotSmallForConditionalGeneration(lowercase_ ) UpperCAmelCase_ : Optional[int] = lm_model(input_ids=lowercase_ ) UpperCAmelCase_ : Optional[int] = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["logits"].shape , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) UpperCAmelCase_ : Optional[int] = FlaxBlenderbotSmallForConditionalGeneration(lowercase_ ) UpperCAmelCase_ : str = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) UpperCAmelCase_ : str = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) UpperCAmelCase_ : Tuple = lm_model(input_ids=lowercase_ , decoder_input_ids=lowercase_ ) UpperCAmelCase_ : Tuple = (*summary.shape, config.vocab_size) self.assertEqual(outputs["logits"].shape , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) UpperCAmelCase_ : Dict = shift_tokens_right(lowercase_ , 1 , 2 ) UpperCAmelCase_ : Tuple = np.equal(lowercase_ , 1 ).astype(np.floataa ).sum() UpperCAmelCase_ : Optional[Any] = np.equal(lowercase_ , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(lowercase_ , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class A_ (lowercase__ ,unittest.TestCase ,lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = True SCREAMING_SNAKE_CASE__ : Union[str, Any] = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) SCREAMING_SNAKE_CASE__ : List[Any] = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = FlaxBlenderbotSmallModelTester(self ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowercase_ , lowercase_ , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowercase_ , lowercase_ , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase_ : List[Any] = self._prepare_for_class(lowercase_ , lowercase_ ) UpperCAmelCase_ : Dict = model_class(lowercase_ ) @jax.jit def encode_jitted(lowercase_ , lowercase_=None , **lowercase_ ): return model.encode(input_ids=lowercase_ , attention_mask=lowercase_ ) with self.subTest("JIT Enabled" ): UpperCAmelCase_ : List[Any] = encode_jitted(**lowercase_ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): UpperCAmelCase_ : Optional[Any] = encode_jitted(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) for jitted_output, output in zip(lowercase_ , lowercase_ ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase_ : Optional[int] = model_class(lowercase_ ) UpperCAmelCase_ : Tuple = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] ) UpperCAmelCase_ : int = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(lowercase_ , lowercase_ , lowercase_ ): return model.decode( decoder_input_ids=lowercase_ , decoder_attention_mask=lowercase_ , encoder_outputs=lowercase_ , ) with self.subTest("JIT Enabled" ): UpperCAmelCase_ : str = decode_jitted(**lowercase_ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): UpperCAmelCase_ : List[Any] = decode_jitted(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) for jitted_output, output in zip(lowercase_ , lowercase_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_class_name in self.all_model_classes: UpperCAmelCase_ : Optional[Any] = model_class_name.from_pretrained("facebook/blenderbot_small-90M" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids UpperCAmelCase_ : List[str] = np.ones((1, 1) ) * model.config.eos_token_id UpperCAmelCase_ : Optional[int] = model(lowercase_ ) self.assertIsNotNone(lowercase_ )
61
"""simple docstring""" from __future__ import annotations import requests def _snake_case ( snake_case__ : str ): A = F'https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty' return requests.get(snake_case__ ).json() def _snake_case ( snake_case__ : int = 10 ): A = 'https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty' A = requests.get(snake_case__ ).json()[:max_stories] return [get_hackernews_story(snake_case__ ) for story_id in story_ids] def _snake_case ( snake_case__ : int = 10 ): A = hackernews_top_stories(snake_case__ ) return "\n".join('* [{title}]({url})'.format(**snake_case__ ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
74
0
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () UpperCamelCase_ : Optional[int] = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). UpperCamelCase_ : str = [0, 25, 50] UpperCamelCase_ : int = [25, 50, 75] UpperCamelCase_ : Any = fuzz.membership.trimf(X, abca) UpperCamelCase_ : Optional[int] = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. UpperCamelCase_ : Optional[int] = np.ones(75) UpperCamelCase_ : List[str] = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) UpperCamelCase_ : str = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) UpperCamelCase_ : str = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) UpperCamelCase_ : List[Any] = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) UpperCamelCase_ : Dict = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] UpperCamelCase_ : Optional[int] = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) UpperCamelCase_ : int = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] UpperCamelCase_ : List[Any] = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] UpperCamelCase_ : Dict = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('''Young''') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('''Middle aged''') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('''union''') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('''intersection''') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('''complement_a''') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('''difference a/b''') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('''alg_sum''') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('''alg_product''') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('''bdd_sum''') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('''bdd_difference''') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
366
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ = { '''configuration_mgp_str''': ['''MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MgpstrConfig'''], '''processing_mgp_str''': ['''MgpstrProcessor'''], '''tokenization_mgp_str''': ['''MgpstrTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ '''MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MgpstrModel''', '''MgpstrPreTrainedModel''', '''MgpstrForSceneTextRecognition''', ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
59
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" _SCREAMING_SNAKE_CASE = """openai/whisper-base""" _SCREAMING_SNAKE_CASE = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) _SCREAMING_SNAKE_CASE = """transcriber""" _SCREAMING_SNAKE_CASE = WhisperProcessor _SCREAMING_SNAKE_CASE = WhisperForConditionalGeneration _SCREAMING_SNAKE_CASE = ["""audio"""] _SCREAMING_SNAKE_CASE = ["""text"""] def A ( self : Dict , UpperCamelCase__ : Any ): """simple docstring""" return self.pre_processor(UpperCamelCase__ , return_tensors='pt' ).input_features def A ( self : Optional[Any] , UpperCamelCase__ : Any ): """simple docstring""" return self.model.generate(inputs=UpperCamelCase__ ) def A ( self : Any , UpperCamelCase__ : Optional[Any] ): """simple docstring""" return self.pre_processor.batch_decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ )[0]
28
'''simple docstring''' from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING _lowerCamelCase : Any = logging.get_logger(__name__) @add_end_docstrings(_a ) class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" def __init__( self : Any , *UpperCamelCase__ : Dict , **UpperCamelCase__ : Union[str, Any] ): """simple docstring""" super().__init__(*UpperCamelCase__ , **UpperCamelCase__ ) requires_backends(self , 'decord' ) self.check_model_type(UpperCamelCase__ ) def A ( self : Optional[int] , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Optional[Any]=None ): """simple docstring""" UpperCamelCase = {} if frame_sampling_rate is not None: UpperCamelCase = frame_sampling_rate if num_frames is not None: UpperCamelCase = num_frames UpperCamelCase = {} if top_k is not None: UpperCamelCase = top_k return preprocess_params, {}, postprocess_params def __call__( self : List[str] , UpperCamelCase__ : Union[str, List[str]] , **UpperCamelCase__ : Dict ): """simple docstring""" return super().__call__(UpperCamelCase__ , **UpperCamelCase__ ) def A ( self : Tuple , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : Tuple=1 ): """simple docstring""" if num_frames is None: UpperCamelCase = self.model.config.num_frames if video.startswith('http://' ) or video.startswith('https://' ): UpperCamelCase = BytesIO(requests.get(UpperCamelCase__ ).content ) UpperCamelCase = VideoReader(UpperCamelCase__ ) videoreader.seek(0 ) UpperCamelCase = 0 UpperCamelCase = num_frames * frame_sampling_rate - 1 UpperCamelCase = np.linspace(UpperCamelCase__ , UpperCamelCase__ , num=UpperCamelCase__ , dtype=np.intaa ) UpperCamelCase = videoreader.get_batch(UpperCamelCase__ ).asnumpy() UpperCamelCase = list(UpperCamelCase__ ) UpperCamelCase = self.image_processor(UpperCamelCase__ , return_tensors=self.framework ) return model_inputs def A ( self : Union[str, Any] , UpperCamelCase__ : List[str] ): """simple docstring""" UpperCamelCase = self.model(**UpperCamelCase__ ) return model_outputs def A ( self : int , UpperCamelCase__ : str , UpperCamelCase__ : List[Any]=5 ): """simple docstring""" if top_k > self.model.config.num_labels: UpperCamelCase = self.model.config.num_labels if self.framework == "pt": UpperCamelCase = model_outputs.logits.softmax(-1 )[0] UpperCamelCase , UpperCamelCase = probs.topk(UpperCamelCase__ ) else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) UpperCamelCase = scores.tolist() UpperCamelCase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(UpperCamelCase__ , UpperCamelCase__ )]
28
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A_ : Tuple = logging.get_logger(__name__) A_ : List[Any] = """▁""" A_ : Tuple = {"""vocab_file""": """sentencepiece.bpe.model"""} A_ : List[Any] = { """vocab_file""": { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model""" ), } } A_ : str = { """xlm-roberta-base""": 5_1_2, """xlm-roberta-large""": 5_1_2, """xlm-roberta-large-finetuned-conll02-dutch""": 5_1_2, """xlm-roberta-large-finetuned-conll02-spanish""": 5_1_2, """xlm-roberta-large-finetuned-conll03-english""": 5_1_2, """xlm-roberta-large-finetuned-conll03-german""": 5_1_2, } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = VOCAB_FILES_NAMES UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase = ["""input_ids""", """attention_mask"""] def __init__( self ,a_ ,a_="<s>" ,a_="</s>" ,a_="</s>" ,a_="<s>" ,a_="<unk>" ,a_="<pad>" ,a_="<mask>" ,a_ = None ,**a_ ,) -> None: # Mask token behave like a normal word, i.e. include the space before it _UpperCAmelCase : Dict = AddedToken(__A ,lstrip=__A ,rstrip=__A ) if isinstance(__A ,__A ) else mask_token _UpperCAmelCase : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__A ,eos_token=__A ,unk_token=__A ,sep_token=__A ,cls_token=__A ,pad_token=__A ,mask_token=__A ,sp_model_kwargs=self.sp_model_kwargs ,**__A ,) _UpperCAmelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__A ) ) _UpperCAmelCase : int = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _UpperCAmelCase : Optional[int] = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _UpperCAmelCase : List[str] = 1 _UpperCAmelCase : int = len(self.sp_model ) + self.fairseq_offset _UpperCAmelCase : Dict = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> int: _UpperCAmelCase : Any = self.__dict__.copy() _UpperCAmelCase : Union[str, Any] = None _UpperCAmelCase : Optional[Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self ,a_ ) -> Tuple: _UpperCAmelCase : List[str] = d # for backward compatibility if not hasattr(self ,"""sp_model_kwargs""" ): _UpperCAmelCase : str = {} _UpperCAmelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _snake_case ( self ,a_ ,a_ = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCAmelCase : Tuple = [self.cls_token_id] _UpperCAmelCase : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self ,a_ ,a_ = None ,a_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__A ,token_ids_a=__A ,already_has_special_tokens=__A ) if token_ids_a is None: return [1] + ([0] * len(__A )) + [1] return [1] + ([0] * len(__A )) + [1, 1] + ([0] * len(__A )) + [1] def _snake_case ( self ,a_ ,a_ = None ) -> List[int]: _UpperCAmelCase : List[Any] = [self.sep_token_id] _UpperCAmelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _snake_case ( self ) -> int: return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def _snake_case ( self ) -> int: _UpperCAmelCase : int = {self.convert_ids_to_tokens(__A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _snake_case ( self ,a_ ) -> List[str]: return self.sp_model.encode(__A ,out_type=__A ) def _snake_case ( self ,a_ ) -> Optional[Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _UpperCAmelCase : str = self.sp_model.PieceToId(__A ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _snake_case ( self ,a_ ) -> List[Any]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _snake_case ( self ,a_ ) -> List[Any]: _UpperCAmelCase : str = """""".join(__A ).replace(__A ,""" """ ).strip() return out_string def _snake_case ( self ,a_ ,a_ = None ) -> Tuple[str]: if not os.path.isdir(__A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _UpperCAmelCase : Union[str, Any] = os.path.join( __A ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,__A ) elif not os.path.isfile(self.vocab_file ): with open(__A ,"""wb""" ) as fi: _UpperCAmelCase : str = self.sp_model.serialized_model_proto() fi.write(__A ) return (out_vocab_file,)
359
'''simple docstring''' from __future__ import annotations import math def snake_case_ ( lowerCAmelCase_ )-> list[int]: '''simple docstring''' if num <= 0: _UpperCAmelCase : List[Any] = F'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = [True] * (num + 1) _UpperCAmelCase : int = [] _UpperCAmelCase : int = 2 _UpperCAmelCase : int = int(math.sqrt(lowerCAmelCase_ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(lowerCAmelCase_ ) # Set multiples of start be False for i in range(start * start , num + 1 , lowerCAmelCase_ ): if sieve[i] is True: _UpperCAmelCase : Tuple = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(lowerCAmelCase_ ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
349
0
"""simple docstring""" import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class a__ : def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=99 , _a=24 , _a=2 , _a=6 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.0_2 , _a=3 , _a=None , _a=1_000 , ): lowercase : Any = parent lowercase : Optional[int] = batch_size lowercase : Dict = seq_length lowercase : List[Any] = is_training lowercase : Union[str, Any] = use_input_mask lowercase : List[Any] = use_token_type_ids lowercase : Optional[int] = use_labels lowercase : Any = vocab_size lowercase : Tuple = hidden_size lowercase : Tuple = num_hidden_layers lowercase : Dict = num_attention_heads lowercase : str = intermediate_size lowercase : Tuple = hidden_act lowercase : Tuple = hidden_dropout_prob lowercase : Tuple = attention_probs_dropout_prob lowercase : List[str] = max_position_embeddings lowercase : Tuple = type_vocab_size lowercase : int = type_sequence_label_size lowercase : int = initializer_range lowercase : Optional[Any] = num_labels lowercase : Optional[Any] = scope lowercase : Optional[int] = range_bbox def __magic_name__ ( self ): lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : str = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowercase : Union[str, Any] = bbox[i, j, 3] lowercase : Tuple = bbox[i, j, 1] lowercase : Union[str, Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: lowercase : Tuple = bbox[i, j, 2] lowercase : Optional[int] = bbox[i, j, 0] lowercase : List[str] = t lowercase : str = None if self.use_input_mask: lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) lowercase : List[Any] = None if self.use_token_type_ids: lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase : Tuple = None lowercase : List[str] = None if self.use_labels: lowercase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : Optional[int] = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def __magic_name__ ( self ): return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def __magic_name__ ( self , _a , _a , _a , _a , _a , _a , _a , ): lowercase : Optional[Any] = LiltModel(config=_a ) model.to(_a ) model.eval() lowercase : List[Any] = model(_a , bbox=_a , attention_mask=_a , token_type_ids=_a ) lowercase : Dict = model(_a , bbox=_a , token_type_ids=_a ) lowercase : List[Any] = model(_a , bbox=_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __magic_name__ ( self , _a , _a , _a , _a , _a , _a , _a , ): lowercase : Optional[int] = self.num_labels lowercase : int = LiltForTokenClassification(config=_a ) model.to(_a ) model.eval() lowercase : int = model( _a , bbox=_a , attention_mask=_a , token_type_ids=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ ( self , _a , _a , _a , _a , _a , _a , _a , ): lowercase : Any = LiltForQuestionAnswering(config=_a ) model.to(_a ) model.eval() lowercase : Optional[int] = model( _a , bbox=_a , attention_mask=_a , token_type_ids=_a , start_positions=_a , end_positions=_a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __magic_name__ ( self ): lowercase : Optional[int] = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : Any = config_and_inputs lowercase : str = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class a__ ( A__, A__, A__, unittest.TestCase ): __lowerCAmelCase = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) __lowerCAmelCase = ( { '''feature-extraction''': LiltModel, '''question-answering''': LiltForQuestionAnswering, '''text-classification''': LiltForSequenceClassification, '''token-classification''': LiltForTokenClassification, '''zero-shot''': LiltForSequenceClassification, } if is_torch_available() else {} ) __lowerCAmelCase = False __lowerCAmelCase = False def __magic_name__ ( self , _a , _a , _a , _a , _a ): return True def __magic_name__ ( self ): lowercase : Union[str, Any] = LiltModelTester(self ) lowercase : Optional[int] = ConfigTester(self , config_class=_a , hidden_size=37 ) def __magic_name__ ( self ): self.config_tester.run_common_tests() def __magic_name__ ( self ): lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __magic_name__ ( self ): lowercase : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase : Optional[int] = type self.model_tester.create_and_check_model(*_a ) def __magic_name__ ( self ): lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_a ) def __magic_name__ ( self ): lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_a ) @slow def __magic_name__ ( self ): for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : Union[str, Any] = LiltModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @require_torch @slow class a__ ( unittest.TestCase ): def __magic_name__ ( self ): lowercase : str = LiltModel.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base" ).to(_a ) lowercase : Dict = torch.tensor([[1, 2]] , device=_a ) lowercase : Optional[Any] = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=_a ) # forward pass with torch.no_grad(): lowercase : Dict = model(input_ids=_a , bbox=_a ) lowercase : str = torch.Size([1, 2, 768] ) lowercase : Any = torch.tensor( [[-0.0_6_5_3, 0.0_9_5_0, -0.0_0_6_1], [-0.0_5_4_5, 0.0_9_2_6, -0.0_3_2_4]] , device=_a , ) self.assertTrue(outputs.last_hidden_state.shape , _a ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , _a , atol=1E-3 ) )
202
import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int a_ : Optional[int] = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class _snake_case ( datasets.BuilderConfig ): _lowercase : Optional[datasets.Features] = None def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , ): import pyspark def generate_fn(): SCREAMING_SNAKE_CASE = df.select('*' , pyspark.sql.functions.spark_partition_id().alias('part_id')) for partition_id in partition_order: SCREAMING_SNAKE_CASE = df_with_partition_id.select('*').where(F'''part_id = {partition_id}''').drop('part_id') SCREAMING_SNAKE_CASE = partition_df.collect() SCREAMING_SNAKE_CASE = 0 for row in rows: yield F'''{partition_id}_{row_id}''', row.asDict() row_id += 1 return generate_fn class _snake_case ( _BaseExamplesIterable ): def __init__( self , a , a=None , ) -> Tuple: SCREAMING_SNAKE_CASE = df SCREAMING_SNAKE_CASE = partition_order or range(self.df.rdd.getNumPartitions()) SCREAMING_SNAKE_CASE = _generate_iterable_examples(self.df , self.partition_order) def __iter__( self) -> Dict: yield from self.generate_examples_fn() def SCREAMING_SNAKE_CASE__ ( self , a) -> "SparkExamplesIterable": SCREAMING_SNAKE_CASE = list(range(self.df.rdd.getNumPartitions())) generator.shuffle(a) return SparkExamplesIterable(self.df , partition_order=a) def SCREAMING_SNAKE_CASE__ ( self , a , a) -> "SparkExamplesIterable": SCREAMING_SNAKE_CASE = self.split_shard_indices_by_worker(a , a) return SparkExamplesIterable(self.df , partition_order=a) @property def SCREAMING_SNAKE_CASE__ ( self) -> int: return len(self.partition_order) class _snake_case ( datasets.DatasetBuilder ): _lowercase : int = SparkConfig def __init__( self , a , a = None , a = None , **a , ) -> List[str]: import pyspark SCREAMING_SNAKE_CASE = pyspark.sql.SparkSession.builder.getOrCreate() SCREAMING_SNAKE_CASE = df SCREAMING_SNAKE_CASE = working_dir super().__init__( cache_dir=a , config_name=str(self.df.semanticHash()) , **a , ) def SCREAMING_SNAKE_CASE__ ( self) -> Dict: # Returns the path of the created file. def create_cache_and_write_probe(a): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=a) SCREAMING_SNAKE_CASE = os.path.join(self._cache_dir , 'fs_test' + uuid.uuida().hex) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(a , 'a') return [probe_file] if self._spark.conf.get('spark.master' , '').startswith('local'): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: SCREAMING_SNAKE_CASE = ( self._spark.sparkContext.parallelize(range(1) , 1).mapPartitions(a).collect() ) if os.path.isfile(probe[0]): return raise ValueError( 'When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir') def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: return datasets.DatasetInfo(features=self.config.features) def SCREAMING_SNAKE_CASE__ ( self , a) -> Dict: return [datasets.SplitGenerator(name=datasets.Split.TRAIN)] def SCREAMING_SNAKE_CASE__ ( self , a) -> Optional[int]: import pyspark def get_arrow_batch_size(a): for batch in it: yield pa.RecordBatch.from_pydict({'batch_bytes': [batch.nbytes]}) SCREAMING_SNAKE_CASE = self.df.count() SCREAMING_SNAKE_CASE = df_num_rows if df_num_rows <= 100 else 100 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. SCREAMING_SNAKE_CASE = ( self.df.limit(a) .repartition(1) .mapInArrow(a , 'batch_bytes: long') .agg(pyspark.sql.functions.sum('batch_bytes').alias('sample_bytes')) .collect()[0] .sample_bytes / sample_num_rows ) SCREAMING_SNAKE_CASE = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. SCREAMING_SNAKE_CASE = min(a , int(approx_total_size / max_shard_size)) SCREAMING_SNAKE_CASE = self.df.repartition(a) def SCREAMING_SNAKE_CASE__ ( self , a , a , a , ) -> Iterable[Tuple[int, bool, Union[int, tuple]]]: import pyspark SCREAMING_SNAKE_CASE = ParquetWriter if file_format == 'parquet' else ArrowWriter SCREAMING_SNAKE_CASE = os.path.join(self._working_dir , os.path.basename(a)) if self._working_dir else fpath SCREAMING_SNAKE_CASE = file_format == 'parquet' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. SCREAMING_SNAKE_CASE = self.config.features SCREAMING_SNAKE_CASE = self._writer_batch_size SCREAMING_SNAKE_CASE = self._fs.storage_options def write_arrow(a): # Within the same SparkContext, no two task attempts will share the same attempt ID. SCREAMING_SNAKE_CASE = pyspark.TaskContext().taskAttemptId() SCREAMING_SNAKE_CASE = next(a , a) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=['task_id', 'num_examples', 'num_bytes'] , ) SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = writer_class( features=a , path=working_fpath.replace('SSSSS' , f'''{shard_id:05d}''').replace('TTTTT' , f'''{task_id:05d}''') , writer_batch_size=a , storage_options=a , embed_local_files=a , ) SCREAMING_SNAKE_CASE = pa.Table.from_batches([first_batch]) writer.write_table(a) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , ) shard_id += 1 SCREAMING_SNAKE_CASE = writer_class( features=writer._features , path=working_fpath.replace('SSSSS' , f'''{shard_id:05d}''').replace('TTTTT' , f'''{task_id:05d}''') , writer_batch_size=a , storage_options=a , embed_local_files=a , ) SCREAMING_SNAKE_CASE = pa.Table.from_batches([batch]) writer.write_table(a) if writer._num_bytes > 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(a)): SCREAMING_SNAKE_CASE = os.path.join(os.path.dirname(a) , os.path.basename(a)) shutil.move(a , a) SCREAMING_SNAKE_CASE = ( self.df.mapInArrow(a , 'task_id: long, num_examples: long, num_bytes: long') .groupBy('task_id') .agg( pyspark.sql.functions.sum('num_examples').alias('total_num_examples') , pyspark.sql.functions.sum('num_bytes').alias('total_num_bytes') , pyspark.sql.functions.count('num_bytes').alias('num_shards') , pyspark.sql.functions.collect_list('num_examples').alias('shard_lengths') , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def SCREAMING_SNAKE_CASE__ ( self , a , a = "arrow" , a = None , a = None , **a , ) -> List[Any]: self._validate_cache_dir() SCREAMING_SNAKE_CASE = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE) self._repartition_df_if_needed(a) SCREAMING_SNAKE_CASE = not is_remote_filesystem(self._fs) SCREAMING_SNAKE_CASE = os.path.join if is_local else posixpath.join SCREAMING_SNAKE_CASE = '-TTTTT-SSSSS-of-NNNNN' SCREAMING_SNAKE_CASE = f'''{self.name}-{split_generator.name}{SUFFIX}.{file_format}''' SCREAMING_SNAKE_CASE = path_join(self._output_dir , a) SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] for task_id, content in self._prepare_split_single(a , a , a): ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards)) all_shard_lengths.extend(a) SCREAMING_SNAKE_CASE = total_num_examples SCREAMING_SNAKE_CASE = total_num_bytes # should rename everything at the end logger.debug(f'''Renaming {total_shards} shards.''') if total_shards > 1: SCREAMING_SNAKE_CASE = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. SCREAMING_SNAKE_CASE = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( a , a , a , ): rename( a , fpath.replace('SSSSS' , f'''{shard_id:05d}''').replace('TTTTT' , f'''{task_id:05d}''') , fpath.replace('TTTTT-SSSSS' , f'''{global_shard_id:05d}''').replace('NNNNN' , f'''{total_shards:05d}''') , ) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 0 for i in range(len(a)): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = task_id_and_num_shards[i] for shard_id in range(a): args.append([task_id, shard_id, global_shard_id]) global_shard_id += 1 self._spark.sparkContext.parallelize(a , len(a)).map(lambda a: _rename_shard(*a)).collect() else: # don't use any pattern SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = task_id_and_num_shards[0][0] self._rename( fpath.replace('SSSSS' , f'''{shard_id:05d}''').replace('TTTTT' , f'''{task_id:05d}''') , fpath.replace(a , '') , ) def SCREAMING_SNAKE_CASE__ ( self , a , ) -> SparkExamplesIterable: return SparkExamplesIterable(self.df)
137
0
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : Tuple = """deformable_detr""" a_ : Optional[Any] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=3 , __UpperCAmelCase=3_00 , __UpperCAmelCase=10_24 , __UpperCAmelCase=6 , __UpperCAmelCase=10_24 , __UpperCAmelCase=8 , __UpperCAmelCase=6 , __UpperCAmelCase=10_24 , __UpperCAmelCase=8 , __UpperCAmelCase=0.0 , __UpperCAmelCase=True , __UpperCAmelCase="relu" , __UpperCAmelCase=2_56 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1.0 , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase="sine" , __UpperCAmelCase="resnet50" , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=False , __UpperCAmelCase=3_00 , __UpperCAmelCase=False , __UpperCAmelCase=1 , __UpperCAmelCase=5 , __UpperCAmelCase=2 , __UpperCAmelCase=1 , __UpperCAmelCase=1 , __UpperCAmelCase=5 , __UpperCAmelCase=2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.25 , __UpperCAmelCase=False , **__UpperCAmelCase , ) ->List[str]: if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`.") if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.") a_ = CONFIG_MAPPING["resnet"](out_features=["stage4"]) elif isinstance(__UpperCAmelCase , __UpperCAmelCase): a_ = backbone_config.get("model_type") a_ = CONFIG_MAPPING[backbone_model_type] a_ = config_class.from_dict(__UpperCAmelCase) a_ = use_timm_backbone a_ = backbone_config a_ = num_channels a_ = num_queries a_ = max_position_embeddings a_ = d_model a_ = encoder_ffn_dim a_ = encoder_layers a_ = encoder_attention_heads a_ = decoder_ffn_dim a_ = decoder_layers a_ = decoder_attention_heads a_ = dropout a_ = attention_dropout a_ = activation_dropout a_ = activation_function a_ = init_std a_ = init_xavier_std a_ = encoder_layerdrop a_ = auxiliary_loss a_ = position_embedding_type a_ = backbone a_ = use_pretrained_backbone a_ = dilation # deformable attributes a_ = num_feature_levels a_ = encoder_n_points a_ = decoder_n_points a_ = two_stage a_ = two_stage_num_proposals a_ = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError("If two_stage is True, with_box_refine must be True.") # Hungarian matcher a_ = class_cost a_ = bbox_cost a_ = giou_cost # Loss coefficients a_ = mask_loss_coefficient a_ = dice_loss_coefficient a_ = bbox_loss_coefficient a_ = giou_loss_coefficient a_ = eos_coefficient a_ = focal_alpha a_ = disable_custom_kernels super().__init__(is_encoder_decoder=__UpperCAmelCase , **__UpperCAmelCase) @property def UpperCAmelCase__ ( self) ->int: return self.encoder_attention_heads @property def UpperCAmelCase__ ( self) ->int: return self.d_model def UpperCAmelCase__ ( self) ->Tuple: a_ = copy.deepcopy(self.__dict__) if self.backbone_config is not None: a_ = self.backbone_config.to_dict() a_ = self.__class__.model_type return output
303
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ = { 'configuration_mctct': ['MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MCTCTConfig'], 'feature_extraction_mctct': ['MCTCTFeatureExtractor'], 'processing_mctct': ['MCTCTProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MCTCTForCTC', 'MCTCTModel', 'MCTCTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
303
1
import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 lowercase : List[Any] = 0B10_11_00_11_11_10_11_00_10_01_00_00_01_11_10_11_10_11_00_01_10_01_11_10 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 lowercase : str = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class A__ : """simple docstring""" def __init__( self) -> Union[str, Any]: '''simple docstring''' a__ : Any = WATERMARK_BITS a__ : Any = WatermarkEncoder() self.encoder.set_watermark('bits' , self.watermark) def __lowercase ( self , lowercase) -> Union[str, Any]: '''simple docstring''' if images.shape[-1] < 256: return images a__ : List[Any] = (255 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1).float().numpy() a__ : Dict = [self.encoder.encode(lowercase , 'dwtDct') for image in images] a__ : str = torch.from_numpy(np.array(lowercase)).permute(0 , 3 , 1 , 2) a__ : Any = torch.clamp(2 * (images / 255 - 0.5) , min=-1.0 , max=1.0) return images
99
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class __snake_case : def __init__( self : List[str] , _snake_case : Union[str, Any] , _snake_case : List[str]=2 , _snake_case : Any=True , _snake_case : Any=False , _snake_case : List[str]=10 , _snake_case : Any=3 , _snake_case : Union[str, Any]=32 * 4 , _snake_case : List[Any]=32 * 6 , _snake_case : Tuple=4 , _snake_case : Dict=32 , ): """simple docstring""" UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = is_training UpperCAmelCase_ = use_auxiliary_loss UpperCAmelCase_ = num_queries UpperCAmelCase_ = num_channels UpperCAmelCase_ = min_size UpperCAmelCase_ = max_size UpperCAmelCase_ = num_labels UpperCAmelCase_ = mask_feature_size def lowerCamelCase ( self : Any): """simple docstring""" UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size]).to( _snake_case) UpperCAmelCase_ = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_snake_case) UpperCAmelCase_ = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_snake_case) > 0.5 ).float() UpperCAmelCase_ = (torch.rand((self.batch_size, self.num_labels) , device=_snake_case) > 0.5).long() UpperCAmelCase_ = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowerCamelCase ( self : Any): """simple docstring""" return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def lowerCamelCase ( self : str , _snake_case : List[Any] , _snake_case : List[str]): """simple docstring""" UpperCAmelCase_ = output.encoder_hidden_states UpperCAmelCase_ = output.pixel_decoder_hidden_states UpperCAmelCase_ = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_snake_case) , len(config.backbone_config.depths)) self.parent.assertTrue(len(_snake_case) , len(config.backbone_config.depths)) self.parent.assertTrue(len(_snake_case) , config.decoder_config.decoder_layers) def lowerCamelCase ( self : Union[str, Any] , _snake_case : List[str] , _snake_case : int , _snake_case : Optional[Any] , _snake_case : str=False): """simple docstring""" with torch.no_grad(): UpperCAmelCase_ = MaskFormerModel(config=_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ = model(pixel_values=_snake_case , pixel_mask=_snake_case) UpperCAmelCase_ = model(_snake_case , output_hidden_states=_snake_case) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None) self.parent.assertTrue(output.encoder_last_hidden_state is not None) if output_hidden_states: self.check_output_hidden_state(_snake_case , _snake_case) def lowerCamelCase ( self : List[Any] , _snake_case : List[Any] , _snake_case : List[Any] , _snake_case : str , _snake_case : Optional[int] , _snake_case : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = MaskFormerForInstanceSegmentation(config=_snake_case) model.to(_snake_case) model.eval() def comm_check_on_output(_snake_case : Tuple): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None) self.parent.assertTrue(result.encoder_last_hidden_state is not None) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1)) with torch.no_grad(): UpperCAmelCase_ = model(pixel_values=_snake_case , pixel_mask=_snake_case) UpperCAmelCase_ = model(_snake_case) comm_check_on_output(_snake_case) UpperCAmelCase_ = model( pixel_values=_snake_case , pixel_mask=_snake_case , mask_labels=_snake_case , class_labels=_snake_case) comm_check_on_output(_snake_case) self.parent.assertTrue(result.loss is not None) self.parent.assertEqual(result.loss.shape , torch.Size([1])) @require_torch class __snake_case ( a , a , unittest.TestCase ): UpperCAmelCase__ : Union[str, Any] = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () UpperCAmelCase__ : Optional[Any] = ( {'''feature-extraction''': MaskFormerModel, '''image-segmentation''': MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) UpperCAmelCase__ : Dict = False UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : Optional[Any] = False UpperCAmelCase__ : Union[str, Any] = False def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = MaskFormerModelTester(self) UpperCAmelCase_ = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case) def lowerCamelCase ( self : List[Any]): """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(_snake_case , **_snake_case , output_hidden_states=_snake_case) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*_snake_case) @unittest.skip(reason='''MaskFormer does not use inputs_embeds''') def lowerCamelCase ( self : Dict): """simple docstring""" pass @unittest.skip(reason='''MaskFormer does not have a get_input_embeddings method''') def lowerCamelCase ( self : int): """simple docstring""" pass @unittest.skip(reason='''MaskFormer is not a generative model''') def lowerCamelCase ( self : str): """simple docstring""" pass @unittest.skip(reason='''MaskFormer does not use token embeddings''') def lowerCamelCase ( self : int): """simple docstring""" pass @require_torch_multi_gpu @unittest.skip( reason='''MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''') def lowerCamelCase ( self : Any): """simple docstring""" pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''') def lowerCamelCase ( self : str): """simple docstring""" pass def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_snake_case) UpperCAmelCase_ = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _snake_case) @slow def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" for model_name in ["facebook/maskformer-swin-small-coco"]: UpperCAmelCase_ = MaskFormerModel.from_pretrained(_snake_case) self.assertIsNotNone(_snake_case) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = (self.model_tester.min_size,) * 2 UpperCAmelCase_ = { '''pixel_values''': torch.randn((2, 3, *size) , device=_snake_case), '''mask_labels''': torch.randn((2, 10, *size) , device=_snake_case), '''class_labels''': torch.zeros(2 , 10 , device=_snake_case).long(), } UpperCAmelCase_ = MaskFormerForInstanceSegmentation(MaskFormerConfig()).to(_snake_case) UpperCAmelCase_ = model(**_snake_case) self.assertTrue(outputs.loss is not None) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(_snake_case , **_snake_case , output_hidden_states=_snake_case) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_snake_case).to(_snake_case) UpperCAmelCase_ = model(**_snake_case , output_attentions=_snake_case) self.assertTrue(outputs.attentions is not None) def lowerCamelCase ( self : int): """simple docstring""" if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss UpperCAmelCase_ = self.all_model_classes[1] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() UpperCAmelCase_ = model_class(_snake_case) model.to(_snake_case) model.train() UpperCAmelCase_ = model(_snake_case , mask_labels=_snake_case , class_labels=_snake_case).loss loss.backward() def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = self.all_model_classes[1] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() UpperCAmelCase_ = True UpperCAmelCase_ = True UpperCAmelCase_ = model_class(_snake_case) model.to(_snake_case) model.train() UpperCAmelCase_ = model(_snake_case , mask_labels=_snake_case , class_labels=_snake_case) UpperCAmelCase_ = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() UpperCAmelCase_ = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't UpperCAmelCase_ = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() UpperCAmelCase_ = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_snake_case) self.assertIsNotNone(encoder_hidden_states.grad) self.assertIsNotNone(pixel_decoder_hidden_states.grad) self.assertIsNotNone(transformer_decoder_hidden_states.grad) self.assertIsNotNone(attentions.grad) snake_case_ : Dict = 1e-4 def A () -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class __snake_case ( unittest.TestCase ): @cached_property def lowerCamelCase ( self : List[str]): """simple docstring""" return ( MaskFormerImageProcessor.from_pretrained('''facebook/maskformer-swin-small-coco''') if is_vision_available() else None ) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = MaskFormerModel.from_pretrained('''facebook/maskformer-swin-small-coco''').to(_snake_case) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(_snake_case , return_tensors='''pt''').to(_snake_case) UpperCAmelCase_ = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0) # check size self.assertEqual(_snake_case , (1, 3, 800, 1088)) with torch.no_grad(): UpperCAmelCase_ = model(**_snake_case) UpperCAmelCase_ = torch.tensor( [[-0.0_4_8_2, 0.9_2_2_8, 0.4_9_5_1], [-0.2_5_4_7, 0.8_0_1_7, 0.8_5_2_7], [-0.0_0_6_9, 0.3_3_8_5, -0.0_0_8_9]]).to(_snake_case) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _snake_case , atol=_snake_case)) UpperCAmelCase_ = torch.tensor( [[-0.8_4_2_2, -0.8_4_3_4, -0.9_7_1_8], [-1.0_1_4_4, -0.5_5_6_5, -0.4_1_9_5], [-1.0_0_3_8, -0.4_4_8_4, -0.1_9_6_1]]).to(_snake_case) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _snake_case , atol=_snake_case)) UpperCAmelCase_ = torch.tensor( [[0.2_8_5_2, -0.0_1_5_9, 0.9_7_3_5], [0.6_2_5_4, 0.1_8_5_8, 0.8_5_2_9], [-0.0_6_8_0, -0.4_1_1_6, 1.8_4_1_3]]).to(_snake_case) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _snake_case , atol=_snake_case)) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''') .to(_snake_case) .eval() ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(_snake_case , return_tensors='''pt''').to(_snake_case) UpperCAmelCase_ = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0) # check size self.assertEqual(_snake_case , (1, 3, 800, 1088)) with torch.no_grad(): UpperCAmelCase_ = model(**_snake_case) # masks_queries_logits UpperCAmelCase_ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) UpperCAmelCase_ = [ [-1.3_7_3_7_1_2_4, -1.7_7_2_4_9_3_7, -1.9_3_6_4_2_3_3], [-1.5_9_7_7_2_8_1, -1.9_8_6_7_9_3_9, -2.1_5_2_3_6_9_5], [-1.5_7_9_5_3_9_8, -1.9_2_6_9_8_3_2, -2.0_9_3_9_4_2], ] UpperCAmelCase_ = torch.tensor(_snake_case).to(_snake_case) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _snake_case , atol=_snake_case)) # class_queries_logits UpperCAmelCase_ = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1)) UpperCAmelCase_ = torch.tensor( [ [1.65_12e00, -5.25_72e00, -3.35_19e00], [3.61_69e-02, -5.90_25e00, -2.93_13e00], [1.07_66e-04, -7.76_30e00, -5.12_63e00], ]).to(_snake_case) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _snake_case , atol=_snake_case)) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-resnet101-coco-stuff''') .to(_snake_case) .eval() ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(_snake_case , return_tensors='''pt''').to(_snake_case) UpperCAmelCase_ = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0) # check size self.assertEqual(_snake_case , (1, 3, 800, 1088)) with torch.no_grad(): UpperCAmelCase_ = model(**_snake_case) # masks_queries_logits UpperCAmelCase_ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) UpperCAmelCase_ = [[-0.9_0_4_6, -2.6_3_6_6, -4.6_0_6_2], [-3.4_1_7_9, -5.7_8_9_0, -8.8_0_5_7], [-4.9_1_7_9, -7.6_5_6_0, -1_0.7_7_1_1]] UpperCAmelCase_ = torch.tensor(_snake_case).to(_snake_case) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _snake_case , atol=_snake_case)) # class_queries_logits UpperCAmelCase_ = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1)) UpperCAmelCase_ = torch.tensor( [[4.7_1_8_8, -3.2_5_8_5, -2.8_8_5_7], [6.6_8_7_1, -2.9_1_8_1, -1.2_4_8_7], [7.2_4_4_9, -2.2_7_6_4, -2.1_8_7_4]]).to(_snake_case) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _snake_case , atol=_snake_case)) def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''') .to(_snake_case) .eval() ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = image_processor( [np.zeros((3, 800, 1333)), np.zeros((3, 800, 1333))] , segmentation_maps=[np.zeros((384, 384)).astype(np.floataa), np.zeros((384, 384)).astype(np.floataa)] , return_tensors='''pt''' , ) UpperCAmelCase_ = inputs['''pixel_values'''].to(_snake_case) UpperCAmelCase_ = [el.to(_snake_case) for el in inputs['''mask_labels''']] UpperCAmelCase_ = [el.to(_snake_case) for el in inputs['''class_labels''']] with torch.no_grad(): UpperCAmelCase_ = model(**_snake_case) self.assertTrue(outputs.loss is not None)
51
0
from __future__ import annotations def _A ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , ): """simple docstring""" if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor" ) elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor" ) elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
148
