code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging _SCREAMING_SNAKE_CASE = ['bart.large', 'bart.large.mnli', 'bart.large.cnn', 'bart_xsum/model.pt'] _SCREAMING_SNAKE_CASE = {'bart.large': BartModel, 'bart.large.mnli': BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse("""0.9.0"""): raise Exception("""requires fairseq >= 0.9.0""") logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = ' Hello world! cécé herlolip' _SCREAMING_SNAKE_CASE = [ ('model.classification_heads.mnli.dense.weight', 'classification_head.dense.weight'), ('model.classification_heads.mnli.dense.bias', 'classification_head.dense.bias'), ('model.classification_heads.mnli.out_proj.weight', 'classification_head.out_proj.weight'), ('model.classification_heads.mnli.out_proj.bias', 'classification_head.out_proj.bias'), ] def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : Union[str, Any] = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "_float_tensor", ] for k in ignore_keys: state_dict.pop(lowerCamelCase__ , lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): snake_case_ : int = dct.pop(lowerCamelCase__ ) snake_case_ : Any = val def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : List[str] = torch.load(lowerCamelCase__ , map_location='cpu' ) snake_case_ : str = torch.hub.load('pytorch/fairseq' , 'bart.large.cnn' ).eval() hub_interface.model.load_state_dict(sd['model'] ) return hub_interface def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : Dict = emb.weight.shape snake_case_ : Optional[Any] = nn.Linear(lowerCamelCase__ , lowerCamelCase__ , bias=lowerCamelCase__ ) snake_case_ : Tuple = emb.weight.data return lin_layer @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( __a , __a , __a=None ): if not os.path.exists(lowerCamelCase__ ): snake_case_ : Optional[int] = torch.hub.load('pytorch/fairseq' , lowerCamelCase__ ).eval() else: snake_case_ : Optional[Any] = load_xsum_checkpoint(lowerCamelCase__ ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: snake_case_ : Optional[Any] = checkpoint_path.replace('.' , '-' ) snake_case_ : Union[str, Any] = BartConfig.from_pretrained(lowerCamelCase__ ) snake_case_ : Optional[Any] = bart.encode(lowerCamelCase__ ).unsqueeze(0 ) snake_case_ : Optional[Any] = BartTokenizer.from_pretrained(lowerCamelCase__ ).encode(lowerCamelCase__ , return_tensors='pt' ).unsqueeze(0 ) if not torch.eq(lowerCamelCase__ , lowerCamelCase__ ).all(): raise ValueError( f"""converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}""" ) if checkpoint_path == "bart.large.mnli": snake_case_ : List[str] = bart.state_dict() remove_ignore_keys_(lowerCamelCase__ ) snake_case_ : List[Any] = state_dict["model.decoder.embed_tokens.weight"] for src, dest in mnli_rename_keys: rename_key(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) snake_case_ : Dict = BartForSequenceClassification(lowerCamelCase__ ).eval() model.load_state_dict(lowerCamelCase__ ) snake_case_ : Tuple = bart.predict('mnli' , lowerCamelCase__ , return_logits=lowerCamelCase__ ) snake_case_ : Dict = model(lowerCamelCase__ )[0] # logits else: # no classification heads to worry about snake_case_ : Union[str, Any] = bart.model.state_dict() remove_ignore_keys_(lowerCamelCase__ ) snake_case_ : Optional[int] = state_dict["decoder.embed_tokens.weight"] snake_case_ : int = bart.extract_features(lowerCamelCase__ ) if hf_checkpoint_name == "facebook/bart-large": snake_case_ : List[str] = BartModel(lowerCamelCase__ ).eval() model.load_state_dict(lowerCamelCase__ ) snake_case_ : Dict = model(lowerCamelCase__ ).model[0] else: snake_case_ : int = BartForConditionalGeneration(lowerCamelCase__ ).eval() # an existing summarization ckpt model.model.load_state_dict(lowerCamelCase__ ) if hasattr(lowerCamelCase__ , 'lm_head' ): snake_case_ : Union[str, Any] = make_linear_from_emb(model.model.shared ) snake_case_ : str = model.model(lowerCamelCase__ )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( f"""`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}""" ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError('Some values in `fairseq_output` are different from `new_model_outputs`' ) Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) model.save_pretrained(lowerCamelCase__ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( """fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem.""" ) parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--hf_config""", default=None, type=str, help="""Which huggingface architecture to use: bart-large-xsum""" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
327
"""simple docstring""" from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
144
0
import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel __A = False __A = True __A = False if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( '''--repo_path''', default=None, type=str, required=True, help='''The config json file corresponding to the architecture.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') __A = parser.parse_args() __A = { '''image_size''': '''sample_size''', '''num_res_blocks''': '''layers_per_block''', '''block_channels''': '''block_out_channels''', '''down_blocks''': '''down_block_types''', '''up_blocks''': '''up_block_types''', '''downscale_freq_shift''': '''freq_shift''', '''resnet_num_groups''': '''norm_num_groups''', '''resnet_act_fn''': '''act_fn''', '''resnet_eps''': '''norm_eps''', '''num_head_channels''': '''attention_head_dim''', } __A = { '''time_steps''': '''time_proj''', '''mid''': '''mid_block''', '''downsample_blocks''': '''down_blocks''', '''upsample_blocks''': '''up_blocks''', } __A = '''''' if has_file(args.repo_path, '''config.json''') else '''unet''' with open(os.path.join(args.repo_path, subfolder, '''config.json'''), '''r''', encoding='''utf-8''') as reader: __A = reader.read() __A = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, '''config.json'''): __A = UNetaDModel(**config) else: __A = UNetaDConditionModel if '''ldm-text2im-large-256''' in args.repo_path else UNetaDModel __A = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) __A = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: __A = config[key] del config[key] __A = [k.replace('''UNetRes''', '''''') for k in config['''down_block_types''']] __A = [k.replace('''UNetRes''', '''''') for k in config['''up_block_types''']] if do_only_weights: __A = torch.load(os.path.join(args.repo_path, subfolder, '''diffusion_pytorch_model.bin''')) __A = {} for param_key, param_value in state_dict.items(): if param_key.endswith('''.op.bias''') or param_key.endswith('''.op.weight'''): continue __A = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split('''.''')[0] == key: __A = param_value __A = True if not has_changed: __A = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
278
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging __A = logging.get_logger(__name__) __A = '''▁''' __A = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', '''tokenizer_config_file''': '''tokenizer_config.json''', } __A = { '''vocab_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json''', }, '''spm_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_config_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json''', }, } __A = { '''facebook/m2m100_418M''': 10_24, } # fmt: off __A = { '''m2m100''': ['''af''', '''am''', '''ar''', '''ast''', '''az''', '''ba''', '''be''', '''bg''', '''bn''', '''br''', '''bs''', '''ca''', '''ceb''', '''cs''', '''cy''', '''da''', '''de''', '''el''', '''en''', '''es''', '''et''', '''fa''', '''ff''', '''fi''', '''fr''', '''fy''', '''ga''', '''gd''', '''gl''', '''gu''', '''ha''', '''he''', '''hi''', '''hr''', '''ht''', '''hu''', '''hy''', '''id''', '''ig''', '''ilo''', '''is''', '''it''', '''ja''', '''jv''', '''ka''', '''kk''', '''km''', '''kn''', '''ko''', '''lb''', '''lg''', '''ln''', '''lo''', '''lt''', '''lv''', '''mg''', '''mk''', '''ml''', '''mn''', '''mr''', '''ms''', '''my''', '''ne''', '''nl''', '''no''', '''ns''', '''oc''', '''or''', '''pa''', '''pl''', '''ps''', '''pt''', '''ro''', '''ru''', '''sd''', '''si''', '''sk''', '''sl''', '''so''', '''sq''', '''sr''', '''ss''', '''su''', '''sv''', '''sw''', '''ta''', '''th''', '''tl''', '''tn''', '''tr''', '''uk''', '''ur''', '''uz''', '''vi''', '''wo''', '''xh''', '''yi''', '''yo''', '''zh''', '''zu'''], '''wmt21''': ['''en''', '''ha''', '''is''', '''ja''', '''cs''', '''ru''', '''zh''', '''de'''] } class lowercase_ ( __lowercase ): UpperCamelCase_ : str = VOCAB_FILES_NAMES UpperCamelCase_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : Dict = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Union[str, Any] = ["input_ids", "attention_mask"] UpperCamelCase_ : List[int] = [] UpperCamelCase_ : List[int] = [] def __init__( self : str , A__ : str , A__ : Optional[Any] , A__ : Union[str, Any]=None , A__ : Dict=None , A__ : Any="<s>" , A__ : Union[str, Any]="</s>" , A__ : Tuple="</s>" , A__ : Dict="<pad>" , A__ : List[Any]="<unk>" , A__ : str="m2m100" , A__ : Optional[Dict[str, Any]] = None , A__ : List[Any]=8 , **A__ : Union[str, Any] , ) -> None: _snake_case = {} if sp_model_kwargs is None else sp_model_kwargs _snake_case = language_codes _snake_case = FAIRSEQ_LANGUAGE_CODES[language_codes] _snake_case = {lang_code: f"""__{lang_code}__""" for lang_code in fairseq_language_code} _snake_case = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(A__ ) for lang_code in fairseq_language_code if self.get_lang_token(A__ ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=A__ , tgt_lang=A__ , bos_token=A__ , eos_token=A__ , sep_token=A__ , unk_token=A__ , pad_token=A__ , language_codes=A__ , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=A__ , **A__ , ) _snake_case = vocab_file _snake_case = load_json(A__ ) _snake_case = {v: k for k, v in self.encoder.items()} _snake_case = spm_file _snake_case = load_spm(A__ , self.sp_model_kwargs ) _snake_case = len(self.encoder ) _snake_case = { self.get_lang_token(A__ ): self.encoder_size + i for i, lang_code in enumerate(A__ ) } _snake_case = {lang_code: self.encoder_size + i for i, lang_code in enumerate(A__ )} _snake_case = {v: k for k, v in self.lang_token_to_id.items()} _snake_case = src_lang if src_lang is not None else '''en''' _snake_case = tgt_lang _snake_case = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) _snake_case = num_madeup_words @property def UpperCamelCase_ ( self : int ) -> int: return len(self.encoder ) + len(self.lang_token_to_id ) @property def UpperCamelCase_ ( self : Dict ) -> str: return self._src_lang @src_lang.setter def UpperCamelCase_ ( self : List[str] , A__ : str ) -> None: _snake_case = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCamelCase_ ( self : Any , A__ : str ) -> List[str]: return self.sp_model.encode(A__ , out_type=A__ ) def UpperCamelCase_ ( self : Optional[int] , A__ : Dict ) -> str: if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(A__ , self.encoder[self.unk_token] ) def UpperCamelCase_ ( self : Union[str, Any] , A__ : int ) -> str: if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(A__ , self.unk_token ) def UpperCamelCase_ ( self : Optional[int] , A__ : Optional[int] ) -> List[Any]: _snake_case = [] _snake_case = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A__ ) + token _snake_case = [] else: current_sub_tokens.append(A__ ) out_string += self.sp_model.decode(A__ ) return out_string.strip() def UpperCamelCase_ ( self : str , A__ : List[int] , A__ : Optional[List[int]] = None , A__ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A__ , token_ids_a=A__ , already_has_special_tokens=A__ ) _snake_case = [1] * len(self.prefix_tokens ) _snake_case = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(A__ )) + suffix_ones return prefix_ones + ([0] * len(A__ )) + ([0] * len(A__ )) + suffix_ones def UpperCamelCase_ ( self : Tuple , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCamelCase_ ( self : str ) -> Dict: _snake_case = {self.convert_ids_to_tokens(A__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : str ) -> Dict: _snake_case = self.__dict__.copy() _snake_case = None return state def __setstate__( self : Union[str, Any] , A__ : Dict ) -> None: _snake_case = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _snake_case = {} _snake_case = load_spm(self.spm_file , self.sp_model_kwargs ) def UpperCamelCase_ ( self : Any , A__ : str , A__ : Optional[str] = None ) -> Tuple[str]: _snake_case = Path(A__ ) if not save_dir.is_dir(): raise OSError(f"""{save_directory} should be a directory""" ) _snake_case = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) _snake_case = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder , A__ ) if os.path.abspath(self.spm_file ) != os.path.abspath(A__ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , A__ ) elif not os.path.isfile(self.spm_file ): with open(A__ , '''wb''' ) as fi: _snake_case = self.sp_model.serialized_model_proto() fi.write(A__ ) return (str(A__ ), str(A__ )) def UpperCamelCase_ ( self : Optional[int] , A__ : List[str] , A__ : str = "en" , A__ : Optional[List[str]] = None , A__ : str = "ro" , **A__ : List[Any] , ) -> BatchEncoding: _snake_case = src_lang _snake_case = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(A__ , A__ , **A__ ) def UpperCamelCase_ ( self : List[str] , A__ : int , A__ : Optional[str] , A__ : Optional[str] , **A__ : Union[str, Any] ) -> Tuple: if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) _snake_case = src_lang _snake_case = self(A__ , add_special_tokens=A__ , **A__ ) _snake_case = self.get_lang_id(A__ ) _snake_case = tgt_lang_id return inputs def UpperCamelCase_ ( self : Dict ) -> Optional[Any]: self.set_src_lang_special_tokens(self.src_lang ) def UpperCamelCase_ ( self : Optional[Any] ) -> Dict: self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCamelCase_ ( self : List[Any] , A__ : str ) -> None: _snake_case = self.get_lang_token(A__ ) _snake_case = self.lang_token_to_id[lang_token] _snake_case = [self.cur_lang_id] _snake_case = [self.eos_token_id] def UpperCamelCase_ ( self : List[str] , A__ : str ) -> None: _snake_case = self.get_lang_token(A__ ) _snake_case = self.lang_token_to_id[lang_token] _snake_case = [self.cur_lang_id] _snake_case = [self.eos_token_id] def UpperCamelCase_ ( self : Dict , A__ : str ) -> str: return self.lang_code_to_token[lang] def UpperCamelCase_ ( self : Tuple , A__ : str ) -> int: _snake_case = self.get_lang_token(A__ ) return self.lang_token_to_id[lang_token] def snake_case_(_UpperCamelCase , _UpperCamelCase ) -> sentencepiece.SentencePieceProcessor: """simple docstring""" _snake_case = sentencepiece.SentencePieceProcessor(**_UpperCamelCase ) spm.Load(str(_UpperCamelCase ) ) return spm def snake_case_(_UpperCamelCase ) -> Union[Dict, List]: """simple docstring""" with open(_UpperCamelCase , '''r''' ) as f: return json.load(_UpperCamelCase ) def snake_case_(_UpperCamelCase , _UpperCamelCase ) -> None: """simple docstring""" with open(_UpperCamelCase , '''w''' ) as f: json.dump(_UpperCamelCase , _UpperCamelCase , indent=2 )
278
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool __lowercase : List[str] = { '''Acehnese Arabic''': '''ace_Arab''', '''Acehnese Latin''': '''ace_Latn''', '''Mesopotamian Arabic''': '''acm_Arab''', '''Ta\'izzi-Adeni Arabic''': '''acq_Arab''', '''Tunisian Arabic''': '''aeb_Arab''', '''Afrikaans''': '''afr_Latn''', '''South Levantine Arabic''': '''ajp_Arab''', '''Akan''': '''aka_Latn''', '''Amharic''': '''amh_Ethi''', '''North Levantine Arabic''': '''apc_Arab''', '''Modern Standard Arabic''': '''arb_Arab''', '''Modern Standard Arabic Romanized''': '''arb_Latn''', '''Najdi Arabic''': '''ars_Arab''', '''Moroccan Arabic''': '''ary_Arab''', '''Egyptian Arabic''': '''arz_Arab''', '''Assamese''': '''asm_Beng''', '''Asturian''': '''ast_Latn''', '''Awadhi''': '''awa_Deva''', '''Central Aymara''': '''ayr_Latn''', '''South Azerbaijani''': '''azb_Arab''', '''North Azerbaijani''': '''azj_Latn''', '''Bashkir''': '''bak_Cyrl''', '''Bambara''': '''bam_Latn''', '''Balinese''': '''ban_Latn''', '''Belarusian''': '''bel_Cyrl''', '''Bemba''': '''bem_Latn''', '''Bengali''': '''ben_Beng''', '''Bhojpuri''': '''bho_Deva''', '''Banjar Arabic''': '''bjn_Arab''', '''Banjar Latin''': '''bjn_Latn''', '''Standard Tibetan''': '''bod_Tibt''', '''Bosnian''': '''bos_Latn''', '''Buginese''': '''bug_Latn''', '''Bulgarian''': '''bul_Cyrl''', '''Catalan''': '''cat_Latn''', '''Cebuano''': '''ceb_Latn''', '''Czech''': '''ces_Latn''', '''Chokwe''': '''cjk_Latn''', '''Central Kurdish''': '''ckb_Arab''', '''Crimean Tatar''': '''crh_Latn''', '''Welsh''': '''cym_Latn''', '''Danish''': '''dan_Latn''', '''German''': '''deu_Latn''', '''Southwestern Dinka''': '''dik_Latn''', '''Dyula''': '''dyu_Latn''', '''Dzongkha''': '''dzo_Tibt''', '''Greek''': '''ell_Grek''', '''English''': '''eng_Latn''', '''Esperanto''': '''epo_Latn''', '''Estonian''': '''est_Latn''', '''Basque''': '''eus_Latn''', '''Ewe''': '''ewe_Latn''', '''Faroese''': '''fao_Latn''', '''Fijian''': '''fij_Latn''', '''Finnish''': '''fin_Latn''', '''Fon''': '''fon_Latn''', '''French''': '''fra_Latn''', '''Friulian''': '''fur_Latn''', '''Nigerian Fulfulde''': '''fuv_Latn''', '''Scottish Gaelic''': '''gla_Latn''', '''Irish''': '''gle_Latn''', '''Galician''': '''glg_Latn''', '''Guarani''': '''grn_Latn''', '''Gujarati''': '''guj_Gujr''', '''Haitian Creole''': '''hat_Latn''', '''Hausa''': '''hau_Latn''', '''Hebrew''': '''heb_Hebr''', '''Hindi''': '''hin_Deva''', '''Chhattisgarhi''': '''hne_Deva''', '''Croatian''': '''hrv_Latn''', '''Hungarian''': '''hun_Latn''', '''Armenian''': '''hye_Armn''', '''Igbo''': '''ibo_Latn''', '''Ilocano''': '''ilo_Latn''', '''Indonesian''': '''ind_Latn''', '''Icelandic''': '''isl_Latn''', '''Italian''': '''ita_Latn''', '''Javanese''': '''jav_Latn''', '''Japanese''': '''jpn_Jpan''', '''Kabyle''': '''kab_Latn''', '''Jingpho''': '''kac_Latn''', '''Kamba''': '''kam_Latn''', '''Kannada''': '''kan_Knda''', '''Kashmiri Arabic''': '''kas_Arab''', '''Kashmiri Devanagari''': '''kas_Deva''', '''Georgian''': '''kat_Geor''', '''Central Kanuri Arabic''': '''knc_Arab''', '''Central Kanuri Latin''': '''knc_Latn''', '''Kazakh''': '''kaz_Cyrl''', '''Kabiyè''': '''kbp_Latn''', '''Kabuverdianu''': '''kea_Latn''', '''Khmer''': '''khm_Khmr''', '''Kikuyu''': '''kik_Latn''', '''Kinyarwanda''': '''kin_Latn''', '''Kyrgyz''': '''kir_Cyrl''', '''Kimbundu''': '''kmb_Latn''', '''Northern Kurdish''': '''kmr_Latn''', '''Kikongo''': '''kon_Latn''', '''Korean''': '''kor_Hang''', '''Lao''': '''lao_Laoo''', '''Ligurian''': '''lij_Latn''', '''Limburgish''': '''lim_Latn''', '''Lingala''': '''lin_Latn''', '''Lithuanian''': '''lit_Latn''', '''Lombard''': '''lmo_Latn''', '''Latgalian''': '''ltg_Latn''', '''Luxembourgish''': '''ltz_Latn''', '''Luba-Kasai''': '''lua_Latn''', '''Ganda''': '''lug_Latn''', '''Luo''': '''luo_Latn''', '''Mizo''': '''lus_Latn''', '''Standard Latvian''': '''lvs_Latn''', '''Magahi''': '''mag_Deva''', '''Maithili''': '''mai_Deva''', '''Malayalam''': '''mal_Mlym''', '''Marathi''': '''mar_Deva''', '''Minangkabau Arabic ''': '''min_Arab''', '''Minangkabau Latin''': '''min_Latn''', '''Macedonian''': '''mkd_Cyrl''', '''Plateau Malagasy''': '''plt_Latn''', '''Maltese''': '''mlt_Latn''', '''Meitei Bengali''': '''mni_Beng''', '''Halh Mongolian''': '''khk_Cyrl''', '''Mossi''': '''mos_Latn''', '''Maori''': '''mri_Latn''', '''Burmese''': '''mya_Mymr''', '''Dutch''': '''nld_Latn''', '''Norwegian Nynorsk''': '''nno_Latn''', '''Norwegian Bokmål''': '''nob_Latn''', '''Nepali''': '''npi_Deva''', '''Northern Sotho''': '''nso_Latn''', '''Nuer''': '''nus_Latn''', '''Nyanja''': '''nya_Latn''', '''Occitan''': '''oci_Latn''', '''West Central Oromo''': '''gaz_Latn''', '''Odia''': '''ory_Orya''', '''Pangasinan''': '''pag_Latn''', '''Eastern Panjabi''': '''pan_Guru''', '''Papiamento''': '''pap_Latn''', '''Western Persian''': '''pes_Arab''', '''Polish''': '''pol_Latn''', '''Portuguese''': '''por_Latn''', '''Dari''': '''prs_Arab''', '''Southern Pashto''': '''pbt_Arab''', '''Ayacucho Quechua''': '''quy_Latn''', '''Romanian''': '''ron_Latn''', '''Rundi''': '''run_Latn''', '''Russian''': '''rus_Cyrl''', '''Sango''': '''sag_Latn''', '''Sanskrit''': '''san_Deva''', '''Santali''': '''sat_Olck''', '''Sicilian''': '''scn_Latn''', '''Shan''': '''shn_Mymr''', '''Sinhala''': '''sin_Sinh''', '''Slovak''': '''slk_Latn''', '''Slovenian''': '''slv_Latn''', '''Samoan''': '''smo_Latn''', '''Shona''': '''sna_Latn''', '''Sindhi''': '''snd_Arab''', '''Somali''': '''som_Latn''', '''Southern Sotho''': '''sot_Latn''', '''Spanish''': '''spa_Latn''', '''Tosk Albanian''': '''als_Latn''', '''Sardinian''': '''srd_Latn''', '''Serbian''': '''srp_Cyrl''', '''Swati''': '''ssw_Latn''', '''Sundanese''': '''sun_Latn''', '''Swedish''': '''swe_Latn''', '''Swahili''': '''swh_Latn''', '''Silesian''': '''szl_Latn''', '''Tamil''': '''tam_Taml''', '''Tatar''': '''tat_Cyrl''', '''Telugu''': '''tel_Telu''', '''Tajik''': '''tgk_Cyrl''', '''Tagalog''': '''tgl_Latn''', '''Thai''': '''tha_Thai''', '''Tigrinya''': '''tir_Ethi''', '''Tamasheq Latin''': '''taq_Latn''', '''Tamasheq Tifinagh''': '''taq_Tfng''', '''Tok Pisin''': '''tpi_Latn''', '''Tswana''': '''tsn_Latn''', '''Tsonga''': '''tso_Latn''', '''Turkmen''': '''tuk_Latn''', '''Tumbuka''': '''tum_Latn''', '''Turkish''': '''tur_Latn''', '''Twi''': '''twi_Latn''', '''Central Atlas Tamazight''': '''tzm_Tfng''', '''Uyghur''': '''uig_Arab''', '''Ukrainian''': '''ukr_Cyrl''', '''Umbundu''': '''umb_Latn''', '''Urdu''': '''urd_Arab''', '''Northern Uzbek''': '''uzn_Latn''', '''Venetian''': '''vec_Latn''', '''Vietnamese''': '''vie_Latn''', '''Waray''': '''war_Latn''', '''Wolof''': '''wol_Latn''', '''Xhosa''': '''xho_Latn''', '''Eastern Yiddish''': '''ydd_Hebr''', '''Yoruba''': '''yor_Latn''', '''Yue Chinese''': '''yue_Hant''', '''Chinese Simplified''': '''zho_Hans''', '''Chinese Traditional''': '''zho_Hant''', '''Standard Malay''': '''zsm_Latn''', '''Zulu''': '''zul_Latn''', } class __lowercase ( _lowercase ): lowerCamelCase : Tuple = "facebook/nllb-200-distilled-600M" lowerCamelCase : List[str] = ( "This is a tool that translates text from a language to another. It takes three inputs: `text`, which should " "be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, " "which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in " "plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`." ) lowerCamelCase : int = "translator" lowerCamelCase : Optional[Any] = AutoTokenizer lowerCamelCase : str = AutoModelForSeqaSeqLM lowerCamelCase : Dict = LANGUAGE_CODES lowerCamelCase : int = ["text", "text", "text"] lowerCamelCase : int = ["text"] def UpperCAmelCase__ (self , A , A , A ): if src_lang not in self.lang_to_code: raise ValueError(F"""{src_lang} is not a supported language.""" ) if tgt_lang not in self.lang_to_code: raise ValueError(F"""{tgt_lang} is not a supported language.""" ) lowerCamelCase_ : List[Any] = self.lang_to_code[src_lang] lowerCamelCase_ : Tuple = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( A , return_tensors='''pt''' , src_lang=A , tgt_lang=A ) def UpperCAmelCase__ (self , A ): return self.model.generate(**A ) def UpperCAmelCase__ (self , A ): return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=A )
318
'''simple docstring''' import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowercase ( _lowercase , unittest.TestCase ): lowerCamelCase : Any = LayoutLMTokenizer lowerCamelCase : Union[str, Any] = LayoutLMTokenizerFast lowerCamelCase : Optional[int] = True lowerCamelCase : int = True def UpperCAmelCase__ (self ): super().setUp() lowerCamelCase_ : Dict = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowerCamelCase_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def UpperCAmelCase__ (self , **A ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , A ): lowerCamelCase_ : Any = '''UNwant\u00E9d,running''' lowerCamelCase_ : List[Any] = '''unwanted, running''' return input_text, output_text def UpperCAmelCase__ (self ): lowerCamelCase_ : List[str] = self.tokenizer_class(self.vocab_file ) lowerCamelCase_ : Optional[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(A , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , [7, 4, 5, 1_0, 8, 9] ) def UpperCAmelCase__ (self ): pass
318
1
import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def UpperCamelCase ( a ) -> Optional[int]: '''simple docstring''' if ( (cp >= 0x4_e00 and cp <= 0x9_fff) or (cp >= 0x3_400 and cp <= 0x4_dbf) # or (cp >= 0x20_000 and cp <= 0x2a_6df) # or (cp >= 0x2a_700 and cp <= 0x2b_73f) # or (cp >= 0x2b_740 and cp <= 0x2b_81f) # or (cp >= 0x2b_820 and cp <= 0x2c_eaf) # or (cp >= 0xf_900 and cp <= 0xf_aff) or (cp >= 0x2f_800 and cp <= 0x2f_a1f) # ): # return True return False def UpperCamelCase ( a ) -> List[str]: '''simple docstring''' for char in word: __magic_name__ = ord(__UpperCamelCase ) if not _is_chinese_char(__UpperCamelCase ): return 0 return 1 def UpperCamelCase ( a ) -> List[Any]: '''simple docstring''' __magic_name__ = set() for token in tokens: __magic_name__ = len(__UpperCamelCase ) > 1 and is_chinese(__UpperCamelCase ) if chinese_word: word_set.add(__UpperCamelCase ) __magic_name__ = list(__UpperCamelCase ) return word_list def UpperCamelCase ( a , a ) -> List[Any]: '''simple docstring''' if not chinese_word_set: return bert_tokens __magic_name__ = max([len(__UpperCamelCase ) for w in chinese_word_set] ) __magic_name__ = bert_tokens __magic_name__ , __magic_name__ = 0, len(__UpperCamelCase ) while start < end: __magic_name__ = True if is_chinese(bert_word[start] ): __magic_name__ = min(end - start , __UpperCamelCase ) for i in range(__UpperCamelCase , 1 , -1 ): __magic_name__ = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): __magic_name__ = '''##''' + bert_word[j] __magic_name__ = start + i __magic_name__ = False break if single_word: start += 1 return bert_word def UpperCamelCase ( a , a , a ) -> List[Any]: '''simple docstring''' __magic_name__ = [] for i in range(0 , len(__UpperCamelCase ) , 100 ): __magic_name__ = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=['''cws'''] ).cws __magic_name__ = [get_chinese_word(__UpperCamelCase ) for r in res] ltp_res.extend(__UpperCamelCase ) assert len(__UpperCamelCase ) == len(__UpperCamelCase ) __magic_name__ = [] for i in range(0 , len(__UpperCamelCase ) , 100 ): __magic_name__ = bert_tokenizer(lines[i : i + 100] , add_special_tokens=__UpperCamelCase , truncation=__UpperCamelCase , max_length=512 ) bert_res.extend(res['''input_ids'''] ) assert len(__UpperCamelCase ) == len(__UpperCamelCase ) __magic_name__ = [] for input_ids, chinese_word in zip(__UpperCamelCase , __UpperCamelCase ): __magic_name__ = [] for id in input_ids: __magic_name__ = bert_tokenizer._convert_id_to_token(__UpperCamelCase ) input_tokens.append(__UpperCamelCase ) __magic_name__ = add_sub_symbol(__UpperCamelCase , __UpperCamelCase ) __magic_name__ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__UpperCamelCase ): if token[:2] == "##": __magic_name__ = token[2:] # save chinese tokens' pos if len(__UpperCamelCase ) == 1 and _is_chinese_char(ord(__UpperCamelCase ) ): ref_id.append(__UpperCamelCase ) ref_ids.append(__UpperCamelCase ) assert len(__UpperCamelCase ) == len(__UpperCamelCase ) return ref_ids def UpperCamelCase ( a ) -> Union[str, Any]: '''simple docstring''' with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f: __magic_name__ = f.readlines() __magic_name__ = [line.strip() for line in data if len(__UpperCamelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' __magic_name__ = LTP(args.ltp ) # faster in GPU device __magic_name__ = BertTokenizer.from_pretrained(args.bert ) __magic_name__ = prepare_ref(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f: __magic_name__ = [json.dumps(__UpperCamelCase ) + '''\n''' for ref in ref_ids] f.writelines(__UpperCamelCase ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", required=False, type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", required=False, type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path", ) parser.add_argument( "--bert", required=False, type=str, default="./resources/robert", help="resources for Bert tokenizer", ) parser.add_argument( "--save_path", required=False, type=str, default="./resources/ref.txt", help="path to save res", ) _lowerCAmelCase = parser.parse_args() main(args)
369
'''simple docstring''' import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class _SCREAMING_SNAKE_CASE : def __init__( self : Optional[Any] , a__ : Any , a__ : Tuple=sys.maxsize ): __magic_name__ = '''bilinear''' __magic_name__ = max_size __magic_name__ = short_edge_length def __call__( self : Tuple , a__ : List[str] ): __magic_name__ = [] for img in imgs: __magic_name__ , __magic_name__ = img.shape[:2] # later: provide list and randomly choose index for resize __magic_name__ = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img __magic_name__ = size * 1.0 / min(a__ , a__ ) if h < w: __magic_name__ , __magic_name__ = size, scale * w else: __magic_name__ , __magic_name__ = scale * h, size if max(a__ , a__ ) > self.max_size: __magic_name__ = self.max_size * 1.0 / max(a__ , a__ ) __magic_name__ = newh * scale __magic_name__ = neww * scale __magic_name__ = int(neww + 0.5 ) __magic_name__ = int(newh + 0.5 ) if img.dtype == np.uinta: __magic_name__ = Image.fromarray(a__ ) __magic_name__ = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) __magic_name__ = np.asarray(a__ ) else: __magic_name__ = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw __magic_name__ = nn.functional.interpolate( a__ , (newh, neww) , mode=self.interp_method , align_corners=a__ ).squeeze(0 ) img_augs.append(a__ ) return img_augs class _SCREAMING_SNAKE_CASE : def __init__( self : List[Any] , a__ : Tuple ): __magic_name__ = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) __magic_name__ = cfg.INPUT.FORMAT __magic_name__ = cfg.SIZE_DIVISIBILITY __magic_name__ = cfg.PAD_VALUE __magic_name__ = cfg.INPUT.MAX_SIZE_TEST __magic_name__ = cfg.MODEL.DEVICE __magic_name__ = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) __magic_name__ = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) __magic_name__ = lambda a__ : (x - self.pixel_mean) / self.pixel_std def snake_case__ ( self : Union[str, Any] , a__ : Dict ): __magic_name__ = tuple(max(a__ ) for s in zip(*[img.shape for img in images] ) ) __magic_name__ = [im.shape[-2:] for im in images] __magic_name__ = [ nn.functional.pad( a__ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(a__ , a__ ) ] return torch.stack(a__ ), torch.tensor(a__ ) def __call__( self : Dict , a__ : Dict , a__ : List[str]=False ): with torch.no_grad(): if not isinstance(a__ , a__ ): __magic_name__ = [images] if single_image: assert len(a__ ) == 1 for i in range(len(a__ ) ): if isinstance(images[i] , torch.Tensor ): images.insert(a__ , images.pop(a__ ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( a__ , torch.as_tensor(img_tensorize(images.pop(a__ ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge __magic_name__ = torch.tensor([im.shape[:2] for im in images] ) __magic_name__ = self.aug(a__ ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic __magic_name__ = [self.normalizer(a__ ) for x in images] # now pad them to do the following operations __magic_name__ , __magic_name__ = self.pad(a__ ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad __magic_name__ = torch.true_divide(a__ , a__ ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def UpperCamelCase ( a , a ) -> List[Any]: '''simple docstring''' boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def UpperCamelCase ( a , a ) -> Any: '''simple docstring''' assert torch.isfinite(a ).all(), "Box tensor contains infinite or NaN!" __magic_name__ , __magic_name__ = box_size tensor[:, 0].clamp_(min=0 , max=a ) tensor[:, 1].clamp_(min=0 , max=a ) tensor[:, 2].clamp_(min=0 , max=a ) tensor[:, 3].clamp_(min=0 , max=a )
98
0
def __lowercase ( a__ ) -> int: return 1 if digit in (0, 1) else (digit * factorial(digit - 1 )) def __lowercase ( a__ ) -> bool: __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = number while duplicate > 0: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = divmod(a__ , 10 ) fact_sum += factorial(a__ ) return fact_sum == number if __name__ == "__main__": print('''Program to check whether a number is a Krisnamurthy Number or not.''') lowerCAmelCase__ : Tuple =int(input('''Enter number: ''').strip()) print( F'''{number} is {'' if krishnamurthy(number) else 'not '}a Krishnamurthy Number.''' )
257
from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
257
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) A : Dict = { 'configuration_perceiver': ['PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PerceiverConfig', 'PerceiverOnnxConfig'], 'tokenization_perceiver': ['PerceiverTokenizer'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[str] = ['PerceiverFeatureExtractor'] A : List[Any] = ['PerceiverImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[int] = [ 'PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PerceiverForImageClassificationConvProcessing', 'PerceiverForImageClassificationFourier', 'PerceiverForImageClassificationLearned', 'PerceiverForMaskedLM', 'PerceiverForMultimodalAutoencoding', 'PerceiverForOpticalFlow', 'PerceiverForSequenceClassification', 'PerceiverLayer', 'PerceiverModel', 'PerceiverPreTrainedModel', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys A : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
365
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : Union[str, Any] = logging.get_logger(__name__) A : int = { 'andreasmadsen/efficient_mlm_m0.40': ( 'https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json' ), } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''roberta-prelayernorm''' def __init__(self : Dict , _UpperCAmelCase : List[Any]=5_0265 , _UpperCAmelCase : List[Any]=768 , _UpperCAmelCase : str=12 , _UpperCAmelCase : Any=12 , _UpperCAmelCase : Any=3072 , _UpperCAmelCase : int="gelu" , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : Any=512 , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : List[Any]=1E-1_2 , _UpperCAmelCase : Tuple=1 , _UpperCAmelCase : int=0 , _UpperCAmelCase : int=2 , _UpperCAmelCase : Optional[Any]="absolute" , _UpperCAmelCase : int=True , _UpperCAmelCase : Optional[int]=None , **_UpperCAmelCase : Any , ) -> List[str]: """simple docstring""" super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = use_cache lowercase__ = classifier_dropout class A ( UpperCAmelCase__ ): '''simple docstring''' @property def lowerCamelCase__ (self : Any ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": lowercase__ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase__ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
146
0
"""simple docstring""" def __UpperCAmelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> str: '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError('both inputs must be positive integers' ) __snake_case : Dict = str(bin(UpperCAmelCase_ ) ) binary_number += "0" * shift_amount return binary_number def __UpperCAmelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> str: '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError('both inputs must be positive integers' ) __snake_case : Dict = str(bin(UpperCAmelCase_ ) )[2:] if shift_amount >= len(UpperCAmelCase_ ): return "0b0" __snake_case : Dict = binary_number[: len(UpperCAmelCase_ ) - shift_amount] return "0b" + shifted_binary_number def __UpperCAmelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> str: '''simple docstring''' if number >= 0: # Get binary representation of positive number __snake_case : str = '0' + str(bin(UpperCAmelCase_ ) ).strip('-' )[2:] else: # Get binary (2's complement) representation of negative number __snake_case : Optional[Any] = len(bin(UpperCAmelCase_ )[3:] ) # Find 2's complement of number __snake_case : Dict = bin(abs(UpperCAmelCase_ ) - (1 << binary_number_length) )[3:] __snake_case : Optional[Any] = ( '1' + '0' * (binary_number_length - len(UpperCAmelCase_ )) + binary_number ) if shift_amount >= len(UpperCAmelCase_ ): return "0b" + binary_number[0] * len(UpperCAmelCase_ ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(UpperCAmelCase_ ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
172
"""simple docstring""" import flax.linen as nn import jax import jax.numpy as jnp class UpperCamelCase ( nn.Module ): UpperCAmelCase : int UpperCAmelCase : jnp.dtype = jnp.floataa def _lowercase (self : Any) -> Optional[int]: __snake_case : str = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__(self : Any , _A : Any) -> str: __snake_case , __snake_case , __snake_case , __snake_case : Union[str, Any] = hidden_states.shape __snake_case : Union[str, Any] = jax.image.resize( _A , shape=(batch, height * 2, width * 2, channels) , method='nearest' , ) __snake_case : List[Any] = self.conv(_A) return hidden_states class UpperCamelCase ( nn.Module ): UpperCAmelCase : int UpperCAmelCase : jnp.dtype = jnp.floataa def _lowercase (self : Optional[Any]) -> List[Any]: __snake_case : Dict = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__(self : int , _A : str) -> Any: # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) __snake_case : Union[str, Any] = self.conv(_A) return hidden_states class UpperCamelCase ( nn.Module ): UpperCAmelCase : int UpperCAmelCase : int = None UpperCAmelCase : float = 0.0 UpperCAmelCase : bool = None UpperCAmelCase : jnp.dtype = jnp.floataa def _lowercase (self : List[str]) -> Dict: __snake_case : str = self.in_channels if self.out_channels is None else self.out_channels __snake_case : Optional[int] = nn.GroupNorm(num_groups=32 , epsilon=1E-5) __snake_case : str = nn.Conv( _A , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __snake_case : Optional[int] = nn.Dense(_A , dtype=self.dtype) __snake_case : int = nn.GroupNorm(num_groups=32 , epsilon=1E-5) __snake_case : str = nn.Dropout(self.dropout_prob) __snake_case : Dict = nn.Conv( _A , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __snake_case : List[str] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut __snake_case : Optional[Any] = None if use_nin_shortcut: __snake_case : List[str] = nn.Conv( _A , kernel_size=(1, 1) , strides=(1, 1) , padding='VALID' , dtype=self.dtype , ) def __call__(self : List[Any] , _A : Union[str, Any] , _A : str , _A : int=True) -> Any: __snake_case : List[Any] = hidden_states __snake_case : Optional[Any] = self.norma(_A) __snake_case : int = nn.swish(_A) __snake_case : Optional[int] = self.conva(_A) __snake_case : Dict = self.time_emb_proj(nn.swish(_A)) __snake_case : List[str] = jnp.expand_dims(jnp.expand_dims(_A , 1) , 1) __snake_case : Any = hidden_states + temb __snake_case : Tuple = self.norma(_A) __snake_case : Dict = nn.swish(_A) __snake_case : Union[str, Any] = self.dropout(_A , _A) __snake_case : Union[str, Any] = self.conva(_A) if self.conv_shortcut is not None: __snake_case : List[Any] = self.conv_shortcut(_A) return hidden_states + residual
172
1
'''simple docstring''' from __future__ import annotations from typing import Any class UpperCamelCase_ : def __init__( self , A ) -> None: UpperCAmelCase : List[Any] = num_of_nodes UpperCAmelCase : list[list[int]] = [] UpperCAmelCase : dict[int, int] = {} def _lowercase( self , A , A , A ) -> None: self.m_edges.append([u_node, v_node, weight] ) def _lowercase( self , A ) -> int: if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _lowercase( self , A ) -> None: if self.m_component[u_node] != u_node: for k in self.m_component: UpperCAmelCase : Union[str, Any] = self.find_component(A ) def _lowercase( self , A , A , A ) -> None: if component_size[u_node] <= component_size[v_node]: UpperCAmelCase : Optional[int] = v_node component_size[v_node] += component_size[u_node] self.set_component(A ) elif component_size[u_node] >= component_size[v_node]: UpperCAmelCase : List[str] = self.find_component(A ) component_size[u_node] += component_size[v_node] self.set_component(A ) def _lowercase( self ) -> None: UpperCAmelCase : List[Any] = [] UpperCAmelCase : List[Any] = 0 UpperCAmelCase : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) UpperCAmelCase : Any = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: UpperCAmelCase : Tuple = edge UpperCAmelCase : Optional[Any] = self.m_component[u] UpperCAmelCase : Tuple = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): UpperCAmelCase : int = [u, v, w] for edge in minimum_weight_edge: if isinstance(A , A ): UpperCAmelCase : Optional[Any] = edge UpperCAmelCase : str = self.m_component[u] UpperCAmelCase : Optional[int] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(A , A , A ) print(f'''Added edge [{u} - {v}]\nAdded weight: {w}\n''' ) num_of_components -= 1 UpperCAmelCase : Optional[Any] = [-1] * self.m_num_of_nodes print(f'''The total weight of the minimal spanning tree is: {mst_weight}''' ) def __lowerCamelCase ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
371
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer a : List[Any] = logging.get_logger(__name__) a : List[str] = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } a : List[Any] = { """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } a : List[Any] = { """facebook/blenderbot_small-90M""": 5_1_2, } class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = BlenderbotSmallTokenizer def __init__( self , A=None , A=None , A="<|endoftext|>" , A="<|endoftext|>" , A="<|endoftext|>" , A=False , A=True , **A , ) -> Union[str, Any]: super().__init__( ByteLevelBPETokenizer( vocab=A , merges=A , add_prefix_space=A , trim_offsets=A , ) , bos_token=A , eos_token=A , unk_token=A , **A , ) UpperCAmelCase : Optional[Any] = add_prefix_space def _lowercase( self , A , A=None ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Any = [self.sep_token_id] UpperCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
338
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase : Tuple = logging.get_logger(__name__) __UpperCamelCase : Optional[int] = { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/config.json", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/config.json", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json" ), } class __lowerCAmelCase ( __magic_name__ ): UpperCamelCase__ = '''xlm-roberta''' def __init__( self :Optional[Any] , __magic_name__ :int=3_0522 , __magic_name__ :Any=768 , __magic_name__ :Tuple=12 , __magic_name__ :str=12 , __magic_name__ :Tuple=3072 , __magic_name__ :List[str]="gelu" , __magic_name__ :List[Any]=0.1 , __magic_name__ :Optional[int]=0.1 , __magic_name__ :List[str]=512 , __magic_name__ :List[str]=2 , __magic_name__ :Optional[Any]=0.02 , __magic_name__ :Dict=1E-1_2 , __magic_name__ :Union[str, Any]=1 , __magic_name__ :Optional[int]=0 , __magic_name__ :Union[str, Any]=2 , __magic_name__ :Tuple="absolute" , __magic_name__ :Dict=True , __magic_name__ :List[str]=None , **__magic_name__ :Optional[Any] , ): '''simple docstring''' super().__init__(pad_token_id=__magic_name__ , bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = hidden_act a = intermediate_size a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = initializer_range a = layer_norm_eps a = position_embedding_type a = use_cache a = classifier_dropout class __lowerCAmelCase ( __magic_name__ ): @property def lowerCamelCase__ ( self :Dict ): '''simple docstring''' if self.task == "multiple-choice": a = {0: """batch""", 1: """choice""", 2: """sequence"""} else: a = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
228
from __future__ import annotations def __A ( __lowerCamelCase , __lowerCamelCase = None ) -> list[list[str]]: a = word_bank or [] # create a table a = len(__lowerCamelCase ) + 1 a = [] for _ in range(__lowerCamelCase ): table.append([] ) # seed value a = [[]] # because empty string has empty combination # iterate through the indices for i in range(__lowerCamelCase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(__lowerCamelCase )] == word: a = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(__lowerCamelCase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(__lowerCamelCase )]: combination.reverse() return table[len(__lowerCamelCase )] if __name__ == "__main__": print(all_construct("jwajalapa", ["jwa", "j", "w", "a", "la", "lapa"])) print(all_construct("rajamati", ["s", "raj", "amat", "raja", "ma", "i", "t"])) print( all_construct( "hexagonosaurus", ["h", "ex", "hex", "ag", "ago", "ru", "auru", "rus", "go", "no", "o", "s"], ) )
228
1
"""simple docstring""" import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer A_ = logging.get_logger(__name__) A_ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} A_ = { '''vocab_file''': { '''Salesforce/codegen-350M-mono''': '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json''', }, '''merges_file''': { '''Salesforce/codegen-350M-mono''': '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''Salesforce/codegen-350M-mono''': ( '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json''' ), }, } A_ = { '''Salesforce/codegen-350M-mono''': 20_48, } class lowercase( __a ): '''simple docstring''' lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = ["input_ids", "attention_mask"] lowercase__ = CodeGenTokenizer def __init__( self: Union[str, Any], a_: Optional[int]=None, a_: Dict=None, a_: Any=None, a_: List[Any]="<|endoftext|>", a_: Dict="<|endoftext|>", a_: int="<|endoftext|>", a_: Dict=False, **a_: Optional[int], ): '''simple docstring''' super().__init__( a_, a_, tokenizer_file=a_, unk_token=a_, bos_token=a_, eos_token=a_, add_prefix_space=a_, **a_, ) if kwargs.pop("""add_bos_token""", a_ ): _snake_case : List[Any] = kwargs.pop("""name_or_path""", """""" ) raise ValueError( """Currenty GPT2's fast tokenizer does NOT support adding a BOS token.""" """Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n""" f"`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n" f"`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n" """This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.""" """ so that the fast tokenizer works correctly.""" ) _snake_case : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""", a_ ) != add_prefix_space: _snake_case : Optional[int] = getattr(a_, pre_tok_state.pop("""type""" ) ) _snake_case : List[Any] = add_prefix_space _snake_case : Union[str, Any] = pre_tok_class(**a_ ) _snake_case : Union[str, Any] = add_prefix_space def UpperCamelCase_ ( self: Optional[Any], *a_: Any, **a_: Optional[int] ): '''simple docstring''' _snake_case : str = kwargs.get("""is_split_into_words""", a_ ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*a_, **a_ ) def UpperCamelCase_ ( self: Union[str, Any], *a_: Optional[int], **a_: Optional[int] ): '''simple docstring''' _snake_case : Union[str, Any] = kwargs.get("""is_split_into_words""", a_ ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*a_, **a_ ) def UpperCamelCase_ ( self: List[str], a_: str, a_: Optional[str] = None ): '''simple docstring''' _snake_case : List[Any] = self._tokenizer.model.save(a_, name=a_ ) return tuple(a_ ) def UpperCamelCase_ ( self: Optional[Any], a_: Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"], a_: bool = False, a_: bool = None, a_: Optional[List[str]] = None, **a_: Optional[int], ): '''simple docstring''' _snake_case : List[str] = super().decode( token_ids=a_, skip_special_tokens=a_, clean_up_tokenization_spaces=a_, **a_, ) if truncate_before_pattern is not None and len(a_ ) > 0: _snake_case : str = self.truncate(a_, a_ ) return decoded_text def UpperCamelCase_ ( self: Optional[Any], a_: int, a_: int ): '''simple docstring''' def find_re(a_: str, a_: List[str], a_: Any ): _snake_case : List[Any] = pattern.search(a_, a_ ) return m.start() if m else -1 _snake_case : List[Any] = [re.compile(a_, re.MULTILINE ) for pattern in truncate_before_pattern] _snake_case : Union[str, Any] = list(re.finditer("""^print""", a_, re.MULTILINE ) ) if len(a_ ) > 1: _snake_case : Dict = completion[: prints[1].start()] _snake_case : List[Any] = list(re.finditer("""^def""", a_, re.MULTILINE ) ) if len(a_ ) > 1: _snake_case : Optional[int] = completion[: defs[1].start()] _snake_case : Dict = 0 _snake_case : str = [ pos for pos in [find_re(a_, a_, a_ ) for terminal in terminals] if pos != -1 ] if len(a_ ) > 0: return completion[: min(a_ )] else: return completion
362
"""simple docstring""" import torch from torch import nn class lowercase( nn.Module ): '''simple docstring''' def __init__( self: Any, a_: List[str], a_: Union[str, Any], a_: int, a_: int, a_: List[Any]=1, a_: Union[str, Any]=False ): '''simple docstring''' super().__init__() _snake_case : int = n_token _snake_case : Tuple = d_embed _snake_case : List[str] = d_proj _snake_case : Optional[int] = cutoffs + [n_token] _snake_case : Any = [0] + self.cutoffs _snake_case : Tuple = div_val _snake_case : Optional[int] = self.cutoffs[0] _snake_case : Union[str, Any] = len(self.cutoffs ) - 1 _snake_case : Union[str, Any] = self.shortlist_size + self.n_clusters if self.n_clusters > 0: _snake_case : List[Any] = nn.Parameter(torch.zeros(self.n_clusters, self.d_embed ) ) _snake_case : Tuple = nn.Parameter(torch.zeros(self.n_clusters ) ) _snake_case : Any = nn.ModuleList() _snake_case : Optional[Any] = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(a_, a_ ) ) ) else: self.out_projs.append(a_ ) self.out_layers.append(nn.Linear(a_, a_ ) ) else: for i in range(len(self.cutoffs ) ): _snake_case , _snake_case : List[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Union[str, Any] = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(a_, a_ ) ) ) self.out_layers.append(nn.Linear(a_, r_idx - l_idx ) ) _snake_case : Optional[int] = keep_order def UpperCamelCase_ ( self: str, a_: Union[str, Any], a_: Dict, a_: int, a_: Tuple ): '''simple docstring''' if proj is None: _snake_case : List[Any] = nn.functional.linear(a_, a_, bias=a_ ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: _snake_case : List[Any] = nn.functional.linear(a_, proj.t().contiguous() ) _snake_case : Tuple = nn.functional.linear(a_, a_, bias=a_ ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def UpperCamelCase_ ( self: Dict, a_: Dict, a_: str=None, a_: Union[str, Any]=False ): '''simple docstring''' if labels is not None: # Shift so that tokens < n predict n _snake_case : int = hidden[..., :-1, :].contiguous() _snake_case : List[Any] = labels[..., 1:].contiguous() _snake_case : str = hidden.view(-1, hidden.size(-1 ) ) _snake_case : Dict = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError("""Input and labels should have the same size in the batch dimension.""" ) else: _snake_case : int = hidden.view(-1, hidden.size(-1 ) ) if self.n_clusters == 0: _snake_case : Tuple = self._compute_logit(a_, self.out_layers[0].weight, self.out_layers[0].bias, self.out_projs[0] ) if labels is not None: _snake_case : Dict = labels != -100 _snake_case : str = torch.zeros_like(a_, dtype=hidden.dtype, device=hidden.device ) _snake_case : str = ( -nn.functional.log_softmax(a_, dim=-1 )[mask].gather(1, labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: _snake_case : Optional[int] = nn.functional.log_softmax(a_, dim=-1 ) else: # construct weights and biases _snake_case , _snake_case : Optional[int] = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: _snake_case , _snake_case : Optional[int] = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : List[Any] = self.out_layers[0].weight[l_idx:r_idx] _snake_case : Tuple = self.out_layers[0].bias[l_idx:r_idx] else: _snake_case : Optional[int] = self.out_layers[i].weight _snake_case : int = self.out_layers[i].bias if i == 0: _snake_case : List[str] = torch.cat([weight_i, self.cluster_weight], dim=0 ) _snake_case : int = torch.cat([bias_i, self.cluster_bias], dim=0 ) weights.append(a_ ) biases.append(a_ ) _snake_case , _snake_case , _snake_case : Any = weights[0], biases[0], self.out_projs[0] _snake_case : List[str] = self._compute_logit(a_, a_, a_, a_ ) _snake_case : Union[str, Any] = nn.functional.log_softmax(a_, dim=1 ) if labels is None: _snake_case : Tuple = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: _snake_case : Dict = torch.zeros_like(a_, dtype=hidden.dtype, device=hidden.device ) _snake_case : Union[str, Any] = 0 _snake_case : Optional[Any] = [0] + self.cutoffs for i in range(len(a_ ) - 1 ): _snake_case , _snake_case : Dict = cutoff_values[i], cutoff_values[i + 1] if labels is not None: _snake_case : Dict = (labels >= l_idx) & (labels < r_idx) _snake_case : int = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue _snake_case : List[str] = labels.index_select(0, a_ ) - l_idx _snake_case : List[str] = head_logprob.index_select(0, a_ ) _snake_case : List[str] = hidden.index_select(0, a_ ) else: _snake_case : List[str] = hidden if i == 0: if labels is not None: _snake_case : Dict = head_logprob_i.gather(1, target_i[:, None] ).squeeze(1 ) else: _snake_case : Optional[Any] = head_logprob[:, : self.cutoffs[0]] else: _snake_case , _snake_case , _snake_case : Dict = weights[i], biases[i], self.out_projs[i] _snake_case : int = self._compute_logit(a_, a_, a_, a_ ) _snake_case : int = nn.functional.log_softmax(a_, dim=1 ) _snake_case : Dict = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: _snake_case : Dict = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1, target_i[:, None] ).squeeze(1 ) else: _snake_case : Optional[Any] = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i _snake_case : Any = logprob_i if labels is not None: if (hasattr(self, """keep_order""" ) and self.keep_order) or keep_order: out.index_copy_(0, a_, -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def UpperCamelCase_ ( self: Union[str, Any], a_: Optional[int] ): '''simple docstring''' if self.n_clusters == 0: _snake_case : Optional[int] = self._compute_logit(a_, self.out_layers[0].weight, self.out_layers[0].bias, self.out_projs[0] ) return nn.functional.log_softmax(a_, dim=-1 ) else: # construct weights and biases _snake_case , _snake_case : List[Any] = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: _snake_case , _snake_case : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Optional[int] = self.out_layers[0].weight[l_idx:r_idx] _snake_case : str = self.out_layers[0].bias[l_idx:r_idx] else: _snake_case : List[Any] = self.out_layers[i].weight _snake_case : Union[str, Any] = self.out_layers[i].bias if i == 0: _snake_case : int = torch.cat([weight_i, self.cluster_weight], dim=0 ) _snake_case : Dict = torch.cat([bias_i, self.cluster_bias], dim=0 ) weights.append(a_ ) biases.append(a_ ) _snake_case , _snake_case , _snake_case : int = weights[0], biases[0], self.out_projs[0] _snake_case : List[Any] = self._compute_logit(a_, a_, a_, a_ ) _snake_case : List[Any] = hidden.new_empty((head_logit.size(0 ), self.n_token) ) _snake_case : int = nn.functional.log_softmax(a_, dim=1 ) _snake_case : List[Any] = [0] + self.cutoffs for i in range(len(a_ ) - 1 ): _snake_case , _snake_case : List[str] = cutoff_values[i], cutoff_values[i + 1] if i == 0: _snake_case : List[str] = head_logprob[:, : self.cutoffs[0]] else: _snake_case , _snake_case , _snake_case : List[Any] = weights[i], biases[i], self.out_projs[i] _snake_case : Optional[int] = self._compute_logit(a_, a_, a_, a_ ) _snake_case : Any = nn.functional.log_softmax(a_, dim=1 ) _snake_case : Dict = head_logprob[:, -i] + tail_logprob_i _snake_case : Any = logprob_i return out
132
0
def A_ ( a = 1_0 , a = 1_0_0_0 , a = True ): """simple docstring""" assert ( isinstance(a , a ) and isinstance(a , a ) and isinstance(a , a ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError('Invalid value for min_val or max_val (min_value < max_value)' ) return min_val if option else max_val def A_ ( a , a ): """simple docstring""" return int((number_a + number_a) / 2 ) def A_ ( a , a , a ): """simple docstring""" assert ( isinstance(a , a ) and isinstance(a , a ) and isinstance(a , a ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError('argument value for lower and higher must be(lower > higher)' ) if not lower < to_guess < higher: raise ValueError( 'guess value must be within the range of lower and higher value' ) def answer(a ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print('started...' ) SCREAMING_SNAKE_CASE_ : str = lower SCREAMING_SNAKE_CASE_ : Dict = higher SCREAMING_SNAKE_CASE_ : Dict = [] while True: SCREAMING_SNAKE_CASE_ : int = get_avg(a , a ) last_numbers.append(a ) if answer(a ) == "low": SCREAMING_SNAKE_CASE_ : str = number elif answer(a ) == "high": SCREAMING_SNAKE_CASE_ : List[str] = number else: break print(f"guess the number : {last_numbers[-1]}" ) print(f"details : {last_numbers!s}" ) def A_ ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = int(input('Enter lower value : ' ).strip() ) SCREAMING_SNAKE_CASE_ : Optional[Any] = int(input('Enter high value : ' ).strip() ) SCREAMING_SNAKE_CASE_ : Optional[int] = int(input('Enter value to guess : ' ).strip() ) guess_the_number(a , a , a ) if __name__ == "__main__": main()
253
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList lowerCAmelCase : List[Any] = ['\nclass', '\ndef', '\n#', '\n@', '\nprint', '\nif'] class _A ( __magic_name__): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=1 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = tokenizer SCREAMING_SNAKE_CASE_ : List[str] = dataset SCREAMING_SNAKE_CASE_ : List[Any] = len(_SCREAMING_SNAKE_CASE ) if n_tasks is None else n_tasks SCREAMING_SNAKE_CASE_ : Optional[int] = n_copies def __iter__( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['prompt'].strip() ) SCREAMING_SNAKE_CASE_ : Tuple = self.tokenizer(_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , return_tensors='pt' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class _A ( __magic_name__): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = start_length SCREAMING_SNAKE_CASE_ : Any = eof_strings SCREAMING_SNAKE_CASE_ : Tuple = tokenizer def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(_SCREAMING_SNAKE_CASE ) def A_ ( a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = re.split('(%s)' % '|'.join(a ) , a ) # last string should be "" return "".join(string_list[:-2] ) def A_ ( a , a , a , a , a , a=2_0 , **a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = defaultdict(a ) # dict of list of generated tokens for step, batch in tqdm(enumerate(a ) ): with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Optional[Any] = batch['ids'].shape[-1] SCREAMING_SNAKE_CASE_ : str = accelerator.unwrap_model(a ).generate( input_ids=batch['ids'][:, : batch['input_len']] , num_return_sequences=a , **a ) # each task is generated batch_size times SCREAMING_SNAKE_CASE_ : Union[str, Any] = batch['task_id'].repeat(a ) SCREAMING_SNAKE_CASE_ : Optional[int] = accelerator.pad_across_processes( a , dim=1 , pad_index=tokenizer.pad_token_id ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = accelerator.gather((generated_tokens, generated_tasks) ) SCREAMING_SNAKE_CASE_ : int = generated_tokens.cpu().numpy() SCREAMING_SNAKE_CASE_ : List[Any] = generated_tasks.cpu().numpy() for task, generated_tokens in zip(a , a ): gen_token_dict[task].append(a ) SCREAMING_SNAKE_CASE_ : str = [[] for _ in range(a )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: SCREAMING_SNAKE_CASE_ : Dict = tokenizer.decode(a , skip_special_tokens=a , clean_up_tokenization_spaces=a ) code_gens[task].append(remove_last_block(a ) ) return code_gens def A_ ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = HfArgumentParser(a ) SCREAMING_SNAKE_CASE_ : Tuple = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric SCREAMING_SNAKE_CASE_ : Optional[int] = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing SCREAMING_SNAKE_CASE_ : List[str] = 'false' if args.num_workers is None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = multiprocessing.cpu_count() # Use dataset load to feed to accelerate SCREAMING_SNAKE_CASE_ : Dict = Accelerator() set_seed(args.seed , device_specific=a ) # Load model and tokenizer SCREAMING_SNAKE_CASE_ : str = AutoTokenizer.from_pretrained(args.model_ckpt ) SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer.eos_token SCREAMING_SNAKE_CASE_ : Any = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings SCREAMING_SNAKE_CASE_ : Any = { 'do_sample': args.do_sample, 'temperature': args.temperature, 'max_new_tokens': args.max_new_tokens, 'top_p': args.top_p, 'top_k': args.top_k, 'stopping_criteria': StoppingCriteriaList([EndOfFunctionCriteria(0 , a , a )] ), } # Load evaluation dataset and metric SCREAMING_SNAKE_CASE_ : List[str] = load_dataset('openai_humaneval' ) SCREAMING_SNAKE_CASE_ : str = load_metric('code_eval' ) SCREAMING_SNAKE_CASE_ : Tuple = args.num_tasks if args.num_tasks is not None else len(human_eval['test'] ) SCREAMING_SNAKE_CASE_ : Any = args.n_samples // args.batch_size SCREAMING_SNAKE_CASE_ : int = TokenizedDataset(a , human_eval['test'] , n_copies=a , n_tasks=a ) # do not confuse args.batch_size, which is actually the num_return_sequences SCREAMING_SNAKE_CASE_ : Tuple = DataLoader(a , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: SCREAMING_SNAKE_CASE_ : Union[str, Any] = code_eval_metric.compute(references=[''] , predictions=[['']] ) except ValueError as exception: print( 'Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`' ' flag to enable code evaluation.' ) raise exception SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = accelerator.prepare(a , a ) SCREAMING_SNAKE_CASE_ : List[str] = complete_code( a , a , a , a , n_tasks=a , batch_size=args.batch_size , **a , ) if accelerator.is_main_process: SCREAMING_SNAKE_CASE_ : str = [] for task in tqdm(range(a ) ): SCREAMING_SNAKE_CASE_ : str = human_eval['test'][task]['test'] SCREAMING_SNAKE_CASE_ : int = f"check({human_eval['test'][task]['entry_point']})" references.append('\n' + test_func + '\n' + entry_point ) # Evaluate completions with "code_eval" metric SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = code_eval_metric.compute( references=a , predictions=a , num_workers=args.num_workers ) print(f"Results: {pass_at_k}" ) # Save results to json file with open(args.output_file , 'w' ) as fp: json.dump(a , a ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
253
1
import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def UpperCamelCase ( __lowercase : Union[str, Any] ): '''simple docstring''' return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def UpperCamelCase ( __lowercase : Optional[int] ,__lowercase : Tuple ): '''simple docstring''' A_ : Union[str, Any] = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue A_ : Optional[int] = key.replace('heads.cmd.mim_head.cls.predictions' ,'mmm_image_head' ) A_ : Dict = key.replace('heads.cmd.mlm_head.cls.predictions' ,'mmm_text_head' ) A_ : Union[str, Any] = key.replace('heads.cmd.itm_head.cls' ,'itm_head' ) A_ : str = key.replace('heads.cmd.itm_head.pooler' ,'itm_head.pooler' ) A_ : Union[str, Any] = key.replace('heads.cmd.clip_head.logit_scale' ,'flava.logit_scale' ) A_ : int = key.replace('heads.fairseq_mlm.cls.predictions' ,'mlm_head' ) A_ : Any = key.replace('heads.imagenet.mim_head.cls.predictions' ,'mim_head' ) A_ : str = key.replace('mm_text_projection' ,'flava.text_to_mm_projection' ) A_ : Optional[int] = key.replace('mm_image_projection' ,'flava.image_to_mm_projection' ) A_ : List[Any] = key.replace('image_encoder.module' ,'flava.image_model' ) A_ : int = key.replace('text_encoder.module' ,'flava.text_model' ) A_ : str = key.replace('mm_encoder.module.encoder.cls_token' ,'flava.multimodal_model.cls_token' ) A_ : Any = key.replace('mm_encoder.module' ,'flava.multimodal_model' ) A_ : List[str] = key.replace('text_projection' ,'flava.text_projection' ) A_ : Optional[Any] = key.replace('image_projection' ,'flava.image_projection' ) A_ : Optional[int] = value.float() for key, value in codebook_state_dict.items(): A_ : Any = value return upgrade @torch.no_grad() def UpperCamelCase ( __lowercase : int ,__lowercase : Dict ,__lowercase : int ,__lowercase : Dict=None ): '''simple docstring''' if config_path is not None: A_ : Optional[Any] = FlavaConfig.from_pretrained(__lowercase ) else: A_ : Tuple = FlavaConfig() A_ : Tuple = FlavaForPreTraining(__lowercase ).eval() A_ : Union[str, Any] = convert_dalle_checkpoint(__lowercase ,__lowercase ,save_checkpoint=__lowercase ) if os.path.exists(__lowercase ): A_ : str = torch.load(__lowercase ,map_location='cpu' ) else: A_ : List[str] = torch.hub.load_state_dict_from_url(__lowercase ,map_location='cpu' ) A_ : Optional[int] = upgrade_state_dict(__lowercase ,__lowercase ) hf_model.load_state_dict(__lowercase ) A_ : Dict = hf_model.state_dict() A_ : Dict = count_parameters(__lowercase ) A_ : Tuple = count_parameters(__lowercase ) + count_parameters(__lowercase ) assert torch.allclose(__lowercase ,__lowercase ,atol=1e-3 ) hf_model.save_pretrained(__lowercase ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""") parser.add_argument("""--codebook_path""", default=None, type=str, help="""Path to flava codebook checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") _UpperCAmelCase = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
192
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _UpperCAmelCase = { """configuration_bridgetower""": [ """BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BridgeTowerConfig""", """BridgeTowerTextConfig""", """BridgeTowerVisionConfig""", ], """processing_bridgetower""": ["""BridgeTowerProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ["""BridgeTowerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST""", """BridgeTowerForContrastiveLearning""", """BridgeTowerForImageAndTextRetrieval""", """BridgeTowerForMaskedLM""", """BridgeTowerModel""", """BridgeTowerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
192
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) UpperCAmelCase_ : Optional[int] = {"""configuration_vit""": ["""VIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTConfig""", """ViTOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Union[str, Any] = ["""ViTFeatureExtractor"""] UpperCAmelCase_ : Optional[Any] = ["""ViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Union[str, Any] = [ """VIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTForImageClassification""", """ViTForMaskedImageModeling""", """ViTModel""", """ViTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : int = [ """TFViTForImageClassification""", """TFViTModel""", """TFViTPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Dict = [ """FlaxViTForImageClassification""", """FlaxViTModel""", """FlaxViTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys UpperCAmelCase_ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
91
"""simple docstring""" from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : List[str] = """""" a_ : Dict = """hf-legacy""" # "hf://"" is reserved for hffs def __init__( self , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ) ->Optional[int]: super().__init__(self , **__UpperCAmelCase) a_ = repo_info a_ = token a_ = None def UpperCAmelCase__ ( self) ->Tuple: if self.dir_cache is None: a_ = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes a_ = { "name": hf_file.rfilename, "size": None, "type": "file", } self.dir_cache.update( { str(__UpperCAmelCase): {"name": str(__UpperCAmelCase), "size": None, "type": "directory"} for d in list(PurePosixPath(hf_file.rfilename).parents)[:-1] }) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = "rb" , **__UpperCAmelCase , ) ->List[Any]: if not isinstance(self.repo_info , __UpperCAmelCase): raise NotImplementedError(F'''Open is only implemented for dataset repositories, but got {self.repo_info}''') a_ = hf_hub_url(self.repo_info.id , __UpperCAmelCase , revision=self.repo_info.sha) return fsspec.open( __UpperCAmelCase , mode=__UpperCAmelCase , headers=get_authentication_headers_for_url(__UpperCAmelCase , use_auth_token=self.token) , client_kwargs={"trust_env": True} , ).open() def UpperCAmelCase__ ( self , __UpperCAmelCase , **__UpperCAmelCase) ->int: self._get_dirs() a_ = self._strip_protocol(__UpperCAmelCase) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(__UpperCAmelCase) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase=False , **__UpperCAmelCase) ->List[Any]: self._get_dirs() a_ = PurePosixPath(path.strip("/")) a_ = {} for p, f in self.dir_cache.items(): a_ = PurePosixPath(p.strip("/")) a_ = p.parent if root == path: a_ = f a_ = list(paths.values()) if detail: return out else: return sorted(f["name"] for f in out)
243
0
"""simple docstring""" import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels a : List[str] = object() # For specifying empty leaf dict `{}` a : Optional[Any] = object() def lowercase__(A , A ) ->Union[str, Any]: """simple docstring""" lowercase__ : str= tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(A ) - len(A ) + 1 ): lowercase__ : List[str]= [x.match(A ) for x, y in zip(A , ks[i:] )] if matches and all(A ): return True return False def lowercase__(A ) ->Tuple: """simple docstring""" def replace(A , A ): for rule, replacement in rules: if _match(A , A ): return replacement return val return replace def lowercase__() ->Union[str, Any]: """simple docstring""" return [ # embeddings (("transformer", "wpe", "embedding"), P("mp" , A )), (("transformer", "wte", "embedding"), P("mp" , A )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(A , "mp" )), (("attention", "out_proj", "kernel"), P("mp" , A )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(A , "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp" , A )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def lowercase__(A ) ->str: """simple docstring""" lowercase__ : List[Any]= _get_partition_rules() lowercase__ : int= _replacement_rules(A ) lowercase__ : List[str]= {k: _unmatched for k in flatten_dict(A )} lowercase__ : Optional[Any]= {k: replace(A , A ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(A ) )
360
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 a : List[str] = { """return_dict""": False, """output_hidden_states""": True, """output_attentions""": True, """torchscript""": True, """torch_dtype""": """float16""", """use_bfloat16""": True, """tf_legacy_loss""": True, """pruned_heads""": {"""a""": 1}, """tie_word_embeddings""": False, """is_decoder""": True, """cross_attention_hidden_size""": 128, """add_cross_attention""": True, """tie_encoder_decoder""": True, """max_length""": 50, """min_length""": 3, """do_sample""": True, """early_stopping""": True, """num_beams""": 3, """num_beam_groups""": 3, """diversity_penalty""": 0.5, """temperature""": 2.0, """top_k""": 10, """top_p""": 0.7, """typical_p""": 0.2, """repetition_penalty""": 0.8, """length_penalty""": 0.8, """no_repeat_ngram_size""": 5, """encoder_no_repeat_ngram_size""": 5, """bad_words_ids""": [1, 2, 3], """num_return_sequences""": 3, """chunk_size_feed_forward""": 5, """output_scores""": True, """return_dict_in_generate""": True, """forced_bos_token_id""": 2, """forced_eos_token_id""": 3, """remove_invalid_values""": True, """architectures""": ["""BertModel"""], """finetuning_task""": """translation""", """id2label""": {0: """label"""}, """label2id""": {"""label""": """0"""}, """tokenizer_class""": """BertTokenizerFast""", """prefix""": """prefix""", """bos_token_id""": 6, """pad_token_id""": 7, """eos_token_id""": 8, """sep_token_id""": 9, """decoder_start_token_id""": 10, """exponential_decay_length_penalty""": (5, 1.01), """suppress_tokens""": [0, 1], """begin_suppress_tokens""": 2, """task_specific_params""": {"""translation""": """some_params"""}, """problem_type""": """regression""", } @is_staging_test class __UpperCAmelCase( unittest.TestCase ): """simple docstring""" @classmethod def UpperCAmelCase_ ( cls ): '''simple docstring''' lowercase__ : Union[str, Any]= TOKEN HfFolder.save_token(snake_case__ ) @classmethod def UpperCAmelCase_ ( cls ): '''simple docstring''' try: delete_repo(token=cls._token , repo_id="test-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-config-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-config" ) except HTTPError: pass def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Union[str, Any]= BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("test-config" , use_auth_token=self._token ) lowercase__ : List[Any]= BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(snake_case__ , repo_id="test-config" , push_to_hub=snake_case__ , use_auth_token=self._token ) lowercase__ : int= BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Optional[int]= BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token ) lowercase__ : Optional[Any]= BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( snake_case__ , repo_id="valid_org/test-config-org" , push_to_hub=snake_case__ , use_auth_token=self._token ) lowercase__ : Any= BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(snake_case__ , getattr(snake_case__ , snake_case__ ) ) def UpperCAmelCase_ ( self ): '''simple docstring''' CustomConfig.register_for_auto_class() lowercase__ : Union[str, Any]= CustomConfig(attribute=42 ) config.push_to_hub("test-dynamic-config" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"} ) lowercase__ : List[str]= AutoConfig.from_pretrained(F'''{USER}/test-dynamic-config''' , trust_remote_code=snake_case__ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , "CustomConfig" ) self.assertEqual(new_config.attribute , 42 ) class __UpperCAmelCase( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Dict= GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowercase__ : str= c.n_embd + 1 # int lowercase__ : Tuple= c.resid_pdrop + 1.0 # float lowercase__ : Union[str, Any]= not c.scale_attn_weights # bool lowercase__ : Optional[Any]= c.summary_type + "foo" # str c.update_from_string( F'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(snake_case__ , c.n_embd , "mismatch for key: n_embd" ) self.assertEqual(snake_case__ , c.resid_pdrop , "mismatch for key: resid_pdrop" ) self.assertEqual(snake_case__ , c.scale_attn_weights , "mismatch for key: scale_attn_weights" ) self.assertEqual(snake_case__ , c.summary_type , "mismatch for key: summary_type" ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Optional[Any]= PretrainedConfig() lowercase__ : List[str]= [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( snake_case__ , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"] ) lowercase__ : Tuple= [key for key, value in config_common_kwargs.items() if value == getattr(snake_case__ , snake_case__ )] if len(snake_case__ ) > 0: raise ValueError( "The following keys are set with the default values in" " `test_configuration_common.config_common_kwargs` pick another value for them:" F''' {', '.join(snake_case__ )}.''' ) def UpperCAmelCase_ ( self ): '''simple docstring''' with self.assertRaises(snake_case__ ): # config is in subfolder, the following should not work without specifying the subfolder lowercase__ : Optional[int]= BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" ) lowercase__ : Optional[Any]= BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert" ) self.assertIsNotNone(snake_case__ ) def UpperCAmelCase_ ( self ): '''simple docstring''' # A mock response for an HTTP head request to emulate server down lowercase__ : str= mock.Mock() lowercase__ : Optional[Any]= 500 lowercase__ : Any= {} lowercase__ : Tuple= HTTPError lowercase__ : List[Any]= {} # Download this model to make sure it's in the cache. lowercase__ : Any= BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=snake_case__ ) as mock_head: lowercase__ : Any= BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() def UpperCAmelCase_ ( self ): '''simple docstring''' # This test is for deprecated behavior and can be removed in v5 lowercase__ : Optional[Any]= BertConfig.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json" ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : int= AutoConfig.from_pretrained("bert-base-cased" ) lowercase__ : Optional[int]= ["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(snake_case__ ) lowercase__ : List[Any]= 2 json.dump(configuration.to_dict() , open(os.path.join(snake_case__ , "config.4.0.0.json" ) , "w" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowercase__ : int= AutoConfig.from_pretrained(snake_case__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowercase__ : Optional[int]= ["config.42.0.0.json"] lowercase__ : int= 768 configuration.save_pretrained(snake_case__ ) shutil.move(os.path.join(snake_case__ , "config.4.0.0.json" ) , os.path.join(snake_case__ , "config.42.0.0.json" ) ) lowercase__ : Optional[Any]= AutoConfig.from_pretrained(snake_case__ ) self.assertEqual(new_configuration.hidden_size , 768 ) def UpperCAmelCase_ ( self ): '''simple docstring''' # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. lowercase__ : Optional[Any]= "hf-internal-testing/test-two-configs" import transformers as new_transformers lowercase__ : Optional[Any]= "v4.0.0" lowercase__, lowercase__ : str= new_transformers.models.auto.AutoConfig.from_pretrained( snake_case__ , return_unused_kwargs=snake_case__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(snake_case__ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowercase__ : Dict= "v3.0.0" lowercase__ : Tuple= old_transformers.models.auto.AutoConfig.from_pretrained(snake_case__ ) self.assertEqual(old_configuration.hidden_size , 768 )
150
0
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def UpperCamelCase( ): lowerCAmelCase_ : Tuple = '''https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png''' lowerCAmelCase_ : Optional[Any] = Image.open(requests.get(__UpperCamelCase ,stream=__UpperCamelCase ).raw ).convert('''RGB''' ) return image def UpperCamelCase( __UpperCamelCase : str ): lowerCAmelCase_ : str = [] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') ) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') ) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') ) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f"""visual_encoder.blocks.{i}.norm1.weight""", f"""vision_model.encoder.layers.{i}.layer_norm1.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm1.bias""", f"""vision_model.encoder.layers.{i}.layer_norm1.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm2.weight""", f"""vision_model.encoder.layers.{i}.layer_norm2.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm2.bias""", f"""vision_model.encoder.layers.{i}.layer_norm2.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.qkv.weight""", f"""vision_model.encoder.layers.{i}.self_attn.qkv.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.proj.weight""", f"""vision_model.encoder.layers.{i}.self_attn.projection.weight""",) ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.proj.bias""", f"""vision_model.encoder.layers.{i}.self_attn.projection.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc1.weight""", f"""vision_model.encoder.layers.{i}.mlp.fc1.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc1.bias""", f"""vision_model.encoder.layers.{i}.mlp.fc1.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc2.weight""", f"""vision_model.encoder.layers.{i}.mlp.fc2.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc2.bias""", f"""vision_model.encoder.layers.{i}.mlp.fc2.bias""") ) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.layernorm.weight''') ) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.layernorm.bias''') ) # fmt: on return rename_keys def UpperCamelCase( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Dict ,__UpperCamelCase : List[str] ): lowerCAmelCase_ : int = dct.pop(__UpperCamelCase ) lowerCAmelCase_ : Dict = val def UpperCamelCase( __UpperCamelCase : List[Any] ,__UpperCamelCase : Optional[Any] ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases lowerCAmelCase_ : str = state_dict.pop(f"""visual_encoder.blocks.{i}.attn.q_bias""" ) lowerCAmelCase_ : int = state_dict.pop(f"""visual_encoder.blocks.{i}.attn.v_bias""" ) # next, set bias in the state dict lowerCAmelCase_ : Dict = torch.cat((q_bias, torch.zeros_like(__UpperCamelCase ,requires_grad=__UpperCamelCase ), v_bias) ) lowerCAmelCase_ : Tuple = qkv_bias def UpperCamelCase( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : List[str] ): lowerCAmelCase_ : Dict = 364 if '''coco''' in model_name else 224 lowerCAmelCase_ : Any = BlipaVisionConfig(image_size=__UpperCamelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: lowerCAmelCase_ : Union[str, Any] = OPTConfig.from_pretrained('''facebook/opt-2.7b''' ,eos_token_id=__UpperCamelCase ).to_dict() elif "opt-6.7b" in model_name: lowerCAmelCase_ : Dict = OPTConfig.from_pretrained('''facebook/opt-6.7b''' ,eos_token_id=__UpperCamelCase ).to_dict() elif "t5-xl" in model_name: lowerCAmelCase_ : int = TaConfig.from_pretrained('''google/flan-t5-xl''' ,dense_act_fn='''gelu''' ,bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: lowerCAmelCase_ : List[Any] = TaConfig.from_pretrained('''google/flan-t5-xxl''' ,dense_act_fn='''gelu''' ,bos_token_id=1 ).to_dict() lowerCAmelCase_ : Optional[Any] = BlipaConfig(vision_config=__UpperCamelCase ,text_config=__UpperCamelCase ) return config, image_size @torch.no_grad() def UpperCamelCase( __UpperCamelCase : List[Any] ,__UpperCamelCase : Optional[Any]=None ,__UpperCamelCase : Any=False ): lowerCAmelCase_ : Any = ( AutoTokenizer.from_pretrained('''facebook/opt-2.7b''' ) if '''opt''' in model_name else AutoTokenizer.from_pretrained('''google/flan-t5-xl''' ) ) lowerCAmelCase_ : Optional[int] = tokenizer('''\n''' ,add_special_tokens=__UpperCamelCase ).input_ids[0] lowerCAmelCase_ , lowerCAmelCase_ : List[str] = get_blipa_config(__UpperCamelCase ,eos_token_id=__UpperCamelCase ) lowerCAmelCase_ : Union[str, Any] = BlipaForConditionalGeneration(__UpperCamelCase ).eval() lowerCAmelCase_ : Tuple = { '''blip2-opt-2.7b''': ('''blip2_opt''', '''pretrain_opt2.7b'''), '''blip2-opt-6.7b''': ('''blip2_opt''', '''pretrain_opt6.7b'''), '''blip2-opt-2.7b-coco''': ('''blip2_opt''', '''caption_coco_opt2.7b'''), '''blip2-opt-6.7b-coco''': ('''blip2_opt''', '''caption_coco_opt6.7b'''), '''blip2-flan-t5-xl''': ('''blip2_t5''', '''pretrain_flant5xl'''), '''blip2-flan-t5-xl-coco''': ('''blip2_t5''', '''caption_coco_flant5xl'''), '''blip2-flan-t5-xxl''': ('''blip2_t5''', '''pretrain_flant5xxl'''), } lowerCAmelCase_ , lowerCAmelCase_ : Any = model_name_to_original[model_name] # load original model print('''Loading original model...''' ) lowerCAmelCase_ : Optional[int] = '''cuda''' if torch.cuda.is_available() else '''cpu''' lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = load_model_and_preprocess( name=__UpperCamelCase ,model_type=__UpperCamelCase ,is_eval=__UpperCamelCase ,device=__UpperCamelCase ) original_model.eval() print('''Done!''' ) # update state dict keys lowerCAmelCase_ : Tuple = original_model.state_dict() lowerCAmelCase_ : int = create_rename_keys(__UpperCamelCase ) for src, dest in rename_keys: rename_key(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): lowerCAmelCase_ : Optional[Any] = state_dict.pop(__UpperCamelCase ) if key.startswith('''Qformer.bert''' ): lowerCAmelCase_ : List[str] = key.replace('''Qformer.bert''' ,'''qformer''' ) if "attention.self" in key: lowerCAmelCase_ : Union[str, Any] = key.replace('''self''' ,'''attention''' ) if "opt_proj" in key: lowerCAmelCase_ : Any = key.replace('''opt_proj''' ,'''language_projection''' ) if "t5_proj" in key: lowerCAmelCase_ : List[Any] = key.replace('''t5_proj''' ,'''language_projection''' ) if key.startswith('''opt''' ): lowerCAmelCase_ : Union[str, Any] = key.replace('''opt''' ,'''language''' ) if key.startswith('''t5''' ): lowerCAmelCase_ : Optional[int] = key.replace('''t5''' ,'''language''' ) lowerCAmelCase_ : List[str] = val # read in qv biases read_in_q_v_bias(__UpperCamelCase ,__UpperCamelCase ) lowerCAmelCase_ , lowerCAmelCase_ : Dict = hf_model.load_state_dict(__UpperCamelCase ,strict=__UpperCamelCase ) assert len(__UpperCamelCase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] lowerCAmelCase_ : List[str] = load_demo_image() lowerCAmelCase_ : Any = vis_processors['''eval'''](__UpperCamelCase ).unsqueeze(0 ).to(__UpperCamelCase ) lowerCAmelCase_ : Union[str, Any] = tokenizer(['''\n'''] ,return_tensors='''pt''' ).input_ids.to(__UpperCamelCase ) # create processor lowerCAmelCase_ : Optional[int] = BlipImageProcessor( size={'''height''': image_size, '''width''': image_size} ,image_mean=__UpperCamelCase ,image_std=__UpperCamelCase ) lowerCAmelCase_ : Optional[Any] = BlipaProcessor(image_processor=__UpperCamelCase ,tokenizer=__UpperCamelCase ) lowerCAmelCase_ : int = processor(images=__UpperCamelCase ,return_tensors='''pt''' ).pixel_values.to(__UpperCamelCase ) # make sure processor creates exact same pixel values assert torch.allclose(__UpperCamelCase ,__UpperCamelCase ) original_model.to(__UpperCamelCase ) hf_model.to(__UpperCamelCase ) with torch.no_grad(): if "opt" in model_name: lowerCAmelCase_ : List[str] = original_model({'''image''': original_pixel_values, '''text_input''': ['''''']} ).logits lowerCAmelCase_ : str = hf_model(__UpperCamelCase ,__UpperCamelCase ).logits else: lowerCAmelCase_ : str = original_model( {'''image''': original_pixel_values, '''text_input''': ['''\n'''], '''text_output''': ['''\n''']} ).logits lowerCAmelCase_ : Union[str, Any] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id ,-100 ) lowerCAmelCase_ : Tuple = hf_model(__UpperCamelCase ,__UpperCamelCase ,labels=__UpperCamelCase ).logits assert original_logits.shape == logits.shape print('''First values of original logits:''' ,original_logits[0, :3, :3] ) print('''First values of HF logits:''' ,logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": lowerCAmelCase_ : Union[str, Any] = torch.tensor( [[-4_1.5_8_5_0, -4.4_4_4_0, -8.9_9_2_2], [-4_7.4_3_2_2, -5.9_1_4_3, -1.7_3_4_0]] ,device=__UpperCamelCase ) assert torch.allclose(logits[0, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": lowerCAmelCase_ : List[str] = torch.tensor( [[-5_7.0_1_0_9, -9.8_9_6_7, -1_2.6_2_8_0], [-6_8.6_5_7_8, -1_2.7_1_9_1, -1_0.5_0_6_5]] ,device=__UpperCamelCase ) else: # cast to same type lowerCAmelCase_ : Dict = logits.dtype assert torch.allclose(original_logits.to(__UpperCamelCase ) ,__UpperCamelCase ,atol=1e-2 ) print('''Looks ok!''' ) print('''Generating a caption...''' ) lowerCAmelCase_ : Union[str, Any] = '''''' lowerCAmelCase_ : List[str] = tokenizer(__UpperCamelCase ,return_tensors='''pt''' ).input_ids.to(__UpperCamelCase ) lowerCAmelCase_ : Any = original_model.generate({'''image''': original_pixel_values} ) lowerCAmelCase_ : Dict = hf_model.generate( __UpperCamelCase ,__UpperCamelCase ,do_sample=__UpperCamelCase ,num_beams=5 ,max_length=30 ,min_length=1 ,top_p=0.9 ,repetition_penalty=1.0 ,length_penalty=1.0 ,temperature=1 ,) print('''Original generation:''' ,__UpperCamelCase ) lowerCAmelCase_ : str = input_ids.shape[1] lowerCAmelCase_ : Optional[int] = processor.batch_decode(outputs[:, prompt_length:] ,skip_special_tokens=__UpperCamelCase ) lowerCAmelCase_ : Optional[int] = [text.strip() for text in output_text] print('''HF generation:''' ,__UpperCamelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(__UpperCamelCase ) hf_model.save_pretrained(__UpperCamelCase ) if push_to_hub: processor.push_to_hub(f"""nielsr/{model_name}""" ) hf_model.push_to_hub(f"""nielsr/{model_name}""" ) if __name__ == "__main__": A__ : int = argparse.ArgumentParser() A__ : Tuple = [ '''blip2-opt-2.7b''', '''blip2-opt-6.7b''', '''blip2-opt-2.7b-coco''', '''blip2-opt-6.7b-coco''', '''blip2-flan-t5-xl''', '''blip2-flan-t5-xl-coco''', '''blip2-flan-t5-xxl''', ] parser.add_argument( '''--model_name''', default='''blip2-opt-2.7b''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) A__ : Optional[int] = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
103
"""simple docstring""" import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py __a = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. __a = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. __a = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") __a = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. __a = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Fill this with tuples (pipeline_tag, model_mapping, auto_model) __a = [ ("pretraining", "MODEL_FOR_PRETRAINING_MAPPING_NAMES", "AutoModelForPreTraining"), ("feature-extraction", "MODEL_MAPPING_NAMES", "AutoModel"), ("audio-classification", "MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioClassification"), ("text-generation", "MODEL_FOR_CAUSAL_LM_MAPPING_NAMES", "AutoModelForCausalLM"), ("automatic-speech-recognition", "MODEL_FOR_CTC_MAPPING_NAMES", "AutoModelForCTC"), ("image-classification", "MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForImageClassification"), ("image-segmentation", "MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES", "AutoModelForImageSegmentation"), ("fill-mask", "MODEL_FOR_MASKED_LM_MAPPING_NAMES", "AutoModelForMaskedLM"), ("object-detection", "MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForObjectDetection"), ( "zero-shot-object-detection", "MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForZeroShotObjectDetection", ), ("question-answering", "MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForQuestionAnswering"), ("text2text-generation", "MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES", "AutoModelForSeq2SeqLM"), ("text-classification", "MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForSequenceClassification"), ("automatic-speech-recognition", "MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES", "AutoModelForSpeechSeq2Seq"), ( "table-question-answering", "MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForTableQuestionAnswering", ), ("token-classification", "MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES", "AutoModelForTokenClassification"), ("multiple-choice", "MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES", "AutoModelForMultipleChoice"), ( "next-sentence-prediction", "MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES", "AutoModelForNextSentencePrediction", ), ( "audio-frame-classification", "MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioFrameClassification", ), ("audio-xvector", "MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES", "AutoModelForAudioXVector"), ( "document-question-answering", "MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForDocumentQuestionAnswering", ), ( "visual-question-answering", "MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForVisualQuestionAnswering", ), ("image-to-text", "MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES", "AutoModelForVision2Seq"), ( "zero-shot-image-classification", "MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForZeroShotImageClassification", ), ("depth-estimation", "MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES", "AutoModelForDepthEstimation"), ("video-classification", "MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForVideoClassification"), ("mask-generation", "MODEL_FOR_MASK_GENERATION_MAPPING_NAMES", "AutoModelForMaskGeneration"), ] def A_ ( _lowercase ): '''simple docstring''' snake_case_ :Any = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""", _lowercase ) return [m.group(0 ) for m in matches] def A_ ( ): '''simple docstring''' snake_case_ :int = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES snake_case_ :Dict = { config.replace("""Config""", """""" ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. snake_case_ :Optional[Any] = collections.defaultdict(_lowercase ) snake_case_ :int = collections.defaultdict(_lowercase ) snake_case_ :List[str] = collections.defaultdict(_lowercase ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(_lowercase ): snake_case_ :int = None if _re_tf_models.match(_lowercase ) is not None: snake_case_ :int = tf_models snake_case_ :List[str] = _re_tf_models.match(_lowercase ).groups()[0] elif _re_flax_models.match(_lowercase ) is not None: snake_case_ :List[Any] = flax_models snake_case_ :Any = _re_flax_models.match(_lowercase ).groups()[0] elif _re_pt_models.match(_lowercase ) is not None: snake_case_ :Optional[Any] = pt_models snake_case_ :int = _re_pt_models.match(_lowercase ).groups()[0] if lookup_dict is not None: while len(_lowercase ) > 0: if attr_name in model_prefix_to_model_type: snake_case_ :Optional[int] = True break # Try again after removing the last word in the name snake_case_ :Optional[Any] = """""".join(camel_case_split(_lowercase )[:-1] ) snake_case_ :Optional[int] = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) snake_case_ :Optional[Any] = list(_lowercase ) all_models.sort() snake_case_ :Optional[int] = {"""model_type""": all_models} snake_case_ :Optional[int] = [pt_models[t] for t in all_models] snake_case_ :Any = [tf_models[t] for t in all_models] snake_case_ :Dict = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure snake_case_ :Dict = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: snake_case_ :Optional[Any] = """AutoProcessor""" elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: snake_case_ :Tuple = """AutoTokenizer""" elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: snake_case_ :Tuple = """AutoFeatureExtractor""" else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. snake_case_ :str = """AutoTokenizer""" snake_case_ :int = [processors[t] for t in all_models] return pd.DataFrame(_lowercase ) def A_ ( _lowercase ): '''simple docstring''' snake_case_ :List[Any] = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: snake_case_ :Optional[int] = [model_mapping, f"""TF_{model_mapping}""", f"""FLAX_{model_mapping}"""] snake_case_ :List[str] = [auto_class, f"""TF_{auto_class}""", f"""Flax_{auto_class}"""] # Loop through all three frameworks for module, cls, mapping in zip(_lowercase, _lowercase, _lowercase ): # The type of pipeline may not exist in this framework if not hasattr(_lowercase, _lowercase ): continue # First extract all model_names snake_case_ :Tuple = [] for name in getattr(_lowercase, _lowercase ).values(): if isinstance(_lowercase, _lowercase ): model_names.append(_lowercase ) else: model_names.extend(list(_lowercase ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def A_ ( _lowercase, _lowercase ): '''simple docstring''' snake_case_ :List[Any] = get_frameworks_table() snake_case_ :str = Dataset.from_pandas(_lowercase ) snake_case_ :List[Any] = hf_hub_download( """huggingface/transformers-metadata""", """pipeline_tags.json""", repo_type="""dataset""", token=_lowercase ) snake_case_ :List[str] = Dataset.from_json(_lowercase ) snake_case_ :int = { tags_dataset[i]["""model_class"""]: (tags_dataset[i]["""pipeline_tag"""], tags_dataset[i]["""auto_class"""]) for i in range(len(_lowercase ) ) } snake_case_ :Optional[int] = update_pipeline_and_auto_class_table(_lowercase ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. snake_case_ :Tuple = sorted(table.keys() ) snake_case_ :Tuple = pd.DataFrame( { """model_class""": model_classes, """pipeline_tag""": [table[m][0] for m in model_classes], """auto_class""": [table[m][1] for m in model_classes], } ) snake_case_ :Union[str, Any] = Dataset.from_pandas(_lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(_lowercase, """frameworks.json""" ) ) tags_dataset.to_json(os.path.join(_lowercase, """pipeline_tags.json""" ) ) if commit_sha is not None: snake_case_ :Union[str, Any] = ( f"""Update with commit {commit_sha}\n\nSee: """ f"""https://github.com/huggingface/transformers/commit/{commit_sha}""" ) else: snake_case_ :List[Any] = """Update""" upload_folder( repo_id="""huggingface/transformers-metadata""", folder_path=_lowercase, repo_type="""dataset""", token=_lowercase, commit_message=_lowercase, ) def A_ ( ): '''simple docstring''' snake_case_ :List[Any] = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} snake_case_ :Dict = transformers_module.pipelines.SUPPORTED_TASKS snake_case_ :List[str] = [] for key in pipeline_tasks: if key not in in_table: snake_case_ :int = pipeline_tasks[key]["""pt"""] if isinstance(_lowercase, (list, tuple) ): snake_case_ :Any = model[0] snake_case_ :str = model.__name__ if model not in in_table.values(): missing.append(_lowercase ) if len(_lowercase ) > 0: snake_case_ :Optional[int] = """, """.join(_lowercase ) raise ValueError( """The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside """ f"""`utils/update_metadata.py`: {msg}. Please add them!""" ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument("--token", type=str, help="The token to use to push to the transformers-metadata dataset.") parser.add_argument("--commit_sha", type=str, help="The sha of the commit going with this update.") parser.add_argument("--check-only", action="store_true", help="Activate to just check all pipelines are present.") __a = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
66
0
from collections.abc import Generator from math import sin def __lowerCamelCase ( lowerCAmelCase__ ): if len(UpperCamelCase__ ) != 3_2: raise ValueError('Input must be of length 32' ) lowerCAmelCase__ = b'' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def __lowerCamelCase ( lowerCAmelCase__ ): if i < 0: raise ValueError('Input must be non-negative' ) lowerCAmelCase__ = format(UpperCamelCase__ , '08x' )[-8:] lowerCAmelCase__ = b'' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' ) return little_endian_hex def __lowerCamelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = b'' for char in message: bit_string += format(UpperCamelCase__ , '08b' ).encode('utf-8' ) lowerCAmelCase__ = format(len(UpperCamelCase__ ) , '064b' ).encode('utf-8' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(UpperCamelCase__ ) % 5_1_2 != 4_4_8: bit_string += b"0" bit_string += to_little_endian(start_len[3_2:] ) + to_little_endian(start_len[:3_2] ) return bit_string def __lowerCamelCase ( lowerCAmelCase__ ): if len(UpperCamelCase__ ) % 5_1_2 != 0: raise ValueError('Input must have length that\'s a multiple of 512' ) for pos in range(0 , len(UpperCamelCase__ ) , 5_1_2 ): lowerCAmelCase__ = bit_string[pos : pos + 5_1_2] lowerCAmelCase__ = [] for i in range(0 , 5_1_2 , 3_2 ): block_words.append(int(to_little_endian(block[i : i + 3_2] ) , 2 ) ) yield block_words def __lowerCamelCase ( lowerCAmelCase__ ): if i < 0: raise ValueError('Input must be non-negative' ) lowerCAmelCase__ = format(UpperCamelCase__ , '032b' ) lowerCAmelCase__ = '' for c in i_str: new_str += "1" if c == "0" else "0" return int(UpperCamelCase__ , 2 ) def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): return (a + b) % 2**3_2 def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): if i < 0: raise ValueError('Input must be non-negative' ) if shift < 0: raise ValueError('Shift must be non-negative' ) return ((i << shift) ^ (i >> (3_2 - shift))) % 2**3_2 def __lowerCamelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = preprocess(UpperCamelCase__ ) lowerCAmelCase__ = [int(2**3_2 * abs(sin(i + 1 ) ) ) for i in range(6_4 )] # Starting states lowerCAmelCase__ = 0x67452301 lowerCAmelCase__ = 0xefcdab89 lowerCAmelCase__ = 0x98badcfe lowerCAmelCase__ = 0x10325476 lowerCAmelCase__ = [ 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(UpperCamelCase__ ): lowerCAmelCase__ = aa lowerCAmelCase__ = ba lowerCAmelCase__ = ca lowerCAmelCase__ = da # Hash current chunk for i in range(6_4 ): if i <= 1_5: # f = (b & c) | (not_32(b) & d) # Alternate definition for f lowerCAmelCase__ = d ^ (b & (c ^ d)) lowerCAmelCase__ = i elif i <= 3_1: # f = (d & b) | (not_32(d) & c) # Alternate definition for f lowerCAmelCase__ = c ^ (d & (b ^ c)) lowerCAmelCase__ = (5 * i + 1) % 1_6 elif i <= 4_7: lowerCAmelCase__ = b ^ c ^ d lowerCAmelCase__ = (3 * i + 5) % 1_6 else: lowerCAmelCase__ = c ^ (b | not_aa(UpperCamelCase__ )) lowerCAmelCase__ = (7 * i) % 1_6 lowerCAmelCase__ = (f + a + added_consts[i] + block_words[g]) % 2**3_2 lowerCAmelCase__ = d lowerCAmelCase__ = c lowerCAmelCase__ = b lowerCAmelCase__ = sum_aa(UpperCamelCase__ , left_rotate_aa(UpperCamelCase__ , shift_amounts[i] ) ) # Add hashed chunk to running total lowerCAmelCase__ = sum_aa(UpperCamelCase__ , UpperCamelCase__ ) lowerCAmelCase__ = sum_aa(UpperCamelCase__ , UpperCamelCase__ ) lowerCAmelCase__ = sum_aa(UpperCamelCase__ , UpperCamelCase__ ) lowerCAmelCase__ = sum_aa(UpperCamelCase__ , UpperCamelCase__ ) lowerCAmelCase__ = reformat_hex(UpperCamelCase__ ) + reformat_hex(UpperCamelCase__ ) + reformat_hex(UpperCamelCase__ ) + reformat_hex(UpperCamelCase__ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
367
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase__ = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } lowerCAmelCase__ = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } lowerCAmelCase__ = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } lowerCAmelCase__ = { 'facebook/dpr-ctx_encoder-single-nq-base': 512, 'facebook/dpr-ctx_encoder-multiset-base': 512, } lowerCAmelCase__ = { 'facebook/dpr-question_encoder-single-nq-base': 512, 'facebook/dpr-question_encoder-multiset-base': 512, } lowerCAmelCase__ = { 'facebook/dpr-reader-single-nq-base': 512, 'facebook/dpr-reader-multiset-base': 512, } lowerCAmelCase__ = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } lowerCAmelCase__ = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } lowerCAmelCase__ = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class a_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase_ = VOCAB_FILES_NAMES UpperCAmelCase_ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class a_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase_ = VOCAB_FILES_NAMES UpperCAmelCase_ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION lowerCAmelCase__ = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) lowerCAmelCase__ = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) lowerCAmelCase__ = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(SCREAMING_SNAKE_CASE ) class a_ : '''simple docstring''' def __call__( self : Optional[int] , lowercase__ : List[str] , lowercase__ : Optional[str] = None , lowercase__ : Optional[str] = None , lowercase__ : Union[bool, str] = False , lowercase__ : Union[bool, str] = False , lowercase__ : Optional[int] = None , lowercase__ : Optional[Union[str, TensorType]] = None , lowercase__ : Optional[bool] = None , **lowercase__ : Union[str, Any] , ): '''simple docstring''' if titles is None and texts is None: return super().__call__( lowercase__ , padding=lowercase__ , truncation=lowercase__ , max_length=lowercase__ , return_tensors=lowercase__ , return_attention_mask=lowercase__ , **lowercase__ , ) elif titles is None or texts is None: lowerCAmelCase__ = titles if texts is None else texts return super().__call__( lowercase__ , lowercase__ , padding=lowercase__ , truncation=lowercase__ , max_length=lowercase__ , return_tensors=lowercase__ , return_attention_mask=lowercase__ , **lowercase__ , ) lowerCAmelCase__ = titles if not isinstance(lowercase__ , lowercase__) else [titles] lowerCAmelCase__ = texts if not isinstance(lowercase__ , lowercase__) else [texts] lowerCAmelCase__ = len(lowercase__) lowerCAmelCase__ = questions if not isinstance(lowercase__ , lowercase__) else [questions] * n_passages if len(lowercase__) != len(lowercase__): raise ValueError( F"""There should be as many titles than texts but got {len(lowercase__)} titles and {len(lowercase__)} texts.""") lowerCAmelCase__ = super().__call__(lowercase__ , lowercase__ , padding=lowercase__ , truncation=lowercase__)['input_ids'] lowerCAmelCase__ = super().__call__(lowercase__ , add_special_tokens=lowercase__ , padding=lowercase__ , truncation=lowercase__)['input_ids'] lowerCAmelCase__ = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowercase__ , lowercase__) ] } if return_attention_mask is not False: lowerCAmelCase__ = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids]) lowerCAmelCase__ = attention_mask return self.pad(lowercase__ , padding=lowercase__ , max_length=lowercase__ , return_tensors=lowercase__) def __snake_case ( self : Union[str, Any] , lowercase__ : BatchEncoding , lowercase__ : DPRReaderOutput , lowercase__ : int = 16 , lowercase__ : int = 64 , lowercase__ : int = 4 , ): '''simple docstring''' lowerCAmelCase__ = reader_input['input_ids'] lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = reader_output[:3] lowerCAmelCase__ = len(lowercase__) lowerCAmelCase__ = sorted(range(lowercase__) , reverse=lowercase__ , key=relevance_logits.__getitem__) lowerCAmelCase__ = [] for doc_id in sorted_docs: lowerCAmelCase__ = list(input_ids[doc_id]) # assuming question & title information is at the beginning of the sequence lowerCAmelCase__ = sequence_ids.index(self.sep_token_id , 2) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowerCAmelCase__ = sequence_ids.index(self.pad_token_id) else: lowerCAmelCase__ = len(lowercase__) lowerCAmelCase__ = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=lowercase__ , top_spans=lowercase__ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=lowercase__ , start_index=lowercase__ , end_index=lowercase__ , text=self.decode(sequence_ids[start_index : end_index + 1]) , )) if len(lowercase__) >= num_spans: break return nbest_spans_predictions[:num_spans] def __snake_case ( self : Optional[int] , lowercase__ : List[int] , lowercase__ : List[int] , lowercase__ : int , lowercase__ : int , ): '''simple docstring''' lowerCAmelCase__ = [] for start_index, start_score in enumerate(lowercase__): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]): scores.append(((start_index, start_index + answer_length), start_score + end_score)) lowerCAmelCase__ = sorted(lowercase__ , key=lambda lowercase__: x[1] , reverse=lowercase__) lowerCAmelCase__ = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F"""Wrong span indices: [{start_index}:{end_index}]""") lowerCAmelCase__ = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F"""Span is too long: {length} > {max_answer_length}""") if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals): continue chosen_span_intervals.append((start_index, end_index)) if len(lowercase__) == top_spans: break return chosen_span_intervals @add_end_docstrings(SCREAMING_SNAKE_CASE ) class a_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase_ = VOCAB_FILES_NAMES UpperCAmelCase_ = READER_PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ = READER_PRETRAINED_INIT_CONFIGURATION UpperCAmelCase_ = ['input_ids', 'attention_mask']
119
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCAmelCase__ : Union[str, Any] = { 'configuration_swiftformer': [ 'SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwiftFormerConfig', 'SwiftFormerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[int] = [ 'SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwiftFormerForImageClassification', 'SwiftFormerModel', 'SwiftFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys UpperCAmelCase__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
25
"""simple docstring""" import unittest import torch from torch import nn from diffusers.models.activations import get_activation class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = get_activation('''swish''' ) self.assertIsInstance(_a , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def __UpperCAmelCase ( self ): __a = get_activation('''silu''' ) self.assertIsInstance(_a , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def __UpperCAmelCase ( self ): __a = get_activation('''mish''' ) self.assertIsInstance(_a , nn.Mish ) self.assertEqual(act(torch.tensor(-200 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def __UpperCAmelCase ( self ): __a = get_activation('''gelu''' ) self.assertIsInstance(_a , nn.GELU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
45
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a_ : str = logging.get_logger(__name__) a_ : Union[str, Any] = { 'vinvino02/glpn-kitti': 'https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json', # See all GLPN models at https://huggingface.co/models?filter=glpn } class a ( __SCREAMING_SNAKE_CASE ): _lowerCAmelCase = """glpn""" def __init__( self , __magic_name__=3 , __magic_name__=4 , __magic_name__=[2, 2, 2, 2] , __magic_name__=[8, 4, 2, 1] , __magic_name__=[32, 64, 1_60, 2_56] , __magic_name__=[7, 3, 3, 3] , __magic_name__=[4, 2, 2, 2] , __magic_name__=[1, 2, 5, 8] , __magic_name__=[4, 4, 4, 4] , __magic_name__="gelu" , __magic_name__=0.0 , __magic_name__=0.0 , __magic_name__=0.0_2 , __magic_name__=0.1 , __magic_name__=1e-6 , __magic_name__=64 , __magic_name__=10 , __magic_name__=-1 , **__magic_name__ , ) -> str: super().__init__(**_SCREAMING_SNAKE_CASE ) _a = num_channels _a = num_encoder_blocks _a = depths _a = sr_ratios _a = hidden_sizes _a = patch_sizes _a = strides _a = mlp_ratios _a = num_attention_heads _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = initializer_range _a = drop_path_rate _a = layer_norm_eps _a = decoder_hidden_size _a = max_depth _a = head_in_index
364
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable a_ : int = { "configuration_gpt_neox_japanese": ["GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoXJapaneseConfig"], "tokenization_gpt_neox_japanese": ["GPTNeoXJapaneseTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[str] = [ "GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoXJapaneseForCausalLM", "GPTNeoXJapaneseLayer", "GPTNeoXJapaneseModel", "GPTNeoXJapanesePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys a_ : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
104
0
def UpperCamelCase ( __magic_name__ : str ) -> list: """simple docstring""" if n_term == "": return [] lowercase__ = [] for temp in range(int(__magic_name__ ) ): series.append(f'''1/{temp + 1}''' if series else """1""" ) return series if __name__ == "__main__": A : Tuple = input('Enter the last number (nth term) of the Harmonic Series') print('Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n') print(harmonic_series(nth_term))
305
def UpperCamelCase ( __magic_name__ : str ) -> list: """simple docstring""" if n_term == "": return [] lowercase__ = [] for temp in range(int(__magic_name__ ) ): series.append(f'''1/{temp + 1}''' if series else """1""" ) return series if __name__ == "__main__": A : Tuple = input('Enter the last number (nth term) of the Harmonic Series') print('Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n') print(harmonic_series(nth_term))
305
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase=7 , __lowerCAmelCase=3 , __lowerCAmelCase=18 , __lowerCAmelCase=30 , __lowerCAmelCase=400 , __lowerCAmelCase=True , __lowerCAmelCase=None , __lowerCAmelCase=True , __lowerCAmelCase=None , ): UpperCamelCase__ = size if size is not None else {"""shortest_edge""": 20} UpperCamelCase__ = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = num_channels UpperCamelCase__ = image_size UpperCamelCase__ = min_resolution UpperCamelCase__ = max_resolution UpperCamelCase__ = do_resize UpperCamelCase__ = size UpperCamelCase__ = do_center_crop UpperCamelCase__ = crop_size def _lowerCamelCase ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( _a , unittest.TestCase ): snake_case : Optional[Any] = MobileNetVaImageProcessor if is_vision_available() else None def _lowerCamelCase ( self ): UpperCamelCase__ = MobileNetVaImageProcessingTester(self ) @property def _lowerCamelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self ): UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCAmelCase , """do_resize""" ) ) self.assertTrue(hasattr(__lowerCAmelCase , """size""" ) ) self.assertTrue(hasattr(__lowerCAmelCase , """do_center_crop""" ) ) self.assertTrue(hasattr(__lowerCAmelCase , """crop_size""" ) ) def _lowerCamelCase ( self ): UpperCamelCase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) UpperCamelCase__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def _lowerCamelCase ( self ): pass def _lowerCamelCase ( self ): # Initialize image_processing UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , Image.Image ) # Test not batched input UpperCamelCase__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched UpperCamelCase__ = image_processing(__lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _lowerCamelCase ( self ): # Initialize image_processing UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , numpify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , np.ndarray ) # Test not batched input UpperCamelCase__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched UpperCamelCase__ = image_processing(__lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _lowerCamelCase ( self ): # Initialize image_processing UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , torchify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , torch.Tensor ) # Test not batched input UpperCamelCase__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched UpperCamelCase__ = image_processing(__lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
87
import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class __SCREAMING_SNAKE_CASE : def __init__( self , __lowerCAmelCase , __lowerCAmelCase=13 , __lowerCAmelCase=7 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=99 , __lowerCAmelCase=64 , __lowerCAmelCase=5 , __lowerCAmelCase=4 , __lowerCAmelCase=37 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=512 , __lowerCAmelCase=16 , __lowerCAmelCase=2 , __lowerCAmelCase=0.02 , __lowerCAmelCase=3 , __lowerCAmelCase=4 , __lowerCAmelCase=None , ): UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_input_mask UpperCamelCase__ = use_token_type_ids UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range UpperCamelCase__ = num_labels UpperCamelCase__ = num_choices UpperCamelCase__ = scope UpperCamelCase__ = vocab_size - 1 def _lowerCamelCase ( self ): UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = None if self.use_input_mask: UpperCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ = self.get_config() return config, input_ids, input_mask, token_labels def _lowerCamelCase ( self ): return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def _lowerCamelCase ( self ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self.prepare_config_and_inputs() UpperCamelCase__ = True return config, input_ids, input_mask, token_labels def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = GPTNeoXModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() UpperCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase ) UpperCamelCase__ = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = True UpperCamelCase__ = GPTNeoXModel(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() UpperCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = GPTNeoXForCausalLM(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() UpperCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = self.num_labels UpperCamelCase__ = GPTNeoXForQuestionAnswering(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() UpperCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = self.num_labels UpperCamelCase__ = GPTNeoXForSequenceClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = self.num_labels UpperCamelCase__ = GPTNeoXForTokenClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() UpperCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = True UpperCamelCase__ = GPTNeoXForCausalLM(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() # first forward pass UpperCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , use_cache=__lowerCAmelCase ) UpperCamelCase__ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase__ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCamelCase__ = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase__ = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , output_hidden_states=__lowerCAmelCase ) UpperCamelCase__ = output_from_no_past["""hidden_states"""][0] UpperCamelCase__ = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , past_key_values=__lowerCAmelCase , output_hidden_states=__lowerCAmelCase , )["""hidden_states"""][0] # select random slice UpperCamelCase__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase__ = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-3 ) ) def _lowerCamelCase ( self ): UpperCamelCase__ = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = config_and_inputs UpperCamelCase__ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( _a , _a , _a , unittest.TestCase ): snake_case : Optional[Any] = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) snake_case : Union[str, Any] = (GPTNeoXForCausalLM,) if is_torch_available() else () snake_case : Dict = ( { """feature-extraction""": GPTNeoXModel, """question-answering""": GPTNeoXForQuestionAnswering, """text-classification""": GPTNeoXForSequenceClassification, """text-generation""": GPTNeoXForCausalLM, """token-classification""": GPTNeoXForTokenClassification, """zero-shot""": GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) snake_case : Tuple = False snake_case : Dict = False snake_case : Tuple = False snake_case : Any = False def _lowerCamelCase ( self ): UpperCamelCase__ = GPTNeoXModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=64 , num_attention_heads=8 ) def _lowerCamelCase ( self ): self.config_tester.run_common_tests() def _lowerCamelCase ( self ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def _lowerCamelCase ( self ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def _lowerCamelCase ( self ): # This regression test was failing with PyTorch < 1.3 UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_decoder() UpperCamelCase__ = None self.model_tester.create_and_check_model_as_decoder(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def _lowerCamelCase ( self ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def _lowerCamelCase ( self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*__lowerCAmelCase ) def _lowerCamelCase ( self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCAmelCase ) def _lowerCamelCase ( self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowerCAmelCase ) def _lowerCamelCase ( self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowerCAmelCase ) @unittest.skip(reason="""Feed forward chunking is not implemented""" ) def _lowerCamelCase ( self ): pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def _lowerCamelCase ( self , __lowerCAmelCase ): UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = ids_tensor([1, 10] , config.vocab_size ) UpperCamelCase__ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCamelCase__ = GPTNeoXModel(__lowerCAmelCase ) original_model.to(__lowerCAmelCase ) original_model.eval() UpperCamelCase__ = original_model(__lowerCAmelCase ).last_hidden_state UpperCamelCase__ = original_model(__lowerCAmelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCamelCase__ = {"""type""": scaling_type, """factor""": 10.0} UpperCamelCase__ = GPTNeoXModel(__lowerCAmelCase ) scaled_model.to(__lowerCAmelCase ) scaled_model.eval() UpperCamelCase__ = scaled_model(__lowerCAmelCase ).last_hidden_state UpperCamelCase__ = scaled_model(__lowerCAmelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-5 ) ) @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def _lowerCamelCase ( self ): UpperCamelCase__ = AutoTokenizer.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) for checkpointing in [True, False]: UpperCamelCase__ = GPTNeoXForCausalLM.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(__lowerCAmelCase ) UpperCamelCase__ = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(__lowerCAmelCase ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 UpperCamelCase__ = """My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI'm not sure""" UpperCamelCase__ = model.generate(**__lowerCAmelCase , do_sample=__lowerCAmelCase , max_new_tokens=20 ) UpperCamelCase__ = tokenizer.batch_decode(__lowerCAmelCase )[0] self.assertEqual(__lowerCAmelCase , __lowerCAmelCase )
87
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase = { '''configuration_bridgetower''': [ '''BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BridgeTowerConfig''', '''BridgeTowerTextConfig''', '''BridgeTowerVisionConfig''', ], '''processing_bridgetower''': ['''BridgeTowerProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''BridgeTowerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BridgeTowerForContrastiveLearning''', '''BridgeTowerForImageAndTextRetrieval''', '''BridgeTowerForMaskedLM''', '''BridgeTowerModel''', '''BridgeTowerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