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) def _A ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" a__ : Tuple =set() a__ : Optional[Any] =[] def parse_line(SCREAMING_SNAKE_CASE : Optional[int] ): for line in fp: if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): a__ : str =line.decode("UTF-8" ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(" " ): # process a single warning and move it to `selected_warnings`. if len(SCREAMING_SNAKE_CASE ) > 0: a__ : Union[str, Any] ="\n".join(SCREAMING_SNAKE_CASE ) # Only keep the warnings specified in `targets` if any(f''': {x}: ''' in warning for x in targets ): selected_warnings.add(SCREAMING_SNAKE_CASE ) buffer.clear() continue else: a__ : Optional[Any] =line.strip() buffer.append(SCREAMING_SNAKE_CASE ) if from_gh: for filename in os.listdir(SCREAMING_SNAKE_CASE ): a__ : str =os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if not os.path.isdir(SCREAMING_SNAKE_CASE ): # read the file if filename != "warnings.txt": continue with open(SCREAMING_SNAKE_CASE ) as fp: parse_line(SCREAMING_SNAKE_CASE ) else: try: with zipfile.ZipFile(SCREAMING_SNAKE_CASE ) as z: for filename in z.namelist(): if not os.path.isdir(SCREAMING_SNAKE_CASE ): # read the file if filename != "warnings.txt": continue with z.open(SCREAMING_SNAKE_CASE ) as fp: parse_line(SCREAMING_SNAKE_CASE ) except Exception: logger.warning( f'''{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.''' ) return selected_warnings def _A ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" a__ : Optional[int] =set() a__ : Any =[os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for p in os.listdir(SCREAMING_SNAKE_CASE ) if (p.endswith(".zip" ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) return selected_warnings if __name__ == "__main__": def _A ( SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" return values.split("," ) UpperCAmelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") # optional parameters parser.add_argument( """--targets""", default="""DeprecationWarning,UserWarning,FutureWarning""", type=list_str, help="""Comma-separated list of target warning(s) which we want to extract.""", ) parser.add_argument( """--from_gh""", action="""store_true""", help="""If running from a GitHub action workflow and collecting warnings from its artifacts.""", ) UpperCAmelCase : List[Any] = parser.parse_args() UpperCAmelCase : str = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links UpperCAmelCase : Dict = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("""=""" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts UpperCAmelCase : Tuple = extract_warnings(args.output_dir, args.targets) UpperCAmelCase : Optional[Any] = sorted(selected_warnings) with open(os.path.join(args.output_dir, """selected_warnings.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
148
1
import argparse import hashlib # hashlib is only used inside the Test class import struct class lowerCamelCase_ : '''simple docstring''' def __init__( self : Any , _lowerCAmelCase : List[Any] ): SCREAMING_SNAKE_CASE_ = data SCREAMING_SNAKE_CASE_ = [0x6745_2301, 0xefcd_ab89, 0x98ba_dcfe, 0x1032_5476, 0xc3d2_e1f0] @staticmethod def lowerCAmelCase_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] ): return ((n << b) | (n >> (32 - b))) & 0xffff_ffff def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = B'\x80' + B'\x00' * (63 - (len(self.data ) + 8) % 64) SCREAMING_SNAKE_CASE_ = self.data + padding + struct.pack('>Q' , 8 * len(self.data ) ) return padded_data def lowerCAmelCase_ ( self : Dict ): return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def lowerCAmelCase_ ( self : Optional[int] , _lowerCAmelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = list(struct.unpack('>16L' , _lowerCAmelCase ) ) + [0] * 64 for i in range(16 , 80 ): SCREAMING_SNAKE_CASE_ = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = self.padding() SCREAMING_SNAKE_CASE_ = self.split_blocks() for block in self.blocks: SCREAMING_SNAKE_CASE_ = self.expand_block(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.h for i in range(0 , 80 ): if 0 <= i < 20: SCREAMING_SNAKE_CASE_ = (b & c) | ((~b) & d) SCREAMING_SNAKE_CASE_ = 0x5a82_7999 elif 20 <= i < 40: SCREAMING_SNAKE_CASE_ = b ^ c ^ d SCREAMING_SNAKE_CASE_ = 0x6ed9_eba1 elif 40 <= i < 60: SCREAMING_SNAKE_CASE_ = (b & c) | (b & d) | (c & d) SCREAMING_SNAKE_CASE_ = 0x8f1b_bcdc elif 60 <= i < 80: SCREAMING_SNAKE_CASE_ = b ^ c ^ d SCREAMING_SNAKE_CASE_ = 0xca62_c1d6 SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = ( self.rotate(_lowerCAmelCase , 5 ) + f + e + k + expanded_block[i] & 0xffff_ffff, a, self.rotate(_lowerCAmelCase , 30 ), c, d, ) SCREAMING_SNAKE_CASE_ = ( self.h[0] + a & 0xffff_ffff, self.h[1] + b & 0xffff_ffff, self.h[2] + c & 0xffff_ffff, self.h[3] + d & 0xffff_ffff, self.h[4] + e & 0xffff_ffff, ) return ("{:08x}" * 5).format(*self.h ) def UpperCAmelCase_ ( ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = b'Test String' assert SHAaHash(__UpperCAmelCase ).final_hash() == hashlib.shaa(__UpperCAmelCase ).hexdigest() # noqa: S324 def UpperCAmelCase_ ( ) -> Tuple: SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser(description='Process some strings or files' ) parser.add_argument( '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument('--file' , dest='input_file' , help='Hash contents of a file' ) SCREAMING_SNAKE_CASE_ = parser.parse_args() SCREAMING_SNAKE_CASE_ = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: SCREAMING_SNAKE_CASE_ = f.read() else: SCREAMING_SNAKE_CASE_ = bytes(__UpperCAmelCase , 'utf-8' ) print(SHAaHash(__UpperCAmelCase ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
225
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class lowerCamelCase_ : '''simple docstring''' def __init__( self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Tuple=13 , _lowerCAmelCase : List[str]=7 , _lowerCAmelCase : Dict=True , _lowerCAmelCase : Dict=True , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : Any=True , _lowerCAmelCase : str=99 , _lowerCAmelCase : List[str]=32 , _lowerCAmelCase : Tuple=5 , _lowerCAmelCase : List[str]=4 , _lowerCAmelCase : str=37 , _lowerCAmelCase : Any="gelu" , _lowerCAmelCase : str=0.1 , _lowerCAmelCase : Union[str, Any]=0.1 , _lowerCAmelCase : Optional[int]=512 , _lowerCAmelCase : Union[str, Any]=16 , _lowerCAmelCase : Tuple=2 , _lowerCAmelCase : Tuple=0.02 , _lowerCAmelCase : Tuple=3 , _lowerCAmelCase : Dict=4 , _lowerCAmelCase : Union[str, Any]=None , ): SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = seq_length SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_input_mask SCREAMING_SNAKE_CASE_ = use_token_type_ids SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = type_sequence_label_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = num_labels SCREAMING_SNAKE_CASE_ = num_choices SCREAMING_SNAKE_CASE_ = scope def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None if self.use_labels: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase_ ( self : Optional[int] ): return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] ): SCREAMING_SNAKE_CASE_ = LlamaModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[str] , ): SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = LlamaModel(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : int , _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any , _lowerCAmelCase : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , ): SCREAMING_SNAKE_CASE_ = LlamaForCausalLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[str] , ): SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = LlamaForCausalLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() # first forward pass SCREAMING_SNAKE_CASE_ = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , use_cache=_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and SCREAMING_SNAKE_CASE_ = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE_ = torch.cat([input_mask, next_mask] , dim=-1 ) SCREAMING_SNAKE_CASE_ = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , output_hidden_states=_lowerCAmelCase , )['hidden_states'][0] SCREAMING_SNAKE_CASE_ = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , output_hidden_states=_lowerCAmelCase , )['hidden_states'][0] # select random slice SCREAMING_SNAKE_CASE_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE_ = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) = config_and_inputs SCREAMING_SNAKE_CASE_ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () lowercase_ = (LlamaForCausalLM,) if is_torch_available() else () lowercase_ = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) lowercase_ = False lowercase_ = False def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = LlamaModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def lowerCAmelCase_ ( self : Any ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE_ = type self.model_tester.create_and_check_model(*_lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = input_dict['input_ids'] SCREAMING_SNAKE_CASE_ = input_ids.ne(1 ).to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ = LlamaForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = 'single_label_classification' SCREAMING_SNAKE_CASE_ = input_dict['input_ids'] SCREAMING_SNAKE_CASE_ = input_ids.ne(1 ).to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ = LlamaForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = 'multi_label_classification' SCREAMING_SNAKE_CASE_ = input_dict['input_ids'] SCREAMING_SNAKE_CASE_ = input_ids.ne(1 ).to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) SCREAMING_SNAKE_CASE_ = LlamaForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('LLaMA buffers include complex numbers, which breaks this test' ) def lowerCAmelCase_ ( self : int ): pass @parameterized.expand([('linear',), ('dynamic',)] ) def lowerCAmelCase_ ( self : str , _lowerCAmelCase : Tuple ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = ids_tensor([1, 10] , config.vocab_size ) SCREAMING_SNAKE_CASE_ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights SCREAMING_SNAKE_CASE_ = LlamaModel(_lowerCAmelCase ) original_model.to(_lowerCAmelCase ) original_model.eval() SCREAMING_SNAKE_CASE_ = original_model(_lowerCAmelCase ).last_hidden_state SCREAMING_SNAKE_CASE_ = original_model(_lowerCAmelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights SCREAMING_SNAKE_CASE_ = {'type': scaling_type, 'factor': 10.0} SCREAMING_SNAKE_CASE_ = LlamaModel(_lowerCAmelCase ) scaled_model.to(_lowerCAmelCase ) scaled_model.eval() SCREAMING_SNAKE_CASE_ = scaled_model(_lowerCAmelCase ).last_hidden_state SCREAMING_SNAKE_CASE_ = scaled_model(_lowerCAmelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-5 ) ) @require_torch class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] SCREAMING_SNAKE_CASE_ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf' , device_map='auto' ) SCREAMING_SNAKE_CASE_ = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 SCREAMING_SNAKE_CASE_ = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) , _lowerCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , _lowerCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] SCREAMING_SNAKE_CASE_ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-hf' , device_map='auto' ) SCREAMING_SNAKE_CASE_ = model(torch.tensor(_lowerCAmelCase ) ) # Expected mean on dim = -1 SCREAMING_SNAKE_CASE_ = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) , _lowerCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , _lowerCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] SCREAMING_SNAKE_CASE_ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-chat-hf' , device_map='auto' ) SCREAMING_SNAKE_CASE_ = model(torch.tensor(_lowerCAmelCase ) ) # Expected mean on dim = -1 SCREAMING_SNAKE_CASE_ = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) , _lowerCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , _lowerCAmelCase , atol=1E-2 , rtol=1E-2 ) @unittest.skip( 'Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test' ) @slow def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] SCREAMING_SNAKE_CASE_ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-70b-hf' , device_map='auto' ) SCREAMING_SNAKE_CASE_ = model(torch.tensor(_lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , _lowerCAmelCase , atol=1E-2 , rtol=1E-2 ) # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , _lowerCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip('Model is curently gated' ) @slow def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = 'Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi' SCREAMING_SNAKE_CASE_ = 'Simply put, the theory of relativity states that ' SCREAMING_SNAKE_CASE_ = LlamaTokenizer.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ) SCREAMING_SNAKE_CASE_ = tokenizer.encode(_lowerCAmelCase , return_tensors='pt' ) SCREAMING_SNAKE_CASE_ = LlamaForCausalLM.from_pretrained( 'meta-llama/Llama-2-13b-chat-hf' , device_map='sequential' , use_safetensors=_lowerCAmelCase ) # greedy generation outputs SCREAMING_SNAKE_CASE_ = model.generate(_lowerCAmelCase , max_new_tokens=64 , top_p=_lowerCAmelCase , temperature=1 , do_sample=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = tokenizer.decode(generated_ids[0] , skip_special_tokens=_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
225
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase__ = '''▁''' lowerCamelCase__ = {'''vocab_file''': '''spiece.model'''} lowerCamelCase__ = { '''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''} } lowerCamelCase__ = { '''google/pegasus-xsum''': 5_12, } lowerCamelCase__ = logging.get_logger(__name__) class __magic_name__ (a__ ): lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ['input_ids', 'attention_mask'] def __init__( self , _a , _a="<pad>" , _a="</s>" , _a="<unk>" , _a="<mask_2>" , _a="<mask_1>" , _a=None , _a=103 , _a = None , **_a , ) -> None: lowerCAmelCase_ = offset if additional_special_tokens is not None: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError( f"additional_special_tokens should be of type {type(_lowerCamelCase )}, but is" f" {type(_lowerCamelCase )}" ) lowerCAmelCase_ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"<unk_{i}>" for i in range(len(_lowerCamelCase ) , self.offset - 1 ) ] if len(set(_lowerCamelCase ) ) != len(_lowerCamelCase ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}." ) lowerCAmelCase_ = additional_special_tokens_extended else: lowerCAmelCase_ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"<unk_{i}>" for i in range(2 , self.offset )] lowerCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , mask_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token_sent=_lowerCamelCase , offset=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) lowerCAmelCase_ = mask_token_sent lowerCAmelCase_ = vocab_file lowerCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCamelCase ) # add special tokens to encoder dict lowerCAmelCase_ = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) lowerCAmelCase_ = {v: k for k, v in self.encoder.items()} @property def __a ( self ) -> int: return len(self.sp_model ) + self.offset def __a ( self ) -> Dict[str, int]: lowerCAmelCase_ = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Optional[Any]: lowerCAmelCase_ = self.__dict__.copy() lowerCAmelCase_ = None return state def __setstate__( self , _a ) -> Union[str, Any]: lowerCAmelCase_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowerCAmelCase_ = {} lowerCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __a ( self , _a ) -> List[str]: return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) def __a ( self , _a ) -> int: if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] lowerCAmelCase_ = self.sp_model.piece_to_id(_lowerCamelCase ) return sp_id + self.offset def __a ( self , _a ) -> str: if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: lowerCAmelCase_ = self.sp_model.IdToPiece(index - self.offset ) return token def __a ( self , _a ) -> Union[str, Any]: lowerCAmelCase_ = [] lowerCAmelCase_ = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowerCamelCase ) + token lowerCAmelCase_ = [] else: current_sub_tokens.append(_lowerCamelCase ) out_string += self.sp_model.decode(_lowerCamelCase ) return out_string.strip() def __a ( self , _a=False ) -> str: return 1 def __a ( self , _a ) -> int: lowerCAmelCase_ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def __a ( self , _a , _a = None , _a = False ) -> List[int]: if already_has_special_tokens: return self._special_token_mask(_lowerCamelCase ) elif token_ids_a is None: return self._special_token_mask(_lowerCamelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def __a ( self , _a , _a=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def __a ( self , _a , _a = None ) -> Tuple[str]: if not os.path.isdir(_lowerCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowerCAmelCase_ = os.path.join( _lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCamelCase , "wb" ) as fi: lowerCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (out_vocab_file,)
369
import math from collections.abc import Iterator from itertools import takewhile def A(__a: int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__a ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A(): lowerCAmelCase_ = 2 while True: if is_prime(__a ): yield num num += 1 def A(__a: int = 200_0000 ): return sum(takewhile(lambda __a : x < n , prime_generator() ) ) if __name__ == "__main__": print(F'''{solution() = }''')
22
0
import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('''At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training''') # TF training parameters UpperCAmelCase = False UpperCAmelCase = False def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): return TrainCommand(__SCREAMING_SNAKE_CASE ) class A_ ( __lowerCamelCase ): '''simple docstring''' @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case ): lowercase = parser.add_parser('train' , help='CLI tool to train a model on a task.' ) train_parser.add_argument( '--train_data' , type=snake_case , required=snake_case , help='path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.' , ) train_parser.add_argument( '--column_label' , type=snake_case , default=0 , help='Column of the dataset csv file with example labels.' ) train_parser.add_argument( '--column_text' , type=snake_case , default=1 , help='Column of the dataset csv file with example texts.' ) train_parser.add_argument( '--column_id' , type=snake_case , default=2 , help='Column of the dataset csv file with example ids.' ) train_parser.add_argument( '--skip_first_row' , action='store_true' , help='Skip the first row of the csv file (headers).' ) train_parser.add_argument('--validation_data' , type=snake_case , default='' , help='path to validation dataset.' ) train_parser.add_argument( '--validation_split' , type=snake_case , default=0.1 , help='if validation dataset is not provided, fraction of train dataset to use as validation dataset.' , ) train_parser.add_argument('--output' , type=snake_case , default='./' , help='path to saved the trained model.' ) train_parser.add_argument( '--task' , type=snake_case , default='text_classification' , help='Task to train the model on.' ) train_parser.add_argument( '--model' , type=snake_case , default='bert-base-uncased' , help='Model\'s name or path to stored model.' ) train_parser.add_argument('--train_batch_size' , type=snake_case , default=32 , help='Batch size for training.' ) train_parser.add_argument('--valid_batch_size' , type=snake_case , default=64 , help='Batch size for validation.' ) train_parser.add_argument('--learning_rate' , type=snake_case , default=3E-5 , help='Learning rate.' ) train_parser.add_argument('--adam_epsilon' , type=snake_case , default=1E-08 , help='Epsilon for Adam optimizer.' ) train_parser.set_defaults(func=snake_case ) def __init__( self , snake_case ): lowercase = logging.get_logger('transformers-cli/training' ) lowercase = 'tf' if is_tf_available() else 'torch' os.makedirs(args.output , exist_ok=snake_case ) lowercase = args.output lowercase = args.column_label lowercase = args.column_text lowercase = args.column_id self.logger.info(F'''Loading {args.task} pipeline for {args.model}''' ) if args.task == "text_classification": lowercase = TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(F'''Loading dataset from {args.train_data}''' ) lowercase = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) lowercase = None if args.validation_data: self.logger.info(F'''Loading validation dataset from {args.validation_data}''' ) lowercase = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) lowercase = args.validation_split lowercase = args.train_batch_size lowercase = args.valid_batch_size lowercase = args.learning_rate lowercase = args.adam_epsilon def SCREAMING_SNAKE_CASE__ ( self ): if self.framework == "tf": return self.run_tf() return self.run_torch() def SCREAMING_SNAKE_CASE__ ( self ): raise NotImplementedError def SCREAMING_SNAKE_CASE__ ( self ): self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
195
import sys from collections import defaultdict class A_ : '''simple docstring''' def __init__( self ): lowercase = [] def SCREAMING_SNAKE_CASE__ ( self , snake_case ): return self.node_position[vertex] def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case ): lowercase = pos def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , snake_case ): if start > size // 2 - 1: return else: if 2 * start + 2 >= size: lowercase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: lowercase = 2 * start + 1 else: lowercase = 2 * start + 2 if heap[smallest_child] < heap[start]: lowercase , lowercase = heap[smallest_child], positions[smallest_child] lowercase , lowercase = ( heap[start], positions[start], ) lowercase , lowercase = temp, tempa lowercase = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , snake_case ) self.top_to_bottom(snake_case , snake_case , snake_case , snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , snake_case ): lowercase = position[index] while index != 0: lowercase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: lowercase = heap[parent] lowercase = position[parent] self.set_position(position[parent] , snake_case ) else: lowercase = val lowercase = temp self.set_position(snake_case , snake_case ) break lowercase = parent else: lowercase = val lowercase = temp self.set_position(snake_case , 0 ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case ): lowercase = len(snake_case ) // 2 - 1 for i in range(snake_case , -1 , -1 ): self.top_to_bottom(snake_case , snake_case , len(snake_case ) , snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case ): lowercase = positions[0] lowercase = sys.maxsize self.top_to_bottom(snake_case , 0 , len(snake_case ) , snake_case ) return temp def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): lowercase = Heap() lowercase = [0] * len(__SCREAMING_SNAKE_CASE ) lowercase = [-1] * len(__SCREAMING_SNAKE_CASE ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph lowercase = [] # Heap of Distance of vertices from their neighboring vertex lowercase = [] for vertex in range(len(__SCREAMING_SNAKE_CASE ) ): distance_tv.append(sys.maxsize ) positions.append(__SCREAMING_SNAKE_CASE ) heap.node_position.append(__SCREAMING_SNAKE_CASE ) lowercase = [] lowercase = 1 lowercase = sys.maxsize for neighbor, distance in adjacency_list[0]: lowercase = 0 lowercase = distance heap.heapify(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for _ in range(1 , len(__SCREAMING_SNAKE_CASE ) ): lowercase = heap.delete_minimum(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) lowercase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(__SCREAMING_SNAKE_CASE )] ): lowercase = distance heap.bottom_to_top( __SCREAMING_SNAKE_CASE , heap.get_position(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > UpperCAmelCase = int(input('''Enter number of edges: ''').strip()) UpperCAmelCase = defaultdict(list) for _ in range(edges_number): UpperCAmelCase = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
195
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = 1 __lowercase = 3 __lowercase = (32, 32) __lowercase = floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0 ) ).to(_lowerCamelCase ) return image @property def _UpperCAmelCase (self ) -> str: '''simple docstring''' torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( block_out_channels=(32, 32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=7 ,out_channels=4 ,down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''', '''CrossAttnDownBlock2D''') ,up_block_types=('''CrossAttnUpBlock2D''', '''CrossAttnUpBlock2D''', '''UpBlock2D''') ,cross_attention_dim=32 ,attention_head_dim=8 ,use_linear_projection=_lowerCamelCase ,only_cross_attention=(True, True, False) ,num_class_embeds=100 ,) return model @property def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) __lowercase = AutoencoderKL( block_out_channels=[32, 32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=4 ,) return model @property def _UpperCAmelCase (self ) -> Any: '''simple docstring''' torch.manual_seed(0 ) __lowercase = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,hidden_act='''gelu''' ,projection_dim=512 ,) return CLIPTextModel(_lowerCamelCase ) def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowercase = self.dummy_cond_unet_upscale __lowercase = DDPMScheduler() __lowercase = DDIMScheduler(prediction_type='''v_prediction''' ) __lowercase = self.dummy_vae __lowercase = self.dummy_text_encoder __lowercase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __lowercase = self.dummy_image.cpu().permute(0 ,2 ,3 ,1 )[0] __lowercase = Image.fromarray(np.uinta(_lowerCamelCase ) ).convert('''RGB''' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk __lowercase = StableDiffusionUpscalePipeline( unet=_lowerCamelCase ,low_res_scheduler=_lowerCamelCase ,scheduler=_lowerCamelCase ,vae=_lowerCamelCase ,text_encoder=_lowerCamelCase ,tokenizer=_lowerCamelCase ,max_noise_level=350 ,) __lowercase = sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) __lowercase = '''A painting of a squirrel eating a burger''' __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = sd_pipe( [prompt] ,image=_lowerCamelCase ,generator=_lowerCamelCase ,guidance_scale=6.0 ,noise_level=20 ,num_inference_steps=2 ,output_type='''np''' ,) __lowercase = output.images __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = sd_pipe( [prompt] ,image=_lowerCamelCase ,generator=_lowerCamelCase ,guidance_scale=6.0 ,noise_level=20 ,num_inference_steps=2 ,output_type='''np''' ,return_dict=_lowerCamelCase ,)[0] __lowercase = image[0, -3:, -3:, -1] __lowercase = image_from_tuple[0, -3:, -3:, -1] __lowercase = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) __lowercase = np.array([0.3_1_1_3, 0.3_9_1_0, 0.4_2_7_2, 0.4_8_5_9, 0.5_0_6_1, 0.4_6_5_2, 0.5_3_6_2, 0.5_7_1_5, 0.5_6_6_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowercase = self.dummy_cond_unet_upscale __lowercase = DDPMScheduler() __lowercase = DDIMScheduler(prediction_type='''v_prediction''' ) __lowercase = self.dummy_vae __lowercase = self.dummy_text_encoder __lowercase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __lowercase = self.dummy_image.cpu().permute(0 ,2 ,3 ,1 )[0] __lowercase = Image.fromarray(np.uinta(_lowerCamelCase ) ).convert('''RGB''' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk __lowercase = StableDiffusionUpscalePipeline( unet=_lowerCamelCase ,low_res_scheduler=_lowerCamelCase ,scheduler=_lowerCamelCase ,vae=_lowerCamelCase ,text_encoder=_lowerCamelCase ,tokenizer=_lowerCamelCase ,max_noise_level=350 ,) __lowercase = sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) __lowercase = '''A painting of a squirrel eating a burger''' __lowercase = sd_pipe( 2 * [prompt] ,image=2 * [low_res_image] ,guidance_scale=6.0 ,noise_level=20 ,num_inference_steps=2 ,output_type='''np''' ,) __lowercase = output.images assert image.shape[0] == 2 __lowercase = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __lowercase = sd_pipe( [prompt] ,image=_lowerCamelCase ,generator=_lowerCamelCase ,num_images_per_prompt=2 ,guidance_scale=6.0 ,noise_level=20 ,num_inference_steps=2 ,output_type='''np''' ,) __lowercase = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != '''cuda''' ,'''This test requires a GPU''' ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = self.dummy_cond_unet_upscale __lowercase = DDPMScheduler() __lowercase = DDIMScheduler(prediction_type='''v_prediction''' ) __lowercase = self.dummy_vae __lowercase = self.dummy_text_encoder __lowercase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __lowercase = self.dummy_image.cpu().permute(0 ,2 ,3 ,1 )[0] __lowercase = Image.fromarray(np.uinta(_lowerCamelCase ) ).convert('''RGB''' ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 __lowercase = unet.half() __lowercase = text_encoder.half() # make sure here that pndm scheduler skips prk __lowercase = StableDiffusionUpscalePipeline( unet=_lowerCamelCase ,low_res_scheduler=_lowerCamelCase ,scheduler=_lowerCamelCase ,vae=_lowerCamelCase ,text_encoder=_lowerCamelCase ,tokenizer=_lowerCamelCase ,max_noise_level=350 ,) __lowercase = sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) __lowercase = '''A painting of a squirrel eating a burger''' __lowercase = torch.manual_seed(0 ) __lowercase = sd_pipe( [prompt] ,image=_lowerCamelCase ,generator=_lowerCamelCase ,num_inference_steps=2 ,output_type='''np''' ,).images __lowercase = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' __lowercase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale''' '''/upsampled_cat.npy''' ) __lowercase = '''stabilityai/stable-diffusion-x4-upscaler''' __lowercase = StableDiffusionUpscalePipeline.from_pretrained(_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() __lowercase = '''a cat sitting on a park bench''' __lowercase = torch.manual_seed(0 ) __lowercase = pipe( prompt=_lowerCamelCase ,image=_lowerCamelCase ,generator=_lowerCamelCase ,output_type='''np''' ,) __lowercase = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1E-3 def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale''' '''/upsampled_cat_fp16.npy''' ) __lowercase = '''stabilityai/stable-diffusion-x4-upscaler''' __lowercase = StableDiffusionUpscalePipeline.from_pretrained( _lowerCamelCase ,torch_dtype=torch.floataa ,) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() __lowercase = '''a cat sitting on a park bench''' __lowercase = torch.manual_seed(0 ) __lowercase = pipe( prompt=_lowerCamelCase ,image=_lowerCamelCase ,generator=_lowerCamelCase ,output_type='''np''' ,) __lowercase = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __lowercase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) __lowercase = '''stabilityai/stable-diffusion-x4-upscaler''' __lowercase = StableDiffusionUpscalePipeline.from_pretrained( _lowerCamelCase ,torch_dtype=torch.floataa ,) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __lowercase = '''a cat sitting on a park bench''' __lowercase = torch.manual_seed(0 ) __lowercase = pipe( prompt=_lowerCamelCase ,image=_lowerCamelCase ,generator=_lowerCamelCase ,num_inference_steps=5 ,output_type='''np''' ,) __lowercase = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
217
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { '''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''', # See all DPT models at https://huggingface.co/models?filter=dpt } class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : Union[str, Any] = "dpt" def __init__(self ,_lowerCamelCase=768 ,_lowerCamelCase=12 ,_lowerCamelCase=12 ,_lowerCamelCase=3072 ,_lowerCamelCase="gelu" ,_lowerCamelCase=0.0 ,_lowerCamelCase=0.0 ,_lowerCamelCase=0.0_2 ,_lowerCamelCase=1E-1_2 ,_lowerCamelCase=384 ,_lowerCamelCase=16 ,_lowerCamelCase=3 ,_lowerCamelCase=False ,_lowerCamelCase=True ,_lowerCamelCase=[2, 5, 8, 11] ,_lowerCamelCase="project" ,_lowerCamelCase=[4, 2, 1, 0.5] ,_lowerCamelCase=[96, 192, 384, 768] ,_lowerCamelCase=256 ,_lowerCamelCase=-1 ,_lowerCamelCase=False ,_lowerCamelCase=True ,_lowerCamelCase=0.4 ,_lowerCamelCase=255 ,_lowerCamelCase=0.1 ,_lowerCamelCase=[1, 1024, 24, 24] ,_lowerCamelCase=[0, 1] ,_lowerCamelCase=None ,**_lowerCamelCase ,) -> Tuple: '''simple docstring''' super().__init__(**_lowerCamelCase ) __lowercase = hidden_size __lowercase = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('''Initializing the config with a `BiT` backbone.''' ) __lowercase = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, } __lowercase = BitConfig(**_lowerCamelCase ) elif isinstance(_lowerCamelCase ,_lowerCamelCase ): logger.info('''Initializing the config with a `BiT` backbone.''' ) __lowercase = BitConfig(**_lowerCamelCase ) elif isinstance(_lowerCamelCase ,_lowerCamelCase ): __lowercase = backbone_config else: raise ValueError( f"backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}." ) __lowercase = backbone_featmap_shape __lowercase = neck_ignore_stages if readout_type != "project": raise ValueError('''Readout type must be \'project\' when using `DPT-hybrid` mode.''' ) else: __lowercase = None __lowercase = None __lowercase = [] __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = qkv_bias __lowercase = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('''Readout_type must be one of [\'ignore\', \'add\', \'project\']''' ) __lowercase = readout_type __lowercase = reassemble_factors __lowercase = neck_hidden_sizes __lowercase = fusion_hidden_size __lowercase = head_in_index __lowercase = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) __lowercase = use_auxiliary_head __lowercase = auxiliary_loss_weight __lowercase = semantic_loss_ignore_index __lowercase = semantic_classifier_dropout def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: __lowercase = self.backbone_config.to_dict() __lowercase = self.__class__.model_type return output
217
1
import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) -> Optional[int]: __lowercase : List[Any] = AutoConfig.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) __lowercase : str = AutoModelForSeqaSeqLM.from_config(__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) AutoTokenizer.from_pretrained(__lowerCAmelCase ).save_pretrained(__lowerCAmelCase ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
156
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys lowerCamelCase : Optional[Any] =subprocess.check_output('''git merge-base main HEAD'''.split()).decode('''utf-8''') lowerCamelCase : str =subprocess.check_output(F"""git diff --name-only {fork_point_sha}""".split()).decode('''utf-8''').split() lowerCamelCase : List[Any] ='''|'''.join(sys.argv[1:]) lowerCamelCase : str =re.compile(RF"""^({joined_dirs}).*?\.py$""") lowerCamelCase : Optional[int] =[x for x in modified_files if regex.match(x)] print(''' '''.join(relevant_modified_files), end='''''')
189
0
"""simple docstring""" import math def __UpperCAmelCase ( __a : float ,__a : float ) -> float: """simple docstring""" if ( not isinstance(__a ,(int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('''power_factor must be a valid float value between -1 and 1.''' ) return apparent_power * power_factor def __UpperCAmelCase ( __a : float ,__a : float ) -> float: """simple docstring""" if ( not isinstance(__a ,(int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('''power_factor must be a valid float value between -1 and 1.''' ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
354
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset a__ = random.Random() def __UpperCAmelCase ( __a : Tuple ,__a : str=1.0 ,__a : Optional[int]=None ,__a : List[Any]=None ) -> Any: """simple docstring""" if rng is None: _a : Dict = global_rng _a : Optional[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self , _a , _a=7 , _a=4_0_0 , _a=2_0_0_0 , _a=2_0_4_8 , _a=1_2_8 , _a=1 , _a=5_1_2 , _a=3_0 , _a=4_4_1_0_0 , ) -> List[Any]: _a : Optional[Any] = parent _a : str = batch_size _a : List[str] = min_seq_length _a : str = max_seq_length _a : Dict = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _a : List[Any] = spectrogram_length _a : List[str] = feature_size _a : List[Any] = num_audio_channels _a : Tuple = hop_length _a : Optional[int] = chunk_length _a : int = sampling_rate def __lowercase ( self ) -> Union[str, Any]: return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def __lowercase ( self , _a=False , _a=False ) -> List[Any]: def _flatten(_a ): return list(itertools.chain(*_a ) ) if equal_length: _a : List[Any] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _a : List[Any] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _a : str = [np.asarray(_a ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = TvltFeatureExtractor def __lowercase ( self ) -> Dict: _a : List[str] = TvltFeatureExtractionTester(self ) def __lowercase ( self ) -> Any: _a : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_a , '''spectrogram_length''' ) ) self.assertTrue(hasattr(_a , '''feature_size''' ) ) self.assertTrue(hasattr(_a , '''num_audio_channels''' ) ) self.assertTrue(hasattr(_a , '''hop_length''' ) ) self.assertTrue(hasattr(_a , '''chunk_length''' ) ) self.assertTrue(hasattr(_a , '''sampling_rate''' ) ) def __lowercase ( self ) -> Optional[int]: _a : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _a : int = feat_extract_first.save_pretrained(_a )[0] check_json_file_has_correct_format(_a ) _a : Dict = self.feature_extraction_class.from_pretrained(_a ) _a : List[Any] = feat_extract_first.to_dict() _a : Union[str, Any] = feat_extract_second.to_dict() _a : Any = dict_first.pop('''mel_filters''' ) _a : int = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def __lowercase ( self ) -> Optional[int]: _a : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _a : Optional[int] = os.path.join(_a , '''feat_extract.json''' ) feat_extract_first.to_json_file(_a ) _a : List[str] = self.feature_extraction_class.from_json_file(_a ) _a : List[Any] = feat_extract_first.to_dict() _a : Dict = feat_extract_second.to_dict() _a : str = dict_first.pop('''mel_filters''' ) _a : str = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def __lowercase ( self ) -> Union[str, Any]: # Initialize feature_extractor _a : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 _a : Any = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _a : List[str] = [np.asarray(_a ) for speech_input in speech_inputs] # Test not batched input _a : Tuple = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched _a : Dict = feature_extractor(_a , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking _a : Union[str, Any] = feature_extractor( _a , return_tensors='''np''' , sampling_rate=4_4_1_0_0 , mask_audio=_a ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. _a : Optional[Any] = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] _a : int = np.asarray(_a ) _a : Tuple = feature_extractor(_a , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def __lowercase ( self , _a ) -> Optional[Any]: _a : List[Any] = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech _a : Optional[int] = ds.sort('''id''' ).select(range(_a ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def __lowercase ( self ) -> int: _a : Union[str, Any] = self._load_datasamples(1 ) _a : int = TvltFeatureExtractor() _a : Union[str, Any] = feature_extractor(_a , return_tensors='''pt''' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 1_9_2, 1_2_8) ) _a : Union[str, Any] = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , _a , atol=1e-4 ) )
15
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A : List[str] = '▁' A : str = {'vocab_file': 'spiece.model'} A : Dict = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'} } A : Tuple = { 'google/pegasus-xsum': 5_1_2, } A : Tuple = logging.get_logger(__name__) class __A( a ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ['''input_ids''', '''attention_mask'''] def __init__( self , _snake_case , _snake_case="<pad>" , _snake_case="</s>" , _snake_case="<unk>" , _snake_case="<mask_2>" , _snake_case="<mask_1>" , _snake_case=None , _snake_case=103 , _snake_case = None , **_snake_case , ) -> None: '''simple docstring''' __a = offset if additional_special_tokens is not None: if not isinstance(_snake_case , _snake_case ): raise TypeError( F"""additional_special_tokens should be of type {type(_snake_case )}, but is""" F""" {type(_snake_case )}""" ) __a = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F"""<unk_{i}>""" for i in range(len(_snake_case ) , self.offset - 1 ) ] if len(set(_snake_case ) ) != len(_snake_case ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' F""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) __a = additional_special_tokens_extended else: __a = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F"""<unk_{i}>""" for i in range(2 , self.offset )] __a = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_snake_case , unk_token=_snake_case , mask_token=_snake_case , pad_token=_snake_case , mask_token_sent=_snake_case , offset=_snake_case , additional_special_tokens=_snake_case , sp_model_kwargs=self.sp_model_kwargs , **_snake_case , ) __a = mask_token_sent __a = vocab_file __a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_snake_case ) # add special tokens to encoder dict __a = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) __a = {v: k for k, v in self.encoder.items()} @property def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' return len(self.sp_model ) + self.offset def SCREAMING_SNAKE_CASE_ ( self ) -> Dict[str, int]: '''simple docstring''' __a = {self.convert_ids_to_tokens(_snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Dict: '''simple docstring''' __a = self.__dict__.copy() __a = None return state def __setstate__( self , _snake_case ) -> Optional[Any]: '''simple docstring''' __a = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __a = {} __a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> List[str]: '''simple docstring''' return self.sp_model.encode(_snake_case , out_type=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> int: '''simple docstring''' if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] __a = self.sp_model.piece_to_id(_snake_case ) return sp_id + self.offset def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> str: '''simple docstring''' if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: __a = self.sp_model.IdToPiece(index - self.offset ) return token def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Any: '''simple docstring''' __a = [] __a = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_snake_case ) + token __a = [] else: current_sub_tokens.append(_snake_case ) out_string += self.sp_model.decode(_snake_case ) return out_string.strip() def SCREAMING_SNAKE_CASE_ ( self , _snake_case=False ) -> Any: '''simple docstring''' return 1 def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Optional[int]: '''simple docstring''' __a = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case = None , _snake_case = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return self._special_token_mask(_snake_case ) elif token_ids_a is None: return self._special_token_mask(_snake_case ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case=None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_snake_case ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __a = os.path.join( _snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _snake_case ) elif not os.path.isfile(self.vocab_file ): with open(_snake_case , '''wb''' ) as fi: __a = self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (out_vocab_file,)
6
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def UpperCamelCase ( ) -> tuple[list[int], int]: UpperCamelCase : int = [randint(-1000 , 1000 ) for i in range(10 )] UpperCamelCase : Dict = randint(-5000 , 5000 ) return (arr, r) __UpperCAmelCase = make_dataset() def UpperCamelCase ( snake_case__ : list[int] , snake_case__ : int ) -> tuple[int, ...]: for triplet in permutations(snake_case__ , 3 ): if sum(snake_case__ ) == target: return tuple(sorted(snake_case__ ) ) return (0, 0, 0) def UpperCamelCase ( snake_case__ : list[int] , snake_case__ : int ) -> tuple[int, int, int]: arr.sort() UpperCamelCase : List[str] = len(snake_case__ ) for i in range(n - 1 ): UpperCamelCase , UpperCamelCase : Optional[Any] = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def UpperCamelCase ( ) -> tuple[float, float]: UpperCamelCase : Any = '\nfrom __main__ import dataset, triplet_sum1, triplet_sum2\n' UpperCamelCase : Optional[Any] = '\ntriplet_sum1(*dataset)\n' UpperCamelCase : Dict = '\ntriplet_sum2(*dataset)\n' UpperCamelCase : Optional[int] = repeat(setup=snake_case__ , stmt=snake_case__ , repeat=5 , number=10000 ) UpperCamelCase : Any = repeat(setup=snake_case__ , stmt=snake_case__ , repeat=5 , number=10000 ) return (min(snake_case__ ), min(snake_case__ )) if __name__ == "__main__": from doctest import testmod testmod() __UpperCAmelCase = solution_times() print(F"""The time for naive implementation is {times[0]}.""") print(F"""The time for optimized implementation is {times[1]}.""")