87
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> str: if number < 0 or shift_amount < 0: raise ValueError("""both inputs must be positive integers""" ) snake_case : Optional[int] = str(bin(lowercase ) ) binary_number += "0" * shift_amount return binary_number def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> str: if number < 0 or shift_amount < 0: raise ValueError("""both inputs must be positive integers""" ) snake_case : Dict = str(bin(lowercase ) )[2:] if shift_amount >= len(lowercase ): return "0b0" snake_case : str = binary_number[: len(lowercase ) - shift_amount] return "0b" + shifted_binary_number def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> str: if number >= 0: # Get binary representation of positive number snake_case : Optional[Any] = """0""" + str(bin(lowercase ) ).strip("""-""" )[2:] else: # Get binary (2's complement) representation of negative number snake_case : Dict = len(bin(lowercase )[3:] ) # Find 2's complement of number snake_case : Optional[Any] = bin(abs(lowercase ) - (1 << binary_number_length) )[3:] snake_case : Tuple = ( """1""" + """0""" * (binary_number_length - len(lowercase )) + binary_number ) if shift_amount >= len(lowercase ): return "0b" + binary_number[0] * len(lowercase ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(lowercase ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
124
0
_lowerCamelCase : int = ''' # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git ''' _lowerCamelCase : str = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] _lowerCamelCase : Optional[Any] = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
351
import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors _lowerCamelCase : str = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = "sequence-classification" def __init__( self : Optional[int] , lowercase : Optional[Any] ): '''simple docstring''' if type(lowercase ) == dict: _snake_case = Namespace(**lowercase ) _snake_case = glue_output_modes[hparams.task] _snake_case = glue_tasks_num_labels[hparams.task] super().__init__(lowercase , lowercase , self.mode ) def A ( self : List[str] , **lowercase : Optional[Any] ): '''simple docstring''' return self.model(**lowercase ) def A ( self : Tuple , lowercase : Optional[Any] , lowercase : int ): '''simple docstring''' _snake_case = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _snake_case = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _snake_case = self(**lowercase ) _snake_case = outputs[0] _snake_case = self.trainer.lr_schedulers[0]['scheduler'] _snake_case = {'loss': loss, 'rate': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def A ( self : str ): '''simple docstring''' _snake_case = self.hparams _snake_case = processors[args.task]() _snake_case = processor.get_labels() for mode in ["train", "dev"]: _snake_case = self._feature_file(lowercase ) if os.path.exists(lowercase ) and not args.overwrite_cache: logger.info('Loading features from cached file %s' , lowercase ) else: logger.info('Creating features from dataset file at %s' , args.data_dir ) _snake_case = ( processor.get_dev_examples(args.data_dir ) if mode == 'dev' else processor.get_train_examples(args.data_dir ) ) _snake_case = convert_examples_to_features( lowercase , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('Saving features into cached file %s' , lowercase ) torch.save(lowercase , lowercase ) def A ( self : List[str] , lowercase : str , lowercase : int , lowercase : bool = False ): '''simple docstring''' _snake_case = 'dev' if mode == 'test' else mode _snake_case = self._feature_file(lowercase ) logger.info('Loading features from cached file %s' , lowercase ) _snake_case = torch.load(lowercase ) _snake_case = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) _snake_case = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) _snake_case = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _snake_case = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _snake_case = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(lowercase , lowercase , lowercase , lowercase ) , batch_size=lowercase , shuffle=lowercase , ) def A ( self : str , lowercase : Dict , lowercase : Optional[Any] ): '''simple docstring''' _snake_case = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _snake_case = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _snake_case = self(**lowercase ) _snake_case , _snake_case = outputs[:2] _snake_case = logits.detach().cpu().numpy() _snake_case = inputs['labels'].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def A ( self : Optional[Any] , lowercase : Optional[Any] ): '''simple docstring''' _snake_case = torch.stack([x['val_loss'] for x in outputs] ).mean().detach().cpu().item() _snake_case = np.concatenate([x['pred'] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": _snake_case = np.argmax(lowercase , axis=1 ) elif self.hparams.glue_output_mode == "regression": _snake_case = np.squeeze(lowercase ) _snake_case = np.concatenate([x['target'] for x in outputs] , axis=0 ) _snake_case = [[] for _ in range(out_label_ids.shape[0] )] _snake_case = [[] for _ in range(out_label_ids.shape[0] )] _snake_case = {**{'val_loss': val_loss_mean}, **compute_metrics(self.hparams.task , lowercase , lowercase )} _snake_case = dict(results.items() ) _snake_case = results return ret, preds_list, out_label_list def A ( self : List[str] , lowercase : list ): '''simple docstring''' _snake_case , _snake_case , _snake_case = self._eval_end(lowercase ) _snake_case = ret['log'] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def A ( self : Tuple , lowercase : Tuple ): '''simple docstring''' _snake_case , _snake_case , _snake_case = self._eval_end(lowercase ) _snake_case = ret['log'] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def A ( lowercase : Optional[int] , lowercase : Optional[int] ): '''simple docstring''' BaseTransformer.add_model_specific_args(lowercase , lowercase ) parser.add_argument( '--max_seq_length' , default=128 , type=lowercase , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--task' , default='' , type=lowercase , required=lowercase , help='The GLUE task to run' , ) parser.add_argument( '--gpus' , default=0 , type=lowercase , help='The number of GPUs allocated for this, it is by default 0 meaning none' , ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) return parser def a_ ( ) -> List[str]: _snake_case = argparse.ArgumentParser() add_generic_args(__lowercase , os.getcwd() ) _snake_case = GLUETransformer.add_model_specific_args(__lowercase , os.getcwd() ) _snake_case = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _snake_case = os.path.join( './results' , f'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) _snake_case = GLUETransformer(__lowercase ) _snake_case = generic_train(__lowercase , __lowercase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _snake_case = sorted(glob.glob(os.path.join(args.output_dir , 'checkpoint-epoch=*.ckpt' ) , recursive=__lowercase ) ) _snake_case = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(__lowercase ) if __name__ == "__main__": main()
130
0
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a_ = logging.get_logger(__name__) a_ = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } a_ = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } a_ = {'''facebook/blenderbot_small-90M''': 512} def _a ( UpperCamelCase_ : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCAmelCase__ = set() lowerCAmelCase__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCAmelCase__ = char lowerCAmelCase__ = set(UpperCamelCase_ ) return pairs class lowercase__ ( _UpperCAmelCase ): a_ =VOCAB_FILES_NAMES a_ =PRETRAINED_VOCAB_FILES_MAP a_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ =["""input_ids""", """attention_mask"""] def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="__start__" , __UpperCAmelCase="__end__" , __UpperCAmelCase="__unk__" , __UpperCAmelCase="__null__" , **__UpperCAmelCase , )-> List[str]: '''simple docstring''' super().__init__(unk_token=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , **__UpperCAmelCase ) with open(__UpperCAmelCase , encoding="utf-8" ) as vocab_handle: lowerCAmelCase__ = json.load(__UpperCAmelCase ) lowerCAmelCase__ = {v: k for k, v in self.encoder.items()} with open(__UpperCAmelCase , encoding="utf-8" ) as merges_handle: lowerCAmelCase__ = merges_handle.read().split("\n" )[1:-1] lowerCAmelCase__ = [tuple(merge.split() ) for merge in merges] lowerCAmelCase__ = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) lowerCAmelCase__ = {} @property def UpperCAmelCase ( self )-> int: '''simple docstring''' return len(self.encoder ) def UpperCAmelCase ( self )-> Dict: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def UpperCAmelCase ( self , __UpperCAmelCase )-> str: '''simple docstring''' if token in self.cache: return self.cache[token] lowerCAmelCase__ = re.sub("([.,!?()])" , R" \1" , __UpperCAmelCase ) lowerCAmelCase__ = re.sub("(')" , R" \1 " , __UpperCAmelCase ) lowerCAmelCase__ = re.sub(R"\s{2,}" , " " , __UpperCAmelCase ) if "\n" in token: lowerCAmelCase__ = token.replace("\n" , " __newln__" ) lowerCAmelCase__ = token.split(" " ) lowerCAmelCase__ = [] for token in tokens: if not len(__UpperCAmelCase ): continue lowerCAmelCase__ = token.lower() lowerCAmelCase__ = tuple(__UpperCAmelCase ) lowerCAmelCase__ = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) lowerCAmelCase__ = get_pairs(__UpperCAmelCase ) if not pairs: words.append(__UpperCAmelCase ) continue while True: lowerCAmelCase__ = min(__UpperCAmelCase , key=lambda __UpperCAmelCase : self.bpe_ranks.get(__UpperCAmelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase__ , lowerCAmelCase__ = bigram lowerCAmelCase__ = [] lowerCAmelCase__ = 0 while i < len(__UpperCAmelCase ): try: lowerCAmelCase__ = word.index(__UpperCAmelCase , __UpperCAmelCase ) new_word.extend(word[i:j] ) lowerCAmelCase__ = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(__UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase__ = tuple(__UpperCAmelCase ) lowerCAmelCase__ = new_word if len(__UpperCAmelCase ) == 1: break else: lowerCAmelCase__ = get_pairs(__UpperCAmelCase ) lowerCAmelCase__ = "@@ ".join(__UpperCAmelCase ) lowerCAmelCase__ = word[:-4] lowerCAmelCase__ = word words.append(__UpperCAmelCase ) return " ".join(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase )-> List[str]: '''simple docstring''' lowerCAmelCase__ = [] lowerCAmelCase__ = re.findall(R"\S+\n?" , __UpperCAmelCase ) for token in words: split_tokens.extend(list(self.bpe(__UpperCAmelCase ).split(" " ) ) ) return split_tokens def UpperCAmelCase ( self , __UpperCAmelCase )-> int: '''simple docstring''' lowerCAmelCase__ = token.lower() return self.encoder.get(__UpperCAmelCase , self.encoder.get(self.unk_token ) ) def UpperCAmelCase ( self , __UpperCAmelCase )-> str: '''simple docstring''' return self.decoder.get(__UpperCAmelCase , self.unk_token ) def UpperCAmelCase ( self , __UpperCAmelCase )-> str: '''simple docstring''' lowerCAmelCase__ = " ".join(__UpperCAmelCase ).replace("@@ " , "" ).strip() return out_string def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> Tuple[str]: '''simple docstring''' if not os.path.isdir(__UpperCAmelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return lowerCAmelCase__ = os.path.join( __UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase__ = os.path.join( __UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__UpperCAmelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__UpperCAmelCase , ensure_ascii=__UpperCAmelCase ) + "\n" ) lowerCAmelCase__ = 0 with open(__UpperCAmelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) lowerCAmelCase__ = token_index writer.write(" ".join(__UpperCAmelCase ) + "\n" ) index += 1 return vocab_file, merge_file
340
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class lowercase__ ( _UpperCAmelCase ): a_ ="""char""" a_ ="""bpe""" a_ ="""wp""" a_ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class lowercase__ ( _UpperCAmelCase ): a_ =["""image_processor""", """char_tokenizer"""] a_ ="""ViTImageProcessor""" a_ ="""MgpstrTokenizer""" def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase )-> str: '''simple docstring''' lowerCAmelCase__ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __UpperCAmelCase , ) lowerCAmelCase__ = kwargs.pop("feature_extractor" ) lowerCAmelCase__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) lowerCAmelCase__ = tokenizer lowerCAmelCase__ = AutoTokenizer.from_pretrained("gpt2" ) lowerCAmelCase__ = AutoTokenizer.from_pretrained("bert-base-uncased" ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase )-> List[Any]: '''simple docstring''' if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process." ) if images is not None: lowerCAmelCase__ = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is not None: lowerCAmelCase__ = self.char_tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is None: return inputs elif images is None: return encodings else: lowerCAmelCase__ = encodings["input_ids"] return inputs def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = sequences lowerCAmelCase__ = char_preds.size(0 ) lowerCAmelCase__ , lowerCAmelCase__ = self._decode_helper(__UpperCAmelCase , "char" ) lowerCAmelCase__ , lowerCAmelCase__ = self._decode_helper(__UpperCAmelCase , "bpe" ) lowerCAmelCase__ , lowerCAmelCase__ = self._decode_helper(__UpperCAmelCase , "wp" ) lowerCAmelCase__ = [] lowerCAmelCase__ = [] for i in range(__UpperCAmelCase ): lowerCAmelCase__ = [char_scores[i], bpe_scores[i], wp_scores[i]] lowerCAmelCase__ = [char_strs[i], bpe_strs[i], wp_strs[i]] lowerCAmelCase__ = scores.index(max(__UpperCAmelCase ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) lowerCAmelCase__ = {} lowerCAmelCase__ = final_strs lowerCAmelCase__ = final_scores lowerCAmelCase__ = char_strs lowerCAmelCase__ = bpe_strs lowerCAmelCase__ = wp_strs return out def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> Optional[int]: '''simple docstring''' if format == DecodeType.CHARACTER: lowerCAmelCase__ = self.char_decode lowerCAmelCase__ = 1 lowerCAmelCase__ = "[s]" elif format == DecodeType.BPE: lowerCAmelCase__ = self.bpe_decode lowerCAmelCase__ = 2 lowerCAmelCase__ = "#" elif format == DecodeType.WORDPIECE: lowerCAmelCase__ = self.wp_decode lowerCAmelCase__ = 102 lowerCAmelCase__ = "[SEP]" else: raise ValueError(F"Format {format} is not supported." ) lowerCAmelCase__ , lowerCAmelCase__ = [], [] lowerCAmelCase__ = pred_logits.size(0 ) lowerCAmelCase__ = pred_logits.size(1 ) lowerCAmelCase__ , lowerCAmelCase__ = pred_logits.topk(1 , dim=-1 , largest=__UpperCAmelCase , sorted=__UpperCAmelCase ) lowerCAmelCase__ = preds_index.view(-1 , __UpperCAmelCase )[:, 1:] lowerCAmelCase__ = decoder(__UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ = torch.nn.functional.softmax(__UpperCAmelCase , dim=2 ).max(dim=2 ) lowerCAmelCase__ = preds_max_prob[:, 1:] for index in range(__UpperCAmelCase ): lowerCAmelCase__ = preds_str[index].find(__UpperCAmelCase ) lowerCAmelCase__ = preds_str[index][:pred_eos] lowerCAmelCase__ = preds_index[index].cpu().tolist() lowerCAmelCase__ = pred_index.index(__UpperCAmelCase ) if eos_token in pred_index else -1 lowerCAmelCase__ = preds_max_prob[index][: pred_eos_index + 1] lowerCAmelCase__ = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(__UpperCAmelCase ) conf_scores.append(__UpperCAmelCase ) return dec_strs, conf_scores def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = [seq.replace(" " , "" ) for seq in self.char_tokenizer.batch_decode(__UpperCAmelCase )] return decode_strs def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[Any]: '''simple docstring''' return self.bpe_tokenizer.batch_decode(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = [seq.replace(" " , "" ) for seq in self.wp_tokenizer.batch_decode(__UpperCAmelCase )] return decode_strs
340
1
'''simple docstring''' # Algorithm for the pigeonhole sorting def a ( __a ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ :Optional[Any] = min(__a ) # min() finds the minimum value UpperCamelCase__ :Union[str, Any] = max(__a ) # max() finds the maximum value UpperCamelCase__ :int = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size UpperCamelCase__ :Any = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(__a , __a ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. UpperCamelCase__ :Tuple = 0 for count in range(__a ): while holes[count] > 0: holes[count] -= 1 UpperCamelCase__ :Tuple = count + min_val i += 1 def a ( ) -> List[Any]: '''simple docstring''' UpperCamelCase__ :Optional[int] = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(__a ) print('''Sorted order is:''' , ''' '''.join(__a ) ) if __name__ == "__main__": main()
219
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __snake_case = abspath(join(dirname(dirname(__file__)), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def a ( __a ) -> Optional[int]: '''simple docstring''' from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(__a ) def a ( __a ) -> str: '''simple docstring''' from diffusers.utils.testing_utils import pytest_terminal_summary_main UpperCamelCase__ :Union[str, Any] = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(__a , id=__a )
219
1
'''simple docstring''' from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowercase_ = logging.get_logger(__name__) # pylint: disable=invalid-name lowercase_ = """ Examples: ```py >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-prior\") >>> pipe_prior.to(\"cuda\") >>> prompt = \"red cat, 4k photo\" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> zero_image_emb = out.negative_image_embeds >>> pipe = KandinskyV22Pipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-decoder\") >>> pipe.to(\"cuda\") >>> image = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=50, ... ).images >>> image[0].save(\"cat.png\") ``` """ def lowerCamelCase ( __lowerCamelCase : str , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any]=8 ) ->Tuple: _SCREAMING_SNAKE_CASE = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _SCREAMING_SNAKE_CASE = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class a_ ( snake_case_ ): '''simple docstring''' def __init__( self , A , A , A , ) -> Union[str, Any]: super().__init__() self.register_modules( unet=A , scheduler=A , movq=A , ) _SCREAMING_SNAKE_CASE = 2 ** (len(self.movq.config.block_out_channels ) - 1) def snake_case_( self , A , A , A , A , A , A ) -> Union[str, Any]: if latents is None: _SCREAMING_SNAKE_CASE = randn_tensor(A , generator=A , device=A , dtype=A ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) _SCREAMING_SNAKE_CASE = latents.to(A ) _SCREAMING_SNAKE_CASE = latents * scheduler.init_noise_sigma return latents def snake_case_( self , A=0 ) -> Dict: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) _SCREAMING_SNAKE_CASE = torch.device(f'cuda:{gpu_id}' ) _SCREAMING_SNAKE_CASE = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(A , A ) def snake_case_( self , A=0 ) -> str: if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) _SCREAMING_SNAKE_CASE = torch.device(f'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=A ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _SCREAMING_SNAKE_CASE = None for cpu_offloaded_model in [self.unet, self.movq]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = cpu_offload_with_hook(A , A , prev_module_hook=A ) # We'll offload the last model manually. _SCREAMING_SNAKE_CASE = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def snake_case_( self ) -> Tuple: if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(A , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(A ) def __call__( self , A , A , A = 512 , A = 512 , A = 100 , A = 4.0 , A = 1 , A = None , A = None , A = "pil" , A = True , ) -> List[str]: _SCREAMING_SNAKE_CASE = self._execution_device _SCREAMING_SNAKE_CASE = guidance_scale > 1.0 if isinstance(A , A ): _SCREAMING_SNAKE_CASE = torch.cat(A , dim=0 ) _SCREAMING_SNAKE_CASE = image_embeds.shape[0] * num_images_per_prompt if isinstance(A , A ): _SCREAMING_SNAKE_CASE = torch.cat(A , dim=0 ) if do_classifier_free_guidance: _SCREAMING_SNAKE_CASE = image_embeds.repeat_interleave(A , dim=0 ) _SCREAMING_SNAKE_CASE = negative_image_embeds.repeat_interleave(A , dim=0 ) _SCREAMING_SNAKE_CASE = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=A ) self.scheduler.set_timesteps(A , device=A ) _SCREAMING_SNAKE_CASE = self.scheduler.timesteps _SCREAMING_SNAKE_CASE = self.unet.config.in_channels _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = downscale_height_and_width(A , A , self.movq_scale_factor ) # create initial latent _SCREAMING_SNAKE_CASE = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , A , A , A , self.scheduler , ) for i, t in enumerate(self.progress_bar(A ) ): # expand the latents if we are doing classifier free guidance _SCREAMING_SNAKE_CASE = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _SCREAMING_SNAKE_CASE = {"""image_embeds""": image_embeds} _SCREAMING_SNAKE_CASE = self.unet( sample=A , timestep=A , encoder_hidden_states=A , added_cond_kwargs=A , return_dict=A , )[0] if do_classifier_free_guidance: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = noise_pred.split(latents.shape[1] , dim=1 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = noise_pred.chunk(2 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = variance_pred.chunk(2 ) _SCREAMING_SNAKE_CASE = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _SCREAMING_SNAKE_CASE = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _SCREAMING_SNAKE_CASE = self.scheduler.step( A , A , A , generator=A , )[0] # post-processing _SCREAMING_SNAKE_CASE = self.movq.decode(A , force_not_quantize=A )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: _SCREAMING_SNAKE_CASE = image * 0.5 + 0.5 _SCREAMING_SNAKE_CASE = image.clamp(0 , 1 ) _SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _SCREAMING_SNAKE_CASE = self.numpy_to_pil(A ) if not return_dict: return (image,) return ImagePipelineOutput(images=A )
58
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) lowercase_ = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } def lowerCamelCase ( __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] , __lowerCamelCase : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] ) ->Union[str, Any]: for attribute in key.split(""".""" ): _SCREAMING_SNAKE_CASE = getattr(__lowerCamelCase , __lowerCamelCase ) if weight_type is not None: _SCREAMING_SNAKE_CASE = getattr(__lowerCamelCase , __lowerCamelCase ).shape else: _SCREAMING_SNAKE_CASE = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": _SCREAMING_SNAKE_CASE = value elif weight_type == "weight_g": _SCREAMING_SNAKE_CASE = value elif weight_type == "weight_v": _SCREAMING_SNAKE_CASE = value elif weight_type == "bias": _SCREAMING_SNAKE_CASE = value else: _SCREAMING_SNAKE_CASE = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def lowerCamelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] ) ->Any: _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = fairseq_model.state_dict() _SCREAMING_SNAKE_CASE = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _SCREAMING_SNAKE_CASE = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , ) _SCREAMING_SNAKE_CASE = True else: for key, mapped_key in MAPPING.items(): _SCREAMING_SNAKE_CASE = """hubert.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or (key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0] and not is_finetuned): _SCREAMING_SNAKE_CASE = True if "*" in mapped_key: _SCREAMING_SNAKE_CASE = name.split(__lowerCamelCase )[0].split(""".""" )[-2] _SCREAMING_SNAKE_CASE = mapped_key.replace("""*""" , __lowerCamelCase ) if "weight_g" in name: _SCREAMING_SNAKE_CASE = """weight_g""" elif "weight_v" in name: _SCREAMING_SNAKE_CASE = """weight_v""" elif "weight" in name: _SCREAMING_SNAKE_CASE = """weight""" elif "bias" in name: _SCREAMING_SNAKE_CASE = """bias""" else: _SCREAMING_SNAKE_CASE = None set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) continue if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(F'Unused weights: {unused_weights}' ) def lowerCamelCase ( __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] ) ->Union[str, Any]: _SCREAMING_SNAKE_CASE = full_name.split("""conv_layers.""" )[-1] _SCREAMING_SNAKE_CASE = name.split(""".""" ) _SCREAMING_SNAKE_CASE = int(items[0] ) _SCREAMING_SNAKE_CASE = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _SCREAMING_SNAKE_CASE = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _SCREAMING_SNAKE_CASE = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) _SCREAMING_SNAKE_CASE = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) _SCREAMING_SNAKE_CASE = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__lowerCamelCase ) @torch.no_grad() def lowerCamelCase ( __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Union[str, Any]=True ) ->Optional[int]: if config_path is not None: _SCREAMING_SNAKE_CASE = HubertConfig.from_pretrained(__lowerCamelCase ) else: _SCREAMING_SNAKE_CASE = HubertConfig() if is_finetuned: if dict_path: _SCREAMING_SNAKE_CASE = Dictionary.load(__lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _SCREAMING_SNAKE_CASE = target_dict.pad_index _SCREAMING_SNAKE_CASE = target_dict.bos_index _SCREAMING_SNAKE_CASE = target_dict.eos_index _SCREAMING_SNAKE_CASE = len(target_dict.symbols ) _SCREAMING_SNAKE_CASE = os.path.join(__lowerCamelCase , """vocab.json""" ) if not os.path.isdir(__lowerCamelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCamelCase ) ) return os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) with open(__lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = WavaVecaCTCTokenizer( __lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCamelCase , ) _SCREAMING_SNAKE_CASE = True if config.feat_extract_norm == """layer""" else False _SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) _SCREAMING_SNAKE_CASE = WavaVecaProcessor(feature_extractor=__lowerCamelCase , tokenizer=__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = HubertForCTC(__lowerCamelCase ) else: _SCREAMING_SNAKE_CASE = HubertModel(__lowerCamelCase ) if is_finetuned: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _SCREAMING_SNAKE_CASE = model[0].eval() recursively_load_weights(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) hf_wavavec.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) lowercase_ = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
58
1
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = {'vocab_file': 'spiece.model'} lowerCamelCase_ = { 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', } } lowerCamelCase_ = { 'albert-base-v1': 5_12, 'albert-large-v1': 5_12, 'albert-xlarge-v1': 5_12, 'albert-xxlarge-v1': 5_12, 'albert-base-v2': 5_12, 'albert-large-v2': 5_12, 'albert-xlarge-v2': 5_12, 'albert-xxlarge-v2': 5_12, } lowerCamelCase_ = '▁' class lowercase_ ( A ): """simple docstring""" lowerCamelCase_ = VOCAB_FILES_NAMES lowerCamelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : str , __lowerCamelCase : str , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Any=True , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : Any="[CLS]" , __lowerCamelCase : Optional[int]="[SEP]" , __lowerCamelCase : List[str]="<unk>" , __lowerCamelCase : str="[SEP]" , __lowerCamelCase : Union[str, Any]="<pad>" , __lowerCamelCase : Dict="[CLS]" , __lowerCamelCase : Any="[MASK]" , __lowerCamelCase : Optional[Dict[str, Any]] = None , **__lowerCamelCase : Dict , ): """simple docstring""" _SCREAMING_SNAKE_CASE = ( AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase , normalized=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token ) _SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__lowerCamelCase , remove_space=__lowerCamelCase , keep_accents=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) _SCREAMING_SNAKE_CASE = do_lower_case _SCREAMING_SNAKE_CASE = remove_space _SCREAMING_SNAKE_CASE = keep_accents _SCREAMING_SNAKE_CASE = vocab_file _SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowerCamelCase ) @property def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" return len(self.sp_model ) def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" _SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : str ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.__dict__.copy() _SCREAMING_SNAKE_CASE = None return state def __setstate__( self : List[str] , __lowerCamelCase : Optional[int] ): """simple docstring""" _SCREAMING_SNAKE_CASE = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCamelCase : List[Any] ): """simple docstring""" if self.remove_space: _SCREAMING_SNAKE_CASE = " ".join(inputs.strip().split() ) else: _SCREAMING_SNAKE_CASE = inputs _SCREAMING_SNAKE_CASE = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: _SCREAMING_SNAKE_CASE = unicodedata.normalize("NFKD" , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = "".join([c for c in outputs if not unicodedata.combining(__lowerCamelCase )] ) if self.do_lower_case: _SCREAMING_SNAKE_CASE = outputs.lower() return outputs def lowerCAmelCase_ ( self : int , __lowerCamelCase : str ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.preprocess_text(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = [] for piece in pieces: if len(__lowerCamelCase ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): _SCREAMING_SNAKE_CASE = self.sp_model.EncodeAsPieces(piece[:-1].replace(__lowerCamelCase , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _SCREAMING_SNAKE_CASE = cur_pieces[1:] else: _SCREAMING_SNAKE_CASE = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__lowerCamelCase ) else: new_pieces.append(__lowerCamelCase ) return new_pieces def lowerCAmelCase_ ( self : Optional[Any] , __lowerCamelCase : Union[str, Any] ): """simple docstring""" return self.sp_model.PieceToId(__lowerCamelCase ) def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCamelCase : Tuple ): """simple docstring""" return self.sp_model.IdToPiece(__lowerCamelCase ) def lowerCAmelCase_ ( self : Optional[Any] , __lowerCamelCase : Optional[Any] ): """simple docstring""" _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = "" _SCREAMING_SNAKE_CASE = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__lowerCamelCase ) + token _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = [] else: current_sub_tokens.append(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = False out_string += self.sp_model.decode(__lowerCamelCase ) return out_string.strip() def lowerCAmelCase_ ( self : Optional[int] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): """simple docstring""" _SCREAMING_SNAKE_CASE = [self.sep_token_id] _SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase_ ( self : Any , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is not None: return [1] + ([0] * len(__lowerCamelCase )) + [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1] def lowerCAmelCase_ ( self : int , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): """simple docstring""" _SCREAMING_SNAKE_CASE = [self.sep_token_id] _SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): """simple docstring""" if not os.path.isdir(__lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _SCREAMING_SNAKE_CASE = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase , "wb" ) as fi: _SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (out_vocab_file,)
356
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCamelCase_ = abspath(join(dirname(dirname(__file__)), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def SCREAMING_SNAKE_CASE_ ( __A : Dict ) -> Dict: from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(__A ) def SCREAMING_SNAKE_CASE_ ( __A : List[Any] ) -> str: from diffusers.utils.testing_utils import pytest_terminal_summary_main _SCREAMING_SNAKE_CASE = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(__A , id=__A )
111
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _lowerCAmelCase : Tuple = { """configuration_data2vec_audio""": ["""DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecAudioConfig"""], """configuration_data2vec_text""": [ """DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecTextConfig""", """Data2VecTextOnnxConfig""", ], """configuration_data2vec_vision""": [ """DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecVisionConfig""", """Data2VecVisionOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Union[str, Any] = [ """DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecAudioForAudioFrameClassification""", """Data2VecAudioForCTC""", """Data2VecAudioForSequenceClassification""", """Data2VecAudioForXVector""", """Data2VecAudioModel""", """Data2VecAudioPreTrainedModel""", ] _lowerCAmelCase : int = [ """DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecTextForCausalLM""", """Data2VecTextForMaskedLM""", """Data2VecTextForMultipleChoice""", """Data2VecTextForQuestionAnswering""", """Data2VecTextForSequenceClassification""", """Data2VecTextForTokenClassification""", """Data2VecTextModel""", """Data2VecTextPreTrainedModel""", ] _lowerCAmelCase : List[Any] = [ """DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecVisionForImageClassification""", """Data2VecVisionForMaskedImageModeling""", """Data2VecVisionForSemanticSegmentation""", """Data2VecVisionModel""", """Data2VecVisionPreTrainedModel""", ] if is_tf_available(): _lowerCAmelCase : str = [ """TFData2VecVisionForImageClassification""", """TFData2VecVisionForSemanticSegmentation""", """TFData2VecVisionModel""", """TFData2VecVisionPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys _lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
169
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class __lowerCAmelCase ( unittest.TestCase): def _lowercase ( self ) -> Dict: '''simple docstring''' a__ : Any =tempfile.mkdtemp() # fmt: off a__ : List[Any] =["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on a__ : str =dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) a__ : List[Any] =["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] a__ : Optional[int] ={"unk_token": "<unk>"} a__ : Optional[Any] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) a__ : Tuple =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowerCAmelCase__ ) ) a__ : Optional[Any] ={ "do_resize": True, "size": 2_0, "do_center_crop": True, "crop_size": 1_8, "do_normalize": True, "image_mean": [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], "image_std": [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } a__ : Dict =os.path.join(self.tmpdirname , lowerCAmelCase__ ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowercase ( self , **lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def _lowercase ( self , **lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def _lowercase ( self , **lowerCAmelCase__ ) -> Any: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def _lowercase ( self ) -> Optional[int]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _lowercase ( self ) -> Any: '''simple docstring''' a__ : Optional[Any] =[np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] a__ : List[Any] =[Image.fromarray(np.moveaxis(lowerCAmelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _lowercase ( self ) -> Dict: '''simple docstring''' a__ : Union[str, Any] =self.get_tokenizer() a__ : int =self.get_rust_tokenizer() a__ : List[str] =self.get_image_processor() a__ : Dict =CLIPSegProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) processor_slow.save_pretrained(self.tmpdirname ) a__ : Optional[Any] =CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=lowerCAmelCase__ ) a__ : Tuple =CLIPSegProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) processor_fast.save_pretrained(self.tmpdirname ) a__ : Dict =CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowerCAmelCase__ ) self.assertIsInstance(processor_fast.tokenizer , lowerCAmelCase__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowerCAmelCase__ ) self.assertIsInstance(processor_fast.image_processor , lowerCAmelCase__ ) def _lowercase ( self ) -> Any: '''simple docstring''' a__ : List[str] =CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) a__ : str =self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) a__ : int =self.get_image_processor(do_normalize=lowerCAmelCase__ , padding_value=1.0 ) a__ : Optional[Any] =CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=lowerCAmelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCAmelCase__ ) def _lowercase ( self ) -> List[Any]: '''simple docstring''' a__ : str =self.get_image_processor() a__ : Optional[int] =self.get_tokenizer() a__ : Dict =CLIPSegProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) a__ : str =self.prepare_image_inputs() a__ : Any =image_processor(lowerCAmelCase__ , return_tensors="np" ) a__ : Optional[int] =processor(images=lowerCAmelCase__ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' a__ : Optional[int] =self.get_image_processor() a__ : List[Any] =self.get_tokenizer() a__ : Optional[int] =CLIPSegProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) a__ : Union[str, Any] ="lower newer" a__ : List[str] =processor(text=lowerCAmelCase__ ) a__ : str =tokenizer(lowerCAmelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _lowercase ( self ) -> Optional[int]: '''simple docstring''' a__ : Any =self.get_image_processor() a__ : Dict =self.get_tokenizer() a__ : Union[str, Any] =CLIPSegProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) a__ : Dict ="lower newer" a__ : int =self.prepare_image_inputs() a__ : Any =processor(text=lowerCAmelCase__ , images=lowerCAmelCase__ ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase__ ): processor() def _lowercase ( self ) -> str: '''simple docstring''' a__ : Union[str, Any] =self.get_image_processor() a__ : Optional[Any] =self.get_tokenizer() a__ : str =CLIPSegProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) a__ : int =self.prepare_image_inputs() a__ : Union[str, Any] =self.prepare_image_inputs() a__ : Tuple =processor(images=lowerCAmelCase__ , visual_prompt=lowerCAmelCase__ ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "conditional_pixel_values"] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase__ ): processor() def _lowercase ( self ) -> Tuple: '''simple docstring''' a__ : Optional[int] =self.get_image_processor() a__ : Any =self.get_tokenizer() a__ : Tuple =CLIPSegProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) a__ : Dict =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] a__ : Optional[Any] =processor.batch_decode(lowerCAmelCase__ ) a__ : Dict =tokenizer.batch_decode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
95
0
'''simple docstring''' from collections import deque from math import floor from random import random from time import time class lowercase_ : """simple docstring""" def __init__( self : List[Any] ): """simple docstring""" _SCREAMING_SNAKE_CASE = {} def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any]=1 ): """simple docstring""" if self.graph.get(__lowerCamelCase ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: _SCREAMING_SNAKE_CASE = [[w, v]] if not self.graph.get(__lowerCamelCase ): _SCREAMING_SNAKE_CASE = [] def lowerCAmelCase_ ( self : int ): """simple docstring""" return list(self.graph ) def lowerCAmelCase_ ( self : Tuple , __lowerCamelCase : Any , __lowerCamelCase : Dict ): """simple docstring""" if self.graph.get(__lowerCamelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(__lowerCamelCase ) def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCamelCase : str=-2 , __lowerCamelCase : int=-1 ): """simple docstring""" if s == d: return [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] if s == -2: _SCREAMING_SNAKE_CASE = list(self.graph )[0] stack.append(__lowerCamelCase ) visited.append(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _SCREAMING_SNAKE_CASE = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(__lowerCamelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _SCREAMING_SNAKE_CASE = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(__lowerCamelCase ) != 0: _SCREAMING_SNAKE_CASE = stack[len(__lowerCamelCase ) - 1] else: _SCREAMING_SNAKE_CASE = ss # check if se have reached the starting point if len(__lowerCamelCase ) == 0: return visited def lowerCAmelCase_ ( self : Optional[Any] , __lowerCamelCase : Union[str, Any]=-1 ): """simple docstring""" if c == -1: _SCREAMING_SNAKE_CASE = floor(random() * 1_0_0_0_0 ) + 1_0 for i in range(__lowerCamelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 1_0_2 ) + 1 ): _SCREAMING_SNAKE_CASE = floor(random() * c ) + 1 if n != i: self.add_pair(__lowerCamelCase , __lowerCamelCase , 1 ) def lowerCAmelCase_ ( self : str , __lowerCamelCase : Any=-2 ): """simple docstring""" _SCREAMING_SNAKE_CASE = deque() _SCREAMING_SNAKE_CASE = [] if s == -2: _SCREAMING_SNAKE_CASE = list(self.graph )[0] d.append(__lowerCamelCase ) visited.append(__lowerCamelCase ) while d: _SCREAMING_SNAKE_CASE = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def lowerCAmelCase_ ( self : Tuple , __lowerCamelCase : List[Any] ): """simple docstring""" _SCREAMING_SNAKE_CASE = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def lowerCAmelCase_ ( self : str , __lowerCamelCase : List[str] ): """simple docstring""" return len(self.graph[u] ) def lowerCAmelCase_ ( self : List[str] , __lowerCamelCase : Optional[Any]=-2 ): """simple docstring""" _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] if s == -2: _SCREAMING_SNAKE_CASE = list(self.graph )[0] stack.append(__lowerCamelCase ) visited.append(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = s _SCREAMING_SNAKE_CASE = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _SCREAMING_SNAKE_CASE = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _SCREAMING_SNAKE_CASE = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(__lowerCamelCase ) != 0: _SCREAMING_SNAKE_CASE = stack[len(__lowerCamelCase ) - 1] else: _SCREAMING_SNAKE_CASE = ss # check if se have reached the starting point if len(__lowerCamelCase ) == 0: return sorted_nodes def lowerCAmelCase_ ( self : List[str] ): """simple docstring""" _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = list(self.graph )[0] stack.append(__lowerCamelCase ) visited.append(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = -2 _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = s _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _SCREAMING_SNAKE_CASE = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _SCREAMING_SNAKE_CASE = len(__lowerCamelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _SCREAMING_SNAKE_CASE = node[1] break # check if all the children are visited if s == ss: stack.pop() _SCREAMING_SNAKE_CASE = True if len(__lowerCamelCase ) != 0: _SCREAMING_SNAKE_CASE = stack[len(__lowerCamelCase ) - 1] else: _SCREAMING_SNAKE_CASE = False indirect_parents.append(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = s _SCREAMING_SNAKE_CASE = ss # check if se have reached the starting point if len(__lowerCamelCase ) == 0: return list(__lowerCamelCase ) def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = list(self.graph )[0] stack.append(__lowerCamelCase ) visited.append(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = -2 _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = s _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _SCREAMING_SNAKE_CASE = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _SCREAMING_SNAKE_CASE = len(__lowerCamelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _SCREAMING_SNAKE_CASE = node[1] break # check if all the children are visited if s == ss: stack.pop() _SCREAMING_SNAKE_CASE = True if len(__lowerCamelCase ) != 0: _SCREAMING_SNAKE_CASE = stack[len(__lowerCamelCase ) - 1] else: _SCREAMING_SNAKE_CASE = False indirect_parents.append(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = s _SCREAMING_SNAKE_CASE = ss # check if se have reached the starting point if len(__lowerCamelCase ) == 0: return False def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCamelCase : Union[str, Any]=-2 , __lowerCamelCase : Union[str, Any]=-1 ): """simple docstring""" _SCREAMING_SNAKE_CASE = time() self.dfs(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = time() return end - begin def lowerCAmelCase_ ( self : int , __lowerCamelCase : Tuple=-2 ): """simple docstring""" _SCREAMING_SNAKE_CASE = time() self.bfs(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = time() return end - begin class lowercase_ : """simple docstring""" def __init__( self : Dict ): """simple docstring""" _SCREAMING_SNAKE_CASE = {} def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any]=1 ): """simple docstring""" # check if the u exists if self.graph.get(__lowerCamelCase ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist _SCREAMING_SNAKE_CASE = [[w, v]] # add the other way if self.graph.get(__lowerCamelCase ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist _SCREAMING_SNAKE_CASE = [[w, u]] def lowerCAmelCase_ ( self : int , __lowerCamelCase : Dict , __lowerCamelCase : List[str] ): """simple docstring""" if self.graph.get(__lowerCamelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(__lowerCamelCase ) # the other way round if self.graph.get(__lowerCamelCase ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(__lowerCamelCase ) def lowerCAmelCase_ ( self : List[Any] , __lowerCamelCase : List[Any]=-2 , __lowerCamelCase : Union[str, Any]=-1 ): """simple docstring""" if s == d: return [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] if s == -2: _SCREAMING_SNAKE_CASE = list(self.graph )[0] stack.append(__lowerCamelCase ) visited.append(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _SCREAMING_SNAKE_CASE = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(__lowerCamelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _SCREAMING_SNAKE_CASE = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(__lowerCamelCase ) != 0: _SCREAMING_SNAKE_CASE = stack[len(__lowerCamelCase ) - 1] else: _SCREAMING_SNAKE_CASE = ss # check if se have reached the starting point if len(__lowerCamelCase ) == 0: return visited def lowerCAmelCase_ ( self : Dict , __lowerCamelCase : Union[str, Any]=-1 ): """simple docstring""" if c == -1: _SCREAMING_SNAKE_CASE = floor(random() * 1_0_0_0_0 ) + 1_0 for i in range(__lowerCamelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 1_0_2 ) + 1 ): _SCREAMING_SNAKE_CASE = floor(random() * c ) + 1 if n != i: self.add_pair(__lowerCamelCase , __lowerCamelCase , 1 ) def lowerCAmelCase_ ( self : Dict , __lowerCamelCase : List[Any]=-2 ): """simple docstring""" _SCREAMING_SNAKE_CASE = deque() _SCREAMING_SNAKE_CASE = [] if s == -2: _SCREAMING_SNAKE_CASE = list(self.graph )[0] d.append(__lowerCamelCase ) visited.append(__lowerCamelCase ) while d: _SCREAMING_SNAKE_CASE = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def lowerCAmelCase_ ( self : str , __lowerCamelCase : Tuple ): """simple docstring""" return len(self.graph[u] ) def lowerCAmelCase_ ( self : str ): """simple docstring""" _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = list(self.graph )[0] stack.append(__lowerCamelCase ) visited.append(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = -2 _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = s _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _SCREAMING_SNAKE_CASE = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _SCREAMING_SNAKE_CASE = len(__lowerCamelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _SCREAMING_SNAKE_CASE = node[1] break # check if all the children are visited if s == ss: stack.pop() _SCREAMING_SNAKE_CASE = True if len(__lowerCamelCase ) != 0: _SCREAMING_SNAKE_CASE = stack[len(__lowerCamelCase ) - 1] else: _SCREAMING_SNAKE_CASE = False indirect_parents.append(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = s _SCREAMING_SNAKE_CASE = ss # check if se have reached the starting point if len(__lowerCamelCase ) == 0: return list(__lowerCamelCase ) def lowerCAmelCase_ ( self : str ): """simple docstring""" _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = list(self.graph )[0] stack.append(__lowerCamelCase ) visited.append(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = -2 _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = s _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _SCREAMING_SNAKE_CASE = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _SCREAMING_SNAKE_CASE = len(__lowerCamelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _SCREAMING_SNAKE_CASE = node[1] break # check if all the children are visited if s == ss: stack.pop() _SCREAMING_SNAKE_CASE = True if len(__lowerCamelCase ) != 0: _SCREAMING_SNAKE_CASE = stack[len(__lowerCamelCase ) - 1] else: _SCREAMING_SNAKE_CASE = False indirect_parents.append(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = s _SCREAMING_SNAKE_CASE = ss # check if se have reached the starting point if len(__lowerCamelCase ) == 0: return False def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" return list(self.graph ) def lowerCAmelCase_ ( self : str , __lowerCamelCase : List[str]=-2 , __lowerCamelCase : List[str]=-1 ): """simple docstring""" _SCREAMING_SNAKE_CASE = time() self.dfs(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = time() return end - begin def lowerCAmelCase_ ( self : Optional[Any] , __lowerCamelCase : Optional[Any]=-2 ): """simple docstring""" _SCREAMING_SNAKE_CASE = time() self.bfs(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = time() return end - begin
111
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCamelCase_ = abspath(join(dirname(dirname(__file__)), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def SCREAMING_SNAKE_CASE_ ( __A : Dict ) -> Dict: from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(__A ) def SCREAMING_SNAKE_CASE_ ( __A : List[Any] ) -> str: from diffusers.utils.testing_utils import pytest_terminal_summary_main _SCREAMING_SNAKE_CASE = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(__A , id=__A )
111
1
"""simple docstring""" import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCamelCase_ ( unittest.TestCase): """simple docstring""" def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() def UpperCAmelCase_ ( self : Dict ) -> Dict: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-2" , revision="bf16" , dtype=jnp.bfloataa , ) __SCREAMING_SNAKE_CASE = "A painting of a squirrel eating a burger" __SCREAMING_SNAKE_CASE = jax.device_count() __SCREAMING_SNAKE_CASE = num_samples * [prompt] __SCREAMING_SNAKE_CASE = sd_pipe.prepare_inputs(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = replicate(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = shard(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0 ) __SCREAMING_SNAKE_CASE = jax.random.split(UpperCAmelCase__ , jax.device_count() ) __SCREAMING_SNAKE_CASE = sd_pipe(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , num_inference_steps=2_5 , jit=UpperCAmelCase__ )[0] assert images.shape == (jax.device_count(), 1, 7_6_8, 7_6_8, 3) __SCREAMING_SNAKE_CASE = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __SCREAMING_SNAKE_CASE = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] __SCREAMING_SNAKE_CASE = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __SCREAMING_SNAKE_CASE = jnp.array([0.4_238, 0.4_414, 0.4_395, 0.4_453, 0.4_629, 0.4_590, 0.4_531, 0.45_508, 0.4_512] ) print(F"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[Any]: __SCREAMING_SNAKE_CASE = "stabilityai/stable-diffusion-2" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = FlaxDPMSolverMultistepScheduler.from_pretrained(UpperCAmelCase__ , subfolder="scheduler" ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( UpperCAmelCase__ , scheduler=UpperCAmelCase__ , revision="bf16" , dtype=jnp.bfloataa , ) __SCREAMING_SNAKE_CASE = scheduler_params __SCREAMING_SNAKE_CASE = "A painting of a squirrel eating a burger" __SCREAMING_SNAKE_CASE = jax.device_count() __SCREAMING_SNAKE_CASE = num_samples * [prompt] __SCREAMING_SNAKE_CASE = sd_pipe.prepare_inputs(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = replicate(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = shard(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0 ) __SCREAMING_SNAKE_CASE = jax.random.split(UpperCAmelCase__ , jax.device_count() ) __SCREAMING_SNAKE_CASE = sd_pipe(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , num_inference_steps=2_5 , jit=UpperCAmelCase__ )[0] assert images.shape == (jax.device_count(), 1, 7_6_8, 7_6_8, 3) __SCREAMING_SNAKE_CASE = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __SCREAMING_SNAKE_CASE = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] __SCREAMING_SNAKE_CASE = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __SCREAMING_SNAKE_CASE = jnp.array([0.4_336, 0.42_969, 0.4_453, 0.4_199, 0.4_297, 0.4_531, 0.4_434, 0.4_434, 0.4_297] ) print(F"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
54
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __UpperCAmelCase = { '''configuration_transfo_xl''': ['''TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TransfoXLConfig'''], '''tokenization_transfo_xl''': ['''TransfoXLCorpus''', '''TransfoXLTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AdaptiveEmbedding''', '''TransfoXLForSequenceClassification''', '''TransfoXLLMHeadModel''', '''TransfoXLModel''', '''TransfoXLPreTrainedModel''', '''load_tf_weights_in_transfo_xl''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFAdaptiveEmbedding''', '''TFTransfoXLForSequenceClassification''', '''TFTransfoXLLMHeadModel''', '''TFTransfoXLMainLayer''', '''TFTransfoXLModel''', '''TFTransfoXLPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
119
0
"""simple docstring""" import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument __UpperCamelCase : Dict = { '''/attention/''': '''/0/SelfAttention/''', '''/self_attention/''': '''/0/SelfAttention/''', '''/encoder_decoder_attention/''': '''/1/EncDecAttention/''', '''value''': '''v''', '''query''': '''q''', '''key''': '''k''', '''out''': '''o''', '''pre_self_attention_layer_norm''': '''0/layer_norm''', '''pre_cross_attention_layer_norm''': '''1/layer_norm''', '''pre_attention_layer_norm''': '''0/layer_norm''', # previously 1, but seems wrong '''token_embedder''': '''shared''', '''encoder_norm''': '''final_layer_norm''', '''decoder_norm''': '''final_layer_norm''', '''relpos_bias/rel_embedding''': '''block/0/layer/0/SelfAttention/relative_attention_bias/weight''', '''router/router_weights/w/''': '''router/classifier/''', '''roer/roer_weights/w/''': '''router/classifier/''', '''logits_dense''': '''lm_head''', } def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[Any] ): lowerCAmelCase = list(s_dict.keys() ) for key in keys: lowerCAmelCase = R'.*/layers_(\d+)' lowerCAmelCase = key if re.match(_lowercase , _lowercase ): lowerCAmelCase = re.sub(R'layers_(\d+)' , R'block/\1/layer' , _lowercase ) lowerCAmelCase = R'(encoder|decoder)\/' if re.match(_lowercase , _lowercase ): lowerCAmelCase = re.match(_lowercase , _lowercase ).groups() if groups[0] == "encoder": lowerCAmelCase = re.sub(R'/mlp/' , R'/1/mlp/' , _lowercase ) lowerCAmelCase = re.sub(R'/pre_mlp_layer_norm/' , R'/1/layer_norm/' , _lowercase ) elif groups[0] == "decoder": lowerCAmelCase = re.sub(R'/mlp/' , R'/2/mlp/' , _lowercase ) lowerCAmelCase = re.sub(R'/pre_mlp_layer_norm/' , R'/2/layer_norm/' , _lowercase ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: lowerCAmelCase = new_key.replace(_lowercase , _lowercase ) print(F'{key} -> {new_key}' ) lowerCAmelCase = s_dict.pop(_lowercase ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: lowerCAmelCase = s_dict[ 'encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: lowerCAmelCase = s_dict[ 'decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: lowerCAmelCase = s_dict[key].shape[0] lowerCAmelCase = s_dict[key] for idx in range(_lowercase ): lowerCAmelCase = expert_weihts[idx] print(F'{key} -> {key.replace("expert/" , "nested fstring" )}' ) s_dict.pop(_lowercase ) return s_dict __UpperCamelCase : Tuple = { '''NUM_ENCODER_LAYERS''': '''num_layers''', '''NUM_DECODER_LAYERS''': '''num_decoder_layers''', '''NUM_HEADS''': '''num_heads''', '''HEAD_DIM''': '''d_kv''', '''EMBED_DIM''': '''d_model''', '''MLP_DIM''': '''d_ff''', '''NUM_SELECTED_EXPERTS''': '''num_selected_experts''', '''NUM_ENCODER_SPARSE_LAYERS''': '''num_sparse_encoder_layers''', '''NUM_DECODER_SPARSE_LAYERS''': '''num_sparse_decoder_layers''', '''dense.MlpBlock.activations''': '''feed_forward_proj''', } def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int ): import regex as re with open(_lowercase , 'r' ) as f: lowerCAmelCase = f.read() lowerCAmelCase = re.findall(R'(.*) = ([0-9.]*)' , _lowercase ) lowerCAmelCase = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": lowerCAmelCase = float(_lowercase ) if '.' in value else int(_lowercase ) lowerCAmelCase = re.findall(R'(.*activations) = \(\'(.*)\',\)' , _lowercase )[0] lowerCAmelCase = str(activation[1] ) lowerCAmelCase = num_experts lowerCAmelCase = SwitchTransformersConfig(**_lowercase ) return config def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Optional[Any]="./" , _UpperCAmelCase : Any=8 ): print(F'Loading flax weights from : {flax_checkpoint_path}' ) lowerCAmelCase = checkpoints.load_tax_checkpoint(_lowercase ) if gin_file is not None: lowerCAmelCase = convert_gin_to_config(_lowercase , _lowercase ) else: lowerCAmelCase = SwitchTransformersConfig.from_pretrained(_lowercase ) lowerCAmelCase = SwitchTransformersForConditionalGeneration(_lowercase ) lowerCAmelCase = flax_params['target'] lowerCAmelCase = flatten_dict(_lowercase , sep='/' ) lowerCAmelCase = rename_keys(_lowercase ) lowerCAmelCase = unflatten_dict(_lowercase , sep='/' ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(_lowercase , _lowercase ) print(F'Save PyTorch model to {pytorch_dump_path}' ) pt_model.save_pretrained(_lowercase ) if __name__ == "__main__": __UpperCamelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the''' ''' model architecture. If not provided, a `gin_file` has to be provided.''' ), ) parser.add_argument( '''--gin_file''', default=None, type=str, required=False, help='''Path to the gin config file. If not provided, a `config_file` has to be passed ''', ) parser.add_argument( '''--config_name''', default=None, type=str, required=False, help='''Config name of SwitchTransformers model.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output pytorch model.''' ) parser.add_argument('''--num_experts''', default=8, type=int, required=False, help='''Number of experts''') __UpperCamelCase : List[str] = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
359
"""simple docstring""" import os from collections.abc import Iterator def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str = "." ): for dir_path, dir_names, filenames in os.walk(_UpperCAmelCase ): lowerCAmelCase = [d for d in dir_names if d != 'scripts' and d[0] not in '._'] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(_UpperCAmelCase )[1] in (".py", ".ipynb"): yield os.path.join(_UpperCAmelCase , _UpperCAmelCase ).lstrip('./' ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ): return F'{i * " "}*' if i else "\n##" def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ): lowerCAmelCase = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(_UpperCAmelCase ) or old_parts[i] != new_part) and new_part: print(F'{md_prefix(_UpperCAmelCase )} {new_part.replace("_" , " " ).title()}' ) return new_path def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str = "." ): lowerCAmelCase = '' for filepath in sorted(good_file_paths(_UpperCAmelCase ) ): lowerCAmelCase ,lowerCAmelCase = os.path.split(_UpperCAmelCase ) if filepath != old_path: lowerCAmelCase = print_path(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = (filepath.count(os.sep ) + 1) if filepath else 0 lowerCAmelCase = F'{filepath}/{filename}'.replace(' ' , '%20' ) lowerCAmelCase = os.path.splitext(filename.replace('_' , ' ' ).title() )[0] print(F'{md_prefix(_UpperCAmelCase )} [{filename}]({url})' ) if __name__ == "__main__": print_directory_md('''.''')
309
0
"""simple docstring""" from typing import Any def snake_case_ ( A_ : list ): '''simple docstring''' if not input_list: return [] _lowerCamelCase : Dict = [input_list.count(A_ ) for value in input_list] _lowerCamelCase : Union[str, Any] = max(A_ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(A_ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
72
'''simple docstring''' # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file lowerCAmelCase__ = '''Run commands across TPU VMs for initial setup before running `accelerate launch`.''' def _A ( A__=None ): """simple docstring""" if subparsers is not None: __lowercase = subparsers.add_parser('''tpu-config''' , description=_description ) else: __lowercase = argparse.ArgumentParser('''Accelerate tpu-config command''' , description=_description ) # Core arguments __lowercase = parser.add_argument_group( '''Config Arguments''' , '''Arguments that can be configured through `accelerate config`.''' ) config_args.add_argument( '''--config_file''' , type=A__ , default=A__ , help='''Path to the config file to use for accelerate.''' , ) config_args.add_argument( '''--tpu_name''' , default=A__ , help='''The name of the TPU to use. If not specified, will use the TPU specified in the config file.''' , ) config_args.add_argument( '''--tpu_zone''' , default=A__ , help='''The zone of the TPU to use. If not specified, will use the zone specified in the config file.''' , ) __lowercase = parser.add_argument_group('''TPU Arguments''' , '''Arguments for options ran inside the TPU.''' ) pod_args.add_argument( '''--use_alpha''' , action='''store_true''' , help='''Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.''' , ) pod_args.add_argument( '''--command_file''' , default=A__ , help='''The path to the file containing the commands to run on the pod on startup.''' , ) pod_args.add_argument( '''--command''' , action='''append''' , nargs='''+''' , help='''A command to run on the pod. Can be passed multiple times.''' , ) pod_args.add_argument( '''--install_accelerate''' , action='''store_true''' , help='''Whether to install accelerate on the pod. Defaults to False.''' , ) pod_args.add_argument( '''--accelerate_version''' , default='''latest''' , help='''The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.''' , ) pod_args.add_argument( '''--debug''' , action='''store_true''' , help='''If set, will print the command that would be run instead of running it.''' ) if subparsers is not None: parser.set_defaults(func=A__ ) return parser def _A ( A__ ): """simple docstring""" __lowercase = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(A__ ): __lowercase = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: __lowercase = defaults.command_file if not args.command and defaults.commands is not None: __lowercase = defaults.commands if not args.tpu_name: __lowercase = defaults.tpu_name if not args.tpu_zone: __lowercase = defaults.tpu_zone if args.accelerate_version == "dev": __lowercase = '''git+https://github.com/huggingface/accelerate.git''' elif args.accelerate_version == "latest": __lowercase = '''accelerate -U''' elif isinstance(parse(args.accelerate_version ) , A__ ): __lowercase = F"accelerate=={args.accelerate_version}" if not args.command_file and not args.command: raise ValueError('''You must specify either a command file or a command to run on the pod.''' ) if args.command_file: with open(args.command_file , '''r''' ) as f: __lowercase = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , A__ ): __lowercase = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate __lowercase = ['''cd /usr/share'''] if args.install_accelerate: new_cmd += [F"pip install {args.accelerate_version}"] new_cmd += args.command __lowercase = '''; '''.join(A__ ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess __lowercase = ['''gcloud'''] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F"Running {' '.join(A__ )}" ) return subprocess.run(A__ ) print('''Successfully setup pod.''' ) def _A ( ): """simple docstring""" __lowercase = tpu_command_parser() __lowercase = parser.parse_args() tpu_command_launcher(A__ )
104
0
import math def _A ( SCREAMING_SNAKE_CASE : int ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(SCREAMING_SNAKE_CASE ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _A ( SCREAMING_SNAKE_CASE : float = 0.1 ): """simple docstring""" a__ : Optional[Any] =3 a__ : Tuple =3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(SCREAMING_SNAKE_CASE ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
358
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=UpperCamelCase__) class __lowerCAmelCase ( UpperCamelCase__): _lowercase : str = field(default="""image-classification""" , metadata={"""include_in_asdict_even_if_is_default""": True}) _lowercase : ClassVar[Features] = Features({"""image""": Image()}) _lowercase : ClassVar[Features] = Features({"""labels""": ClassLabel}) _lowercase : str = "image" _lowercase : str = "labels" def _lowercase ( self , lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' if self.label_column not in features: raise ValueError(F'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , lowerCAmelCase__ ): raise ValueError(F'''Column {self.label_column} is not a ClassLabel.''' ) a__ : int =copy.deepcopy(self ) a__ : Dict =self.label_schema.copy() a__ : int =features[self.label_column] a__ : str =label_schema return task_template @property def _lowercase ( self ) -> Dict[str, str]: '''simple docstring''' return { self.image_column: "image", self.label_column: "labels", }
148
0
"""simple docstring""" import argparse import os import torch from transformers.utils import WEIGHTS_NAME lowerCamelCase__ = ["""small""", """medium""", """large"""] lowerCamelCase__ = """lm_head.decoder.weight""" lowerCamelCase__ = """lm_head.weight""" def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : Optional[int] = torch.load(__lowerCamelCase ) __lowerCAmelCase : Any = d.pop(__lowerCamelCase ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) torch.save(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument("""--dialogpt_path""", default=""".""", type=str) lowerCamelCase__ = parser.parse_args() for MODEL in DIALOGPT_MODELS: lowerCamelCase__ = os.path.join(args.dialogpt_path, f'{MODEL}_ft.pkl') lowerCamelCase__ = f'./DialoGPT-{MODEL}' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
86
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { """tensor(bool)""": np.bool_, """tensor(int8)""": np.inta, """tensor(uint8)""": np.uinta, """tensor(int16)""": np.intaa, """tensor(uint16)""": np.uintaa, """tensor(int32)""": np.intaa, """tensor(uint32)""": np.uintaa, """tensor(int64)""": np.intaa, """tensor(uint64)""": np.uintaa, """tensor(float16)""": np.floataa, """tensor(float)""": np.floataa, """tensor(double)""": np.floataa, } class UpperCAmelCase : def __init__(self : Optional[Any] , snake_case__ : Optional[Any]=None , **snake_case__ : Optional[Any] ) -> List[str]: '''simple docstring''' logger.info("`diffusers.OnnxRuntimeModel` is experimental and might change in the future." ) snake_case : Optional[Any] = model snake_case : Dict = kwargs.get("model_save_dir" , snake_case__ ) snake_case : int = kwargs.get("latest_model_name" , snake_case__ ) def __call__(self : Tuple , **snake_case__ : str ) -> List[str]: '''simple docstring''' snake_case : Union[str, Any] = {k: np.array(snake_case__ ) for k, v in kwargs.items()} return self.model.run(snake_case__ , snake_case__ ) @staticmethod def _SCREAMING_SNAKE_CASE (snake_case__ : Union[str, Path] , snake_case__ : Optional[int]=None , snake_case__ : Optional[int]=None ) -> Any: '''simple docstring''' if provider is None: logger.info("No onnxruntime provider specified, using CPUExecutionProvider" ) snake_case : Optional[int] = "CPUExecutionProvider" return ort.InferenceSession(snake_case__ , providers=[provider] , sess_options=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : Union[str, Path] , snake_case__ : Optional[str] = None , **snake_case__ : Any ) -> List[Any]: '''simple docstring''' snake_case : Tuple = file_name if file_name is not None else ONNX_WEIGHTS_NAME snake_case : Any = self.model_save_dir.joinpath(self.latest_model_name ) snake_case : str = Path(snake_case__ ).joinpath(snake_case__ ) try: shutil.copyfile(snake_case__ , snake_case__ ) except shutil.SameFileError: pass # copy external weights (for models >2GB) snake_case : List[str] = self.model_save_dir.joinpath(snake_case__ ) if src_path.exists(): snake_case : Tuple = Path(snake_case__ ).joinpath(snake_case__ ) try: shutil.copyfile(snake_case__ , snake_case__ ) except shutil.SameFileError: pass def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : Union[str, os.PathLike] , **snake_case__ : Optional[int] , ) -> str: '''simple docstring''' if os.path.isfile(snake_case__ ): logger.error(f"""Provided path ({save_directory}) should be a directory, not a file""" ) return os.makedirs(snake_case__ , exist_ok=snake_case__ ) # saving model weights/files self._save_pretrained(snake_case__ , **snake_case__ ) @classmethod def _SCREAMING_SNAKE_CASE (cls : Tuple , snake_case__ : Union[str, Path] , snake_case__ : Optional[Union[bool, str, None]] = None , snake_case__ : Optional[Union[str, None]] = None , snake_case__ : bool = False , snake_case__ : Optional[str] = None , snake_case__ : Optional[str] = None , snake_case__ : Optional[str] = None , snake_case__ : Optional["ort.SessionOptions"] = None , **snake_case__ : Tuple , ) -> Tuple: '''simple docstring''' snake_case : List[str] = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(snake_case__ ): snake_case : Any = OnnxRuntimeModel.load_model( os.path.join(snake_case__ , snake_case__ ) , provider=snake_case__ , sess_options=snake_case__ ) snake_case : Union[str, Any] = Path(snake_case__ ) # load model from hub else: # download model snake_case : Dict = hf_hub_download( repo_id=snake_case__ , filename=snake_case__ , use_auth_token=snake_case__ , revision=snake_case__ , cache_dir=snake_case__ , force_download=snake_case__ , ) snake_case : List[Any] = Path(snake_case__ ).parent snake_case : Union[str, Any] = Path(snake_case__ ).name snake_case : Dict = OnnxRuntimeModel.load_model(snake_case__ , provider=snake_case__ , sess_options=snake_case__ ) return cls(model=snake_case__ , **snake_case__ ) @classmethod def _SCREAMING_SNAKE_CASE (cls : Optional[Any] , snake_case__ : Union[str, Path] , snake_case__ : bool = True , snake_case__ : Optional[str] = None , snake_case__ : Optional[str] = None , **snake_case__ : Dict , ) -> Union[str, Any]: '''simple docstring''' snake_case : Dict = None if len(str(snake_case__ ).split("@" ) ) == 2: snake_case , snake_case : int = model_id.split("@" ) return cls._from_pretrained( model_id=snake_case__ , revision=snake_case__ , cache_dir=snake_case__ , force_download=snake_case__ , use_auth_token=snake_case__ , **snake_case__ , )
59
0
import torch from torch import nn class lowercase ( nn.Module ): '''simple docstring''' def __init__(self , __a , __a , __a , __a , __a=1 , __a=False ) -> Optional[Any]: """simple docstring""" super().__init__() UpperCAmelCase__ = n_token UpperCAmelCase__ = d_embed UpperCAmelCase__ = d_proj UpperCAmelCase__ = cutoffs + [n_token] UpperCAmelCase__ = [0] + self.cutoffs UpperCAmelCase__ = div_val UpperCAmelCase__ = self.cutoffs[0] UpperCAmelCase__ = len(self.cutoffs ) - 1 UpperCAmelCase__ = self.shortlist_size + self.n_clusters if self.n_clusters > 0: UpperCAmelCase__ = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) UpperCAmelCase__ = nn.Parameter(torch.zeros(self.n_clusters ) ) UpperCAmelCase__ = nn.ModuleList() UpperCAmelCase__ = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(__a , __a ) ) ) else: self.out_projs.append(__a ) self.out_layers.append(nn.Linear(__a , __a ) ) else: for i in range(len(self.cutoffs ) ): UpperCAmelCase__ , UpperCAmelCase__ = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCAmelCase__ = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(__a , __a ) ) ) self.out_layers.append(nn.Linear(__a , r_idx - l_idx ) ) UpperCAmelCase__ = keep_order def UpperCamelCase__ (self , __a , __a , __a , __a ) -> Any: """simple docstring""" if proj is None: UpperCAmelCase__ = nn.functional.linear(__a , __a , bias=__a ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: UpperCAmelCase__ = nn.functional.linear(__a , proj.t().contiguous() ) UpperCAmelCase__ = nn.functional.linear(__a , __a , bias=__a ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def UpperCamelCase__ (self , __a , __a=None , __a=False ) -> List[str]: """simple docstring""" if labels is not None: # Shift so that tokens < n predict n UpperCAmelCase__ = hidden[..., :-1, :].contiguous() UpperCAmelCase__ = labels[..., 1:].contiguous() UpperCAmelCase__ = hidden.view(-1 , hidden.size(-1 ) ) UpperCAmelCase__ = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('Input and labels should have the same size in the batch dimension.' ) else: UpperCAmelCase__ = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: UpperCAmelCase__ = self._compute_logit(__a , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: UpperCAmelCase__ = labels != -100 UpperCAmelCase__ = torch.zeros_like(__a , dtype=hidden.dtype , device=hidden.device ) UpperCAmelCase__ = ( -nn.functional.log_softmax(__a , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: UpperCAmelCase__ = nn.functional.log_softmax(__a , dim=-1 ) else: # construct weights and biases UpperCAmelCase__ , UpperCAmelCase__ = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: UpperCAmelCase__ , UpperCAmelCase__ = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCAmelCase__ = self.out_layers[0].weight[l_idx:r_idx] UpperCAmelCase__ = self.out_layers[0].bias[l_idx:r_idx] else: UpperCAmelCase__ = self.out_layers[i].weight UpperCAmelCase__ = self.out_layers[i].bias if i == 0: UpperCAmelCase__ = torch.cat([weight_i, self.cluster_weight] , dim=0 ) UpperCAmelCase__ = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(__a ) biases.append(__a ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = weights[0], biases[0], self.out_projs[0] UpperCAmelCase__ = self._compute_logit(__a , __a , __a , __a ) UpperCAmelCase__ = nn.functional.log_softmax(__a , dim=1 ) if labels is None: UpperCAmelCase__ = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: UpperCAmelCase__ = torch.zeros_like(__a , dtype=hidden.dtype , device=hidden.device ) UpperCAmelCase__ = 0 UpperCAmelCase__ = [0] + self.cutoffs for i in range(len(__a ) - 1 ): UpperCAmelCase__ , UpperCAmelCase__ = cutoff_values[i], cutoff_values[i + 1] if labels is not None: UpperCAmelCase__ = (labels >= l_idx) & (labels < r_idx) UpperCAmelCase__ = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue UpperCAmelCase__ = labels.index_select(0 , __a ) - l_idx UpperCAmelCase__ = head_logprob.index_select(0 , __a ) UpperCAmelCase__ = hidden.index_select(0 , __a ) else: UpperCAmelCase__ = hidden if i == 0: if labels is not None: UpperCAmelCase__ = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: UpperCAmelCase__ = head_logprob[:, : self.cutoffs[0]] else: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = weights[i], biases[i], self.out_projs[i] UpperCAmelCase__ = self._compute_logit(__a , __a , __a , __a ) UpperCAmelCase__ = nn.functional.log_softmax(__a , dim=1 ) UpperCAmelCase__ = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: UpperCAmelCase__ = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: UpperCAmelCase__ = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i UpperCAmelCase__ = logprob_i if labels is not None: if (hasattr(self , 'keep_order' ) and self.keep_order) or keep_order: out.index_copy_(0 , __a , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def UpperCamelCase__ (self , __a ) -> Union[str, Any]: """simple docstring""" if self.n_clusters == 0: UpperCAmelCase__ = self._compute_logit(__a , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(__a , dim=-1 ) else: # construct weights and biases UpperCAmelCase__ , UpperCAmelCase__ = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: UpperCAmelCase__ , UpperCAmelCase__ = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCAmelCase__ = self.out_layers[0].weight[l_idx:r_idx] UpperCAmelCase__ = self.out_layers[0].bias[l_idx:r_idx] else: UpperCAmelCase__ = self.out_layers[i].weight UpperCAmelCase__ = self.out_layers[i].bias if i == 0: UpperCAmelCase__ = torch.cat([weight_i, self.cluster_weight] , dim=0 ) UpperCAmelCase__ = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(__a ) biases.append(__a ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = weights[0], biases[0], self.out_projs[0] UpperCAmelCase__ = self._compute_logit(__a , __a , __a , __a ) UpperCAmelCase__ = hidden.new_empty((head_logit.size(0 ), self.n_token) ) UpperCAmelCase__ = nn.functional.log_softmax(__a , dim=1 ) UpperCAmelCase__ = [0] + self.cutoffs for i in range(len(__a ) - 1 ): UpperCAmelCase__ , UpperCAmelCase__ = cutoff_values[i], cutoff_values[i + 1] if i == 0: UpperCAmelCase__ = head_logprob[:, : self.cutoffs[0]] else: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = weights[i], biases[i], self.out_projs[i] UpperCAmelCase__ = self._compute_logit(__a , __a , __a , __a ) UpperCAmelCase__ = nn.functional.log_softmax(__a , dim=1 ) UpperCAmelCase__ = head_logprob[:, -i] + tail_logprob_i UpperCAmelCase__ = logprob_i return out
335
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class lowercase : '''simple docstring''' def __init__(self ) -> str: """simple docstring""" UpperCAmelCase__ = '' UpperCAmelCase__ = '' UpperCAmelCase__ = [] UpperCAmelCase__ = 0 UpperCAmelCase__ = 256 UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 def UpperCamelCase__ (self , __a ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = cva.imread(__a , 0 ) UpperCAmelCase__ = copy.deepcopy(self.img ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = plt.hist(self.img.ravel() , 256 , [0, 256] , label='x' ) UpperCAmelCase__ = np.sum(__a ) for i in range(len(__a ) ): UpperCAmelCase__ = x[i] / self.k self.sk += prk UpperCAmelCase__ = (self.L - 1) * self.sk if self.rem != 0: UpperCAmelCase__ = int(last % last ) UpperCAmelCase__ = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(__a ) UpperCAmelCase__ = int(np.ma.count(self.img ) / self.img[1].size ) UpperCAmelCase__ = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): UpperCAmelCase__ = self.img[j][i] if num != self.last_list[num]: UpperCAmelCase__ = self.last_list[num] cva.imwrite('output_data/output.jpg' , self.img ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" plt.hist(self.img.ravel() , 256 , [0, 256] ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" cva.imshow('Output-Image' , self.img ) cva.imshow('Input-Image' , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": _UpperCamelCase = os.path.join(os.path.basename(__file__), '''image_data/input.jpg''') _UpperCamelCase = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
335
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class lowerCamelCase : def __init__( self : Dict , __UpperCAmelCase : List[str] , ) -> List[Any]: SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = 1_3 SCREAMING_SNAKE_CASE__ = 7 SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = 9_9 SCREAMING_SNAKE_CASE__ = 3_2 SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = 3_7 SCREAMING_SNAKE_CASE__ = '''gelu''' SCREAMING_SNAKE_CASE__ = 0.1 SCREAMING_SNAKE_CASE__ = 0.1 SCREAMING_SNAKE_CASE__ = 5_1_2 SCREAMING_SNAKE_CASE__ = 1_6 SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = 0.02 SCREAMING_SNAKE_CASE__ = 3 SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = None def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ = None if self.use_input_mask: SCREAMING_SNAKE_CASE__ = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None if self.use_labels: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE__ = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: ( SCREAMING_SNAKE_CASE__ ) = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : int ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = TFEsmModel(config=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} SCREAMING_SNAKE_CASE__ = model(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = [input_ids, input_mask] SCREAMING_SNAKE_CASE__ = model(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Tuple , __UpperCAmelCase : Any , __UpperCAmelCase : str , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : str , __UpperCAmelCase : int , ) -> int: SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = TFEsmModel(config=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''encoder_hidden_states''': encoder_hidden_states, '''encoder_attention_mask''': encoder_attention_mask, } SCREAMING_SNAKE_CASE__ = model(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = [input_ids, input_mask] SCREAMING_SNAKE_CASE__ = model(__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase ) # Also check the case where encoder outputs are not passed SCREAMING_SNAKE_CASE__ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any] ) -> str: SCREAMING_SNAKE_CASE__ = TFEsmForMaskedLM(config=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : Any , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[str] , __UpperCAmelCase : int , __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : int ) -> List[str]: SCREAMING_SNAKE_CASE__ = self.num_labels SCREAMING_SNAKE_CASE__ = TFEsmForTokenClassification(config=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} SCREAMING_SNAKE_CASE__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() ( SCREAMING_SNAKE_CASE__ ) = config_and_inputs SCREAMING_SNAKE_CASE__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowerCamelCase (A__ ,A__ ,unittest.TestCase ): lowerCamelCase__ : List[Any] = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) lowerCamelCase__ : Union[str, Any] = ( { "feature-extraction": TFEsmModel, "fill-mask": TFEsmForMaskedLM, "text-classification": TFEsmForSequenceClassification, "token-classification": TFEsmForTokenClassification, "zero-shot": TFEsmForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase__ : List[str] = False lowerCamelCase__ : Optional[int] = False def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: SCREAMING_SNAKE_CASE__ = TFEsmModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=3_7 ) def SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> str: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : str ) -> int: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Any ) -> int: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase ) @slow def SCREAMING_SNAKE_CASE ( self : Any ) -> Any: for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ = TFEsmModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @unittest.skip("""Protein models do not support embedding resizing.""" ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: pass @unittest.skip("""Protein models do not support embedding resizing.""" ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: pass def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ = model_class(__UpperCAmelCase ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer SCREAMING_SNAKE_CASE__ = model.get_bias() assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) for k, v in name.items(): assert isinstance(__UpperCAmelCase , tf.Variable ) else: SCREAMING_SNAKE_CASE__ = model.get_output_embeddings() assert x is None SCREAMING_SNAKE_CASE__ = model.get_bias() assert name is None @require_tf class lowerCamelCase (unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: SCREAMING_SNAKE_CASE__ = TFEsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) SCREAMING_SNAKE_CASE__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE__ = model(__UpperCAmelCase )[0] SCREAMING_SNAKE_CASE__ = [1, 6, 3_3] self.assertEqual(list(output.numpy().shape ) , __UpperCAmelCase ) # compare the actual values for a slice. SCREAMING_SNAKE_CASE__ = tf.constant( [ [ [8.921_518, -1_0.5_8_9_8_1_4, -6.4_671_307], [-6.3_967_156, -1_3.9_1_1_3_7_7, -1.1_211_915], [-7.781_247, -1_3.9_5_1_5_5_7, -3.740_592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-2 ) ) @slow def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: SCREAMING_SNAKE_CASE__ = TFEsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) SCREAMING_SNAKE_CASE__ = tf.constant([[0, 6, 4, 1_3, 5, 4, 1_6, 1_2, 1_1, 7, 2]] ) SCREAMING_SNAKE_CASE__ = model(__UpperCAmelCase )[0] # compare the actual values for a slice. SCREAMING_SNAKE_CASE__ = tf.constant( [ [ [0.14_443_092, 0.54_125_327, 0.3_247_739], [0.30_340_484, 0.00_526_676, 0.31_077_722], [0.32_278_043, -0.24_987_096, 0.3_414_628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
165
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer snake_case_ : List[str] = logging.get_logger(__name__) snake_case_ : Union[str, Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} snake_case_ : Optional[int] = { "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } snake_case_ : Optional[Any] = { "yjernite/retribert-base-uncased": 5_12, } snake_case_ : Union[str, Any] = { "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class __a (lowerCamelCase ): __a : Optional[Any] = VOCAB_FILES_NAMES __a : Dict = PRETRAINED_VOCAB_FILES_MAP __a : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : int = PRETRAINED_INIT_CONFIGURATION __a : Union[str, Any] = RetriBertTokenizer __a : Optional[int] = ["input_ids", "attention_mask"] def __init__( self : str , __magic_name__ : List[Any]=None , __magic_name__ : Optional[int]=None , __magic_name__ : Any=True , __magic_name__ : int="[UNK]" , __magic_name__ : List[Any]="[SEP]" , __magic_name__ : List[Any]="[PAD]" , __magic_name__ : Optional[int]="[CLS]" , __magic_name__ : Union[str, Any]="[MASK]" , __magic_name__ : int=True , __magic_name__ : Optional[Any]=None , **__magic_name__ : Any , ) -> List[str]: """simple docstring""" super().__init__( __magic_name__ , tokenizer_file=__magic_name__ , do_lower_case=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , pad_token=__magic_name__ , cls_token=__magic_name__ , mask_token=__magic_name__ , tokenize_chinese_chars=__magic_name__ , strip_accents=__magic_name__ , **__magic_name__ , ) UpperCAmelCase_ : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , __magic_name__ ) != do_lower_case or normalizer_state.get('''strip_accents''' , __magic_name__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , __magic_name__ ) != tokenize_chinese_chars ): UpperCAmelCase_ : Dict = getattr(__magic_name__ , normalizer_state.pop('''type''' ) ) UpperCAmelCase_ : Optional[int] = do_lower_case UpperCAmelCase_ : Optional[int] = strip_accents UpperCAmelCase_ : Tuple = tokenize_chinese_chars UpperCAmelCase_ : Optional[int] = normalizer_class(**__magic_name__ ) UpperCAmelCase_ : List[str] = do_lower_case def UpperCAmelCase__ ( self : int , __magic_name__ : List[str] , __magic_name__ : Optional[Any]=None ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" UpperCAmelCase_ : Dict = [self.sep_token_id] UpperCAmelCase_ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" UpperCAmelCase_ : int = self._tokenizer.model.save(__magic_name__ , name=__magic_name__ ) return tuple(__magic_name__ )
125
0
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class A_ ( unittest.TestCase ): def _lowerCAmelCase (self :Optional[int] )-> str: __A = '''ylacombe/bark-small''' __A = tempfile.mkdtemp() __A = '''en_speaker_1''' __A = '''This is a test string''' __A = '''speaker_embeddings_path.json''' __A = '''speaker_embeddings''' def _lowerCAmelCase (self :Optional[int] , **_UpperCamelCase :Tuple )-> Optional[int]: return AutoTokenizer.from_pretrained(self.checkpoint , **_UpperCamelCase ) def _lowerCAmelCase (self :Union[str, Any] )-> Optional[int]: shutil.rmtree(self.tmpdirname ) def _lowerCAmelCase (self :Optional[Any] )-> Optional[Any]: __A = self.get_tokenizer() __A = BarkProcessor(tokenizer=_UpperCamelCase ) processor.save_pretrained(self.tmpdirname ) __A = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def _lowerCAmelCase (self :str )-> List[str]: __A = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) __A = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __A = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='''(BOS)''' , eos_token='''(EOS)''' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def _lowerCAmelCase (self :Optional[Any] )-> Any: __A = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) __A = 35 __A = 2 __A = 8 __A = { '''semantic_prompt''': np.ones(_UpperCamelCase ), '''coarse_prompt''': np.ones((nb_codebooks_coarse, seq_len) ), '''fine_prompt''': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset __A = processor(text=self.input_string , voice_preset=_UpperCamelCase ) __A = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCamelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file __A = os.path.join(self.tmpdirname , '''file.npz''' ) np.savez(_UpperCamelCase , **_UpperCamelCase ) __A = processor(text=self.input_string , voice_preset=_UpperCamelCase ) __A = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCamelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub __A = processor(text=self.input_string , voice_preset=self.voice_preset ) def _lowerCAmelCase (self :Tuple )-> Optional[int]: __A = self.get_tokenizer() __A = BarkProcessor(tokenizer=_UpperCamelCase ) __A = processor(text=self.input_string ) __A = tokenizer( self.input_string , padding='''max_length''' , max_length=256 , add_special_tokens=_UpperCamelCase , return_attention_mask=_UpperCamelCase , return_token_type_ids=_UpperCamelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
250
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) snake_case__ : Tuple = { 'configuration_layoutlmv2': ['LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv2Config'], 'processing_layoutlmv2': ['LayoutLMv2Processor'], 'tokenization_layoutlmv2': ['LayoutLMv2Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Union[str, Any] = ['LayoutLMv2TokenizerFast'] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Optional[int] = ['LayoutLMv2FeatureExtractor'] snake_case__ : Dict = ['LayoutLMv2ImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Tuple = [ 'LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv2ForQuestionAnswering', 'LayoutLMv2ForSequenceClassification', 'LayoutLMv2ForTokenClassification', 'LayoutLMv2Layer', 'LayoutLMv2Model', 'LayoutLMv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys snake_case__ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
250
1
'''simple docstring''' import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() lowercase__ : Optional[int] = 2 class __lowerCAmelCase : """simple docstring""" def __init__( self : Union[str, Any] , *, # begin keyword-only arguments lowerCAmelCase__ : List[str]="<s>" , lowerCAmelCase__ : Union[str, Any]="<pad>" , lowerCAmelCase__ : Tuple="</s>" , lowerCAmelCase__ : Dict="<unk>" , lowerCAmelCase__ : Any=None , ) -> List[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = bos, unk, pad, eos _UpperCamelCase = [] _UpperCamelCase = [] _UpperCamelCase = {} _UpperCamelCase = self.add_symbol(_a ) _UpperCamelCase = self.add_symbol(_a ) _UpperCamelCase = self.add_symbol(_a ) _UpperCamelCase = self.add_symbol(_a ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(_a ) _UpperCamelCase = len(self.symbols ) def __eq__( self : int , lowerCAmelCase__ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return self.indices == other.indices def __getitem__( self : Union[str, Any] , lowerCAmelCase__ : List[str] ) -> Optional[int]: '''simple docstring''' if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : str ) -> Any: '''simple docstring''' return len(self.symbols ) def __contains__( self : int , lowerCAmelCase__ : Dict ) -> List[Any]: '''simple docstring''' return sym in self.indices @classmethod def snake_case__ ( cls : str , lowerCAmelCase__ : Optional[Any] ) -> List[str]: '''simple docstring''' _UpperCamelCase = cls() d.add_from_file(_a ) return d def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any=1 , lowerCAmelCase__ : Any=False ) -> str: '''simple docstring''' if word in self.indices and not overwrite: _UpperCamelCase = self.indices[word] _UpperCamelCase = self.count[idx] + n return idx else: _UpperCamelCase = len(self.symbols ) _UpperCamelCase = idx self.symbols.append(_a ) self.count.append(_a ) return idx def snake_case__ ( self : int , lowerCAmelCase__ : List[Any] ) -> Dict: '''simple docstring''' return 0 def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : int ) -> Optional[int]: '''simple docstring''' if isinstance(_a , _a ): try: with open(_a , '''r''' , encoding='''utf-8''' ) as fd: self.add_from_file(_a ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('''Incorrect encoding detected in {}, please rebuild the dataset'''.format(_a ) ) return _UpperCamelCase = f.readlines() _UpperCamelCase = self._load_meta(_a ) for line in lines[indices_start_line:]: try: _UpperCamelCase , _UpperCamelCase = line.rstrip().rsplit(''' ''' , 1 ) if field == "#fairseq:overwrite": _UpperCamelCase = True _UpperCamelCase , _UpperCamelCase = line.rsplit(''' ''' , 1 ) else: _UpperCamelCase = False _UpperCamelCase = int(_a ) _UpperCamelCase = line if word in self and not overwrite: raise RuntimeError( '''Duplicate word found when loading Dictionary: \'{}\'. ''' '''Duplicate words can overwrite earlier ones by adding the ''' '''#fairseq:overwrite flag at the end of the corresponding row ''' '''in the dictionary file. If using the Camembert model, please ''' '''download an updated copy of the model file.'''.format(_a ) ) self.add_symbol(_a , n=_a , overwrite=_a ) except ValueError: raise ValueError('''Incorrect dictionary format, expected \'<token> <cnt> [flags]\'''' ) def a__ ( lowercase : Tuple ) -> Tuple: """simple docstring""" _UpperCamelCase = dict((re.sub(r'''@@$''', '''''', snake_case__ ), v) if k.endswith('''@@''' ) else (re.sub(r'''$''', '''</w>''', snake_case__ ), v) for k, v in d.items() ) _UpperCamelCase = '''<s> <pad> </s> <unk>'''.split() # restore the special tokens for k in keep_keys: del da[F"""{k}</w>"""] _UpperCamelCase = d[k] # restore return da def a__ ( lowercase : Optional[int], lowercase : List[Any] ) -> Dict: """simple docstring""" if not os.path.exists(snake_case__ ): raise ValueError(F"""path {biogpt_checkpoint_path} does not exist!""" ) os.makedirs(snake_case__, exist_ok=snake_case__ ) print(F"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models _UpperCamelCase = os.path.join(snake_case__, '''checkpoint.pt''' ) if not os.path.isfile(snake_case__ ): raise ValueError(F"""path to the file {checkpoint_file} does not exist!""" ) _UpperCamelCase = torch.load(snake_case__, map_location='''cpu''' ) _UpperCamelCase = chkpt['''cfg''']['''model'''] # dicts _UpperCamelCase = os.path.join(snake_case__, '''dict.txt''' ) if not os.path.isfile(snake_case__ ): raise ValueError(F"""path to the file {dict_file} does not exist!""" ) _UpperCamelCase = Dictionary.load(snake_case__ ) _UpperCamelCase = rewrite_dict_keys(src_dict.indices ) _UpperCamelCase = len(snake_case__ ) _UpperCamelCase = os.path.join(snake_case__, VOCAB_FILES_NAMES['''vocab_file'''] ) print(F"""Generating {src_vocab_file} of {src_vocab_size} records""" ) with open(snake_case__, '''w''', encoding='''utf-8''' ) as f: f.write(json.dumps(snake_case__, ensure_ascii=snake_case__, indent=snake_case__ ) ) # merges_file (bpecodes) _UpperCamelCase = os.path.join(snake_case__, '''bpecodes''' ) if not os.path.isfile(snake_case__ ): raise ValueError(F"""path to the file {bpecodes_file} does not exist!""" ) _UpperCamelCase = os.path.join(snake_case__, VOCAB_FILES_NAMES['''merges_file'''] ) shutil.copyfile(snake_case__, snake_case__ ) # model config _UpperCamelCase = os.path.join(snake_case__, '''config.json''' ) _UpperCamelCase = { '''activation_dropout''': args['''activation_dropout'''], '''architectures''': ['''BioGptForCausalLM'''], '''attention_probs_dropout_prob''': args['''attention_dropout'''], '''bos_token_id''': 0, '''eos_token_id''': 2, '''hidden_act''': args['''activation_fn'''], '''hidden_dropout_prob''': args['''dropout'''], '''hidden_size''': args['''decoder_embed_dim'''], '''initializer_range''': 0.0_2, '''intermediate_size''': args['''decoder_ffn_embed_dim'''], '''layer_norm_eps''': 1e-12, '''layerdrop''': args['''decoder_layerdrop'''], '''max_position_embeddings''': args['''max_target_positions'''], '''model_type''': '''biogpt''', '''num_attention_heads''': args['''decoder_attention_heads'''], '''num_hidden_layers''': args['''decoder_layers'''], '''pad_token_id''': 1, '''scale_embedding''': not args['''no_scale_embedding'''], '''tie_word_embeddings''': args['''share_decoder_input_output_embed'''], '''vocab_size''': src_vocab_size, } # good hparam defaults to start with print(F"""Generating {biogpt_model_config_file}""" ) with open(snake_case__, '''w''', encoding='''utf-8''' ) as f: f.write(json.dumps(snake_case__, ensure_ascii=snake_case__, indent=snake_case__ ) ) # tokenizer config _UpperCamelCase = os.path.join(snake_case__, snake_case__ ) _UpperCamelCase = { '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', '''model_max_length''': 1024, '''pad_token''': '''<pad>''', '''special_tokens_map_file''': None, '''tokenizer_class''': '''BioGptTokenizer''', '''unk_token''': '''<unk>''', } print(F"""Generating {biogpt_tokenizer_config_file}""" ) with open(snake_case__, '''w''', encoding='''utf-8''' ) as f: f.write(json.dumps(snake_case__, ensure_ascii=snake_case__, indent=snake_case__ ) ) # model _UpperCamelCase = chkpt['''model'''] # remove unneeded keys _UpperCamelCase = [ '''decoder.version''', ] for k in ignore_keys: model_state_dict.pop(snake_case__, snake_case__ ) _UpperCamelCase = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('''output_projection.weight''' ): _UpperCamelCase = model_state_dict.pop(snake_case__ ) else: _UpperCamelCase = model_state_dict.pop(snake_case__ ) _UpperCamelCase = BioGptConfig.from_pretrained(snake_case__ ) _UpperCamelCase = BioGptForCausalLM(snake_case__ ) # check that it loads ok model_new.load_state_dict(snake_case__ ) # save _UpperCamelCase = os.path.join(snake_case__, snake_case__ ) print(F"""Generating {pytorch_weights_dump_path}""" ) torch.save(snake_case__, snake_case__ ) print('''Conversion is done!''' ) if __name__ == "__main__": lowercase__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--biogpt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowercase__ : Tuple = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
324
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class __magic_name__ ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __UpperCamelCase = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def _lowerCAmelCase ( self , _a , _a , _a ): """simple docstring""" lowerCamelCase = TextaTextGenerationPipeline(model=_a , tokenizer=_a ) return generator, ["Something to write", "Something else"] def _lowerCAmelCase ( self , _a , _a ): """simple docstring""" lowerCamelCase = generator("""Something there""" ) self.assertEqual(_a , [{"""generated_text""": ANY(_a )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["""generated_text"""].startswith("""Something there""" ) ) lowerCamelCase = generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=_a ) self.assertEqual( _a , [ [{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}], [{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}], ] , ) lowerCamelCase = generator( ["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=_a ) self.assertEqual( _a , [ [{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}], [{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}], ] , ) with self.assertRaises(_a ): generator(4 ) @require_torch def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""pt""" ) # do_sample=False necessary for reproducibility lowerCamelCase = generator("""Something there""" , do_sample=_a ) self.assertEqual(_a , [{"""generated_text""": """"""}] ) lowerCamelCase = 3 lowerCamelCase = generator( """Something there""" , num_return_sequences=_a , num_beams=_a , ) lowerCamelCase = [ {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """"""}, ] self.assertEqual(_a , _a ) lowerCamelCase = generator("""This is a test""" , do_sample=_a , num_return_sequences=2 , return_tensors=_a ) self.assertEqual( _a , [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ] , ) lowerCamelCase = generator.model.config.eos_token_id lowerCamelCase = """<pad>""" lowerCamelCase = generator( ["""This is a test""", """This is a second test"""] , do_sample=_a , num_return_sequences=2 , batch_size=2 , return_tensors=_a , ) self.assertEqual( _a , [ [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], ] , ) @require_tf def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""tf""" ) # do_sample=False necessary for reproducibility lowerCamelCase = generator("""Something there""" , do_sample=_a ) self.assertEqual(_a , [{"""generated_text""": """"""}] )
291
0
"""simple docstring""" from collections import defaultdict from math import gcd def lowerCamelCase__ ( __snake_case = 1_50_00_00 ) -> int: """simple docstring""" _UpperCamelCase = defaultdict(__snake_case ) _UpperCamelCase = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1, __snake_case, 2 ): if gcd(__snake_case, __snake_case ) > 1: continue _UpperCamelCase = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(__snake_case, limit + 1, __snake_case ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F"""{solution() = }""")
100
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { """facebook/xlm-roberta-xl""": """https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json""", """facebook/xlm-roberta-xxl""": """https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json""", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'xlm-roberta-xl' def __init__( self , __a=25_08_80 , __a=25_60 , __a=36 , __a=32 , __a=1_02_40 , __a="gelu" , __a=0.1 , __a=0.1 , __a=5_14 , __a=1 , __a=0.02 , __a=1e-05 , __a=1 , __a=0 , __a=2 , __a="absolute" , __a=True , __a=None , **__a , ) -> Tuple: '''simple docstring''' super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a) _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_act _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = initializer_range _UpperCamelCase = layer_norm_eps _UpperCamelCase = position_embedding_type _UpperCamelCase = use_cache _UpperCamelCase = classifier_dropout class _UpperCAmelCase( lowerCamelCase ): @property def UpperCAmelCase ( self) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": _UpperCamelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _UpperCamelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ])
100
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL snake_case__ : List[Any] = logging.get_logger(__name__) def _snake_case ( _snake_case : Tuple ): if isinstance(_snake_case , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(_snake_case , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(_snake_case ): return [[videos]] raise ValueError(f'''Could not make batched video from {videos}''' ) class snake_case_( a__ ): __UpperCamelCase = ['''pixel_values'''] def __init__( self : Optional[int] , UpperCamelCase_ : bool = True , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase_ : bool = True , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : bool = True , UpperCamelCase_ : Union[int, float] = 1 / 2_5_5 , UpperCamelCase_ : bool = True , UpperCamelCase_ : bool = True , UpperCamelCase_ : Optional[Union[float, List[float]]] = None , UpperCamelCase_ : Optional[Union[float, List[float]]] = None , **UpperCamelCase_ : Tuple , ): super().__init__(**UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = size if size is not None else {'''shortest_edge''': 2_5_6} lowerCAmelCase : Optional[Any] = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ ) lowerCAmelCase : Tuple = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} lowerCAmelCase : Dict = get_size_dict(UpperCamelCase_ , param_name='''crop_size''' ) lowerCAmelCase : Any = do_resize lowerCAmelCase : Union[str, Any] = size lowerCAmelCase : List[str] = do_center_crop lowerCAmelCase : int = crop_size lowerCAmelCase : Dict = resample lowerCAmelCase : Dict = do_rescale lowerCAmelCase : Any = rescale_factor lowerCAmelCase : List[Any] = offset lowerCAmelCase : Tuple = do_normalize lowerCAmelCase : Optional[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase : List[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : Dict[str, int] , UpperCamelCase_ : PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_ : Optional[Any] , ): lowerCAmelCase : Optional[int] = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ ) if "shortest_edge" in size: lowerCAmelCase : List[str] = get_resize_output_image_size(UpperCamelCase_ , size['''shortest_edge'''] , default_to_square=UpperCamelCase_ ) elif "height" in size and "width" in size: lowerCAmelCase : Any = (size['''height'''], size['''width''']) else: raise ValueError(F'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : Dict[str, int] , UpperCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_ : Union[str, Any] , ): lowerCAmelCase : Tuple = get_size_dict(UpperCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(UpperCamelCase_ , size=(size['''height'''], size['''width''']) , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : Union[int, float] , UpperCamelCase_ : bool = True , UpperCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_ : Optional[Any] , ): lowerCAmelCase : List[str] = image.astype(np.floataa ) if offset: lowerCAmelCase : Union[str, Any] = image - (scale / 2) return rescale(UpperCamelCase_ , scale=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : str , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : Union[float, List[float]] , UpperCamelCase_ : Union[float, List[float]] , UpperCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_ : Any , ): return normalize(UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : ImageInput , UpperCamelCase_ : bool = None , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : PILImageResampling = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : float = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : Optional[Union[float, List[float]]] = None , UpperCamelCase_ : Optional[Union[float, List[float]]] = None , UpperCamelCase_ : Optional[ChannelDimension] = ChannelDimension.FIRST , ): if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) if offset and not do_rescale: raise ValueError('''For offset, do_rescale must also be set to True.''' ) # All transformations expect numpy arrays. lowerCAmelCase : List[str] = to_numpy_array(UpperCamelCase_ ) if do_resize: lowerCAmelCase : Optional[int] = self.resize(image=UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ ) if do_center_crop: lowerCAmelCase : List[str] = self.center_crop(UpperCamelCase_ , size=UpperCamelCase_ ) if do_rescale: lowerCAmelCase : str = self.rescale(image=UpperCamelCase_ , scale=UpperCamelCase_ , offset=UpperCamelCase_ ) if do_normalize: lowerCAmelCase : Optional[int] = self.normalize(image=UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ ) lowerCAmelCase : str = to_channel_dimension_format(UpperCamelCase_ , UpperCamelCase_ ) return image def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : ImageInput , UpperCamelCase_ : bool = None , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : PILImageResampling = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : float = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : Optional[Union[float, List[float]]] = None , UpperCamelCase_ : Optional[Union[float, List[float]]] = None , UpperCamelCase_ : Optional[Union[str, TensorType]] = None , UpperCamelCase_ : ChannelDimension = ChannelDimension.FIRST , **UpperCamelCase_ : List[str] , ): lowerCAmelCase : str = do_resize if do_resize is not None else self.do_resize lowerCAmelCase : Any = resample if resample is not None else self.resample lowerCAmelCase : int = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase : int = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase : int = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase : str = offset if offset is not None else self.offset lowerCAmelCase : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase : Dict = image_mean if image_mean is not None else self.image_mean lowerCAmelCase : Any = image_std if image_std is not None else self.image_std lowerCAmelCase : List[str] = size if size is not None else self.size lowerCAmelCase : Tuple = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ ) lowerCAmelCase : Optional[int] = crop_size if crop_size is not None else self.crop_size lowerCAmelCase : Any = get_size_dict(UpperCamelCase_ , param_name='''crop_size''' ) if not valid_images(UpperCamelCase_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) lowerCAmelCase : List[str] = make_batched(UpperCamelCase_ ) lowerCAmelCase : Dict = [ [ self._preprocess_image( image=UpperCamelCase_ , do_resize=UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ , do_center_crop=UpperCamelCase_ , crop_size=UpperCamelCase_ , do_rescale=UpperCamelCase_ , rescale_factor=UpperCamelCase_ , offset=UpperCamelCase_ , do_normalize=UpperCamelCase_ , image_mean=UpperCamelCase_ , image_std=UpperCamelCase_ , data_format=UpperCamelCase_ , ) for img in video ] for video in videos ] lowerCAmelCase : Optional[Any] = {'''pixel_values''': videos} return BatchFeature(data=UpperCamelCase_ , tensor_type=UpperCamelCase_ )
60
'''simple docstring''' import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def _UpperCamelCase ( UpperCamelCase__ ): return x + 2 class _snake_case ( unittest.TestCase ): def snake_case__ ( self): UpperCAmelCase__ : List[str] = """x = 3""" UpperCAmelCase__ : Dict = {} UpperCAmelCase__ : List[str] = evaluate(_lowerCamelCase , {} , state=_lowerCamelCase) assert result == 3 self.assertDictEqual(_lowerCamelCase , {"""x""": 3}) UpperCAmelCase__ : Optional[int] = """x = y""" UpperCAmelCase__ : Optional[Any] = {"""y""": 5} UpperCAmelCase__ : Dict = evaluate(_lowerCamelCase , {} , state=_lowerCamelCase) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_lowerCamelCase , {"""x""": 5, """y""": 5}) def snake_case__ ( self): UpperCAmelCase__ : Any = """y = add_two(x)""" UpperCAmelCase__ : Optional[Any] = {"""x""": 3} UpperCAmelCase__ : Tuple = evaluate(_lowerCamelCase , {"""add_two""": add_two} , state=_lowerCamelCase) assert result == 5 self.assertDictEqual(_lowerCamelCase , {"""x""": 3, """y""": 5}) # Won't work without the tool with CaptureStdout() as out: UpperCAmelCase__ : List[str] = evaluate(_lowerCamelCase , {} , state=_lowerCamelCase) assert result is None assert "tried to execute add_two" in out.out def snake_case__ ( self): UpperCAmelCase__ : Union[str, Any] = """x = 3""" UpperCAmelCase__ : Dict = {} UpperCAmelCase__ : Optional[int] = evaluate(_lowerCamelCase , {} , state=_lowerCamelCase) assert result == 3 self.assertDictEqual(_lowerCamelCase , {"""x""": 3}) def snake_case__ ( self): UpperCAmelCase__ : Union[str, Any] = """test_dict = {'x': x, 'y': add_two(x)}""" UpperCAmelCase__ : Any = {"""x""": 3} UpperCAmelCase__ : List[str] = evaluate(_lowerCamelCase , {"""add_two""": add_two} , state=_lowerCamelCase) self.assertDictEqual(_lowerCamelCase , {"""x""": 3, """y""": 5}) self.assertDictEqual(_lowerCamelCase , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}}) def snake_case__ ( self): UpperCAmelCase__ : List[Any] = """x = 3\ny = 5""" UpperCAmelCase__ : Union[str, Any] = {} UpperCAmelCase__ : List[Any] = evaluate(_lowerCamelCase , {} , state=_lowerCamelCase) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_lowerCamelCase , {"""x""": 3, """y""": 5}) def snake_case__ ( self): UpperCAmelCase__ : Dict = """text = f'This is x: {x}.'""" UpperCAmelCase__ : str = {"""x""": 3} UpperCAmelCase__ : Optional[Any] = evaluate(_lowerCamelCase , {} , state=_lowerCamelCase) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(_lowerCamelCase , {"""x""": 3, """text""": """This is x: 3."""}) def snake_case__ ( self): UpperCAmelCase__ : Union[str, Any] = """if x <= 3:\n y = 2\nelse:\n y = 5""" UpperCAmelCase__ : Optional[Any] = {"""x""": 3} UpperCAmelCase__ : Optional[int] = evaluate(_lowerCamelCase , {} , state=_lowerCamelCase) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(_lowerCamelCase , {"""x""": 3, """y""": 2}) UpperCAmelCase__ : Optional[int] = {"""x""": 8} UpperCAmelCase__ : int = evaluate(_lowerCamelCase , {} , state=_lowerCamelCase) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_lowerCamelCase , {"""x""": 8, """y""": 5}) def snake_case__ ( self): UpperCAmelCase__ : Union[str, Any] = """test_list = [x, add_two(x)]""" UpperCAmelCase__ : int = {"""x""": 3} UpperCAmelCase__ : Tuple = evaluate(_lowerCamelCase , {"""add_two""": add_two} , state=_lowerCamelCase) self.assertListEqual(_lowerCamelCase , [3, 5]) self.assertDictEqual(_lowerCamelCase , {"""x""": 3, """test_list""": [3, 5]}) def snake_case__ ( self): UpperCAmelCase__ : Tuple = """y = x""" UpperCAmelCase__ : Optional[Any] = {"""x""": 3} UpperCAmelCase__ : Optional[int] = evaluate(_lowerCamelCase , {} , state=_lowerCamelCase) assert result == 3 self.assertDictEqual(_lowerCamelCase , {"""x""": 3, """y""": 3}) def snake_case__ ( self): UpperCAmelCase__ : List[str] = """test_list = [x, add_two(x)]\ntest_list[1]""" UpperCAmelCase__ : Union[str, Any] = {"""x""": 3} UpperCAmelCase__ : int = evaluate(_lowerCamelCase , {"""add_two""": add_two} , state=_lowerCamelCase) assert result == 5 self.assertDictEqual(_lowerCamelCase , {"""x""": 3, """test_list""": [3, 5]}) UpperCAmelCase__ : List[str] = """test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']""" UpperCAmelCase__ : Any = {"""x""": 3} UpperCAmelCase__ : Dict = evaluate(_lowerCamelCase , {"""add_two""": add_two} , state=_lowerCamelCase) assert result == 5 self.assertDictEqual(_lowerCamelCase , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}}) def snake_case__ ( self): UpperCAmelCase__ : Optional[int] = """x = 0\nfor i in range(3):\n x = i""" UpperCAmelCase__ : str = {} UpperCAmelCase__ : Tuple = evaluate(_lowerCamelCase , {"""range""": range} , state=_lowerCamelCase) assert result == 2 self.assertDictEqual(_lowerCamelCase , {"""x""": 2, """i""": 2})
163
0
"""simple docstring""" from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
53
"""simple docstring""" def lowercase__ ( _UpperCAmelCase ) -> int: '''simple docstring''' assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), f'''The input value of [n={number}] is not an integer''' if number == 1: return 2 elif number < 1: lowercase : List[Any] = f'''The input value of [n={number}] has to be > 0''' raise ValueError(_UpperCAmelCase ) else: lowercase : str = sylvester(number - 1 ) lowercase : Union[str, Any] = num - 1 lowercase : List[Any] = num return lower * upper + 1 if __name__ == "__main__": print(f'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''')
53
1
from argparse import ArgumentParser from . import BaseTransformersCLICommand def __lowercase ( _SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' @staticmethod def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ : ArgumentParser ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = parser.add_parser("""download""" ) download_parser.add_argument( """--cache-dir""" ,type=lowerCamelCase__ ,default=lowerCamelCase__ ,help="""Path to location to store the models""" ) download_parser.add_argument( """--force""" ,action="""store_true""" ,help="""Force the model to be download even if already in cache-dir""" ) download_parser.add_argument( """--trust-remote-code""" ,action="""store_true""" ,help="""Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine""" ,) download_parser.add_argument("""model""" ,type=lowerCamelCase__ ,help="""Name of the model to download""" ) download_parser.set_defaults(func=lowerCamelCase__ ) def __init__( self : Union[str, Any] ,lowerCamelCase__ : str ,lowerCamelCase__ : str ,lowerCamelCase__ : bool ,lowerCamelCase__ : bool ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = model SCREAMING_SNAKE_CASE = cache SCREAMING_SNAKE_CASE = force SCREAMING_SNAKE_CASE = trust_remote_code def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model ,cache_dir=self._cache ,force_download=self._force ,trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model ,cache_dir=self._cache ,force_download=self._force ,trust_remote_code=self._trust_remote_code )
296
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE_ = { """configuration_llama""": ["""LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LlamaConfig"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ["""LlamaTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ["""LlamaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ """LlamaForCausalLM""", """LlamaModel""", """LlamaPreTrainedModel""", """LlamaForSequenceClassification""", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
296
1
"""simple docstring""" import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class _lowerCAmelCase ( lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Any = WavaVecaPhonemeCTCTokenizer __UpperCAmelCase : int = False def _lowercase ( self : List[str] ): super().setUp() __lowercase = ( "<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː " "ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː " "ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 " "oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ " "pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ " "yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ " "əʊ S ɡʲ onɡ2 u\" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ " "ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ " "ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ " "uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ " "ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ " "ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ " "ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4" ).split(" " ) __lowercase = dict(zip(UpperCAmelCase__, range(len(UpperCAmelCase__ ) ) ) ) __lowercase = {"pad_token": "<pad>", "unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>"} __lowercase = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file, "w", encoding="utf-8" ) as fp: fp.write(json.dumps(UpperCAmelCase__ ) + "\n" ) def _lowercase ( self : List[Any], UpperCAmelCase__ : str, UpperCAmelCase__ : Dict=False, UpperCAmelCase__ : Dict=2_0, UpperCAmelCase__ : List[Any]=5 ): __lowercase = [(i, tokenizer.decode([i], clean_up_tokenization_spaces=UpperCAmelCase__ )) for i in range(len(UpperCAmelCase__ ) )] __lowercase = list(filter(lambda UpperCAmelCase__ : [t[0]] == tokenizer.encode(t[1], do_phonemize=UpperCAmelCase__ ), UpperCAmelCase__ ) ) if max_length is not None and len(UpperCAmelCase__ ) > max_length: __lowercase = toks[:max_length] if min_length is not None and len(UpperCAmelCase__ ) < min_length and len(UpperCAmelCase__ ) > 0: while len(UpperCAmelCase__ ) < min_length: __lowercase = toks + toks # toks_str = [t[1] for t in toks] __lowercase = [t[0] for t in toks] # Ensure consistency __lowercase = tokenizer.decode(UpperCAmelCase__, clean_up_tokenization_spaces=UpperCAmelCase__ ) if " " not in output_txt and len(UpperCAmelCase__ ) > 1: __lowercase = ( tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=UpperCAmelCase__ ) + " " + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=UpperCAmelCase__ ) ) if with_prefix_space: __lowercase = " " + output_txt __lowercase = tokenizer.encode(UpperCAmelCase__, add_special_tokens=UpperCAmelCase__ ) return output_txt, output_ids def _lowercase ( self : Tuple, **UpperCAmelCase__ : List[str] ): kwargs.update(self.special_tokens_map ) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname, **UpperCAmelCase__ ) def _lowercase ( self : Optional[int] ): __lowercase = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" ) # check adding a single token tokenizer.add_tokens("xxx" ) __lowercase = tokenizer("m xxx ɪ", do_phonemize=UpperCAmelCase__ ).input_ids self.assertEqual(UpperCAmelCase__, [1_3, 3_9_2, 1_7] ) # xxx should be last token tokenizer.add_tokens(["aaa", "bbb", "ccc"] ) __lowercase = tokenizer("m aaa ɪ ccc", do_phonemize=UpperCAmelCase__ ).input_ids self.assertEqual(UpperCAmelCase__, [1_3, 3_9_3, 1_7, 3_9_5] ) # aaa and ccc should be after xxx and 2 after aaa __lowercase = tokenizer("maɪ c", do_phonemize=UpperCAmelCase__ ).input_ids self.assertEqual(UpperCAmelCase__, [3, 2_0_0] ) # mai should be <unk> (=3) def _lowercase ( self : List[str] ): __lowercase = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" ) __lowercase = "Hello how are you" __lowercase = tokenizer.phonemize(UpperCAmelCase__, phonemizer_lang="en-us" ) self.assertEqual(UpperCAmelCase__, "h ə l oʊ h aʊ ɑːɹ j uː" ) def _lowercase ( self : List[Any] ): __lowercase = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" ) __lowercase = "Hello how are you" __lowercase = tokenizer.phonemize(UpperCAmelCase__, phonemizer_lang="en-us" ) self.assertEqual(tokenizer(UpperCAmelCase__ ).input_ids, tokenizer(UpperCAmelCase__, do_phonemize=UpperCAmelCase__ ).input_ids ) def _lowercase ( self : int ): __lowercase = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" ) __lowercase = "Hello how are you" __lowercase = tokenizer.phonemize(UpperCAmelCase__, phonemizer_lang="en-us" ) __lowercase = tokenizer.decode(tokenizer(UpperCAmelCase__ ).input_ids ) self.assertEqual(UpperCAmelCase__, UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any] ): __lowercase = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" ) __lowercase = [ [1_1, 5, 1_5, tokenizer.pad_token_id, 1_5, 8, 9_8], [2_4, 2_2, 5, 2_4, 2_2, 5, 7_7], ] __lowercase = tokenizer.decode(sample_ids[0] ) __lowercase = tokenizer.batch_decode(UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__, batch_tokens[0] ) self.assertEqual(UpperCAmelCase__, ["k s ɾ ɾ l ɭʲ", "j ð s j ð s oːɹ"] ) def _lowercase ( self : int ): __lowercase = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft", word_delimiter_token="|" ) tokenizer.add_tokens("|" ) __lowercase = "Hello how are you" __lowercase = tokenizer.phonemize(UpperCAmelCase__, phonemizer_lang="en-us" ) self.assertEqual(UpperCAmelCase__, "h ə l oʊ | h aʊ | ɑːɹ | j uː |" ) def _lowercase ( self : Any ): __lowercase = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft", word_delimiter_token="|" ) tokenizer.add_tokens("|" ) __lowercase = "Hello how are you" __lowercase = tokenizer.phonemize(UpperCAmelCase__, phonemizer_lang="en-us" ) self.assertEqual(tokenizer(UpperCAmelCase__ ).input_ids, tokenizer(UpperCAmelCase__, do_phonemize=UpperCAmelCase__ ).input_ids ) def _lowercase ( self : Optional[int] ): __lowercase = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft", word_delimiter_token="|" ) tokenizer.add_tokens("|" ) # fmt: off __lowercase = [ [1_1, 5, 1_5, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 1_5, 8, tokenizer.word_delimiter_token_id, 9_8], [tokenizer.word_delimiter_token_id, 2_4, 2_2, tokenizer.word_delimiter_token_id, 5, 2_4, 2_2, 5, 7_7], ] # fmt: on # decode with word_del_token filter __lowercase = tokenizer.decode(sample_ids[0] ) __lowercase = tokenizer.batch_decode(UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__, batch_tokens[0] ) self.assertEqual(UpperCAmelCase__, ["k s ɾ ɾ l ɭʲ", "j ð s j ð s oːɹ"] ) # decode with no word_del_token filter __lowercase = tokenizer.decode(sample_ids[0], filter_word_delimiter_token=UpperCAmelCase__ ) __lowercase = tokenizer.batch_decode(UpperCAmelCase__, filter_word_delimiter_token=UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__, batch_tokens[0] ) self.assertEqual(UpperCAmelCase__, ["k s ɾ | ɾ l | ɭʲ", "| j ð | s j ð s oːɹ"] ) def _lowercase ( self : List[Any] ): __lowercase = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft", word_delimiter_token="|" ) tokenizer.add_tokens("|" ) __lowercase = "Hello how are you" __lowercase = tokenizer.phonemize(UpperCAmelCase__, phonemizer_lang="en-us" ) __lowercase = tokenizer.decode(tokenizer(UpperCAmelCase__ ).input_ids, filter_word_delimiter_token=UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__, UpperCAmelCase__ ) def _lowercase ( self : Any ): __lowercase = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft", word_delimiter_token="|" ) tokenizer.add_tokens("|" ) __lowercase = "Hello how are you" __lowercase = tokenizer.phonemize(UpperCAmelCase__, phonemizer_lang="en-us" ) __lowercase = tokenizer.decode(tokenizer(UpperCAmelCase__ ).input_ids, filter_word_delimiter_token=UpperCAmelCase__ ) self.assertEqual(" ".join([p.strip() for p in phonemes.split(" |" )] ).strip(), UpperCAmelCase__ ) def _lowercase ( self : Tuple ): __lowercase = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft", word_delimiter_token=UpperCAmelCase__ ) __lowercase = "Hello how are you" __lowercase = tokenizer(UpperCAmelCase__, phonemizer_lang="en-us" ).input_ids __lowercase = tokenizer(UpperCAmelCase__, phonemizer_lang="fr-fr" ).input_ids self.assertNotEqual(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = tokenizer.decode(UpperCAmelCase__ ) __lowercase = tokenizer.decode(UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__, "h ə l oʊ h aʊ ɑːɹ j uː" ) self.assertEqual(UpperCAmelCase__, "ɛ l o h aʊ a ʁ j u" ) def _lowercase ( self : Optional[Any] ): __lowercase = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" ) __lowercase = "Hello how Are you" __lowercase = "hello how are you" __lowercase = tokenizer(UpperCAmelCase__ ).input_ids __lowercase = tokenizer(UpperCAmelCase__ ).input_ids self.assertEqual(UpperCAmelCase__, UpperCAmelCase__ ) def _lowercase ( self : Dict ): __lowercase = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" ) tokenizer.add_tokens(["!", "?"] ) tokenizer.add_special_tokens({"cls_token": "$$$"} ) # fmt: off __lowercase = [ [1_1, 5, 1_5, tokenizer.pad_token_id, 1_5, 8, 9_8, 3_9_2, 3_9_2, 3_9_3, 3_9_2, 3_9_2, 3_9_3, 3_9_4, 3_9_4], [2_4, 2_2, 5, 2_4, 2_2, 5, 7_7, tokenizer.pad_token_id, 3_9_4, 3_9_4], ] # fmt: on __lowercase = tokenizer.batch_decode(UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__, ["k s ɾ ɾ l ɭʲ!?!? $$$", "j ð s j ð s oːɹ $$$"] ) @staticmethod def _lowercase ( UpperCAmelCase__ : Tuple, UpperCAmelCase__ : str ): __lowercase = [d[key] for d in offsets] return retrieved_list def _lowercase ( self : Optional[int] ): __lowercase = self.get_tokenizer(word_delimiter_token="|" ) tokenizer.add_tokens("|" ) # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" __lowercase = [1_1, 5, 5, 5, 1_5, 1_5, tokenizer.pad_token_id, 1_5, 1_5, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 1_5, 8, 8, 8, tokenizer.word_delimiter_token_id, 9_8] # fmt: on __lowercase = tokenizer.decode(UpperCAmelCase__, output_char_offsets=UpperCAmelCase__, filter_word_delimiter_token=UpperCAmelCase__ ) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys() ), 2 ) self.assertTrue("text" in outputs ) self.assertTrue("char_offsets" in outputs ) self.assertTrue(isinstance(UpperCAmelCase__, UpperCAmelCase__ ) ) # check that order of chars is correct and identical for both outputs self.assertEqual(" ".join(self.get_from_offsets(outputs["char_offsets"], "char" ) ), outputs.text ) self.assertListEqual( self.get_from_offsets(outputs["char_offsets"], "char" ), ["k", "s", "ɾ", "ɾ", "|", "ɾ", "l", "|", "ɭʲ"] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs["char_offsets"], "start_offset" ), [0, 1, 4, 7, 9, 1_1, 1_2, 1_5, 1_6] ) self.assertListEqual( self.get_from_offsets(outputs["char_offsets"], "end_offset" ), [1, 4, 6, 9, 1_0, 1_2, 1_5, 1_6, 1_7] ) def _lowercase ( self : int ): __lowercase = self.get_tokenizer(word_delimiter_token="|" ) def check_list_tuples_equal(UpperCAmelCase__ : int, UpperCAmelCase__ : Optional[int] ): self.assertTrue(isinstance(UpperCAmelCase__, UpperCAmelCase__ ) ) self.assertTrue(isinstance(outputs_list[0], UpperCAmelCase__ ) ) # transform list to ModelOutput __lowercase = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch["text"], outputs_batch_a["text"] ) def recursive_check(UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : List[Any] ): if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): [recursive_check(UpperCAmelCase__, UpperCAmelCase__ ) for la, la in zip(UpperCAmelCase__, UpperCAmelCase__ )] self.assertEqual(UpperCAmelCase__, UpperCAmelCase__ ) if "char_offsets" in outputs_batch: recursive_check(outputs_batch["char_offsets"], outputs_batch_a["char_offsets"] ) # fmt: off __lowercase = [ [1_1, 5, 1_5, tokenizer.pad_token_id, 1_5, 4, 8, 9_8, 3_2, 3_2, 3_2, 3_2, 4, 3_3, tokenizer.word_delimiter_token_id, 3_2, 3_2, 3_3, 3_4, 3_4], [2_4, 2_2, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 2_4, 2_2, 2_2, 2_2, 4, 5, 7_7, tokenizer.pad_token_id, 2_2, 2_2, 4, 3_4, 3_4, 3_4, 3_4], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char __lowercase = tokenizer.batch_decode(UpperCAmelCase__, output_char_offsets=UpperCAmelCase__ ) __lowercase = [tokenizer.decode(UpperCAmelCase__, output_char_offsets=UpperCAmelCase__ ) for ids in sample_ids] check_list_tuples_equal(UpperCAmelCase__, UpperCAmelCase__ ) @unittest.skip("Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes" ) def _lowercase ( self : Any ): pass @unittest.skip("Wav2Vec2PhonemeTokenizer always puts spaces between phonemes" ) def _lowercase ( self : Union[str, Any] ): pass @unittest.skip("encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency" ) def _lowercase ( self : Union[str, Any] ): pass @unittest.skip("Wav2Vec2PhonemeModel has no max model length => no testing" ) def _lowercase ( self : Tuple ): pass def _lowercase ( self : Any ): __lowercase = self.get_tokenizers(do_lower_case=UpperCAmelCase__ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): __lowercase = tokenizer.vocab_size __lowercase = len(UpperCAmelCase__ ) self.assertNotEqual(UpperCAmelCase__, 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) __lowercase = ["aaaaa bbbbbb", "cccccccccdddddddd"] __lowercase = tokenizer.add_tokens(UpperCAmelCase__ ) __lowercase = tokenizer.vocab_size __lowercase = len(UpperCAmelCase__ ) self.assertNotEqual(UpperCAmelCase__, 0 ) self.assertEqual(UpperCAmelCase__, UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__, len(UpperCAmelCase__ ) ) self.assertEqual(UpperCAmelCase__, all_size + len(UpperCAmelCase__ ) ) __lowercase = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l", add_special_tokens=UpperCAmelCase__ ) self.assertGreaterEqual(len(UpperCAmelCase__ ), 4 ) self.assertGreater(tokens[0], tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3], tokenizer.vocab_size - 1 ) __lowercase = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"} __lowercase = tokenizer.add_special_tokens(UpperCAmelCase__ ) __lowercase = tokenizer.vocab_size __lowercase = len(UpperCAmelCase__ ) self.assertNotEqual(UpperCAmelCase__, 0 ) self.assertEqual(UpperCAmelCase__, UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__, len(UpperCAmelCase__ ) ) self.assertEqual(UpperCAmelCase__, all_size_a + len(UpperCAmelCase__ ) ) __lowercase = tokenizer.encode( ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l", add_special_tokens=UpperCAmelCase__ ) self.assertGreaterEqual(len(UpperCAmelCase__ ), 6 ) self.assertGreater(tokens[0], tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0], tokens[1] ) self.assertGreater(tokens[-3], tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3], tokens[-4] ) self.assertEqual(tokens[0], tokenizer.eos_token_id ) self.assertEqual(tokens[-3], tokenizer.pad_token_id ) @unittest.skip("The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode." ) def _lowercase ( self : str ): pass @unittest.skip("The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode." ) def _lowercase ( self : List[str] ): pass def _lowercase ( self : Union[str, Any] ): # The default common tokenizer tests assumes that the output of `convert_tokens_to_string` is a string which # is not the case for Wav2Vec2PhonemeCTCTokenizer. __lowercase = self.get_tokenizers(fast=UpperCAmelCase__, do_lower_case=UpperCAmelCase__ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): __lowercase = ["ð", "ɪ", "s", "ɪ", "z", "ɐ", "t", "ɛ", "k", "s", "t"] __lowercase = tokenizer.convert_tokens_to_string(UpperCAmelCase__ ) self.assertIsInstance(output["text"], UpperCAmelCase__ )