119
0
from numpy import exp, pi, sqrt def lowerCamelCase__ ( lowercase , lowercase = 0.0 , lowercase = 1.0 ): """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
365
def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def lowerCamelCase__ ( ): """simple docstring""" assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
319
0
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = 42 lowerCAmelCase_ = None def lowerCAmelCase__(__snake_case ,__snake_case=0.9_9_9 ,__snake_case="cosine" ,) -> Tuple: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(__snake_case ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__snake_case ): return math.exp(t * -1_2.0 ) else: raise ValueError(F'Unsupported alpha_tranform_type: {alpha_transform_type}' ) lowerCamelCase__ = [] for i in range(__snake_case ): lowerCamelCase__ = i / num_diffusion_timesteps lowerCamelCase__ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__snake_case ) / alpha_bar_fn(__snake_case ) ,__snake_case ) ) return torch.tensor(__snake_case ,dtype=torch.floataa ) class __A ( lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' @register_to_config def __init__( self , __lowerCAmelCase = 1_0_0_0 , __lowerCAmelCase = "fixed_small_log" , __lowerCAmelCase = True , __lowerCAmelCase = 1.0 , __lowerCAmelCase = "epsilon" , __lowerCAmelCase = "squaredcos_cap_v2" , ): '''simple docstring''' if beta_schedule != "squaredcos_cap_v2": raise ValueError('''UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'''' ) lowerCamelCase__ = betas_for_alpha_bar(__lowerCAmelCase ) lowerCamelCase__ = 1.0 - self.betas lowerCamelCase__ = torch.cumprod(self.alphas , dim=0 ) lowerCamelCase__ = torch.tensor(1.0 ) # standard deviation of the initial noise distribution lowerCamelCase__ = 1.0 # setable values lowerCamelCase__ = None lowerCamelCase__ = torch.from_numpy(np.arange(0 , __lowerCAmelCase )[::-1].copy() ) lowerCamelCase__ = variance_type def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None ): '''simple docstring''' return sample def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None ): '''simple docstring''' lowerCamelCase__ = num_inference_steps lowerCamelCase__ = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) lowerCamelCase__ = (np.arange(0 , __lowerCAmelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa ) lowerCamelCase__ = torch.from_numpy(__lowerCAmelCase ).to(__lowerCAmelCase ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None ): '''simple docstring''' if prev_timestep is None: lowerCamelCase__ = t - 1 lowerCamelCase__ = self.alphas_cumprod[t] lowerCamelCase__ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one lowerCamelCase__ = 1 - alpha_prod_t lowerCamelCase__ = 1 - alpha_prod_t_prev if prev_timestep == t - 1: lowerCamelCase__ = self.betas[t] else: lowerCamelCase__ = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowerCamelCase__ = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: lowerCamelCase__ = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": lowerCamelCase__ = torch.log(torch.clamp(__lowerCAmelCase , min=1E-20 ) ) lowerCamelCase__ = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler lowerCamelCase__ = variance.log() lowerCamelCase__ = beta.log() lowerCamelCase__ = (predicted_variance + 1) / 2 lowerCamelCase__ = frac * max_log + (1 - frac) * min_log return variance def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase=None , __lowerCAmelCase = True , ): '''simple docstring''' lowerCamelCase__ = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": lowerCamelCase__ , lowerCamelCase__ = torch.split(__lowerCAmelCase , sample.shape[1] , dim=1 ) else: lowerCamelCase__ = None # 1. compute alphas, betas if prev_timestep is None: lowerCamelCase__ = t - 1 lowerCamelCase__ = self.alphas_cumprod[t] lowerCamelCase__ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one lowerCamelCase__ = 1 - alpha_prod_t lowerCamelCase__ = 1 - alpha_prod_t_prev if prev_timestep == t - 1: lowerCamelCase__ = self.betas[t] lowerCamelCase__ = self.alphas[t] else: lowerCamelCase__ = 1 - alpha_prod_t / alpha_prod_t_prev lowerCamelCase__ = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowerCamelCase__ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowerCamelCase__ = model_output else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`' ''' for the UnCLIPScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowerCamelCase__ = torch.clamp( __lowerCAmelCase , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCamelCase__ = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t lowerCamelCase__ = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCamelCase__ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise lowerCamelCase__ = 0 if t > 0: lowerCamelCase__ = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=__lowerCAmelCase , device=model_output.device ) lowerCamelCase__ = self._get_variance( __lowerCAmelCase , predicted_variance=__lowerCAmelCase , prev_timestep=__lowerCAmelCase , ) if self.variance_type == "fixed_small_log": lowerCamelCase__ = variance elif self.variance_type == "learned_range": lowerCamelCase__ = (0.5 * variance).exp() else: raise ValueError( F'variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`' ''' for the UnCLIPScheduler.''' ) lowerCamelCase__ = variance * variance_noise lowerCamelCase__ = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=__lowerCAmelCase , pred_original_sample=__lowerCAmelCase ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): '''simple docstring''' lowerCamelCase__ = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) lowerCamelCase__ = timesteps.to(original_samples.device ) lowerCamelCase__ = alphas_cumprod[timesteps] ** 0.5 lowerCamelCase__ = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): lowerCamelCase__ = sqrt_alpha_prod.unsqueeze(-1 ) lowerCamelCase__ = (1 - alphas_cumprod[timesteps]) ** 0.5 lowerCamelCase__ = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): lowerCamelCase__ = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) lowerCamelCase__ = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
209
import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor _a = random.Random() def lowerCAmelCase__(__snake_case ,__snake_case=1.0 ,__snake_case=None ,__snake_case=None ) -> List[Any]: '''simple docstring''' if rng is None: lowerCamelCase__ = global_rng lowerCamelCase__ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __A ( unittest.TestCase ): '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase=7 , __lowerCAmelCase=4_0_0 , __lowerCAmelCase=2_0_0_0 , __lowerCAmelCase=2_4 , __lowerCAmelCase=2_4 , __lowerCAmelCase=0.0 , __lowerCAmelCase=1_6_0_0_0 , __lowerCAmelCase=True , __lowerCAmelCase=True , ): '''simple docstring''' lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = min_seq_length lowerCamelCase__ = max_seq_length lowerCamelCase__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCamelCase__ = feature_size lowerCamelCase__ = num_mel_bins lowerCamelCase__ = padding_value lowerCamelCase__ = sampling_rate lowerCamelCase__ = return_attention_mask lowerCamelCase__ = do_normalize def __lowerCamelCase ( self ): '''simple docstring''' return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __lowerCamelCase ( self , __lowerCAmelCase=False , __lowerCAmelCase=False ): '''simple docstring''' def _flatten(__lowerCAmelCase ): return list(itertools.chain(*__lowerCAmelCase ) ) if equal_length: lowerCamelCase__ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowerCamelCase__ = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCamelCase__ = [np.asarray(__lowerCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __A ( lowerCAmelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = SpeechaTextFeatureExtractor if is_speech_available() else None def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = SpeechaTextFeatureExtractionTester(self ) def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' self.assertTrue(np.all(np.mean(__lowerCAmelCase , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(__lowerCAmelCase , axis=0 ) - 1 ) < 1E-3 ) ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCamelCase__ = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] lowerCamelCase__ = [np.asarray(__lowerCAmelCase ) for speech_input in speech_inputs] # Test feature size lowerCamelCase__ = feature_extractor(__lowerCAmelCase , padding=__lowerCAmelCase , return_tensors='''np''' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input lowerCamelCase__ = feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_features lowerCamelCase__ = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_features self.assertTrue(np.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-3 ) ) # Test batched lowerCamelCase__ = feature_extractor(__lowerCAmelCase , return_tensors='''np''' ).input_features lowerCamelCase__ = feature_extractor(__lowerCAmelCase , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(__lowerCAmelCase , __lowerCAmelCase ): self.assertTrue(np.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. lowerCamelCase__ = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] lowerCamelCase__ = np.asarray(__lowerCAmelCase ) lowerCamelCase__ = feature_extractor(__lowerCAmelCase , return_tensors='''np''' ).input_features lowerCamelCase__ = feature_extractor(__lowerCAmelCase , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(__lowerCAmelCase , __lowerCAmelCase ): self.assertTrue(np.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-3 ) ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase__ = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] lowerCamelCase__ = ['''longest''', '''max_length''', '''do_not_pad'''] lowerCamelCase__ = [None, 1_6, None] for max_length, padding in zip(__lowerCAmelCase , __lowerCAmelCase ): lowerCamelCase__ = feature_extractor( __lowerCAmelCase , padding=__lowerCAmelCase , max_length=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase ) lowerCamelCase__ = inputs.input_features lowerCamelCase__ = inputs.attention_mask lowerCamelCase__ = [np.sum(__lowerCAmelCase ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase__ = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] lowerCamelCase__ = ['''longest''', '''max_length''', '''do_not_pad'''] lowerCamelCase__ = [None, 1_6, None] for max_length, padding in zip(__lowerCAmelCase , __lowerCAmelCase ): lowerCamelCase__ = feature_extractor( __lowerCAmelCase , max_length=__lowerCAmelCase , padding=__lowerCAmelCase , return_tensors='''np''' , return_attention_mask=__lowerCAmelCase ) lowerCamelCase__ = inputs.input_features lowerCamelCase__ = inputs.attention_mask lowerCamelCase__ = [np.sum(__lowerCAmelCase ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase__ = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] lowerCamelCase__ = feature_extractor( __lowerCAmelCase , padding='''max_length''' , max_length=4 , truncation=__lowerCAmelCase , return_tensors='''np''' , return_attention_mask=__lowerCAmelCase , ) lowerCamelCase__ = inputs.input_features lowerCamelCase__ = inputs.attention_mask lowerCamelCase__ = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase__ = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] lowerCamelCase__ = feature_extractor( __lowerCAmelCase , padding='''longest''' , max_length=4 , truncation=__lowerCAmelCase , return_tensors='''np''' , return_attention_mask=__lowerCAmelCase , ) lowerCamelCase__ = inputs.input_features lowerCamelCase__ = inputs.attention_mask lowerCamelCase__ = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 4, 2_4) ) lowerCamelCase__ = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] lowerCamelCase__ = feature_extractor( __lowerCAmelCase , padding='''longest''' , max_length=1_6 , truncation=__lowerCAmelCase , return_tensors='''np''' , return_attention_mask=__lowerCAmelCase , ) lowerCamelCase__ = inputs.input_features lowerCamelCase__ = inputs.attention_mask lowerCamelCase__ = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 6, 2_4) ) def __lowerCamelCase ( self ): '''simple docstring''' import torch lowerCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase__ = np.random.rand(1_0_0 , 3_2 ).astype(np.floataa ) lowerCamelCase__ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCamelCase__ = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) lowerCamelCase__ = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' from datasets import load_dataset lowerCamelCase__ = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech lowerCamelCase__ = ds.sort('''id''' ).select(range(__lowerCAmelCase ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = np.array([ -1.5745, -1.7713, -1.7020, -1.6069, -1.2250, -1.1105, -0.9072, -0.8241, -1.2310, -0.8098, -0.3320, -0.4101, -0.7985, -0.4996, -0.8213, -0.9128, -1.0420, -1.1286, -1.0440, -0.7999, -0.8405, -1.2275, -1.5443, -1.4625, ] ) # fmt: on lowerCamelCase__ = self._load_datasamples(1 ) lowerCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase__ = feature_extractor(__lowerCAmelCase , return_tensors='''pt''' ).input_features self.assertEquals(input_features.shape , (1, 5_8_4, 2_4) ) self.assertTrue(np.allclose(input_features[0, 0, :3_0] , __lowerCAmelCase , atol=1E-4 ) )
209
1
from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class __magic_name__ : """simple docstring""" def __init__( self , _lowercase , _lowercase=13 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=99 , _lowercase=32 , _lowercase=2 , _lowercase=4 , _lowercase=37 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=16 , _lowercase=2 , _lowercase=0.02 , _lowercase=3 , _lowercase=4 , _lowercase=None , _lowercase=1_000 , )-> str: UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = seq_length UpperCamelCase_ = is_training UpperCamelCase_ = use_input_mask UpperCamelCase_ = use_token_type_ids UpperCamelCase_ = use_labels UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_act UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = type_vocab_size UpperCamelCase_ = type_sequence_label_size UpperCamelCase_ = initializer_range UpperCamelCase_ = num_labels UpperCamelCase_ = num_choices UpperCamelCase_ = scope UpperCamelCase_ = range_bbox def UpperCAmelCase_ ( self )-> Tuple: UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCamelCase_ = bbox[i, j, 3] UpperCamelCase_ = bbox[i, j, 1] UpperCamelCase_ = t if bbox[i, j, 2] < bbox[i, j, 0]: UpperCamelCase_ = bbox[i, j, 2] UpperCamelCase_ = bbox[i, j, 0] UpperCamelCase_ = t UpperCamelCase_ = tf.convert_to_tensor(__a ) UpperCamelCase_ = None if self.use_input_mask: UpperCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase_ = None if self.use_token_type_ids: UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase_ = None UpperCamelCase_ = None UpperCamelCase_ = None if self.use_labels: UpperCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase_ = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase )-> List[str]: UpperCamelCase_ = TFLayoutLMModel(config=__a ) UpperCamelCase_ = model(__a , __a , attention_mask=__a , token_type_ids=__a ) UpperCamelCase_ = model(__a , __a , token_type_ids=__a ) UpperCamelCase_ = model(__a , __a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase )-> Union[str, Any]: UpperCamelCase_ = TFLayoutLMForMaskedLM(config=__a ) UpperCamelCase_ = model(__a , __a , attention_mask=__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase )-> int: UpperCamelCase_ = self.num_labels UpperCamelCase_ = TFLayoutLMForSequenceClassification(config=__a ) UpperCamelCase_ = model(__a , __a , attention_mask=__a , token_type_ids=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase )-> Union[str, Any]: UpperCamelCase_ = self.num_labels UpperCamelCase_ = TFLayoutLMForTokenClassification(config=__a ) UpperCamelCase_ = model(__a , __a , attention_mask=__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase )-> Union[str, Any]: UpperCamelCase_ = TFLayoutLMForQuestionAnswering(config=__a ) UpperCamelCase_ = model(__a , __a , attention_mask=__a , token_type_ids=__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase_ ( self )-> List[Any]: UpperCamelCase_ = self.prepare_config_and_inputs() ( ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ) = config_and_inputs UpperCamelCase_ = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_tf class __magic_name__ ( snake_case , snake_case , unittest.TestCase ): """simple docstring""" UpperCamelCase_ :List[Any] = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) UpperCamelCase_ :str = ( { """feature-extraction""": TFLayoutLMModel, """fill-mask""": TFLayoutLMForMaskedLM, """text-classification""": TFLayoutLMForSequenceClassification, """token-classification""": TFLayoutLMForTokenClassification, """zero-shot""": TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase_ :Dict = False UpperCamelCase_ :List[Any] = True UpperCamelCase_ :str = 1_0 def UpperCAmelCase_ ( self )-> Union[str, Any]: UpperCamelCase_ = TFLayoutLMModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=__a , hidden_size=37 ) def UpperCAmelCase_ ( self )-> str: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self )-> int: UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def UpperCAmelCase_ ( self )-> Dict: UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def UpperCAmelCase_ ( self )-> int: UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a ) def UpperCAmelCase_ ( self )-> Optional[int]: UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) def UpperCAmelCase_ ( self )-> Tuple: UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a ) @slow def UpperCAmelCase_ ( self )-> str: for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase_ = TFLayoutLMModel.from_pretrained(__a ) self.assertIsNotNone(__a ) @unittest.skip("Onnx compliancy broke with TF 2.10" ) def UpperCAmelCase_ ( self )-> List[str]: pass def lowerCAmelCase( )-> Union[str, Any]: """simple docstring""" UpperCamelCase_ = tf.convert_to_tensor([[1_0_1,1_0_1_9,1_0_1_4,1_0_1_6,1_0_3_7,1_2_8_4_9,4_7_4_7,1_0_0_4,1_4_2_4_6,2_2_7_8,5_4_3_9,4_5_2_4,5_0_0_2,2_9_3_0,2_1_9_3,2_9_3_0,4_3_4_1,3_2_0_8,1_0_0_5,1_0_5_5,2_1_7_1,2_8_4_8,1_1_3_0_0,3_5_3_1,1_0_2],[1_0_1,4_0_7_0,4_0_3_4,7_0_2_0,1_0_2_4,3_0_5_8,1_0_1_5,1_0_1_3,2_8_6_1,1_0_1_3,6_0_7_0,1_9_2_7_4,2_7_7_2,6_2_0_5,2_7_8_1_4,1_6_1_4_7,1_6_1_4_7,4_3_4_3,2_0_4_7,1_0_2_8_3,1_0_9_6_9,1_4_3_8_9,1_0_1_2,2_3_3_8,1_0_2]] ) # noqa: E231 UpperCamelCase_ = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 UpperCamelCase_ = tf.convert_to_tensor([[[0,0,0,0],[4_2_3,2_3_7,4_4_0,2_5_1],[4_2_7,2_7_2,4_4_1,2_8_7],[4_1_9,1_1_5,4_3_7,1_2_9],[9_6_1,8_8_5,9_9_2,9_1_2],[2_5_6,3_8,3_3_0,5_8],[2_5_6,3_8,3_3_0,5_8],[3_3_6,4_2,3_5_3,5_7],[3_6_0,3_9,4_0_1,5_6],[3_6_0,3_9,4_0_1,5_6],[4_1_1,3_9,4_7_1,5_9],[4_7_9,4_1,5_2_8,5_9],[5_3_3,3_9,6_3_0,6_0],[6_7,1_1_3,1_3_4,1_3_1],[1_4_1,1_1_5,2_0_9,1_3_2],[6_8,1_4_9,1_3_3,1_6_6],[1_4_1,1_4_9,1_8_7,1_6_4],[1_9_5,1_4_8,2_8_7,1_6_5],[1_9_5,1_4_8,2_8_7,1_6_5],[1_9_5,1_4_8,2_8_7,1_6_5],[2_9_5,1_4_8,3_4_9,1_6_5],[4_4_1,1_4_9,4_9_2,1_6_6],[4_9_7,1_4_9,5_4_6,1_6_4],[6_4,2_0_1,1_2_5,2_1_8],[1_0_0_0,1_0_0_0,1_0_0_0,1_0_0_0]],[[0,0,0,0],[6_6_2,1_5_0,7_5_4,1_6_6],[6_6_5,1_9_9,7_4_2,2_1_1],[5_1_9,2_1_3,5_5_4,2_2_8],[5_1_9,2_1_3,5_5_4,2_2_8],[1_3_4,4_3_3,1_8_7,4_5_4],[1_3_0,4_6_7,2_0_4,4_8_0],[1_3_0,4_6_7,2_0_4,4_8_0],[1_3_0,4_6_7,2_0_4,4_8_0],[1_3_0,4_6_7,2_0_4,4_8_0],[1_3_0,4_6_7,2_0_4,4_8_0],[3_1_4,4_6_9,3_7_6,4_8_2],[5_0_4,6_8_4,5_8_2,7_0_6],[9_4_1,8_2_5,9_7_3,9_0_0],[9_4_1,8_2_5,9_7_3,9_0_0],[9_4_1,8_2_5,9_7_3,9_0_0],[9_4_1,8_2_5,9_7_3,9_0_0],[6_1_0,7_4_9,6_5_2,7_6_5],[1_3_0,6_5_9,1_6_8,6_7_2],[1_7_6,6_5_7,2_3_7,6_7_2],[2_3_8,6_5_7,3_1_2,6_7_2],[4_4_3,6_5_3,6_2_8,6_7_2],[4_4_3,6_5_3,6_2_8,6_7_2],[7_1_6,3_0_1,8_2_5,3_1_7],[1_0_0_0,1_0_0_0,1_0_0_0,1_0_0_0]]] ) # noqa: E231 UpperCamelCase_ = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) UpperCamelCase_ = tf.convert_to_tensor([[-1_0_0,1_0,1_0,1_0,9,1,-1_0_0,7,7,-1_0_0,7,7,4,2,5,2,8,8,-1_0_0,-1_0_0,5,0,3,2,-1_0_0],[-1_0_0,1_2,1_2,1_2,-1_0_0,1_2,1_0,-1_0_0,-1_0_0,-1_0_0,-1_0_0,1_0,1_2,9,-1_0_0,-1_0_0,-1_0_0,1_0,1_0,1_0,9,1_2,-1_0_0,1_0,-1_0_0]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class __magic_name__ ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase_ ( self )-> Optional[Any]: UpperCamelCase_ = TFLayoutLMModel.from_pretrained("microsoft/layoutlm-base-uncased" ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = prepare_layoutlm_batch_inputs() # forward pass UpperCamelCase_ = model(input_ids=__a , bbox=__a , attention_mask=__a , token_type_ids=__a ) # test the sequence output on [0, :3, :3] UpperCamelCase_ = tf.convert_to_tensor( [[0.1_785, -0.1_947, -0.0_425], [-0.3_254, -0.2_807, 0.2_553], [-0.5_391, -0.3_322, 0.3_364]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , __a , atol=1e-3 ) ) # test the pooled output on [1, :3] UpperCamelCase_ = tf.convert_to_tensor([-0.6_580, -0.0_214, 0.8_552] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , __a , atol=1e-3 ) ) @slow def UpperCAmelCase_ ( self )-> Any: UpperCamelCase_ = TFLayoutLMForSequenceClassification.from_pretrained("microsoft/layoutlm-base-uncased" , num_labels=2 ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = prepare_layoutlm_batch_inputs() # forward pass UpperCamelCase_ = model( input_ids=__a , bbox=__a , attention_mask=__a , token_type_ids=__a , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar UpperCamelCase_ = outputs.loss UpperCamelCase_ = (2,) self.assertEqual(loss.shape , __a ) # test the shape of the logits UpperCamelCase_ = outputs.logits UpperCamelCase_ = (2, 2) self.assertEqual(logits.shape , __a ) @slow def UpperCAmelCase_ ( self )-> List[str]: UpperCamelCase_ = TFLayoutLMForTokenClassification.from_pretrained("microsoft/layoutlm-base-uncased" , num_labels=13 ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = prepare_layoutlm_batch_inputs() # forward pass UpperCamelCase_ = model( input_ids=__a , bbox=__a , attention_mask=__a , token_type_ids=__a , labels=__a ) # test the shape of the logits UpperCamelCase_ = outputs.logits UpperCamelCase_ = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape , __a ) @slow def UpperCAmelCase_ ( self )-> Dict: UpperCamelCase_ = TFLayoutLMForQuestionAnswering.from_pretrained("microsoft/layoutlm-base-uncased" ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = prepare_layoutlm_batch_inputs() # forward pass UpperCamelCase_ = model(input_ids=__a , bbox=__a , attention_mask=__a , token_type_ids=__a ) # test the shape of the logits UpperCamelCase_ = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape , __a ) self.assertEqual(outputs.end_logits.shape , __a )
361
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE :Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :Union[str, Any] = { """BridgeTower/bridgetower-base""": """https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json""", """BridgeTower/bridgetower-base-itm-mlm""": ( """https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json""" ), } class __magic_name__ ( snake_case ): UpperCamelCase_ :List[Any] = """bridgetower_vision_model""" def __init__( self , _lowercase=768 , _lowercase=12 , _lowercase=3 , _lowercase=16 , _lowercase=288 , _lowercase=1 , _lowercase=1e-0_5 , _lowercase=False , _lowercase=True , _lowercase=False , **_lowercase , )-> Optional[Any]: super().__init__(**_lowercase ) UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_channels UpperCamelCase_ = patch_size UpperCamelCase_ = image_size UpperCamelCase_ = initializer_factor UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = stop_gradient UpperCamelCase_ = share_layernorm UpperCamelCase_ = remove_last_layer @classmethod def UpperCAmelCase_ ( cls , _lowercase , **_lowercase )-> "PretrainedConfig": UpperCamelCase_ , UpperCamelCase_ = cls.get_config_dict(_lowercase , **_lowercase ) if config_dict.get("model_type" ) == "bridgetower": UpperCamelCase_ = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(_lowercase , **_lowercase ) class __magic_name__ ( snake_case ): UpperCamelCase_ :Optional[int] = """bridgetower_text_model""" def __init__( self , _lowercase=50_265 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=1 , _lowercase=3_072 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=514 , _lowercase=1 , _lowercase=1e-0_5 , _lowercase=1 , _lowercase=0 , _lowercase=2 , _lowercase="absolute" , _lowercase=True , **_lowercase , )-> Optional[int]: super().__init__(**_lowercase ) UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = hidden_act UpperCamelCase_ = initializer_factor UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = type_vocab_size UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = position_embedding_type UpperCamelCase_ = use_cache UpperCamelCase_ = pad_token_id UpperCamelCase_ = bos_token_id UpperCamelCase_ = eos_token_id @classmethod def UpperCAmelCase_ ( cls , _lowercase , **_lowercase )-> "PretrainedConfig": UpperCamelCase_ , UpperCamelCase_ = cls.get_config_dict(_lowercase , **_lowercase ) if config_dict.get("model_type" ) == "bridgetower": UpperCamelCase_ = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(_lowercase , **_lowercase ) class __magic_name__ ( snake_case ): UpperCamelCase_ :List[Any] = """bridgetower""" def __init__( self , _lowercase=True , _lowercase="gelu" , _lowercase=768 , _lowercase=1 , _lowercase=1e-0_5 , _lowercase=False , _lowercase="add" , _lowercase=12 , _lowercase=6 , _lowercase=False , _lowercase=False , _lowercase=None , _lowercase=None , **_lowercase , )-> List[Any]: # TODO: remove this once the Hub files are updated. UpperCamelCase_ = kwargs.pop("text_config_dict" , _lowercase ) UpperCamelCase_ = kwargs.pop("vision_config_dict" , _lowercase ) super().__init__(**_lowercase ) UpperCamelCase_ = share_cross_modal_transformer_layers UpperCamelCase_ = hidden_act UpperCamelCase_ = hidden_size UpperCamelCase_ = initializer_factor UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = share_link_tower_layers UpperCamelCase_ = link_tower_type UpperCamelCase_ = num_attention_heads UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = tie_word_embeddings UpperCamelCase_ = init_layernorm_from_vision_encoder if text_config is None: UpperCamelCase_ = {} logger.info("`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values." ) if vision_config is None: UpperCamelCase_ = {} logger.info("`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values." ) UpperCamelCase_ = BridgeTowerTextConfig(**_lowercase ) UpperCamelCase_ = BridgeTowerVisionConfig(**_lowercase ) @classmethod def UpperCAmelCase_ ( cls , _lowercase , _lowercase , **_lowercase )-> List[str]: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_lowercase ) def UpperCAmelCase_ ( self )-> Union[str, Any]: UpperCamelCase_ = copy.deepcopy(self.__dict__ ) UpperCamelCase_ = self.text_config.to_dict() UpperCamelCase_ = self.vision_config.to_dict() UpperCamelCase_ = self.__class__.model_type return output
60
0
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : str =['image_processor', 'tokenizer'] __lowerCamelCase : Union[str, Any] ='ChineseCLIPImageProcessor' __lowerCamelCase : Optional[int] =('BertTokenizer', 'BertTokenizerFast') def __init__( self : List[Any] , __lowercase : List[str]=None , __lowercase : Tuple=None , **__lowercase : Dict ): '''simple docstring''' __a = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __lowercase , ) __a = kwargs.pop("""feature_extractor""" ) __a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__lowercase , __lowercase ) __a = self.image_processor def __call__( self : int , __lowercase : List[Any]=None , __lowercase : Optional[Any]=None , __lowercase : Union[str, Any]=None , **__lowercase : Union[str, Any] ): '''simple docstring''' if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: __a = self.tokenizer(__lowercase , return_tensors=__lowercase , **__lowercase ) if images is not None: __a = self.image_processor(__lowercase , return_tensors=__lowercase , **__lowercase ) if text is not None and images is not None: __a = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__lowercase ) , tensor_type=__lowercase ) def UpperCamelCase_ ( self : Dict , *__lowercase : Optional[Any] , **__lowercase : Optional[int] ): '''simple docstring''' return self.tokenizer.batch_decode(*__lowercase , **__lowercase ) def UpperCamelCase_ ( self : Dict , *__lowercase : str , **__lowercase : Any ): '''simple docstring''' return self.tokenizer.decode(*__lowercase , **__lowercase ) @property def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' __a = self.tokenizer.model_input_names __a = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __lowercase , ) return self.image_processor_class
302
from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """huggingface/autoformer-tourism-monthly""": """https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : List[Any] ='autoformer' __lowerCamelCase : str ={ 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self : List[Any] , __lowercase : Optional[int] = None , __lowercase : Optional[int] = None , __lowercase : str = "student_t" , __lowercase : str = "nll" , __lowercase : int = 1 , __lowercase : List[int] = [1, 2, 3, 4, 5, 6, 7] , __lowercase : bool = True , __lowercase : int = 0 , __lowercase : int = 0 , __lowercase : int = 0 , __lowercase : int = 0 , __lowercase : Optional[List[int]] = None , __lowercase : Optional[List[int]] = None , __lowercase : int = 64 , __lowercase : int = 2 , __lowercase : int = 2 , __lowercase : int = 2 , __lowercase : int = 2 , __lowercase : int = 32 , __lowercase : int = 32 , __lowercase : str = "gelu" , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : int = 100 , __lowercase : float = 0.02 , __lowercase : bool = True , __lowercase : List[Any]=True , __lowercase : int = 10 , __lowercase : int = 25 , __lowercase : int = 3 , **__lowercase : Optional[int] , ): '''simple docstring''' # time series specific configuration __a = prediction_length __a = context_length if context_length is not None else prediction_length __a = distribution_output __a = loss __a = input_size __a = num_time_features __a = lags_sequence __a = scaling __a = num_dynamic_real_features __a = num_static_real_features __a = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(__lowercase ) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""" ) __a = cardinality else: __a = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(__lowercase ) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""" ) __a = embedding_dimension else: __a = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] __a = num_parallel_samples # Transformer architecture configuration __a = input_size * len(self.lags_sequence ) + self._number_of_features __a = d_model __a = encoder_attention_heads __a = decoder_attention_heads __a = encoder_ffn_dim __a = decoder_ffn_dim __a = encoder_layers __a = decoder_layers __a = dropout __a = attention_dropout __a = activation_dropout __a = encoder_layerdrop __a = decoder_layerdrop __a = activation_function __a = init_std __a = use_cache # Autoformer __a = label_length __a = moving_average __a = autocorrelation_factor super().__init__(is_encoder_decoder=__lowercase , **__lowercase ) @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
302
1
"""simple docstring""" import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller snake_case_ = 3 def _lowerCAmelCase ( lowercase_ ): print('Generating primitive root of p' ) while True: UpperCAmelCase = random.randrange(3 , lowercase_ ) if pow(lowercase_ , 2 , lowercase_ ) == 1: continue if pow(lowercase_ , lowercase_ , lowercase_ ) == 1: continue return g def _lowerCAmelCase ( lowercase_ ): print('Generating prime p...' ) UpperCAmelCase = rabin_miller.generate_large_prime(lowercase_ ) # select large prime number. UpperCAmelCase = primitive_root(lowercase_ ) # one primitive root on modulo p. UpperCAmelCase = random.randrange(3 , lowercase_ ) # private_key -> have to be greater than 2 for safety. UpperCAmelCase = cryptomath.find_mod_inverse(pow(lowercase_ , lowercase_ , lowercase_ ) , lowercase_ ) UpperCAmelCase = (key_size, e_a, e_a, p) UpperCAmelCase = (key_size, d) return public_key, private_key def _lowerCAmelCase ( lowercase_ , lowercase_ ): if os.path.exists(F"""{name}_pubkey.txt""" ) or os.path.exists(F"""{name}_privkey.txt""" ): print('\nWARNING:' ) print( F"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" 'Use a different name or delete these files and re-run this program.' ) sys.exit() UpperCAmelCase , UpperCAmelCase = generate_key(lowercase_ ) print(F"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(F"""{name}_pubkey.txt""" , 'w' ) as fo: fo.write(F"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""" ) print(F"""Writing private key to file {name}_privkey.txt...""" ) with open(F"""{name}_privkey.txt""" , 'w' ) as fo: fo.write(F"""{private_key[0]},{private_key[1]}""" ) def _lowerCAmelCase ( ): print('Making key files...' ) make_key_files('elgamal' , 2048 ) print('Key files generation successful' ) if __name__ == "__main__": main()
181
"""simple docstring""" def _lowerCAmelCase ( lowercase_ ): if not isinstance(lowercase_ , lowercase_ ): UpperCAmelCase = F"""Input value of [number={number}] must be an integer""" raise TypeError(lowercase_ ) if number < 1: UpperCAmelCase = F"""Input value of [number={number}] must be > 0""" raise ValueError(lowercase_ ) UpperCAmelCase = 1 for i in range(1 , lowercase_ ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
181
1
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class snake_case__ (pl.LightningModule ): """simple docstring""" def __init__( self : Any , __lowerCamelCase : Optional[int] ) -> List[str]: super().__init__() a = model a = 2 a = nn.Linear(self.model.config.hidden_size , self.num_labels ) def __UpperCAmelCase ( self : str ) -> int: pass def __magic_name__ ( A : str, A : str, A : str ): '''simple docstring''' a = LongformerModel.from_pretrained(A ) a = LightningModel(A ) a = torch.load(A, map_location=torch.device("cpu" ) ) lightning_model.load_state_dict(ckpt["state_dict"] ) # init longformer question answering model a = LongformerForQuestionAnswering.from_pretrained(A ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(A ) print(F"""Conversion successful. Model saved under {pytorch_dump_folder_path}""" ) if __name__ == "__main__": __lowerCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--longformer_model', default=None, type=str, required=True, help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.', ) parser.add_argument( '--longformer_question_answering_ckpt_path', default=None, type=str, required=True, help='Path the official PyTorch Lightning Checkpoint.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __lowerCAmelCase : List[str] = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
107
import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py _UpperCAmelCase : Optional[int] ="""src/transformers""" _UpperCAmelCase : str ="""docs/source/en""" _UpperCAmelCase : Optional[int] =""".""" def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> List[str]: with open(lowerCAmelCase_ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCAmelCase_ : int = f.readlines() # Find the start prompt. lowerCAmelCase_ : List[Any] = 0 while not lines[start_index].startswith(lowerCAmelCase_ ): start_index += 1 start_index += 1 lowerCAmelCase_ : List[str] = start_index while not lines[end_index].startswith(lowerCAmelCase_ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | _UpperCAmelCase : Optional[Any] ="""Model|Encoder|Decoder|ForConditionalGeneration""" # Regexes that match TF/Flax/PT model names. _UpperCAmelCase : Optional[int] =re.compile(R"""TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") _UpperCAmelCase : Dict =re.compile(R"""Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _UpperCAmelCase : Optional[Any] =re.compile(R"""(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # This is to make sure the transformers module imported is the one in the repo. _UpperCAmelCase : Optional[int] =direct_transformers_import(TRANSFORMERS_PATH) def lowerCAmelCase ( lowerCAmelCase_ )-> Optional[int]: lowerCAmelCase_ : str = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , lowerCAmelCase_ ) return [m.group(0 ) for m in matches] def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[int]: lowerCAmelCase_ : Tuple = 2 if text == '''✅''' or text == '''❌''' else len(lowerCAmelCase_ ) lowerCAmelCase_ : int = (width - text_length) // 2 lowerCAmelCase_ : Union[str, Any] = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def lowerCAmelCase ( )-> str: lowerCAmelCase_ : Any = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES lowerCAmelCase_ : Dict = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } lowerCAmelCase_ : List[Any] = {name: config.replace('''Config''' , '''''' ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. lowerCAmelCase_ : Tuple = collections.defaultdict(lowerCAmelCase_ ) lowerCAmelCase_ : List[str] = collections.defaultdict(lowerCAmelCase_ ) lowerCAmelCase_ : Optional[Any] = collections.defaultdict(lowerCAmelCase_ ) lowerCAmelCase_ : Optional[int] = collections.defaultdict(lowerCAmelCase_ ) lowerCAmelCase_ : List[str] = collections.defaultdict(lowerCAmelCase_ ) # Let's lookup through all transformers object (once). for attr_name in dir(lowerCAmelCase_ ): lowerCAmelCase_ : Optional[int] = None if attr_name.endswith('''Tokenizer''' ): lowerCAmelCase_ : Union[str, Any] = slow_tokenizers lowerCAmelCase_ : List[str] = attr_name[:-9] elif attr_name.endswith('''TokenizerFast''' ): lowerCAmelCase_ : int = fast_tokenizers lowerCAmelCase_ : Union[str, Any] = attr_name[:-13] elif _re_tf_models.match(lowerCAmelCase_ ) is not None: lowerCAmelCase_ : Tuple = tf_models lowerCAmelCase_ : str = _re_tf_models.match(lowerCAmelCase_ ).groups()[0] elif _re_flax_models.match(lowerCAmelCase_ ) is not None: lowerCAmelCase_ : Tuple = flax_models lowerCAmelCase_ : Union[str, Any] = _re_flax_models.match(lowerCAmelCase_ ).groups()[0] elif _re_pt_models.match(lowerCAmelCase_ ) is not None: lowerCAmelCase_ : Any = pt_models lowerCAmelCase_ : List[Any] = _re_pt_models.match(lowerCAmelCase_ ).groups()[0] if lookup_dict is not None: while len(lowerCAmelCase_ ) > 0: if attr_name in model_name_to_prefix.values(): lowerCAmelCase_ : Union[str, Any] = True break # Try again after removing the last word in the name lowerCAmelCase_ : Any = ''''''.join(camel_case_split(lowerCAmelCase_ )[:-1] ) # Let's build that table! lowerCAmelCase_ : int = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) lowerCAmelCase_ : Tuple = ['''Model''', '''Tokenizer slow''', '''Tokenizer fast''', '''PyTorch support''', '''TensorFlow support''', '''Flax Support'''] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). lowerCAmelCase_ : Union[str, Any] = [len(lowerCAmelCase_ ) + 2 for c in columns] lowerCAmelCase_ : Optional[Any] = max([len(lowerCAmelCase_ ) for name in model_names] ) + 2 # Build the table per se lowerCAmelCase_ : Dict = '''|''' + '''|'''.join([_center_text(lowerCAmelCase_ , lowerCAmelCase_ ) for c, w in zip(lowerCAmelCase_ , lowerCAmelCase_ )] ) + '''|\n''' # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([''':''' + '''-''' * (w - 2) + ''':''' for w in widths] ) + "|\n" lowerCAmelCase_ : List[str] = {True: '''✅''', False: '''❌'''} for name in model_names: lowerCAmelCase_ : List[Any] = model_name_to_prefix[name] lowerCAmelCase_ : Union[str, Any] = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(lowerCAmelCase_ , lowerCAmelCase_ ) for l, w in zip(lowerCAmelCase_ , lowerCAmelCase_ )] ) + "|\n" return table def lowerCAmelCase ( lowerCAmelCase_=False )-> Tuple: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : str = _find_text_in_file( filename=os.path.join(lowerCAmelCase_ , '''index.md''' ) , start_prompt='''<!--This table is updated automatically from the auto modules''' , end_prompt='''<!-- End table-->''' , ) lowerCAmelCase_ : Tuple = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(lowerCAmelCase_ , '''index.md''' ) , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( '''The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.''' ) if __name__ == "__main__": _UpperCAmelCase : List[Any] =argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") _UpperCAmelCase : Tuple =parser.parse_args() check_model_table(args.fix_and_overwrite)
262
0
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=_A ) class lowerCamelCase_ ( _A ): '''simple docstring''' a__ = field(default="audio-classification" ,metadata={"include_in_asdict_even_if_is_default": True} ) a__ = Features({"audio": Audio()} ) a__ = Features({"labels": ClassLabel} ) a__ = "audio" a__ = "labels" def SCREAMING_SNAKE_CASE__ ( self : int , __lowerCamelCase : Union[str, Any] ) -> Dict: if self.label_column not in features: raise ValueError(F"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , __lowerCamelCase ): raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""" ) A : Any = copy.deepcopy(self ) A : Dict = self.label_schema.copy() A : int = features[self.label_column] A : List[str] = label_schema return task_template @property def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Dict[str, str]: return { self.audio_column: "audio", self.label_column: "labels", }
256