144
"""simple docstring""" import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset _a = 'bert-base-cased' _a = 'google/pegasus-xsum' _a = [' Sam ate lunch today.', 'Sams lunch ingredients.'] _a = ['A very interesting story about what I ate for lunch.', 'Avocado, celery, turkey, coffee'] _a = 'patrickvonplaten/t5-tiny-random' _a = 'sshleifer/bart-tiny-random' _a = 'sshleifer/tiny-mbart' _a = 'sshleifer/tiny-marian-en-de' def _A ( UpperCamelCase_ : Path, UpperCamelCase_ : list) -> Optional[Any]: '''simple docstring''' __lowercase = "\n".join(UpperCamelCase_) Path(UpperCamelCase_).open("w").writelines(UpperCamelCase_) def _A ( UpperCamelCase_ : Union[str, Any]) -> int: '''simple docstring''' for split in ["train", "val", "test"]: _dump_articles(os.path.join(UpperCamelCase_, F"""{split}.source"""), UpperCamelCase_) _dump_articles(os.path.join(UpperCamelCase_, F"""{split}.target"""), UpperCamelCase_) return tmp_dir class _lowerCAmelCase ( lowercase ): """simple docstring""" @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ], ) @slow def _lowercase ( self : List[Any], UpperCAmelCase__ : Optional[Any] ): __lowercase = AutoTokenizer.from_pretrained(UpperCAmelCase__ ) __lowercase = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) __lowercase = max(len(tokenizer.encode(UpperCAmelCase__ ) ) for a in ARTICLES ) __lowercase = max(len(tokenizer.encode(UpperCAmelCase__ ) ) for a in SUMMARIES ) __lowercase = 4 __lowercase = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated __lowercase ,__lowercase = "ro_RO", "de_DE" # ignored for all but mbart, but never causes error. __lowercase = SeqaSeqDataset( UpperCAmelCase__, data_dir=UpperCAmelCase__, type_path="train", max_source_length=UpperCAmelCase__, max_target_length=UpperCAmelCase__, src_lang=UpperCAmelCase__, tgt_lang=UpperCAmelCase__, ) __lowercase = DataLoader(UpperCAmelCase__, batch_size=2, collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(UpperCAmelCase__, UpperCAmelCase__ ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place __lowercase = shift_tokens_right(batch["labels"], tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def _lowercase ( self : Dict, UpperCAmelCase__ : int ): __lowercase = AutoTokenizer.from_pretrained(UpperCAmelCase__ ) __lowercase = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) __lowercase = max(len(tokenizer.encode(UpperCAmelCase__ ) ) for a in ARTICLES ) __lowercase = max(len(tokenizer.encode(UpperCAmelCase__ ) ) for a in SUMMARIES ) __lowercase = 4 __lowercase = LegacySeqaSeqDataset( UpperCAmelCase__, data_dir=UpperCAmelCase__, type_path="train", max_source_length=2_0, max_target_length=UpperCAmelCase__, ) __lowercase = DataLoader(UpperCAmelCase__, batch_size=2, collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 2_0 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def _lowercase ( self : str ): __lowercase = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25" ) __lowercase = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) __lowercase = tmp_dir.joinpath("train.source" ).open().readlines() __lowercase = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(UpperCAmelCase__, UpperCAmelCase__, 1_2_8, UpperCAmelCase__ ) __lowercase = {x.name for x in tmp_dir.iterdir()} __lowercase = {x.name for x in save_dir.iterdir()} __lowercase = save_dir.joinpath("train.source" ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(UpperCAmelCase__ ) < len(UpperCAmelCase__ ) assert len(UpperCAmelCase__ ) == 1 assert len(packed_examples[0] ) == sum(len(UpperCAmelCase__ ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE, reason="This test requires fairseq" ) def _lowercase ( self : List[str] ): if not FAIRSEQ_AVAILABLE: return __lowercase ,__lowercase ,__lowercase = self._get_dataset(max_len=6_4 ) __lowercase = 6_4 __lowercase = ds.make_dynamic_sampler(UpperCAmelCase__, required_batch_size_multiple=UpperCAmelCase__ ) __lowercase = [len(UpperCAmelCase__ ) for x in batch_sampler] assert len(set(UpperCAmelCase__ ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) # no dropped or added examples __lowercase = DataLoader(UpperCAmelCase__, batch_sampler=UpperCAmelCase__, collate_fn=ds.collate_fn, num_workers=2 ) __lowercase = [] __lowercase = [] for batch in data_loader: __lowercase = batch["input_ids"].shape __lowercase = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple __lowercase = np.product(batch["input_ids"].shape ) num_src_per_batch.append(UpperCAmelCase__ ) if num_src_tokens > (max_tokens * 1.1): failures.append(UpperCAmelCase__ ) assert num_src_per_batch[0] == max(UpperCAmelCase__ ) if failures: raise AssertionError(F"""too many tokens in {len(UpperCAmelCase__ )} batches""" ) def _lowercase ( self : Any ): __lowercase ,__lowercase ,__lowercase = self._get_dataset(max_len=5_1_2 ) __lowercase = 2 __lowercase = ds.make_sortish_sampler(UpperCAmelCase__, shuffle=UpperCAmelCase__ ) __lowercase = DataLoader(UpperCAmelCase__, batch_size=UpperCAmelCase__, collate_fn=ds.collate_fn, num_workers=2 ) __lowercase = DataLoader(UpperCAmelCase__, batch_size=UpperCAmelCase__, collate_fn=ds.collate_fn, num_workers=2, sampler=UpperCAmelCase__ ) __lowercase = tokenizer.pad_token_id def count_pad_tokens(UpperCAmelCase__ : Any, UpperCAmelCase__ : Union[str, Any]="input_ids" ): return [batch[k].eq(UpperCAmelCase__ ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(UpperCAmelCase__, k="labels" ) ) < sum(count_pad_tokens(UpperCAmelCase__, k="labels" ) ) assert sum(count_pad_tokens(UpperCAmelCase__ ) ) < sum(count_pad_tokens(UpperCAmelCase__ ) ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) def _lowercase ( self : List[Any], UpperCAmelCase__ : int=1_0_0_0, UpperCAmelCase__ : str=1_2_8 ): if os.getenv("USE_REAL_DATA", UpperCAmelCase__ ): __lowercase = "examples/seq2seq/wmt_en_ro" __lowercase = max_len * 2 * 6_4 if not Path(UpperCAmelCase__ ).joinpath("train.len" ).exists(): save_len_file(UpperCAmelCase__, UpperCAmelCase__ ) else: __lowercase = "examples/seq2seq/test_data/wmt_en_ro" __lowercase = max_len * 4 save_len_file(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = AutoTokenizer.from_pretrained(UpperCAmelCase__ ) __lowercase = SeqaSeqDataset( UpperCAmelCase__, data_dir=UpperCAmelCase__, type_path="train", max_source_length=UpperCAmelCase__, max_target_length=UpperCAmelCase__, n_obs=UpperCAmelCase__, ) return ds, max_tokens, tokenizer def _lowercase ( self : Union[str, Any] ): __lowercase ,__lowercase ,__lowercase = self._get_dataset() __lowercase = set(DistributedSortishSampler(UpperCAmelCase__, 2_5_6, num_replicas=2, rank=0, add_extra_examples=UpperCAmelCase__ ) ) __lowercase = set(DistributedSortishSampler(UpperCAmelCase__, 2_5_6, num_replicas=2, rank=1, add_extra_examples=UpperCAmelCase__ ) ) assert idsa.intersection(UpperCAmelCase__ ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ], ) def _lowercase ( self : int, UpperCAmelCase__ : Optional[Any] ): __lowercase = AutoTokenizer.from_pretrained(UpperCAmelCase__, use_fast=UpperCAmelCase__ ) if tok_name == MBART_TINY: __lowercase = SeqaSeqDataset( UpperCAmelCase__, data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ), type_path="train", max_source_length=4, max_target_length=8, src_lang="EN", tgt_lang="FR", ) __lowercase = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: __lowercase = SeqaSeqDataset( UpperCAmelCase__, data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ), type_path="train", max_source_length=4, max_target_length=8, ) __lowercase = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(UpperCAmelCase__ ) == 1 if tok_name == BART_TINY else len(UpperCAmelCase__ ) == 0
144
1
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/text-classification/requirements.txt''') UpperCamelCase__ = logging.getLogger(__name__) @dataclass class lowerCamelCase_ : lowerCAmelCase__ = field( default=1_2_8 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase__ = field( default=__a , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) lowerCAmelCase__ = field( default=__a , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) lowerCAmelCase__ = field( default=__a , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) lowerCAmelCase__ = field( default=__a , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) lowerCAmelCase__ = field( default=__a , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) @dataclass class lowerCamelCase_ : lowerCAmelCase__ = field( default=__a , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowerCAmelCase__ = field( default=__a , metadata={'help': 'Evaluation language. Also train language if `train_language` is set to None.'} ) lowerCAmelCase__ = field( default=__a , metadata={'help': 'Train language if it is different from the evaluation language.'} ) lowerCAmelCase__ = field( default=__a , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowerCAmelCase__ = field( default=__a , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowerCAmelCase__ = field( default=__a , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowerCAmelCase__ = field( default=__a , metadata={'help': 'arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()'} , ) lowerCAmelCase__ = field( default=__a , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) lowerCAmelCase__ = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) lowerCAmelCase__ = field( default=__a , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) lowerCAmelCase__ = field( default=__a , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def a__ ( ) -> int: UpperCAmelCase__ : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_xnli''' , _lowerCAmelCase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCAmelCase__ : List[str] = training_args.get_process_log_level() logger.setLevel(_lowerCAmelCase ) datasets.utils.logging.set_verbosity(_lowerCAmelCase ) transformers.utils.logging.set_verbosity(_lowerCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. UpperCAmelCase__ : str = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCAmelCase__ : int = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: UpperCAmelCase__ : List[Any] = load_dataset( '''xnli''' , model_args.language , split='''train''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: UpperCAmelCase__ : int = load_dataset( '''xnli''' , model_args.train_language , split='''train''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) UpperCAmelCase__ : Dict = train_dataset.features['''label'''].names if training_args.do_eval: UpperCAmelCase__ : Dict = load_dataset( '''xnli''' , model_args.language , split='''validation''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) UpperCAmelCase__ : Tuple = eval_dataset.features['''label'''].names if training_args.do_predict: UpperCAmelCase__ : List[Any] = load_dataset( '''xnli''' , model_args.language , split='''test''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) UpperCAmelCase__ : Dict = predict_dataset.features['''label'''].names # Labels UpperCAmelCase__ : List[str] = len(_lowerCAmelCase ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase__ : str = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_lowerCAmelCase , idalabel={str(_lowerCAmelCase ): label for i, label in enumerate(_lowerCAmelCase )} , labelaid={label: i for i, label in enumerate(_lowerCAmelCase )} , finetuning_task='''xnli''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCAmelCase__ : List[str] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCAmelCase__ : Optional[int] = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: UpperCAmelCase__ : Union[str, Any] = '''max_length''' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch UpperCAmelCase__ : Any = False def preprocess_function(lowerCAmelCase__ ): # Tokenize the texts return tokenizer( examples['''premise'''] , examples['''hypothesis'''] , padding=_lowerCAmelCase , max_length=data_args.max_seq_length , truncation=_lowerCAmelCase , ) if training_args.do_train: if data_args.max_train_samples is not None: UpperCAmelCase__ : Dict = min(len(_lowerCAmelCase ) , data_args.max_train_samples ) UpperCAmelCase__ : Tuple = train_dataset.select(range(_lowerCAmelCase ) ) with training_args.main_process_first(desc='''train dataset map pre-processing''' ): UpperCAmelCase__ : str = train_dataset.map( _lowerCAmelCase , batched=_lowerCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on train dataset''' , ) # Log a few random samples from the training set: for index in random.sample(range(len(_lowerCAmelCase ) ) , 3 ): logger.info(F"""Sample {index} of the training set: {train_dataset[index]}.""" ) if training_args.do_eval: if data_args.max_eval_samples is not None: UpperCAmelCase__ : List[str] = min(len(_lowerCAmelCase ) , data_args.max_eval_samples ) UpperCAmelCase__ : List[str] = eval_dataset.select(range(_lowerCAmelCase ) ) with training_args.main_process_first(desc='''validation dataset map pre-processing''' ): UpperCAmelCase__ : List[Any] = eval_dataset.map( _lowerCAmelCase , batched=_lowerCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on validation dataset''' , ) if training_args.do_predict: if data_args.max_predict_samples is not None: UpperCAmelCase__ : str = min(len(_lowerCAmelCase ) , data_args.max_predict_samples ) UpperCAmelCase__ : List[str] = predict_dataset.select(range(_lowerCAmelCase ) ) with training_args.main_process_first(desc='''prediction dataset map pre-processing''' ): UpperCAmelCase__ : str = predict_dataset.map( _lowerCAmelCase , batched=_lowerCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on prediction dataset''' , ) # Get the metric function UpperCAmelCase__ : List[Any] = evaluate.load('''xnli''' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowerCAmelCase__ ): UpperCAmelCase__ : Optional[int] = p.predictions[0] if isinstance(p.predictions , _lowerCAmelCase ) else p.predictions UpperCAmelCase__ : Optional[Any] = np.argmax(_lowerCAmelCase , axis=1 ) return metric.compute(predictions=_lowerCAmelCase , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: UpperCAmelCase__ : List[Any] = default_data_collator elif training_args.fpaa: UpperCAmelCase__ : Dict = DataCollatorWithPadding(_lowerCAmelCase , pad_to_multiple_of=8 ) else: UpperCAmelCase__ : Optional[Any] = None # Initialize our Trainer UpperCAmelCase__ : str = Trainer( model=_lowerCAmelCase , args=_lowerCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=_lowerCAmelCase , tokenizer=_lowerCAmelCase , data_collator=_lowerCAmelCase , ) # Training if training_args.do_train: UpperCAmelCase__ : List[Any] = None if training_args.resume_from_checkpoint is not None: UpperCAmelCase__ : Union[str, Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCAmelCase__ : int = last_checkpoint UpperCAmelCase__ : List[Any] = trainer.train(resume_from_checkpoint=_lowerCAmelCase ) UpperCAmelCase__ : int = train_result.metrics UpperCAmelCase__ : Optional[int] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_lowerCAmelCase ) ) UpperCAmelCase__ : Union[str, Any] = min(_lowerCAmelCase , len(_lowerCAmelCase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('''train''' , _lowerCAmelCase ) trainer.save_metrics('''train''' , _lowerCAmelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) UpperCAmelCase__ : List[str] = trainer.evaluate(eval_dataset=_lowerCAmelCase ) UpperCAmelCase__ : Optional[Any] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_lowerCAmelCase ) UpperCAmelCase__ : str = min(_lowerCAmelCase , len(_lowerCAmelCase ) ) trainer.log_metrics('''eval''' , _lowerCAmelCase ) trainer.save_metrics('''eval''' , _lowerCAmelCase ) # Prediction if training_args.do_predict: logger.info('''*** Predict ***''' ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = trainer.predict(_lowerCAmelCase , metric_key_prefix='''predict''' ) UpperCAmelCase__ : Any = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(_lowerCAmelCase ) ) UpperCAmelCase__ : int = min(_lowerCAmelCase , len(_lowerCAmelCase ) ) trainer.log_metrics('''predict''' , _lowerCAmelCase ) trainer.save_metrics('''predict''' , _lowerCAmelCase ) UpperCAmelCase__ : Tuple = np.argmax(_lowerCAmelCase , axis=1 ) UpperCAmelCase__ : Optional[Any] = os.path.join(training_args.output_dir , '''predictions.txt''' ) if trainer.is_world_process_zero(): with open(_lowerCAmelCase , '''w''' ) as writer: writer.write('''index\tprediction\n''' ) for index, item in enumerate(_lowerCAmelCase ): UpperCAmelCase__ : Optional[Any] = label_list[item] writer.write(F"""{index}\t{item}\n""" ) if __name__ == "__main__": main()
181
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = """▁""" lowerCamelCase = {"""vocab_file""": """spiece.model"""} lowerCamelCase = { """vocab_file""": { """google/reformer-crime-and-punishment""": ( """https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model""" ) } } lowerCamelCase = { """google/reformer-crime-and-punishment""": 52_4288, } class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ["""input_ids""", """attention_mask"""] def __init__( self : Optional[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any]="</s>" , _lowerCAmelCase : Any="<unk>" , _lowerCAmelCase : int=[] , _lowerCAmelCase : Optional[Dict[str, Any]] = None , **_lowerCAmelCase : List[Any] , ): '''simple docstring''' __lowercase ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) __lowercase =vocab_file __lowercase =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(_lowerCAmelCase) @property def __lowerCamelCase ( self : int): '''simple docstring''' return self.sp_model.get_piece_size() def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' __lowercase ={self.convert_ids_to_tokens(_lowerCAmelCase): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self : Any): '''simple docstring''' __lowercase =self.__dict__.copy() __lowercase =None return state def __setstate__( self : Optional[int] , _lowerCAmelCase : Union[str, Any]): '''simple docstring''' __lowercase =d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): __lowercase ={} __lowercase =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def __lowerCamelCase ( self : List[str] , _lowerCAmelCase : str): '''simple docstring''' return self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase) def __lowerCamelCase ( self : Optional[Any] , _lowerCAmelCase : List[Any]): '''simple docstring''' return self.sp_model.piece_to_id(_lowerCAmelCase) def __lowerCamelCase ( self : List[Any] , _lowerCAmelCase : Optional[Any]): '''simple docstring''' if index < self.sp_model.get_piece_size(): __lowercase =self.sp_model.IdToPiece(_lowerCAmelCase) return token def __lowerCamelCase ( self : Any , _lowerCAmelCase : Optional[int]): '''simple docstring''' __lowercase =[] __lowercase ='' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowerCAmelCase) + token __lowercase =[] else: current_sub_tokens.append(_lowerCAmelCase) out_string += self.sp_model.decode(_lowerCAmelCase) return out_string.strip() def __lowerCamelCase ( self : int , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None): '''simple docstring''' if not os.path.isdir(_lowerCAmelCase): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""") return __lowercase =os.path.join( _lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(_lowerCAmelCase) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , _lowerCAmelCase) elif not os.path.isfile(self.vocab_file): with open(_lowerCAmelCase , 'wb') as fi: __lowercase =self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase) return (out_vocab_file,)
166
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = ["pixel_values"] def __init__( self : List[str] , __snake_case : bool = True , __snake_case : Dict[str, int] = None , __snake_case : float = None , __snake_case : PILImageResampling = PILImageResampling.BILINEAR , __snake_case : bool = True , __snake_case : Union[int, float] = 1 / 2_55 , __snake_case : bool = True , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : Optional[Union[float, List[float]]] = None , **__snake_case : Any , )-> None: super().__init__(**__snake_case ) snake_case = size if size is not None else {"""shortest_edge""": 3_84} snake_case = get_size_dict(__snake_case , default_to_square=__snake_case ) snake_case = do_resize snake_case = size # Default value set here for backwards compatibility where the value in config is None snake_case = crop_pct if crop_pct is not None else 2_24 / 2_56 snake_case = resample snake_case = do_rescale snake_case = rescale_factor snake_case = do_normalize snake_case = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase ( self : int , __snake_case : np.ndarray , __snake_case : Dict[str, int] , __snake_case : float , __snake_case : PILImageResampling = PILImageResampling.BICUBIC , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : str , )-> np.ndarray: snake_case = get_size_dict(__snake_case , default_to_square=__snake_case ) if "shortest_edge" not in size: raise ValueError(f'''Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}''' ) snake_case = size["""shortest_edge"""] if shortest_edge < 3_84: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct snake_case = int(shortest_edge / crop_pct ) snake_case = get_resize_output_image_size(__snake_case , size=__snake_case , default_to_square=__snake_case ) snake_case = resize(image=__snake_case , size=__snake_case , resample=__snake_case , data_format=__snake_case , **__snake_case ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=__snake_case , size=(shortest_edge, shortest_edge) , data_format=__snake_case , **__snake_case ) else: # warping (no cropping) when evaluated at 384 or larger return resize( __snake_case , size=(shortest_edge, shortest_edge) , resample=__snake_case , data_format=__snake_case , **__snake_case ) def lowerCAmelCase ( self : List[Any] , __snake_case : np.ndarray , __snake_case : Union[int, float] , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : Dict , )-> Any: return rescale(__snake_case , scale=__snake_case , data_format=__snake_case , **__snake_case ) def lowerCAmelCase ( self : List[str] , __snake_case : np.ndarray , __snake_case : Union[float, List[float]] , __snake_case : Union[float, List[float]] , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : Dict , )-> np.ndarray: return normalize(__snake_case , mean=__snake_case , std=__snake_case , data_format=__snake_case , **__snake_case ) def lowerCAmelCase ( self : Optional[int] , __snake_case : ImageInput , __snake_case : bool = None , __snake_case : Dict[str, int] = None , __snake_case : float = None , __snake_case : PILImageResampling = None , __snake_case : bool = None , __snake_case : float = None , __snake_case : bool = None , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : Optional[Union[str, TensorType]] = None , __snake_case : ChannelDimension = ChannelDimension.FIRST , **__snake_case : Optional[int] , )-> PIL.Image.Image: snake_case = do_resize if do_resize is not None else self.do_resize snake_case = crop_pct if crop_pct is not None else self.crop_pct snake_case = resample if resample is not None else self.resample snake_case = do_rescale if do_rescale is not None else self.do_rescale snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case = do_normalize if do_normalize is not None else self.do_normalize snake_case = image_mean if image_mean is not None else self.image_mean snake_case = image_std if image_std is not None else self.image_std snake_case = size if size is not None else self.size snake_case = get_size_dict(__snake_case , default_to_square=__snake_case ) snake_case = make_list_of_images(__snake_case ) if not valid_images(__snake_case ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_resize and size["shortest_edge"] < 3_84 and crop_pct is None: raise ValueError("""crop_pct must be specified if size < 384.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. snake_case = [to_numpy_array(__snake_case ) for image in images] if do_resize: snake_case = [self.resize(image=__snake_case , size=__snake_case , crop_pct=__snake_case , resample=__snake_case ) for image in images] if do_rescale: snake_case = [self.rescale(image=__snake_case , scale=__snake_case ) for image in images] if do_normalize: snake_case = [self.normalize(image=__snake_case , mean=__snake_case , std=__snake_case ) for image in images] snake_case = [to_channel_dimension_format(__snake_case , __snake_case ) for image in images] snake_case = {"""pixel_values""": images} return BatchFeature(data=__snake_case , tensor_type=__snake_case )
3
'''simple docstring''' import requests from bsa import BeautifulSoup def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : dict ) -> str: snake_case = BeautifulSoup(requests.get(__lowerCAmelCase , params=__lowerCAmelCase ).content , """html.parser""" ) snake_case = soup.find("""div""" , attrs={"""class""": """gs_ri"""} ) snake_case = div.find("""div""" , attrs={"""class""": """gs_fl"""} ).find_all("""a""" ) return anchors[2].get_text() if __name__ == "__main__": _SCREAMING_SNAKE_CASE = { "title": ( "Precisely geometry controlled microsupercapacitors for ultrahigh areal " "capacitance, volumetric capacitance, and energy density" ), "journal": "Chem. Mater.", "volume": 30, "pages": "3979-3990", "year": 2018, "hl": "en", } print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
3
1
import random def a__ ( UpperCAmelCase : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any] = False ) -> dict: UpperCAmelCase : dict = {i: [] for i in range(UpperCAmelCase )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(UpperCAmelCase ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(UpperCAmelCase ): for j in range(i + 1 , UpperCAmelCase ): if random.random() < probability: graph[i].append(UpperCAmelCase ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(UpperCAmelCase ) return graph def a__ ( UpperCAmelCase : List[Any] ) -> dict: return { i: [j for j in range(UpperCAmelCase ) if i != j] for i in range(UpperCAmelCase ) } if __name__ == "__main__": import doctest doctest.testmod()
336
'''simple docstring''' import os import pytest from attr import dataclass _snake_case = 'us-east-1' # defaults region @dataclass class a__ : _SCREAMING_SNAKE_CASE : str _SCREAMING_SNAKE_CASE : str = 'arn:aws:iam::558105141721:role/sagemaker_execution_role' _SCREAMING_SNAKE_CASE : Dict = { 'task_name': 'mnli', 'per_device_train_batch_size': 16, 'per_device_eval_batch_size': 16, 'do_train': True, 'do_eval': True, 'do_predict': True, 'output_dir': '/opt/ml/model', 'overwrite_output_dir': True, 'max_steps': 500, 'save_steps': 5500, } _SCREAMING_SNAKE_CASE : List[str] = {**hyperparameters, 'max_steps': 1000} @property def _lowerCamelCase ( self ): """simple docstring""" if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def _lowerCamelCase ( self ): """simple docstring""" return f'''{self.framework}-transfromers-test''' @property def _lowerCamelCase ( self ): """simple docstring""" return f'''./tests/sagemaker/scripts/{self.framework}''' @property def _lowerCamelCase ( self ): """simple docstring""" if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope="class" ) def _A ( snake_case ) -> Tuple: _lowercase : List[Any] = SageMakerTestEnvironment(framework=request.cls.framework )
250
0
'''simple docstring''' from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class lowerCamelCase ( lowerCamelCase__ ): def __init__( self, lowercase_, lowercase_ = None, lowercase_ = None, lowercase_ = True, lowercase_ = None, lowercase_ = False, lowercase_ = None, lowercase_ = True, lowercase_ = "arrow", **lowercase_, ) -> str: super().__init__( split=lowercase_, features=lowercase_, cache_dir=lowercase_, keep_in_memory=lowercase_, streaming=lowercase_, **lowercase_, ) snake_case = load_from_cache_file snake_case = file_format snake_case = Spark( df=lowercase_, features=lowercase_, cache_dir=lowercase_, working_dir=lowercase_, **lowercase_, ) def _lowerCamelCase ( self ) -> Optional[int]: if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) snake_case = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=lowercase_, file_format=self._file_format, ) return self.builder.as_dataset(split=self.split )
354
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) lowerCAmelCase_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowerCamelCase : snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(__lowerCAmelCase )} ) snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} ) snake_case_ = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) snake_case_ = field( default=128 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , ) snake_case_ = field( default=64 , metadata={ '''help''': ( '''The maximum number of tokens for the question. Questions longer than this will ''' '''be truncated to this length.''' ) } , ) snake_case_ = field( default=30 , metadata={ '''help''': ( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ) } , ) snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} ) snake_case_ = field( default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) snake_case_ = field( default=20 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) snake_case_ = field( default=0 , metadata={ '''help''': ( '''language id of input for language-specific xlm models (see''' ''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)''' ) } , ) snake_case_ = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''} ) class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''train''' snake_case_ = '''dev''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 def __init__( self, lowercase_, lowercase_, lowercase_ = None, lowercase_ = Split.train, lowercase_ = False, lowercase_ = None, lowercase_ = "pt", ) -> int: snake_case = args snake_case = is_language_sensitive snake_case = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(lowercase_, lowercase_ ): try: snake_case = Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) snake_case = mode # Load data features from cache or dataset file snake_case = 'v2' if args.version_2_with_negative else 'v1' snake_case = os.path.join( cache_dir if cache_dir is not None else args.data_dir, F'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''', ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. snake_case = cached_features_file + '.lock' with FileLock(lowercase_ ): if os.path.exists(lowercase_ ) and not args.overwrite_cache: snake_case = time.time() snake_case = torch.load(lowercase_ ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. snake_case = self.old_features['features'] snake_case = self.old_features.get('dataset', lowercase_ ) snake_case = self.old_features.get('examples', lowercase_ ) logger.info( F'''Loading features from cached file {cached_features_file} [took %.3f s]''', time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( F'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in''' ' future run' ) else: if mode == Split.dev: snake_case = self.processor.get_dev_examples(args.data_dir ) else: snake_case = self.processor.get_train_examples(args.data_dir ) snake_case , snake_case = squad_convert_examples_to_features( examples=self.examples, tokenizer=lowercase_, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=mode == Split.train, threads=args.threads, return_dataset=lowercase_, ) snake_case = time.time() torch.save( {'features': self.features, 'dataset': self.dataset, 'examples': self.examples}, lowercase_, ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self ) -> Tuple: return len(self.features ) def __getitem__( self, lowercase_ ) -> Dict[str, torch.Tensor]: # Convert to Tensors and build dataset snake_case = self.features[i] snake_case = torch.tensor(feature.input_ids, dtype=torch.long ) snake_case = torch.tensor(feature.attention_mask, dtype=torch.long ) snake_case = torch.tensor(feature.token_type_ids, dtype=torch.long ) snake_case = torch.tensor(feature.cls_index, dtype=torch.long ) snake_case = torch.tensor(feature.p_mask, dtype=torch.float ) snake_case = torch.tensor(feature.is_impossible, dtype=torch.float ) snake_case = { 'input_ids': input_ids, 'attention_mask': attention_mask, 'token_type_ids': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'cls_index': cls_index, 'p_mask': p_mask} ) if self.args.version_2_with_negative: inputs.update({'is_impossible': is_impossible} ) if self.is_language_sensitive: inputs.update({'langs': (torch.ones(input_ids.shape, dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: snake_case = torch.tensor(feature.start_position, dtype=torch.long ) snake_case = torch.tensor(feature.end_position, dtype=torch.long ) inputs.update({'start_positions': start_positions, 'end_positions': end_positions} ) return inputs
332
0
from ....utils import logging _UpperCAmelCase : Optional[int] = logging.get_logger(__name__) class __lowerCAmelCase ( A__): def __init__( self: List[Any] , _lowerCAmelCase: Optional[int] , _lowerCAmelCase: int=None , _lowerCAmelCase: int=20_48 ): lowercase :Optional[Any] = config.__dict__ lowercase :Union[str, Any] = modal_hidden_size if num_labels: lowercase :List[str] = num_labels
236
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) a_ : Tuple = logging.getLogger() def lowerCamelCase__ (): SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument('-f') SCREAMING_SNAKE_CASE = parser.parse_args() return args.f class _snake_case ( A__ ): def SCREAMING_SNAKE_CASE__ ( self) -> None: SCREAMING_SNAKE_CASE = logging.StreamHandler(sys.stdout) logger.addHandler(a) def SCREAMING_SNAKE_CASE__ ( self , a) -> str: SCREAMING_SNAKE_CASE = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , 'run_glue_deebert.py') with patch.object(a , 'argv' , a): SCREAMING_SNAKE_CASE = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(a , 0.6_66) @slow @require_torch_non_multi_gpu def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: SCREAMING_SNAKE_CASE = '\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n '.split() self.run_and_check(a) SCREAMING_SNAKE_CASE = '\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n '.split() self.run_and_check(a) SCREAMING_SNAKE_CASE = '\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n '.split() self.run_and_check(a)
137
0
"""simple docstring""" from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def _SCREAMING_SNAKE_CASE ( _lowercase : str , _lowercase : float | Decimal , _lowercase : float = 10**-10 ) ->float: '''simple docstring''' a : Tuple = a while True: a : Union[str, Any] = Decimal(_lowercase ) - ( Decimal(eval(_lowercase ) ) / Decimal(eval(str(diff(_lowercase ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(_lowercase ) ) < precision: # noqa: S307 return float(_lowercase ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'''The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}''') # Find root of polynomial print(F'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}''') # Find Square Root of 5 print(F'''The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}''') # Exponential Roots print(F'''The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}''')
79
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=a__ ) class __UpperCamelCase ( a__ ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization lowerCamelCase : str =field(default="""summarization""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) lowerCamelCase : ClassVar[Features] =Features({"""text""": Value("""string""" )} ) lowerCamelCase : ClassVar[Features] =Features({"""summary""": Value("""string""" )} ) lowerCamelCase : str ="text" lowerCamelCase : str ="summary" @property def __a ( self ) -> Dict[str, str]: return {self.text_column: "text", self.summary_column: "summary"}
79
1
'''simple docstring''' import importlib import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Union import torch from ..utils import BaseOutput lowercase_ = """scheduler_config.json""" class a_ ( snake_case_ ): '''simple docstring''' UpperCamelCase = 1 UpperCamelCase = 2 UpperCamelCase = 3 UpperCamelCase = 4 UpperCamelCase = 5 UpperCamelCase = 6 UpperCamelCase = 7 UpperCamelCase = 8 UpperCamelCase = 9 UpperCamelCase = 10 UpperCamelCase = 11 UpperCamelCase = 12 UpperCamelCase = 13 UpperCamelCase = 14 @dataclass class a_ ( snake_case_ ): '''simple docstring''' UpperCamelCase = 42 class a_ : '''simple docstring''' UpperCamelCase = SCHEDULER_CONFIG_NAME UpperCamelCase = [] UpperCamelCase = True @classmethod def snake_case_( cls , A = None , A = None , A=False , **A , ) -> List[Any]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = cls.load_config( pretrained_model_name_or_path=A , subfolder=A , return_unused_kwargs=A , return_commit_hash=A , **A , ) return cls.from_config(A , return_unused_kwargs=A , **A ) def snake_case_( self , A , A = False , **A ) -> List[Any]: self.save_config(save_directory=A , push_to_hub=A , **A ) @property def snake_case_( self ) -> List[str]: return self._get_compatibles() @classmethod def snake_case_( cls ) -> Dict: _SCREAMING_SNAKE_CASE = list(set([cls.__name__] + cls._compatibles ) ) _SCREAMING_SNAKE_CASE = importlib.import_module(__name__.split(""".""" )[0] ) _SCREAMING_SNAKE_CASE = [ getattr(A , A ) for c in compatible_classes_str if hasattr(A , A ) ] return compatible_classes
58
"""simple docstring""" from scipy.stats import pearsonr import datasets lowerCamelCase_ : Optional[int] = """ Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ lowerCamelCase_ : Optional[Any] = """ Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ lowerCamelCase_ : Optional[int] = """ @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self ) -> Dict: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A=False ) -> Optional[Any]: if return_pvalue: a =pearsonr(__A , __A ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(__A , __A )[0] )}
81
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowerCAmelCase :List[str] = logging.get_logger(__name__) if is_vision_available(): import PIL class _lowerCamelCase ( __lowercase ): '''simple docstring''' A_ : str = ["pixel_values"] def __init__( self : List[Any] , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : bool = True , _A : Dict[str, int] = None , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : bool = True , **_A : Any , ) -> Union[str, Any]: super().__init__(**snake_case_ ) __magic_name__ : List[str] = size if size is not None else {'''shortest_edge''': 224} __magic_name__ : int = get_size_dict(snake_case_ , default_to_square=snake_case_ ) __magic_name__ : List[Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} __magic_name__ : Union[str, Any] = get_size_dict(snake_case_ , default_to_square=snake_case_ , param_name='crop_size' ) __magic_name__ : int = do_resize __magic_name__ : List[Any] = size __magic_name__ : Optional[int] = resample __magic_name__ : Dict = do_center_crop __magic_name__ : Optional[Any] = crop_size __magic_name__ : List[str] = do_rescale __magic_name__ : int = rescale_factor __magic_name__ : Dict = do_normalize __magic_name__ : Any = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __magic_name__ : int = image_std if image_std is not None else OPENAI_CLIP_STD __magic_name__ : Dict = do_convert_rgb def __lowerCAmelCase ( self : List[str] , _A : np.ndarray , _A : Dict[str, int] , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Optional[Any] , ) -> Any: __magic_name__ : int = get_size_dict(snake_case_ , default_to_square=snake_case_ ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) __magic_name__ : Optional[int] = get_resize_output_image_size(snake_case_ , size=size['shortest_edge'] , default_to_square=snake_case_ ) return resize(snake_case_ , size=snake_case_ , resample=snake_case_ , data_format=snake_case_ , **snake_case_ ) def __lowerCAmelCase ( self : Union[str, Any] , _A : np.ndarray , _A : Dict[str, int] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : List[Any] , ) -> Tuple: __magic_name__ : Optional[Any] = get_size_dict(snake_case_ ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(snake_case_ , size=(size['height'], size['width']) , data_format=snake_case_ , **snake_case_ ) def __lowerCAmelCase ( self : Optional[int] , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : int , ) -> int: return rescale(snake_case_ , scale=snake_case_ , data_format=snake_case_ , **snake_case_ ) def __lowerCAmelCase ( self : Union[str, Any] , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ) -> Optional[int]: return normalize(snake_case_ , mean=snake_case_ , std=snake_case_ , data_format=snake_case_ , **snake_case_ ) def __lowerCAmelCase ( self : str , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : PILImageResampling = None , _A : bool = None , _A : int = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : bool = None , _A : Optional[Union[str, TensorType]] = None , _A : Optional[ChannelDimension] = ChannelDimension.FIRST , **_A : List[str] , ) -> Union[str, Any]: __magic_name__ : List[Any] = do_resize if do_resize is not None else self.do_resize __magic_name__ : int = size if size is not None else self.size __magic_name__ : Optional[int] = get_size_dict(snake_case_ , param_name='size' , default_to_square=snake_case_ ) __magic_name__ : List[Any] = resample if resample is not None else self.resample __magic_name__ : str = do_center_crop if do_center_crop is not None else self.do_center_crop __magic_name__ : str = crop_size if crop_size is not None else self.crop_size __magic_name__ : int = get_size_dict(snake_case_ , param_name='crop_size' , default_to_square=snake_case_ ) __magic_name__ : Dict = do_rescale if do_rescale is not None else self.do_rescale __magic_name__ : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor __magic_name__ : List[Any] = do_normalize if do_normalize is not None else self.do_normalize __magic_name__ : str = image_mean if image_mean is not None else self.image_mean __magic_name__ : List[str] = image_std if image_std is not None else self.image_std __magic_name__ : Optional[int] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __magic_name__ : Union[str, Any] = make_list_of_images(snake_case_ ) if not valid_images(snake_case_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __magic_name__ : Optional[Any] = [convert_to_rgb(snake_case_ ) for image in images] # All transformations expect numpy arrays. __magic_name__ : Dict = [to_numpy_array(snake_case_ ) for image in images] if do_resize: __magic_name__ : Any = [self.resize(image=snake_case_ , size=snake_case_ , resample=snake_case_ ) for image in images] if do_center_crop: __magic_name__ : Tuple = [self.center_crop(image=snake_case_ , size=snake_case_ ) for image in images] if do_rescale: __magic_name__ : Optional[int] = [self.rescale(image=snake_case_ , scale=snake_case_ ) for image in images] if do_normalize: __magic_name__ : str = [self.normalize(image=snake_case_ , mean=snake_case_ , std=snake_case_ ) for image in images] __magic_name__ : Dict = [to_channel_dimension_format(snake_case_ , snake_case_ ) for image in images] __magic_name__ : int = {'''pixel_values''': images} return BatchFeature(data=snake_case_ , tensor_type=snake_case_ )
352
'''simple docstring''' from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP lowerCAmelCase :str = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase :int = ''' Examples: ```py >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline >>> import torch >>> pipe_prior = KandinskyPriorPipeline.from_pretrained("kandinsky-community/Kandinsky-2-1-prior") >>> pipe_prior.to("cuda") >>> prompt = "red cat, 4k photo" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> negative_image_emb = out.negative_image_embeds >>> pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1") >>> pipe.to("cuda") >>> image = pipe( ... prompt, ... image_embeds=image_emb, ... negative_image_embeds=negative_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... ).images >>> image[0].save("cat.png") ``` ''' def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any]=8 ): """simple docstring""" __magic_name__ : List[str] = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 __magic_name__ : str = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self : Union[str, Any] , _A : MultilingualCLIP , _A : XLMRobertaTokenizer , _A : UNetaDConditionModel , _A : Union[DDIMScheduler, DDPMScheduler] , _A : VQModel , ) -> int: super().__init__() self.register_modules( text_encoder=_A , tokenizer=_A , unet=_A , scheduler=_A , movq=_A , ) __magic_name__ : List[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __lowerCAmelCase ( self : List[Any] , _A : Tuple , _A : Optional[Any] , _A : Optional[int] , _A : Dict , _A : str , _A : List[str] ) -> str: if latents is None: __magic_name__ : Any = randn_tensor(_A , generator=_A , device=_A , dtype=_A ) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' ) __magic_name__ : int = latents.to(_A ) __magic_name__ : Union[str, Any] = latents * scheduler.init_noise_sigma return latents def __lowerCAmelCase ( self : List[Any] , _A : List[str] , _A : List[str] , _A : List[str] , _A : List[Any] , _A : str=None , ) -> Dict: __magic_name__ : Optional[Any] = len(_A ) if isinstance(_A , _A ) else 1 # get prompt text embeddings __magic_name__ : str = self.tokenizer( _A , padding='max_length' , truncation=_A , max_length=77 , return_attention_mask=_A , add_special_tokens=_A , return_tensors='pt' , ) __magic_name__ : Optional[Any] = text_inputs.input_ids __magic_name__ : Optional[Any] = self.tokenizer(_A , padding='longest' , return_tensors='pt' ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(_A , _A ): __magic_name__ : str = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F' {self.tokenizer.model_max_length} tokens: {removed_text}' ) __magic_name__ : Union[str, Any] = text_input_ids.to(_A ) __magic_name__ : Dict = text_inputs.attention_mask.to(_A ) __magic_name__ , __magic_name__ : str = self.text_encoder( input_ids=_A , attention_mask=_A ) __magic_name__ : Tuple = prompt_embeds.repeat_interleave(_A , dim=0 ) __magic_name__ : int = text_encoder_hidden_states.repeat_interleave(_A , dim=0 ) __magic_name__ : Union[str, Any] = text_mask.repeat_interleave(_A , dim=0 ) if do_classifier_free_guidance: __magic_name__ : List[str] if negative_prompt is None: __magic_name__ : Optional[Any] = [''] * batch_size elif type(_A ) is not type(_A ): raise TypeError( F'`negative_prompt` should be the same type to `prompt`, but got {type(_A )} !=' F' {type(_A )}.' ) elif isinstance(_A , _A ): __magic_name__ : int = [negative_prompt] elif batch_size != len(_A ): raise ValueError( F'`negative_prompt`: {negative_prompt} has batch size {len(_A )}, but `prompt`:' F' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches' ' the batch size of `prompt`.' ) else: __magic_name__ : Dict = negative_prompt __magic_name__ : List[str] = self.tokenizer( _A , padding='max_length' , max_length=77 , truncation=_A , return_attention_mask=_A , add_special_tokens=_A , return_tensors='pt' , ) __magic_name__ : Optional[int] = uncond_input.input_ids.to(_A ) __magic_name__ : Optional[Any] = uncond_input.attention_mask.to(_A ) __magic_name__ , __magic_name__ : int = self.text_encoder( input_ids=_A , attention_mask=_A ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __magic_name__ : List[str] = negative_prompt_embeds.shape[1] __magic_name__ : str = negative_prompt_embeds.repeat(1 , _A ) __magic_name__ : Dict = negative_prompt_embeds.view(batch_size * num_images_per_prompt , _A ) __magic_name__ : Any = uncond_text_encoder_hidden_states.shape[1] __magic_name__ : Optional[int] = uncond_text_encoder_hidden_states.repeat(1 , _A , 1 ) __magic_name__ : Tuple = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt , _A , -1 ) __magic_name__ : List[Any] = uncond_text_mask.repeat_interleave(_A , dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __magic_name__ : Tuple = torch.cat([negative_prompt_embeds, prompt_embeds] ) __magic_name__ : str = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) __magic_name__ : str = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def __lowerCAmelCase ( self : Dict , _A : List[Any]=0 ) -> Tuple: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) __magic_name__ : List[Any] = torch.device(F'cuda:{gpu_id}' ) __magic_name__ : Dict = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_A , _A ) def __lowerCAmelCase ( self : List[Any] , _A : List[str]=0 ) -> str: if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) __magic_name__ : int = torch.device(F'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=_A ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __magic_name__ : Optional[int] = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: __magic_name__ , __magic_name__ : Union[str, Any] = cpu_offload_with_hook(_A , _A , prev_module_hook=_A ) if self.safety_checker is not None: __magic_name__ , __magic_name__ : List[str] = cpu_offload_with_hook(self.safety_checker , _A , prev_module_hook=_A ) # We'll offload the last model manually. __magic_name__ : Any = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __lowerCAmelCase ( self : int ) -> List[str]: if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(_A , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_A ) def __call__( self : int , _A : Union[str, List[str]] , _A : Union[torch.FloatTensor, List[torch.FloatTensor]] , _A : Union[torch.FloatTensor, List[torch.FloatTensor]] , _A : Optional[Union[str, List[str]]] = None , _A : int = 512 , _A : int = 512 , _A : int = 100 , _A : float = 4.0 , _A : int = 1 , _A : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _A : Optional[torch.FloatTensor] = None , _A : Optional[str] = "pil" , _A : bool = True , ) -> Optional[int]: if isinstance(_A , _A ): __magic_name__ : Optional[int] = 1 elif isinstance(_A , _A ): __magic_name__ : Union[str, Any] = len(_A ) else: raise ValueError(F'`prompt` has to be of type `str` or `list` but is {type(_A )}' ) __magic_name__ : Tuple = self._execution_device __magic_name__ : Any = batch_size * num_images_per_prompt __magic_name__ : int = guidance_scale > 1.0 __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] = self._encode_prompt( _A , _A , _A , _A , _A ) if isinstance(_A , _A ): __magic_name__ : Union[str, Any] = torch.cat(_A , dim=0 ) if isinstance(_A , _A ): __magic_name__ : Dict = torch.cat(_A , dim=0 ) if do_classifier_free_guidance: __magic_name__ : Dict = image_embeds.repeat_interleave(_A , dim=0 ) __magic_name__ : Optional[int] = negative_image_embeds.repeat_interleave(_A , dim=0 ) __magic_name__ : Optional[int] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to( dtype=prompt_embeds.dtype , device=_A ) self.scheduler.set_timesteps(_A , device=_A ) __magic_name__ : Tuple = self.scheduler.timesteps __magic_name__ : Optional[int] = self.unet.config.in_channels __magic_name__ , __magic_name__ : Dict = get_new_h_w(_A , _A , self.movq_scale_factor ) # create initial latent __magic_name__ : Union[str, Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , _A , _A , _A , self.scheduler , ) for i, t in enumerate(self.progress_bar(_A ) ): # expand the latents if we are doing classifier free guidance __magic_name__ : Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __magic_name__ : Tuple = {'text_embeds': prompt_embeds, 'image_embeds': image_embeds} __magic_name__ : Union[str, Any] = self.unet( sample=_A , timestep=_A , encoder_hidden_states=_A , added_cond_kwargs=_A , return_dict=_A , )[0] if do_classifier_free_guidance: __magic_name__ , __magic_name__ : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) __magic_name__ , __magic_name__ : Dict = noise_pred.chunk(2 ) __magic_name__ , __magic_name__ : List[str] = variance_pred.chunk(2 ) __magic_name__ : List[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __magic_name__ : Any = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __magic_name__ , __magic_name__ : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 __magic_name__ : List[Any] = self.scheduler.step( _A , _A , _A , generator=_A , ).prev_sample # post-processing __magic_name__ : int = self.movq.decode(_A , force_not_quantize=_A )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: __magic_name__ : Dict = image * 0.5 + 0.5 __magic_name__ : str = image.clamp(0 , 1 ) __magic_name__ : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __magic_name__ : str = self.numpy_to_pil(_A ) if not return_dict: return (image,) return ImagePipelineOutput(images=_A )
275
0
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer lowerCamelCase_ : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCamelCase_ : Tuple = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n' @dataclass class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' lowercase_ : Union[PIL.Image.Image, np.ndarray] class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): """simple docstring""" super().__init__() self.register_modules( prior=snake_case_ , image_encoder=snake_case_ , image_processor=snake_case_ , scheduler=snake_case_ , renderer=snake_case_ , ) def lowerCamelCase_ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" if latents is None: A_ : List[Any] = randn_tensor(snake_case_ , generator=snake_case_ , device=snake_case_ , dtype=snake_case_ ) else: if latents.shape != shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) A_ : Any = latents.to(snake_case_ ) A_ : str = latents * scheduler.init_noise_sigma return latents def lowerCamelCase_ ( self , snake_case_=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) A_ : Any = torch.device(F"""cuda:{gpu_id}""" ) A_ : Optional[Any] = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(snake_case_ , snake_case_ ) @property def lowerCamelCase_ ( self ): """simple docstring""" if self.device != torch.device('meta' ) or not hasattr(self.image_encoder , '_hf_hook' ): return self.device for module in self.image_encoder.modules(): if ( hasattr(snake_case_ , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def lowerCamelCase_ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): """simple docstring""" if isinstance(snake_case_ , snake_case_ ) and isinstance(image[0] , torch.Tensor ): A_ : List[Any] = torch.cat(snake_case_ , axis=0 ) if image[0].ndim == 4 else torch.stack(snake_case_ , axis=0 ) if not isinstance(snake_case_ , torch.Tensor ): A_ : str = self.image_processor(snake_case_ , return_tensors='pt' ).pixel_values[0].unsqueeze(0 ) A_ : Union[str, Any] = image.to(dtype=self.image_encoder.dtype , device=snake_case_ ) A_ : Any = self.image_encoder(snake_case_ )['last_hidden_state'] A_ : List[Any] = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 A_ : List[str] = image_embeds.repeat_interleave(snake_case_ , dim=0 ) if do_classifier_free_guidance: A_ : Tuple = torch.zeros_like(snake_case_ ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes A_ : str = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(snake_case_ ) def __call__( self , snake_case_ , snake_case_ = 1 , snake_case_ = 2_5 , snake_case_ = None , snake_case_ = None , snake_case_ = 4.0 , snake_case_ = 6_4 , snake_case_ = "pil" , snake_case_ = True , ): """simple docstring""" if isinstance(snake_case_ , PIL.Image.Image ): A_ : Any = 1 elif isinstance(snake_case_ , torch.Tensor ): A_ : Any = image.shape[0] elif isinstance(snake_case_ , snake_case_ ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): A_ : Union[str, Any] = len(snake_case_ ) else: raise ValueError( F"""`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(snake_case_ )}""" ) A_ : Any = self._execution_device A_ : Optional[int] = batch_size * num_images_per_prompt A_ : int = guidance_scale > 1.0 A_ : Optional[int] = self._encode_image(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # prior self.scheduler.set_timesteps(snake_case_ , device=snake_case_ ) A_ : int = self.scheduler.timesteps A_ : Tuple = self.prior.config.num_embeddings A_ : List[str] = self.prior.config.embedding_dim A_ : int = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , snake_case_ , snake_case_ , snake_case_ , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim A_ : List[str] = latents.reshape(latents.shape[0] , snake_case_ , snake_case_ ) for i, t in enumerate(self.progress_bar(snake_case_ ) ): # expand the latents if we are doing classifier free guidance A_ : str = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A_ : List[Any] = self.scheduler.scale_model_input(snake_case_ , snake_case_ ) A_ : Union[str, Any] = self.prior( snake_case_ , timestep=snake_case_ , proj_embedding=snake_case_ , ).predicted_image_embedding # remove the variance A_ , A_ : Tuple = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: A_ , A_ : List[Any] = noise_pred.chunk(2 ) A_ : List[Any] = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) A_ : List[Any] = self.scheduler.step( snake_case_ , timestep=snake_case_ , sample=snake_case_ , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=snake_case_ ) A_ : Optional[Any] = [] for i, latent in enumerate(snake_case_ ): print() A_ : str = self.renderer.decode( latent[None, :] , snake_case_ , size=snake_case_ , ray_batch_size=4_0_9_6 , n_coarse_samples=6_4 , n_fine_samples=1_2_8 , ) images.append(snake_case_ ) A_ : Union[str, Any] = torch.stack(snake_case_ ) if output_type not in ["np", "pil"]: raise ValueError(F"""Only the output types `pil` and `np` are supported not output_type={output_type}""" ) A_ : str = images.cpu().numpy() if output_type == "pil": A_ : Optional[Any] = [self.numpy_to_pil(snake_case_ ) for image in images] # Offload last model to CPU if hasattr(self , 'final_offload_hook' ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=snake_case_ )
286
"""simple docstring""" import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser lowerCamelCase_ : Any = re.compile(r'\s+') def UpperCAmelCase__ ( _UpperCAmelCase ): """simple docstring""" return {"hash": hashlib.mda(re.sub(_UpperCAmelCase , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def UpperCAmelCase__ ( _UpperCAmelCase ): """simple docstring""" A_ : List[str] = [len(_UpperCAmelCase ) for line in example['content'].splitlines()] return {"line_mean": np.mean(_UpperCAmelCase ), "line_max": max(_UpperCAmelCase )} def UpperCAmelCase__ ( _UpperCAmelCase ): """simple docstring""" A_ : Any = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase=5 ): """simple docstring""" A_ : Optional[int] = ['auto-generated', 'autogenerated', 'automatically generated'] A_ : List[str] = example['content'].splitlines() for _, line in zip(range(_UpperCAmelCase ) , _UpperCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase=5 , _UpperCAmelCase=0.05 ): """simple docstring""" A_ : Any = ['unit tests', 'test file', 'configuration file'] A_ : Dict = example['content'].splitlines() A_ : List[Any] = 0 A_ : str = 0 # first test for _, line in zip(range(_UpperCAmelCase ) , _UpperCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test A_ : Tuple = example['content'].count('\n' ) A_ : Tuple = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def UpperCAmelCase__ ( _UpperCAmelCase ): """simple docstring""" A_ : List[Any] = ['def ', 'class ', 'for ', 'while '] A_ : Tuple = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase=4 ): """simple docstring""" A_ : Union[str, Any] = example['content'].splitlines() A_ : Any = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def UpperCAmelCase__ ( _UpperCAmelCase ): """simple docstring""" A_ : Optional[Any] = tokenizer(example['content'] , truncation=_UpperCAmelCase )['input_ids'] A_ : Dict = len(example['content'] ) / len(_UpperCAmelCase ) return {"ratio": ratio} def UpperCAmelCase__ ( _UpperCAmelCase ): """simple docstring""" A_ : Any = {} results.update(get_hash(_UpperCAmelCase ) ) results.update(line_stats(_UpperCAmelCase ) ) results.update(alpha_stats(_UpperCAmelCase ) ) results.update(char_token_ratio(_UpperCAmelCase ) ) results.update(is_autogenerated(_UpperCAmelCase ) ) results.update(is_config_or_test(_UpperCAmelCase ) ) results.update(has_no_keywords(_UpperCAmelCase ) ) results.update(has_few_assignments(_UpperCAmelCase ) ) return results def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" if not check_uniques(_UpperCAmelCase , _UpperCAmelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def UpperCAmelCase__ ( _UpperCAmelCase ): """simple docstring""" with open(_UpperCAmelCase , 'rb' ) as f_in: with gzip.open(str(_UpperCAmelCase ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(_UpperCAmelCase , _UpperCAmelCase ) os.unlink(_UpperCAmelCase ) # Settings lowerCamelCase_ : Optional[int] = HfArgumentParser(PreprocessingArguments) lowerCamelCase_ : Optional[Any] = parser.parse_args() if args.num_workers is None: lowerCamelCase_ : int = multiprocessing.cpu_count() lowerCamelCase_ : Tuple = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset lowerCamelCase_ : Tuple = time.time() lowerCamelCase_ : Tuple = load_dataset(args.dataset_name, split='train') print(F"Time to load dataset: {time.time()-t_start:.2f}") # Run preprocessing lowerCamelCase_ : List[str] = time.time() lowerCamelCase_ : Optional[int] = ds.map(preprocess, num_proc=args.num_workers) print(F"Time to preprocess dataset: {time.time()-t_start:.2f}") # Deduplicate hashes lowerCamelCase_ : int = set(ds.unique('hash')) lowerCamelCase_ : Union[str, Any] = len(uniques) / len(ds) print(F"Fraction of duplicates: {1-frac:.2%}") # Deduplicate data and apply heuristics lowerCamelCase_ : Optional[int] = time.time() lowerCamelCase_ : Tuple = ds.filter(filter, fn_kwargs={'uniques': uniques, 'args': args}) print(F"Time to filter dataset: {time.time()-t_start:.2f}") print(F"Size of filtered dataset: {len(ds_filter)}") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: lowerCamelCase_ : Union[str, Any] = time.time() lowerCamelCase_ , lowerCamelCase_ : str = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F"Time to deduplicate dataset: {time.time()-t_start:.2f}") print(F"Size of deduplicate dataset: {len(ds_filter)}") # Save data in batches of samples_per_file lowerCamelCase_ : Tuple = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / 'duplicate_clusters.json', 'w') as f: json.dump(duplicate_clusters, f) lowerCamelCase_ : Optional[Any] = output_dir / 'data' data_dir.mkdir(exist_ok=True) lowerCamelCase_ : List[str] = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): lowerCamelCase_ : Optional[int] = str(data_dir / F"file-{file_number+1:012}.json") lowerCamelCase_ : List[str] = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F"Time to save dataset: {time.time()-t_start:.2f}")
286
1
'''simple docstring''' import argparse import math import traceback import dateutil.parser as date_parser import requests def a__ ( lowerCAmelCase__ ) -> List[str]: UpperCAmelCase__ : Tuple = {} UpperCAmelCase__ : Optional[int] = job['''started_at'''] UpperCAmelCase__ : Optional[int] = job['''completed_at'''] UpperCAmelCase__ : List[Any] = date_parser.parse(lowerCAmelCase__ ) UpperCAmelCase__ : Dict = date_parser.parse(lowerCAmelCase__ ) UpperCAmelCase__ : Optional[Any] = round((end_datetime - start_datetime).total_seconds() / 6_0.0 ) UpperCAmelCase__ : Union[str, Any] = start UpperCAmelCase__ : Optional[Any] = end UpperCAmelCase__ : List[str] = duration_in_min return job_info def a__ ( lowerCAmelCase__ , lowerCAmelCase__=None ) -> Union[str, Any]: UpperCAmelCase__ : Tuple = None if token is not None: UpperCAmelCase__ : Tuple = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': F"""Bearer {token}"""} UpperCAmelCase__ : int = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" UpperCAmelCase__ : Any = requests.get(lowerCAmelCase__ , headers=lowerCAmelCase__ ).json() UpperCAmelCase__ : List[str] = {} try: job_time.update({job['''name''']: extract_time_from_single_job(lowerCAmelCase__ ) for job in result['''jobs''']} ) UpperCAmelCase__ : Tuple = math.ceil((result['''total_count'''] - 1_00) / 1_00 ) for i in range(lowerCAmelCase__ ): UpperCAmelCase__ : str = requests.get(url + F"""&page={i + 2}""" , headers=lowerCAmelCase__ ).json() job_time.update({job['''name''']: extract_time_from_single_job(lowerCAmelCase__ ) for job in result['''jobs''']} ) return job_time except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') UpperCamelCase__ = parser.parse_args() UpperCamelCase__ = get_job_time(args.workflow_run_id) UpperCamelCase__ = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(F"""{k}: {v['duration']}""")
299
'''simple docstring''' import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class lowerCamelCase_ ( __a ): def __get__( self : str , _A : Tuple , _A : List[str]=None ): '''simple docstring''' if obj is None: return self if self.fget is None: raise AttributeError('''unreadable attribute''' ) UpperCAmelCase__ : Union[str, Any] = '''__cached_''' + self.fget.__name__ UpperCAmelCase__ : Any = getattr(_A , _A , _A ) if cached is None: UpperCAmelCase__ : Dict = self.fget(_A ) setattr(_A , _A , _A ) return cached def a__ ( lowerCAmelCase__ ) -> Optional[int]: UpperCAmelCase__ : Tuple = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(F"""invalid truth value {val!r}""" ) def a__ ( lowerCAmelCase__ ) -> Optional[Any]: if is_torch_fx_proxy(lowerCAmelCase__ ): return True if is_torch_available(): import torch if isinstance(lowerCAmelCase__ , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(lowerCAmelCase__ , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(lowerCAmelCase__ , (jnp.ndarray, Tracer) ): return True return isinstance(lowerCAmelCase__ , np.ndarray ) def a__ ( lowerCAmelCase__ ) -> Any: return isinstance(lowerCAmelCase__ , np.ndarray ) def a__ ( lowerCAmelCase__ ) -> int: return _is_numpy(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ) -> Optional[Any]: import torch return isinstance(lowerCAmelCase__ , torch.Tensor ) def a__ ( lowerCAmelCase__ ) -> List[str]: return False if not is_torch_available() else _is_torch(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ) -> Optional[Any]: import torch return isinstance(lowerCAmelCase__ , torch.device ) def a__ ( lowerCAmelCase__ ) -> List[str]: return False if not is_torch_available() else _is_torch_device(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ) -> Any: import torch if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): if hasattr(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase__ : Any = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) else: return False return isinstance(lowerCAmelCase__ , torch.dtype ) def a__ ( lowerCAmelCase__ ) -> Optional[int]: return False if not is_torch_available() else _is_torch_dtype(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ) -> List[Any]: import tensorflow as tf return isinstance(lowerCAmelCase__ , tf.Tensor ) def a__ ( lowerCAmelCase__ ) -> List[str]: return False if not is_tf_available() else _is_tensorflow(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ) -> Any: import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(lowerCAmelCase__ , '''is_symbolic_tensor''' ): return tf.is_symbolic_tensor(lowerCAmelCase__ ) return type(lowerCAmelCase__ ) == tf.Tensor def a__ ( lowerCAmelCase__ ) -> Union[str, Any]: return False if not is_tf_available() else _is_tf_symbolic_tensor(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ) -> Tuple: import jax.numpy as jnp # noqa: F811 return isinstance(lowerCAmelCase__ , jnp.ndarray ) def a__ ( lowerCAmelCase__ ) -> List[Any]: return False if not is_flax_available() else _is_jax(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ) -> Tuple: if isinstance(lowerCAmelCase__ , (dict, UserDict) ): return {k: to_py_obj(lowerCAmelCase__ ) for k, v in obj.items()} elif isinstance(lowerCAmelCase__ , (list, tuple) ): return [to_py_obj(lowerCAmelCase__ ) for o in obj] elif is_tf_tensor(lowerCAmelCase__ ): return obj.numpy().tolist() elif is_torch_tensor(lowerCAmelCase__ ): return obj.detach().cpu().tolist() elif is_jax_tensor(lowerCAmelCase__ ): return np.asarray(lowerCAmelCase__ ).tolist() elif isinstance(lowerCAmelCase__ , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def a__ ( lowerCAmelCase__ ) -> Tuple: if isinstance(lowerCAmelCase__ , (dict, UserDict) ): return {k: to_numpy(lowerCAmelCase__ ) for k, v in obj.items()} elif isinstance(lowerCAmelCase__ , (list, tuple) ): return np.array(lowerCAmelCase__ ) elif is_tf_tensor(lowerCAmelCase__ ): return obj.numpy() elif is_torch_tensor(lowerCAmelCase__ ): return obj.detach().cpu().numpy() elif is_jax_tensor(lowerCAmelCase__ ): return np.asarray(lowerCAmelCase__ ) else: return obj class lowerCamelCase_ ( __a ): def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : List[str] = fields(self ) # Safety and consistency checks if not len(_A ): raise ValueError(f"""{self.__class__.__name__} has no fields.""" ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(f"""{self.__class__.__name__} should not have more than one required field.""" ) UpperCAmelCase__ : Dict = getattr(self , class_fields[0].name ) UpperCAmelCase__ : Any = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(_A ): if isinstance(_A , _A ): UpperCAmelCase__ : List[Any] = first_field.items() UpperCAmelCase__ : Optional[int] = True else: try: UpperCAmelCase__ : Optional[int] = iter(_A ) UpperCAmelCase__ : Optional[int] = True except TypeError: UpperCAmelCase__ : Optional[Any] = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(_A ): if ( not isinstance(_A , (list, tuple) ) or not len(_A ) == 2 or not isinstance(element[0] , _A ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute UpperCAmelCase__ : List[Any] = first_field else: # If we have a mixed iterator, raise an error raise ValueError( f"""Cannot set key/value for {element}. It needs to be a tuple (key, value).""" ) break setattr(self , element[0] , element[1] ) if element[1] is not None: UpperCAmelCase__ : List[str] = element[1] elif first_field is not None: UpperCAmelCase__ : Optional[Any] = first_field else: for field in class_fields: UpperCAmelCase__ : Optional[int] = getattr(self , field.name ) if v is not None: UpperCAmelCase__ : str = v def __delitem__( self : Union[str, Any] , *_A : Any , **_A : str ): '''simple docstring''' raise Exception(f"""You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.""" ) def lowercase_ ( self : Any , *_A : List[str] , **_A : Tuple ): '''simple docstring''' raise Exception(f"""You cannot use ``setdefault`` on a {self.__class__.__name__} instance.""" ) def lowercase_ ( self : Optional[Any] , *_A : Any , **_A : Tuple ): '''simple docstring''' raise Exception(f"""You cannot use ``pop`` on a {self.__class__.__name__} instance.""" ) def lowercase_ ( self : Optional[Any] , *_A : Dict , **_A : List[Any] ): '''simple docstring''' raise Exception(f"""You cannot use ``update`` on a {self.__class__.__name__} instance.""" ) def __getitem__( self : List[str] , _A : Any ): '''simple docstring''' if isinstance(_A , _A ): UpperCAmelCase__ : Union[str, Any] = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self : int , _A : Union[str, Any] , _A : str ): '''simple docstring''' if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(_A , _A ) super().__setattr__(_A , _A ) def __setitem__( self : Any , _A : Optional[int] , _A : List[str] ): '''simple docstring''' super().__setitem__(_A , _A ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(_A , _A ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' return tuple(self[k] for k in self.keys() ) class lowerCamelCase_ ( __a , __a ): @classmethod def lowercase_ ( cls : Optional[Any] , _A : Optional[Any] ): '''simple docstring''' raise ValueError( f"""{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}""" ) class lowerCamelCase_ ( __a ): lowerCAmelCase__ = 'longest' lowerCAmelCase__ = 'max_length' lowerCAmelCase__ = 'do_not_pad' class lowerCamelCase_ ( __a ): lowerCAmelCase__ = 'pt' lowerCAmelCase__ = 'tf' lowerCAmelCase__ = 'np' lowerCAmelCase__ = 'jax' class lowerCamelCase_ : def __init__( self : List[Any] , _A : List[ContextManager] ): '''simple docstring''' UpperCAmelCase__ : str = context_managers UpperCAmelCase__ : int = ExitStack() def __enter__( self : str ): '''simple docstring''' for context_manager in self.context_managers: self.stack.enter_context(_A ) def __exit__( self : Dict , *_A : List[Any] , **_A : str ): '''simple docstring''' self.stack.__exit__(*_A , **_A ) def a__ ( lowerCAmelCase__ ) -> Any: UpperCAmelCase__ : int = infer_framework(lowerCAmelCase__ ) if framework == "tf": UpperCAmelCase__ : Optional[Any] = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": UpperCAmelCase__ : List[Any] = inspect.signature(model_class.forward ) # PyTorch models else: UpperCAmelCase__ : List[Any] = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def a__ ( lowerCAmelCase__ ) -> Optional[int]: UpperCAmelCase__ : Dict = model_class.__name__ UpperCAmelCase__ : Union[str, Any] = infer_framework(lowerCAmelCase__ ) if framework == "tf": UpperCAmelCase__ : Tuple = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": UpperCAmelCase__ : List[str] = inspect.signature(model_class.forward ) # PyTorch models else: UpperCAmelCase__ : int = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def a__ ( lowerCAmelCase__ , lowerCAmelCase__ = "" , lowerCAmelCase__ = "." ) -> Any: def _flatten_dict(lowerCAmelCase__ , lowerCAmelCase__="" , lowerCAmelCase__="." ): for k, v in d.items(): UpperCAmelCase__ : int = str(lowerCAmelCase__ ) + delimiter + str(lowerCAmelCase__ ) if parent_key else k if v and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): yield from flatten_dict(lowerCAmelCase__ , lowerCAmelCase__ , delimiter=lowerCAmelCase__ ).items() else: yield key, v return dict(_flatten_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) ) @contextmanager def a__ ( lowerCAmelCase__ , lowerCAmelCase__ = False ) -> int: if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def a__ ( lowerCAmelCase__ , lowerCAmelCase__=None ) -> Optional[Any]: if is_numpy_array(lowerCAmelCase__ ): return np.transpose(lowerCAmelCase__ , axes=lowerCAmelCase__ ) elif is_torch_tensor(lowerCAmelCase__ ): return array.T if axes is None else array.permute(*lowerCAmelCase__ ) elif is_tf_tensor(lowerCAmelCase__ ): import tensorflow as tf return tf.transpose(lowerCAmelCase__ , perm=lowerCAmelCase__ ) elif is_jax_tensor(lowerCAmelCase__ ): return jnp.transpose(lowerCAmelCase__ , axes=lowerCAmelCase__ ) else: raise ValueError(F"""Type not supported for transpose: {type(lowerCAmelCase__ )}.""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: if is_numpy_array(lowerCAmelCase__ ): return np.reshape(lowerCAmelCase__ , lowerCAmelCase__ ) elif is_torch_tensor(lowerCAmelCase__ ): return array.reshape(*lowerCAmelCase__ ) elif is_tf_tensor(lowerCAmelCase__ ): import tensorflow as tf return tf.reshape(lowerCAmelCase__ , lowerCAmelCase__ ) elif is_jax_tensor(lowerCAmelCase__ ): return jnp.reshape(lowerCAmelCase__ , lowerCAmelCase__ ) else: raise ValueError(F"""Type not supported for reshape: {type(lowerCAmelCase__ )}.""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__=None ) -> List[Any]: if is_numpy_array(lowerCAmelCase__ ): return np.squeeze(lowerCAmelCase__ , axis=lowerCAmelCase__ ) elif is_torch_tensor(lowerCAmelCase__ ): return array.squeeze() if axis is None else array.squeeze(dim=lowerCAmelCase__ ) elif is_tf_tensor(lowerCAmelCase__ ): import tensorflow as tf return tf.squeeze(lowerCAmelCase__ , axis=lowerCAmelCase__ ) elif is_jax_tensor(lowerCAmelCase__ ): return jnp.squeeze(lowerCAmelCase__ , axis=lowerCAmelCase__ ) else: raise ValueError(F"""Type not supported for squeeze: {type(lowerCAmelCase__ )}.""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> List[Any]: if is_numpy_array(lowerCAmelCase__ ): return np.expand_dims(lowerCAmelCase__ , lowerCAmelCase__ ) elif is_torch_tensor(lowerCAmelCase__ ): return array.unsqueeze(dim=lowerCAmelCase__ ) elif is_tf_tensor(lowerCAmelCase__ ): import tensorflow as tf return tf.expand_dims(lowerCAmelCase__ , axis=lowerCAmelCase__ ) elif is_jax_tensor(lowerCAmelCase__ ): return jnp.expand_dims(lowerCAmelCase__ , axis=lowerCAmelCase__ ) else: raise ValueError(F"""Type not supported for expand_dims: {type(lowerCAmelCase__ )}.""" ) def a__ ( lowerCAmelCase__ ) -> int: if is_numpy_array(lowerCAmelCase__ ): return np.size(lowerCAmelCase__ ) elif is_torch_tensor(lowerCAmelCase__ ): return array.numel() elif is_tf_tensor(lowerCAmelCase__ ): import tensorflow as tf return tf.size(lowerCAmelCase__ ) elif is_jax_tensor(lowerCAmelCase__ ): return array.size else: raise ValueError(F"""Type not supported for expand_dims: {type(lowerCAmelCase__ )}.""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: for key, value in auto_map.items(): if isinstance(lowerCAmelCase__ , (tuple, list) ): UpperCAmelCase__ : int = [F"""{repo_id}--{v}""" if (v is not None and '''--''' not in v) else v for v in value] elif value is not None and "--" not in value: UpperCAmelCase__ : str = F"""{repo_id}--{value}""" return auto_map def a__ ( lowerCAmelCase__ ) -> Tuple: for base_class in inspect.getmro(lowerCAmelCase__ ): UpperCAmelCase__ : Optional[int] = base_class.__module__ UpperCAmelCase__ : Optional[int] = base_class.__name__ if module.startswith('''tensorflow''' ) or module.startswith('''keras''' ) or name == "TFPreTrainedModel": return "tf" elif module.startswith('''torch''' ) or name == "PreTrainedModel": return "pt" elif module.startswith('''flax''' ) or module.startswith('''jax''' ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(F"""Could not infer framework from class {model_class}.""" )
299
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Any , __lowercase : Union[str, Any] , __lowercase : List[str]=7 , __lowercase : str=3 , __lowercase : Dict=18 , __lowercase : str=30 , __lowercase : Any=4_00 , __lowercase : Tuple=True , __lowercase : int=None , __lowercase : Any=True , __lowercase : Any=None , __lowercase : List[Any]=True , ): """simple docstring""" snake_case_ = size if size is not None else {"shortest_edge": 20} snake_case_ = crop_size if crop_size is not None else {"height": 18, "width": 18} snake_case_ = parent snake_case_ = batch_size snake_case_ = num_channels snake_case_ = image_size snake_case_ = min_resolution snake_case_ = max_resolution snake_case_ = do_resize snake_case_ = size snake_case_ = do_center_crop snake_case_ = crop_size snake_case_ = do_flip_channel_order def snake_case__ ( self : str ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class UpperCAmelCase ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = MobileViTImageProcessor if is_vision_available() else None def snake_case__ ( self : Dict ): """simple docstring""" snake_case_ = MobileViTImageProcessingTester(self ) @property def snake_case__ ( self : List[str] ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def snake_case__ ( self : int ): """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , "do_resize" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , "size" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , "do_center_crop" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , "center_crop" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , "do_flip_channel_order" ) ) def snake_case__ ( self : Dict ): """simple docstring""" snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 20} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def snake_case__ ( self : Tuple ): """simple docstring""" pass def snake_case__ ( self : List[Any] ): """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input snake_case_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched snake_case_ = image_processing(_SCREAMING_SNAKE_CASE , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def snake_case__ ( self : Any ): """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input snake_case_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched snake_case_ = image_processing(_SCREAMING_SNAKE_CASE , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def snake_case__ ( self : List[str] ): """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input snake_case_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched snake_case_ = image_processing(_SCREAMING_SNAKE_CASE , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
187
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class __a ( unittest.TestCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=18 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = image_size _UpperCAmelCase = min_resolution _UpperCAmelCase = max_resolution _UpperCAmelCase = do_resize _UpperCAmelCase = size if size is not None else {'height': 18, 'width': 20} _UpperCAmelCase = do_thumbnail _UpperCAmelCase = do_align_axis _UpperCAmelCase = do_pad _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean _UpperCAmelCase = image_std def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __a ( UpperCAmelCase , unittest.TestCase ): _a : List[str] = DonutImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self ) -> str: """simple docstring""" _UpperCAmelCase = DonutImageProcessingTester(self ) @property def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_resize' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'size' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_thumbnail' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_align_long_axis' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_pad' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_normalize' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_mean' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_std' ) ) def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 20} ) _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) # Previous config had dimensions in (width, height) order _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'height': 84, 'width': 42} ) def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" pass @is_flaky() def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def UpperCAmelCase__ ( self ) -> str: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def UpperCAmelCase__ ( self ) -> int: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
329
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/config.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/config.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/config.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/config.json', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json', 'roberta-large-openai-detector': 'https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json', } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : int = "roberta" def __init__( self : Dict ,_snake_case : Tuple=50_265 ,_snake_case : Any=768 ,_snake_case : Any=12 ,_snake_case : List[Any]=12 ,_snake_case : int=3_072 ,_snake_case : str="gelu" ,_snake_case : str=0.1 ,_snake_case : Tuple=0.1 ,_snake_case : List[Any]=512 ,_snake_case : Any=2 ,_snake_case : Dict=0.02 ,_snake_case : Tuple=1e-12 ,_snake_case : List[str]=1 ,_snake_case : Optional[Any]=0 ,_snake_case : List[Any]=2 ,_snake_case : Union[str, Any]="absolute" ,_snake_case : Union[str, Any]=True ,_snake_case : int=None ,**_snake_case : List[str] ,) -> List[str]: """simple docstring""" super().__init__(pad_token_id=_snake_case ,bos_token_id=_snake_case ,eos_token_id=_snake_case ,**_snake_case ) lowercase__ : str = vocab_size lowercase__ : str = hidden_size lowercase__ : List[str] = num_hidden_layers lowercase__ : Tuple = num_attention_heads lowercase__ : Dict = hidden_act lowercase__ : Tuple = intermediate_size lowercase__ : str = hidden_dropout_prob lowercase__ : Any = attention_probs_dropout_prob lowercase__ : Tuple = max_position_embeddings lowercase__ : Tuple = type_vocab_size lowercase__ : str = initializer_range lowercase__ : Optional[Any] = layer_norm_eps lowercase__ : str = position_embedding_type lowercase__ : str = use_cache lowercase__ : List[str] = classifier_dropout class __A ( A_ ): '''simple docstring''' @property def UpperCAmelCase ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": lowercase__ : int = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowercase__ : List[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
302
"""simple docstring""" import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase_ = 16 lowerCAmelCase_ = 32 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = 16 ) -> Optional[int]: lowercase__ : Optional[int] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowercase__ : List[str] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) lowercase__ : List[str] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowerCamelCase , max_length=__lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ : Dict = datasets.map( __lowerCamelCase , batched=__lowerCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ : int = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ : List[str] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ : List[str] = 16 elif accelerator.mixed_precision != "no": lowercase__ : List[Any] = 8 else: lowercase__ : Optional[int] = None return tokenizer.pad( __lowerCamelCase , padding='''longest''' , max_length=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. lowercase__ : Dict = DataLoader( tokenized_datasets['''train'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) lowercase__ : Union[str, Any] = DataLoader( tokenized_datasets['''validation'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase_ = mocked_dataloaders # noqa: F811 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Tuple: # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __lowerCamelCase ) == "1": lowercase__ : Any = 2 # Initialize accelerator lowercase__ : str = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ : List[Any] = config['''lr'''] lowercase__ : Union[str, Any] = int(config['''num_epochs'''] ) lowercase__ : List[str] = int(config['''seed'''] ) lowercase__ : Any = int(config['''batch_size'''] ) lowercase__ : int = evaluate.load('''glue''' , '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=__lowerCamelCase ) def inner_training_loop(__lowerCamelCase ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(__lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ : Optional[Any] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ : str = model.to(accelerator.device ) # Instantiate optimizer lowercase__ : Optional[int] = AdamW(params=model.parameters() , lr=__lowerCamelCase ) lowercase__ , lowercase__ : List[str] = get_dataloaders(__lowerCamelCase , __lowerCamelCase ) # Instantiate scheduler lowercase__ : Optional[Any] = get_linear_schedule_with_warmup( optimizer=__lowerCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(__lowerCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = accelerator.prepare( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Now we train the model for epoch in range(__lowerCamelCase ): model.train() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowercase__ : int = model(**__lowerCamelCase ) lowercase__ : Optional[int] = outputs.loss accelerator.backward(__lowerCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ : Tuple = model(**__lowerCamelCase ) lowercase__ : Dict = outputs.logits.argmax(dim=-1 ) lowercase__ , lowercase__ : Any = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__lowerCamelCase , references=__lowerCamelCase , ) lowercase__ : Optional[int] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , __lowerCamelCase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def __UpperCAmelCase ( ) -> Tuple: lowercase__ : List[str] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__lowerCamelCase , default=__lowerCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) lowercase__ : Union[str, Any] = parser.parse_args() lowercase__ : Union[str, Any] = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": main()
302
1
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : int = logging.get_logger(__name__) A__ : List[str] = { 'google/pix2struct-textcaps-base': ( 'https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json' ), } class lowercase__ ( snake_case__ ): _UpperCAmelCase :List[Any] = "pix2struct_text_model" _UpperCAmelCase :str = ["past_key_values"] _UpperCAmelCase :str = { "hidden_size": "hidden_size", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Dict , snake_case__ : Any=5_0244 , snake_case__ : Optional[int]=768 , snake_case__ : Dict=64 , snake_case__ : List[str]=2048 , snake_case__ : Dict=12 , snake_case__ : Any=12 , snake_case__ : Dict=32 , snake_case__ : int=128 , snake_case__ : List[str]=0.1 , snake_case__ : Optional[int]=1E-6 , snake_case__ : Any=1.0 , snake_case__ : int="gelu_new" , snake_case__ : Optional[Any]=0 , snake_case__ : Any=False , snake_case__ : Any=0 , snake_case__ : Any=1 , snake_case__ : Optional[int]=False , snake_case__ : Tuple=True , **snake_case__ : Any , ): lowerCamelCase_ : List[str] =vocab_size lowerCamelCase_ : Tuple =hidden_size lowerCamelCase_ : Optional[int] =d_kv lowerCamelCase_ : List[Any] =d_ff lowerCamelCase_ : Tuple =num_layers lowerCamelCase_ : Optional[int] =num_heads lowerCamelCase_ : Any =relative_attention_num_buckets lowerCamelCase_ : Optional[int] =relative_attention_max_distance lowerCamelCase_ : List[Any] =dropout_rate lowerCamelCase_ : str =layer_norm_epsilon lowerCamelCase_ : int =initializer_factor lowerCamelCase_ : str =use_cache lowerCamelCase_ : int =eos_token_id lowerCamelCase_ : Optional[Any] =decoder_start_token_id # for backwards compatibility lowerCamelCase_ : Optional[Any] =dense_act_fn super().__init__( pad_token_id=snake_case__ , eos_token_id=snake_case__ , decoder_start_token_id=snake_case__ , tie_word_embeddings=snake_case__ , is_decoder=snake_case__ , **snake_case__ , ) @classmethod def UpperCAmelCase__ ( cls : Tuple , snake_case__ : Union[str, os.PathLike] , **snake_case__ : str ): cls._set_token_in_kwargs(snake_case__ ) lowerCamelCase_ , lowerCamelCase_ : Any =cls.get_config_dict(snake_case__ , **snake_case__ ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get("model_type" ) == "pix2struct": lowerCamelCase_ : List[Any] =config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(snake_case__ , **snake_case__ ) class lowercase__ ( snake_case__ ): _UpperCAmelCase :List[Any] = "pix2struct_vision_model" def __init__( self : Optional[int] , snake_case__ : Tuple=768 , snake_case__ : str=768 , snake_case__ : Union[str, Any]=2048 , snake_case__ : Tuple=64 , snake_case__ : List[Any]=12 , snake_case__ : Dict=12 , snake_case__ : int="gelu_new" , snake_case__ : str=1E-6 , snake_case__ : int=0.0 , snake_case__ : int=0.0 , snake_case__ : Dict=1E-10 , snake_case__ : Tuple=1.0 , snake_case__ : int=4096 , snake_case__ : Tuple=32 , snake_case__ : List[str]=128 , **snake_case__ : List[Any] , ): super().__init__(**snake_case__ ) lowerCamelCase_ : int =hidden_size lowerCamelCase_ : List[Any] =patch_embed_hidden_size lowerCamelCase_ : Tuple =d_ff lowerCamelCase_ : List[Any] =dropout_rate lowerCamelCase_ : Dict =num_hidden_layers lowerCamelCase_ : List[str] =num_attention_heads lowerCamelCase_ : Optional[Any] =initializer_range lowerCamelCase_ : int =initializer_factor lowerCamelCase_ : Any =attention_dropout lowerCamelCase_ : List[str] =layer_norm_eps lowerCamelCase_ : int =dense_act_fn lowerCamelCase_ : Optional[Any] =seq_len lowerCamelCase_ : Optional[int] =relative_attention_num_buckets lowerCamelCase_ : Optional[int] =relative_attention_max_distance lowerCamelCase_ : Dict =d_kv @classmethod def UpperCAmelCase__ ( cls : Optional[Any] , snake_case__ : Union[str, os.PathLike] , **snake_case__ : Dict ): cls._set_token_in_kwargs(snake_case__ ) lowerCamelCase_ , lowerCamelCase_ : Dict =cls.get_config_dict(snake_case__ , **snake_case__ ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get("model_type" ) == "pix2struct": lowerCamelCase_ : List[Any] =config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(snake_case__ , **snake_case__ ) class lowercase__ ( snake_case__ ): _UpperCAmelCase :str = "pix2struct" _UpperCAmelCase :List[str] = True def __init__( self : Tuple , snake_case__ : List[Any]=None , snake_case__ : Optional[Any]=None , snake_case__ : List[str]=1.0 , snake_case__ : List[Any]=0.02 , snake_case__ : List[Any]=False , snake_case__ : int=False , snake_case__ : Any=True , **snake_case__ : List[Any] , ): super().__init__(tie_word_embeddings=snake_case__ , is_encoder_decoder=snake_case__ , **snake_case__ ) if text_config is None: lowerCamelCase_ : Dict ={} logger.info("text_config is None. Initializing the Pix2StructTextConfig with default values." ) if vision_config is None: lowerCamelCase_ : int ={} logger.info("vision_config is None. Initializing the Pix2StructVisionConfig with default values." ) lowerCamelCase_ : Any =PixaStructTextConfig(**snake_case__ ) lowerCamelCase_ : Optional[Any] =PixaStructVisionConfig(**snake_case__ ) lowerCamelCase_ : str =self.text_config.decoder_start_token_id lowerCamelCase_ : Optional[int] =self.text_config.pad_token_id lowerCamelCase_ : List[Any] =self.text_config.eos_token_id lowerCamelCase_ : int =initializer_factor lowerCamelCase_ : Optional[Any] =initializer_range lowerCamelCase_ : Any =self.initializer_range lowerCamelCase_ : List[Any] =self.initializer_range lowerCamelCase_ : List[str] =is_vqa @classmethod def UpperCAmelCase__ ( cls : List[str] , snake_case__ : PixaStructTextConfig , snake_case__ : PixaStructVisionConfig , **snake_case__ : Optional[int] ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **snake_case__ ) def UpperCAmelCase__ ( self : Any ): lowerCamelCase_ : Tuple =copy.deepcopy(self.__dict__ ) lowerCamelCase_ : Dict =self.text_config.to_dict() lowerCamelCase_ : Union[str, Any] =self.vision_config.to_dict() lowerCamelCase_ : Dict =self.__class__.model_type return output
144
"""simple docstring""" import re from filelock import FileLock try: import nltk A__ : Any = True except (ImportError, ModuleNotFoundError): A__ : str = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def _snake_case ( lowerCamelCase__ : str ) -> str: re.sub("<n>" , "" , lowerCamelCase__ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(lowerCamelCase__ ) )
144
1
import math class lowercase__ : '''simple docstring''' def __init__( self, __magic_name__=0 ) -> str: # a graph with Node 0,1,...,N-1 """simple docstring""" UpperCamelCase__ : int = n UpperCamelCase__ : Optional[Any] = [ [math.inf for j in range(0, __magic_name__ )] for i in range(0, __magic_name__ ) ] # adjacency matrix for weight UpperCamelCase__ : List[str] = [ [math.inf for j in range(0, __magic_name__ )] for i in range(0, __magic_name__ ) ] # dp[i][j] stores minimum distance from i to j def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__ ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : Any = w def UpperCamelCase__ ( self ) -> str: """simple docstring""" for k in range(0, self.n ): for i in range(0, self.n ): for j in range(0, self.n ): UpperCamelCase__ : Tuple = min(self.dp[i][j], self.dp[i][k] + self.dp[k][j] ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__ ) -> Tuple: """simple docstring""" return self.dp[u][v] if __name__ == "__main__": UpperCAmelCase_ = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
247
from collections import deque def lowerCAmelCase_ ( __UpperCAmelCase: int ) -> str: UpperCamelCase__ : Optional[int] = len(__UpperCAmelCase ) UpperCamelCase__ : str = deque() UpperCamelCase__ : int = [False for _ in range(__UpperCAmelCase )] UpperCamelCase__ : Optional[int] = [-1 for _ in range(__UpperCAmelCase )] UpperCamelCase__ : str = index_of[:] def strong_connect(__UpperCAmelCase: Optional[int] , __UpperCAmelCase: Union[str, Any] , __UpperCAmelCase: Union[str, Any] ): UpperCamelCase__ : str = index # the number when this node is seen UpperCamelCase__ : Any = index # lowest rank node reachable from here index += 1 stack.append(__UpperCAmelCase ) UpperCamelCase__ : Optional[Any] = True for w in g[v]: if index_of[w] == -1: UpperCamelCase__ : str = strong_connect(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) UpperCamelCase__ : List[str] = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: UpperCamelCase__ : Dict = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: UpperCamelCase__ : Tuple = [] UpperCamelCase__ : str = stack.pop() UpperCamelCase__ : int = False component.append(__UpperCAmelCase ) while w != v: UpperCamelCase__ : int = stack.pop() UpperCamelCase__ : Optional[Any] = False component.append(__UpperCAmelCase ) components.append(__UpperCAmelCase ) return index UpperCamelCase__ : Optional[Any] = [] for v in range(__UpperCAmelCase ): if index_of[v] == -1: strong_connect(__UpperCAmelCase , 0 , __UpperCAmelCase ) return components def lowerCAmelCase_ ( __UpperCAmelCase: Union[str, Any] , __UpperCAmelCase: List[Any] ) -> str: UpperCamelCase__ : Dict = [[] for _ in range(__UpperCAmelCase )] for u, v in edges: g[u].append(__UpperCAmelCase ) return g if __name__ == "__main__": # Test UpperCAmelCase_ = 7 UpperCAmelCase_ = [0, 0, 1, 2, 3, 3, 4, 4, 6] UpperCAmelCase_ = [1, 3, 2, 0, 1, 4, 5, 6, 5] UpperCAmelCase_ = [(u, v) for u, v in zip(source, target)] UpperCAmelCase_ = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
247
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowercase : Optional[Any] = logging.get_logger(__name__) class A ( __snake_case ): __magic_name__ = ['''pixel_values'''] def __init__( self , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = 1 / 255 , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> None: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE ) A : str = size if size is not None else {'''shortest_edge''': 384} A : Tuple = get_size_dict(SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE ) A : str = do_resize A : List[Any] = size # Default value set here for backwards compatibility where the value in config is None A : List[Any] = crop_pct if crop_pct is not None else 224 / 256 A : Optional[int] = resample A : Union[str, Any] = do_rescale A : List[str] = rescale_factor A : Union[str, Any] = do_normalize A : Any = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A : Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> np.ndarray: """simple docstring""" A : str = get_size_dict(SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE ) if "shortest_edge" not in size: raise ValueError(F'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' ) A : Any = size['''shortest_edge'''] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct A : Dict = int(shortest_edge / crop_pct ) A : str = get_resize_output_image_size(SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE ) A : int = resize(image=SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE , resample=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=SCREAMING_SNAKE_CASE , size=(shortest_edge, shortest_edge) , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) else: # warping (no cropping) when evaluated at 384 or larger return resize( SCREAMING_SNAKE_CASE , size=(shortest_edge, shortest_edge) , resample=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> List[str]: """simple docstring""" return rescale(SCREAMING_SNAKE_CASE , scale=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> np.ndarray: """simple docstring""" return normalize(SCREAMING_SNAKE_CASE , mean=SCREAMING_SNAKE_CASE , std=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE , ) -> PIL.Image.Image: """simple docstring""" A : int = do_resize if do_resize is not None else self.do_resize A : Tuple = crop_pct if crop_pct is not None else self.crop_pct A : Optional[Any] = resample if resample is not None else self.resample A : List[Any] = do_rescale if do_rescale is not None else self.do_rescale A : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor A : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize A : Union[str, Any] = image_mean if image_mean is not None else self.image_mean A : List[str] = image_std if image_std is not None else self.image_std A : Union[str, Any] = size if size is not None else self.size A : List[Any] = get_size_dict(SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE ) A : Any = make_list_of_images(SCREAMING_SNAKE_CASE ) if not valid_images(SCREAMING_SNAKE_CASE ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError('''crop_pct must be specified if size < 384.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. A : Optional[int] = [to_numpy_array(SCREAMING_SNAKE_CASE ) for image in images] if do_resize: A : Any = [self.resize(image=SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE , crop_pct=SCREAMING_SNAKE_CASE , resample=SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: A : str = [self.rescale(image=SCREAMING_SNAKE_CASE , scale=SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: A : Dict = [self.normalize(image=SCREAMING_SNAKE_CASE , mean=SCREAMING_SNAKE_CASE , std=SCREAMING_SNAKE_CASE ) for image in images] A : Any = [to_channel_dimension_format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for image in images] A : Optional[int] = {'''pixel_values''': images} return BatchFeature(data=SCREAMING_SNAKE_CASE , tensor_type=SCREAMING_SNAKE_CASE )
3
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging lowercase : List[str] = logging.get_logger(__name__) lowercase : str = { 'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class A ( __snake_case ): __magic_name__ = '''gpt_neo''' __magic_name__ = ['''past_key_values'''] __magic_name__ = {'''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self , SCREAMING_SNAKE_CASE=50257 , SCREAMING_SNAKE_CASE=2048 , SCREAMING_SNAKE_CASE=2048 , SCREAMING_SNAKE_CASE=24 , SCREAMING_SNAKE_CASE=[[["global", "local"], 12]] , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=256 , SCREAMING_SNAKE_CASE="gelu_new" , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=1e-5 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=50256 , SCREAMING_SNAKE_CASE=50256 , **SCREAMING_SNAKE_CASE , ) -> int: """simple docstring""" A : Union[str, Any] = vocab_size A : Optional[Any] = max_position_embeddings A : Dict = hidden_size A : Optional[Any] = num_layers A : Tuple = num_heads A : int = intermediate_size A : Optional[Any] = window_size A : List[Any] = activation_function A : Union[str, Any] = resid_dropout A : Any = embed_dropout A : List[Any] = attention_dropout A : str = classifier_dropout A : List[Any] = layer_norm_epsilon A : str = initializer_range A : List[str] = use_cache A : Optional[int] = bos_token_id A : List[Any] = eos_token_id A : int = attention_types A : int = self.expand_attention_types_params(SCREAMING_SNAKE_CASE ) if len(self.attention_layers ) != self.num_layers: raise ValueError( '''Configuration for convolutional module is incorrect. ''' '''It is required that `len(config.attention_layers)` == `config.num_layers` ''' F'but is `len(config.attention_layers) = {len(self.attention_layers )}`, ' F'`config.num_layers = {self.num_layers}`. ' '''`config.attention_layers` is prepared using `config.attention_types`. ''' '''Please verify the value of `config.attention_types` argument.''' ) super().__init__(bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) @staticmethod def __lowerCAmelCase ( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" A : List[str] = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' import torch A : Tuple = input.size() A : Union[str, Any] = len(snake_case__ ) A : List[str] = shape[dimension] A : Union[str, Any] = torch.arange(0 , snake_case__ , snake_case__ ) A : List[str] = torch.div(sizedim - size , snake_case__ , rounding_mode='''floor''' ) + 1 A : Optional[int] = torch.arange(snake_case__ ) + low_indices[:min_length][:, None] A : str = [slice(snake_case__ )] * rank A : List[Any] = indices A : Union[str, Any] = input[s] A : List[str] = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(snake_case__ ) def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' import torch A : List[str] = torch.arange(1 , snake_case__ ) A : Optional[int] = torch.remainder(snake_case__ , snake_case__ ) A : Optional[int] = remainders == 0 A : Optional[Any] = candidates[divisor_indices] A : Optional[int] = torch.max(snake_case__ ) return largest_divisor, torch.div(snake_case__ , snake_case__ , rounding_mode='''floor''' ) class A ( __snake_case ): @property def __lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" A : Tuple = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE , direction='''inputs''' ) A : Optional[Any] = {0: '''batch''', 1: '''past_sequence + sequence'''} else: A : Dict = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def __lowerCAmelCase ( self ) -> int: """simple docstring""" return self._config.num_heads def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 , SCREAMING_SNAKE_CASE = -1 , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = None , ) -> Mapping[str, Any]: """simple docstring""" A : List[str] = super(SCREAMING_SNAKE_CASE , self ).generate_dummy_inputs( SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE , seq_length=SCREAMING_SNAKE_CASE , is_pair=SCREAMING_SNAKE_CASE , framework=SCREAMING_SNAKE_CASE ) # We need to order the input in the way they appears in the forward() A : Any = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch A, A : Dict = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values A : str = seqlen + 2 A : List[Any] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) A : Any = [ (torch.zeros(SCREAMING_SNAKE_CASE ), torch.zeros(SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers ) ] A : str = common_inputs['''attention_mask'''] if self.use_past: A : Optional[int] = ordered_inputs['''attention_mask'''].dtype A : List[str] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE )] , dim=1 ) return ordered_inputs @property def __lowerCAmelCase ( self ) -> int: """simple docstring""" return 13
3
1
'''simple docstring''' class _lowerCAmelCase : """simple docstring""" def __init__( self : Optional[Any] , __snake_case : int , __snake_case : Optional[Any]=None , __snake_case : int=None )-> str: snake_case = data snake_case = previous snake_case = next_node def __str__( self : Union[str, Any] )-> str: return f'''{self.data}''' def lowerCAmelCase ( self : Tuple )-> int: return self.data def lowerCAmelCase ( self : str )-> str: return self.next def lowerCAmelCase ( self : Dict )-> Optional[int]: return self.previous class _lowerCAmelCase : """simple docstring""" def __init__( self : int , __snake_case : List[Any] )-> List[str]: snake_case = head def __iter__( self : Optional[int] )-> Dict: return self def lowerCAmelCase ( self : Optional[Any] )-> List[str]: if not self.current: raise StopIteration else: snake_case = self.current.get_data() snake_case = self.current.get_next() return value class _lowerCAmelCase : """simple docstring""" def __init__( self : List[Any] )-> str: snake_case = None # First node in list snake_case = None # Last node in list def __str__( self : List[str] )-> Any: snake_case = self.head snake_case = [] while current is not None: nodes.append(current.get_data() ) snake_case = current.get_next() return " ".join(str(__snake_case ) for node in nodes ) def __contains__( self : Optional[Any] , __snake_case : int )-> Optional[Any]: snake_case = self.head while current: if current.get_data() == value: return True snake_case = current.get_next() return False def __iter__( self : Dict )-> List[Any]: return LinkedListIterator(self.head ) def lowerCAmelCase ( self : Tuple )-> int: if self.head: return self.head.get_data() return None def lowerCAmelCase ( self : Dict )-> Optional[Any]: if self.tail: return self.tail.get_data() return None def lowerCAmelCase ( self : List[Any] , __snake_case : Node )-> None: if self.head is None: snake_case = node snake_case = node else: self.insert_before_node(self.head , __snake_case ) def lowerCAmelCase ( self : int , __snake_case : Node )-> None: if self.head is None: self.set_head(__snake_case ) else: self.insert_after_node(self.tail , __snake_case ) def lowerCAmelCase ( self : str , __snake_case : int )-> None: snake_case = Node(__snake_case ) if self.head is None: self.set_head(__snake_case ) else: self.set_tail(__snake_case ) def lowerCAmelCase ( self : List[Any] , __snake_case : Node , __snake_case : Node )-> None: snake_case = node snake_case = node.previous if node.get_previous() is None: snake_case = node_to_insert else: snake_case = node_to_insert snake_case = node_to_insert def lowerCAmelCase ( self : Optional[int] , __snake_case : Node , __snake_case : Node )-> None: snake_case = node snake_case = node.next if node.get_next() is None: snake_case = node_to_insert else: snake_case = node_to_insert snake_case = node_to_insert def lowerCAmelCase ( self : int , __snake_case : int , __snake_case : int )-> None: snake_case = 1 snake_case = Node(__snake_case ) snake_case = self.head while node: if current_position == position: self.insert_before_node(__snake_case , __snake_case ) return current_position += 1 snake_case = node.next self.insert_after_node(self.tail , __snake_case ) def lowerCAmelCase ( self : str , __snake_case : int )-> Node: snake_case = self.head while node: if node.get_data() == item: return node snake_case = node.get_next() raise Exception("""Node not found""" ) def lowerCAmelCase ( self : Any , __snake_case : Dict )-> Tuple: if (node := self.get_node(__snake_case )) is not None: if node == self.head: snake_case = self.head.get_next() if node == self.tail: snake_case = self.tail.get_previous() self.remove_node_pointers(__snake_case ) @staticmethod def lowerCAmelCase ( __snake_case : Node )-> None: if node.get_next(): snake_case = node.previous if node.get_previous(): snake_case = node.next snake_case = None snake_case = None def lowerCAmelCase ( self : List[Any] )-> Optional[Any]: return self.head is None def __lowerCamelCase ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
3
'''simple docstring''' import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/dummy_feature_extractor_config.json") _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/vocab.json") _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures") class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" snake_case_ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] def lowerCAmelCase ( self : str )-> Any: snake_case = 0 def lowerCAmelCase ( self : Tuple )-> Optional[Any]: snake_case = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : Dict )-> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = WavaVecaConfig() snake_case = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) # save in new folder model_config.save_pretrained(__snake_case ) processor.save_pretrained(__snake_case ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : int )-> str: with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(__snake_case , os.path.join(__snake_case , __snake_case ) ) copyfile(__snake_case , os.path.join(__snake_case , """vocab.json""" ) ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : List[Any] )-> str: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = WavaVecaFeatureExtractor() snake_case = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) snake_case = WavaVecaProcessor(__snake_case , __snake_case ) # save in new folder processor.save_pretrained(__snake_case ) # drop `processor_class` in tokenizer with open(os.path.join(__snake_case , __snake_case ) , """r""" ) as f: snake_case = json.load(__snake_case ) config_dict.pop("""processor_class""" ) with open(os.path.join(__snake_case , __snake_case ) , """w""" ) as f: f.write(json.dumps(__snake_case ) ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : Dict )-> Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = WavaVecaFeatureExtractor() snake_case = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) snake_case = WavaVecaProcessor(__snake_case , __snake_case ) # save in new folder processor.save_pretrained(__snake_case ) # drop `processor_class` in feature extractor with open(os.path.join(__snake_case , __snake_case ) , """r""" ) as f: snake_case = json.load(__snake_case ) config_dict.pop("""processor_class""" ) with open(os.path.join(__snake_case , __snake_case ) , """w""" ) as f: f.write(json.dumps(__snake_case ) ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : Optional[int] )-> str: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = WavaVecaConfig(processor_class="""Wav2Vec2Processor""" ) model_config.save_pretrained(__snake_case ) # copy relevant files copyfile(__snake_case , os.path.join(__snake_case , """vocab.json""" ) ) # create emtpy sample processor with open(os.path.join(__snake_case , __snake_case ) , """w""" ) as f: f.write("""{}""" ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : int )-> Any: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__snake_case ): snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__snake_case ): snake_case = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case ) snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) snake_case = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) snake_case = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version snake_case = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case , use_fast=__snake_case ) snake_case = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , """NewTokenizer""" ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) def lowerCAmelCase ( self : List[Any] )-> List[Any]: try: AutoConfig.register("""custom""" , __snake_case ) AutoFeatureExtractor.register(__snake_case , __snake_case ) AutoTokenizer.register(__snake_case , slow_tokenizer_class=__snake_case ) AutoProcessor.register(__snake_case , __snake_case ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__snake_case ): AutoProcessor.register(__snake_case , __snake_case ) # Now that the config is registered, it can be used as any other config with the auto-API snake_case = CustomFeatureExtractor.from_pretrained(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: snake_case = os.path.join(__snake_case , """vocab.txt""" ) with open(__snake_case , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) snake_case = CustomTokenizer(__snake_case ) snake_case = CustomProcessor(__snake_case , __snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(__snake_case ) snake_case = AutoProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCAmelCase ( self : Any )-> Tuple: class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = False class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = False class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "AutoFeatureExtractor" snake_case_ = "AutoTokenizer" snake_case_ = False try: AutoConfig.register("""custom""" , __snake_case ) AutoFeatureExtractor.register(__snake_case , __snake_case ) AutoTokenizer.register(__snake_case , slow_tokenizer_class=__snake_case ) AutoProcessor.register(__snake_case , __snake_case ) # If remote code is not set, the default is to use local classes. snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. snake_case = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. snake_case = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__snake_case ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCAmelCase ( self : str )-> Union[str, Any]: snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(processor.__class__.__name__ , """BertTokenizerFast""" ) def lowerCAmelCase ( self : Any )-> List[str]: snake_case = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-convnext""" ) self.assertEqual(processor.__class__.__name__ , """ConvNextImageProcessor""" ) @is_staging_test class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" snake_case_ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def lowerCAmelCase ( cls : Optional[Any] )-> Tuple: snake_case = TOKEN HfFolder.save_token(__snake_case ) @classmethod def lowerCAmelCase ( cls : Optional[Any] )-> Optional[Any]: try: delete_repo(token=cls._token , repo_id="""test-processor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-processor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-processor""" ) except HTTPError: pass def lowerCAmelCase ( self : List[Any] )-> str: snake_case = WavaVecaProcessor.from_pretrained(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(__snake_case , """test-processor""" ) , push_to_hub=__snake_case , use_auth_token=self._token ) snake_case = WavaVecaProcessor.from_pretrained(f'''{USER}/test-processor''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(__snake_case , getattr(new_processor.feature_extractor , __snake_case ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def lowerCAmelCase ( self : Any )-> Optional[Any]: snake_case = WavaVecaProcessor.from_pretrained(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(__snake_case , """test-processor-org""" ) , push_to_hub=__snake_case , use_auth_token=self._token , organization="""valid_org""" , ) snake_case = WavaVecaProcessor.from_pretrained("""valid_org/test-processor-org""" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(__snake_case , getattr(new_processor.feature_extractor , __snake_case ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def lowerCAmelCase ( self : List[str] )-> int: CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() snake_case = CustomFeatureExtractor.from_pretrained(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: snake_case = os.path.join(__snake_case , """vocab.txt""" ) with open(__snake_case , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) snake_case = CustomTokenizer(__snake_case ) snake_case = CustomProcessor(__snake_case , __snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(f'''{USER}/test-dynamic-processor''' , token=self._token ) snake_case = Repository(__snake_case , clone_from=f'''{USER}/test-dynamic-processor''' , token=self._token ) processor.save_pretrained(__snake_case ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { """AutoFeatureExtractor""": """custom_feature_extraction.CustomFeatureExtractor""", """AutoProcessor""": """custom_processing.CustomProcessor""", } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(__snake_case , """tokenizer_config.json""" ) ) as f: snake_case = json.load(__snake_case ) self.assertDictEqual( tokenizer_config["""auto_map"""] , { """AutoTokenizer""": ["""custom_tokenization.CustomTokenizer""", None], """AutoProcessor""": """custom_processing.CustomProcessor""", } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(__snake_case , """custom_feature_extraction.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(__snake_case , """custom_tokenization.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(__snake_case , """custom_processing.py""" ) ) ) repo.push_to_hub() snake_case = AutoProcessor.from_pretrained(f'''{USER}/test-dynamic-processor''' , trust_remote_code=__snake_case ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , """CustomProcessor""" )
3
1
import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home a_ = HUGGINGFACE_HUB_CACHE a_ = 'config.json' a_ = 'diffusion_pytorch_model.bin' a_ = 'diffusion_flax_model.msgpack' a_ = 'model.onnx' a_ = 'diffusion_pytorch_model.safetensors' a_ = 'weights.pb' a_ = 'https://huggingface.co' a_ = default_cache_path a_ = 'diffusers_modules' a_ = os.getenv('HF_MODULES_CACHE', os.path.join(hf_cache_home, 'modules')) a_ = ['fp16', 'non-ema'] a_ = '.self_attn'
76
a_ = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } def lowerCamelCase__ ( _a , _a , _a): SCREAMING_SNAKE_CASE : int = set() # keep track of all the paths to be checked SCREAMING_SNAKE_CASE : int = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue SCREAMING_SNAKE_CASE : Optional[int] = queue.pop(0) # get the last node from the path SCREAMING_SNAKE_CASE : Union[str, Any] = path[-1] if node not in explored: SCREAMING_SNAKE_CASE : List[str] = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: SCREAMING_SNAKE_CASE : List[Any] = list(_a) new_path.append(_a) queue.append(_a) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(_a) # in case there's no path between the 2 nodes return [] def lowerCamelCase__ ( _a , _a , _a): if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 SCREAMING_SNAKE_CASE : str = [start] SCREAMING_SNAKE_CASE : Optional[Any] = set(_a) # Keep tab on distances from `start` node. SCREAMING_SNAKE_CASE : Union[str, Any] = {start: 0, target: -1} while queue: SCREAMING_SNAKE_CASE : Optional[int] = queue.pop(0) if node == target: SCREAMING_SNAKE_CASE : Union[str, Any] = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node]) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(_a) queue.append(_a) SCREAMING_SNAKE_CASE : Optional[Any] = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, 'G', 'D')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, 'G', 'D')) # returns 4
76
1
"""simple docstring""" # DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = None def a__ ( lowerCAmelCase__ , lowerCAmelCase__=0.999 , lowerCAmelCase__="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCAmelCase__ ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCAmelCase__ ): return math.exp(t * -12.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) UpperCAmelCase_ = [] for i in range(lowerCAmelCase__ ): UpperCAmelCase_ = i / num_diffusion_timesteps UpperCAmelCase_ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCAmelCase__ ) / alpha_bar_fn(lowerCAmelCase__ ) , lowerCAmelCase__ ) ) return torch.tensor(lowerCAmelCase__ , dtype=torch.floataa ) class lowercase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = 1 @register_to_config def __init__( self : List[Any] , _UpperCAmelCase : int = 1000 , _UpperCAmelCase : float = 0.0001 , _UpperCAmelCase : float = 0.02 , _UpperCAmelCase : str = "linear" , _UpperCAmelCase : Optional[Union[np.ndarray, List[float]]] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = True , _UpperCAmelCase : int = 0 , _UpperCAmelCase : str = "epsilon" , _UpperCAmelCase : float = 1.0 , **_UpperCAmelCase : Any , ) -> List[Any]: '''simple docstring''' if kwargs.get("set_alpha_to_one" , _UpperCAmelCase ) is not None: UpperCAmelCase_ = ( "The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead." ) deprecate("set_alpha_to_one" , "1.0.0" , _UpperCAmelCase , standard_warn=_UpperCAmelCase ) UpperCAmelCase_ = kwargs["set_alpha_to_one"] if trained_betas is not None: UpperCAmelCase_ = torch.tensor(_UpperCAmelCase , dtype=torch.floataa ) elif beta_schedule == "linear": UpperCAmelCase_ = torch.linspace(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. UpperCAmelCase_ = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _UpperCAmelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule UpperCAmelCase_ = betas_for_alpha_bar(_UpperCAmelCase ) else: raise NotImplementedError(F"""{beta_schedule} does is not implemented for {self.__class__}""" ) UpperCAmelCase_ = 1.0 - self.betas UpperCAmelCase_ = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. UpperCAmelCase_ = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution UpperCAmelCase_ = 1.0 # setable values UpperCAmelCase_ = None UpperCAmelCase_ = torch.from_numpy(np.arange(0 , _UpperCAmelCase ).copy().astype(np.intaa ) ) def lowercase__ ( self : List[str] , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : Optional[int] = None ) -> torch.FloatTensor: '''simple docstring''' return sample def lowercase__ ( self : str , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, torch.device] = None ) -> int: '''simple docstring''' if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F"""`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:""" F""" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle""" F""" maximal {self.config.num_train_timesteps} timesteps.""" ) UpperCAmelCase_ = num_inference_steps UpperCAmelCase_ = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 UpperCAmelCase_ = (np.arange(0 , _UpperCAmelCase ) * step_ratio).round().copy().astype(np.intaa ) UpperCAmelCase_ = torch.from_numpy(_UpperCAmelCase ).to(_UpperCAmelCase ) self.timesteps += self.config.steps_offset def lowercase__ ( self : str , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : int , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[torch.FloatTensor] = None , _UpperCAmelCase : bool = True , ) -> Union[DDIMSchedulerOutput, Tuple]: '''simple docstring''' UpperCAmelCase_ = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process UpperCAmelCase_ = self.alphas_cumprod[timestep] UpperCAmelCase_ = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) UpperCAmelCase_ = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": UpperCAmelCase_ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 UpperCAmelCase_ = model_output elif self.config.prediction_type == "sample": UpperCAmelCase_ = model_output UpperCAmelCase_ = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": UpperCAmelCase_ = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output UpperCAmelCase_ = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or""" " `v_prediction`" ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: UpperCAmelCase_ = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf UpperCAmelCase_ = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf UpperCAmelCase_ = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=_UpperCAmelCase , pred_original_sample=_UpperCAmelCase ) def __len__( self : List[Any] ) -> List[str]: '''simple docstring''' return self.config.num_train_timesteps
241
"""simple docstring""" def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): return [sentence[i : i + ngram_size] for i in range(len(lowerCAmelCase__ ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
241
1
from __future__ import annotations from typing import Any class a_ : """simple docstring""" def __init__( self , _lowerCamelCase = 6 ) ->None: SCREAMING_SNAKE_CASE : Node | None = None SCREAMING_SNAKE_CASE : Node | None = None self.create_linked_list(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: SCREAMING_SNAKE_CASE : List[str] = Node() SCREAMING_SNAKE_CASE : Optional[int] = current_node SCREAMING_SNAKE_CASE : List[str] = current_node SCREAMING_SNAKE_CASE : List[str] = current_node for _ in range(1 , _lowerCamelCase ): SCREAMING_SNAKE_CASE : Any = Node() SCREAMING_SNAKE_CASE : Dict = current_node SCREAMING_SNAKE_CASE : Optional[Any] = previous_node SCREAMING_SNAKE_CASE : List[Any] = current_node SCREAMING_SNAKE_CASE : Any = self.front SCREAMING_SNAKE_CASE : Union[str, Any] = previous_node def __lowerCAmelCase ( self ) ->bool: return ( self.front == self.rear and self.front is not None and self.front.data is None ) def __lowerCAmelCase ( self ) ->Any | None: self.check_can_perform_operation() return self.front.data if self.front else None def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: if self.rear is None: return self.check_is_full() if not self.is_empty(): SCREAMING_SNAKE_CASE : Any = self.rear.next if self.rear: SCREAMING_SNAKE_CASE : int = data def __lowerCAmelCase ( self ) ->Any: self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: SCREAMING_SNAKE_CASE : Union[str, Any] = self.front.data SCREAMING_SNAKE_CASE : Optional[Any] = None return data SCREAMING_SNAKE_CASE : Tuple = self.front SCREAMING_SNAKE_CASE : int = old_front.next SCREAMING_SNAKE_CASE : Any = old_front.data SCREAMING_SNAKE_CASE : str = None return data def __lowerCAmelCase ( self ) ->None: if self.is_empty(): raise Exception('''Empty Queue''' ) def __lowerCAmelCase ( self ) ->None: if self.rear and self.rear.next == self.front: raise Exception('''Full Queue''' ) class a_ : """simple docstring""" def __init__( self ) ->None: SCREAMING_SNAKE_CASE : Any | None = None SCREAMING_SNAKE_CASE : Node | None = None SCREAMING_SNAKE_CASE : Node | None = None if __name__ == "__main__": import doctest doctest.testmod()
313