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer __SCREAMING_SNAKE_CASE = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} __SCREAMING_SNAKE_CASE = { """vocab_file""": { """google/electra-small-generator""": ( """https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt""" ), """google/electra-base-generator""": """https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt""", """google/electra-large-generator""": ( """https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt""" ), """google/electra-small-discriminator""": ( """https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt""" ), """google/electra-base-discriminator""": ( """https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt""" ), """google/electra-large-discriminator""": ( """https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """google/electra-small-generator""": ( """https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json""" ), """google/electra-base-generator""": ( """https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json""" ), """google/electra-large-generator""": ( """https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json""" ), """google/electra-small-discriminator""": ( """https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json""" ), """google/electra-base-discriminator""": ( """https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json""" ), """google/electra-large-discriminator""": ( """https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json""" ), }, } __SCREAMING_SNAKE_CASE = { """google/electra-small-generator""": 512, """google/electra-base-generator""": 512, """google/electra-large-generator""": 512, """google/electra-small-discriminator""": 512, """google/electra-base-discriminator""": 512, """google/electra-large-discriminator""": 512, } __SCREAMING_SNAKE_CASE = { """google/electra-small-generator""": {"""do_lower_case""": True}, """google/electra-base-generator""": {"""do_lower_case""": True}, """google/electra-large-generator""": {"""do_lower_case""": True}, """google/electra-small-discriminator""": {"""do_lower_case""": True}, """google/electra-base-discriminator""": {"""do_lower_case""": True}, """google/electra-large-discriminator""": {"""do_lower_case""": True}, } class lowerCamelCase_ ( _A ): '''simple docstring''' a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = PRETRAINED_INIT_CONFIGURATION a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = ElectraTokenizer def __init__( self : int , __lowerCamelCase : str=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Tuple=True , __lowerCamelCase : int="[UNK]" , __lowerCamelCase : Any="[SEP]" , __lowerCamelCase : Union[str, Any]="[PAD]" , __lowerCamelCase : str="[CLS]" , __lowerCamelCase : Tuple="[MASK]" , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : str=None , **__lowerCamelCase : str , ) -> List[str]: super().__init__( __lowerCamelCase , tokenizer_file=__lowerCamelCase , do_lower_case=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , tokenize_chinese_chars=__lowerCamelCase , strip_accents=__lowerCamelCase , **__lowerCamelCase , ) A : Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , __lowerCamelCase ) != do_lower_case or normalizer_state.get("strip_accents" , __lowerCamelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , __lowerCamelCase ) != tokenize_chinese_chars ): A : Union[str, Any] = getattr(__lowerCamelCase , normalizer_state.pop("type" ) ) A : List[Any] = do_lower_case A : Tuple = strip_accents A : Any = tokenize_chinese_chars A : Tuple = normalizer_class(**__lowerCamelCase ) A : Optional[Any] = do_lower_case def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict=None ) -> List[Any]: A : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def SCREAMING_SNAKE_CASE__ ( self : Tuple , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]: A : int = [self.sep_token_id] A : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def SCREAMING_SNAKE_CASE__ ( self : Any , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ) -> Tuple[str]: A : List[Any] = self._tokenizer.model.save(__lowerCamelCase , name=__lowerCamelCase ) return tuple(__lowerCamelCase )
256
1
import mpmath # for roots of unity import numpy as np class a__ : def __init__( self : int,_A : Optional[int]=None,_A : Any=None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = list(poly_a or [0] )[:] SCREAMING_SNAKE_CASE_ : Optional[Any] = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() SCREAMING_SNAKE_CASE_ : Optional[int] = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() SCREAMING_SNAKE_CASE_ : Tuple = len(self.polyB ) # Add 0 to make lengths equal a power of 2 SCREAMING_SNAKE_CASE_ : List[Any] = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform SCREAMING_SNAKE_CASE_ : List[str] = complex(mpmath.root(x=1,n=self.c_max_length,k=1 ) ) # The product SCREAMING_SNAKE_CASE_ : List[Any] = self.__multiply() def __UpperCamelCase ( self : str,_A : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = [[x] for x in self.polyA] if which == "A" else [[x] for x in self.polyB] # Corner case if len(_A ) <= 1: return dft[0] # SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.c_max_length // 2 while next_ncol > 0: SCREAMING_SNAKE_CASE_ : Optional[int] = [[] for i in range(_A )] SCREAMING_SNAKE_CASE_ : str = self.root**next_ncol # First half of next step SCREAMING_SNAKE_CASE_ : int = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(_A ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step SCREAMING_SNAKE_CASE_ : Dict = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(_A ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update SCREAMING_SNAKE_CASE_ : Dict = new_dft SCREAMING_SNAKE_CASE_ : Union[str, Any] = next_ncol // 2 return dft[0] def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.__dft("A" ) SCREAMING_SNAKE_CASE_ : Any = self.__dft("B" ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT SCREAMING_SNAKE_CASE_ : Optional[Any] = 2 while next_ncol <= self.c_max_length: SCREAMING_SNAKE_CASE_ : Optional[Any] = [[] for i in range(_A )] SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.root ** (next_ncol // 2) SCREAMING_SNAKE_CASE_ : Dict = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update SCREAMING_SNAKE_CASE_ : Dict = new_inverse_c next_ncol *= 2 # Unpack SCREAMING_SNAKE_CASE_ : int = [round(x[0].real,8 ) + round(x[0].imag,8 ) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = "A = " + " + ".join( F'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A] ) ) SCREAMING_SNAKE_CASE_ : int = "B = " + " + ".join( F'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B] ) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = "A*B = " + " + ".join( F'{coef}*x^{i}' for coef, i in enumerate(self.product ) ) return F'{a}\n{b}\n{c}' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
18
'''simple docstring''' import re from filelock import FileLock try: import nltk __SCREAMING_SNAKE_CASE :Optional[int] = True except (ImportError, ModuleNotFoundError): __SCREAMING_SNAKE_CASE :str = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def UpperCAmelCase_ ( __lowercase : str ) -> str: '''simple docstring''' re.sub("<n>" , "" , __lowercase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(__lowercase ) )
22
0
a__ : dict[tuple[int, int, int], int] = {} def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on SCREAMING_SNAKE_CASE : Any = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one SCREAMING_SNAKE_CASE : int = _calculate(days - 1 , a__ , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 SCREAMING_SNAKE_CASE : Dict = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter SCREAMING_SNAKE_CASE : Dict = _calculate(days - 1 , a__ , 0 ) SCREAMING_SNAKE_CASE : Any = state_late + state_absent + state_ontime SCREAMING_SNAKE_CASE : Optional[Any] = prizestrings return prizestrings def UpperCAmelCase_( a__ = 30 ): """simple docstring""" return _calculate(a__ , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
366
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig a__ : List[str] = logging.get_logger(__name__) # General docstring a__ : Tuple = '''MobileNetV1Config''' # Base docstring a__ : Optional[Any] = '''google/mobilenet_v1_1.0_224''' a__ : Tuple = [1, 1_024, 7, 7] # Image classification docstring a__ : Optional[int] = '''google/mobilenet_v1_1.0_224''' a__ : int = '''tabby, tabby cat''' a__ : List[Any] = [ '''google/mobilenet_v1_1.0_224''', '''google/mobilenet_v1_0.75_192''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def UpperCAmelCase_( a__ , a__ , a__=None ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = {} if isinstance(a__ , a__ ): SCREAMING_SNAKE_CASE : List[str] = model.mobilenet_va else: SCREAMING_SNAKE_CASE : Union[str, Any] = model SCREAMING_SNAKE_CASE : Optional[int] = '''MobilenetV1/Conv2d_0/''' SCREAMING_SNAKE_CASE : Tuple = backbone.conv_stem.convolution.weight SCREAMING_SNAKE_CASE : Tuple = backbone.conv_stem.normalization.bias SCREAMING_SNAKE_CASE : Optional[Any] = backbone.conv_stem.normalization.weight SCREAMING_SNAKE_CASE : Union[str, Any] = backbone.conv_stem.normalization.running_mean SCREAMING_SNAKE_CASE : Any = backbone.conv_stem.normalization.running_var for i in range(13 ): SCREAMING_SNAKE_CASE : Dict = i + 1 SCREAMING_SNAKE_CASE : Union[str, Any] = i * 2 SCREAMING_SNAKE_CASE : Any = backbone.layer[pt_index] SCREAMING_SNAKE_CASE : Optional[Any] = F"""MobilenetV1/Conv2d_{tf_index}_depthwise/""" SCREAMING_SNAKE_CASE : Any = pointer.convolution.weight SCREAMING_SNAKE_CASE : Tuple = pointer.normalization.bias SCREAMING_SNAKE_CASE : List[Any] = pointer.normalization.weight SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.running_mean SCREAMING_SNAKE_CASE : List[Any] = pointer.normalization.running_var SCREAMING_SNAKE_CASE : List[Any] = backbone.layer[pt_index + 1] SCREAMING_SNAKE_CASE : Any = F"""MobilenetV1/Conv2d_{tf_index}_pointwise/""" SCREAMING_SNAKE_CASE : Dict = pointer.convolution.weight SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.bias SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.weight SCREAMING_SNAKE_CASE : int = pointer.normalization.running_mean SCREAMING_SNAKE_CASE : str = pointer.normalization.running_var if isinstance(a__ , a__ ): SCREAMING_SNAKE_CASE : List[Any] = '''MobilenetV1/Logits/Conv2d_1c_1x1/''' SCREAMING_SNAKE_CASE : List[str] = model.classifier.weight SCREAMING_SNAKE_CASE : List[str] = model.classifier.bias return tf_to_pt_map def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" try: import numpy as np import tensorflow as tf except ImportError: logger.error( '''Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ''' '''https://www.tensorflow.org/install/ for installation instructions.''' ) raise # Load weights from TF model SCREAMING_SNAKE_CASE : Optional[Any] = tf.train.list_variables(a__ ) SCREAMING_SNAKE_CASE : List[Any] = {} for name, shape in init_vars: logger.info(F"""Loading TF weight {name} with shape {shape}""" ) SCREAMING_SNAKE_CASE : Tuple = tf.train.load_variable(a__ , a__ ) SCREAMING_SNAKE_CASE : Dict = array # Build TF to PyTorch weights loading map SCREAMING_SNAKE_CASE : int = _build_tf_to_pytorch_map(a__ , a__ , a__ ) for name, pointer in tf_to_pt_map.items(): logger.info(F"""Importing {name}""" ) if name not in tf_weights: logger.info(F"""{name} not in tf pre-trained weights, skipping""" ) continue SCREAMING_SNAKE_CASE : Union[str, Any] = tf_weights[name] if "depthwise_weights" in name: logger.info('''Transposing depthwise''' ) SCREAMING_SNAKE_CASE : Tuple = np.transpose(a__ , (2, 3, 0, 1) ) elif "weights" in name: logger.info('''Transposing''' ) if len(pointer.shape ) == 2: # copying into linear layer SCREAMING_SNAKE_CASE : Union[str, Any] = array.squeeze().transpose() else: SCREAMING_SNAKE_CASE : Optional[int] = np.transpose(a__ , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F"""Pointer shape {pointer.shape} and array shape {array.shape} mismatched""" ) logger.info(F"""Initialize PyTorch weight {name} {array.shape}""" ) SCREAMING_SNAKE_CASE : Tuple = torch.from_numpy(a__ ) tf_weights.pop(a__ , a__ ) tf_weights.pop(name + '''/RMSProp''' , a__ ) tf_weights.pop(name + '''/RMSProp_1''' , a__ ) tf_weights.pop(name + '''/ExponentialMovingAverage''' , a__ ) logger.info(F"""Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}""" ) return model def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = features.shape[-2:] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = conv_layer.stride SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = conv_layer.kernel_size if in_height % stride_height == 0: SCREAMING_SNAKE_CASE : List[str] = max(kernel_height - stride_height , 0 ) else: SCREAMING_SNAKE_CASE : str = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: SCREAMING_SNAKE_CASE : int = max(kernel_width - stride_width , 0 ) else: SCREAMING_SNAKE_CASE : Tuple = max(kernel_width - (in_width % stride_width) , 0 ) SCREAMING_SNAKE_CASE : List[str] = pad_along_width // 2 SCREAMING_SNAKE_CASE : Any = pad_along_width - pad_left SCREAMING_SNAKE_CASE : str = pad_along_height // 2 SCREAMING_SNAKE_CASE : Optional[int] = pad_along_height - pad_top SCREAMING_SNAKE_CASE : List[Any] = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(a__ , a__ , '''constant''' , 0.0 ) class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1 , _lowerCamelCase = 1 , _lowerCamelCase = False , _lowerCamelCase = True , _lowerCamelCase = True , ) ->None: super().__init__() SCREAMING_SNAKE_CASE : Any = config if in_channels % groups != 0: raise ValueError(F"""Input channels ({in_channels}) are not divisible by {groups} groups.""" ) if out_channels % groups != 0: raise ValueError(F"""Output channels ({out_channels}) are not divisible by {groups} groups.""" ) SCREAMING_SNAKE_CASE : Any = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) SCREAMING_SNAKE_CASE : List[str] = nn.Convad( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=_lowerCamelCase , stride=_lowerCamelCase , padding=_lowerCamelCase , groups=_lowerCamelCase , bias=_lowerCamelCase , padding_mode='''zeros''' , ) if use_normalization: SCREAMING_SNAKE_CASE : List[Any] = nn.BatchNormad( num_features=_lowerCamelCase , eps=config.layer_norm_eps , momentum=0.9_9_9_7 , affine=_lowerCamelCase , track_running_stats=_lowerCamelCase , ) else: SCREAMING_SNAKE_CASE : Dict = None if use_activation: if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : Any = ACTaFN[use_activation] elif isinstance(config.hidden_act , _lowerCamelCase ): SCREAMING_SNAKE_CASE : List[str] = ACTaFN[config.hidden_act] else: SCREAMING_SNAKE_CASE : List[Any] = config.hidden_act else: SCREAMING_SNAKE_CASE : Optional[Any] = None def __lowerCAmelCase ( self , _lowerCamelCase ) ->torch.Tensor: if self.config.tf_padding: SCREAMING_SNAKE_CASE : List[Any] = apply_tf_padding(_lowerCamelCase , self.convolution ) SCREAMING_SNAKE_CASE : Dict = self.convolution(_lowerCamelCase ) if self.normalization is not None: SCREAMING_SNAKE_CASE : int = self.normalization(_lowerCamelCase ) if self.activation is not None: SCREAMING_SNAKE_CASE : List[Any] = self.activation(_lowerCamelCase ) return features class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = MobileNetVaConfig __SCREAMING_SNAKE_CASE : List[Any] = load_tf_weights_in_mobilenet_va __SCREAMING_SNAKE_CASE : int = 'mobilenet_v1' __SCREAMING_SNAKE_CASE : int = 'pixel_values' __SCREAMING_SNAKE_CASE : List[str] = False def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: if isinstance(_lowerCamelCase , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(_lowerCamelCase , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) a__ : str = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' a__ : Union[str, Any] = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( 'The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.' , a__ , ) class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase = True ) ->Dict: super().__init__(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = config SCREAMING_SNAKE_CASE : Dict = 32 SCREAMING_SNAKE_CASE : Optional[Any] = max(int(depth * config.depth_multiplier ) , config.min_depth ) SCREAMING_SNAKE_CASE : str = MobileNetVaConvLayer( _lowerCamelCase , in_channels=config.num_channels , out_channels=_lowerCamelCase , kernel_size=3 , stride=2 , ) SCREAMING_SNAKE_CASE : Union[str, Any] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] SCREAMING_SNAKE_CASE : Any = nn.ModuleList() for i in range(13 ): SCREAMING_SNAKE_CASE : int = out_channels if strides[i] == 2 or i == 0: depth *= 2 SCREAMING_SNAKE_CASE : Tuple = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( _lowerCamelCase , in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=3 , stride=strides[i] , groups=_lowerCamelCase , ) ) self.layer.append( MobileNetVaConvLayer( _lowerCamelCase , in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=1 , ) ) SCREAMING_SNAKE_CASE : int = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]: raise NotImplementedError @add_start_docstrings_to_model_forward(_lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , ) ->Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: SCREAMING_SNAKE_CASE : Union[str, Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('''You have to specify pixel_values''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.conv_stem(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): SCREAMING_SNAKE_CASE : Optional[int] = layer_module(_lowerCamelCase ) if output_hidden_states: SCREAMING_SNAKE_CASE : List[str] = all_hidden_states + (hidden_states,) SCREAMING_SNAKE_CASE : List[str] = hidden_states if self.pooler is not None: SCREAMING_SNAKE_CASE : Tuple = torch.flatten(self.pooler(_lowerCamelCase ) , start_dim=1 ) else: SCREAMING_SNAKE_CASE : List[Any] = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_lowerCamelCase , pooler_output=_lowerCamelCase , hidden_states=_lowerCamelCase , ) @add_start_docstrings( '\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , a__ , ) class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->None: super().__init__(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = config.num_labels SCREAMING_SNAKE_CASE : str = MobileNetVaModel(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head SCREAMING_SNAKE_CASE : Optional[int] = nn.Dropout(config.classifier_dropout_prob , inplace=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = nn.Linear(_lowerCamelCase , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , ) ->Union[tuple, ImageClassifierOutputWithNoAttention]: SCREAMING_SNAKE_CASE : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE : Dict = self.mobilenet_va(_lowerCamelCase , output_hidden_states=_lowerCamelCase , return_dict=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = outputs.pooler_output if return_dict else outputs[1] SCREAMING_SNAKE_CASE : Tuple = self.classifier(self.dropout(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : int = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE : Any = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE : Optional[int] = '''single_label_classification''' else: SCREAMING_SNAKE_CASE : Dict = '''multi_label_classification''' if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE : Any = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE : List[Any] = loss_fct(logits.squeeze() , labels.squeeze() ) else: SCREAMING_SNAKE_CASE : Dict = loss_fct(_lowerCamelCase , _lowerCamelCase ) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE : str = CrossEntropyLoss() SCREAMING_SNAKE_CASE : int = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE : List[Any] = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE : List[Any] = loss_fct(_lowerCamelCase , _lowerCamelCase ) if not return_dict: SCREAMING_SNAKE_CASE : Optional[Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=_lowerCamelCase , logits=_lowerCamelCase , hidden_states=outputs.hidden_states , )
19
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def _a ( a :Tuple ) -> Optional[Any]: a = 384 a = 7 if "tiny" in model_name: a = 96 a = (2, 2, 6, 2) a = (3, 6, 12, 24) elif "small" in model_name: a = 96 a = (2, 2, 18, 2) a = (3, 6, 12, 24) elif "base" in model_name: a = 128 a = (2, 2, 18, 2) a = (4, 8, 16, 32) a = 12 a = 512 elif "large" in model_name: a = 192 a = (2, 2, 18, 2) a = (6, 12, 24, 48) a = 12 a = 768 # set label information a = 150 a = '''huggingface/label-files''' a = '''ade20k-id2label.json''' a = json.load(open(hf_hub_download(a , a , repo_type='''dataset''' ) , '''r''' ) ) a = {int(a ): v for k, v in idalabel.items()} a = {v: k for k, v in idalabel.items()} a = SwinConfig( embed_dim=a , depths=a , num_heads=a , window_size=a , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) a = UperNetConfig( backbone_config=a , auxiliary_in_channels=a , num_labels=a , idalabel=a , labelaid=a , ) return config def _a ( a :Dict ) -> List[str]: a = [] # fmt: off # stem rename_keys.append(('''backbone.patch_embed.projection.weight''', '''backbone.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.patch_embed.projection.bias''', '''backbone.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''backbone.embeddings.norm.weight''') ) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''backbone.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm1.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm1.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm2.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm2.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((F"""backbone.stages.{i}.downsample.reduction.weight""", F"""backbone.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((F"""backbone.stages.{i}.downsample.norm.weight""", F"""backbone.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((F"""backbone.stages.{i}.downsample.norm.bias""", F"""backbone.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""backbone.hidden_states_norms.stage{i+1}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""backbone.hidden_states_norms.stage{i+1}.bias""") ) # decode head rename_keys.extend( [ ('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''), ('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''), ('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''), ('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''), ] ) # fmt: on return rename_keys def _a ( a :Optional[int] , a :Optional[Any] , a :List[Any] ) -> Optional[int]: a = dct.pop(a ) a = val def _a ( a :Union[str, Any] , a :str ) -> Any: a = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): a = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) a = state_dict.pop(F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight""" ) a = state_dict.pop(F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict a = in_proj_weight[:dim, :] a = in_proj_bias[: dim] a = in_proj_weight[ dim : dim * 2, : ] a = in_proj_bias[ dim : dim * 2 ] a = in_proj_weight[ -dim :, : ] a = in_proj_bias[-dim :] # fmt: on def _a ( a :List[str] ) -> List[str]: a , a = x.shape a = x.reshape(a , 4 , in_channel // 4 ) a = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(a , a ) return x def _a ( a :Optional[Any] ) -> Any: a , a = x.shape a = x.reshape(a , in_channel // 4 , 4 ) a = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(a , a ) return x def _a ( a :Dict ) -> Any: a = x.shape[0] a = x.reshape(4 , in_channel // 4 ) a = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(a ) return x def _a ( a :Any ) -> List[str]: a = x.shape[0] a = x.reshape(in_channel // 4 , 4 ) a = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(a ) return x def _a ( a :Union[str, Any] , a :str , a :Optional[int] ) -> Any: a = { '''upernet-swin-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth''', '''upernet-swin-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth''', '''upernet-swin-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth''', '''upernet-swin-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth''', } a = model_name_to_url[model_name] a = torch.hub.load_state_dict_from_url(a , map_location='''cpu''' , file_name=a )[ '''state_dict''' ] for name, param in state_dict.items(): print(a , param.shape ) a = get_upernet_config(a ) a = UperNetForSemanticSegmentation(a ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): a = state_dict.pop(a ) if "bn" in key: a = key.replace('''bn''' , '''batch_norm''' ) a = val # rename keys a = create_rename_keys(a ) for src, dest in rename_keys: rename_key(a , a , a ) read_in_q_k_v(a , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: a = reverse_correct_unfold_reduction_order(a ) if "norm" in key: a = reverse_correct_unfold_norm_order(a ) model.load_state_dict(a ) # verify on image a = '''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg''' a = Image.open(requests.get(a , stream=a ).raw ).convert('''RGB''' ) a = SegformerImageProcessor() a = processor(a , return_tensors='''pt''' ).pixel_values with torch.no_grad(): a = model(a ) a = outputs.logits print(logits.shape ) print('''First values of logits:''' , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": a = torch.tensor( [[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] ) elif model_name == "upernet-swin-small": a = torch.tensor( [[-7.1_921, -7.1_921, -6.9_532], [-7.1_921, -7.1_921, -6.9_532], [-7.0_908, -7.0_908, -6.8_534]] ) elif model_name == "upernet-swin-base": a = torch.tensor( [[-6.5_851, -6.5_851, -6.4_330], [-6.5_851, -6.5_851, -6.4_330], [-6.4_763, -6.4_763, -6.3_254]] ) elif model_name == "upernet-swin-large": a = torch.tensor( [[-7.5_297, -7.5_297, -7.3_802], [-7.5_297, -7.5_297, -7.3_802], [-7.4_044, -7.4_044, -7.2_586]] ) print('''Logits:''' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , a , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(a ) print(F"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(a ) if push_to_hub: print(F"""Pushing model and processor for {model_name} to hub""" ) model.push_to_hub(F"""openmmlab/{model_name}""" ) processor.push_to_hub(F"""openmmlab/{model_name}""" ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="upernet-swin-tiny", type=str, choices=[f"""upernet-swin-{size}""" for size in ["tiny", "small", "base", "large"]], help="Name of the Swin + UperNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) UpperCAmelCase__ = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
0
"""simple docstring""" UpperCAmelCase : Optional[Any] = tuple[float, float, float] UpperCAmelCase : Optional[Any] = tuple[float, float, float] def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Vectorad: '''simple docstring''' lowercase_ = end_pointa[0] - end_pointa[0] lowercase_ = end_pointa[1] - end_pointa[1] lowercase_ = end_pointa[2] - end_pointa[2] return (x, y, z) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Vectorad: '''simple docstring''' lowercase_ = ab[1] * ac[2] - ab[2] * ac[1] # *i lowercase_ = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j lowercase_ = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> bool: '''simple docstring''' return tuple(round(__lowerCAmelCase , __lowerCAmelCase ) for x in vector ) == (0, 0, 0) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 10 ) -> bool: '''simple docstring''' lowercase_ = create_vector(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = create_vector(__lowerCAmelCase , __lowerCAmelCase ) return is_zero_vector(get_ad_vectors_cross(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase )
136
0
"""simple docstring""" import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets __SCREAMING_SNAKE_CASE : Optional[int] = '''\ @article{hendrycksmath2021, title={Measuring Mathematical Problem Solving With the MATH Dataset}, author={Dan Hendrycks and Collin Burns and Saurav Kadavath and Akul Arora and Steven Basart and Eric Tang and Dawn Song and Jacob Steinhardt}, journal={arXiv preprint arXiv:2103.03874}, year={2021} } ''' __SCREAMING_SNAKE_CASE : Optional[Any] = '''\ This metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset. It first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy. ''' __SCREAMING_SNAKE_CASE : str = R''' Calculates accuracy after canonicalizing inputs. Args: predictions: list of predictions to score. Each prediction is a string that contains natural language and LaTex. references: list of reference for each prediction. Each reference is a string that contains natural language and LaTex. Returns: accuracy: accuracy after canonicalizing inputs (e.g., converting "1/2" to "\\frac{1}{2}") Examples: >>> metric = datasets.load_metric("competition_math") >>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"]) >>> print(results) {\'accuracy\': 1.0} ''' @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class lowerCamelCase_( datasets.Metric ): '''simple docstring''' def snake_case__ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' ), '''references''': datasets.Value('''string''' ), } ) , homepage='''https://github.com/hendrycks/math''' , codebase_urls=['''https://github.com/hendrycks/math'''] , ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ ): _lowerCamelCase = 0.0 for i, j in zip(lowerCamelCase__ , lowerCamelCase__ ): n_correct += 1.0 if math_equivalence.is_equiv(lowerCamelCase__ , lowerCamelCase__ ) else 0.0 _lowerCamelCase = n_correct / len(lowerCamelCase__ ) return { "accuracy": accuracy, }
73
"""simple docstring""" import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) def lowerCAmelCase_( lowercase_ : List[str] , lowercase_ : Optional[int] ) -> int: _lowerCamelCase = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"""encoder.deit.blocks.{i}.norm1.weight""", F"""encoder.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""encoder.deit.blocks.{i}.norm1.bias""", F"""encoder.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.attn.proj.weight""", F"""encoder.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.attn.proj.bias""", F"""encoder.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.norm2.weight""", F"""encoder.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""encoder.deit.blocks.{i}.norm2.bias""", F"""encoder.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.mlp.fc1.weight""", F"""encoder.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.mlp.fc1.bias""", F"""encoder.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.mlp.fc2.weight""", F"""encoder.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""encoder.deit.blocks.{i}.mlp.fc2.bias""", F"""encoder.encoder.layer.{i}.output.dense.bias""") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ('''encoder.deit.cls_token''', '''encoder.embeddings.cls_token'''), ('''encoder.deit.pos_embed''', '''encoder.embeddings.position_embeddings'''), ('''encoder.deit.patch_embed.proj.weight''', '''encoder.embeddings.patch_embeddings.projection.weight'''), ('''encoder.deit.patch_embed.proj.bias''', '''encoder.embeddings.patch_embeddings.projection.bias'''), ('''encoder.deit.norm.weight''', '''encoder.layernorm.weight'''), ('''encoder.deit.norm.bias''', '''encoder.layernorm.bias'''), ] ) return rename_keys def lowerCAmelCase_( lowercase_ : List[Any] , lowercase_ : List[str] ) -> List[str]: for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) _lowerCamelCase = state_dict.pop(F"""encoder.deit.blocks.{i}.attn.qkv.weight""" ) _lowerCamelCase = in_proj_weight[ : encoder_config.hidden_size, : ] _lowerCamelCase = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] _lowerCamelCase = in_proj_weight[ -encoder_config.hidden_size :, : ] def lowerCAmelCase_( lowercase_ : Optional[Any] , lowercase_ : Dict , lowercase_ : Dict ) -> str: _lowerCamelCase = dct.pop(lowercase_ ) _lowerCamelCase = val def lowerCAmelCase_( lowercase_ : Union[str, Any] ) -> Union[str, Any]: if "handwritten" in checkpoint_url: _lowerCamelCase = '''https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg''' # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: _lowerCamelCase = '''https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg''' _lowerCamelCase = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ).convert('''RGB''' ) return im @torch.no_grad() def lowerCAmelCase_( lowercase_ : Any , lowercase_ : Dict ) -> List[str]: _lowerCamelCase = ViTConfig(image_size=3_84 , qkv_bias=lowercase_ ) _lowerCamelCase = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: _lowerCamelCase = 7_68 elif "large" in checkpoint_url: # use ViT-large encoder _lowerCamelCase = 10_24 _lowerCamelCase = 40_96 _lowerCamelCase = 24 _lowerCamelCase = 16 _lowerCamelCase = 10_24 else: raise ValueError('''Should either find \'base\' or \'large\' in checkpoint URL''' ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: _lowerCamelCase = False _lowerCamelCase = '''relu''' _lowerCamelCase = 10_24 _lowerCamelCase = True _lowerCamelCase = False _lowerCamelCase = False # load HuggingFace model _lowerCamelCase = ViTModel(lowercase_ , add_pooling_layer=lowercase_ ) _lowerCamelCase = TrOCRForCausalLM(lowercase_ ) _lowerCamelCase = VisionEncoderDecoderModel(encoder=lowercase_ , decoder=lowercase_ ) model.eval() # load state_dict of original model, rename some keys _lowerCamelCase = torch.hub.load_state_dict_from_url(lowercase_ , map_location='''cpu''' , check_hash=lowercase_ )['''model'''] _lowerCamelCase = create_rename_keys(lowercase_ , lowercase_ ) for src, dest in rename_keys: rename_key(lowercase_ , lowercase_ , lowercase_ ) read_in_q_k_v(lowercase_ , lowercase_ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): _lowerCamelCase = state_dict.pop(lowercase_ ) if key.startswith('''decoder''' ) and "output_projection" not in key: _lowerCamelCase = val else: _lowerCamelCase = val # load state dict model.load_state_dict(lowercase_ ) # Check outputs on an image _lowerCamelCase = ViTImageProcessor(size=encoder_config.image_size ) _lowerCamelCase = RobertaTokenizer.from_pretrained('''roberta-large''' ) _lowerCamelCase = TrOCRProcessor(lowercase_ , lowercase_ ) _lowerCamelCase = processor(images=prepare_img(lowercase_ ) , return_tensors='''pt''' ).pixel_values # verify logits _lowerCamelCase = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) _lowerCamelCase = model(pixel_values=lowercase_ , decoder_input_ids=lowercase_ ) _lowerCamelCase = outputs.logits _lowerCamelCase = torch.Size([1, 1, 5_02_65] ) if "trocr-base-handwritten" in checkpoint_url: _lowerCamelCase = torch.tensor( [-1.4_5_0_2, -4.6_6_8_3, -0.5_3_4_7, -2.9_2_9_1, 9.1_4_3_5, -3.0_5_7_1, 8.9_7_6_4, 1.7_5_6_0, 8.7_3_5_8, -1.5_3_1_1] ) elif "trocr-large-handwritten" in checkpoint_url: _lowerCamelCase = torch.tensor( [-2.6_4_3_7, -1.3_1_2_9, -2.2_5_9_6, -5.3_4_5_5, 6.3_5_3_9, 1.7_6_0_4, 5.4_9_9_1, 1.4_7_0_2, 5.6_1_1_3, 2.0_1_7_0] ) elif "trocr-base-printed" in checkpoint_url: _lowerCamelCase = torch.tensor( [-5.6_8_1_6, -5.8_3_8_8, 1.1_3_9_8, -6.9_0_3_4, 6.8_5_0_5, -2.4_3_9_3, 1.2_2_8_4, -1.0_2_3_2, -1.9_6_6_1, -3.9_2_1_0] ) elif "trocr-large-printed" in checkpoint_url: _lowerCamelCase = torch.tensor( [-6.0_1_6_2, -7.0_9_5_9, 4.4_1_5_5, -5.1_0_6_3, 7.0_4_6_8, -3.1_6_3_1, 2.6_4_6_6, -0.3_0_8_1, -0.8_1_0_6, -1.7_5_3_5] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , lowercase_ , atol=1e-3 ), "First elements of logits not as expected" Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase_ ) print(F"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(lowercase_ ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
73
1
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : Optional[Any] = logging.get_logger(__name__) UpperCamelCase__ : str = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class _UpperCamelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' _A : Union[str, Any] = '''time_series_transformer''' _A : int = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self : Tuple , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : str = "student_t" , lowerCAmelCase__ : str = "nll" , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : List[int] = [1, 2, 3, 4, 5, 6, 7] , lowerCAmelCase__ : Optional[Union[str, bool]] = "mean" , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : str = "gelu" , lowerCAmelCase__ : int = 6_4 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : int = 1_0_0 , lowerCAmelCase__ : float = 0.02 , lowerCAmelCase__ : Union[str, Any]=True , **lowerCAmelCase__ : Optional[int] , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = prediction_length __SCREAMING_SNAKE_CASE : Optional[Any] = context_length or prediction_length __SCREAMING_SNAKE_CASE : Optional[Any] = distribution_output __SCREAMING_SNAKE_CASE : Optional[Any] = loss __SCREAMING_SNAKE_CASE : Tuple = input_size __SCREAMING_SNAKE_CASE : Any = num_time_features __SCREAMING_SNAKE_CASE : List[Any] = lags_sequence __SCREAMING_SNAKE_CASE : Dict = scaling __SCREAMING_SNAKE_CASE : List[str] = num_dynamic_real_features __SCREAMING_SNAKE_CASE : Tuple = num_static_real_features __SCREAMING_SNAKE_CASE : List[Any] = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(lowerCAmelCase__ ) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""" ) __SCREAMING_SNAKE_CASE : Union[str, Any] = cardinality else: __SCREAMING_SNAKE_CASE : List[Any] = [0] if embedding_dimension and num_static_categorical_features > 0: if len(lowerCAmelCase__ ) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""" ) __SCREAMING_SNAKE_CASE : Any = embedding_dimension else: __SCREAMING_SNAKE_CASE : Dict = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] __SCREAMING_SNAKE_CASE : List[str] = num_parallel_samples # Transformer architecture configuration __SCREAMING_SNAKE_CASE : List[str] = input_size * len(lowerCAmelCase__ ) + self._number_of_features __SCREAMING_SNAKE_CASE : Dict = d_model __SCREAMING_SNAKE_CASE : Dict = encoder_attention_heads __SCREAMING_SNAKE_CASE : Optional[int] = decoder_attention_heads __SCREAMING_SNAKE_CASE : Optional[int] = encoder_ffn_dim __SCREAMING_SNAKE_CASE : int = decoder_ffn_dim __SCREAMING_SNAKE_CASE : Optional[Any] = encoder_layers __SCREAMING_SNAKE_CASE : Tuple = decoder_layers __SCREAMING_SNAKE_CASE : Optional[Any] = dropout __SCREAMING_SNAKE_CASE : str = attention_dropout __SCREAMING_SNAKE_CASE : Union[str, Any] = activation_dropout __SCREAMING_SNAKE_CASE : str = encoder_layerdrop __SCREAMING_SNAKE_CASE : List[Any] = decoder_layerdrop __SCREAMING_SNAKE_CASE : Optional[int] = activation_function __SCREAMING_SNAKE_CASE : List[Any] = init_std __SCREAMING_SNAKE_CASE : str = use_cache super().__init__(is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ ) @property def UpperCamelCase__ ( self : Optional[Any] ): """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
112
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE :Optional[int] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :Optional[int] = {'vocab_file': 'sentencepiece.bpe.model'} SCREAMING_SNAKE_CASE :Tuple = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', } } SCREAMING_SNAKE_CASE :List[Any] = { 'camembert-base': 512, } SCREAMING_SNAKE_CASE :List[str] = '▁' class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ["input_ids", "attention_mask"] def __init__( self : Optional[Any] ,A : List[str] ,A : List[Any]="<s>" ,A : Tuple="</s>" ,A : Any="</s>" ,A : Optional[Any]="<s>" ,A : Tuple="<unk>" ,A : str="<pad>" ,A : int="<mask>" ,A : Optional[int]=["<s>NOTUSED", "</s>NOTUSED"] ,A : Optional[Dict[str, Any]] = None ,**A : Optional[Any] ,): # Mask token behave like a normal word, i.e. include the space before it __A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else mask_token __A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A ,eos_token=A ,unk_token=A ,sep_token=A ,cls_token=A ,pad_token=A ,mask_token=A ,additional_special_tokens=A ,sp_model_kwargs=self.sp_model_kwargs ,**A ,) __A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A ) ) __A = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> __A = {"<s>NOTUSED": 0, "<pad>": 1, "</s>NOTUSED": 2, "<unk>": 3} __A = len(self.fairseq_tokens_to_ids ) __A = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) __A = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def UpperCamelCase_ ( self : int ,A : List[int] ,A : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __A = [self.cls_token_id] __A = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase_ ( self : Dict ,A : List[int] ,A : Optional[List[int]] = None ,A : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A ,token_ids_a=A ,already_has_special_tokens=A ) if token_ids_a is None: return [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1, 1] + ([0] * len(A )) + [1] def UpperCamelCase_ ( self : Union[str, Any] ,A : List[int] ,A : Optional[List[int]] = None ): __A = [self.sep_token_id] __A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCamelCase_ ( self : Dict ): return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def UpperCamelCase_ ( self : int ): __A = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase_ ( self : Any ,A : str ): return self.sp_model.encode(A ,out_type=A ) def UpperCamelCase_ ( self : List[str] ,A : Dict ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(A ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(A ) def UpperCamelCase_ ( self : Dict ,A : Tuple ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCamelCase_ ( self : Optional[Any] ,A : Dict ): __A = [] __A = "" __A = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A ) + token __A = True __A = [] else: current_sub_tokens.append(A ) __A = False out_string += self.sp_model.decode(A ) return out_string.strip() def __getstate__( self : Dict ): __A = self.__dict__.copy() __A = None return state def __setstate__( self : Union[str, Any] ,A : Any ): __A = d # for backward compatibility if not hasattr(self ,"sp_model_kwargs" ): __A = {} __A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase_ ( self : Any ,A : str ,A : Optional[str] = None ): if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __A = os.path.join( A ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,A ) elif not os.path.isfile(self.vocab_file ): with open(A ,"wb" ) as fi: __A = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,)
15
0
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax __UpperCAmelCase = logging.get_logger(__name__) @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , **_A ) -> List[str]: super().__init__(**_A ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self , _A , **_A ) -> List[str]: return super().__call__(_A , **_A ) def _UpperCamelCase ( self , **_A ) -> List[Any]: SCREAMING_SNAKE_CASE_ = {} if "candidate_labels" in kwargs: SCREAMING_SNAKE_CASE_ = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: SCREAMING_SNAKE_CASE_ = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def _UpperCamelCase ( self , _A , _A=None , _A="This is a photo of {}." ) -> Tuple: SCREAMING_SNAKE_CASE_ = load_image(_A ) SCREAMING_SNAKE_CASE_ = self.image_processor(images=[image] , return_tensors=self.framework ) SCREAMING_SNAKE_CASE_ = candidate_labels SCREAMING_SNAKE_CASE_ = [hypothesis_template.format(_A ) for x in candidate_labels] SCREAMING_SNAKE_CASE_ = self.tokenizer(_A , return_tensors=self.framework , padding=_A ) SCREAMING_SNAKE_CASE_ = [text_inputs] return inputs def _UpperCamelCase ( self , _A ) -> Tuple: SCREAMING_SNAKE_CASE_ = model_inputs.pop('''candidate_labels''' ) SCREAMING_SNAKE_CASE_ = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] , _A ): SCREAMING_SNAKE_CASE_ = text_inputs[0] else: # Batching case. SCREAMING_SNAKE_CASE_ = text_inputs[0][0] SCREAMING_SNAKE_CASE_ = self.model(**_A , **_A ) SCREAMING_SNAKE_CASE_ = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def _UpperCamelCase ( self , _A ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = model_outputs.pop('''candidate_labels''' ) SCREAMING_SNAKE_CASE_ = model_outputs['''logits'''][0] if self.framework == "pt": SCREAMING_SNAKE_CASE_ = logits.softmax(dim=-1 ).squeeze(-1 ) SCREAMING_SNAKE_CASE_ = probs.tolist() if not isinstance(_A , _A ): SCREAMING_SNAKE_CASE_ = [scores] elif self.framework == "tf": SCREAMING_SNAKE_CASE_ = stable_softmax(_A , axis=-1 ) SCREAMING_SNAKE_CASE_ = probs.numpy().tolist() else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) SCREAMING_SNAKE_CASE_ = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(_A , _A ) , key=lambda _A : -x[0] ) ] return result
360