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params a__ : Optional[Any] = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['''memory_attention''', '''encoder_attn'''], ['''attention''', '''attn'''], ['''/''', '''.'''], ['''.LayerNorm.gamma''', '''_layer_norm.weight'''], ['''.LayerNorm.beta''', '''_layer_norm.bias'''], ['''r.layer_''', '''r.layers.'''], ['''output_proj''', '''out_proj'''], ['''ffn.dense_1.''', '''fc2.'''], ['''ffn.dense.''', '''fc1.'''], ['''ffn_layer_norm''', '''final_layer_norm'''], ['''kernel''', '''weight'''], ['''encoder_layer_norm.''', '''encoder.layer_norm.'''], ['''decoder_layer_norm.''', '''decoder.layer_norm.'''], ['''embeddings.weights''', '''shared.weight'''], ] def UpperCAmelCase_( a__ ): """simple docstring""" for pegasus_name, hf_name in PATTERNS: SCREAMING_SNAKE_CASE : Union[str, Any] = k.replace(a__ , a__ ) return k def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = DEFAULTS.copy() cfg_kwargs.update(a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = PegasusConfig(**a__ ) SCREAMING_SNAKE_CASE : Optional[int] = PegasusForConditionalGeneration(a__ ) SCREAMING_SNAKE_CASE : Dict = torch_model.model.state_dict() SCREAMING_SNAKE_CASE : List[str] = {} for k, v in tf_weights.items(): SCREAMING_SNAKE_CASE : int = rename_state_dict_key(a__ ) if new_k not in sd: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: SCREAMING_SNAKE_CASE : Dict = v.T SCREAMING_SNAKE_CASE : Tuple = torch.tensor(a__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected SCREAMING_SNAKE_CASE : Tuple = torch.zeros_like(mapping['''shared.weight'''][cfg.pad_token_id + 1] ) SCREAMING_SNAKE_CASE : int = mapping['''shared.weight'''] SCREAMING_SNAKE_CASE : Union[str, Any] = mapping['''shared.weight'''] SCREAMING_SNAKE_CASE : Optional[Any] = {k: torch.zeros_like(a__ ) for k, v in sd.items() if k.endswith('''bias''' ) and k not in mapping} mapping.update(**a__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = torch_model.model.load_state_dict(a__ , strict=a__ ) SCREAMING_SNAKE_CASE : Optional[Any] = [ k for k in missing if k not in ['''encoder.embed_positions.weight''', '''decoder.embed_positions.weight'''] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def UpperCAmelCase_( a__="./ckpt/aeslc/model.ckpt-32000" ): """simple docstring""" SCREAMING_SNAKE_CASE : str = tf.train.list_variables(a__ ) SCREAMING_SNAKE_CASE : str = {} SCREAMING_SNAKE_CASE : List[Any] = ['''Adafactor''', '''global_step'''] for name, shape in tqdm(a__ , desc='''converting tf checkpoint to dict''' ): SCREAMING_SNAKE_CASE : Union[str, Any] = any(pat in name for pat in ignore_name ) if skip_key: continue SCREAMING_SNAKE_CASE : Dict = tf.train.load_variable(a__ , a__ ) SCREAMING_SNAKE_CASE : Any = array return tf_weights def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = Path(a__ ).parent.name SCREAMING_SNAKE_CASE : Union[str, Any] = task_specific_params[F"""summarization_{dataset}"""]['''max_position_embeddings'''] SCREAMING_SNAKE_CASE : Dict = PegasusTokenizer.from_pretrained('''sshleifer/pegasus''' , model_max_length=a__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(a__ ) # convert model SCREAMING_SNAKE_CASE : Any = get_tf_weights_as_numpy(a__ ) SCREAMING_SNAKE_CASE : List[str] = task_specific_params[F"""summarization_{dataset}"""] if dataset == "large": SCREAMING_SNAKE_CASE : int = task_specific_params SCREAMING_SNAKE_CASE : List[str] = convert_pegasus(a__ , a__ ) torch_model.save_pretrained(a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch_model.state_dict() sd.pop('''model.decoder.embed_positions.weight''' ) sd.pop('''model.encoder.embed_positions.weight''' ) torch.save(a__ , Path(a__ ) / '''pytorch_model.bin''' ) if __name__ == "__main__": a__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('''tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') a__ : List[str] = parser.parse_args() if args.save_dir is None: a__ : Any = Path(args.tf_ckpt_path).parent.name a__ : int = os.path.join('''pegasus''', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
313
1
"""simple docstring""" import os import sys _lowerCAmelCase : str = os.path.join(os.path.dirname(__file__), """src""") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) _lowerCAmelCase : List[Any] = [ """torch""", """numpy""", """tokenizers""", """filelock""", """requests""", """tqdm""", """regex""", """sentencepiece""", """sacremoses""", """importlib_metadata""", """huggingface_hub""", ] @add_start_docstrings(AutoConfig.__doc__ ) def SCREAMING_SNAKE_CASE__ ( *snake_case : List[Any] , **snake_case : Any )-> Dict: '''simple docstring''' return AutoConfig.from_pretrained(*snake_case , **snake_case ) @add_start_docstrings(AutoTokenizer.__doc__ ) def SCREAMING_SNAKE_CASE__ ( *snake_case : Union[str, Any] , **snake_case : Dict )-> Optional[int]: '''simple docstring''' return AutoTokenizer.from_pretrained(*snake_case , **snake_case ) @add_start_docstrings(AutoModel.__doc__ ) def SCREAMING_SNAKE_CASE__ ( *snake_case : Optional[int] , **snake_case : str )-> Union[str, Any]: '''simple docstring''' return AutoModel.from_pretrained(*snake_case , **snake_case ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def SCREAMING_SNAKE_CASE__ ( *snake_case : str , **snake_case : str )-> Tuple: '''simple docstring''' return AutoModelForCausalLM.from_pretrained(*snake_case , **snake_case ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def SCREAMING_SNAKE_CASE__ ( *snake_case : Optional[Any] , **snake_case : Tuple )-> Tuple: '''simple docstring''' return AutoModelForMaskedLM.from_pretrained(*snake_case , **snake_case ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def SCREAMING_SNAKE_CASE__ ( *snake_case : List[str] , **snake_case : Any )-> Dict: '''simple docstring''' return AutoModelForSequenceClassification.from_pretrained(*snake_case , **snake_case ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def SCREAMING_SNAKE_CASE__ ( *snake_case : List[Any] , **snake_case : int )-> str: '''simple docstring''' return AutoModelForQuestionAnswering.from_pretrained(*snake_case , **snake_case )
352
"""simple docstring""" import functools def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : str )-> int: '''simple docstring''' UpperCAmelCase__ : List[str] = len(snake_case ) UpperCAmelCase__ : str = len(snake_case ) @functools.cache def min_distance(snake_case : int , snake_case : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa UpperCAmelCase__ : Optional[int] = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , snake_case ) , 1 + min_distance(snake_case , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
298
0
def A_ ( _UpperCAmelCase , _UpperCAmelCase ): return [sentence[i : i + ngram_size] for i in range(len(_UpperCAmelCase ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
13
"""simple docstring""" from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class _lowerCAmelCase : def __init__( self , UpperCamelCase__ , ) -> str: '''simple docstring''' snake_case : List[str] = parent snake_case : int = 13 snake_case : Optional[int] = 7 snake_case : Tuple = True snake_case : Optional[Any] = True snake_case : Optional[Any] = False snake_case : Optional[Any] = True snake_case : List[Any] = 99 snake_case : Union[str, Any] = 32 snake_case : Union[str, Any] = 2 snake_case : Union[str, Any] = 4 snake_case : Optional[Any] = 37 snake_case : str = "gelu" snake_case : int = 0.1 snake_case : Any = 0.1 snake_case : Any = 512 snake_case : Union[str, Any] = 16 snake_case : List[str] = 2 snake_case : int = 0.02 snake_case : str = 3 snake_case : Tuple = 4 snake_case : Optional[Any] = None def lowerCamelCase ( self ) -> int: '''simple docstring''' snake_case : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case : Optional[Any] = None if self.use_input_mask: snake_case : Dict = random_attention_mask([self.batch_size, self.seq_length] ) snake_case : List[Any] = None snake_case : int = None snake_case : Tuple = None if self.use_labels: snake_case : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) snake_case : str = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' snake_case : Optional[Any] = TFDistilBertModel(config=UpperCamelCase__ ) snake_case : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask} snake_case : Union[str, Any] = model(UpperCamelCase__ ) snake_case : Tuple = [input_ids, input_mask] snake_case : Optional[Any] = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Any: '''simple docstring''' snake_case : Tuple = TFDistilBertForMaskedLM(config=UpperCamelCase__ ) snake_case : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask} snake_case : List[str] = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> str: '''simple docstring''' snake_case : List[Any] = TFDistilBertForQuestionAnswering(config=UpperCamelCase__ ) snake_case : Optional[Any] = { "input_ids": input_ids, "attention_mask": input_mask, } snake_case : str = model(UpperCamelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> str: '''simple docstring''' snake_case : int = self.num_labels snake_case : List[str] = TFDistilBertForSequenceClassification(UpperCamelCase__ ) snake_case : List[str] = {"input_ids": input_ids, "attention_mask": input_mask} snake_case : List[str] = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Any: '''simple docstring''' snake_case : Tuple = self.num_choices snake_case : Any = TFDistilBertForMultipleChoice(UpperCamelCase__ ) snake_case : List[str] = tf.tile(tf.expand_dims(UpperCamelCase__ , 1 ) , (1, self.num_choices, 1) ) snake_case : Any = tf.tile(tf.expand_dims(UpperCamelCase__ , 1 ) , (1, self.num_choices, 1) ) snake_case : Optional[Any] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, } snake_case : int = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Dict: '''simple docstring''' snake_case : str = self.num_labels snake_case : Tuple = TFDistilBertForTokenClassification(UpperCamelCase__ ) snake_case : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask} snake_case : List[Any] = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' snake_case : Any = self.prepare_config_and_inputs() ((snake_case) ,(snake_case) ,(snake_case) ,(snake_case) ,(snake_case) ,(snake_case)) : Union[str, Any] = config_and_inputs snake_case : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _lowerCAmelCase ( snake_case_ , snake_case_ , unittest.TestCase ): __UpperCAmelCase : List[str] = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) __UpperCAmelCase : Optional[int] = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) __UpperCAmelCase : Optional[int] = False __UpperCAmelCase : Optional[Any] = False def lowerCamelCase ( self ) -> int: '''simple docstring''' snake_case : int = TFDistilBertModelTester(self ) snake_case : str = ConfigTester(self , config_class=UpperCamelCase__ , dim=37 ) def lowerCamelCase ( self ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase ( self ) -> Any: '''simple docstring''' snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*UpperCamelCase__ ) def lowerCamelCase ( self ) -> Dict: '''simple docstring''' snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*UpperCamelCase__ ) def lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*UpperCamelCase__ ) def lowerCamelCase ( self ) -> Any: '''simple docstring''' snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*UpperCamelCase__ ) def lowerCamelCase ( self ) -> List[str]: '''simple docstring''' snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*UpperCamelCase__ ) def lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*UpperCamelCase__ ) @slow def lowerCamelCase ( self ) -> List[str]: '''simple docstring''' for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): snake_case : Optional[int] = TFDistilBertModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @require_tf class _lowerCAmelCase ( unittest.TestCase ): @slow def lowerCamelCase ( self ) -> Dict: '''simple docstring''' snake_case : str = TFDistilBertModel.from_pretrained("distilbert-base-uncased" ) snake_case : Optional[int] = tf.constant([[0, 1, 2, 3, 4, 5]] ) snake_case : Any = model(UpperCamelCase__ )[0] snake_case : Dict = [1, 6, 768] self.assertEqual(output.shape , UpperCamelCase__ ) snake_case : str = tf.constant( [ [ [0.19261885, -0.13732955, 0.4119799], [0.22150156, -0.07422661, 0.39037204], [0.22756018, -0.0896414, 0.3701467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCamelCase__ , atol=1e-4 )
203
0
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging A_ : Dict = logging.get_logger(__name__) A_ : Tuple = { 'Salesforce/codegen-350M-nl': 'https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json', 'Salesforce/codegen-350M-multi': 'https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json', 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json', 'Salesforce/codegen-2B-nl': 'https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json', 'Salesforce/codegen-2B-multi': 'https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json', 'Salesforce/codegen-2B-mono': 'https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json', 'Salesforce/codegen-6B-nl': 'https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json', 'Salesforce/codegen-6B-multi': 'https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json', 'Salesforce/codegen-6B-mono': 'https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json', 'Salesforce/codegen-16B-nl': 'https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json', 'Salesforce/codegen-16B-multi': 'https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json', 'Salesforce/codegen-16B-mono': 'https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json', } class _a (__magic_name__ ): '''simple docstring''' UpperCAmelCase__: Optional[int] = '''codegen''' UpperCAmelCase__: Union[str, Any] = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , A__=5_0400 , A__=2048 , A__=2048 , A__=4096 , A__=28 , A__=16 , A__=64 , A__=None , A__="gelu_new" , A__=0.0 , A__=0.0 , A__=0.0 , A__=1e-5 , A__=0.0_2 , A__=True , A__=5_0256 , A__=5_0256 , A__=False , **A__ , ): A__ : str = vocab_size A__ : Optional[int] = n_ctx A__ : Optional[Any] = n_positions A__ : Dict = n_embd A__ : List[str] = n_layer A__ : Dict = n_head A__ : Tuple = n_inner A__ : Union[str, Any] = rotary_dim A__ : Optional[Any] = activation_function A__ : Union[str, Any] = resid_pdrop A__ : str = embd_pdrop A__ : List[str] = attn_pdrop A__ : Tuple = layer_norm_epsilon A__ : Optional[Any] = initializer_range A__ : Optional[int] = use_cache A__ : Tuple = bos_token_id A__ : List[Any] = eos_token_id super().__init__( bos_token_id=A__ , eos_token_id=A__ , tie_word_embeddings=A__ , **A__ ) class _a (__magic_name__ ): '''simple docstring''' def __init__( self , A__ , A__ = "default" , A__ = None , A__ = False , ): super().__init__(A__ , task=A__ , patching_specs=A__ , use_past=A__ ) if not getattr(self._config , """pad_token_id""" , A__ ): # TODO: how to do that better? A__ : Tuple = 0 @property def __A ( self ): A__ : Optional[int] = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(A__ , direction="""inputs""" ) A__ : List[str] = {0: """batch""", 1: """past_sequence + sequence"""} else: A__ : Optional[int] = {0: """batch""", 1: """sequence"""} return common_inputs @property def __A ( self ): return self._config.n_layer @property def __A ( self ): return self._config.n_head def __A ( self , A__ , A__ = -1 , A__ = -1 , A__ = False , A__ = None , ): A__ : Any = super(A__ , self ).generate_dummy_inputs( A__ , batch_size=A__ , seq_length=A__ , is_pair=A__ , framework=A__ ) # We need to order the input in the way they appears in the forward() A__ : List[Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch A__ : Optional[int] = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values A__ : Union[str, Any] = seqlen + 2 A__ : Tuple = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) A__ : str = [ (torch.zeros(A__ ), torch.zeros(A__ )) for _ in range(self.num_layers ) ] A__ : int = common_inputs["""attention_mask"""] if self.use_past: A__ : Any = ordered_inputs["""attention_mask"""].dtype A__ : Optional[int] = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(A__ , A__ , dtype=A__ )] , dim=1 ) return ordered_inputs @property def __A ( self ): return 13
350
from typing import Any def UpperCamelCase (lowercase_: list ) -> list[Any]: if not input_list: return [] A__ : Any = [input_list.count(lowercase_ ) for value in input_list] A__ : List[Any] = max(lowercase_ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(lowercase_ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
141
0
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging _A = '''\ ''' _A = ''' Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity ''' _A = ''' Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to \'cuda\' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric("perplexity") >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"] >>> results = perplexity.compute(model_id=\'gpt2\', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) [\'perplexities\', \'mean_perplexity\'] >>> print(round(results["mean_perplexity"], 2)) 78.22 >>> print(round(results["perplexities"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric("perplexity") >>> input_texts = datasets.load_dataset("wikitext", ... "wikitext-2-raw-v1", ... split="test")["text"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=\'\'] >>> results = perplexity.compute(model_id=\'gpt2\', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) [\'perplexities\', \'mean_perplexity\'] >>> print(round(results["mean_perplexity"], 2)) 60.35 >>> print(round(results["perplexities"][0], 2)) 81.12 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ ( datasets.Metric ): def lowerCamelCase_ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """input_texts""": datasets.Value("""string""" ), } ) , reference_urls=["""https://huggingface.co/docs/transformers/perplexity"""] , ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 1_6 , __UpperCamelCase = True , __UpperCamelCase=None ): """simple docstring""" if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": UpperCamelCase_ = """cuda""" else: UpperCamelCase_ = """cuda""" if torch.cuda.is_available() else """cpu""" UpperCamelCase_ = AutoModelForCausalLM.from_pretrained(__UpperCamelCase ) UpperCamelCase_ = model.to(__UpperCamelCase ) UpperCamelCase_ = AutoTokenizer.from_pretrained(__UpperCamelCase ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: UpperCamelCase_ = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(__UpperCamelCase ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" UpperCamelCase_ = model.config.max_length - 1 else: UpperCamelCase_ = model.config.max_length UpperCamelCase_ = tokenizer( __UpperCamelCase , add_special_tokens=__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , return_tensors="""pt""" , return_attention_mask=__UpperCamelCase , ).to(__UpperCamelCase ) UpperCamelCase_ = encodings["""input_ids"""] UpperCamelCase_ = encodings["""attention_mask"""] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." UpperCamelCase_ = [] UpperCamelCase_ = CrossEntropyLoss(reduction="""none""" ) for start_index in logging.tqdm(range(0 , len(__UpperCamelCase ) , __UpperCamelCase ) ): UpperCamelCase_ = min(start_index + batch_size , len(__UpperCamelCase ) ) UpperCamelCase_ = encoded_texts[start_index:end_index] UpperCamelCase_ = attn_masks[start_index:end_index] if add_start_token: UpperCamelCase_ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(__UpperCamelCase ) UpperCamelCase_ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) UpperCamelCase_ = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(__UpperCamelCase ), attn_mask] , dim=1 ) UpperCamelCase_ = encoded_batch with torch.no_grad(): UpperCamelCase_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase ).logits UpperCamelCase_ = out_logits[..., :-1, :].contiguous() UpperCamelCase_ = labels[..., 1:].contiguous() UpperCamelCase_ = attn_mask[..., 1:].contiguous() UpperCamelCase_ = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , __UpperCamelCase ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(__UpperCamelCase )}
122
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class lowercase_ ( __SCREAMING_SNAKE_CASE ): A__ : torch.FloatTensor class lowercase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): @register_to_config def __init__( self , __UpperCamelCase = 3 , __UpperCamelCase = 3 , __UpperCamelCase = ("DownEncoderBlock2D",) , __UpperCamelCase = ("UpDecoderBlock2D",) , __UpperCamelCase = (6_4,) , __UpperCamelCase = 1 , __UpperCamelCase = "silu" , __UpperCamelCase = 3 , __UpperCamelCase = 3_2 , __UpperCamelCase = 2_5_6 , __UpperCamelCase = 3_2 , __UpperCamelCase = None , __UpperCamelCase = 0.18_215 , __UpperCamelCase = "group" , ): """simple docstring""" super().__init__() # pass init params to Encoder UpperCamelCase_ = Encoder( in_channels=__UpperCamelCase , out_channels=__UpperCamelCase , down_block_types=__UpperCamelCase , block_out_channels=__UpperCamelCase , layers_per_block=__UpperCamelCase , act_fn=__UpperCamelCase , norm_num_groups=__UpperCamelCase , double_z=__UpperCamelCase , ) UpperCamelCase_ = vq_embed_dim if vq_embed_dim is not None else latent_channels UpperCamelCase_ = nn.Convad(__UpperCamelCase , __UpperCamelCase , 1 ) UpperCamelCase_ = VectorQuantizer(__UpperCamelCase , __UpperCamelCase , beta=0.25 , remap=__UpperCamelCase , sane_index_shape=__UpperCamelCase ) UpperCamelCase_ = nn.Convad(__UpperCamelCase , __UpperCamelCase , 1 ) # pass init params to Decoder UpperCamelCase_ = Decoder( in_channels=__UpperCamelCase , out_channels=__UpperCamelCase , up_block_types=__UpperCamelCase , block_out_channels=__UpperCamelCase , layers_per_block=__UpperCamelCase , act_fn=__UpperCamelCase , norm_num_groups=__UpperCamelCase , norm_type=__UpperCamelCase , ) @apply_forward_hook def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase = True ): """simple docstring""" UpperCamelCase_ = self.encoder(__UpperCamelCase ) UpperCamelCase_ = self.quant_conv(__UpperCamelCase ) if not return_dict: return (h,) return VQEncoderOutput(latents=__UpperCamelCase ) @apply_forward_hook def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase = False , __UpperCamelCase = True ): """simple docstring""" if not force_not_quantize: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.quantize(__UpperCamelCase ) else: UpperCamelCase_ = h UpperCamelCase_ = self.post_quant_conv(__UpperCamelCase ) UpperCamelCase_ = self.decoder(__UpperCamelCase , quant if self.config.norm_type == """spatial""" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=__UpperCamelCase ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase = True ): """simple docstring""" UpperCamelCase_ = sample UpperCamelCase_ = self.encode(__UpperCamelCase ).latents UpperCamelCase_ = self.decode(__UpperCamelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=__UpperCamelCase )
122
1
"""simple docstring""" import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def _lowerCamelCase( a ): __a = torch.exp(a ) __a = torch.sum(a , dim=1 ) # sum of exp(x_i) __a = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(a ) - B / A class snake_case__ ( nn.Module ): def __init__( self , lowerCamelCase ): super().__init__() __a = config.output_attentions __a = config.output_hidden_states __a = nn.ModuleList([BertLayer(lowerCamelCase ) for _ in range(config.num_hidden_layers )] ) __a = nn.ModuleList([BertHighway(lowerCamelCase ) for _ in range(config.num_hidden_layers )] ) __a = [-1 for _ in range(config.num_hidden_layers )] def a__ ( self , lowerCamelCase ): if (type(lowerCamelCase ) is float) or (type(lowerCamelCase ) is int): for i in range(len(self.early_exit_entropy ) ): __a = x else: __a = x def a__ ( self , lowerCamelCase ): __a = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def a__ ( self , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , ): __a = () __a = () __a = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: __a = all_hidden_states + (hidden_states,) __a = layer_module( lowerCamelCase , lowerCamelCase , head_mask[i] , lowerCamelCase , lowerCamelCase ) __a = layer_outputs[0] if self.output_attentions: __a = all_attentions + (layer_outputs[1],) __a = (hidden_states,) if self.output_hidden_states: __a = current_outputs + (all_hidden_states,) if self.output_attentions: __a = current_outputs + (all_attentions,) __a = self.highway[i](lowerCamelCase ) # logits, pooled_output if not self.training: __a = highway_exit[0] __a = entropy(lowerCamelCase ) __a = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy __a = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: __a = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(lowerCamelCase , i + 1 ) else: __a = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: __a = all_hidden_states + (hidden_states,) __a = (hidden_states,) if self.output_hidden_states: __a = outputs + (all_hidden_states,) if self.output_attentions: __a = outputs + (all_attentions,) __a = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( """The Bert Model transformer with early exiting (DeeBERT). """, snake_case_, ) class snake_case__ ( snake_case_ ): def __init__( self , lowerCamelCase ): super().__init__(lowerCamelCase ) __a = config __a = BertEmbeddings(lowerCamelCase ) __a = DeeBertEncoder(lowerCamelCase ) __a = BertPooler(lowerCamelCase ) self.init_weights() def a__ ( self ): self.encoder.init_highway_pooler(self.pooler ) def a__ ( self ): return self.embeddings.word_embeddings def a__ ( self , lowerCamelCase ): __a = value def a__ ( self , lowerCamelCase ): for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(lowerCamelCase ) @add_start_docstrings_to_model_forward(lowerCamelCase ) def a__ ( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , ): if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time" ) elif input_ids is not None: __a = input_ids.size() elif inputs_embeds is not None: __a = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds" ) __a = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __a = torch.ones(lowerCamelCase , device=lowerCamelCase ) if encoder_attention_mask is None: __a = torch.ones(lowerCamelCase , device=lowerCamelCase ) if token_type_ids is None: __a = torch.zeros(lowerCamelCase , dtype=torch.long , device=lowerCamelCase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __a = self.get_extended_attention_mask(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: __a = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: __a = encoder_attention_mask[:, None, None, :] __a = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility __a = (1.0 - encoder_extended_attention_mask) * -1_0000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __a = self.get_head_mask(lowerCamelCase , self.config.num_hidden_layers ) __a = self.embeddings( input_ids=lowerCamelCase , position_ids=lowerCamelCase , token_type_ids=lowerCamelCase , inputs_embeds=lowerCamelCase ) __a = self.encoder( lowerCamelCase , attention_mask=lowerCamelCase , head_mask=lowerCamelCase , encoder_hidden_states=lowerCamelCase , encoder_attention_mask=lowerCamelCase , ) __a = encoder_outputs[0] __a = self.pooler(lowerCamelCase ) __a = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class snake_case__ ( snake_case_ ): def __init__( self , lowerCamelCase , lowerCamelCase ): __a = message __a = exit_layer # start from 1! class snake_case__ ( nn.Module ): def __init__( self , lowerCamelCase ): super().__init__() __a = BertPooler(lowerCamelCase ) __a = nn.Dropout(config.hidden_dropout_prob ) __a = nn.Linear(config.hidden_size , config.num_labels ) def a__ ( self , lowerCamelCase ): # Pooler __a = encoder_outputs[0] __a = self.pooler(lowerCamelCase ) # "return" pooler_output # BertModel __a = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification __a = bmodel_output[1] __a = self.dropout(lowerCamelCase ) __a = self.classifier(lowerCamelCase ) return logits, pooled_output @add_start_docstrings( """Bert Model (with early exiting - DeeBERT) with a classifier on top, also takes care of multi-layer training. """, snake_case_, ) class snake_case__ ( snake_case_ ): def __init__( self , lowerCamelCase ): super().__init__(lowerCamelCase ) __a = config.num_labels __a = config.num_hidden_layers __a = DeeBertModel(lowerCamelCase ) __a = nn.Dropout(config.hidden_dropout_prob ) __a = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(lowerCamelCase ) def a__ ( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=-1 , lowerCamelCase=False , ): __a = self.num_layers try: __a = self.bert( lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase , position_ids=lowerCamelCase , head_mask=lowerCamelCase , inputs_embeds=lowerCamelCase , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits __a = outputs[1] __a = self.dropout(lowerCamelCase ) __a = self.classifier(lowerCamelCase ) __a = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: __a = e.message __a = e.exit_layer __a = outputs[0] if not self.training: __a = entropy(lowerCamelCase ) __a = [] __a = [] if labels is not None: if self.num_labels == 1: # We are doing regression __a = MSELoss() __a = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: __a = CrossEntropyLoss() __a = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits __a = [] for highway_exit in outputs[-1]: __a = highway_exit[0] if not self.training: highway_logits_all.append(lowerCamelCase ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression __a = MSELoss() __a = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: __a = CrossEntropyLoss() __a = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(lowerCamelCase ) if train_highway: __a = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: __a = (loss,) + outputs if not self.training: __a = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: __a = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
268
"""simple docstring""" from ...processing_utils import ProcessorMixin class snake_case__ ( snake_case_ ): _snake_case : List[str] = """WhisperFeatureExtractor""" _snake_case : Any = """WhisperTokenizer""" def __init__( self , lowerCamelCase , lowerCamelCase ): super().__init__(lowerCamelCase , lowerCamelCase ) __a = self.feature_extractor __a = False def a__ ( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=True ): return self.tokenizer.get_decoder_prompt_ids(task=lowerCamelCase , language=lowerCamelCase , no_timestamps=lowerCamelCase ) def __call__( self , *lowerCamelCase , **lowerCamelCase ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*lowerCamelCase , **lowerCamelCase ) __a = kwargs.pop("audio" , lowerCamelCase ) __a = kwargs.pop("sampling_rate" , lowerCamelCase ) __a = kwargs.pop("text" , lowerCamelCase ) if len(lowerCamelCase ) > 0: __a = args[0] __a = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: __a = self.feature_extractor(lowerCamelCase , *lowerCamelCase , sampling_rate=lowerCamelCase , **lowerCamelCase ) if text is not None: __a = self.tokenizer(lowerCamelCase , **lowerCamelCase ) if text is None: return inputs elif audio is None: return encodings else: __a = encodings["input_ids"] return inputs def a__ ( self , *lowerCamelCase , **lowerCamelCase ): return self.tokenizer.batch_decode(*lowerCamelCase , **lowerCamelCase ) def a__ ( self , *lowerCamelCase , **lowerCamelCase ): return self.tokenizer.decode(*lowerCamelCase , **lowerCamelCase ) def a__ ( self , lowerCamelCase , lowerCamelCase="np" ): return self.tokenizer.get_prompt_ids(lowerCamelCase , return_tensors=lowerCamelCase )
268
1
"""simple docstring""" from __future__ import annotations __UpperCamelCase = '''#''' class lowerCAmelCase : '''simple docstring''' def __init__( self ) -> None: SCREAMING_SNAKE_CASE = {} def __A ( self , lowerCAmelCase__ ) -> None: SCREAMING_SNAKE_CASE = self._trie for char in text: if char not in trie: SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = trie[char] SCREAMING_SNAKE_CASE = True def __A ( self , lowerCAmelCase__ ) -> tuple | list: SCREAMING_SNAKE_CASE = self._trie for char in prefix: if char in trie: SCREAMING_SNAKE_CASE = trie[char] else: return [] return self._elements(lowerCAmelCase__ ) def __A ( self , lowerCAmelCase__ ) -> tuple: SCREAMING_SNAKE_CASE = [] for c, v in d.items(): SCREAMING_SNAKE_CASE = [' '] if c == END else [(c + s) for s in self._elements(lowerCAmelCase__ )] result.extend(lowerCAmelCase__ ) return tuple(lowerCAmelCase__ ) __UpperCamelCase = Trie() __UpperCamelCase = ('''depart''', '''detergent''', '''daring''', '''dog''', '''deer''', '''deal''') for word in words: trie.insert_word(word) def lowercase (SCREAMING_SNAKE_CASE_ : str ) -> tuple: SCREAMING_SNAKE_CASE = trie.find_word(SCREAMING_SNAKE_CASE_ ) return tuple(string + word for word in suffixes ) def lowercase () -> None: print(autocomplete_using_trie('de' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
113
"""simple docstring""" def lowercase (SCREAMING_SNAKE_CASE_ : int = 10_00 ) -> int: SCREAMING_SNAKE_CASE = 2**power SCREAMING_SNAKE_CASE = 0 while n: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
113
1
"""simple docstring""" import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase : def __init__( self, lowerCAmelCase__, lowerCAmelCase__=13, lowerCAmelCase__=[30, 30], lowerCAmelCase__=2, lowerCAmelCase__=3, lowerCAmelCase__=True, lowerCAmelCase__=True, lowerCAmelCase__=32, lowerCAmelCase__=5, lowerCAmelCase__=4, lowerCAmelCase__=37, lowerCAmelCase__="gelu", lowerCAmelCase__=0.1, lowerCAmelCase__=0.1, lowerCAmelCase__=10, lowerCAmelCase__=0.02, lowerCAmelCase__=3, lowerCAmelCase__=None, lowerCAmelCase__=8, lowerCAmelCase__=10, ) -> Optional[Any]: snake_case_ = parent snake_case_ = batch_size snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = is_training snake_case_ = use_labels snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = scope snake_case_ = n_targets snake_case_ = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens snake_case_ = (image_size[1] // patch_size) * (image_size[0] // patch_size) snake_case_ = num_patches + 1 + self.num_detection_tokens def a_ ( self) -> Dict: snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]]) snake_case_ = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) snake_case_ = [] for i in range(self.batch_size): snake_case_ = {} snake_case_ = torch.randint( high=self.num_labels, size=(self.n_targets,), device=lowerCAmelCase__) snake_case_ = torch.rand(self.n_targets, 4, device=lowerCAmelCase__) labels.append(lowerCAmelCase__) snake_case_ = self.get_config() return config, pixel_values, labels def a_ ( self) -> Any: return YolosConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=lowerCAmelCase__, initializer_range=self.initializer_range, num_detection_tokens=self.num_detection_tokens, num_labels=self.num_labels, ) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> Tuple: snake_case_ = YolosModel(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() snake_case_ = model(lowerCAmelCase__) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.expected_seq_len, self.hidden_size)) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> Optional[Any]: snake_case_ = YolosForObjectDetection(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() snake_case_ = model(pixel_values=lowerCAmelCase__) snake_case_ = model(lowerCAmelCase__) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_detection_tokens, self.num_labels + 1)) self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_detection_tokens, 4)) snake_case_ = model(pixel_values=lowerCAmelCase__, labels=lowerCAmelCase__) self.parent.assertEqual(result.loss.shape, ()) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_detection_tokens, self.num_labels + 1)) self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_detection_tokens, 4)) def a_ ( self) -> List[str]: snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = (YolosModel, YolosForObjectDetection) if is_torch_available() else () SCREAMING_SNAKE_CASE_ = ( {"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__=False) -> Tuple: snake_case_ = super()._prepare_for_class(lowerCAmelCase__, lowerCAmelCase__, return_labels=lowerCAmelCase__) if return_labels: if model_class.__name__ == "YolosForObjectDetection": snake_case_ = [] for i in range(self.model_tester.batch_size): snake_case_ = {} snake_case_ = torch.ones( size=(self.model_tester.n_targets,), device=lowerCAmelCase__, dtype=torch.long) snake_case_ = torch.ones( self.model_tester.n_targets, 4, device=lowerCAmelCase__, dtype=torch.float) labels.append(lowerCAmelCase__) snake_case_ = labels return inputs_dict def a_ ( self) -> str: snake_case_ = YolosModelTester(self) snake_case_ = ConfigTester(self, config_class=lowerCAmelCase__, has_text_modality=lowerCAmelCase__, hidden_size=37) def a_ ( self) -> Optional[Any]: self.config_tester.run_common_tests() def a_ ( self) -> int: # YOLOS does not use inputs_embeds pass def a_ ( self) -> Optional[int]: snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(lowerCAmelCase__) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) snake_case_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__, nn.Linear)) def a_ ( self) -> Any: snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(lowerCAmelCase__) snake_case_ = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ['pixel_values'] self.assertListEqual(arg_names[:1], lowerCAmelCase__) def a_ ( self) -> Any: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__) def a_ ( self) -> Optional[int]: snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = True # in YOLOS, the seq_len is different snake_case_ = self.model_tester.expected_seq_len for model_class in self.all_model_classes: snake_case_ = True snake_case_ = False snake_case_ = True snake_case_ = model_class(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(lowerCAmelCase__, lowerCAmelCase__)) snake_case_ = outputs.attentions self.assertEqual(len(lowerCAmelCase__), self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] snake_case_ = True snake_case_ = model_class(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(lowerCAmelCase__, lowerCAmelCase__)) snake_case_ = outputs.attentions self.assertEqual(len(lowerCAmelCase__), self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, seq_len, seq_len], ) snake_case_ = len(lowerCAmelCase__) # Check attention is always last and order is fine snake_case_ = True snake_case_ = True snake_case_ = model_class(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(lowerCAmelCase__, lowerCAmelCase__)) snake_case_ = 1 self.assertEqual(out_len + added_hidden_states, len(lowerCAmelCase__)) snake_case_ = outputs.attentions self.assertEqual(len(lowerCAmelCase__), self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, seq_len, seq_len], ) def a_ ( self) -> Dict: def check_hidden_states_output(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__): snake_case_ = model_class(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(lowerCAmelCase__, lowerCAmelCase__)) snake_case_ = outputs.hidden_states snake_case_ = getattr( self.model_tester, 'expected_num_hidden_layers', self.model_tester.num_hidden_layers + 1) self.assertEqual(len(lowerCAmelCase__), lowerCAmelCase__) # YOLOS has a different seq_length snake_case_ = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:]), [seq_length, self.model_tester.hidden_size], ) snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = True check_hidden_states_output(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ = True check_hidden_states_output(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Optional[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*lowerCAmelCase__) @slow def a_ ( self) -> Dict: for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = YolosModel.from_pretrained(lowerCAmelCase__) self.assertIsNotNone(lowerCAmelCase__) def UpperCAmelCase ( ) -> List[str]: snake_case_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCamelCase ( unittest.TestCase ): @cached_property def a_ ( self) -> Union[str, Any]: return AutoImageProcessor.from_pretrained('hustvl/yolos-small') if is_vision_available() else None @slow def a_ ( self) -> Any: snake_case_ = YolosForObjectDetection.from_pretrained('hustvl/yolos-small').to(lowerCAmelCase__) snake_case_ = self.default_image_processor snake_case_ = prepare_img() snake_case_ = image_processor(images=lowerCAmelCase__, return_tensors='pt').to(lowerCAmelCase__) # forward pass with torch.no_grad(): snake_case_ = model(inputs.pixel_values) # verify outputs snake_case_ = torch.Size((1, 100, 92)) self.assertEqual(outputs.logits.shape, lowerCAmelCase__) snake_case_ = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]], device=lowerCAmelCase__, ) snake_case_ = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]], device=lowerCAmelCase__) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], lowerCAmelCase__, atol=1e-4)) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3], lowerCAmelCase__, atol=1e-4)) # verify postprocessing snake_case_ = image_processor.post_process_object_detection( lowerCAmelCase__, threshold=0.3, target_sizes=[image.size[::-1]])[0] snake_case_ = torch.tensor([0.9994, 0.9790, 0.9964, 0.9972, 0.9861]).to(lowerCAmelCase__) snake_case_ = [75, 75, 17, 63, 17] snake_case_ = torch.tensor([335.0609, 79.3848, 375.4216, 187.2495]).to(lowerCAmelCase__) self.assertEqual(len(results['scores']), 5) self.assertTrue(torch.allclose(results['scores'], lowerCAmelCase__, atol=1e-4)) self.assertSequenceEqual(results['labels'].tolist(), lowerCAmelCase__) self.assertTrue(torch.allclose(results['boxes'][0, :], lowerCAmelCase__))
312
"""simple docstring""" from __future__ import annotations def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> list[str]: if partitions <= 0: raise ValueError('partitions must be a positive number!' ) if partitions > number_of_bytes: raise ValueError('partitions can not > number_of_bytes!' ) snake_case_ = number_of_bytes // partitions snake_case_ = [] for i in range(UpperCAmelCase ): snake_case_ = i * bytes_per_partition + 1 snake_case_ = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'{start_bytes}-{end_bytes}' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
312
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: lowercase__ = None lowercase__ = logging.get_logger(__name__) lowercase__ = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} lowercase__ = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''', '''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''', }, } lowercase__ = { '''facebook/mbart-large-en-ro''': 1024, '''facebook/mbart-large-cc25''': 1024, } # fmt: off lowercase__ = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class __lowerCamelCase ( A__ ): '''simple docstring''' a_ : List[str] = VOCAB_FILES_NAMES a_ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : Tuple = PRETRAINED_VOCAB_FILES_MAP a_ : str = ["""input_ids""", """attention_mask"""] a_ : Any = MBartTokenizer a_ : List[int] = [] a_ : List[int] = [] def __init__( self : Dict , a_ : Optional[int]=None , a_ : Dict=None , a_ : Optional[int]="<s>" , a_ : Optional[int]="</s>" , a_ : Dict="</s>" , a_ : int="<s>" , a_ : Dict="<unk>" , a_ : Optional[int]="<pad>" , a_ : str="<mask>" , a_ : Union[str, Any]=None , a_ : Tuple=None , a_ : Any=None , **a_ : str , ): lowerCAmelCase_ : Union[str, Any] = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else mask_token super().__init__( vocab_file=lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , src_lang=lowerCamelCase__ , tgt_lang=lowerCamelCase__ , additional_special_tokens=lowerCamelCase__ , **lowerCamelCase__ , ) lowerCAmelCase_ : int = vocab_file lowerCAmelCase_ : Tuple = False if not self.vocab_file else True lowerCAmelCase_ : Dict = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"additional_special_tokens": _additional_special_tokens} ) lowerCAmelCase_ : List[str] = { lang_code: self.convert_tokens_to_ids(lowerCamelCase__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowerCAmelCase_ : Optional[Any] = src_lang if src_lang is not None else 'en_XX' lowerCAmelCase_ : str = self.convert_tokens_to_ids(self._src_lang ) lowerCAmelCase_ : str = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def lowerCamelCase ( self : Tuple ): return self._src_lang @src_lang.setter def lowerCamelCase ( self : Dict , a_ : str ): lowerCAmelCase_ : Union[str, Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowerCamelCase ( self : Optional[Any] , a_ : Tuple , a_ : Optional[Any] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCamelCase ( self : Optional[Any] , a_ : Optional[Any] , a_ : Any = None ): lowerCAmelCase_ : List[Any] = [self.sep_token_id] lowerCAmelCase_ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase ( self : List[Any] , a_ : int , a_ : Any , a_ : Optional[Any] , a_ : Tuple , **a_ : str ): if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) lowerCAmelCase_ : List[str] = src_lang lowerCAmelCase_ : List[str] = self(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ ) lowerCAmelCase_ : Optional[Any] = self.convert_tokens_to_ids(lowerCamelCase__ ) lowerCAmelCase_ : Optional[int] = tgt_lang_id return inputs def lowerCamelCase ( self : int , a_ : List[str] , a_ : Tuple = "en_XX" , a_ : Tuple = None , a_ : List[str] = "ro_RO" , **a_ : Any , ): lowerCAmelCase_ : Dict = src_lang lowerCAmelCase_ : Optional[Any] = tgt_lang return super().prepare_seqaseq_batch(lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ) def lowerCamelCase ( self : int ): return self.set_src_lang_special_tokens(self.src_lang ) def lowerCamelCase ( self : Optional[Any] ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCamelCase ( self : Optional[int] , a_ : List[Any] ): lowerCAmelCase_ : Optional[Any] = self.convert_tokens_to_ids(lowerCamelCase__ ) lowerCAmelCase_ : Tuple = [] lowerCAmelCase_ : Optional[Any] = [self.eos_token_id, self.cur_lang_code] lowerCAmelCase_ : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCAmelCase_ : List[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCAmelCase_ : Union[str, Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def lowerCamelCase ( self : Optional[Any] , a_ : str ): lowerCAmelCase_ : Union[str, Any] = self.convert_tokens_to_ids(lowerCamelCase__ ) lowerCAmelCase_ : int = [] lowerCAmelCase_ : List[str] = [self.eos_token_id, self.cur_lang_code] lowerCAmelCase_ : Optional[int] = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCAmelCase_ : Dict = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCAmelCase_ : List[str] = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def lowerCamelCase ( self : List[Any] , a_ : Tuple , a_ : Any = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(lowerCamelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''' ) return lowerCAmelCase_ : List[Any] = os.path.join( lowerCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ): copyfile(self.vocab_file , lowerCamelCase__ ) return (out_vocab_file,)
241
def A ( a_ ,a_ ,a_ ) -> int: def update_area_of_max_square(a_ ,a_ ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 __UpperCamelCase : Optional[int] =update_area_of_max_square(a_ ,col + 1 ) __UpperCamelCase : List[str] =update_area_of_max_square(row + 1 ,col + 1 ) __UpperCamelCase : List[Any] =update_area_of_max_square(row + 1 ,a_ ) if mat[row][col]: __UpperCamelCase : Optional[Any] =1 + min([right, diagonal, down] ) __UpperCamelCase : Dict =max(largest_square_area[0] ,a_ ) return sub_problem_sol else: return 0 __UpperCamelCase : Union[str, Any] =[0] update_area_of_max_square(0 ,0 ) return largest_square_area[0] def A ( a_ ,a_ ,a_ ) -> int: def update_area_of_max_square_using_dp_array( a_ ,a_ ,a_ ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] __UpperCamelCase : Tuple =update_area_of_max_square_using_dp_array(a_ ,col + 1 ,a_ ) __UpperCamelCase : Optional[int] =update_area_of_max_square_using_dp_array(row + 1 ,col + 1 ,a_ ) __UpperCamelCase : Any =update_area_of_max_square_using_dp_array(row + 1 ,a_ ,a_ ) if mat[row][col]: __UpperCamelCase : Optional[Any] =1 + min([right, diagonal, down] ) __UpperCamelCase : str =max(largest_square_area[0] ,a_ ) __UpperCamelCase : Any =sub_problem_sol return sub_problem_sol else: return 0 __UpperCamelCase : Tuple =[0] __UpperCamelCase : List[Any] =[[-1] * cols for _ in range(a_ )] update_area_of_max_square_using_dp_array(0 ,0 ,a_ ) return largest_square_area[0] def A ( a_ ,a_ ,a_ ) -> int: __UpperCamelCase : Dict =[[0] * (cols + 1) for _ in range(rows + 1 )] __UpperCamelCase : int =0 for row in range(rows - 1 ,-1 ,-1 ): for col in range(cols - 1 ,-1 ,-1 ): __UpperCamelCase : Optional[Any] =dp_array[row][col + 1] __UpperCamelCase : int =dp_array[row + 1][col + 1] __UpperCamelCase : Tuple =dp_array[row + 1][col] if mat[row][col] == 1: __UpperCamelCase : Tuple =1 + min(a_ ,a_ ,a_ ) __UpperCamelCase : Any =max(dp_array[row][col] ,a_ ) else: __UpperCamelCase : Dict =0 return largest_square_area def A ( a_ ,a_ ,a_ ) -> int: __UpperCamelCase : Any =[0] * (cols + 1) __UpperCamelCase : List[Any] =[0] * (cols + 1) __UpperCamelCase : Tuple =0 for row in range(rows - 1 ,-1 ,-1 ): for col in range(cols - 1 ,-1 ,-1 ): __UpperCamelCase : Any =current_row[col + 1] __UpperCamelCase : Optional[Any] =next_row[col + 1] __UpperCamelCase : Union[str, Any] =next_row[col] if mat[row][col] == 1: __UpperCamelCase : Any =1 + min(a_ ,a_ ,a_ ) __UpperCamelCase : Optional[int] =max(current_row[col] ,a_ ) else: __UpperCamelCase : List[str] =0 __UpperCamelCase : Optional[Any] =current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
71
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer a : Any = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast a : Optional[Any] = TaTokenizerFast a : Any = {'configuration_mt5': ['MT5Config', 'MT5OnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = [ 'MT5EncoderModel', 'MT5ForConditionalGeneration', 'MT5ForQuestionAnswering', 'MT5Model', 'MT5PreTrainedModel', 'MT5Stack', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = ['TFMT5EncoderModel', 'TFMT5ForConditionalGeneration', 'TFMT5Model'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[int] = ['FlaxMT5EncoderModel', 'FlaxMT5ForConditionalGeneration', 'FlaxMT5Model'] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys a : Union[str, Any] = _LazyModule( __name__, globals()['__file__'], _import_structure, extra_objects={'MT5Tokenizer': MTaTokenizer, 'MT5TokenizerFast': MTaTokenizerFast}, module_spec=__spec__, )
366
import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() a : List[str] = logging.get_logger(__name__) def lowerCAmelCase_ (lowerCAmelCase__: int ): """simple docstring""" UpperCAmelCase_: str = OrderedDict() for key, value in state_dict.items(): if key.startswith("""module.encoder""" ): UpperCAmelCase_: Tuple = key.replace("""module.encoder""" , """glpn.encoder""" ) if key.startswith("""module.decoder""" ): UpperCAmelCase_: List[str] = key.replace("""module.decoder""" , """decoder.stages""" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 UpperCAmelCase_: Optional[Any] = key[key.find("""patch_embed""" ) + len("""patch_embed""" )] UpperCAmelCase_: Optional[Any] = key.replace(F'patch_embed{idx}' , F'patch_embeddings.{int(lowerCAmelCase__ )-1}' ) if "norm" in key: UpperCAmelCase_: Dict = key.replace("""norm""" , """layer_norm""" ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 UpperCAmelCase_: Any = key[key.find("""glpn.encoder.layer_norm""" ) + len("""glpn.encoder.layer_norm""" )] UpperCAmelCase_: str = key.replace(F'layer_norm{idx}' , F'layer_norm.{int(lowerCAmelCase__ )-1}' ) if "layer_norm1" in key: UpperCAmelCase_: Tuple = key.replace("""layer_norm1""" , """layer_norm_1""" ) if "layer_norm2" in key: UpperCAmelCase_: int = key.replace("""layer_norm2""" , """layer_norm_2""" ) if "block" in key: # replace for example block1 by block.0 UpperCAmelCase_: Any = key[key.find("""block""" ) + len("""block""" )] UpperCAmelCase_: Optional[Any] = key.replace(F'block{idx}' , F'block.{int(lowerCAmelCase__ )-1}' ) if "attn.q" in key: UpperCAmelCase_: Dict = key.replace("""attn.q""" , """attention.self.query""" ) if "attn.proj" in key: UpperCAmelCase_: Tuple = key.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in key: UpperCAmelCase_: str = key.replace("""attn""" , """attention.self""" ) if "fc1" in key: UpperCAmelCase_: Tuple = key.replace("""fc1""" , """dense1""" ) if "fc2" in key: UpperCAmelCase_: Optional[int] = key.replace("""fc2""" , """dense2""" ) if "linear_pred" in key: UpperCAmelCase_: Optional[int] = key.replace("""linear_pred""" , """classifier""" ) if "linear_fuse" in key: UpperCAmelCase_: Tuple = key.replace("""linear_fuse.conv""" , """linear_fuse""" ) UpperCAmelCase_: List[str] = key.replace("""linear_fuse.bn""" , """batch_norm""" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 UpperCAmelCase_: Optional[int] = key[key.find("""linear_c""" ) + len("""linear_c""" )] UpperCAmelCase_: List[str] = key.replace(F'linear_c{idx}' , F'linear_c.{int(lowerCAmelCase__ )-1}' ) if "bot_conv" in key: UpperCAmelCase_: Optional[Any] = key.replace("""bot_conv""" , """0.convolution""" ) if "skip_conv1" in key: UpperCAmelCase_: Any = key.replace("""skip_conv1""" , """1.convolution""" ) if "skip_conv2" in key: UpperCAmelCase_: Optional[Any] = key.replace("""skip_conv2""" , """2.convolution""" ) if "fusion1" in key: UpperCAmelCase_: Dict = key.replace("""fusion1""" , """1.fusion""" ) if "fusion2" in key: UpperCAmelCase_: Any = key.replace("""fusion2""" , """2.fusion""" ) if "fusion3" in key: UpperCAmelCase_: Union[str, Any] = key.replace("""fusion3""" , """3.fusion""" ) if "fusion" in key and "conv" in key: UpperCAmelCase_: List[Any] = key.replace("""conv""" , """convolutional_layer""" ) if key.startswith("""module.last_layer_depth""" ): UpperCAmelCase_: Union[str, Any] = key.replace("""module.last_layer_depth""" , """head.head""" ) UpperCAmelCase_: Union[str, Any] = value return new_state_dict def lowerCAmelCase_ (lowerCAmelCase__: List[Any] , lowerCAmelCase__: str ): """simple docstring""" for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) UpperCAmelCase_: str = state_dict.pop(F'glpn.encoder.block.{i}.{j}.attention.self.kv.weight' ) UpperCAmelCase_: Tuple = state_dict.pop(F'glpn.encoder.block.{i}.{j}.attention.self.kv.bias' ) # next, add keys and values (in that order) to the state dict UpperCAmelCase_: Any = kv_weight[ : config.hidden_sizes[i], : ] UpperCAmelCase_: Tuple = kv_bias[: config.hidden_sizes[i]] UpperCAmelCase_: Optional[int] = kv_weight[ config.hidden_sizes[i] :, : ] UpperCAmelCase_: int = kv_bias[config.hidden_sizes[i] :] def lowerCAmelCase_ (): """simple docstring""" UpperCAmelCase_: str = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase_: List[Any] = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return image @torch.no_grad() def lowerCAmelCase_ (lowerCAmelCase__: List[str] , lowerCAmelCase__: List[Any] , lowerCAmelCase__: List[Any]=False , lowerCAmelCase__: Optional[Any]=None ): """simple docstring""" UpperCAmelCase_: str = GLPNConfig(hidden_sizes=[6_4, 1_2_8, 3_2_0, 5_1_2] , decoder_hidden_size=6_4 , depths=[3, 8, 2_7, 3] ) # load image processor (only resize + rescale) UpperCAmelCase_: Dict = GLPNImageProcessor() # prepare image UpperCAmelCase_: List[str] = prepare_img() UpperCAmelCase_: List[Any] = image_processor(images=lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values logger.info("""Converting model...""" ) # load original state dict UpperCAmelCase_: Any = torch.load(lowerCAmelCase__ , map_location=torch.device("""cpu""" ) ) # rename keys UpperCAmelCase_: Optional[Any] = rename_keys(lowerCAmelCase__ ) # key and value matrices need special treatment read_in_k_v(lowerCAmelCase__ , lowerCAmelCase__ ) # create HuggingFace model and load state dict UpperCAmelCase_: Dict = GLPNForDepthEstimation(lowerCAmelCase__ ) model.load_state_dict(lowerCAmelCase__ ) model.eval() # forward pass UpperCAmelCase_: Any = model(lowerCAmelCase__ ) UpperCAmelCase_: Union[str, Any] = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: UpperCAmelCase_: List[str] = torch.tensor( [[4.4147, 4.0873, 4.0673], [3.7890, 3.2881, 3.1525], [3.7674, 3.5423, 3.4913]] ) elif "kitti" in model_name: UpperCAmelCase_: List[str] = torch.tensor( [[3.4291, 2.7865, 2.5151], [3.2841, 2.7021, 2.3502], [3.1147, 2.4625, 2.2481]] ) else: raise ValueError(F'Unknown model name: {model_name}' ) UpperCAmelCase_: Any = torch.Size([1, 4_8_0, 6_4_0] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) print("""Looks ok!""" ) # finally, push to hub if required if push_to_hub: logger.info("""Pushing model and image processor to the hub...""" ) model.push_to_hub( repo_path_or_name=Path(lowerCAmelCase__ , lowerCAmelCase__ ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=lowerCAmelCase__ , ) image_processor.push_to_hub( repo_path_or_name=Path(lowerCAmelCase__ , lowerCAmelCase__ ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=lowerCAmelCase__ , ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) parser.add_argument( '--model_name', default='glpn-kitti', type=str, help='Name of the model in case you\'re pushing to the hub.', ) a : List[Any] = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
82
0
'''simple docstring''' class A : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None ) -> Any: """simple docstring""" A : Tuple = data A : Optional[Any] = previous A : Union[str, Any] = next_node def __str__( self ) -> str: """simple docstring""" return F'{self.data}' def __lowerCAmelCase ( self ) -> int: """simple docstring""" return self.data def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" return self.next def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" return self.previous class A : def __init__( self , SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" A : List[str] = head def __iter__( self ) -> Any: """simple docstring""" return self def __lowerCAmelCase ( self ) -> int: """simple docstring""" if not self.current: raise StopIteration else: A : List[str] = self.current.get_data() A : Union[str, Any] = self.current.get_next() return value class A : def __init__( self ) -> Optional[Any]: """simple docstring""" A : int = None # First node in list A : str = None # Last node in list def __str__( self ) -> int: """simple docstring""" A : int = self.head A : Optional[int] = [] while current is not None: nodes.append(current.get_data() ) A : List[str] = current.get_next() return " ".join(str(SCREAMING_SNAKE_CASE ) for node in nodes ) def __contains__( self , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" A : str = self.head while current: if current.get_data() == value: return True A : Optional[int] = current.get_next() return False def __iter__( self ) -> int: """simple docstring""" return LinkedListIterator(self.head ) def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" if self.head: return self.head.get_data() return None def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" if self.tail: return self.tail.get_data() return None def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" if self.head is None: A : Any = node A : List[Any] = node else: self.insert_before_node(self.head , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" if self.head is None: self.set_head(SCREAMING_SNAKE_CASE ) else: self.insert_after_node(self.tail , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" A : List[Any] = Node(SCREAMING_SNAKE_CASE ) if self.head is None: self.set_head(SCREAMING_SNAKE_CASE ) else: self.set_tail(SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" A : Tuple = node A : int = node.previous if node.get_previous() is None: A : int = node_to_insert else: A : Tuple = node_to_insert A : Optional[int] = node_to_insert def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" A : Tuple = node A : int = node.next if node.get_next() is None: A : Optional[int] = node_to_insert else: A : Tuple = node_to_insert A : List[str] = node_to_insert def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" A : int = 1 A : int = Node(SCREAMING_SNAKE_CASE ) A : List[str] = self.head while node: if current_position == position: self.insert_before_node(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return current_position += 1 A : Any = node.next self.insert_after_node(self.tail , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Node: """simple docstring""" A : str = self.head while node: if node.get_data() == item: return node A : int = node.get_next() raise Exception('''Node not found''' ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" if (node := self.get_node(SCREAMING_SNAKE_CASE )) is not None: if node == self.head: A : Optional[Any] = self.head.get_next() if node == self.tail: A : Union[str, Any] = self.tail.get_previous() self.remove_node_pointers(SCREAMING_SNAKE_CASE ) @staticmethod def __lowerCAmelCase ( SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" if node.get_next(): A : Union[str, Any] = node.previous if node.get_previous(): A : Optional[int] = node.next A : int = None A : Optional[int] = None def __lowerCAmelCase ( self ) -> int: """simple docstring""" return self.head is None def lowerCAmelCase_ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
3
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: lowercase : Optional[Any] = None lowercase : Tuple = logging.get_logger(__name__) lowercase : Dict = {'vocab_file': 'sentencepiece.model', 'tokenizer_file': 'tokenizer.json'} lowercase : Tuple = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, 'tokenizer_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/tokenizer.json', }, } lowercase : List[str] = { 'google/rembert': 2_56, } lowercase : Dict = '▁' class A ( __snake_case ): __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = RemBertTokenizer def __init__( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE="[CLS]" , SCREAMING_SNAKE_CASE="[SEP]" , SCREAMING_SNAKE_CASE="<unk>" , SCREAMING_SNAKE_CASE="[SEP]" , SCREAMING_SNAKE_CASE="<pad>" , SCREAMING_SNAKE_CASE="[CLS]" , SCREAMING_SNAKE_CASE="[MASK]" , **SCREAMING_SNAKE_CASE , ) -> List[str]: """simple docstring""" A : Optional[Any] = AddedToken(SCREAMING_SNAKE_CASE , lstrip=SCREAMING_SNAKE_CASE , rstrip=SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else mask_token super().__init__( SCREAMING_SNAKE_CASE , tokenizer_file=SCREAMING_SNAKE_CASE , do_lower_case=SCREAMING_SNAKE_CASE , remove_space=SCREAMING_SNAKE_CASE , keep_accents=SCREAMING_SNAKE_CASE , bos_token=SCREAMING_SNAKE_CASE , eos_token=SCREAMING_SNAKE_CASE , unk_token=SCREAMING_SNAKE_CASE , sep_token=SCREAMING_SNAKE_CASE , pad_token=SCREAMING_SNAKE_CASE , cls_token=SCREAMING_SNAKE_CASE , mask_token=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) A : List[Any] = do_lower_case A : str = remove_space A : int = keep_accents A : Union[str, Any] = vocab_file A : List[Any] = False if not self.vocab_file else True def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> List[int]: """simple docstring""" A : List[Any] = [self.sep_token_id] A : Tuple = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1] def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> List[int]: """simple docstring""" A : Tuple = [self.sep_token_id] A : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(SCREAMING_SNAKE_CASE ): logger.error('''Vocabulary path ({}) should be a directory'''.format(SCREAMING_SNAKE_CASE ) ) return A : Any = os.path.join( SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
3
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer __A : Any = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __A : int = { "vocab_file": { "unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt", }, "tokenizer_file": { "unc-nlp/lxmert-base-uncased": ( "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json" ), }, } __A : List[Any] = { "unc-nlp/lxmert-base-uncased": 512, } __A : Optional[Any] = { "unc-nlp/lxmert-base-uncased": {"do_lower_case": True}, } class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_INIT_CONFIGURATION lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = LxmertTokenizer def __init__( self : Dict , lowerCamelCase : Tuple=None , lowerCamelCase : List[str]=None , lowerCamelCase : Dict=True , lowerCamelCase : List[Any]="[UNK]" , lowerCamelCase : Tuple="[SEP]" , lowerCamelCase : str="[PAD]" , lowerCamelCase : Any="[CLS]" , lowerCamelCase : str="[MASK]" , lowerCamelCase : Dict=True , lowerCamelCase : Union[str, Any]=None , **lowerCamelCase : Optional[int] , ) -> Optional[Any]: super().__init__( lowerCamelCase , tokenizer_file=lowerCamelCase , do_lower_case=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , pad_token=lowerCamelCase , cls_token=lowerCamelCase , mask_token=lowerCamelCase , tokenize_chinese_chars=lowerCamelCase , strip_accents=lowerCamelCase , **lowerCamelCase , ) lowerCAmelCase_ : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , lowerCamelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , lowerCamelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , lowerCamelCase ) != tokenize_chinese_chars ): lowerCAmelCase_ : Tuple = getattr(lowerCamelCase , normalizer_state.pop("""type""" ) ) lowerCAmelCase_ : Optional[Any] = do_lower_case lowerCAmelCase_ : Dict = strip_accents lowerCAmelCase_ : List[Any] = tokenize_chinese_chars lowerCAmelCase_ : List[Any] = normalizer_class(**lowerCamelCase ) lowerCAmelCase_ : Tuple = do_lower_case def __lowercase ( self : Tuple , lowerCamelCase : str , lowerCamelCase : Optional[Any]=None ) -> int: lowerCAmelCase_ : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowercase ( self : str , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ) -> List[int]: lowerCAmelCase_ : str = [self.sep_token_id] lowerCAmelCase_ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowercase ( self : Tuple , lowerCamelCase : str , lowerCamelCase : Optional[str] = None ) -> Tuple[str]: lowerCAmelCase_ : int = self._tokenizer.model.save(lowerCamelCase , name=lowerCamelCase ) return tuple(lowerCamelCase )
350
'''simple docstring''' import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class __snake_case ( unittest.TestCase): """simple docstring""" def __lowercase ( self : Tuple ) -> Dict: lowerCAmelCase_ : str = [ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertTrue(is_safetensors_compatible(lowerCamelCase ) ) def __lowercase ( self : List[Any] ) -> int: lowerCAmelCase_ : Tuple = [ """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertTrue(is_safetensors_compatible(lowerCamelCase ) ) def __lowercase ( self : Optional[int] ) -> Optional[Any]: lowerCAmelCase_ : int = [ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", """unet/diffusion_pytorch_model.bin""", # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowerCamelCase ) ) def __lowercase ( self : int ) -> List[Any]: lowerCAmelCase_ : Dict = [ """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", ] self.assertTrue(is_safetensors_compatible(lowerCamelCase ) ) def __lowercase ( self : str ) -> List[str]: lowerCAmelCase_ : Union[str, Any] = [ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", # Removed: 'text_encoder/model.safetensors', """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertFalse(is_safetensors_compatible(lowerCamelCase ) ) def __lowercase ( self : List[Any] ) -> Tuple: lowerCAmelCase_ : Union[str, Any] = [ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] lowerCAmelCase_ : Union[str, Any] = """fp16""" self.assertTrue(is_safetensors_compatible(lowerCamelCase , variant=lowerCamelCase ) ) def __lowercase ( self : Optional[Any] ) -> List[str]: lowerCAmelCase_ : str = [ """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] lowerCAmelCase_ : Optional[int] = """fp16""" self.assertTrue(is_safetensors_compatible(lowerCamelCase , variant=lowerCamelCase ) ) def __lowercase ( self : Tuple ) -> Optional[Any]: # pass variant but use the non-variant filenames lowerCAmelCase_ : Dict = [ """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] lowerCAmelCase_ : str = """fp16""" self.assertTrue(is_safetensors_compatible(lowerCamelCase , variant=lowerCamelCase ) ) def __lowercase ( self : Optional[int] ) -> List[str]: lowerCAmelCase_ : str = [ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", """unet/diffusion_pytorch_model.fp16.bin""", # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowerCAmelCase_ : List[str] = """fp16""" self.assertFalse(is_safetensors_compatible(lowerCamelCase , variant=lowerCamelCase ) ) def __lowercase ( self : Union[str, Any] ) -> Optional[int]: lowerCAmelCase_ : str = [ """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", ] lowerCAmelCase_ : Optional[Any] = """fp16""" self.assertTrue(is_safetensors_compatible(lowerCamelCase , variant=lowerCamelCase ) ) def __lowercase ( self : List[Any] ) -> List[Any]: # pass variant but use the non-variant filenames lowerCAmelCase_ : Dict = [ """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", ] lowerCAmelCase_ : Any = """fp16""" self.assertTrue(is_safetensors_compatible(lowerCamelCase , variant=lowerCamelCase ) ) def __lowercase ( self : Dict ) -> Any: lowerCAmelCase_ : Optional[int] = [ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", # 'text_encoder/model.fp16.safetensors', """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] lowerCAmelCase_ : int = """fp16""" self.assertFalse(is_safetensors_compatible(lowerCamelCase , variant=lowerCamelCase ) )