from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): if not arr: return None, None, 0 if low == high: return low, high, arr[low] SCREAMING_SNAKE_CASE_ = (low + high) // 2 SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = max_subarray(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = max_subarray(__lowerCamelCase, mid + 1, __lowerCamelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = max_cross_sum(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = float('''-inf''' ), -1 SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = float('''-inf''' ), -1 SCREAMING_SNAKE_CASE_ = 0 for i in range(__lowerCamelCase, low - 1, -1 ): summ += arr[i] if summ > left_sum: SCREAMING_SNAKE_CASE_ = summ SCREAMING_SNAKE_CASE_ = i SCREAMING_SNAKE_CASE_ = 0 for i in range(mid + 1, high + 1 ): summ += arr[i] if summ > right_sum: SCREAMING_SNAKE_CASE_ = summ SCREAMING_SNAKE_CASE_ = i return max_left, max_right, (left_sum + right_sum) def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [randint(1, __lowerCamelCase ) for _ in range(__lowerCamelCase )] SCREAMING_SNAKE_CASE_ = time.time() max_subarray(__lowerCamelCase, 0, input_size - 1 ) SCREAMING_SNAKE_CASE_ = time.time() return end - start def A__ ( ): SCREAMING_SNAKE_CASE_ = [10, 1_00, 10_00, 1_00_00, 5_00_00, 10_00_00, 20_00_00, 30_00_00, 40_00_00, 50_00_00] SCREAMING_SNAKE_CASE_ = [time_max_subarray(__lowerCamelCase ) for input_size in input_sizes] print('''No of Inputs\t\tTime Taken''' ) for input_size, runtime in zip(__lowerCamelCase, __lowerCamelCase ): print(__lowerCamelCase, '''\t\t''', __lowerCamelCase ) plt.plot(__lowerCamelCase, __lowerCamelCase ) plt.xlabel('''Number of Inputs''' ) plt.ylabel('''Time taken in seconds''' ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
257
0
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() lowerCAmelCase : Optional[int] = logging.get_logger(__name__) lowerCAmelCase : List[Any] = """Hello, World!""" lowerCAmelCase : int = """en_XX""" def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] = Path("data_bin" ) SCREAMING_SNAKE_CASE_: str = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(__lowercase ).parent ) , checkpoint_file=Path(__lowercase ).name , _name="xmod_base" , arch="xmod_base" , task="multilingual_masked_lm" , data_name_or_path=str(__lowercase ) , bpe="sentencepiece" , sentencepiece_model=str(Path(__lowercase ).parent / "sentencepiece.bpe.model" ) , src_dict=str(data_dir / "dict.txt" ) , ) xmod.eval() # disable dropout print(__lowercase ) SCREAMING_SNAKE_CASE_: Any = xmod.model.encoder.sentence_encoder SCREAMING_SNAKE_CASE_: List[Any] = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_14 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , "bottleneck" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: SCREAMING_SNAKE_CASE_: str = xmod.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print("Our X-MOD config:" , __lowercase ) SCREAMING_SNAKE_CASE_: Any = XmodForSequenceClassification(__lowercase ) if classification_head else XmodForMaskedLM(__lowercase ) model.eval() # Now let's copy all the weights. # Embeddings SCREAMING_SNAKE_CASE_: List[str] = xmod_sent_encoder.embed_tokens.weight SCREAMING_SNAKE_CASE_: List[str] = xmod_sent_encoder.embed_positions.weight SCREAMING_SNAKE_CASE_: Dict = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. SCREAMING_SNAKE_CASE_: str = xmod_sent_encoder.layernorm_embedding.weight SCREAMING_SNAKE_CASE_: List[Any] = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer SCREAMING_SNAKE_CASE_: Any = model.roberta.encoder.layer[i] SCREAMING_SNAKE_CASE_: Union[str, Any] = xmod_sent_encoder.layers[i] # self attention SCREAMING_SNAKE_CASE_: str = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("Dimensions of self-attention weights do not match." ) SCREAMING_SNAKE_CASE_: int = xmod_layer.self_attn.q_proj.weight SCREAMING_SNAKE_CASE_: Union[str, Any] = xmod_layer.self_attn.q_proj.bias SCREAMING_SNAKE_CASE_: Dict = xmod_layer.self_attn.k_proj.weight SCREAMING_SNAKE_CASE_: Optional[int] = xmod_layer.self_attn.k_proj.bias SCREAMING_SNAKE_CASE_: Union[str, Any] = xmod_layer.self_attn.v_proj.weight SCREAMING_SNAKE_CASE_: Union[str, Any] = xmod_layer.self_attn.v_proj.bias # self-attention output SCREAMING_SNAKE_CASE_: Tuple = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("Dimensions of self-attention output weights do not match." ) SCREAMING_SNAKE_CASE_: Tuple = xmod_layer.self_attn.out_proj.weight SCREAMING_SNAKE_CASE_: Dict = xmod_layer.self_attn.out_proj.bias SCREAMING_SNAKE_CASE_: Union[str, Any] = xmod_layer.self_attn_layer_norm.weight SCREAMING_SNAKE_CASE_: Optional[int] = xmod_layer.self_attn_layer_norm.bias # intermediate SCREAMING_SNAKE_CASE_: Optional[Any] = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("Dimensions of intermediate weights do not match." ) SCREAMING_SNAKE_CASE_: Union[str, Any] = xmod_layer.fca.weight SCREAMING_SNAKE_CASE_: Union[str, Any] = xmod_layer.fca.bias # output SCREAMING_SNAKE_CASE_: Optional[int] = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("Dimensions of feed-forward weights do not match." ) SCREAMING_SNAKE_CASE_: Union[str, Any] = xmod_layer.fca.weight SCREAMING_SNAKE_CASE_: Optional[Any] = xmod_layer.fca.bias SCREAMING_SNAKE_CASE_: Optional[int] = xmod_layer.final_layer_norm.weight SCREAMING_SNAKE_CASE_: Optional[Any] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: SCREAMING_SNAKE_CASE_: Any = xmod_layer.adapter_layer_norm.weight SCREAMING_SNAKE_CASE_: List[Any] = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("Lists of language adapters do not match." ) for lang_code, adapter in xmod_layer.adapter_modules.items(): SCREAMING_SNAKE_CASE_: Union[str, Any] = bert_output.adapter_modules[lang_code] SCREAMING_SNAKE_CASE_: Tuple = xmod_layer.adapter_modules[lang_code] SCREAMING_SNAKE_CASE_: str = from_adapter.fca.weight SCREAMING_SNAKE_CASE_: int = from_adapter.fca.bias SCREAMING_SNAKE_CASE_: Tuple = from_adapter.fca.weight SCREAMING_SNAKE_CASE_: List[str] = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: SCREAMING_SNAKE_CASE_: str = xmod_sent_encoder.layer_norm.weight SCREAMING_SNAKE_CASE_: Dict = xmod_sent_encoder.layer_norm.bias if classification_head: SCREAMING_SNAKE_CASE_: Tuple = xmod.model.classification_heads['''mnli'''].dense.weight SCREAMING_SNAKE_CASE_: Optional[int] = xmod.model.classification_heads['''mnli'''].dense.bias SCREAMING_SNAKE_CASE_: Optional[int] = xmod.model.classification_heads['''mnli'''].out_proj.weight SCREAMING_SNAKE_CASE_: int = xmod.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head SCREAMING_SNAKE_CASE_: Optional[int] = xmod.model.encoder.lm_head.dense.weight SCREAMING_SNAKE_CASE_: Union[str, Any] = xmod.model.encoder.lm_head.dense.bias SCREAMING_SNAKE_CASE_: Dict = xmod.model.encoder.lm_head.layer_norm.weight SCREAMING_SNAKE_CASE_: Optional[int] = xmod.model.encoder.lm_head.layer_norm.bias SCREAMING_SNAKE_CASE_: List[str] = xmod.model.encoder.lm_head.weight SCREAMING_SNAKE_CASE_: int = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. SCREAMING_SNAKE_CASE_: Dict = xmod.encode(__lowercase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(__lowercase ) SCREAMING_SNAKE_CASE_: Union[str, Any] = model(__lowercase )[0] if classification_head: SCREAMING_SNAKE_CASE_: int = xmod.model.classification_heads['''mnli'''](xmod.extract_features(__lowercase ) ) else: SCREAMING_SNAKE_CASE_: str = xmod.model(__lowercase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) SCREAMING_SNAKE_CASE_: List[Any] = torch.max(torch.abs(our_output - their_output ) ).item() print(f"max_absolute_diff = {max_absolute_diff}" ) # ~ 1e-7 SCREAMING_SNAKE_CASE_: List[str] = torch.allclose(__lowercase , __lowercase , atol=1e-3 ) print("Do both models output the same tensors?" , "🔥" if success else "💩" ) if not success: raise Exception("Something went wRoNg" ) Path(__lowercase ).mkdir(parents=__lowercase , exist_ok=__lowercase ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(__lowercase ) if __name__ == "__main__": lowerCAmelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) lowerCAmelCase : Tuple = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
13
'''simple docstring''' from __future__ import annotations import math def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list: if len(__lowercase ) != 2 or len(a[0] ) != 2 or len(__lowercase ) != 2 or len(b[0] ) != 2: raise Exception('''Matrices are not 2x2''' ) A: str = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Union[str, Any]: return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__lowercase ) ) ] def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Union[str, Any]: return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__lowercase ) ) ] def SCREAMING_SNAKE_CASE( __lowercase ) -> tuple[list, list, list, list]: if len(__lowercase ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception('''Odd matrices are not supported!''' ) A: Union[str, Any] = len(__lowercase ) A: str = matrix_length // 2 A: Optional[int] = [[a[i][j] for j in range(__lowercase , __lowercase )] for i in range(__lowercase )] A: Optional[Any] = [ [a[i][j] for j in range(__lowercase , __lowercase )] for i in range(__lowercase , __lowercase ) ] A: Union[str, Any] = [[a[i][j] for j in range(__lowercase )] for i in range(__lowercase )] A: int = [[a[i][j] for j in range(__lowercase )] for i in range(__lowercase , __lowercase )] return top_left, top_right, bot_left, bot_right def SCREAMING_SNAKE_CASE( __lowercase ) -> tuple[int, int]: return len(__lowercase ), len(matrix[0] ) def SCREAMING_SNAKE_CASE( __lowercase ) -> None: print('''\n'''.join(str(__lowercase ) for line in matrix ) ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list: if matrix_dimensions(__lowercase ) == (2, 2): return default_matrix_multiplication(__lowercase , __lowercase ) A , A , A , A: Union[str, Any] = split_matrix(__lowercase ) A , A , A , A: List[Any] = split_matrix(__lowercase ) A: Optional[int] = actual_strassen(__lowercase , matrix_subtraction(__lowercase , __lowercase ) ) A: Any = actual_strassen(matrix_addition(__lowercase , __lowercase ) , __lowercase ) A: Tuple = actual_strassen(matrix_addition(__lowercase , __lowercase ) , __lowercase ) A: Optional[int] = actual_strassen(__lowercase , matrix_subtraction(__lowercase , __lowercase ) ) A: Tuple = actual_strassen(matrix_addition(__lowercase , __lowercase ) , matrix_addition(__lowercase , __lowercase ) ) A: Union[str, Any] = actual_strassen(matrix_subtraction(__lowercase , __lowercase ) , matrix_addition(__lowercase , __lowercase ) ) A: List[str] = actual_strassen(matrix_subtraction(__lowercase , __lowercase ) , matrix_addition(__lowercase , __lowercase ) ) A: int = matrix_addition(matrix_subtraction(matrix_addition(__lowercase , __lowercase ) , __lowercase ) , __lowercase ) A: Any = matrix_addition(__lowercase , __lowercase ) A: List[Any] = matrix_addition(__lowercase , __lowercase ) A: List[str] = matrix_subtraction(matrix_subtraction(matrix_addition(__lowercase , __lowercase ) , __lowercase ) , __lowercase ) # construct the new matrix from our 4 quadrants A: Union[str, Any] = [] for i in range(len(__lowercase ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(__lowercase ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list: if matrix_dimensions(__lowercase )[1] != matrix_dimensions(__lowercase )[0]: A: int = ( '''Unable to multiply these matrices, please check the dimensions.\n''' F"""Matrix A: {matrixa}\n""" F"""Matrix B: {matrixa}""" ) raise Exception(__lowercase ) A: str = matrix_dimensions(__lowercase ) A: str = matrix_dimensions(__lowercase ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] A: Union[str, Any] = max(*__lowercase , *__lowercase ) A: Optional[int] = int(math.pow(2 , math.ceil(math.loga(__lowercase ) ) ) ) A: List[Any] = matrixa A: Tuple = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , __lowercase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __lowercase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , __lowercase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) A: Any = actual_strassen(__lowercase , __lowercase ) # Removing the additional zeros for i in range(0 , __lowercase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __lowercase ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": UpperCamelCase = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] UpperCamelCase = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
319
0
"""simple docstring""" from __future__ import annotations import math def snake_case ( A__ ,A__ ): if len(A__ ) != 2 or len(a[0] ) != 2 or len(A__ ) != 2 or len(b[0] ) != 2: raise Exception("Matrices are not 2x2" ) UpperCAmelCase_ : Optional[Any] = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def snake_case ( A__ ,A__ ): return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(A__ ) ) ] def snake_case ( A__ ,A__ ): return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(A__ ) ) ] def snake_case ( A__ ): if len(A__ ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception("Odd matrices are not supported!" ) UpperCAmelCase_ : str = len(A__ ) UpperCAmelCase_ : Union[str, Any] = matrix_length // 2 UpperCAmelCase_ : str = [[a[i][j] for j in range(A__ ,A__ )] for i in range(A__ )] UpperCAmelCase_ : Union[str, Any] = [ [a[i][j] for j in range(A__ ,A__ )] for i in range(A__ ,A__ ) ] UpperCAmelCase_ : int = [[a[i][j] for j in range(A__ )] for i in range(A__ )] UpperCAmelCase_ : Optional[int] = [[a[i][j] for j in range(A__ )] for i in range(A__ ,A__ )] return top_left, top_right, bot_left, bot_right def snake_case ( A__ ): return len(A__ ), len(matrix[0] ) def snake_case ( A__ ): print("\n".join(str(A__ ) for line in matrix ) ) def snake_case ( A__ ,A__ ): if matrix_dimensions(A__ ) == (2, 2): return default_matrix_multiplication(A__ ,A__ ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = split_matrix(A__ ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = split_matrix(A__ ) UpperCAmelCase_ : Union[str, Any] = actual_strassen(A__ ,matrix_subtraction(A__ ,A__ ) ) UpperCAmelCase_ : int = actual_strassen(matrix_addition(A__ ,A__ ) ,A__ ) UpperCAmelCase_ : Any = actual_strassen(matrix_addition(A__ ,A__ ) ,A__ ) UpperCAmelCase_ : Union[str, Any] = actual_strassen(A__ ,matrix_subtraction(A__ ,A__ ) ) UpperCAmelCase_ : Tuple = actual_strassen(matrix_addition(A__ ,A__ ) ,matrix_addition(A__ ,A__ ) ) UpperCAmelCase_ : Optional[int] = actual_strassen(matrix_subtraction(A__ ,A__ ) ,matrix_addition(A__ ,A__ ) ) UpperCAmelCase_ : Union[str, Any] = actual_strassen(matrix_subtraction(A__ ,A__ ) ,matrix_addition(A__ ,A__ ) ) UpperCAmelCase_ : Dict = matrix_addition(matrix_subtraction(matrix_addition(A__ ,A__ ) ,A__ ) ,A__ ) UpperCAmelCase_ : List[str] = matrix_addition(A__ ,A__ ) UpperCAmelCase_ : Optional[int] = matrix_addition(A__ ,A__ ) UpperCAmelCase_ : List[Any] = matrix_subtraction(matrix_subtraction(matrix_addition(A__ ,A__ ) ,A__ ) ,A__ ) # construct the new matrix from our 4 quadrants UpperCAmelCase_ : Tuple = [] for i in range(len(A__ ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(A__ ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def snake_case ( A__ ,A__ ): if matrix_dimensions(A__ )[1] != matrix_dimensions(A__ )[0]: UpperCAmelCase_ : str = ( "Unable to multiply these matrices, please check the dimensions.\n" F"""Matrix A: {matrixa}\n""" F"""Matrix B: {matrixa}""" ) raise Exception(A__ ) UpperCAmelCase_ : Dict = matrix_dimensions(A__ ) UpperCAmelCase_ : int = matrix_dimensions(A__ ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] UpperCAmelCase_ : Tuple = max(*A__ ,*A__ ) UpperCAmelCase_ : List[str] = int(math.pow(2 ,math.ceil(math.loga(A__ ) ) ) ) UpperCAmelCase_ : int = matrixa UpperCAmelCase_ : List[Any] = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 ,A__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] ,A__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] ,A__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) UpperCAmelCase_ : Dict = actual_strassen(A__ ,A__ ) # Removing the additional zeros for i in range(0 ,A__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] ,A__ ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": lowerCamelCase_ = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] lowerCamelCase_ = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
253
"""simple docstring""" import numpy as np def snake_case ( A__ ,A__ ,A__ ,A__ ,A__ ): UpperCAmelCase_ : Tuple = int(np.ceil((x_end - xa) / h ) ) UpperCAmelCase_ : Optional[Any] = np.zeros((n + 1,) ) UpperCAmelCase_ : List[Any] = ya UpperCAmelCase_ : Optional[int] = xa for k in range(A__ ): UpperCAmelCase_ : List[str] = f(A__ ,y[k] ) UpperCAmelCase_ : Any = f(x + 0.5 * h ,y[k] + 0.5 * h * ka ) UpperCAmelCase_ : Union[str, Any] = f(x + 0.5 * h ,y[k] + 0.5 * h * ka ) UpperCAmelCase_ : Dict = f(x + h ,y[k] + h * ka ) UpperCAmelCase_ : Optional[int] = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
253
1
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device a_ = False class __lowerCAmelCase ( unittest.TestCase ): pass @nightly @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = VersatileDiffusionTextToImagePipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) # remove text_unet pipe.remove_unused_weights() pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) __lowerCamelCase = '''A painting of a squirrel eating a burger ''' __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = pipe( prompt=__lowerCamelCase , generator=__lowerCamelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__lowerCamelCase ) __lowerCamelCase = VersatileDiffusionTextToImagePipeline.from_pretrained(__lowerCamelCase ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) __lowerCamelCase = generator.manual_seed(0 ) __lowerCamelCase = pipe( prompt=__lowerCamelCase , generator=__lowerCamelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = VersatileDiffusionTextToImagePipeline.from_pretrained( '''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) __lowerCamelCase = '''A painting of a squirrel eating a burger ''' __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = pipe( prompt=__lowerCamelCase , generator=__lowerCamelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' ).images __lowerCamelCase = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __lowerCamelCase = np.array([0.3_367, 0.3_169, 0.2_656, 0.3_870, 0.4_790, 0.3_796, 0.4_009, 0.4_878, 0.4_778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
330
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class __snake_case : """simple docstring""" _lowerCamelCase = 42 # setable values _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = None @classmethod def UpperCamelCase__( cls , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' return cls(common=__lowerCamelCase , init_noise_sigma=__lowerCamelCase , timesteps=__lowerCamelCase ) @dataclass class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = 42 class __snake_case ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = [e.name for e in FlaxKarrasDiffusionSchedulers] _lowerCamelCase = 42 @property def UpperCamelCase__( self ): '''simple docstring''' return True @register_to_config def __init__( self , __lowerCamelCase = 1000 , __lowerCamelCase = 0.0_0_0_1 , __lowerCamelCase = 0.0_2 , __lowerCamelCase = "linear" , __lowerCamelCase = None , __lowerCamelCase = "fixed_small" , __lowerCamelCase = True , __lowerCamelCase = "epsilon" , __lowerCamelCase = jnp.floataa , ): '''simple docstring''' __A : Tuple = dtype def UpperCamelCase__( self , __lowerCamelCase = None ): '''simple docstring''' if common is None: __A : Tuple = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution __A : Tuple = jnp.array(1.0 , dtype=self.dtype ) __A : Optional[int] = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=__lowerCamelCase , init_noise_sigma=__lowerCamelCase , timesteps=__lowerCamelCase , ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = None ): '''simple docstring''' return sample def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = () ): '''simple docstring''' __A : Optional[Any] = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 __A : Optional[Any] = (jnp.arange(0 , __lowerCamelCase ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=__lowerCamelCase , timesteps=__lowerCamelCase , ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None ): '''simple docstring''' __A : int = state.common.alphas_cumprod[t] __A : List[str] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample __A : str = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: __A : Dict = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": __A : List[Any] = jnp.clip(__lowerCamelCase , a_min=1e-2_0 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": __A : Optional[Any] = jnp.log(jnp.clip(__lowerCamelCase , a_min=1e-2_0 ) ) elif variance_type == "fixed_large": __A : Tuple = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log __A : Union[str, Any] = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": __A : Optional[Any] = variance __A : Optional[Any] = state.common.betas[t] __A : Any = (predicted_variance + 1) / 2 __A : Union[str, Any] = frac * max_log + (1 - frac) * min_log return variance def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = True , ): '''simple docstring''' __A : Optional[int] = timestep if key is None: __A : List[Any] = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: __A , __A : Tuple = jnp.split(__lowerCamelCase , sample.shape[1] , axis=1 ) else: __A : List[str] = None # 1. compute alphas, betas __A : Dict = state.common.alphas_cumprod[t] __A : int = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) __A : Tuple = 1 - alpha_prod_t __A : Optional[int] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": __A : Optional[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": __A : Any = model_output elif self.config.prediction_type == "v_prediction": __A : str = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` """ ''' for the FlaxDDPMScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: __A : str = jnp.clip(__lowerCamelCase , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __A : Optional[Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t __A : Union[str, Any] = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __A : Optional[Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): __A : List[Any] = jax.random.split(__lowerCamelCase , num=1 ) __A : List[str] = jax.random.normal(__lowerCamelCase , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(__lowerCamelCase , __lowerCamelCase , predicted_variance=__lowerCamelCase ) ** 0.5) * noise __A : Optional[Any] = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) __A : Any = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=__lowerCamelCase , state=__lowerCamelCase ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ): '''simple docstring''' return add_noise_common(state.common , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ): '''simple docstring''' return get_velocity_common(state.common , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def __len__( self ): '''simple docstring''' return self.config.num_train_timesteps
179
0
"""simple docstring""" from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class snake_case ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase): __UpperCamelCase = [R'h\.\d+\.attn\.bias', R'h\.\d+\.attn\.masked_bias'] @register_to_config def __init__( self : Union[str, Any] , a__ : int , a__ : int , a__ : Optional[int] = None , a__ : int = 5_02_57 , a__ : int = 10_24 , a__ : int = 7_68 , a__ : int = 12 , a__ : int = 12 , a__ : Optional[int] = None , a__ : str = "gelu_new" , a__ : float = 0.1 , a__ : float = 0.1 , a__ : float = 0.1 , a__ : float = 1E-5 , a__ : float = 0.0_2 , a__ : bool = True , a__ : bool = True , a__ : bool = False , a__ : bool = False , ) -> str: '''simple docstring''' super().__init__() _A = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( F"""`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and""" F""" `n_embd`: {n_embd} are not equal.""" ) _A = prefix_inner_dim _A = prefix_hidden_dim _A = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) _A = ( nn.Linear(self.prefix_hidden_dim , a__ ) if self.prefix_hidden_dim is not None else nn.Identity() ) _A = GPTaConfig( vocab_size=a__ , n_positions=a__ , n_embd=a__ , n_layer=a__ , n_head=a__ , n_inner=a__ , activation_function=a__ , resid_pdrop=a__ , embd_pdrop=a__ , attn_pdrop=a__ , layer_norm_epsilon=a__ , initializer_range=a__ , scale_attn_weights=a__ , use_cache=a__ , scale_attn_by_inverse_layer_idx=a__ , reorder_and_upcast_attn=a__ , ) _A = GPTaLMHeadModel(a__ ) def a_ ( self : Any , a__ : torch.Tensor , a__ : torch.Tensor , a__ : Optional[torch.Tensor] = None , a__ : Optional[torch.Tensor] = None , ) -> List[Any]: '''simple docstring''' _A = self.transformer.transformer.wte(a__ ) _A = self.encode_prefix(a__ ) _A = self.decode_prefix(a__ ) _A = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: _A = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) _A = torch.cat((dummy_token, input_ids) , dim=1 ) _A = self.transformer(inputs_embeds=a__ , labels=a__ , attention_mask=a__ ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def a_ ( self : Dict , a__ : int , a__ : torch.device ) -> torch.Tensor: '''simple docstring''' return torch.zeros(a__ , self.prefix_length , dtype=torch.intaa , device=a__ ) def a_ ( self : Union[str, Any] , a__ : Tuple ) -> List[Any]: '''simple docstring''' return self.encode_prefix(a__ ) @torch.no_grad() def a_ ( self : str , a__ : Dict , a__ : List[str] , a__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' _A = torch.split(a__ , 1 , dim=0 ) _A = [] _A = [] for feature in features: _A = self.decode_prefix(feature.to(a__ ) ) # back to the clip feature # Only support beam search for now _A , _A = self.generate_beam( input_embeds=a__ , device=a__ , eos_token_id=a__ ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) _A = torch.stack(a__ ) _A = torch.stack(a__ ) return generated_tokens, generated_seq_lengths @torch.no_grad() def a_ ( self : List[str] , a__ : Union[str, Any]=None , a__ : List[str]=None , a__ : Tuple=None , a__ : int = 5 , a__ : int = 67 , a__ : float = 1.0 , a__ : Optional[int] = None , ) -> Any: '''simple docstring''' _A = eos_token_id _A = None _A = None _A = torch.ones(a__ , device=a__ , dtype=torch.int ) _A = torch.zeros(a__ , device=a__ , dtype=torch.bool ) if input_embeds is not None: _A = input_embeds else: _A = self.transformer.transformer.wte(a__ ) for i in range(a__ ): _A = self.transformer(inputs_embeds=a__ ) _A = outputs.logits _A = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) _A = logits.softmax(-1 ).log() if scores is None: _A , _A = logits.topk(a__ , -1 ) _A = generated.expand(a__ , *generated.shape[1:] ) _A , _A = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: _A = next_tokens else: _A = tokens.expand(a__ , *tokens.shape[1:] ) _A = torch.cat((tokens, next_tokens) , dim=1 ) else: _A = -float(np.inf ) _A = 0 _A = scores[:, None] + logits seq_lengths[~is_stopped] += 1 _A = scores_sum / seq_lengths[:, None] _A , _A = scores_sum_average.view(-1 ).topk(a__ , -1 ) _A = next_tokens // scores_sum.shape[1] _A = seq_lengths[next_tokens_source] _A = next_tokens % scores_sum.shape[1] _A = next_tokens.unsqueeze(1 ) _A = tokens[next_tokens_source] _A = torch.cat((tokens, next_tokens) , dim=1 ) _A = generated[next_tokens_source] _A = scores_sum_average * seq_lengths _A = is_stopped[next_tokens_source] _A = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) _A = torch.cat((generated, next_token_embed) , dim=1 ) _A = is_stopped + next_tokens.eq(a__ ).squeeze() if is_stopped.all(): break _A = scores / seq_lengths _A = scores.argsort(descending=a__ ) # tokens tensors are already padded to max_seq_length _A = [tokens[i] for i in order] _A = torch.stack(a__ , dim=0 ) _A = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
163
"""simple docstring""" def a__ ( __lowercase ) -> int: assert ( isinstance(__lowercase , __lowercase ) and number_of_steps > 0 ), f"""number_of_steps needs to be positive integer, your input {number_of_steps}""" if number_of_steps == 1: return 1 _A , _A = 1, 1 for _ in range(number_of_steps - 1 ): _A , _A = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
163
1
"""simple docstring""" import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE__:Dict = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class snake_case__ ( __UpperCAmelCase, unittest.TestCase ): _snake_case : List[str] = DebertaVaTokenizer _snake_case : Any = DebertaVaTokenizerFast _snake_case : List[Any] = True _snake_case : Dict = True def a__ ( self ): super().setUp() # We have a SentencePiece fixture for testing __a = DebertaVaTokenizer(_lowerCamelCase , unk_token="<unk>" ) tokenizer.save_pretrained(self.tmpdirname ) def a__ ( self , lowerCamelCase ): __a = '''this is a test''' __a = '''this is a test''' return input_text, output_text def a__ ( self ): __a = '''<pad>''' __a = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCamelCase ) , _lowerCamelCase ) def a__ ( self ): __a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<pad>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "[PAD]" ) self.assertEqual(len(_lowerCamelCase ) , 30001 ) def a__ ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 30000 ) def a__ ( self ): __a = ''' \tHeLLo!how \n Are yoU? ''' __a = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?'''] # fmt: on __a = DebertaVaTokenizer(_lowerCamelCase , do_lower_case=_lowerCamelCase ) __a = tokenizer.convert_ids_to_tokens(tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) __a = DebertaVaTokenizerFast(_lowerCamelCase , do_lower_case=_lowerCamelCase ) __a = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) @unittest.skip("There is an inconsistency between slow and fast tokenizer due to a bug in the fast one." ) def a__ ( self ): pass @unittest.skip("There is an inconsistency between slow and fast tokenizer due to a bug in the fast one." ) def a__ ( self ): pass def a__ ( self ): __a = '''I was born in 92000, and this is falsé.''' __a = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on __a = DebertaVaTokenizer(_lowerCamelCase , split_by_punct=_lowerCamelCase ) __a = tokenizer.convert_ids_to_tokens(tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) __a = DebertaVaTokenizerFast(_lowerCamelCase , split_by_punct=_lowerCamelCase ) __a = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) def a__ ( self ): __a = '''I was born in 92000, and this is falsé.''' __a = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on __a = DebertaVaTokenizer(_lowerCamelCase , do_lower_case=_lowerCamelCase , split_by_punct=_lowerCamelCase ) __a = tokenizer.convert_ids_to_tokens(tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) __a = DebertaVaTokenizerFast(_lowerCamelCase , do_lower_case=_lowerCamelCase , split_by_punct=_lowerCamelCase ) __a = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) def a__ ( self ): __a = '''I was born in 92000, and this is falsé.''' __a = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on __a = DebertaVaTokenizer(_lowerCamelCase , do_lower_case=_lowerCamelCase , split_by_punct=_lowerCamelCase ) __a = tokenizer.convert_ids_to_tokens(tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) __a = DebertaVaTokenizerFast(_lowerCamelCase , do_lower_case=_lowerCamelCase , split_by_punct=_lowerCamelCase ) __a = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) def a__ ( self ): __a = '''I was born in 92000, and this is falsé.''' __a = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on __a = DebertaVaTokenizer(_lowerCamelCase , do_lower_case=_lowerCamelCase , split_by_punct=_lowerCamelCase ) __a = tokenizer.convert_ids_to_tokens(tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) __a = DebertaVaTokenizerFast(_lowerCamelCase , do_lower_case=_lowerCamelCase , split_by_punct=_lowerCamelCase ) __a = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) def a__ ( self ): __a = ''' \tHeLLo!how \n Are yoU? ''' __a = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?'''] # fmt: on __a = DebertaVaTokenizer(_lowerCamelCase , do_lower_case=_lowerCamelCase , split_by_punct=_lowerCamelCase ) __a = tokenizer.convert_ids_to_tokens(tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) __a = DebertaVaTokenizerFast(_lowerCamelCase , do_lower_case=_lowerCamelCase , split_by_punct=_lowerCamelCase ) __a = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) def a__ ( self ): __a = self.get_tokenizer() __a = self.get_rust_tokenizer() __a = '''I was born in 92000, and this is falsé.''' __a = tokenizer.convert_ids_to_tokens(tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) ) __a = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) __a = tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) __a = rust_tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) __a = self.get_rust_tokenizer() __a = tokenizer.encode(_lowerCamelCase ) __a = rust_tokenizer.encode(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) def a__ ( self ): __a = '''This is a test''' __a = [13, 1, 4398, 25, 21, 1289] __a = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test'''] __a = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test'''] __a = DebertaVaTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase ) __a = DebertaVaTokenizerFast(_lowerCamelCase , keep_accents=_lowerCamelCase ) __a = tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) __a = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) __a = tokenizer.convert_ids_to_tokens(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) __a = rust_tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) __a = rust_tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) __a = rust_tokenizer.convert_ids_to_tokens(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) # fmt: off __a = '''I was born in 92000, and this is falsé.''' __a = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] __a = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ] __a = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on __a = tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) __a = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) __a = tokenizer.convert_ids_to_tokens(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) __a = rust_tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) __a = rust_tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) __a = rust_tokenizer.convert_ids_to_tokens(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) def a__ ( self ): __a = DebertaVaTokenizer(_lowerCamelCase ) __a = tokenizer.encode("sequence builders" ) __a = tokenizer.encode("multi-sequence build" ) __a = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase ) __a = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase , _lowerCamelCase ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , _lowerCamelCase ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , _lowerCamelCase , ) @slow def a__ ( self ): __a = {'''input_ids''': [[1, 39867, 36, 19390, 486, 27, 35052, 81436, 18, 60685, 1225, 7, 35052, 81436, 18, 9367, 16899, 18, 15937, 53, 594, 773, 18, 16287, 30465, 36, 15937, 6, 41139, 38, 36979, 60763, 191, 6, 34132, 99, 6, 50538, 390, 43230, 6, 34132, 2779, 20850, 14, 699, 1072, 1194, 36, 382, 10901, 53, 7, 699, 1072, 2084, 36, 20422, 630, 53, 19, 105, 3049, 1896, 1053, 16899, 1506, 11, 37978, 4243, 7, 1237, 31869, 200, 16566, 654, 6, 35052, 81436, 7, 55630, 13593, 4, 2], [1, 26, 15011, 13, 667, 8, 1053, 18, 23611, 1237, 72356, 12820, 34, 104134, 1209, 35, 13313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 15785, 14951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCamelCase , model_name="microsoft/deberta-v2-xlarge" , revision="ad6e42c1532ddf3a15c39246b63f5559d558b670" , )
261
"""simple docstring""" import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging _lowerCamelCase : List[Any] = logging.get_logger(__name__) _lowerCamelCase : List[str] = { 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/config.json', # See all BART models at https://huggingface.co/models?filter=bart } class lowercase ( __UpperCAmelCase): __lowerCAmelCase : Union[str, Any] = """bart""" __lowerCAmelCase : Optional[int] = ["""past_key_values"""] __lowerCAmelCase : List[Any] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : List[Any] , _lowerCamelCase : List[Any]=5_02_65 , _lowerCamelCase : Optional[Any]=10_24 , _lowerCamelCase : Dict=12 , _lowerCamelCase : Dict=40_96 , _lowerCamelCase : Tuple=16 , _lowerCamelCase : Optional[Any]=12 , _lowerCamelCase : Tuple=40_96 , _lowerCamelCase : List[str]=16 , _lowerCamelCase : List[str]=0.0 , _lowerCamelCase : List[str]=0.0 , _lowerCamelCase : int="gelu" , _lowerCamelCase : Any=10_24 , _lowerCamelCase : Union[str, Any]=0.1 , _lowerCamelCase : Tuple=0.0 , _lowerCamelCase : List[Any]=0.0 , _lowerCamelCase : Optional[int]=0.02 , _lowerCamelCase : int=0.0 , _lowerCamelCase : Any=False , _lowerCamelCase : List[Any]=True , _lowerCamelCase : int=3 , _lowerCamelCase : Tuple=1 , _lowerCamelCase : int=0 , _lowerCamelCase : Optional[int]=2 , _lowerCamelCase : Any=True , _lowerCamelCase : str=2 , _lowerCamelCase : str=2 , **_lowerCamelCase : str , ): """simple docstring""" A_ : Dict = vocab_size A_ : Union[str, Any] = max_position_embeddings A_ : Union[str, Any] = d_model A_ : Optional[int] = encoder_ffn_dim A_ : Optional[Any] = encoder_layers A_ : Union[str, Any] = encoder_attention_heads A_ : List[str] = decoder_ffn_dim A_ : List[str] = decoder_layers A_ : Any = decoder_attention_heads A_ : List[Any] = dropout A_ : Optional[int] = attention_dropout A_ : List[Any] = activation_dropout A_ : Tuple = activation_function A_ : Any = init_std A_ : Union[str, Any] = encoder_layerdrop A_ : Optional[Any] = decoder_layerdrop A_ : Tuple = classifier_dropout A_ : Tuple = use_cache A_ : List[str] = encoder_layers A_ : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=_lowerCamelCase , pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , is_encoder_decoder=_lowerCamelCase , decoder_start_token_id=_lowerCamelCase , forced_eos_token_id=_lowerCamelCase , **_lowerCamelCase , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , _lowerCamelCase ): A_ : int = self.bos_token_id warnings.warn( F"""Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. """ '''The config can simply be saved and uploaded again to be fixed.''' ) class lowercase ( __UpperCAmelCase): @property def a_ ( self : Optional[Any] ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: A_ : Tuple = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: A_ : Tuple = {0: '''batch'''} A_ : Dict = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: A_ : Optional[Any] = {0: '''batch''', 1: '''decoder_sequence'''} A_ : List[Any] = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(_lowerCamelCase , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. A_ : List[Any] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: A_ , A_ : Any = self.num_layers for i in range(_lowerCamelCase ): A_ : List[Any] = {0: '''batch''', 2: '''past_sequence + sequence'''} A_ : Optional[Any] = {0: '''batch''', 2: '''past_sequence + sequence'''} else: A_ : List[Any] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def a_ ( self : str ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: A_ : Optional[Any] = super().outputs else: A_ : List[Any] = super(_lowerCamelCase , self ).outputs if self.use_past: A_ , A_ : int = self.num_layers for i in range(_lowerCamelCase ): A_ : Any = {0: '''batch''', 2: '''past_sequence + sequence'''} A_ : Dict = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def a_ ( self : Union[str, Any] , _lowerCamelCase : PreTrainedTokenizer , _lowerCamelCase : int = -1 , _lowerCamelCase : int = -1 , _lowerCamelCase : bool = False , _lowerCamelCase : Optional[TensorType] = None , ): """simple docstring""" A_ : Optional[int] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Generate decoder inputs A_ : Tuple = seq_length if not self.use_past else 1 A_ : List[str] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A_ : Dict = {F"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} A_ : Dict = dict(**_lowerCamelCase , **_lowerCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch A_ , A_ : Union[str, Any] = common_inputs['''input_ids'''].shape A_ : Any = common_inputs['''decoder_input_ids'''].shape[1] A_ , A_ : Optional[Any] = self.num_attention_heads A_ : Union[str, Any] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) A_ : Optional[Any] = decoder_seq_length + 3 A_ : Dict = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) A_ : Optional[int] = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(_lowerCamelCase , _lowerCamelCase )] , dim=1 ) A_ : Optional[Any] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered A_ , A_ : Optional[Any] = self.num_layers A_ : Optional[Any] = min(_lowerCamelCase , _lowerCamelCase ) A_ : Tuple = max(_lowerCamelCase , _lowerCamelCase ) - min_num_layers A_ : Tuple = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(_lowerCamelCase ): common_inputs["past_key_values"].append( ( torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase ), ) ) # TODO: test this. A_ : List[str] = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(_lowerCamelCase , _lowerCamelCase ): common_inputs["past_key_values"].append((torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase )) ) return common_inputs def a_ ( self : Optional[int] , _lowerCamelCase : PreTrainedTokenizer , _lowerCamelCase : int = -1 , _lowerCamelCase : int = -1 , _lowerCamelCase : bool = False , _lowerCamelCase : Optional[TensorType] = None , ): """simple docstring""" A_ : Union[str, Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch A_ , A_ : Optional[Any] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values A_ : Union[str, Any] = seqlen + 2 A_ , A_ : Tuple = self.num_layers A_ , A_ : Optional[int] = self.num_attention_heads A_ : List[str] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) A_ : str = common_inputs['''attention_mask'''].dtype A_ : Optional[Any] = torch.cat( [common_inputs['''attention_mask'''], torch.ones(_lowerCamelCase , _lowerCamelCase , dtype=_lowerCamelCase )] , dim=1 ) A_ : int = [ (torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase )) for _ in range(_lowerCamelCase ) ] return common_inputs def a_ ( self : str , _lowerCamelCase : PreTrainedTokenizer , _lowerCamelCase : int = -1 , _lowerCamelCase : int = -1 , _lowerCamelCase : bool = False , _lowerCamelCase : Optional[TensorType] = None , ): """simple docstring""" A_ : List[Any] = compute_effective_axis_dimension( _lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX A_ : Dict = tokenizer.num_special_tokens_to_add(_lowerCamelCase ) A_ : int = compute_effective_axis_dimension( _lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowerCamelCase ) # Generate dummy inputs according to compute batch and sequence A_ : List[str] = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size A_ : List[str] = dict(tokenizer(_lowerCamelCase , return_tensors=_lowerCamelCase ) ) return common_inputs def a_ ( self : Tuple , _lowerCamelCase : PreTrainedTokenizer , _lowerCamelCase : int = -1 , _lowerCamelCase : int = -1 , _lowerCamelCase : bool = False , _lowerCamelCase : Optional[TensorType] = None , ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: A_ : Tuple = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _lowerCamelCase , batch_size=_lowerCamelCase , seq_length=_lowerCamelCase , is_pair=_lowerCamelCase , framework=_lowerCamelCase ) elif self.task == "causal-lm": A_ : Optional[Any] = self._generate_dummy_inputs_for_causal_lm( _lowerCamelCase , batch_size=_lowerCamelCase , seq_length=_lowerCamelCase , is_pair=_lowerCamelCase , framework=_lowerCamelCase ) else: A_ : Union[str, Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCamelCase , batch_size=_lowerCamelCase , seq_length=_lowerCamelCase , is_pair=_lowerCamelCase , framework=_lowerCamelCase ) return common_inputs def a_ ( self : str , _lowerCamelCase : Dict , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[int] , _lowerCamelCase : Union[str, Any] ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: A_ : Tuple = super()._flatten_past_key_values_(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: A_ : List[Any] = super(_lowerCamelCase , self )._flatten_past_key_values_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
167
0
'''simple docstring''' from __future__ import annotations from random import random class a : def __init__( self , __magic_name__ = None ) -> Any: _a = value _a = random() _a = None _a = None def __repr__( self ) -> str: from pprint import pformat if self.left is None and self.right is None: return f'\'{self.value}: {self.prior:.5}\'' else: return pformat( {f'{self.value}: {self.prior:.5}': (self.left, self.right)} , indent=1 ) def __str__( self ) -> str: _a = str(self.value ) + ' ' _a = str(self.left or '' ) _a = str(self.right or '' ) return value + left + right def _A (lowerCAmelCase__ :Node | None , lowerCAmelCase__ :int ) -> tuple[Node | None, Node | None]: '''simple docstring''' if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: _a , _a = split(root.left , lowerCAmelCase__ ) return left, root else: _a , _a = split(root.right , lowerCAmelCase__ ) return root, right def _A (lowerCAmelCase__ :Node | None , lowerCAmelCase__ :Node | None ) -> Node | None: '''simple docstring''' if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: _a = merge(left.right , lowerCAmelCase__ ) return left else: _a = merge(lowerCAmelCase__ , right.left ) return right def _A (lowerCAmelCase__ :Node | None , lowerCAmelCase__ :int ) -> Node | None: '''simple docstring''' _a = Node(lowerCAmelCase__ ) _a , _a = split(lowerCAmelCase__ , lowerCAmelCase__ ) return merge(merge(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ ) def _A (lowerCAmelCase__ :Node | None , lowerCAmelCase__ :int ) -> Node | None: '''simple docstring''' _a , _a = split(lowerCAmelCase__ , value - 1 ) _a , _a = split(lowerCAmelCase__ , lowerCAmelCase__ ) return merge(lowerCAmelCase__ , lowerCAmelCase__ ) def _A (lowerCAmelCase__ :Node | None ) -> None: '''simple docstring''' if not root: # None return else: inorder(root.left ) print(root.value , end=',' ) inorder(root.right ) def _A (lowerCAmelCase__ :Node | None , lowerCAmelCase__ :str ) -> Node | None: '''simple docstring''' for arg in args.split(): if arg[0] == "+": _a = insert(lowerCAmelCase__ , int(arg[1:] ) ) elif arg[0] == "-": _a = erase(lowerCAmelCase__ , int(arg[1:] ) ) else: print('Unknown command' ) return root def _A () -> None: '''simple docstring''' _a = None print( 'enter numbers to create a tree, + value to add value into treap, ' '- value to erase all nodes with value. \'q\' to quit. ' ) _a = input() while args != "q": _a = interact_treap(lowerCAmelCase__ , lowerCAmelCase__ ) print(lowerCAmelCase__ ) _a = input() print('good by!' ) if __name__ == "__main__": import doctest doctest.testmod() main()
104
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) a_ : Optional[int] = {"configuration_deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig", "DeiTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Dict = ["DeiTFeatureExtractor"] a_ : List[Any] = ["DeiTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Tuple = [ "DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "DeiTForImageClassification", "DeiTForImageClassificationWithTeacher", "DeiTForMaskedImageModeling", "DeiTModel", "DeiTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Optional[Any] = [ "TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDeiTForImageClassification", "TFDeiTForImageClassificationWithTeacher", "TFDeiTForMaskedImageModeling", "TFDeiTModel", "TFDeiTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys a_ : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
104
1
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ = {'''configuration_timm_backbone''': ['''TimmBackboneConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['''TimmBackbone'''] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
346
from __future__ import annotations def _SCREAMING_SNAKE_CASE ( a , a , a ) -> float: if days_between_payments <= 0: raise ValueError('days_between_payments must be > 0' ) if daily_interest_rate < 0: raise ValueError('daily_interest_rate must be >= 0' ) if principal <= 0: raise ValueError('principal must be > 0' ) return principal * daily_interest_rate * days_between_payments def _SCREAMING_SNAKE_CASE ( a , a , a , ) -> float: if number_of_compounding_periods <= 0: raise ValueError('number_of_compounding_periods must be > 0' ) if nominal_annual_interest_rate_percentage < 0: raise ValueError('nominal_annual_interest_rate_percentage must be >= 0' ) if principal <= 0: raise ValueError('principal must be > 0' ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def _SCREAMING_SNAKE_CASE ( a , a , a , ) -> float: if number_of_years <= 0: raise ValueError('number_of_years must be > 0' ) if nominal_annual_percentage_rate < 0: raise ValueError('nominal_annual_percentage_rate must be >= 0' ) if principal <= 0: raise ValueError('principal must be > 0' ) return compound_interest( a , nominal_annual_percentage_rate / 3_65 , number_of_years * 3_65 ) if __name__ == "__main__": import doctest doctest.testmod()
280
0
import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = torch.nn.Linear(2 , 4 ) __lowerCamelCase = torch.optim.AdamW(model.parameters() , lr=1.0 ) __lowerCamelCase = torch.optim.lr_scheduler.OneCycleLR(A__ , max_lr=0.01 , steps_per_epoch=2 , epochs=1 ) __lowerCamelCase = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) __lowerCamelCase = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def lowerCamelCase__ ( A__ : Union[str, Any] ): '''simple docstring''' return (model.weight.abs().sum() + model.bias.abs().sum()).item() def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' __lowerCamelCase = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(A__ ) class lowerCamelCase__( __lowerCamelCase): @require_cuda def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(UpperCamelCase_ ): __lowerCamelCase = Accelerator(cpu=UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = Accelerator() __lowerCamelCase = GradientState() assert state.num_steps == 1 __lowerCamelCase = 4 assert state.num_steps == 4 assert state.sync_gradients is True __lowerCamelCase = False assert state.sync_gradients is False GradientState._reset_state() def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = Accelerator() __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = create_components() ( ( __lowerCamelCase ), ( __lowerCamelCase ), ( __lowerCamelCase ), ( __lowerCamelCase ), ( __lowerCamelCase ), ) = accelerator.prepare(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = Accelerator() __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = create_components() accelerator.prepare(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def lowerCAmelCase__ ( self: Optional[Any] ): PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*UpperCamelCase_: List[Any] , **UpperCamelCase_: int ): pass with patch("""torch.cuda.set_device""" , UpperCamelCase_ ), patch_environment(ACCELERATE_TORCH_DEVICE="""cuda:64""" ): __lowerCamelCase = Accelerator() self.assertEqual(str(accelerator.state.device ) , """cuda:64""" ) def lowerCAmelCase__ ( self: int ): __lowerCamelCase = Accelerator() __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = create_components() accelerator.prepare(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = get_signature(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(UpperCamelCase_ ) # make sure random weights don't match load_random_weights(UpperCamelCase_ ) self.assertTrue(abs(model_signature - get_signature(UpperCamelCase_ ) ) > 1E-3 ) # make sure loaded weights match accelerator.load_state(UpperCamelCase_ ) self.assertTrue(abs(model_signature - get_signature(UpperCamelCase_ ) ) < 1E-3 ) def lowerCAmelCase__ ( self: str ): __lowerCamelCase = Accelerator() __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = create_components() accelerator.prepare(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = get_signature(UpperCamelCase_ ) # saving hook def save_config(UpperCamelCase_: Any , UpperCamelCase_: Optional[Any] , UpperCamelCase_: List[str] ): __lowerCamelCase = {"""class_name""": models[0].__class__.__name__} with open(os.path.join(UpperCamelCase_ , """data.json""" ) , """w""" ) as f: json.dump(UpperCamelCase_ , UpperCamelCase_ ) # loading hook def load_config(UpperCamelCase_: Dict , UpperCamelCase_: List[Any] ): with open(os.path.join(UpperCamelCase_ , """data.json""" ) , """r""" ) as f: __lowerCamelCase = json.load(UpperCamelCase_ ) __lowerCamelCase = config["""class_name"""] __lowerCamelCase = accelerator.register_save_state_pre_hook(UpperCamelCase_ ) __lowerCamelCase = accelerator.register_load_state_pre_hook(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(UpperCamelCase_ ) # make sure random weights don't match with hooks load_random_weights(UpperCamelCase_ ) self.assertTrue(abs(model_signature - get_signature(UpperCamelCase_ ) ) > 1E-3 ) # random class name to verify correct one is loaded __lowerCamelCase = """random""" # make sure loaded weights match with hooks accelerator.load_state(UpperCamelCase_ ) self.assertTrue(abs(model_signature - get_signature(UpperCamelCase_ ) ) < 1E-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(UpperCamelCase_ ) # make sure random weights don't match with hooks removed load_random_weights(UpperCamelCase_ ) self.assertTrue(abs(model_signature - get_signature(UpperCamelCase_ ) ) > 1E-3 ) # random class name to verify correct one is loaded __lowerCamelCase = """random""" # make sure loaded weights match with hooks removed accelerator.load_state(UpperCamelCase_ ) self.assertTrue(abs(model_signature - get_signature(UpperCamelCase_ ) ) < 1E-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = Accelerator() __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = create_components() __lowerCamelCase = None # This should work __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = accelerator.prepare( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) self.assertTrue(dummy_obj is None ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = Accelerator() __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = create_components() __lowerCamelCase = [1, 2, 3] # This should work __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = accelerator.prepare( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual( getattr(UpperCamelCase_ , """_is_accelerate_prepared""" , UpperCamelCase_ ) , UpperCamelCase_ , """Dummy object should have `_is_accelerate_prepared` set to `True`""" , ) self.assertEqual( getattr(UpperCamelCase_ , """_is_accelerate_prepared""" , UpperCamelCase_ ) , UpperCamelCase_ , """Model is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(UpperCamelCase_ , """_is_accelerate_prepared""" , UpperCamelCase_ ) , UpperCamelCase_ , """Optimizer is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(UpperCamelCase_ , """_is_accelerate_prepared""" , UpperCamelCase_ ) , UpperCamelCase_ , """Scheduler is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(UpperCamelCase_ , """_is_accelerate_prepared""" , UpperCamelCase_ ) , UpperCamelCase_ , """Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(UpperCamelCase_ , """_is_accelerate_prepared""" , UpperCamelCase_ ) , UpperCamelCase_ , """Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`""" , ) @slow @require_bnb def lowerCAmelCase__ ( self: Optional[int] ): from transformers import AutoModelForCausalLM __lowerCamelCase = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , load_in_abit=UpperCamelCase_ , device_map={"""""": 0} , ) __lowerCamelCase = Accelerator() # This should work __lowerCamelCase = accelerator.prepare(UpperCamelCase_ ) @slow @require_bnb def lowerCAmelCase__ ( self: Dict ): from transformers import AutoModelForCausalLM __lowerCamelCase = Accelerator() with init_empty_weights(): __lowerCamelCase = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , ) model.tie_weights() __lowerCamelCase = infer_auto_device_map(UpperCamelCase_ ) __lowerCamelCase = """cpu""" __lowerCamelCase = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , device_map=UpperCamelCase_ , load_in_abit=UpperCamelCase_ , llm_inta_enable_fpaa_cpu_offload=UpperCamelCase_ ) # This should not work and get value error with self.assertRaises(UpperCamelCase_ ): __lowerCamelCase = accelerator.prepare(UpperCamelCase_ ) @slow @require_bnb @require_multi_gpu def lowerCAmelCase__ ( self: Optional[Any] ): from transformers import AutoModelForCausalLM __lowerCamelCase = {"""distributed_type""": DistributedType.MULTI_GPU} with init_empty_weights(): __lowerCamelCase = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , ) model.tie_weights() __lowerCamelCase = infer_auto_device_map(UpperCamelCase_ ) __lowerCamelCase = 1 __lowerCamelCase = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , load_in_abit=UpperCamelCase_ , device_map=UpperCamelCase_ , ) __lowerCamelCase = Accelerator() # This should not work and get value error with self.assertRaises(UpperCamelCase_ ): __lowerCamelCase = accelerator.prepare(UpperCamelCase_ ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def lowerCAmelCase__ ( self: Optional[Any] ): from transformers import AutoModelForCausalLM with init_empty_weights(): __lowerCamelCase = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , ) __lowerCamelCase = infer_auto_device_map(UpperCamelCase_ ) __lowerCamelCase = 1 __lowerCamelCase = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , load_in_abit=UpperCamelCase_ , device_map=UpperCamelCase_ , ) __lowerCamelCase = Accelerator() # This should work __lowerCamelCase = accelerator.prepare(UpperCamelCase_ ) @require_cuda def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = torch.nn.Linear(10 , 10 ) __lowerCamelCase = torch.optim.SGD(model.parameters() , lr=0.01 ) __lowerCamelCase = Accelerator(cpu=UpperCamelCase_ ) __lowerCamelCase = accelerator.prepare(UpperCamelCase_ )
362
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Optional[int] = IFInpaintingPipeline UpperCAmelCase__ : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} UpperCAmelCase__ : Dict = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCAmelCase__ : List[str] = PipelineTesterMixin.required_optional_params - {'latents'} def lowerCAmelCase__ ( self: List[str] ): return self._get_dummy_components() def lowerCAmelCase__ ( self: int , UpperCamelCase_: Dict , UpperCamelCase_: str=0 ): if str(UpperCamelCase_ ).startswith("""mps""" ): __lowerCamelCase = torch.manual_seed(UpperCamelCase_ ) else: __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCAmelCase__ ( self: Union[str, Any] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def lowerCAmelCase__ ( self: Union[str, Any] ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def lowerCAmelCase__ ( self: Optional[int] ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def lowerCAmelCase__ ( self: Any ): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def lowerCAmelCase__ ( self: str ): self._test_save_load_local() def lowerCAmelCase__ ( self: str ): self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
29
0
import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin lowerCAmelCase__ = random.Random() if is_torch_available(): import torch def _UpperCAmelCase (UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple=1.0 , UpperCamelCase__ : Dict=None , UpperCamelCase__ : str=None ): if rng is None: _A : Optional[Any] = global_rng _A : Dict = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowerCAmelCase__ ( unittest.TestCase): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase=7 , __lowerCamelCase=4_0_0 , __lowerCamelCase=2_0_0_0 , __lowerCamelCase=1 , __lowerCamelCase=0.0 , __lowerCamelCase=1_6_0_0_0 , __lowerCamelCase=True , __lowerCamelCase=True , ) -> Optional[Any]: _A : Tuple = parent _A : Dict = batch_size _A : Dict = min_seq_length _A : Optional[int] = max_seq_length _A : Optional[int] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _A : List[Any] = feature_size _A : str = padding_value _A : Any = sampling_rate _A : int = return_attention_mask _A : Tuple = do_normalize def _lowerCamelCase ( self) -> Union[str, Any]: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _lowerCamelCase ( self , __lowerCamelCase=False , __lowerCamelCase=False) -> Optional[Any]: def _flatten(__lowerCamelCase): return list(itertools.chain(*__lowerCamelCase)) if equal_length: _A : Dict = floats_list((self.batch_size, self.max_seq_length)) else: # make sure that inputs increase in size _A : List[str] = [ _flatten(floats_list((x, self.feature_size))) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff) ] if numpify: _A : List[Any] = [np.asarray(__lowerCamelCase) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCAmelCase__ ( snake_case_ , unittest.TestCase): '''simple docstring''' __SCREAMING_SNAKE_CASE = ASTFeatureExtractor def _lowerCamelCase ( self) -> str: _A : Optional[int] = ASTFeatureExtractionTester(self) def _lowerCamelCase ( self) -> Any: # Tests that all call wrap to encode_plus and batch_encode_plus _A : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) # create three inputs of length 800, 1000, and 1200 _A : List[Any] = [floats_list((1, x))[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0)] _A : Tuple = [np.asarray(__lowerCamelCase) for speech_input in speech_inputs] # Test not batched input _A : Tuple = feat_extract(speech_inputs[0] , return_tensors="np").input_values _A : int = feat_extract(np_speech_inputs[0] , return_tensors="np").input_values self.assertTrue(np.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3)) # Test batched _A : int = feat_extract(__lowerCamelCase , padding=__lowerCamelCase , return_tensors="np").input_values _A : Optional[Any] = feat_extract(__lowerCamelCase , padding=__lowerCamelCase , return_tensors="np").input_values for enc_seq_a, enc_seq_a in zip(__lowerCamelCase , __lowerCamelCase): self.assertTrue(np.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3)) # Test 2-D numpy arrays are batched. _A : List[Any] = [floats_list((1, x))[0] for x in (8_0_0, 8_0_0, 8_0_0)] _A : List[str] = np.asarray(__lowerCamelCase) _A : Optional[Any] = feat_extract(__lowerCamelCase , return_tensors="np").input_values _A : Union[str, Any] = feat_extract(__lowerCamelCase , return_tensors="np").input_values for enc_seq_a, enc_seq_a in zip(__lowerCamelCase , __lowerCamelCase): self.assertTrue(np.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3)) @require_torch def _lowerCamelCase ( self) -> int: import torch _A : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) _A : int = np.random.rand(1_0_0).astype(np.floataa) _A : Dict = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _A : str = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np") self.assertTrue(np_processed.input_values.dtype == np.floataa) _A : Tuple = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt") self.assertTrue(pt_processed.input_values.dtype == torch.floataa) def _lowerCamelCase ( self , __lowerCamelCase) -> int: from datasets import load_dataset _A : Dict = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation") # automatic decoding with librispeech _A : Dict = ds.sort("id").select(range(__lowerCamelCase))[:num_samples]["audio"] return [x["array"] for x in speech_samples] @require_torch def _lowerCamelCase ( self) -> int: # fmt: off _A : Union[str, Any] = torch.tensor( [-0.9_8_9_4, -1.2_7_7_6, -0.9_0_6_6, -1.2_7_7_6, -0.9_3_4_9, -1.2_6_0_9, -1.0_3_8_6, -1.2_7_7_6, -1.1_5_6_1, -1.2_7_7_6, -1.2_0_5_2, -1.2_7_2_3, -1.2_1_9_0, -1.2_1_3_2, -1.2_7_7_6, -1.1_1_3_3, -1.1_9_5_3, -1.1_3_4_3, -1.1_5_8_4, -1.2_2_0_3, -1.1_7_7_0, -1.2_4_7_4, -1.2_3_8_1, -1.1_9_3_6, -0.9_2_7_0, -0.8_3_1_7, -0.8_0_4_9, -0.7_7_0_6, -0.7_5_6_5, -0.7_8_6_9]) # fmt: on _A : str = self._load_datasamples(1) _A : List[Any] = ASTFeatureExtractor() _A : List[str] = feature_extractor(__lowerCamelCase , return_tensors="pt").input_values self.assertEquals(input_values.shape , (1, 1_0_2_4, 1_2_8)) self.assertTrue(torch.allclose(input_values[0, 0, :3_0] , __lowerCamelCase , atol=1e-4))
11
import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging __A =logging.get_logger(__name__) def lowerCamelCase_ ( ): # Get the sagemaker specific mp parameters from smp_options variable. lowerCamelCase_ = os.getenv("SM_HP_MP_PARAMETERS" , "{}" ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. lowerCamelCase_ = json.loads(lowerCamelCase__ ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. lowerCamelCase_ = os.getenv("SM_FRAMEWORK_PARAMS" , "{}" ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". lowerCamelCase_ = json.loads(lowerCamelCase__ ) if not mpi_options.get("sagemaker_mpi_enabled" , lowerCamelCase__ ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec("smdistributed" ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = field( default='' , metadata={'help': 'Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer'} , ) def SCREAMING_SNAKE_CASE_( self ) -> Tuple: super().__post_init__() warnings.warn( "`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use " "`TrainingArguments` instead." , lowercase , ) @cached_property def SCREAMING_SNAKE_CASE_( self ) -> "torch.device": logger.info("PyTorch: setting up devices" ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( "torch.distributed process group is initialized, but local_rank == -1. " "In order to use Torch DDP, launch your script with `python -m torch.distributed.launch" ) if self.no_cuda: lowerCamelCase_ = torch.device("cpu" ) lowerCamelCase_ = 0 elif is_sagemaker_model_parallel_available(): lowerCamelCase_ = smp.local_rank() lowerCamelCase_ = torch.device("cuda" , lowercase ) lowerCamelCase_ = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend="smddp" , timeout=self.ddp_timeout_delta ) lowerCamelCase_ = int(os.getenv("SMDATAPARALLEL_LOCAL_RANK" ) ) lowerCamelCase_ = torch.device("cuda" , self.local_rank ) lowerCamelCase_ = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 lowerCamelCase_ = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. lowerCamelCase_ = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="nccl" , timeout=self.ddp_timeout_delta ) lowerCamelCase_ = torch.device("cuda" , self.local_rank ) lowerCamelCase_ = 1 if device.type == "cuda": torch.cuda.set_device(lowercase ) return device @property def SCREAMING_SNAKE_CASE_( self ) -> Tuple: if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def SCREAMING_SNAKE_CASE_( self ) -> List[str]: return not is_sagemaker_model_parallel_available() @property def SCREAMING_SNAKE_CASE_( self ) -> Dict: return False
19
0
def _a ( UpperCAmelCase ) -> bool: """simple docstring""" return str(UpperCAmelCase ) == str(UpperCAmelCase )[::-1] def _a ( UpperCAmelCase ) -> int: """simple docstring""" return int(UpperCAmelCase ) + int(str(UpperCAmelCase )[::-1] ) def _a ( UpperCAmelCase = 10000 ) -> int: """simple docstring""" lowerCamelCase__ : Tuple = [] for num in range(1 , UpperCAmelCase ): lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : Union[str, Any] = num while iterations < 50: lowerCamelCase__ : Dict = sum_reverse(UpperCAmelCase ) iterations += 1 if is_palindrome(UpperCAmelCase ): break else: lychrel_nums.append(UpperCAmelCase ) return len(UpperCAmelCase ) if __name__ == "__main__": print(F'''{solution() = }''')
265
from ...configuration_utils import PretrainedConfig from ...utils import logging _A : Any = logging.get_logger(__name__) _A : int = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): _UpperCAmelCase : Dict = "timesformer" def __init__( self : List[str] , A : int=2_2_4 , A : Optional[Any]=1_6 , A : str=3 , A : str=8 , A : Any=7_6_8 , A : Dict=1_2 , A : Optional[Any]=1_2 , A : Any=3_0_7_2 , A : str="gelu" , A : Optional[int]=0.0 , A : Union[str, Any]=0.0 , A : List[Any]=0.02 , A : int=1e-6 , A : Tuple=True , A : Any="divided_space_time" , A : Optional[Any]=0 , **A : Tuple , ) ->str: super().__init__(**A ) lowerCamelCase__ : Optional[Any] = image_size lowerCamelCase__ : int = patch_size lowerCamelCase__ : Any = num_channels lowerCamelCase__ : Optional[int] = num_frames lowerCamelCase__ : Optional[Any] = hidden_size lowerCamelCase__ : Optional[int] = num_hidden_layers lowerCamelCase__ : Optional[int] = num_attention_heads lowerCamelCase__ : Dict = intermediate_size lowerCamelCase__ : Optional[Any] = hidden_act lowerCamelCase__ : Union[str, Any] = hidden_dropout_prob lowerCamelCase__ : Dict = attention_probs_dropout_prob lowerCamelCase__ : List[Any] = initializer_range lowerCamelCase__ : str = layer_norm_eps lowerCamelCase__ : Union[str, Any] = qkv_bias lowerCamelCase__ : str = attention_type lowerCamelCase__ : List[str] = drop_path_rate
265
1
'''simple docstring''' def UpperCAmelCase_ (__a : int , __a : int ): """simple docstring""" return "\n".join( f"""{number} * {i} = {number * i}""" for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=1_0))
271
'''simple docstring''' class UpperCAmelCase__ : """simple docstring""" def __init__( self : Dict ): '''simple docstring''' _a : Dict = {} def __lowercase ( self : Union[str, Any] ): '''simple docstring''' print(self.vertex ) for i in self.vertex: print(_a ,' -> ' ,' -> '.join([str(_a ) for j in self.vertex[i]] ) ) def __lowercase ( self : Dict ,_a : int ,_a : int ): '''simple docstring''' if from_vertex in self.vertex: self.vertex[from_vertex].append(_a ) else: # else make a new vertex _a : int = [to_vertex] def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : Tuple = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(_a ,_a ) def __lowercase ( self : Union[str, Any] ,_a : int ,_a : list ): '''simple docstring''' _a : List[Any] = True print(_a ,end=' ' ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(_a ,_a ) if __name__ == "__main__": __lowerCAmelCase = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("""DFS:""") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
271
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class UpperCAmelCase ( unittest.TestCase ): def __init__(self : int , snake_case__ : Dict , snake_case__ : List[str]=7 , snake_case__ : Any=3 , snake_case__ : List[str]=10 , snake_case__ : str=18 , snake_case__ : List[str]=30 , snake_case__ : str=4_00 , snake_case__ : List[Any]=True , snake_case__ : Tuple=None , snake_case__ : List[Any]=True , snake_case__ : Tuple=[0.5, 0.5, 0.5] , snake_case__ : Tuple=[0.5, 0.5, 0.5] , snake_case__ : List[str]=None , ) -> Dict: '''simple docstring''' snake_case : Any = size if size is not None else {"shortest_edge": 18} snake_case : Dict = crop_size if crop_size is not None else {"height": 18, "width": 18} snake_case : int = parent snake_case : Union[str, Any] = batch_size snake_case : Optional[int] = num_channels snake_case : Optional[int] = num_frames snake_case : Tuple = image_size snake_case : Tuple = min_resolution snake_case : List[Any] = max_resolution snake_case : Tuple = do_resize snake_case : Any = size snake_case : Dict = do_normalize snake_case : str = image_mean snake_case : int = image_std snake_case : str = crop_size def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> int: '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class UpperCAmelCase ( __A ,unittest.TestCase ): A__ : List[Any] = VivitImageProcessor if is_vision_available() else None def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> int: '''simple docstring''' snake_case : Any = VivitImageProcessingTester(self ) @property def _SCREAMING_SNAKE_CASE (self : str ) -> Dict: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE (self : int ) -> Tuple: '''simple docstring''' snake_case : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowercase , "image_mean" ) ) self.assertTrue(hasattr(__lowercase , "image_std" ) ) self.assertTrue(hasattr(__lowercase , "do_normalize" ) ) self.assertTrue(hasattr(__lowercase , "do_resize" ) ) self.assertTrue(hasattr(__lowercase , "do_center_crop" ) ) self.assertTrue(hasattr(__lowercase , "size" ) ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Any: '''simple docstring''' snake_case : str = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) snake_case : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> int: '''simple docstring''' snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos snake_case : int = prepare_video_inputs(self.image_processor_tester , equal_resolution=__lowercase ) for video in video_inputs: self.assertIsInstance(__lowercase , __lowercase ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input snake_case : Union[str, Any] = image_processing(video_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched snake_case : List[Any] = image_processing(__lowercase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _SCREAMING_SNAKE_CASE (self : Any ) -> Optional[Any]: '''simple docstring''' snake_case : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case : List[Any] = prepare_video_inputs(self.image_processor_tester , equal_resolution=__lowercase , numpify=__lowercase ) for video in video_inputs: self.assertIsInstance(__lowercase , __lowercase ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input snake_case : Tuple = image_processing(video_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched snake_case : Union[str, Any] = image_processing(__lowercase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Dict: '''simple docstring''' snake_case : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case : Optional[int] = prepare_video_inputs(self.image_processor_tester , equal_resolution=__lowercase , torchify=__lowercase ) for video in video_inputs: self.assertIsInstance(__lowercase , __lowercase ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input snake_case : Dict = image_processing(video_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched snake_case : List[str] = image_processing(__lowercase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
359
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 __lowerCamelCase = { """return_dict""": False, """output_hidden_states""": True, """output_attentions""": True, """torchscript""": True, """torch_dtype""": """float16""", """use_bfloat16""": True, """tf_legacy_loss""": True, """pruned_heads""": {"""a""": 1}, """tie_word_embeddings""": False, """is_decoder""": True, """cross_attention_hidden_size""": 1_28, """add_cross_attention""": True, """tie_encoder_decoder""": True, """max_length""": 50, """min_length""": 3, """do_sample""": True, """early_stopping""": True, """num_beams""": 3, """num_beam_groups""": 3, """diversity_penalty""": 0.5, """temperature""": 2.0, """top_k""": 10, """top_p""": 0.7, """typical_p""": 0.2, """repetition_penalty""": 0.8, """length_penalty""": 0.8, """no_repeat_ngram_size""": 5, """encoder_no_repeat_ngram_size""": 5, """bad_words_ids""": [1, 2, 3], """num_return_sequences""": 3, """chunk_size_feed_forward""": 5, """output_scores""": True, """return_dict_in_generate""": True, """forced_bos_token_id""": 2, """forced_eos_token_id""": 3, """remove_invalid_values""": True, """architectures""": ["""BertModel"""], """finetuning_task""": """translation""", """id2label""": {0: """label"""}, """label2id""": {"""label""": """0"""}, """tokenizer_class""": """BertTokenizerFast""", """prefix""": """prefix""", """bos_token_id""": 6, """pad_token_id""": 7, """eos_token_id""": 8, """sep_token_id""": 9, """decoder_start_token_id""": 10, """exponential_decay_length_penalty""": (5, 1.01), """suppress_tokens""": [0, 1], """begin_suppress_tokens""": 2, """task_specific_params""": {"""translation""": """some_params"""}, """problem_type""": """regression""", } @is_staging_test class UpperCAmelCase ( unittest.TestCase ): @classmethod def _SCREAMING_SNAKE_CASE (cls : Dict ) -> Optional[int]: '''simple docstring''' snake_case : Any = TOKEN HfFolder.save_token(snake_case__ ) @classmethod def _SCREAMING_SNAKE_CASE (cls : Dict ) -> Union[str, Any]: '''simple docstring''' try: delete_repo(token=cls._token , repo_id="test-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-config-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-config" ) except HTTPError: pass def _SCREAMING_SNAKE_CASE (self : str ) -> List[str]: '''simple docstring''' snake_case : Union[str, Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("test-config" , use_auth_token=self._token ) snake_case : Union[str, Any] = BertConfig.from_pretrained(f"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(snake_case__ , repo_id="test-config" , push_to_hub=snake_case__ , use_auth_token=self._token ) snake_case : Any = BertConfig.from_pretrained(f"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Dict: '''simple docstring''' snake_case : List[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token ) snake_case : Optional[int] = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( snake_case__ , repo_id="valid_org/test-config-org" , push_to_hub=snake_case__ , use_auth_token=self._token ) snake_case : str = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Dict: '''simple docstring''' CustomConfig.register_for_auto_class() snake_case : Union[str, Any] = CustomConfig(attribute=42 ) config.push_to_hub("test-dynamic-config" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"} ) snake_case : int = AutoConfig.from_pretrained(f"""{USER}/test-dynamic-config""" , trust_remote_code=snake_case__ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , "CustomConfig" ) self.assertEqual(new_config.attribute , 42 ) class UpperCAmelCase ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Dict: '''simple docstring''' snake_case : Any = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated snake_case : Tuple = c.n_embd + 1 # int snake_case : str = c.resid_pdrop + 1.0 # float snake_case : Optional[Any] = not c.scale_attn_weights # bool snake_case : Optional[int] = c.summary_type + "foo" # str c.update_from_string( f"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""" ) self.assertEqual(snake_case__ , c.n_embd , "mismatch for key: n_embd" ) self.assertEqual(snake_case__ , c.resid_pdrop , "mismatch for key: resid_pdrop" ) self.assertEqual(snake_case__ , c.scale_attn_weights , "mismatch for key: scale_attn_weights" ) self.assertEqual(snake_case__ , c.summary_type , "mismatch for key: summary_type" ) def _SCREAMING_SNAKE_CASE (self : int ) -> List[str]: '''simple docstring''' snake_case : Tuple = PretrainedConfig() snake_case : List[str] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( snake_case__ , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"] ) snake_case : Dict = [key for key, value in config_common_kwargs.items() if value == getattr(snake_case__ , snake_case__ )] if len(snake_case__ ) > 0: raise ValueError( "The following keys are set with the default values in" " `test_configuration_common.config_common_kwargs` pick another value for them:" f""" {', '.join(snake_case__ )}.""" ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Optional[int]: '''simple docstring''' with self.assertRaises(snake_case__ ): # config is in subfolder, the following should not work without specifying the subfolder snake_case : Optional[Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" ) snake_case : Optional[Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert" ) self.assertIsNotNone(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Optional[Any]: '''simple docstring''' snake_case : Tuple = mock.Mock() snake_case : Optional[int] = 5_00 snake_case : Any = {} snake_case : str = HTTPError snake_case : Tuple = {} # Download this model to make sure it's in the cache. snake_case : List[Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=snake_case__ ) as mock_head: snake_case : List[str] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() def _SCREAMING_SNAKE_CASE (self : Any ) -> List[Any]: '''simple docstring''' snake_case : Dict = BertConfig.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json" ) def _SCREAMING_SNAKE_CASE (self : int ) -> str: '''simple docstring''' snake_case : Optional[Any] = AutoConfig.from_pretrained("bert-base-cased" ) snake_case : int = ["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(snake_case__ ) snake_case : str = 2 json.dump(configuration.to_dict() , open(os.path.join(snake_case__ , "config.4.0.0.json" ) , "w" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 snake_case : str = AutoConfig.from_pretrained(snake_case__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 snake_case : List[str] = ["config.42.0.0.json"] snake_case : Optional[int] = 7_68 configuration.save_pretrained(snake_case__ ) shutil.move(os.path.join(snake_case__ , "config.4.0.0.json" ) , os.path.join(snake_case__ , "config.42.0.0.json" ) ) snake_case : Union[str, Any] = AutoConfig.from_pretrained(snake_case__ ) self.assertEqual(new_configuration.hidden_size , 7_68 ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Tuple: '''simple docstring''' snake_case : List[Any] = "hf-internal-testing/test-two-configs" import transformers as new_transformers snake_case : Optional[int] = "v4.0.0" snake_case , snake_case : List[str] = new_transformers.models.auto.AutoConfig.from_pretrained( snake_case__ , return_unused_kwargs=snake_case__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(snake_case__ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers snake_case : int = "v3.0.0" snake_case : int = old_transformers.models.auto.AutoConfig.from_pretrained(snake_case__ ) self.assertEqual(old_configuration.hidden_size , 7_68 )
10
0
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : int = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) _lowerCamelCase : int = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', f'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', f'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm1.weight''', f'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', f'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', f'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm1.weight''', f'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.weight''', f'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.bias''', f'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''decoder.layers.{i}.final_layer_norm.bias''')) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.encoder.norm.weight", "encoder.layernorm.weight"), ("transformer.encoder.norm.bias", "encoder.layernorm.bias"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ] ) def __lowerCamelCase ( A__ , A__ , A__ ) -> Dict: """simple docstring""" UpperCamelCase = state_dict.pop(A__ ) UpperCamelCase = val def __lowerCamelCase ( A__ ) -> int: """simple docstring""" UpperCamelCase = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCamelCase = key.replace('backbone.0.body' , 'backbone.conv_encoder.model' ) UpperCamelCase = value else: UpperCamelCase = value return new_state_dict def __lowerCamelCase ( A__ ) -> Dict: """simple docstring""" UpperCamelCase = '' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCamelCase = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) UpperCamelCase = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase = in_proj_weight[:256, :] UpperCamelCase = in_proj_bias[:256] UpperCamelCase = in_proj_weight[256:512, :] UpperCamelCase = in_proj_bias[256:512] UpperCamelCase = in_proj_weight[-256:, :] UpperCamelCase = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention UpperCamelCase = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) UpperCamelCase = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase = in_proj_weight[:256, :] UpperCamelCase = in_proj_bias[:256] UpperCamelCase = in_proj_weight[256:512, :] UpperCamelCase = in_proj_bias[256:512] UpperCamelCase = in_proj_weight[-256:, :] UpperCamelCase = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention UpperCamelCase = state_dict.pop( F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" ) UpperCamelCase = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) of cross-attention to the state dict UpperCamelCase = in_proj_weight_cross_attn[:256, :] UpperCamelCase = in_proj_bias_cross_attn[:256] UpperCamelCase = in_proj_weight_cross_attn[256:512, :] UpperCamelCase = in_proj_bias_cross_attn[256:512] UpperCamelCase = in_proj_weight_cross_attn[-256:, :] UpperCamelCase = in_proj_bias_cross_attn[-256:] def __lowerCamelCase ( A__ , A__ ) -> Optional[int]: """simple docstring""" UpperCamelCase , UpperCamelCase = image.size UpperCamelCase = max(A__ , A__ ) UpperCamelCase = 800 if 'detection' in checkpoint_url else 1_000 UpperCamelCase = target_max_size / current_max_size UpperCamelCase = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def __lowerCamelCase ( A__ ) -> List[Any]: """simple docstring""" UpperCamelCase = F.to_tensor(A__ ) UpperCamelCase = F.normalize(A__ , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def __lowerCamelCase ( A__ , A__ , A__ ) -> Optional[Any]: """simple docstring""" logger.info('Converting model...' ) # load original state dict UpperCamelCase = torch.hub.load_state_dict_from_url(A__ , map_location='cpu' ) # rename keys for src, dest in rename_keys: rename_key(A__ , A__ , A__ ) UpperCamelCase = rename_backbone_keys(A__ ) # query, key and value matrices need special treatment read_in_q_k_v(A__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCamelCase = 'model.' for key in state_dict.copy().keys(): if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): UpperCamelCase = state_dict.pop(A__ ) UpperCamelCase = val # create HuggingFace model and load state dict UpperCamelCase = TableTransformerConfig( backbone='resnet18' , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: UpperCamelCase = 15 UpperCamelCase = 2 UpperCamelCase = {0: 'table', 1: 'table rotated'} UpperCamelCase = idalabel UpperCamelCase = {v: k for k, v in idalabel.items()} else: UpperCamelCase = 125 UpperCamelCase = 6 UpperCamelCase = { 0: 'table', 1: 'table column', 2: 'table row', 3: 'table column header', 4: 'table projected row header', 5: 'table spanning cell', } UpperCamelCase = idalabel UpperCamelCase = {v: k for k, v in idalabel.items()} UpperCamelCase = DetrImageProcessor( format='coco_detection' , max_size=800 if 'detection' in checkpoint_url else 1_000 ) UpperCamelCase = TableTransformerForObjectDetection(A__ ) model.load_state_dict(A__ ) model.eval() # verify our conversion UpperCamelCase = 'example_pdf.png' if 'detection' in checkpoint_url else 'example_table.png' UpperCamelCase = hf_hub_download(repo_id='nielsr/example-pdf' , repo_type='dataset' , filename=A__ ) UpperCamelCase = Image.open(A__ ).convert('RGB' ) UpperCamelCase = normalize(resize(A__ , A__ ) ).unsqueeze(0 ) UpperCamelCase = model(A__ ) if "detection" in checkpoint_url: UpperCamelCase = (1, 15, 3) UpperCamelCase = torch.tensor( [[-6.7_897, -16.9_985, 6.7_937], [-8.0_186, -22.2_192, 6.9_677], [-7.3_117, -21.0_708, 7.4_055]] ) UpperCamelCase = torch.tensor([[0.4_867, 0.1_767, 0.6_732], [0.6_718, 0.4_479, 0.3_830], [0.4_716, 0.1_760, 0.6_364]] ) else: UpperCamelCase = (1, 125, 7) UpperCamelCase = torch.tensor( [[-18.1_430, -8.3_214, 4.8_274], [-18.4_685, -7.1_361, -4.2_667], [-26.3_693, -9.3_429, -4.9_962]] ) UpperCamelCase = torch.tensor([[0.4_983, 0.5_595, 0.9_440], [0.4_916, 0.6_315, 0.5_954], [0.6_108, 0.8_637, 0.1_135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , A__ , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , A__ , atol=1e-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(A__ ).mkdir(exist_ok=A__ ) model.save_pretrained(A__ ) image_processor.save_pretrained(A__ ) if push_to_hub: # Push model to HF hub logger.info('Pushing model to the hub...' ) UpperCamelCase = ( 'microsoft/table-transformer-detection' if 'detection' in checkpoint_url else 'microsoft/table-transformer-structure-recognition' ) model.push_to_hub(A__ ) image_processor.push_to_hub(A__ ) if __name__ == "__main__": _lowerCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth", type=str, choices=[ "https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth", "https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth", ], help="URL of the Table Transformer checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _lowerCamelCase : int = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
28
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _snake_case : List[Any] = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Optional[int] = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys _snake_case : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
284
0
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int , lowerCAmelCase: str , lowerCAmelCase: List[str] , lowerCAmelCase: Any ) -> List[str]: if isinstance(lowerCAmelCase , lowerCAmelCase ): _UpperCAmelCase : Dict = np.full((len(lowerCAmelCase ), sequence_length, 2) , lowerCAmelCase ) else: _UpperCAmelCase : Dict = np.full((len(lowerCAmelCase ), sequence_length) , lowerCAmelCase ) for i, tensor in enumerate(lowerCAmelCase ): if padding_side == "right": if isinstance(lowerCAmelCase , lowerCAmelCase ): _UpperCAmelCase : Tuple = tensor[:sequence_length] else: _UpperCAmelCase : Tuple = tensor[:sequence_length] else: if isinstance(lowerCAmelCase , lowerCAmelCase ): _UpperCAmelCase : str = tensor[:sequence_length] else: _UpperCAmelCase : Dict = tensor[:sequence_length] return out_tensor.tolist() def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Any ) -> Dict: _UpperCAmelCase : Optional[Any] = ord(lowerCAmelCase ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True _UpperCAmelCase : Optional[Any] = unicodedata.category(lowerCAmelCase ) if cat.startswith("P" ): return True return False @dataclass class a ( UpperCAmelCase ): _lowercase = 4_2 _lowercase = True _lowercase = None _lowercase = None _lowercase = -1_0_0 _lowercase = "pt" def _UpperCAmelCase ( self , A_ ): '''simple docstring''' import torch _UpperCAmelCase : Dict = "label" if "label" in features[0].keys() else "labels" _UpperCAmelCase : List[Any] = [feature[label_name] for feature in features] if label_name in features[0].keys() else None _UpperCAmelCase : str = self.tokenizer.pad( A_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" if labels is None else None , ) if labels is None: return batch _UpperCAmelCase : Union[str, Any] = torch.tensor(batch["entity_ids"] ).shape[1] _UpperCAmelCase : Union[str, Any] = self.tokenizer.padding_side if padding_side == "right": _UpperCAmelCase : str = [ list(A_ ) + [self.label_pad_token_id] * (sequence_length - len(A_ )) for label in labels ] else: _UpperCAmelCase : List[Any] = [ [self.label_pad_token_id] * (sequence_length - len(A_ )) + list(A_ ) for label in labels ] _UpperCAmelCase : Tuple = [feature["ner_tags"] for feature in features] _UpperCAmelCase : List[str] = padding_tensor(A_ , -1 , A_ , A_ ) _UpperCAmelCase : List[Any] = [feature["original_entity_spans"] for feature in features] _UpperCAmelCase : Any = padding_tensor(A_ , (-1, -1) , A_ , A_ ) _UpperCAmelCase : Optional[Any] = {k: torch.tensor(A_ , dtype=torch.intaa ) for k, v in batch.items()} return batch
351
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate SCREAMING_SNAKE_CASE_ = trt.Logger(trt.Logger.WARNING) SCREAMING_SNAKE_CASE_ = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) SCREAMING_SNAKE_CASE_ = logging.getLogger(__name__) SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--onnx_model_path', default=None, type=str, required=True, help='Path to ONNX model: ', ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='The output directory where the model checkpoints and predictions will be written.', ) # Other parameters parser.add_argument( '--tokenizer_name', default='', type=str, required=True, help='Pretrained tokenizer name or path if not the same as model_name', ) parser.add_argument( '--version_2_with_negative', action='store_true', help='If true, the SQuAD examples contain some that do not have an answer.', ) parser.add_argument( '--null_score_diff_threshold', type=float, default=0.0, help='If null_score - best_non_null is greater than the threshold predict null.', ) parser.add_argument( '--max_seq_length', default=384, type=int, help=( 'The maximum total input sequence length after WordPiece tokenization. Sequences ' 'longer than this will be truncated, and sequences shorter than this will be padded.' ), ) parser.add_argument( '--doc_stride', default=128, type=int, help='When splitting up a long document into chunks, how much stride to take between chunks.', ) parser.add_argument('--per_device_eval_batch_size', default=8, type=int, help='Batch size per GPU/CPU for evaluation.') parser.add_argument( '--n_best_size', default=20, type=int, help='The total number of n-best predictions to generate in the nbest_predictions.json output file.', ) parser.add_argument( '--max_answer_length', default=30, type=int, help=( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ), ) parser.add_argument('--seed', type=int, default=42, help='random seed for initialization') parser.add_argument( '--dataset_name', type=str, default=None, required=True, help='The name of the dataset to use (via the datasets library).', ) parser.add_argument( '--dataset_config_name', type=str, default=None, help='The configuration name of the dataset to use (via the datasets library).', ) parser.add_argument( '--preprocessing_num_workers', type=int, default=4, help='A csv or a json file containing the training data.' ) parser.add_argument('--overwrite_cache', action='store_true', help='Overwrite the cached training and evaluation sets') parser.add_argument( '--fp16', action='store_true', help='Whether to use 16-bit (mixed) precision instead of 32-bit', ) parser.add_argument( '--int8', action='store_true', help='Whether to use INT8', ) SCREAMING_SNAKE_CASE_ = parser.parse_args() if args.tokenizer_name: SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) logger.info('Training/evaluation parameters %s', args) SCREAMING_SNAKE_CASE_ = args.per_device_eval_batch_size SCREAMING_SNAKE_CASE_ = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = 'temp_engine/bert-fp32.engine' if args.fpaa: SCREAMING_SNAKE_CASE_ = 'temp_engine/bert-fp16.engine' if args.inta: SCREAMING_SNAKE_CASE_ = 'temp_engine/bert-int8.engine' # import ONNX file if not os.path.exists('temp_engine'): os.makedirs('temp_engine') SCREAMING_SNAKE_CASE_ = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, 'rb') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network SCREAMING_SNAKE_CASE_ = [network.get_input(i) for i in range(network.num_inputs)] SCREAMING_SNAKE_CASE_ = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: SCREAMING_SNAKE_CASE_ = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) SCREAMING_SNAKE_CASE_ = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) SCREAMING_SNAKE_CASE_ = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, 'wb') as f: f.write(engine.serialize()) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: List[str] , lowerCAmelCase: Any , lowerCAmelCase: str , lowerCAmelCase: str , lowerCAmelCase: List[str] , lowerCAmelCase: Dict , lowerCAmelCase: Optional[int] ) -> List[Any]: _UpperCAmelCase : Dict = np.asarray(inputs["input_ids"] , dtype=np.intaa ) _UpperCAmelCase : List[str] = np.asarray(inputs["attention_mask"] , dtype=np.intaa ) _UpperCAmelCase : Union[str, Any] = np.asarray(inputs["token_type_ids"] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , lowerCAmelCase ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , lowerCAmelCase ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , lowerCAmelCase ) # start time _UpperCAmelCase : Dict = time.time() # Run inference context.execute_async( bindings=[int(lowerCAmelCase ) for d_inp in d_inputs] + [int(lowerCAmelCase ), int(lowerCAmelCase )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) cuda.memcpy_dtoh_async(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Synchronize the stream and take time stream.synchronize() # end time _UpperCAmelCase : Any = time.time() _UpperCAmelCase : Any = end_time - start_time _UpperCAmelCase : Optional[int] = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. SCREAMING_SNAKE_CASE_ = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. SCREAMING_SNAKE_CASE_ = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('Evaluation requires a dataset name') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. SCREAMING_SNAKE_CASE_ = raw_datasets['validation'].column_names SCREAMING_SNAKE_CASE_ = 'question' if 'question' in column_names else column_names[0] SCREAMING_SNAKE_CASE_ = 'context' if 'context' in column_names else column_names[1] SCREAMING_SNAKE_CASE_ = 'answers' if 'answers' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). SCREAMING_SNAKE_CASE_ = tokenizer.padding_side == 'right' if args.max_seq_length > tokenizer.model_max_length: logger.warning( F'''The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the''' F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) SCREAMING_SNAKE_CASE_ = min(args.max_seq_length, tokenizer.model_max_length) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: str ) -> Any: # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace _UpperCAmelCase : Optional[Any] = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. _UpperCAmelCase : List[str] = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="only_second" if pad_on_right else "only_first" , max_length=lowerCAmelCase , stride=args.doc_stride , return_overflowing_tokens=lowerCAmelCase , return_offsets_mapping=lowerCAmelCase , padding="max_length" , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. _UpperCAmelCase : List[Any] = tokenized_examples.pop("overflow_to_sample_mapping" ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. _UpperCAmelCase : Tuple = [] for i in range(len(tokenized_examples["input_ids"] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). _UpperCAmelCase : Tuple = tokenized_examples.sequence_ids(lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. _UpperCAmelCase : List[str] = sample_mapping[i] tokenized_examples["example_id"].append(examples["id"][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. _UpperCAmelCase : Any = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["offset_mapping"][i] ) ] return tokenized_examples SCREAMING_SNAKE_CASE_ = raw_datasets['validation'] # Validation Feature Creation SCREAMING_SNAKE_CASE_ = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='Running tokenizer on validation dataset', ) SCREAMING_SNAKE_CASE_ = default_data_collator SCREAMING_SNAKE_CASE_ = eval_dataset.remove_columns(['example_id', 'offset_mapping']) SCREAMING_SNAKE_CASE_ = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Any , lowerCAmelCase: Dict , lowerCAmelCase: str , lowerCAmelCase: Optional[Any]="eval" ) -> Union[str, Any]: # Post-processing: we match the start logits and end logits to answers in the original context. _UpperCAmelCase : Tuple = postprocess_qa_predictions( examples=lowerCAmelCase , features=lowerCAmelCase , predictions=lowerCAmelCase , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=lowerCAmelCase , ) # Format the result to the format the metric expects. if args.version_2_with_negative: _UpperCAmelCase : Optional[int] = [ {"id": k, "prediction_text": v, "no_answer_probability": 0.0} for k, v in predictions.items() ] else: _UpperCAmelCase : Optional[Any] = [{"id": k, "prediction_text": v} for k, v in predictions.items()] _UpperCAmelCase : Optional[int] = [{"id": ex["id"], "answers": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=lowerCAmelCase , label_ids=lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = load_metric('squad_v2' if args.version_2_with_negative else 'squad') # Evaluation! logger.info('Loading ONNX model %s for evaluation', args.onnx_model_path) with open(engine_name, 'rb') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: str ) -> List[str]: return trt.volume(engine.get_binding_shape(lowerCAmelCase ) ) * engine.get_binding_dtype(lowerCAmelCase ).itemsize # Allocate device memory for inputs and outputs. SCREAMING_SNAKE_CASE_ = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer SCREAMING_SNAKE_CASE_ = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) SCREAMING_SNAKE_CASE_ = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) SCREAMING_SNAKE_CASE_ = cuda.mem_alloc(h_outputa.nbytes) SCREAMING_SNAKE_CASE_ = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. SCREAMING_SNAKE_CASE_ = cuda.Stream() # Evaluation logger.info('***** Running Evaluation *****') logger.info(F''' Num examples = {len(eval_dataset)}''') logger.info(F''' Batch size = {args.per_device_eval_batch_size}''') SCREAMING_SNAKE_CASE_ = 0.0 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = timeit.default_timer() SCREAMING_SNAKE_CASE_ = None for step, batch in enumerate(eval_dataloader): SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = outputs SCREAMING_SNAKE_CASE_ = torch.tensor(start_logits) SCREAMING_SNAKE_CASE_ = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered SCREAMING_SNAKE_CASE_ = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) SCREAMING_SNAKE_CASE_ = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) SCREAMING_SNAKE_CASE_ = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) SCREAMING_SNAKE_CASE_ = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: SCREAMING_SNAKE_CASE_ = nested_truncate(all_preds, len(eval_dataset)) SCREAMING_SNAKE_CASE_ = timeit.default_timer() - start_time logger.info(' Evaluation done in total %f secs (%f sec per example)', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('Average Inference Time = {:.3f} ms'.format(total_time * 1000 / niter)) logger.info('Total Inference Time = {:.3f} ms'.format(total_time * 1000)) logger.info('Total Number of Inference = %d', niter) SCREAMING_SNAKE_CASE_ = post_processing_function(eval_examples, eval_dataset, all_preds) SCREAMING_SNAKE_CASE_ = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(F'''Evaluation metrics: {eval_metric}''')
189
0
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 50_00_00_00 ): UpperCAmelCase : Union[str, Any] = set() UpperCAmelCase : Dict = int((limit - 24) ** (1 / 2) ) UpperCAmelCase : str = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , UpperCAmelCase_ ) ) ) for primea in primes: UpperCAmelCase : Tuple = primea * primea for primea in primes: UpperCAmelCase : Tuple = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: UpperCAmelCase : Any = primea * primea * primea * primea UpperCAmelCase : Union[str, Any] = square + cube + tetr if total >= limit: break ret.add(UpperCAmelCase_ ) return len(UpperCAmelCase_ ) if __name__ == "__main__": print(f'''{solution() = }''')
151
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class A_ : '''simple docstring''' def __init__( self : Any , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any]=2 , lowercase_ : str=True , lowercase_ : Optional[int]=False , lowercase_ : List[str]=10 , lowercase_ : Optional[Any]=3 , lowercase_ : List[str]=32 * 4 , lowercase_ : str=32 * 6 , lowercase_ : List[Any]=4 , lowercase_ : List[Any]=32 , ) -> Optional[int]: UpperCAmelCase : List[str] = parent UpperCAmelCase : int = batch_size UpperCAmelCase : int = is_training UpperCAmelCase : int = use_auxiliary_loss UpperCAmelCase : List[Any] = num_queries UpperCAmelCase : List[str] = num_channels UpperCAmelCase : List[str] = min_size UpperCAmelCase : Dict = max_size UpperCAmelCase : Tuple = num_labels UpperCAmelCase : str = mask_feature_size def UpperCAmelCase_ ( self : int ) -> int: UpperCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( lowercase_ ) UpperCAmelCase : Tuple = torch.ones([self.batch_size, self.min_size, self.max_size] , device=lowercase_ ) UpperCAmelCase : str = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=lowercase_ ) > 0.5 ).float() UpperCAmelCase : Optional[Any] = (torch.rand((self.batch_size, self.num_labels) , device=lowercase_ ) > 0.5).long() UpperCAmelCase : Optional[int] = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def UpperCAmelCase_ ( self : Dict ) -> Dict: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = self.prepare_config_and_inputs() UpperCAmelCase : Optional[Any] = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : Tuple ) -> int: UpperCAmelCase : int = output.encoder_hidden_states UpperCAmelCase : Any = output.pixel_decoder_hidden_states UpperCAmelCase : int = output.transformer_decoder_hidden_states self.parent.assertTrue(len(lowercase_ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowercase_ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowercase_ ) , config.decoder_config.decoder_layers ) def UpperCAmelCase_ ( self : List[str] , lowercase_ : Tuple , lowercase_ : List[str] , lowercase_ : Any , lowercase_ : Dict=False ) -> Tuple: with torch.no_grad(): UpperCAmelCase : str = MaskFormerModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase : List[str] = model(pixel_values=lowercase_ , pixel_mask=lowercase_ ) UpperCAmelCase : Union[str, Any] = model(lowercase_ , output_hidden_states=lowercase_ ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Dict , lowercase_ : Optional[int] , lowercase_ : int , lowercase_ : Dict , lowercase_ : Dict , lowercase_ : str ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = MaskFormerForInstanceSegmentation(config=lowercase_ ) model.to(lowercase_ ) model.eval() def comm_check_on_output(lowercase_ : Union[str, Any] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): UpperCAmelCase : Optional[Any] = model(pixel_values=lowercase_ , pixel_mask=lowercase_ ) UpperCAmelCase : Dict = model(lowercase_ ) comm_check_on_output(lowercase_ ) UpperCAmelCase : Any = model( pixel_values=lowercase_ , pixel_mask=lowercase_ , mask_labels=lowercase_ , class_labels=lowercase_ ) comm_check_on_output(lowercase_ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class A_ ( _snake_case , _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : str = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () UpperCAmelCase_ : Optional[Any] = ( {"""feature-extraction""": MaskFormerModel, """image-segmentation""": MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) UpperCAmelCase_ : int = False UpperCAmelCase_ : List[Any] = False UpperCAmelCase_ : List[str] = False UpperCAmelCase_ : Tuple = False def UpperCAmelCase_ ( self : Any ) -> int: UpperCAmelCase : Optional[Any] = MaskFormerModelTester(self ) UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ ) def UpperCAmelCase_ ( self : str ) -> Union[str, Any]: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase , UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(lowercase_ , **lowercase_ , output_hidden_states=lowercase_ ) def UpperCAmelCase_ ( self : Any ) -> Any: UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*lowercase_ ) @unittest.skip(reason='MaskFormer does not use inputs_embeds' ) def UpperCAmelCase_ ( self : Optional[int] ) -> str: pass @unittest.skip(reason='MaskFormer does not have a get_input_embeddings method' ) def UpperCAmelCase_ ( self : str ) -> List[str]: pass @unittest.skip(reason='MaskFormer is not a generative model' ) def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: pass @unittest.skip(reason='MaskFormer does not use token embeddings' ) def UpperCAmelCase_ ( self : Any ) -> Union[str, Any]: pass @require_torch_multi_gpu @unittest.skip( reason='MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def UpperCAmelCase_ ( self : int ) -> List[Any]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def UpperCAmelCase_ ( self : List[Any] ) -> Union[str, Any]: pass def UpperCAmelCase_ ( self : Dict ) -> List[Any]: UpperCAmelCase , UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Tuple = model_class(lowercase_ ) UpperCAmelCase : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Optional[Any] = [*signature.parameters.keys()] UpperCAmelCase : str = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase_ ) @slow def UpperCAmelCase_ ( self : Any ) -> Optional[int]: for model_name in ["facebook/maskformer-swin-small-coco"]: UpperCAmelCase : Tuple = MaskFormerModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: UpperCAmelCase : Optional[Any] = (self.model_tester.min_size,) * 2 UpperCAmelCase : str = { 'pixel_values': torch.randn((2, 3, *size) , device=lowercase_ ), 'mask_labels': torch.randn((2, 10, *size) , device=lowercase_ ), 'class_labels': torch.zeros(2 , 10 , device=lowercase_ ).long(), } UpperCAmelCase : List[str] = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(lowercase_ ) UpperCAmelCase : Optional[int] = model(**lowercase_ ) self.assertTrue(outputs.loss is not None ) def UpperCAmelCase_ ( self : Dict ) -> str: UpperCAmelCase , UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(lowercase_ , **lowercase_ , output_hidden_states=lowercase_ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: UpperCAmelCase , UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : List[Any] = model_class(lowercase_ ).to(lowercase_ ) UpperCAmelCase : List[Any] = model(**lowercase_ , output_attentions=lowercase_ ) self.assertTrue(outputs.attentions is not None ) def UpperCAmelCase_ ( self : Dict ) -> str: if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss UpperCAmelCase : Dict = self.all_model_classes[1] UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() UpperCAmelCase : Any = model_class(lowercase_ ) model.to(lowercase_ ) model.train() UpperCAmelCase : Tuple = model(lowercase_ , mask_labels=lowercase_ , class_labels=lowercase_ ).loss loss.backward() def UpperCAmelCase_ ( self : List[str] ) -> str: # only MaskFormerForInstanceSegmentation has the loss UpperCAmelCase : Optional[int] = self.all_model_classes[1] UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() UpperCAmelCase : List[str] = True UpperCAmelCase : Optional[Any] = True UpperCAmelCase : List[Any] = model_class(lowercase_ ) model.to(lowercase_ ) model.train() UpperCAmelCase : List[str] = model(lowercase_ , mask_labels=lowercase_ , class_labels=lowercase_ ) UpperCAmelCase : Tuple = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() UpperCAmelCase : Optional[int] = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't UpperCAmelCase : Any = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() UpperCAmelCase : Tuple = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=lowercase_ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) lowercase__ = 1e-4 def UpperCamelCase( ): UpperCAmelCase : str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class A_ ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase_ ( self : List[Any] ) -> Union[str, Any]: return ( MaskFormerImageProcessor.from_pretrained('facebook/maskformer-swin-small-coco' ) if is_vision_available() else None ) def UpperCAmelCase_ ( self : List[Any] ) -> Tuple: UpperCAmelCase : List[Any] = MaskFormerModel.from_pretrained('facebook/maskformer-swin-small-coco' ).to(lowercase_ ) UpperCAmelCase : Dict = self.default_image_processor UpperCAmelCase : List[str] = prepare_img() UpperCAmelCase : Union[str, Any] = image_processor(lowercase_ , return_tensors='pt' ).to(lowercase_ ) UpperCAmelCase : Optional[Any] = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowercase_ , (1, 3, 800, 1_088) ) with torch.no_grad(): UpperCAmelCase : List[Any] = model(**lowercase_ ) UpperCAmelCase : str = torch.tensor( [[-0.0482, 0.9228, 0.4951], [-0.2547, 0.8017, 0.8527], [-0.0069, 0.3385, -0.0089]] ).to(lowercase_ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , lowercase_ , atol=lowercase_ ) ) UpperCAmelCase : Tuple = torch.tensor( [[-0.8422, -0.8434, -0.9718], [-1.0144, -0.5565, -0.4195], [-1.0038, -0.4484, -0.1961]] ).to(lowercase_ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , lowercase_ , atol=lowercase_ ) ) UpperCAmelCase : Tuple = torch.tensor( [[0.2852, -0.0159, 0.9735], [0.6254, 0.1858, 0.8529], [-0.0680, -0.4116, 1.8413]] ).to(lowercase_ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , lowercase_ , atol=lowercase_ ) ) def UpperCAmelCase_ ( self : List[str] ) -> int: UpperCAmelCase : Optional[int] = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-swin-small-coco' ) .to(lowercase_ ) .eval() ) UpperCAmelCase : int = self.default_image_processor UpperCAmelCase : Any = prepare_img() UpperCAmelCase : List[Any] = image_processor(lowercase_ , return_tensors='pt' ).to(lowercase_ ) UpperCAmelCase : Union[str, Any] = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowercase_ , (1, 3, 800, 1_088) ) with torch.no_grad(): UpperCAmelCase : Tuple = model(**lowercase_ ) # masks_queries_logits UpperCAmelCase : Tuple = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) UpperCAmelCase : Optional[int] = [ [-1.373_7124, -1.772_4937, -1.936_4233], [-1.597_7281, -1.986_7939, -2.152_3695], [-1.579_5398, -1.926_9832, -2.09_3942], ] UpperCAmelCase : str = torch.tensor(lowercase_ ).to(lowercase_ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowercase_ , atol=lowercase_ ) ) # class_queries_logits UpperCAmelCase : Tuple = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) UpperCAmelCase : Optional[Any] = torch.tensor( [ [1.6512E00, -5.2572E00, -3.3519E00], [3.6169E-02, -5.9025E00, -2.9313E00], [1.0766E-04, -7.7630E00, -5.1263E00], ] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowercase_ , atol=lowercase_ ) ) def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: UpperCAmelCase : str = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-resnet101-coco-stuff' ) .to(lowercase_ ) .eval() ) UpperCAmelCase : str = self.default_image_processor UpperCAmelCase : str = prepare_img() UpperCAmelCase : Union[str, Any] = image_processor(lowercase_ , return_tensors='pt' ).to(lowercase_ ) UpperCAmelCase : str = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowercase_ , (1, 3, 800, 1_088) ) with torch.no_grad(): UpperCAmelCase : Tuple = model(**lowercase_ ) # masks_queries_logits UpperCAmelCase : int = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) UpperCAmelCase : int = [[-0.9046, -2.6366, -4.6062], [-3.4179, -5.7890, -8.8057], [-4.9179, -7.6560, -10.7711]] UpperCAmelCase : str = torch.tensor(lowercase_ ).to(lowercase_ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowercase_ , atol=lowercase_ ) ) # class_queries_logits UpperCAmelCase : Union[str, Any] = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) UpperCAmelCase : Dict = torch.tensor( [[4.7188, -3.2585, -2.8857], [6.6871, -2.9181, -1.2487], [7.2449, -2.2764, -2.1874]] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowercase_ , atol=lowercase_ ) ) def UpperCAmelCase_ ( self : Any ) -> Dict: UpperCAmelCase : Any = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-swin-small-coco' ) .to(lowercase_ ) .eval() ) UpperCAmelCase : Union[str, Any] = self.default_image_processor UpperCAmelCase : Optional[int] = image_processor( [np.zeros((3, 800, 1_333) ), np.zeros((3, 800, 1_333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='pt' , ) UpperCAmelCase : Optional[int] = inputs['pixel_values'].to(lowercase_ ) UpperCAmelCase : Optional[Any] = [el.to(lowercase_ ) for el in inputs['mask_labels']] UpperCAmelCase : List[str] = [el.to(lowercase_ ) for el in inputs['class_labels']] with torch.no_grad(): UpperCAmelCase : Tuple = model(**lowercase_ ) self.assertTrue(outputs.loss is not None )
151
1
import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self : Optional[int] ,*lowerCamelCase__ : Tuple ,**lowerCamelCase__ : Tuple ) -> None: '''simple docstring''' warnings.warn( """The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use ChineseCLIPImageProcessor instead.""" ,lowerCamelCase__ ,) super().__init__(*lowerCamelCase__ ,**lowerCamelCase__ )
358
import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[Any] ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : Optional[Any]=7 ,lowerCamelCase__ : Optional[Any]=3 ,lowerCamelCase__ : Union[str, Any]=18 ,lowerCamelCase__ : Optional[int]=30 ,lowerCamelCase__ : int=400 ,lowerCamelCase__ : List[str]=True ,lowerCamelCase__ : Union[str, Any]=None ,lowerCamelCase__ : Union[str, Any]=True ,lowerCamelCase__ : Optional[int]=[0.5, 0.5, 0.5] ,lowerCamelCase__ : Any=[0.5, 0.5, 0.5] ,) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = size if size is not None else {"""height""": 18, """width""": 18} SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = min_resolution SCREAMING_SNAKE_CASE = max_resolution SCREAMING_SNAKE_CASE = do_resize SCREAMING_SNAKE_CASE = size SCREAMING_SNAKE_CASE = do_normalize SCREAMING_SNAKE_CASE = image_mean SCREAMING_SNAKE_CASE = image_std def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class UpperCamelCase__ ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' __snake_case : Tuple = DPTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = DPTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> int: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase__ ,"""image_mean""" ) ) self.assertTrue(hasattr(lowerCamelCase__ ,"""image_std""" ) ) self.assertTrue(hasattr(lowerCamelCase__ ,"""do_normalize""" ) ) self.assertTrue(hasattr(lowerCamelCase__ ,"""do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase__ ,"""size""" ) ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"""height""": 18, """width""": 18} ) SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ) self.assertEqual(image_processor.size ,{"""height""": 42, """width""": 42} ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ ,Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) # Test batched SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase__ ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowerCamelCase__ ,numpify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ ,np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) # Test batched SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase__ ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowerCamelCase__ ,torchify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ ,torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) # Test batched SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase__ ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,)
193
0
'''simple docstring''' from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch _A : Dict = logging.get_logger(__name__) @add_end_docstrings( UpperCAmelCase__ , r""" top_k (`int`, defaults to 5): The number of predictions to return. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). """ , ) class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' def a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : GenericTensor ) -> np.ndarray: if self.framework == "tf": __lowerCAmelCase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": __lowerCAmelCase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=SCREAMING_SNAKE_CASE__ ) else: raise ValueError("""Unsupported framework""" ) return masked_index def a ( self : int , SCREAMING_SNAKE_CASE__ : GenericTensor ) -> np.ndarray: __lowerCAmelCase = self.get_masked_index(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( """fill-mask""" , self.model.base_model_prefix , f"""No mask_token ({self.tokenizer.mask_token}) found on the input""" , ) def a ( self : str , SCREAMING_SNAKE_CASE__ : GenericTensor ) -> int: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input["""input_ids"""][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(SCREAMING_SNAKE_CASE__ ) def a ( self : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Dict[str, GenericTensor]: if return_tensors is None: __lowerCAmelCase = self.framework __lowerCAmelCase = self.tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ ) self.ensure_exactly_one_mask_token(SCREAMING_SNAKE_CASE__ ) return model_inputs def a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int ) -> Tuple: __lowerCAmelCase = self.model(**SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = model_inputs["""input_ids"""] return model_outputs def a ( self : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str]=5 , SCREAMING_SNAKE_CASE__ : int=None ) -> Dict: # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: __lowerCAmelCase = target_ids.shape[0] __lowerCAmelCase = model_outputs["""input_ids"""][0] __lowerCAmelCase = model_outputs["""logits"""] if self.framework == "tf": __lowerCAmelCase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] __lowerCAmelCase = outputs.numpy() __lowerCAmelCase = outputs[0, masked_index, :] __lowerCAmelCase = stable_softmax(SCREAMING_SNAKE_CASE__ , axis=-1 ) if target_ids is not None: __lowerCAmelCase = tf.gather_nd(tf.squeeze(SCREAMING_SNAKE_CASE__ , 0 ) , target_ids.reshape(-1 , 1 ) ) __lowerCAmelCase = tf.expand_dims(SCREAMING_SNAKE_CASE__ , 0 ) __lowerCAmelCase = tf.math.top_k(SCREAMING_SNAKE_CASE__ , k=SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase , __lowerCAmelCase = topk.values.numpy(), topk.indices.numpy() else: __lowerCAmelCase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=SCREAMING_SNAKE_CASE__ ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample __lowerCAmelCase = outputs[0, masked_index, :] __lowerCAmelCase = logits.softmax(dim=-1 ) if target_ids is not None: __lowerCAmelCase = probs[..., target_ids] __lowerCAmelCase , __lowerCAmelCase = probs.topk(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = [] __lowerCAmelCase = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): __lowerCAmelCase = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place __lowerCAmelCase = input_ids.numpy().copy() if target_ids is not None: __lowerCAmelCase = target_ids[p].tolist() __lowerCAmelCase = p # Filter padding out: __lowerCAmelCase = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back __lowerCAmelCase = self.tokenizer.decode(SCREAMING_SNAKE_CASE__ , skip_special_tokens=SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = {"""score""": v, """token""": p, """token_str""": self.tokenizer.decode([p] ), """sequence""": sequence} row.append(SCREAMING_SNAKE_CASE__ ) result.append(SCREAMING_SNAKE_CASE__ ) if single_mask: return result[0] return result def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict=None ) -> Any: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCAmelCase = [targets] try: __lowerCAmelCase = self.tokenizer.get_vocab() except Exception: __lowerCAmelCase = {} __lowerCAmelCase = [] for target in targets: __lowerCAmelCase = vocab.get(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if id_ is None: __lowerCAmelCase = self.tokenizer( SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , return_token_type_ids=SCREAMING_SNAKE_CASE__ , max_length=1 , truncation=SCREAMING_SNAKE_CASE__ , )["""input_ids"""] if len(SCREAMING_SNAKE_CASE__ ) == 0: logger.warning( f"""The specified target token `{target}` does not exist in the model vocabulary. """ """We cannot replace it with anything meaningful, ignoring it""" ) continue __lowerCAmelCase = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f"""The specified target token `{target}` does not exist in the model vocabulary. """ f"""Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.""" ) target_ids.append(id_ ) __lowerCAmelCase = list(set(SCREAMING_SNAKE_CASE__ ) ) if len(SCREAMING_SNAKE_CASE__ ) == 0: raise ValueError("""At least one target must be provided when passed.""" ) __lowerCAmelCase = np.array(SCREAMING_SNAKE_CASE__ ) return target_ids def a ( self : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None ) -> Union[str, Any]: __lowerCAmelCase = {} if targets is not None: __lowerCAmelCase = self.get_target_ids(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = target_ids if top_k is not None: __lowerCAmelCase = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( """fill-mask""" , self.model.base_model_prefix , """The tokenizer does not define a `mask_token`.""" ) return {}, {}, postprocess_params def __call__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , *SCREAMING_SNAKE_CASE__ : Any , **SCREAMING_SNAKE_CASE__ : str ) -> Union[str, Any]: __lowerCAmelCase = super().__call__(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and len(SCREAMING_SNAKE_CASE__ ) == 1: return outputs[0] return outputs
229
'''simple docstring''' import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler _A : Optional[Any] = 16 _A : Union[str, Any] = 32 def UpperCamelCase_ ( snake_case_ : List[str] ) -> str: '''simple docstring''' return int(x / 2**20 ) class _lowercase : '''simple docstring''' def __enter__( self : List[Any] ) -> int: gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero __lowerCAmelCase = torch.cuda.memory_allocated() return self def __exit__( self : Tuple , *SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]: gc.collect() torch.cuda.empty_cache() __lowerCAmelCase = torch.cuda.memory_allocated() __lowerCAmelCase = torch.cuda.max_memory_allocated() __lowerCAmelCase = bamb(self.end - self.begin ) __lowerCAmelCase = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def UpperCamelCase_ ( snake_case_ : Accelerator , snake_case_ : int = 16 , snake_case_ : str = "bert-base-cased" , snake_case_ : int = 3_20 , snake_case_ : int = 1_60 , ) -> Optional[int]: '''simple docstring''' __lowerCAmelCase = AutoTokenizer.from_pretrained(snake_case_ ) __lowerCAmelCase = load_dataset( """glue""" , """mrpc""" , split={"""train""": f"""train[:{n_train}]""", """validation""": f"""validation[:{n_val}]"""} ) def tokenize_function(snake_case_ : List[Any] ): # max_length=None => use the model max length (it's actually the default) __lowerCAmelCase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=snake_case_ , max_length=snake_case_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __lowerCAmelCase = datasets.map( snake_case_ , batched=snake_case_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=snake_case_ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowerCAmelCase = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(snake_case_ : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(snake_case_ , padding="""max_length""" , max_length=1_28 , return_tensors="""pt""" ) return tokenizer.pad(snake_case_ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. __lowerCAmelCase = DataLoader( tokenized_datasets["""train"""] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=snake_case_ ) __lowerCAmelCase = DataLoader( tokenized_datasets["""validation"""] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=snake_case_ ) return train_dataloader, eval_dataloader def UpperCamelCase_ ( snake_case_ : List[Any] , snake_case_ : Tuple ) -> Optional[int]: '''simple docstring''' __lowerCAmelCase = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowerCAmelCase = config["""lr"""] __lowerCAmelCase = int(config["""num_epochs"""] ) __lowerCAmelCase = int(config["""seed"""] ) __lowerCAmelCase = int(config["""batch_size"""] ) __lowerCAmelCase = args.model_name_or_path set_seed(snake_case_ ) __lowerCAmelCase , __lowerCAmelCase = get_dataloaders(snake_case_ , snake_case_ , snake_case_ , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained(snake_case_ , return_dict=snake_case_ ) # Instantiate optimizer __lowerCAmelCase = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __lowerCAmelCase = optimizer_cls(params=model.parameters() , lr=snake_case_ ) if accelerator.state.deepspeed_plugin is not None: __lowerCAmelCase = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: __lowerCAmelCase = 1 __lowerCAmelCase = (len(snake_case_ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __lowerCAmelCase = get_linear_schedule_with_warmup( optimizer=snake_case_ , num_warmup_steps=0 , num_training_steps=snake_case_ , ) else: __lowerCAmelCase = DummyScheduler(snake_case_ , total_num_steps=snake_case_ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # We need to keep track of how many total steps we have iterated over __lowerCAmelCase = 0 # We also need to keep track of the stating epoch so files are named properly __lowerCAmelCase = 0 # Now we train the model __lowerCAmelCase = {} for epoch in range(snake_case_ , snake_case_ ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(snake_case_ ): __lowerCAmelCase = model(**snake_case_ ) __lowerCAmelCase = outputs.loss __lowerCAmelCase = loss / gradient_accumulation_steps accelerator.backward(snake_case_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print("""Memory before entering the train : {}""".format(bamb(tracemalloc.begin ) ) ) accelerator.print("""Memory consumed at the end of the train (end-begin): {}""".format(tracemalloc.used ) ) accelerator.print("""Peak Memory consumed during the train (max-begin): {}""".format(tracemalloc.peaked ) ) accelerator.print( """Total Peak Memory consumed during the train (max): {}""".format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) __lowerCAmelCase = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[f"""epoch-{epoch}"""] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , """peak_memory_utilization.json""" ) , """w""" ) as f: json.dump(snake_case_ , snake_case_ ) def UpperCamelCase_ ( ) -> Any: '''simple docstring''' __lowerCAmelCase = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=snake_case_ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=snake_case_ , ) parser.add_argument( """--output_dir""" , type=snake_case_ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--peak_memory_upper_bound""" , type=snake_case_ , default=snake_case_ , help="""The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.""" , ) parser.add_argument( """--n_train""" , type=snake_case_ , default=3_20 , help="""Number of training examples to use.""" , ) parser.add_argument( """--n_val""" , type=snake_case_ , default=1_60 , help="""Number of validation examples to use.""" , ) parser.add_argument( """--num_epochs""" , type=snake_case_ , default=1 , help="""Number of train epochs.""" , ) __lowerCAmelCase = parser.parse_args() __lowerCAmelCase = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(snake_case_ , snake_case_ ) if __name__ == "__main__": main()
229
1
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Any = { "edbeeching/decision-transformer-gym-hopper-medium": ( "https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class UpperCamelCase ( lowercase__ ): '''simple docstring''' lowercase : Optional[int] ="""decision_transformer""" lowercase : Dict =["""past_key_values"""] lowercase : Any ={ """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , UpperCamelCase_=17 , UpperCamelCase_=4 , UpperCamelCase_=128 , UpperCamelCase_=4096 , UpperCamelCase_=True , UpperCamelCase_=1 , UpperCamelCase_=1024 , UpperCamelCase_=3 , UpperCamelCase_=1 , UpperCamelCase_=None , UpperCamelCase_="relu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=1E-5 , UpperCamelCase_=0.02 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=5_0256 , UpperCamelCase_=5_0256 , UpperCamelCase_=False , UpperCamelCase_=False , **UpperCamelCase_ , ): lowercase_ :Any = state_dim lowercase_ :List[str] = act_dim lowercase_ :List[str] = hidden_size lowercase_ :int = max_ep_len lowercase_ :List[str] = action_tanh lowercase_ :Any = vocab_size lowercase_ :List[Any] = n_positions lowercase_ :List[str] = n_layer lowercase_ :Optional[Any] = n_head lowercase_ :int = n_inner lowercase_ :List[str] = activation_function lowercase_ :List[str] = resid_pdrop lowercase_ :Dict = embd_pdrop lowercase_ :List[Any] = attn_pdrop lowercase_ :Union[str, Any] = layer_norm_epsilon lowercase_ :List[str] = initializer_range lowercase_ :Any = scale_attn_weights lowercase_ :Union[str, Any] = use_cache lowercase_ :Any = scale_attn_by_inverse_layer_idx lowercase_ :Tuple = reorder_and_upcast_attn lowercase_ :int = bos_token_id lowercase_ :List[str] = eos_token_id super().__init__(bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ )
370
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase ( self ): lowercase_ :List[Any] = 1 lowercase_ :List[Any] = 3 lowercase_ :str = (32, 32) lowercase_ :Tuple = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCamelCase_ ) return image @property def UpperCamelCase ( self ): torch.manual_seed(0 ) lowercase_ :Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) return model @property def UpperCamelCase ( self ): torch.manual_seed(0 ) lowercase_ :str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def UpperCamelCase ( self ): torch.manual_seed(0 ) lowercase_ :int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(UpperCamelCase_ ) @property def UpperCamelCase ( self ): def extract(*UpperCamelCase_ , **UpperCamelCase_ ): class UpperCamelCase : '''simple docstring''' def __init__( self ): lowercase_ :Dict = torch.ones([0] ) def UpperCamelCase ( self , UpperCamelCase_ ): self.pixel_values.to(UpperCamelCase_ ) return self return Out() return extract def UpperCamelCase ( self ): lowercase_ :Optional[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase_ :List[Any] = self.dummy_cond_unet lowercase_ :int = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=UpperCamelCase_ , set_alpha_to_one=UpperCamelCase_ , ) lowercase_ :Any = self.dummy_vae lowercase_ :Dict = self.dummy_text_encoder lowercase_ :str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # make sure here that pndm scheduler skips prk lowercase_ :Optional[Any] = StableDiffusionPipeline( unet=UpperCamelCase_ , scheduler=UpperCamelCase_ , vae=UpperCamelCase_ , text_encoder=UpperCamelCase_ , tokenizer=UpperCamelCase_ , safety_checker=UpperCamelCase_ , feature_extractor=self.dummy_extractor , ) lowercase_ :Union[str, Any] = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase_ :str = '''A painting of a squirrel eating a burger''' lowercase_ :int = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) lowercase_ :Optional[Any] = sd_pipe([prompt] , generator=UpperCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' ) lowercase_ :Any = output.images lowercase_ :List[Any] = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) lowercase_ :List[Any] = sd_pipe( [prompt] , generator=UpperCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , return_dict=UpperCamelCase_ , )[0] lowercase_ :Dict = image[0, -3:, -3:, -1] lowercase_ :List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase_ :List[Any] = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase ( self ): lowercase_ :List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase_ :List[str] = self.dummy_cond_unet lowercase_ :Optional[Any] = PNDMScheduler(skip_prk_steps=UpperCamelCase_ ) lowercase_ :Optional[Any] = self.dummy_vae lowercase_ :List[Any] = self.dummy_text_encoder lowercase_ :str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # make sure here that pndm scheduler skips prk lowercase_ :Tuple = StableDiffusionPipeline( unet=UpperCamelCase_ , scheduler=UpperCamelCase_ , vae=UpperCamelCase_ , text_encoder=UpperCamelCase_ , tokenizer=UpperCamelCase_ , safety_checker=UpperCamelCase_ , feature_extractor=self.dummy_extractor , ) lowercase_ :Optional[int] = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase_ :str = '''A painting of a squirrel eating a burger''' lowercase_ :Any = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) lowercase_ :Optional[int] = sd_pipe([prompt] , generator=UpperCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' ) lowercase_ :Optional[Any] = output.images lowercase_ :List[Any] = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) lowercase_ :List[str] = sd_pipe( [prompt] , generator=UpperCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , return_dict=UpperCamelCase_ , )[0] lowercase_ :Dict = image[0, -3:, -3:, -1] lowercase_ :str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase_ :Dict = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase ( self ): lowercase_ :List[str] = StableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-lms-pipe''' , safety_checker=UpperCamelCase_ ) assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) assert isinstance(pipe.scheduler , UpperCamelCase_ ) assert pipe.safety_checker is None lowercase_ :Optional[int] = pipe('''example prompt''' , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(UpperCamelCase_ ) lowercase_ :Union[str, Any] = StableDiffusionPipeline.from_pretrained(UpperCamelCase_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None lowercase_ :List[Any] = pipe('''example prompt''' , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def UpperCamelCase ( self ): lowercase_ :Optional[Any] = self.dummy_cond_unet lowercase_ :Any = PNDMScheduler(skip_prk_steps=UpperCamelCase_ ) lowercase_ :int = self.dummy_vae lowercase_ :Tuple = self.dummy_text_encoder lowercase_ :Dict = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # put models in fp16 lowercase_ :Optional[int] = unet.half() lowercase_ :Union[str, Any] = vae.half() lowercase_ :Optional[int] = bert.half() # make sure here that pndm scheduler skips prk lowercase_ :Any = StableDiffusionPipeline( unet=UpperCamelCase_ , scheduler=UpperCamelCase_ , vae=UpperCamelCase_ , text_encoder=UpperCamelCase_ , tokenizer=UpperCamelCase_ , safety_checker=UpperCamelCase_ , feature_extractor=self.dummy_extractor , ) lowercase_ :Dict = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase_ :List[str] = '''A painting of a squirrel eating a burger''' lowercase_ :List[Any] = sd_pipe([prompt] , num_inference_steps=2 , output_type='''np''' ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self ): lowercase_ :Optional[Any] = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' , safety_checker=UpperCamelCase_ ) lowercase_ :Dict = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowercase_ :List[Any] = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase_ :List[Any] = ( '''portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle''' ''' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with''' ''' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and''' ''' children from bahnhof zoo, detailed ''' ) lowercase_ :str = 40_0366_0346 lowercase_ :Optional[Any] = 7 # without safety guidance (sld_guidance_scale = 0) lowercase_ :Tuple = torch.manual_seed(UpperCamelCase_ ) lowercase_ :int = sd_pipe( [prompt] , generator=UpperCamelCase_ , guidance_scale=UpperCamelCase_ , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , ) lowercase_ :List[str] = output.images lowercase_ :int = image[0, -3:, -3:, -1] lowercase_ :str = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) lowercase_ :Dict = torch.manual_seed(UpperCamelCase_ ) lowercase_ :Any = sd_pipe( [prompt] , generator=UpperCamelCase_ , guidance_scale=UpperCamelCase_ , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowercase_ :int = output.images lowercase_ :Union[str, Any] = image[0, -3:, -3:, -1] lowercase_ :Optional[int] = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase ( self ): lowercase_ :Tuple = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' , safety_checker=UpperCamelCase_ ) lowercase_ :List[Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowercase_ :Dict = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase_ :Optional[int] = '''padme amidala taking a bath artwork, safe for work, no nudity''' lowercase_ :Any = 27_3497_1755 lowercase_ :str = 7 lowercase_ :Optional[Any] = torch.manual_seed(UpperCamelCase_ ) lowercase_ :Tuple = sd_pipe( [prompt] , generator=UpperCamelCase_ , guidance_scale=UpperCamelCase_ , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , ) lowercase_ :Optional[Any] = output.images lowercase_ :str = image[0, -3:, -3:, -1] lowercase_ :int = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 lowercase_ :Any = torch.manual_seed(UpperCamelCase_ ) lowercase_ :List[Any] = sd_pipe( [prompt] , generator=UpperCamelCase_ , guidance_scale=UpperCamelCase_ , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowercase_ :List[str] = output.images lowercase_ :Optional[Any] = image[0, -3:, -3:, -1] lowercase_ :Optional[Any] = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase ( self ): lowercase_ :Tuple = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' ) lowercase_ :Tuple = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase_ :List[str] = ( '''the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.''' ''' leyendecker''' ) lowercase_ :Any = 10_4435_5234 lowercase_ :Union[str, Any] = 12 lowercase_ :str = torch.manual_seed(UpperCamelCase_ ) lowercase_ :str = sd_pipe( [prompt] , generator=UpperCamelCase_ , guidance_scale=UpperCamelCase_ , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , ) lowercase_ :Optional[int] = output.images lowercase_ :str = image[0, -3:, -3:, -1] lowercase_ :Optional[int] = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 lowercase_ :Dict = torch.manual_seed(UpperCamelCase_ ) lowercase_ :Optional[Any] = sd_pipe( [prompt] , generator=UpperCamelCase_ , guidance_scale=UpperCamelCase_ , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowercase_ :Optional[Any] = output.images lowercase_ :List[Any] = image[0, -3:, -3:, -1] lowercase_ :Any = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
252
0
from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function _A = 1.0_54_57_18_17e-34 # unit of ℏ : J * s _A = 3e8 # unit of c : m * s^-1 def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ): if (force, area, distance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if force < 0: raise ValueError('Magnitude of force can not be negative' ) if distance < 0: raise ValueError('Distance can not be negative' ) if area < 0: raise ValueError('Area can not be negative' ) if force == 0: __UpperCamelCase =(REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 2_40 * (distance) ** 4 ) return {"force": force} elif area == 0: __UpperCamelCase =(2_40 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: __UpperCamelCase =( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (2_40 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError('One and only one argument must be 0' ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
62
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _A = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
62
1
'''simple docstring''' from __future__ import annotations def __lowerCamelCase ( A__ , A__ = None , A__ = None , A__ = False , ) -> Any: """simple docstring""" UpperCamelCase = cipher_alphabet or [chr(_lowercase ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) UpperCamelCase = { 'a': 0.08_497, 'b': 0.01_492, 'c': 0.02_202, 'd': 0.04_253, 'e': 0.11_162, 'f': 0.02_228, 'g': 0.02_015, 'h': 0.06_094, 'i': 0.07_546, 'j': 0.00_153, 'k': 0.01_292, 'l': 0.04_025, 'm': 0.02_406, 'n': 0.06_749, 'o': 0.07_507, 'p': 0.01_929, 'q': 0.00_095, 'r': 0.07_587, 's': 0.06_327, 't': 0.09_356, 'u': 0.02_758, 'v': 0.00_978, 'w': 0.02_560, 'x': 0.00_150, 'y': 0.01_994, 'z': 0.00_077, } else: # Custom frequencies dictionary UpperCamelCase = frequencies_dict if not case_sensitive: UpperCamelCase = ciphertext.lower() # Chi squared statistic values UpperCamelCase = {} # cycle through all of the shifts for shift in range(len(_lowercase ) ): UpperCamelCase = '' # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet UpperCamelCase = (alphabet_letters.index(letter.lower() ) - shift) % len( _lowercase ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter UpperCamelCase = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: UpperCamelCase = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message UpperCamelCase = decrypted_with_shift.lower().count(_lowercase ) # Get the excepcted amount of times the letter should appear based # on letter frequencies UpperCamelCase = frequencies[letter] * occurrences # Complete the chi squared statistic formula UpperCamelCase = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message UpperCamelCase = decrypted_with_shift.count(_lowercase ) # Get the excepcted amount of times the letter should appear based # on letter frequencies UpperCamelCase = frequencies[letter] * occurrences # Complete the chi squared statistic formula UpperCamelCase = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary UpperCamelCase = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(A__ ) -> tuple[float, str]: return chi_squared_statistic_values[key] UpperCamelCase = min( _lowercase , key=_lowercase , ) # Get all the data from the most likely cipher (key, decoded message) ( ( UpperCamelCase ) , ( UpperCamelCase ) , ) = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
359
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def __lowerCamelCase ( A__ ) -> Any: """simple docstring""" UpperCamelCase , UpperCamelCase = image.size UpperCamelCase , UpperCamelCase = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 UpperCamelCase = image.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) UpperCamelCase = np.array(A__ ).astype(np.floataa ) / 255.0 UpperCamelCase = image[None].transpose(0 , 3 , 1 , 2 ) UpperCamelCase = torch.from_numpy(A__ ) return 2.0 * image - 1.0 class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" def __init__( self : str , UpperCamelCase__ : VQModel , UpperCamelCase__ : UNetaDModel , UpperCamelCase__ : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , ): """simple docstring""" super().__init__() self.register_modules(vqvae=UpperCamelCase__ , unet=UpperCamelCase__ , scheduler=UpperCamelCase__ ) @torch.no_grad() def __call__( self : Union[str, Any] , UpperCamelCase__ : Union[torch.Tensor, PIL.Image.Image] = None , UpperCamelCase__ : Optional[int] = 1 , UpperCamelCase__ : Optional[int] = 1_0_0 , UpperCamelCase__ : Optional[float] = 0.0 , UpperCamelCase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase__ : Optional[str] = "pil" , UpperCamelCase__ : bool = True , ): """simple docstring""" if isinstance(UpperCamelCase__ , PIL.Image.Image ): UpperCamelCase = 1 elif isinstance(UpperCamelCase__ , torch.Tensor ): UpperCamelCase = image.shape[0] else: raise ValueError(f"""`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(UpperCamelCase__ )}""" ) if isinstance(UpperCamelCase__ , PIL.Image.Image ): UpperCamelCase = preprocess(UpperCamelCase__ ) UpperCamelCase , UpperCamelCase = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image UpperCamelCase = (batch_size, self.unet.config.in_channels // 2, height, width) UpperCamelCase = next(self.unet.parameters() ).dtype UpperCamelCase = randn_tensor(UpperCamelCase__ , generator=UpperCamelCase__ , device=self.device , dtype=UpperCamelCase__ ) UpperCamelCase = image.to(device=self.device , dtype=UpperCamelCase__ ) # set timesteps and move to the correct device self.scheduler.set_timesteps(UpperCamelCase__ , device=self.device ) UpperCamelCase = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler UpperCamelCase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCamelCase = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCamelCase = {} if accepts_eta: UpperCamelCase = eta for t in self.progress_bar(UpperCamelCase__ ): # concat latents and low resolution image in the channel dimension. UpperCamelCase = torch.cat([latents, image] , dim=1 ) UpperCamelCase = self.scheduler.scale_model_input(UpperCamelCase__ , UpperCamelCase__ ) # predict the noise residual UpperCamelCase = self.unet(UpperCamelCase__ , UpperCamelCase__ ).sample # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase = self.scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample # decode the image latents with the VQVAE UpperCamelCase = self.vqvae.decode(UpperCamelCase__ ).sample UpperCamelCase = torch.clamp(UpperCamelCase__ , -1.0 , 1.0 ) UpperCamelCase = image / 2 + 0.5 UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase = self.numpy_to_pil(UpperCamelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase__ )
249
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE : Dict = { "configuration_bigbird_pegasus": [ "BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP", "BigBirdPegasusConfig", "BigBirdPegasusOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Dict = [ "BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST", "BigBirdPegasusForCausalLM", "BigBirdPegasusForConditionalGeneration", "BigBirdPegasusForQuestionAnswering", "BigBirdPegasusForSequenceClassification", "BigBirdPegasusModel", "BigBirdPegasusPreTrainedModel", ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
85
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer __UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name __UpperCAmelCase = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n' @dataclass class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : Union[PIL.Image.Image, np.ndarray] class lowerCamelCase (_snake_case ): '''simple docstring''' def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) -> Any: super().__init__() self.register_modules( prior=_UpperCamelCase , image_encoder=_UpperCamelCase , image_processor=_UpperCamelCase , scheduler=_UpperCamelCase , renderer=_UpperCamelCase , ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> List[Any]: if latents is None: UpperCAmelCase_ : str = randn_tensor(_UpperCamelCase , generator=_UpperCamelCase , device=_UpperCamelCase , dtype=_UpperCamelCase ) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}" ) UpperCAmelCase_ : Tuple = latents.to(_UpperCamelCase ) UpperCAmelCase_ : Tuple = latents * scheduler.init_noise_sigma return latents def __UpperCAmelCase ( self , _UpperCamelCase=0 ) -> Union[str, Any]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) UpperCAmelCase_ : int = torch.device(f"cuda:{gpu_id}" ) UpperCAmelCase_ : int = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_UpperCamelCase , _UpperCamelCase ) @property def __UpperCAmelCase ( self ) -> int: if self.device != torch.device('meta' ) or not hasattr(self.image_encoder , '_hf_hook' ): return self.device for module in self.image_encoder.modules(): if ( hasattr(_UpperCamelCase , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) -> str: if isinstance(_UpperCamelCase , _UpperCamelCase ) and isinstance(image[0] , torch.Tensor ): UpperCAmelCase_ : int = torch.cat(_UpperCamelCase , axis=0 ) if image[0].ndim == 4 else torch.stack(_UpperCamelCase , axis=0 ) if not isinstance(_UpperCamelCase , torch.Tensor ): UpperCAmelCase_ : Optional[int] = self.image_processor(_UpperCamelCase , return_tensors='pt' ).pixel_values[0].unsqueeze(0 ) UpperCAmelCase_ : Tuple = image.to(dtype=self.image_encoder.dtype , device=_UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = self.image_encoder(_UpperCamelCase )['last_hidden_state'] UpperCAmelCase_ : Union[str, Any] = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 UpperCAmelCase_ : List[str] = image_embeds.repeat_interleave(_UpperCamelCase , dim=0 ) if do_classifier_free_guidance: UpperCAmelCase_ : Dict = torch.zeros_like(_UpperCamelCase ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase_ : Optional[int] = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(_UpperCamelCase ) def __call__( self , _UpperCamelCase , _UpperCamelCase = 1 , _UpperCamelCase = 2_5 , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = 4.0 , _UpperCamelCase = 6_4 , _UpperCamelCase = "pil" , _UpperCamelCase = True , ) -> Union[str, Any]: if isinstance(_UpperCamelCase , PIL.Image.Image ): UpperCAmelCase_ : Tuple = 1 elif isinstance(_UpperCamelCase , torch.Tensor ): UpperCAmelCase_ : str = image.shape[0] elif isinstance(_UpperCamelCase , _UpperCamelCase ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): UpperCAmelCase_ : Optional[int] = len(_UpperCamelCase ) else: raise ValueError( f"`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(_UpperCamelCase )}" ) UpperCAmelCase_ : Tuple = self._execution_device UpperCAmelCase_ : str = batch_size * num_images_per_prompt UpperCAmelCase_ : str = guidance_scale > 1.0 UpperCAmelCase_ : str = self._encode_image(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # prior self.scheduler.set_timesteps(_UpperCamelCase , device=_UpperCamelCase ) UpperCAmelCase_ : int = self.scheduler.timesteps UpperCAmelCase_ : int = self.prior.config.num_embeddings UpperCAmelCase_ : Any = self.prior.config.embedding_dim UpperCAmelCase_ : List[str] = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim UpperCAmelCase_ : List[Any] = latents.reshape(latents.shape[0] , _UpperCamelCase , _UpperCamelCase ) for i, t in enumerate(self.progress_bar(_UpperCamelCase ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase_ : Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase_ : Optional[Any] = self.scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : int = self.prior( _UpperCamelCase , timestep=_UpperCamelCase , proj_embedding=_UpperCamelCase , ).predicted_image_embedding # remove the variance UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: UpperCAmelCase_ , UpperCAmelCase_ : str = noise_pred.chunk(2 ) UpperCAmelCase_ : List[Any] = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) UpperCAmelCase_ : List[str] = self.scheduler.step( _UpperCamelCase , timestep=_UpperCamelCase , sample=_UpperCamelCase , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=_UpperCamelCase ) UpperCAmelCase_ : List[Any] = [] for i, latent in enumerate(_UpperCamelCase ): print() UpperCAmelCase_ : List[str] = self.renderer.decode( latent[None, :] , _UpperCamelCase , size=_UpperCamelCase , ray_batch_size=4_0_9_6 , n_coarse_samples=6_4 , n_fine_samples=1_2_8 , ) images.append(_UpperCamelCase ) UpperCAmelCase_ : Optional[int] = torch.stack(_UpperCamelCase ) if output_type not in ["np", "pil"]: raise ValueError(f"Only the output types `pil` and `np` are supported not output_type={output_type}" ) UpperCAmelCase_ : Dict = images.cpu().numpy() if output_type == "pil": UpperCAmelCase_ : List[str] = [self.numpy_to_pil(_UpperCamelCase ) for image in images] # Offload last model to CPU if hasattr(self , 'final_offload_hook' ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=_UpperCamelCase )
29
0
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def a__ ( _SCREAMING_SNAKE_CASE : dict , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : set , _SCREAMING_SNAKE_CASE : set , _SCREAMING_SNAKE_CASE : dict , _SCREAMING_SNAKE_CASE : dict , _SCREAMING_SNAKE_CASE : PriorityQueue , _SCREAMING_SNAKE_CASE : dict , _SCREAMING_SNAKE_CASE : float | int , ) -> Optional[int]: """simple docstring""" for nxt, d in graph[v]: if nxt in visited_forward: continue UpperCAmelCase_ : str = cst_fwd.get(__lowerCamelCase , np.inf ) UpperCAmelCase_ : List[Any] = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) UpperCAmelCase_ : str = new_cost_f UpperCAmelCase_ : Any = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: UpperCAmelCase_ : str = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def a__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : dict , _SCREAMING_SNAKE_CASE : dict ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = -1 UpperCAmelCase_ : List[Any] = set() UpperCAmelCase_ : Tuple = set() UpperCAmelCase_ : List[str] = {source: 0} UpperCAmelCase_ : Any = {destination: 0} UpperCAmelCase_ : Optional[Any] = {source: None} UpperCAmelCase_ : Optional[Any] = {destination: None} UpperCAmelCase_ : PriorityQueue[Any] = PriorityQueue() UpperCAmelCase_ : PriorityQueue[Any] = PriorityQueue() UpperCAmelCase_ : List[str] = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): UpperCAmelCase_ : List[Any] = queue_forward.get() visited_forward.add(__lowerCamelCase ) UpperCAmelCase_ : str = queue_backward.get() visited_backward.add(__lowerCamelCase ) UpperCAmelCase_ : List[str] = pass_and_relaxation( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) UpperCAmelCase_ : Dict = pass_and_relaxation( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: UpperCAmelCase_ : List[Any] = shortest_distance return shortest_path_distance _lowerCamelCase = { """B""": [["""C""", 1]], """C""": [["""D""", 1]], """D""": [["""F""", 1]], """E""": [["""B""", 1], ["""G""", 2]], """F""": [], """G""": [["""F""", 1]], } _lowerCamelCase = { """B""": [["""E""", 1]], """C""": [["""B""", 1]], """D""": [["""C""", 1]], """F""": [["""D""", 1], ["""G""", 1]], """E""": [[None, np.inf]], """G""": [["""E""", 2]], } if __name__ == "__main__": import doctest doctest.testmod()
360
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def a__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str ) -> str | Literal[False]: """simple docstring""" UpperCAmelCase_ : Tuple = list(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = list(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = 0 for i in range(len(_SCREAMING_SNAKE_CASE ) ): if lista[i] != lista[i]: count += 1 UpperCAmelCase_ : List[str] = "_" if count > 1: return False else: return "".join(_SCREAMING_SNAKE_CASE ) def a__ ( _SCREAMING_SNAKE_CASE : list[str] ) -> list[str]: """simple docstring""" UpperCAmelCase_ : List[str] = [] while True: UpperCAmelCase_ : Any = ["$"] * len(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = [] for i in range(len(_SCREAMING_SNAKE_CASE ) ): for j in range(i + 1 , len(_SCREAMING_SNAKE_CASE ) ): UpperCAmelCase_ : Optional[int] = compare_string(binary[i] , binary[j] ) if k is False: UpperCAmelCase_ : Union[str, Any] = "*" UpperCAmelCase_ : List[Any] = "*" temp.append("X" ) for i in range(len(_SCREAMING_SNAKE_CASE ) ): if checka[i] == "$": pi.append(binary[i] ) if len(_SCREAMING_SNAKE_CASE ) == 0: return pi UpperCAmelCase_ : str = list(set(_SCREAMING_SNAKE_CASE ) ) def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Sequence[float] ) -> list[str]: """simple docstring""" UpperCAmelCase_ : Optional[Any] = [] for minterm in minterms: UpperCAmelCase_ : Optional[Any] = "" for _ in range(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : Dict = str(minterm % 2 ) + string minterm //= 2 temp.append(_SCREAMING_SNAKE_CASE ) return temp def a__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : int ) -> bool: """simple docstring""" UpperCAmelCase_ : Tuple = list(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = list(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = 0 for i in range(len(_SCREAMING_SNAKE_CASE ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def a__ ( _SCREAMING_SNAKE_CASE : list[list[int]] , _SCREAMING_SNAKE_CASE : list[str] ) -> list[str]: """simple docstring""" UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : str = [0] * len(_SCREAMING_SNAKE_CASE ) for i in range(len(chart[0] ) ): UpperCAmelCase_ : Optional[Any] = 0 UpperCAmelCase_ : Optional[int] = -1 for j in range(len(_SCREAMING_SNAKE_CASE ) ): if chart[j][i] == 1: count += 1 UpperCAmelCase_ : Any = j if count == 1: UpperCAmelCase_ : Any = 1 for i in range(len(_SCREAMING_SNAKE_CASE ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(_SCREAMING_SNAKE_CASE ) ): UpperCAmelCase_ : int = 0 temp.append(prime_implicants[i] ) while True: UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : List[str] = -1 UpperCAmelCase_ : int = 0 for i in range(len(_SCREAMING_SNAKE_CASE ) ): UpperCAmelCase_ : str = chart[i].count(1 ) if count_n > max_n: UpperCAmelCase_ : List[str] = count_n UpperCAmelCase_ : Dict = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(_SCREAMING_SNAKE_CASE ) ): UpperCAmelCase_ : int = 0 def a__ ( _SCREAMING_SNAKE_CASE : list[str] , _SCREAMING_SNAKE_CASE : list[str] ) -> list[list[int]]: """simple docstring""" UpperCAmelCase_ : Dict = [[0 for x in range(len(_SCREAMING_SNAKE_CASE ) )] for x in range(len(_SCREAMING_SNAKE_CASE ) )] for i in range(len(_SCREAMING_SNAKE_CASE ) ): UpperCAmelCase_ : Optional[int] = prime_implicants[i].count("_" ) for j in range(len(_SCREAMING_SNAKE_CASE ) ): if is_for_table(prime_implicants[i] , binary[j] , _SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : str = 1 return chart def a__ ( ) -> None: """simple docstring""" UpperCAmelCase_ : List[Any] = int(input("Enter the no. of variables\n" ) ) UpperCAmelCase_ : Tuple = [ float(_SCREAMING_SNAKE_CASE ) for x in input( "Enter the decimal representation of Minterms 'Spaces Separated'\n" ).split() ] UpperCAmelCase_ : int = decimal_to_binary(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = check(_SCREAMING_SNAKE_CASE ) print("Prime Implicants are:" ) print(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = prime_implicant_chart(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = selection(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) print("Essential Prime Implicants are:" ) print(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() main()
67
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __a :Dict = logging.get_logger(__name__) __a :Tuple = { 'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json', } class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : Dict = 'gpt_bigcode' _lowerCamelCase : Dict = ['past_key_values'] _lowerCamelCase : Dict = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Optional[int] , UpperCAmelCase : Any=50257 , UpperCAmelCase : int=1024 , UpperCAmelCase : str=768 , UpperCAmelCase : List[str]=12 , UpperCAmelCase : Optional[Any]=12 , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Optional[int]="gelu_pytorch_tanh" , UpperCAmelCase : Tuple=0.1 , UpperCAmelCase : str=0.1 , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : Any=1E-5 , UpperCAmelCase : Optional[int]=0.02 , UpperCAmelCase : Tuple=True , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Union[str, Any]=50256 , UpperCAmelCase : Optional[Any]=50256 , UpperCAmelCase : List[str]=True , UpperCAmelCase : str=True , UpperCAmelCase : Dict=True , **UpperCAmelCase : Optional[int] , ): A_ = vocab_size A_ = n_positions A_ = n_embd A_ = n_layer A_ = n_head A_ = n_inner A_ = activation_function A_ = resid_pdrop A_ = embd_pdrop A_ = attn_pdrop A_ = layer_norm_epsilon A_ = initializer_range A_ = scale_attn_weights A_ = use_cache A_ = attention_softmax_in_fpaa A_ = scale_attention_softmax_in_fpaa A_ = multi_query A_ = bos_token_id A_ = eos_token_id super().__init__(bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase )
312
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer __a :List[str] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __a :Union[str, Any] = { 'vocab_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt' ), 'google/electra-base-generator': 'https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt', 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json' ), 'google/electra-base-generator': ( 'https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json' ), 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json' ), }, } __a :Optional[int] = { 'google/electra-small-generator': 512, 'google/electra-base-generator': 512, 'google/electra-large-generator': 512, 'google/electra-small-discriminator': 512, 'google/electra-base-discriminator': 512, 'google/electra-large-discriminator': 512, } __a :str = { 'google/electra-small-generator': {'do_lower_case': True}, 'google/electra-base-generator': {'do_lower_case': True}, 'google/electra-large-generator': {'do_lower_case': True}, 'google/electra-small-discriminator': {'do_lower_case': True}, 'google/electra-base-discriminator': {'do_lower_case': True}, 'google/electra-large-discriminator': {'do_lower_case': True}, } class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : Tuple = VOCAB_FILES_NAMES _lowerCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : int = PRETRAINED_INIT_CONFIGURATION _lowerCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : int = ElectraTokenizer def __init__( self : Tuple , UpperCAmelCase : Dict=None , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Any=True , UpperCAmelCase : Any="[UNK]" , UpperCAmelCase : Union[str, Any]="[SEP]" , UpperCAmelCase : List[Any]="[PAD]" , UpperCAmelCase : Union[str, Any]="[CLS]" , UpperCAmelCase : List[Any]="[MASK]" , UpperCAmelCase : List[str]=True , UpperCAmelCase : Any=None , **UpperCAmelCase : Union[str, Any] , ): super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , ) A_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , UpperCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , UpperCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , UpperCAmelCase ) != tokenize_chinese_chars ): A_ = getattr(UpperCAmelCase , normalizer_state.pop("type" ) ) A_ = do_lower_case A_ = strip_accents A_ = tokenize_chinese_chars A_ = normalizer_class(**UpperCAmelCase ) A_ = do_lower_case def __A ( self : int , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any]=None ): A_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self : Union[str, Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): A_ = [self.sep_token_id] A_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self : Tuple , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ): A_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
312
1
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } SCREAMING_SNAKE_CASE_ = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' for attribute in key.split(""".""" ): SCREAMING_SNAKE_CASE = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if weight_type is not None: SCREAMING_SNAKE_CASE = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).shape else: SCREAMING_SNAKE_CASE = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": SCREAMING_SNAKE_CASE = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE = value elif weight_type == "bias": SCREAMING_SNAKE_CASE = value else: SCREAMING_SNAKE_CASE = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = fairseq_model.state_dict() SCREAMING_SNAKE_CASE = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight SCREAMING_SNAKE_CASE = None for name, value in fairseq_dict.items(): SCREAMING_SNAKE_CASE = False if "conv_layers" in name: load_conv_layer( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == """group""" , ) SCREAMING_SNAKE_CASE = True elif name.split(""".""" )[0] == "proj": SCREAMING_SNAKE_CASE = fairseq_model.proj SCREAMING_SNAKE_CASE = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: SCREAMING_SNAKE_CASE = True if "*" in mapped_key: SCREAMING_SNAKE_CASE = name.split(_SCREAMING_SNAKE_CASE )[0].split(""".""" )[-2] SCREAMING_SNAKE_CASE = mapped_key.replace("""*""" , _SCREAMING_SNAKE_CASE ) if "weight_g" in name: SCREAMING_SNAKE_CASE = """weight_g""" elif "weight_v" in name: SCREAMING_SNAKE_CASE = """weight_v""" elif "bias" in name: SCREAMING_SNAKE_CASE = """bias""" elif "weight" in name: SCREAMING_SNAKE_CASE = """weight""" else: SCREAMING_SNAKE_CASE = None set_recursively(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(_SCREAMING_SNAKE_CASE ) logger.warning(F"""Unused weights: {unused_weights}""" ) return proj_weight def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = full_name.split("""conv_layers.""" )[-1] SCREAMING_SNAKE_CASE = name.split(""".""" ) SCREAMING_SNAKE_CASE = int(items[0] ) SCREAMING_SNAKE_CASE = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) SCREAMING_SNAKE_CASE = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) SCREAMING_SNAKE_CASE = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) SCREAMING_SNAKE_CASE = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) SCREAMING_SNAKE_CASE = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_SCREAMING_SNAKE_CASE ) def __lowercase ( _SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = emb.weight.shape SCREAMING_SNAKE_CASE = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = emb.weight.data return lin_layer def __lowercase ( _SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' with open(_SCREAMING_SNAKE_CASE , """r""" , encoding="""utf-8""" ) as f: SCREAMING_SNAKE_CASE = f.readlines() SCREAMING_SNAKE_CASE = [line.split(""" """ )[0] for line in lines] SCREAMING_SNAKE_CASE = len(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = { """<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3, } vocab_dict.update(dict(zip(_SCREAMING_SNAKE_CASE , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = WavaVecaConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = SpeechaTextaConfig.from_pretrained( _SCREAMING_SNAKE_CASE , vocab_size=_SCREAMING_SNAKE_CASE , decoder_layers=_SCREAMING_SNAKE_CASE , do_stable_layer_norm=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) SCREAMING_SNAKE_CASE = model[0].eval() # set weights for wav2vec2 encoder SCREAMING_SNAKE_CASE = WavaVecaModel(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = recursively_load_weights_wavaveca(model.encoder , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = SpeechaTextaForCausalLM(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=_SCREAMING_SNAKE_CASE ) # set output linear layer unexpected_keys.remove("""embed_out""" ) SCREAMING_SNAKE_CASE = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(F"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) SCREAMING_SNAKE_CASE = SpeechEncoderDecoderModel(encoder=_SCREAMING_SNAKE_CASE , decoder=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = False # add projection layer SCREAMING_SNAKE_CASE = nn.Parameter(projection_layer.weight ) SCREAMING_SNAKE_CASE = nn.Parameter(projection_layer.bias ) SCREAMING_SNAKE_CASE = create_vocab_dict(_SCREAMING_SNAKE_CASE ) with open(os.path.join(_SCREAMING_SNAKE_CASE , """vocab.json""" ) , """w""" ) as fp: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = SpeechaTextaTokenizer(os.path.join(_SCREAMING_SNAKE_CASE , """vocab.json""" ) ) tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = hf_wavavec.config.to_dict() SCREAMING_SNAKE_CASE = tokenizer.pad_token_id SCREAMING_SNAKE_CASE = tokenizer.bos_token_id SCREAMING_SNAKE_CASE = tokenizer.eos_token_id SCREAMING_SNAKE_CASE = """speech_to_text_2""" SCREAMING_SNAKE_CASE = """wav2vec2""" SCREAMING_SNAKE_CASE = SpeechEncoderDecoderConfig.from_dict(_SCREAMING_SNAKE_CASE ) hf_wavavec.save_pretrained(_SCREAMING_SNAKE_CASE ) feature_extractor.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument( """--encoder_config_path""", default="""facebook/wav2vec2-large-lv60""", type=str, help="""Path to hf encoder wav2vec2 checkpoint config""", ) parser.add_argument( """--decoder_config_path""", default="""facebook/s2t-small-mustc-en-fr-st""", type=str, help="""Path to hf decoder s2t checkpoint config""", ) parser.add_argument("""--vocab_size""", default=1_0_2_2_4, type=int, help="""Vocab size of decoder""") parser.add_argument("""--num_decoder_layers""", default=7, type=int, help="""Number of decoder layers""") SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
359
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = TypeVar("""DatasetType""", Dataset, IterableDataset) def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "first_exhausted" , ) -> DatasetType: '''simple docstring''' from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError("""Unable to interleave an empty list of datasets.""" ) for i, dataset in enumerate(_SCREAMING_SNAKE_CASE ): if not isinstance(_SCREAMING_SNAKE_CASE , (Dataset, IterableDataset) ): if isinstance(_SCREAMING_SNAKE_CASE , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ """is an empty dataset dictionary.""" ) raise ValueError( F"""Dataset at position {i} has at least one split: {list(_SCREAMING_SNAKE_CASE )}\n""" F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_SCREAMING_SNAKE_CASE ) )}']""" ) raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_SCREAMING_SNAKE_CASE ).__name__}.""" ) if i == 0: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = ( (Dataset, IterableDataset) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else (IterableDataset, Dataset) ) elif not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError( F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F"""{stopping_strategy} is not supported. Please enter a valid stopping_strategy.""" ) if dataset_type is Dataset: return _interleave_map_style_datasets( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , info=_SCREAMING_SNAKE_CASE , split=_SCREAMING_SNAKE_CASE , stopping_strategy=_SCREAMING_SNAKE_CASE ) else: return _interleave_iterable_datasets( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , info=_SCREAMING_SNAKE_CASE , split=_SCREAMING_SNAKE_CASE , stopping_strategy=_SCREAMING_SNAKE_CASE ) def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 0 , ) -> DatasetType: '''simple docstring''' if not dsets: raise ValueError("""Unable to concatenate an empty list of datasets.""" ) for i, dataset in enumerate(_SCREAMING_SNAKE_CASE ): if not isinstance(_SCREAMING_SNAKE_CASE , (Dataset, IterableDataset) ): if isinstance(_SCREAMING_SNAKE_CASE , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ """is an empty dataset dictionary.""" ) raise ValueError( F"""Dataset at position {i} has at least one split: {list(_SCREAMING_SNAKE_CASE )}\n""" F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_SCREAMING_SNAKE_CASE ) )}']""" ) raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_SCREAMING_SNAKE_CASE ).__name__}.""" ) if i == 0: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = ( (Dataset, IterableDataset) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else (IterableDataset, Dataset) ) elif not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError( F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if dataset_type is Dataset: return _concatenate_map_style_datasets(_SCREAMING_SNAKE_CASE , info=_SCREAMING_SNAKE_CASE , split=_SCREAMING_SNAKE_CASE , axis=_SCREAMING_SNAKE_CASE ) else: return _concatenate_iterable_datasets(_SCREAMING_SNAKE_CASE , info=_SCREAMING_SNAKE_CASE , split=_SCREAMING_SNAKE_CASE , axis=_SCREAMING_SNAKE_CASE )
193
0