89
0
"""simple docstring""" import random from typing import Any def a_ ( lowerCamelCase ): for _ in range(len(lowerCamelCase ) ): UpperCAmelCase__ = random.randint(0 , len(lowerCamelCase ) - 1 ) UpperCAmelCase__ = random.randint(0 , len(lowerCamelCase ) - 1 ) UpperCAmelCase__ , UpperCAmelCase__ = data[b], data[a] return data if __name__ == "__main__": lowerCAmelCase__ : Dict = [0, 1, 2, 3, 4, 5, 6, 7] lowerCAmelCase__ : str = ['python', 'says', 'hello', '!'] print('Fisher-Yates Shuffle:') print('List', integers, strings) print('FY Shuffle', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
98
'''simple docstring''' import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging __UpperCAmelCase =logging.get_logger(__name__) class a__ ( UpperCAmelCase__ ): def __init__( self : Optional[Any] , a : Union[List[ControlNetModel], Tuple[ControlNetModel]] ): """simple docstring""" super().__init__() __lowerCamelCase = nn.ModuleList(a ) def SCREAMING_SNAKE_CASE__ ( self : Any , a : torch.FloatTensor , a : Union[torch.Tensor, float, int] , a : torch.Tensor , a : List[torch.tensor] , a : List[float] , a : Optional[torch.Tensor] = None , a : Optional[torch.Tensor] = None , a : Optional[torch.Tensor] = None , a : Optional[Dict[str, Any]] = None , a : bool = False , a : bool = True , ): """simple docstring""" for i, (image, scale, controlnet) in enumerate(zip(a , a , self.nets ) ): __lowerCamelCase , __lowerCamelCase = controlnet( a , a , a , a , a , a , a , a , a , a , a , ) # merge samples if i == 0: __lowerCamelCase , __lowerCamelCase = down_samples, mid_sample else: __lowerCamelCase = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(a , a ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def SCREAMING_SNAKE_CASE__ ( self : Any , a : Union[str, os.PathLike] , a : bool = True , a : Callable = None , a : bool = False , a : Optional[str] = None , ): """simple docstring""" __lowerCamelCase = 0 __lowerCamelCase = save_directory for controlnet in self.nets: controlnet.save_pretrained( a , is_main_process=a , save_function=a , safe_serialization=a , variant=a , ) idx += 1 __lowerCamelCase = model_path_to_save + f"""_{idx}""" @classmethod def SCREAMING_SNAKE_CASE__ ( cls : List[str] , a : Optional[Union[str, os.PathLike]] , **a : Optional[Any] ): """simple docstring""" __lowerCamelCase = 0 __lowerCamelCase = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... __lowerCamelCase = pretrained_model_path while os.path.isdir(a ): __lowerCamelCase = ControlNetModel.from_pretrained(a , **a ) controlnets.append(a ) idx += 1 __lowerCamelCase = pretrained_model_path + f"""_{idx}""" logger.info(f"""{len(a )} controlnets loaded from {pretrained_model_path}.""" ) if len(a ) == 0: raise ValueError( f"""No ControlNets found under {os.path.dirname(a )}. Expected at least {pretrained_model_path + '_0'}.""" ) return cls(a )
67
0
"""simple docstring""" import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json _lowercase : str = """sshleifer/mar_enro_6_3_student""" class _UpperCAmelCase ( lowerCamelCase__ ): def a ( self : Optional[Any] ): super().setUp() __UpperCAmelCase = cached_path( '''https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz''' , extract_compressed_file=_lowercase , ) __UpperCAmelCase = F'''{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k''' @slow @require_torch_gpu def a ( self : Any ): MarianMTModel.from_pretrained(_lowercase ) @slow @require_torch_gpu def a ( self : int ): __UpperCAmelCase = { '''$MAX_LEN''': 64, '''$BS''': 64, '''$GAS''': 1, '''$ENRO_DIR''': self.data_dir, '''facebook/mbart-large-cc25''': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '''--learning_rate=3e-5''': '''--learning_rate 3e-4''', '''--num_train_epochs 6''': '''--num_train_epochs 1''', } # Clean up bash script __UpperCAmelCase = (self.test_file_dir / '''train_mbart_cc25_enro.sh''').open().read().split('''finetune.py''' )[1].strip() __UpperCAmelCase = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' ) for k, v in env_vars_to_replace.items(): __UpperCAmelCase = bash_script.replace(_lowercase , str(_lowercase ) ) __UpperCAmelCase = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") __UpperCAmelCase = F''' --output_dir {output_dir} --tokenizer_name Helsinki-NLP/opus-mt-en-ro --sortish_sampler --do_predict --gpus 1 --freeze_encoder --n_train 40000 --n_val 500 --n_test 500 --fp16_opt_level O1 --num_sanity_val_steps 0 --eval_beams 2 '''.split() # XXX: args.gpus > 1 : handle multi_gpu in the future __UpperCAmelCase = ['''finetune.py'''] + bash_script.split() + args with patch.object(_lowercase , '''argv''' , _lowercase ): __UpperCAmelCase = argparse.ArgumentParser() __UpperCAmelCase = pl.Trainer.add_argparse_args(_lowercase ) __UpperCAmelCase = SummarizationModule.add_model_specific_args(_lowercase , os.getcwd() ) __UpperCAmelCase = parser.parse_args() __UpperCAmelCase = main(_lowercase ) # Check metrics __UpperCAmelCase = load_json(model.metrics_save_path ) __UpperCAmelCase = metrics['''val'''][0] __UpperCAmelCase = metrics['''val'''][-1] self.assertEqual(len(metrics['''val'''] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , _lowercase ) self.assertGreater(last_step_stats['''val_avg_gen_time'''] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['''val_avg_gen_time'''] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['''val_avg_bleu'''] - first_step_stats['''val_avg_bleu'''] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['''val_avg_bleu'''] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['''val'''][-1]['''val_avg_bleu'''] - metrics['''test'''][-1]['''test_avg_bleu'''] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict __UpperCAmelCase = os.listdir(_lowercase ) __UpperCAmelCase = [x for x in contents if x.endswith('''.ckpt''' )][0] __UpperCAmelCase = os.path.join(args.output_dir , _lowercase ) __UpperCAmelCase = torch.load(_lowercase , map_location='''cpu''' ) __UpperCAmelCase = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight''' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: __UpperCAmelCase = {os.path.basename(_lowercase ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['''test'''] ) == 1 class _UpperCAmelCase ( lowerCamelCase__ ): @timeout_decorator.timeout(6_00 ) @slow @require_torch_gpu def a ( self : Union[str, Any] ): __UpperCAmelCase = F'''{self.test_file_dir_str}/test_data/wmt_en_ro''' __UpperCAmelCase = { '''--fp16_opt_level=O1''': '''''', '''$MAX_LEN''': 1_28, '''$BS''': 16, '''$GAS''': 1, '''$ENRO_DIR''': data_dir, '''$m''': '''sshleifer/student_marian_en_ro_6_1''', '''val_check_interval=0.25''': '''val_check_interval=1.0''', } # Clean up bash script __UpperCAmelCase = ( (self.test_file_dir / '''distil_marian_no_teacher.sh''').open().read().split('''distillation.py''' )[1].strip() ) __UpperCAmelCase = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' ) __UpperCAmelCase = bash_script.replace('''--fp16 ''' , ''' ''' ) for k, v in env_vars_to_replace.items(): __UpperCAmelCase = bash_script.replace(_lowercase , str(_lowercase ) ) __UpperCAmelCase = self.get_auto_remove_tmp_dir() __UpperCAmelCase = bash_script.replace('''--fp16''' , '''''' ) __UpperCAmelCase = 6 __UpperCAmelCase = ( ['''distillation.py'''] + bash_script.split() + [ F'''--output_dir={output_dir}''', '''--gpus=1''', '''--learning_rate=1e-3''', F'''--num_train_epochs={epochs}''', '''--warmup_steps=10''', '''--val_check_interval=1.0''', '''--do_predict''', ] ) with patch.object(_lowercase , '''argv''' , _lowercase ): __UpperCAmelCase = argparse.ArgumentParser() __UpperCAmelCase = pl.Trainer.add_argparse_args(_lowercase ) __UpperCAmelCase = SummarizationDistiller.add_model_specific_args(_lowercase , os.getcwd() ) __UpperCAmelCase = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu __UpperCAmelCase = distill_main(_lowercase ) # Check metrics __UpperCAmelCase = load_json(model.metrics_save_path ) __UpperCAmelCase = metrics['''val'''][0] __UpperCAmelCase = metrics['''val'''][-1] assert len(metrics['''val'''] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , _lowercase ) # check lightning ckpt can be loaded and has a reasonable statedict __UpperCAmelCase = os.listdir(_lowercase ) __UpperCAmelCase = [x for x in contents if x.endswith('''.ckpt''' )][0] __UpperCAmelCase = os.path.join(args.output_dir , _lowercase ) __UpperCAmelCase = torch.load(_lowercase , map_location='''cpu''' ) __UpperCAmelCase = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight''' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: __UpperCAmelCase = {os.path.basename(_lowercase ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['''test'''] ) == 1
356
"""simple docstring""" import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class _UpperCAmelCase : def __init__( self : Dict , _lowercase : int , _lowercase : List[str]=13 , _lowercase : Dict=32 , _lowercase : Any=2 , _lowercase : Optional[int]=3 , _lowercase : Optional[Any]=16 , _lowercase : Optional[int]=[1, 2, 1] , _lowercase : int=[2, 2, 4] , _lowercase : Optional[Any]=2 , _lowercase : Union[str, Any]=2.0 , _lowercase : Any=True , _lowercase : Optional[Any]=0.0 , _lowercase : Dict=0.0 , _lowercase : Dict=0.1 , _lowercase : str="gelu" , _lowercase : List[Any]=False , _lowercase : List[Any]=True , _lowercase : Optional[Any]=0.02 , _lowercase : str=1E-5 , _lowercase : str=True , _lowercase : Any=None , _lowercase : Tuple=True , _lowercase : Any=10 , _lowercase : int=8 , _lowercase : Optional[Any]=["stage1", "stage2", "stage3"] , _lowercase : Optional[Any]=[1, 2, 3] , ): __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = image_size __UpperCAmelCase = patch_size __UpperCAmelCase = num_channels __UpperCAmelCase = embed_dim __UpperCAmelCase = depths __UpperCAmelCase = num_heads __UpperCAmelCase = window_size __UpperCAmelCase = mlp_ratio __UpperCAmelCase = qkv_bias __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = drop_path_rate __UpperCAmelCase = hidden_act __UpperCAmelCase = use_absolute_embeddings __UpperCAmelCase = patch_norm __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = initializer_range __UpperCAmelCase = is_training __UpperCAmelCase = scope __UpperCAmelCase = use_labels __UpperCAmelCase = type_sequence_label_size __UpperCAmelCase = encoder_stride __UpperCAmelCase = out_features __UpperCAmelCase = out_indices def a ( self : int ): __UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase = self.get_config() return config, pixel_values, labels def a ( self : Dict ): return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def a ( self : List[Any] , _lowercase : Union[str, Any] , _lowercase : str , _lowercase : int ): __UpperCAmelCase = MaskFormerSwinModel(config=_lowercase ) model.to(_lowercase ) model.eval() __UpperCAmelCase = model(_lowercase ) __UpperCAmelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __UpperCAmelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def a ( self : int , _lowercase : Optional[Any] , _lowercase : Any , _lowercase : Dict ): __UpperCAmelCase = MaskFormerSwinBackbone(config=_lowercase ) model.to(_lowercase ) model.eval() __UpperCAmelCase = model(_lowercase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(_lowercase ): __UpperCAmelCase = ['''stem'''] __UpperCAmelCase = MaskFormerSwinBackbone(config=_lowercase ) def a ( self : Optional[int] ): __UpperCAmelCase = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = config_and_inputs __UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): a__ : List[Any] = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) a__ : Optional[int] = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} a__ : List[str] = False a__ : int = False a__ : str = False a__ : str = False a__ : Any = False def a ( self : Optional[Any] ): __UpperCAmelCase = MaskFormerSwinModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=_lowercase , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( '''`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with''' ''' `nn.DataParallel`''' ) ) def a ( self : int ): pass def a ( self : Dict ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a ( self : str ): return def a ( self : Optional[Any] ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def a ( self : Optional[int] ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_lowercase ) @unittest.skip('''Swin does not use inputs_embeds''' ) def a ( self : List[Any] ): pass @unittest.skip('''Swin does not support feedforward chunking''' ) def a ( self : str ): pass def a ( self : Union[str, Any] ): __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(_lowercase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowercase , nn.Linear ) ) def a ( self : Union[str, Any] ): __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(_lowercase ) __UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase = [*signature.parameters.keys()] __UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowercase ) @unittest.skip(reason='''MaskFormerSwin is only used as backbone and doesn\'t support output_attentions''' ) def a ( self : Optional[Any] ): pass @unittest.skip(reason='''MaskFormerSwin is only used as an internal backbone''' ) def a ( self : Optional[Any] ): pass def a ( self : List[Any] , _lowercase : Union[str, Any] , _lowercase : List[str] , _lowercase : Dict , _lowercase : Tuple ): __UpperCAmelCase = model_class(_lowercase ) model.to(_lowercase ) model.eval() with torch.no_grad(): __UpperCAmelCase = model(**self._prepare_for_class(_lowercase , _lowercase ) ) __UpperCAmelCase = outputs.hidden_states __UpperCAmelCase = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_lowercase ) , _lowercase ) # Swin has a different seq_length __UpperCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __UpperCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def a ( self : str ): __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __UpperCAmelCase = True self.check_hidden_states_output(_lowercase , _lowercase , _lowercase , _lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase = True self.check_hidden_states_output(_lowercase , _lowercase , _lowercase , _lowercase ) def a ( self : Optional[Any] ): __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase = 3 __UpperCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __UpperCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __UpperCAmelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __UpperCAmelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __UpperCAmelCase = True self.check_hidden_states_output(_lowercase , _lowercase , _lowercase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase = True self.check_hidden_states_output(_lowercase , _lowercase , _lowercase , (padded_height, padded_width) ) @unittest.skip(reason='''MaskFormerSwin doesn\'t have pretrained checkpoints''' ) def a ( self : Any ): pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def a ( self : str ): pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def a ( self : Tuple ): pass def a ( self : Tuple ): __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(_lowercase : List[str] ): __UpperCAmelCase = 0 return t def check_equivalence(_lowercase : List[Any] , _lowercase : Any , _lowercase : str , _lowercase : List[str]={} ): with torch.no_grad(): __UpperCAmelCase = model(**_lowercase , return_dict=_lowercase , **_lowercase ) __UpperCAmelCase = model(**_lowercase , return_dict=_lowercase , **_lowercase ).to_tuple() def recursive_check(_lowercase : Dict , _lowercase : Optional[Any] ): if isinstance(_lowercase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_lowercase , _lowercase ): recursive_check(_lowercase , _lowercase ) elif isinstance(_lowercase , _lowercase ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(_lowercase , _lowercase ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(_lowercase ) , set_nan_tensor_to_zero(_lowercase ) , atol=1E-5 ) , msg=( '''Tuple and dict output are not equal. Difference:''' F''' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:''' F''' {torch.isnan(_lowercase ).any()} and `inf`: {torch.isinf(_lowercase )}. Dict has''' F''' `nan`: {torch.isnan(_lowercase ).any()} and `inf`: {torch.isinf(_lowercase )}.''' ) , ) recursive_check(_lowercase , _lowercase ) for model_class in self.all_model_classes: __UpperCAmelCase = model_class(_lowercase ) model.to(_lowercase ) model.eval() __UpperCAmelCase = self._prepare_for_class(_lowercase , _lowercase ) __UpperCAmelCase = self._prepare_for_class(_lowercase , _lowercase ) check_equivalence(_lowercase , _lowercase , _lowercase ) __UpperCAmelCase = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) __UpperCAmelCase = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) check_equivalence(_lowercase , _lowercase , _lowercase ) __UpperCAmelCase = self._prepare_for_class(_lowercase , _lowercase ) __UpperCAmelCase = self._prepare_for_class(_lowercase , _lowercase ) check_equivalence(_lowercase , _lowercase , _lowercase , {'''output_hidden_states''': True} ) __UpperCAmelCase = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) __UpperCAmelCase = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) check_equivalence(_lowercase , _lowercase , _lowercase , {'''output_hidden_states''': True} ) @require_torch class _UpperCAmelCase ( unittest.TestCase , _lowerCAmelCase ): a__ : Optional[Any] = (MaskFormerSwinBackbone,) if is_torch_available() else () a__ : List[str] = MaskFormerSwinConfig def a ( self : List[str] ): __UpperCAmelCase = MaskFormerSwinModelTester(self ) def a ( self : List[Any] ): __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase = inputs_dict['''pixel_values'''].shape[0] for backbone_class in self.all_model_classes: __UpperCAmelCase = backbone_class(_lowercase ) backbone.to(_lowercase ) backbone.eval() __UpperCAmelCase = backbone(**_lowercase ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , _lowercase ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True __UpperCAmelCase = backbone(**_lowercase , output_hidden_states=_lowercase ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: __UpperCAmelCase = backbone(**_lowercase , output_attentions=_lowercase ) self.assertIsNotNone(outputs.attentions )
86
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a =logging.get_logger(__name__) a ={ 'facebook/data2vec-vision-base-ft': ( 'https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json' ), } class A_ ( _lowerCamelCase ): _UpperCAmelCase : str = '''data2vec-vision''' def __init__( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : str=7_6_8 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_2 ,SCREAMING_SNAKE_CASE__ : int=1_2 ,SCREAMING_SNAKE_CASE__ : str=3_0_7_2 ,SCREAMING_SNAKE_CASE__ : Dict="gelu" ,SCREAMING_SNAKE_CASE__ : Any=0.0 ,SCREAMING_SNAKE_CASE__ : Optional[int]=0.0 ,SCREAMING_SNAKE_CASE__ : int=0.02 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=1E-12 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=2_2_4 ,SCREAMING_SNAKE_CASE__ : List[Any]=1_6 ,SCREAMING_SNAKE_CASE__ : List[Any]=3 ,SCREAMING_SNAKE_CASE__ : Tuple=False ,SCREAMING_SNAKE_CASE__ : Dict=False ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=False ,SCREAMING_SNAKE_CASE__ : List[Any]=False ,SCREAMING_SNAKE_CASE__ : Dict=0.1 ,SCREAMING_SNAKE_CASE__ : Optional[int]=0.1 ,SCREAMING_SNAKE_CASE__ : Optional[int]=True ,SCREAMING_SNAKE_CASE__ : Optional[int]=[3, 5, 7, 1_1] ,SCREAMING_SNAKE_CASE__ : Tuple=[1, 2, 3, 6] ,SCREAMING_SNAKE_CASE__ : List[Any]=True ,SCREAMING_SNAKE_CASE__ : Tuple=0.4 ,SCREAMING_SNAKE_CASE__ : Tuple=2_5_6 ,SCREAMING_SNAKE_CASE__ : Optional[int]=1 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=False ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=2_5_5 ,**SCREAMING_SNAKE_CASE__ : str ,): super().__init__(**lowercase_) __lowerCamelCase : Tuple = hidden_size __lowerCamelCase : int = num_hidden_layers __lowerCamelCase : List[Any] = num_attention_heads __lowerCamelCase : str = intermediate_size __lowerCamelCase : Optional[int] = hidden_act __lowerCamelCase : Any = hidden_dropout_prob __lowerCamelCase : Any = attention_probs_dropout_prob __lowerCamelCase : Union[str, Any] = initializer_range __lowerCamelCase : Optional[Any] = layer_norm_eps __lowerCamelCase : str = image_size __lowerCamelCase : Union[str, Any] = patch_size __lowerCamelCase : Tuple = num_channels __lowerCamelCase : int = use_mask_token __lowerCamelCase : Union[str, Any] = use_absolute_position_embeddings __lowerCamelCase : Any = use_relative_position_bias __lowerCamelCase : Any = use_shared_relative_position_bias __lowerCamelCase : Dict = layer_scale_init_value __lowerCamelCase : Union[str, Any] = drop_path_rate __lowerCamelCase : Optional[int] = use_mean_pooling # decode head attributes (semantic segmentation) __lowerCamelCase : Any = out_indices __lowerCamelCase : List[Any] = pool_scales # auxiliary head attributes (semantic segmentation) __lowerCamelCase : Tuple = use_auxiliary_head __lowerCamelCase : List[str] = auxiliary_loss_weight __lowerCamelCase : Any = auxiliary_channels __lowerCamelCase : int = auxiliary_num_convs __lowerCamelCase : int = auxiliary_concat_input __lowerCamelCase : str = semantic_loss_ignore_index class A_ ( _lowerCamelCase ): _UpperCAmelCase : Dict = version.parse('''1.11''' ) @property def lowerCAmelCase ( self : Any): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def lowerCAmelCase ( self : str): return 1E-4
73
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() a : Any = logging.get_logger(__name__) def __magic_name__ ( __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' snake_case_ = DPTConfig() if "large" in checkpoint_url: snake_case_ = 1024 snake_case_ = 4096 snake_case_ = 24 snake_case_ = 16 snake_case_ = [5, 11, 17, 23] snake_case_ = [256, 512, 1024, 1024] snake_case_ = (1, 384, 384) if "ade" in checkpoint_url: snake_case_ = True snake_case_ = 150 snake_case_ = '''huggingface/label-files''' snake_case_ = '''ade20k-id2label.json''' snake_case_ = json.load(open(cached_download(hf_hub_url(__UpperCAmelCase, __UpperCAmelCase, repo_type='''dataset''' ) ), '''r''' ) ) snake_case_ = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} snake_case_ = idalabel snake_case_ = {v: k for k, v in idalabel.items()} snake_case_ = [1, 150, 480, 480] return config, expected_shape def __magic_name__ ( __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' snake_case_ = ['''pretrained.model.head.weight''', '''pretrained.model.head.bias'''] for k in ignore_keys: state_dict.pop(__UpperCAmelCase, __UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase ) -> List[Any]: '''simple docstring''' if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): snake_case_ = name.replace('''pretrained.model''', '''dpt.encoder''' ) if "pretrained.model" in name: snake_case_ = name.replace('''pretrained.model''', '''dpt.embeddings''' ) if "patch_embed" in name: snake_case_ = name.replace('''patch_embed''', '''patch_embeddings''' ) if "pos_embed" in name: snake_case_ = name.replace('''pos_embed''', '''position_embeddings''' ) if "attn.proj" in name: snake_case_ = name.replace('''attn.proj''', '''attention.output.dense''' ) if "proj" in name and "project" not in name: snake_case_ = name.replace('''proj''', '''projection''' ) if "blocks" in name: snake_case_ = name.replace('''blocks''', '''layer''' ) if "mlp.fc1" in name: snake_case_ = name.replace('''mlp.fc1''', '''intermediate.dense''' ) if "mlp.fc2" in name: snake_case_ = name.replace('''mlp.fc2''', '''output.dense''' ) if "norm1" in name: snake_case_ = name.replace('''norm1''', '''layernorm_before''' ) if "norm2" in name: snake_case_ = name.replace('''norm2''', '''layernorm_after''' ) if "scratch.output_conv" in name: snake_case_ = name.replace('''scratch.output_conv''', '''head''' ) if "scratch" in name: snake_case_ = name.replace('''scratch''', '''neck''' ) if "layer1_rn" in name: snake_case_ = name.replace('''layer1_rn''', '''convs.0''' ) if "layer2_rn" in name: snake_case_ = name.replace('''layer2_rn''', '''convs.1''' ) if "layer3_rn" in name: snake_case_ = name.replace('''layer3_rn''', '''convs.2''' ) if "layer4_rn" in name: snake_case_ = name.replace('''layer4_rn''', '''convs.3''' ) if "refinenet" in name: snake_case_ = int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 snake_case_ = name.replace(F"refinenet{layer_idx}", F"fusion_stage.layers.{abs(layer_idx-4 )}" ) if "out_conv" in name: snake_case_ = name.replace('''out_conv''', '''projection''' ) if "resConfUnit1" in name: snake_case_ = name.replace('''resConfUnit1''', '''residual_layer1''' ) if "resConfUnit2" in name: snake_case_ = name.replace('''resConfUnit2''', '''residual_layer2''' ) if "conv1" in name: snake_case_ = name.replace('''conv1''', '''convolution1''' ) if "conv2" in name: snake_case_ = name.replace('''conv2''', '''convolution2''' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: snake_case_ = name.replace('''pretrained.act_postprocess1.0.project.0''', '''neck.reassemble_stage.readout_projects.0.0''' ) if "pretrained.act_postprocess2.0.project.0" in name: snake_case_ = name.replace('''pretrained.act_postprocess2.0.project.0''', '''neck.reassemble_stage.readout_projects.1.0''' ) if "pretrained.act_postprocess3.0.project.0" in name: snake_case_ = name.replace('''pretrained.act_postprocess3.0.project.0''', '''neck.reassemble_stage.readout_projects.2.0''' ) if "pretrained.act_postprocess4.0.project.0" in name: snake_case_ = name.replace('''pretrained.act_postprocess4.0.project.0''', '''neck.reassemble_stage.readout_projects.3.0''' ) # resize blocks if "pretrained.act_postprocess1.3" in name: snake_case_ = name.replace('''pretrained.act_postprocess1.3''', '''neck.reassemble_stage.layers.0.projection''' ) if "pretrained.act_postprocess1.4" in name: snake_case_ = name.replace('''pretrained.act_postprocess1.4''', '''neck.reassemble_stage.layers.0.resize''' ) if "pretrained.act_postprocess2.3" in name: snake_case_ = name.replace('''pretrained.act_postprocess2.3''', '''neck.reassemble_stage.layers.1.projection''' ) if "pretrained.act_postprocess2.4" in name: snake_case_ = name.replace('''pretrained.act_postprocess2.4''', '''neck.reassemble_stage.layers.1.resize''' ) if "pretrained.act_postprocess3.3" in name: snake_case_ = name.replace('''pretrained.act_postprocess3.3''', '''neck.reassemble_stage.layers.2.projection''' ) if "pretrained.act_postprocess4.3" in name: snake_case_ = name.replace('''pretrained.act_postprocess4.3''', '''neck.reassemble_stage.layers.3.projection''' ) if "pretrained.act_postprocess4.4" in name: snake_case_ = name.replace('''pretrained.act_postprocess4.4''', '''neck.reassemble_stage.layers.3.resize''' ) if "pretrained" in name: snake_case_ = name.replace('''pretrained''', '''dpt''' ) if "bn" in name: snake_case_ = name.replace('''bn''', '''batch_norm''' ) if "head" in name: snake_case_ = name.replace('''head''', '''head.head''' ) if "encoder.norm" in name: snake_case_ = name.replace('''encoder.norm''', '''layernorm''' ) if "auxlayer" in name: snake_case_ = name.replace('''auxlayer''', '''auxiliary_head.head''' ) return name def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> Dict: '''simple docstring''' for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case_ = state_dict.pop(F"dpt.encoder.layer.{i}.attn.qkv.weight" ) snake_case_ = state_dict.pop(F"dpt.encoder.layer.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict snake_case_ = in_proj_weight[: config.hidden_size, :] snake_case_ = in_proj_bias[: config.hidden_size] snake_case_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case_ = in_proj_weight[ -config.hidden_size :, : ] snake_case_ = in_proj_bias[-config.hidden_size :] def __magic_name__ ( ) -> Any: '''simple docstring''' snake_case_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case_ = Image.open(requests.get(__UpperCAmelCase, stream=__UpperCAmelCase ).raw ) return im @torch.no_grad() def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' snake_case_ ,snake_case_ = get_dpt_config(__UpperCAmelCase ) # load original state_dict from URL snake_case_ = torch.hub.load_state_dict_from_url(__UpperCAmelCase, map_location='''cpu''' ) # remove certain keys remove_ignore_keys_(__UpperCAmelCase ) # rename keys for key in state_dict.copy().keys(): snake_case_ = state_dict.pop(__UpperCAmelCase ) snake_case_ = val # read in qkv matrices read_in_q_k_v(__UpperCAmelCase, __UpperCAmelCase ) # load HuggingFace model snake_case_ = DPTForSemanticSegmentation(__UpperCAmelCase ) if '''ade''' in checkpoint_url else DPTForDepthEstimation(__UpperCAmelCase ) model.load_state_dict(__UpperCAmelCase ) model.eval() # Check outputs on an image snake_case_ = 480 if '''ade''' in checkpoint_url else 384 snake_case_ = DPTImageProcessor(size=__UpperCAmelCase ) snake_case_ = prepare_img() snake_case_ = image_processor(__UpperCAmelCase, return_tensors='''pt''' ) # forward pass snake_case_ = model(**__UpperCAmelCase ).logits if '''ade''' in checkpoint_url else model(**__UpperCAmelCase ).predicted_depth # Assert logits snake_case_ = torch.tensor([[6.3_1_9_9, 6.3_6_2_9, 6.4_1_4_8], [6.3_8_5_0, 6.3_6_1_5, 6.4_1_6_6], [6.3_5_1_9, 6.3_1_7_6, 6.3_5_7_5]] ) if "ade" in checkpoint_url: snake_case_ = torch.tensor([[4.0_4_8_0, 4.2_4_2_0, 4.4_3_6_0], [4.3_1_2_4, 4.5_6_9_3, 4.8_2_6_1], [4.5_7_6_8, 4.8_9_6_5, 5.2_1_6_3]] ) assert outputs.shape == torch.Size(__UpperCAmelCase ) assert ( torch.allclose(outputs[0, 0, :3, :3], __UpperCAmelCase, atol=1e-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3], __UpperCAmelCase ) ) Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(__UpperCAmelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__UpperCAmelCase ) if push_to_hub: print('''Pushing model to hub...''' ) model.push_to_hub( repo_path_or_name=Path(__UpperCAmelCase, __UpperCAmelCase ), organization='''nielsr''', commit_message='''Add model''', use_temp_dir=__UpperCAmelCase, ) image_processor.push_to_hub( repo_path_or_name=Path(__UpperCAmelCase, __UpperCAmelCase ), organization='''nielsr''', commit_message='''Add image processor''', use_temp_dir=__UpperCAmelCase, ) if __name__ == "__main__": a : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) a : List[Any] = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
56
0
'''simple docstring''' import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin A : Dict = ''' Hugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning. In March 2021, Hugging Face raised $40 million in a Series B funding round.[3] On April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5] ''' class __lowerCamelCase ( unittest.TestCase , a_ ): """simple docstring""" def A ( self : Tuple): _A : Union[str, Any] = load_tool('text-question-answering') self.tool.setup() _A : str = load_tool('text-question-answering' , remote=SCREAMING_SNAKE_CASE) def A ( self : List[str]): _A : Union[str, Any] = self.tool(SCREAMING_SNAKE_CASE , 'What did Hugging Face do in April 2021?') self.assertEqual(SCREAMING_SNAKE_CASE , 'launched the BigScience Research Workshop') def A ( self : Optional[int]): _A : List[str] = self.remote_tool(SCREAMING_SNAKE_CASE , 'What did Hugging Face do in April 2021?') self.assertEqual(SCREAMING_SNAKE_CASE , 'launched the BigScience Research Workshop') def A ( self : Union[str, Any]): _A : List[Any] = self.tool(text=SCREAMING_SNAKE_CASE , question='What did Hugging Face do in April 2021?') self.assertEqual(SCREAMING_SNAKE_CASE , 'launched the BigScience Research Workshop') def A ( self : Union[str, Any]): _A : List[Any] = self.remote_tool(text=SCREAMING_SNAKE_CASE , question='What did Hugging Face do in April 2021?') self.assertEqual(SCREAMING_SNAKE_CASE , 'launched the BigScience Research Workshop')
227
'''simple docstring''' import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __lowerCamelCase ( a_ , unittest.TestCase ): """simple docstring""" a = KandinskyVaaPriorPipeline a = ["prompt"] a = ["prompt", "negative_prompt"] a = [ "num_images_per_prompt", "generator", "num_inference_steps", "latents", "negative_prompt", "guidance_scale", "output_type", "return_dict", ] a = False @property def A ( self : List[str]): return 32 @property def A ( self : List[Any]): return 32 @property def A ( self : Dict): return self.time_input_dim @property def A ( self : Tuple): return self.time_input_dim * 4 @property def A ( self : Optional[int]): return 100 @property def A ( self : Dict): _A : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') return tokenizer @property def A ( self : Optional[Any]): torch.manual_seed(0) _A : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(SCREAMING_SNAKE_CASE) @property def A ( self : List[Any]): torch.manual_seed(0) _A : Optional[Any] = { 'num_attention_heads': 2, 'attention_head_dim': 12, 'embedding_dim': self.text_embedder_hidden_size, 'num_layers': 1, } _A : Any = PriorTransformer(**SCREAMING_SNAKE_CASE) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 _A : str = nn.Parameter(torch.ones(model.clip_std.shape)) return model @property def A ( self : List[str]): torch.manual_seed(0) _A : List[Any] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) _A : Union[str, Any] = CLIPVisionModelWithProjection(SCREAMING_SNAKE_CASE) return model @property def A ( self : int): _A : Optional[Any] = CLIPImageProcessor( crop_size=224 , do_center_crop=SCREAMING_SNAKE_CASE , do_normalize=SCREAMING_SNAKE_CASE , do_resize=SCREAMING_SNAKE_CASE , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=224 , ) return image_processor def A ( self : Optional[Any]): _A : Optional[int] = self.dummy_prior _A : Dict = self.dummy_image_encoder _A : Dict = self.dummy_text_encoder _A : str = self.dummy_tokenizer _A : Optional[Any] = self.dummy_image_processor _A : Optional[Any] = UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1000 , clip_sample=SCREAMING_SNAKE_CASE , clip_sample_range=10.0 , ) _A : Dict = { 'prior': prior, 'image_encoder': image_encoder, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'scheduler': scheduler, 'image_processor': image_processor, } return components def A ( self : Tuple , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[str]=0): if str(SCREAMING_SNAKE_CASE).startswith('mps'): _A : Dict = torch.manual_seed(SCREAMING_SNAKE_CASE) else: _A : int = torch.Generator(device=SCREAMING_SNAKE_CASE).manual_seed(SCREAMING_SNAKE_CASE) _A : List[Any] = { 'prompt': 'horse', 'generator': generator, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def A ( self : List[Any]): _A : str = 'cpu' _A : Tuple = self.get_dummy_components() _A : List[Any] = self.pipeline_class(**SCREAMING_SNAKE_CASE) _A : Any = pipe.to(SCREAMING_SNAKE_CASE) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE) _A : Dict = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE)) _A : str = output.image_embeds _A : Optional[int] = pipe( **self.get_dummy_inputs(SCREAMING_SNAKE_CASE) , return_dict=SCREAMING_SNAKE_CASE , )[0] _A : Optional[int] = image[0, -10:] _A : int = image_from_tuple[0, -10:] assert image.shape == (1, 32) _A : Dict = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @skip_mps def A ( self : Any): _A : Tuple = torch_device == 'cpu' _A : Optional[int] = True _A : Tuple = False self._test_inference_batch_single_identical( test_max_difference=SCREAMING_SNAKE_CASE , relax_max_difference=SCREAMING_SNAKE_CASE , test_mean_pixel_difference=SCREAMING_SNAKE_CASE , ) @skip_mps def A ( self : int): _A : Tuple = torch_device == 'cpu' _A : Optional[Any] = False self._test_attention_slicing_forward_pass( test_max_difference=SCREAMING_SNAKE_CASE , test_mean_pixel_difference=SCREAMING_SNAKE_CASE , )
227
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class snake_case ( lowercase ): """simple docstring""" _lowerCamelCase = """philschmid/bart-large-cnn-samsum""" _lowerCamelCase = ( """This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, """ """and returns a summary of the text.""" ) _lowerCamelCase = """summarizer""" _lowerCamelCase = AutoTokenizer _lowerCamelCase = AutoModelForSeqaSeqLM _lowerCamelCase = ["""text"""] _lowerCamelCase = ["""text"""] def snake_case ( self , UpperCamelCase ): """simple docstring""" return self.pre_processor(UpperCAmelCase__ , return_tensors="pt" , truncation=UpperCAmelCase__ ) def snake_case ( self , UpperCamelCase ): """simple docstring""" return self.model.generate(**UpperCAmelCase__ )[0] def snake_case ( self , UpperCamelCase ): """simple docstring""" return self.pre_processor.decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ , clean_up_tokenization_spaces=UpperCAmelCase__ )
55
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def __lowercase ( _A , _A ) -> Union[str, Any]: SCREAMING_SNAKE_CASE : str = [] for part_id in partition_order: SCREAMING_SNAKE_CASE : Tuple = df.where(F"SPARK_PARTITION_ID() = {part_id}" ).collect() for row_idx, row in enumerate(_A ): expected_row_ids_and_row_dicts.append((F"{part_id}_{row_idx}", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def __lowercase ( ) -> Tuple: SCREAMING_SNAKE_CASE : List[str] = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() SCREAMING_SNAKE_CASE : str = spark.range(100 ).repartition(1 ) SCREAMING_SNAKE_CASE : str = Spark(_A ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def __lowercase ( ) -> Tuple: SCREAMING_SNAKE_CASE : Optional[int] = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() SCREAMING_SNAKE_CASE : Tuple = spark.range(10 ).repartition(2 ) SCREAMING_SNAKE_CASE : Any = [1, 0] SCREAMING_SNAKE_CASE : Dict = _generate_iterable_examples(_A , _A ) # Reverse the partitions. SCREAMING_SNAKE_CASE : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(_A , _A ) for i, (row_id, row_dict) in enumerate(generate_fn() ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowercase ( ) -> Optional[Any]: SCREAMING_SNAKE_CASE : Union[str, Any] = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() SCREAMING_SNAKE_CASE : List[str] = spark.range(10 ).repartition(1 ) SCREAMING_SNAKE_CASE : Optional[Any] = SparkExamplesIterable(_A ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(_A ): assert row_id == F"0_{i}" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def __lowercase ( ) -> Any: SCREAMING_SNAKE_CASE : Tuple = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() SCREAMING_SNAKE_CASE : Any = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("""numpy.random.Generator""" ) as generator_mock: SCREAMING_SNAKE_CASE : int = lambda _A : x.reverse() SCREAMING_SNAKE_CASE : int = _get_expected_row_ids_and_row_dicts_for_partition_order(_A , [2, 1, 0] ) SCREAMING_SNAKE_CASE : Any = SparkExamplesIterable(_A ).shuffle_data_sources(_A ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(_A ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowercase ( ) -> str: SCREAMING_SNAKE_CASE : Dict = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() SCREAMING_SNAKE_CASE : Optional[Any] = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 SCREAMING_SNAKE_CASE : str = SparkExamplesIterable(_A ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 SCREAMING_SNAKE_CASE : List[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(_A , [0, 2] ) for i, (row_id, row_dict) in enumerate(_A ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 SCREAMING_SNAKE_CASE : int = SparkExamplesIterable(_A ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 SCREAMING_SNAKE_CASE : Tuple = _get_expected_row_ids_and_row_dicts_for_partition_order(_A , [1, 3] ) for i, (row_id, row_dict) in enumerate(_A ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowercase ( ) -> List[Any]: SCREAMING_SNAKE_CASE : Optional[Any] = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() SCREAMING_SNAKE_CASE : str = spark.range(100 ).repartition(1 ) SCREAMING_SNAKE_CASE : Any = Spark(_A ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
245
0
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE="last" , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , ) -> Optional[Any]: snake_case_ : Optional[int] = parent snake_case_ : List[Any] = batch_size snake_case_ : Optional[int] = seq_length snake_case_ : Any = is_training snake_case_ : str = use_input_lengths snake_case_ : Tuple = use_token_type_ids snake_case_ : List[str] = use_labels snake_case_ : int = gelu_activation snake_case_ : Union[str, Any] = sinusoidal_embeddings snake_case_ : Optional[Any] = causal snake_case_ : Dict = asm snake_case_ : Optional[int] = n_langs snake_case_ : Optional[Any] = vocab_size snake_case_ : Optional[int] = n_special snake_case_ : Optional[int] = hidden_size snake_case_ : str = num_hidden_layers snake_case_ : Tuple = num_attention_heads snake_case_ : str = hidden_dropout_prob snake_case_ : List[str] = attention_probs_dropout_prob snake_case_ : Union[str, Any] = max_position_embeddings snake_case_ : List[Any] = type_vocab_size snake_case_ : List[Any] = type_sequence_label_size snake_case_ : Any = initializer_range snake_case_ : Any = num_labels snake_case_ : Dict = num_choices snake_case_ : Union[str, Any] = summary_type snake_case_ : Optional[int] = use_proj snake_case_ : List[Any] = scope def _lowerCAmelCase ( self ) -> Tuple: snake_case_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Any = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : int = None if self.use_input_lengths: snake_case_ : int = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length snake_case_ : int = None if self.use_token_type_ids: snake_case_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) snake_case_ : str = None snake_case_ : Union[str, Any] = None snake_case_ : Optional[Any] = None if self.use_labels: snake_case_ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ : Optional[int] = ids_tensor([self.batch_size] , 2 ).float() snake_case_ : Dict = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ : Tuple = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _lowerCAmelCase ( self ) -> int: return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> List[str]: snake_case_ : Any = FlaubertModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() snake_case_ : Any = model(_SCREAMING_SNAKE_CASE , lengths=_SCREAMING_SNAKE_CASE , langs=_SCREAMING_SNAKE_CASE ) snake_case_ : str = model(_SCREAMING_SNAKE_CASE , langs=_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[Any] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> int: snake_case_ : Optional[int] = FlaubertWithLMHeadModel(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() snake_case_ : List[Any] = model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> Optional[int]: snake_case_ : Dict = FlaubertForQuestionAnsweringSimple(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() snake_case_ : int = model(_SCREAMING_SNAKE_CASE ) snake_case_ : Any = model(_SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> Tuple: snake_case_ : Dict = FlaubertForQuestionAnswering(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() snake_case_ : List[str] = model(_SCREAMING_SNAKE_CASE ) snake_case_ : Tuple = model( _SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE , cls_index=_SCREAMING_SNAKE_CASE , is_impossible=_SCREAMING_SNAKE_CASE , p_mask=_SCREAMING_SNAKE_CASE , ) snake_case_ : Any = model( _SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE , cls_index=_SCREAMING_SNAKE_CASE , is_impossible=_SCREAMING_SNAKE_CASE , ) ((snake_case_) , ) : Dict = result_with_labels.to_tuple() snake_case_ : Tuple = model(_SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE ) ((snake_case_) , ) : List[Any] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> List[str]: snake_case_ : int = FlaubertForSequenceClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() snake_case_ : List[Any] = model(_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[int] = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> Tuple: snake_case_ : Optional[int] = self.num_labels snake_case_ : List[str] = FlaubertForTokenClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() snake_case_ : Optional[int] = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> Optional[Any]: snake_case_ : Any = self.num_choices snake_case_ : Dict = FlaubertForMultipleChoice(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() snake_case_ : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ : Tuple = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ : str = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ : Tuple = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCAmelCase ( self ) -> int: snake_case_ : Optional[Any] = self.prepare_config_and_inputs() ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) : Optional[Any] = config_and_inputs snake_case_ : Dict = { "input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths, "attention_mask": input_mask, } return config, inputs_dict @require_torch class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' A : List[str] = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) A : List[str] = ( { 'feature-extraction': FlaubertModel, 'fill-mask': FlaubertWithLMHeadModel, 'question-answering': FlaubertForQuestionAnsweringSimple, 'text-classification': FlaubertForSequenceClassification, 'token-classification': FlaubertForTokenClassification, 'zero-shot': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Any: snake_case_ : Tuple = super()._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": snake_case_ : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) snake_case_ : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) return inputs_dict def _lowerCAmelCase ( self ) -> List[Any]: snake_case_ : Tuple = FlaubertModelTester(self ) snake_case_ : List[str] = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , emb_dim=37 ) def _lowerCAmelCase ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def _lowerCAmelCase ( self ) -> Union[str, Any]: snake_case_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self ) -> Tuple: snake_case_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self ) -> Optional[int]: snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self ) -> str: snake_case_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self ) -> Optional[Any]: snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self ) -> Tuple: snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self ) -> str: snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*_SCREAMING_SNAKE_CASE ) @slow def _lowerCAmelCase ( self ) -> int: for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ : Any = FlaubertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @slow @require_torch_gpu def _lowerCAmelCase ( self ) -> Optional[Any]: snake_case_ , snake_case_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return snake_case_ : Optional[Any] = True snake_case_ : Dict = model_class(config=_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[int] = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ : str = torch.jit.trace( _SCREAMING_SNAKE_CASE , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , "traced_model.pt" ) ) snake_case_ : str = torch.jit.load(os.path.join(_SCREAMING_SNAKE_CASE , "traced_model.pt" ) , map_location=_SCREAMING_SNAKE_CASE ) loaded(inputs_dict["input_ids"].to(_SCREAMING_SNAKE_CASE ) , inputs_dict["attention_mask"].to(_SCREAMING_SNAKE_CASE ) ) @require_torch class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _lowerCAmelCase ( self ) -> int: snake_case_ : int = FlaubertModel.from_pretrained("flaubert/flaubert_base_cased" ) snake_case_ : Tuple = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): snake_case_ : Optional[Any] = model(_SCREAMING_SNAKE_CASE )[0] snake_case_ : Dict = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) snake_case_ : Union[str, Any] = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) )
36
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowercase : List[Any] = logging.get_logger(__name__) lowercase : List[Any] = { '''microsoft/conditional-detr-resnet-50''': ( '''https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json''' ), } class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Tuple = 'conditional_detr' A : Optional[int] = ['past_key_values'] A : List[Any] = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=300 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=2048 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=2048 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="relu" , _SCREAMING_SNAKE_CASE=256 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE="sine" , _SCREAMING_SNAKE_CASE="resnet50" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.25 , **_SCREAMING_SNAKE_CASE , ) -> str: if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) snake_case_ : List[Any] = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): snake_case_ : Optional[int] = backbone_config.get("model_type" ) snake_case_ : str = CONFIG_MAPPING[backbone_model_type] snake_case_ : Tuple = config_class.from_dict(_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[Any] = use_timm_backbone snake_case_ : Optional[Any] = backbone_config snake_case_ : str = num_channels snake_case_ : Optional[Any] = num_queries snake_case_ : Optional[Any] = d_model snake_case_ : Optional[Any] = encoder_ffn_dim snake_case_ : str = encoder_layers snake_case_ : int = encoder_attention_heads snake_case_ : int = decoder_ffn_dim snake_case_ : Optional[Any] = decoder_layers snake_case_ : List[str] = decoder_attention_heads snake_case_ : List[str] = dropout snake_case_ : Optional[int] = attention_dropout snake_case_ : Tuple = activation_dropout snake_case_ : List[Any] = activation_function snake_case_ : Dict = init_std snake_case_ : str = init_xavier_std snake_case_ : Tuple = encoder_layerdrop snake_case_ : int = decoder_layerdrop snake_case_ : List[Any] = encoder_layers snake_case_ : int = auxiliary_loss snake_case_ : int = position_embedding_type snake_case_ : List[str] = backbone snake_case_ : Union[str, Any] = use_pretrained_backbone snake_case_ : Optional[Any] = dilation # Hungarian matcher snake_case_ : Tuple = class_cost snake_case_ : Tuple = bbox_cost snake_case_ : str = giou_cost # Loss coefficients snake_case_ : Union[str, Any] = mask_loss_coefficient snake_case_ : Tuple = dice_loss_coefficient snake_case_ : List[str] = cls_loss_coefficient snake_case_ : List[str] = bbox_loss_coefficient snake_case_ : List[str] = giou_loss_coefficient snake_case_ : Any = focal_alpha super().__init__(is_encoder_decoder=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @property def _lowerCAmelCase ( self ) -> int: return self.encoder_attention_heads @property def _lowerCAmelCase ( self ) -> int: return self.d_model def _lowerCAmelCase ( self ) -> Optional[Any]: snake_case_ : List[Any] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: snake_case_ : Optional[int] = self.backbone_config.to_dict() snake_case_ : Optional[int] = self.__class__.model_type return output class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Union[str, Any] = version.parse('1.11' ) @property def _lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def _lowerCAmelCase ( self ) -> float: return 1e-5 @property def _lowerCAmelCase ( self ) -> int: return 12
36
1
a_ = '''0.21.0''' from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
340
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class lowercase__ ( _UpperCAmelCase ): a_ ="""char""" a_ ="""bpe""" a_ ="""wp""" a_ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class lowercase__ ( _UpperCAmelCase ): a_ =["""image_processor""", """char_tokenizer"""] a_ ="""ViTImageProcessor""" a_ ="""MgpstrTokenizer""" def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase )-> str: '''simple docstring''' lowerCAmelCase__ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __UpperCAmelCase , ) lowerCAmelCase__ = kwargs.pop("feature_extractor" ) lowerCAmelCase__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) lowerCAmelCase__ = tokenizer lowerCAmelCase__ = AutoTokenizer.from_pretrained("gpt2" ) lowerCAmelCase__ = AutoTokenizer.from_pretrained("bert-base-uncased" ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase )-> List[Any]: '''simple docstring''' if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process." ) if images is not None: lowerCAmelCase__ = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is not None: lowerCAmelCase__ = self.char_tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is None: return inputs elif images is None: return encodings else: lowerCAmelCase__ = encodings["input_ids"] return inputs def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = sequences lowerCAmelCase__ = char_preds.size(0 ) lowerCAmelCase__ , lowerCAmelCase__ = self._decode_helper(__UpperCAmelCase , "char" ) lowerCAmelCase__ , lowerCAmelCase__ = self._decode_helper(__UpperCAmelCase , "bpe" ) lowerCAmelCase__ , lowerCAmelCase__ = self._decode_helper(__UpperCAmelCase , "wp" ) lowerCAmelCase__ = [] lowerCAmelCase__ = [] for i in range(__UpperCAmelCase ): lowerCAmelCase__ = [char_scores[i], bpe_scores[i], wp_scores[i]] lowerCAmelCase__ = [char_strs[i], bpe_strs[i], wp_strs[i]] lowerCAmelCase__ = scores.index(max(__UpperCAmelCase ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) lowerCAmelCase__ = {} lowerCAmelCase__ = final_strs lowerCAmelCase__ = final_scores lowerCAmelCase__ = char_strs lowerCAmelCase__ = bpe_strs lowerCAmelCase__ = wp_strs return out def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> Optional[int]: '''simple docstring''' if format == DecodeType.CHARACTER: lowerCAmelCase__ = self.char_decode lowerCAmelCase__ = 1 lowerCAmelCase__ = "[s]" elif format == DecodeType.BPE: lowerCAmelCase__ = self.bpe_decode lowerCAmelCase__ = 2 lowerCAmelCase__ = "#" elif format == DecodeType.WORDPIECE: lowerCAmelCase__ = self.wp_decode lowerCAmelCase__ = 102 lowerCAmelCase__ = "[SEP]" else: raise ValueError(F"Format {format} is not supported." ) lowerCAmelCase__ , lowerCAmelCase__ = [], [] lowerCAmelCase__ = pred_logits.size(0 ) lowerCAmelCase__ = pred_logits.size(1 ) lowerCAmelCase__ , lowerCAmelCase__ = pred_logits.topk(1 , dim=-1 , largest=__UpperCAmelCase , sorted=__UpperCAmelCase ) lowerCAmelCase__ = preds_index.view(-1 , __UpperCAmelCase )[:, 1:] lowerCAmelCase__ = decoder(__UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ = torch.nn.functional.softmax(__UpperCAmelCase , dim=2 ).max(dim=2 ) lowerCAmelCase__ = preds_max_prob[:, 1:] for index in range(__UpperCAmelCase ): lowerCAmelCase__ = preds_str[index].find(__UpperCAmelCase ) lowerCAmelCase__ = preds_str[index][:pred_eos] lowerCAmelCase__ = preds_index[index].cpu().tolist() lowerCAmelCase__ = pred_index.index(__UpperCAmelCase ) if eos_token in pred_index else -1 lowerCAmelCase__ = preds_max_prob[index][: pred_eos_index + 1] lowerCAmelCase__ = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(__UpperCAmelCase ) conf_scores.append(__UpperCAmelCase ) return dec_strs, conf_scores def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = [seq.replace(" " , "" ) for seq in self.char_tokenizer.batch_decode(__UpperCAmelCase )] return decode_strs def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[Any]: '''simple docstring''' return self.bpe_tokenizer.batch_decode(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = [seq.replace(" " , "" ) for seq in self.wp_tokenizer.batch_decode(__UpperCAmelCase )] return decode_strs
340
1
"""simple docstring""" import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() UpperCAmelCase : List[str] = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase_ = WavaVecaForSequenceClassification.from_pretrained(__lowerCAmelCase , config=__lowerCAmelCase ) lowercase_ = downstream_dict["""projector.weight"""] lowercase_ = downstream_dict["""projector.bias"""] lowercase_ = downstream_dict["""model.post_net.linear.weight"""] lowercase_ = downstream_dict["""model.post_net.linear.bias"""] return model def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: '''simple docstring''' lowercase_ = WavaVecaForAudioFrameClassification.from_pretrained(__lowerCAmelCase , config=__lowerCAmelCase ) lowercase_ = downstream_dict["""model.linear.weight"""] lowercase_ = downstream_dict["""model.linear.bias"""] return model def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Dict: '''simple docstring''' lowercase_ = WavaVecaForXVector.from_pretrained(__lowerCAmelCase , config=__lowerCAmelCase ) lowercase_ = downstream_dict["""connector.weight"""] lowercase_ = downstream_dict["""connector.bias"""] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): lowercase_ = downstream_dict[ F'''model.framelevel_feature_extractor.module.{i}.kernel.weight''' ] lowercase_ = downstream_dict[F'''model.framelevel_feature_extractor.module.{i}.kernel.bias'''] lowercase_ = downstream_dict["""model.utterancelevel_feature_extractor.linear1.weight"""] lowercase_ = downstream_dict["""model.utterancelevel_feature_extractor.linear1.bias"""] lowercase_ = downstream_dict["""model.utterancelevel_feature_extractor.linear2.weight"""] lowercase_ = downstream_dict["""model.utterancelevel_feature_extractor.linear2.bias"""] lowercase_ = downstream_dict["""objective.W"""] return model @torch.no_grad() def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = torch.load(__lowerCAmelCase , map_location="""cpu""" ) lowercase_ = checkpoint["""Downstream"""] lowercase_ = WavaVecaConfig.from_pretrained(__lowerCAmelCase ) lowercase_ = WavaVecaFeatureExtractor.from_pretrained( __lowerCAmelCase , return_attention_mask=__lowerCAmelCase , do_normalize=__lowerCAmelCase ) lowercase_ = hf_config.architectures[0] if arch.endswith("""ForSequenceClassification""" ): lowercase_ = convert_classification(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) elif arch.endswith("""ForAudioFrameClassification""" ): lowercase_ = convert_diarization(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) elif arch.endswith("""ForXVector""" ): lowercase_ = convert_xvector(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) else: raise NotImplementedError(F'''S3PRL weights conversion is not supported for {arch}''' ) if hf_config.use_weighted_layer_sum: lowercase_ = checkpoint["""Featurizer"""]["""weights"""] hf_feature_extractor.save_pretrained(__lowerCAmelCase ) hf_model.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase : List[str] = argparse.ArgumentParser() parser.add_argument( "--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model." ) parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.") parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.") UpperCAmelCase : Optional[int] = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
313
"""simple docstring""" from collections.abc import Sequence def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase = False ) -> float: '''simple docstring''' if not arr: return 0 lowercase_ = 0 if allow_empty_subarrays else float("""-inf""" ) lowercase_ = 0.0 for num in arr: lowercase_ = max(0 if allow_empty_subarrays else num , curr_sum + num ) lowercase_ = max(__lowerCAmelCase , __lowerCAmelCase ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() UpperCAmelCase : Union[str, Any] = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F"{max_subarray_sum(nums) = }")
313
1
import os import numpy import onnx def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any] ) -> List[Any]: """simple docstring""" __lowerCamelCase = a.name __lowerCamelCase = b.name __lowerCamelCase = """""" __lowerCamelCase = """""" __lowerCamelCase = a == b __lowerCamelCase = name_a __lowerCamelCase = name_b return res def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any] ) -> Optional[int]: """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(lowerCAmelCase_ , lowerCAmelCase_ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , lowerCAmelCase_ , lowerCAmelCase_ ) _graph_replace_input_with(node_proto.attribute[1].g , lowerCAmelCase_ , lowerCAmelCase_ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str] ) -> Optional[int]: """simple docstring""" for n in graph_proto.node: _node_replace_input_with(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Tuple , UpperCamelCase__ : str ) -> str: """simple docstring""" __lowerCamelCase = list(model.graph.initializer ) __lowerCamelCase = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i __lowerCamelCase = inits[i].name __lowerCamelCase = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCamelCase_ ( UpperCamelCase__ : List[str] ) -> Union[str, Any]: """simple docstring""" __lowerCamelCase = os.path.dirname(lowerCAmelCase_ ) __lowerCamelCase = os.path.basename(lowerCAmelCase_ ) __lowerCamelCase = onnx.load(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) ) __lowerCamelCase = list(model.graph.initializer ) __lowerCamelCase = set() __lowerCamelCase = {} __lowerCamelCase = [] __lowerCamelCase = 0 for i in range(len(lowerCAmelCase_ ) ): if i in dup_set: continue for j in range(i + 1 , len(lowerCAmelCase_ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(lowerCAmelCase_ ) dup_set.add(lowerCAmelCase_ ) __lowerCamelCase = inits[j].data_type __lowerCamelCase = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('unexpected data type: ' , lowerCAmelCase_ ) total_reduced_size += mem_size __lowerCamelCase = inits[i].name __lowerCamelCase = inits[j].name if name_i in dup_map: dup_map[name_i].append(lowerCAmelCase_ ) else: __lowerCamelCase = [name_j] ind_to_replace.append((j, i) ) print('total reduced size: ' , total_reduced_size / 1024 / 1024 / 1024 , 'GB' ) __lowerCamelCase = sorted(lowerCAmelCase_ ) _remove_dup_initializers_from_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCamelCase = """optimized_""" + model_file_name __lowerCamelCase = os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) onnx.save(lowerCAmelCase_ , lowerCAmelCase_ ) return new_model
90
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase : int = '''▁''' lowerCamelCase : Optional[int] = {'''vocab_file''': '''spiece.model'''} lowerCamelCase : str = { '''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''} } lowerCamelCase : str = { '''google/pegasus-xsum''': 5_12, } lowerCamelCase : Optional[Any] = logging.get_logger(__name__) class lowerCAmelCase ( __a ): '''simple docstring''' _A : Tuple = VOCAB_FILES_NAMES _A : Tuple = VOCAB_FILES_NAMES _A : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _A : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : Optional[int] = ['''input_ids''', '''attention_mask'''] def __init__( self : Union[str, Any] , __a : int , __a : Any="<pad>" , __a : Optional[int]="</s>" , __a : Union[str, Any]="<unk>" , __a : Optional[int]="<mask_2>" , __a : Optional[int]="<mask_1>" , __a : Dict=None , __a : List[str]=103 , __a : Optional[Dict[str, Any]] = None , **__a : List[Any] , ) -> None: """simple docstring""" __lowercase : Tuple = offset if additional_special_tokens is not None: if not isinstance(__a , __a ): raise TypeError( F"additional_special_tokens should be of type {type(__a )}, but is" F" {type(__a )}" ) __lowercase : Dict = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F"<unk_{i}>" for i in range(len(__a ) , self.offset - 1 ) ] if len(set(__a ) ) != len(__a ): raise ValueError( """Please make sure that the provided additional_special_tokens do not contain an incorrectly""" F" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}." ) __lowercase : Optional[Any] = additional_special_tokens_extended else: __lowercase : int = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F"<unk_{i}>" for i in range(2 , self.offset )] __lowercase : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=__a , unk_token=__a , mask_token=__a , pad_token=__a , mask_token_sent=__a , offset=__a , additional_special_tokens=__a , sp_model_kwargs=self.sp_model_kwargs , **__a , ) __lowercase : Optional[Any] = mask_token_sent __lowercase : Dict = vocab_file __lowercase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__a ) # add special tokens to encoder dict __lowercase : Dict[int, str] = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) __lowercase : Dict[str, int] = {v: k for k, v in self.encoder.items()} @property def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" return len(self.sp_model ) + self.offset def lowerCAmelCase ( self : int ) -> Dict[str, int]: """simple docstring""" __lowercase : Any = {self.convert_ids_to_tokens(__a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[str] ) -> List[str]: """simple docstring""" __lowercase : Union[str, Any] = self.__dict__.copy() __lowercase : Optional[Any] = None return state def __setstate__( self : Tuple , __a : Any ) -> Tuple: """simple docstring""" __lowercase : List[str] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __lowercase : List[str] = {} __lowercase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase ( self : Dict , __a : str ) -> List[str]: """simple docstring""" return self.sp_model.encode(__a , out_type=__a ) def lowerCAmelCase ( self : List[str] , __a : str ) -> int: """simple docstring""" if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] __lowercase : Union[str, Any] = self.sp_model.piece_to_id(__a ) return sp_id + self.offset def lowerCAmelCase ( self : Dict , __a : int ) -> str: """simple docstring""" if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: __lowercase : List[Any] = self.sp_model.IdToPiece(index - self.offset ) return token def lowerCAmelCase ( self : Union[str, Any] , __a : int ) -> Dict: """simple docstring""" __lowercase : Optional[int] = [] __lowercase : Tuple = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__a ) + token __lowercase : str = [] else: current_sub_tokens.append(__a ) out_string += self.sp_model.decode(__a ) return out_string.strip() def lowerCAmelCase ( self : int , __a : Optional[Any]=False ) -> int: """simple docstring""" return 1 def lowerCAmelCase ( self : Optional[int] , __a : List[str] ) -> Optional[Any]: """simple docstring""" __lowercase : List[Any] = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def lowerCAmelCase ( self : Union[str, Any] , __a : List , __a : Optional[List] = None , __a : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return self._special_token_mask(__a ) elif token_ids_a is None: return self._special_token_mask(__a ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowerCAmelCase ( self : Optional[int] , __a : Dict , __a : Tuple=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowerCAmelCase ( self : Tuple , __a : str , __a : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__a ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __lowercase : Optional[int] = os.path.join( __a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __a ) elif not os.path.isfile(self.vocab_file ): with open(__a , """wb""" ) as fi: __lowercase : Any = self.sp_model.serialized_model_proto() fi.write(__a ) return (out_vocab_file,)
233
0
"""simple docstring""" import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __a : @staticmethod def snake_case_ ( *a__ , **a__ ): pass @is_pipeline_test @require_torch @require_vision class __a ( unittest.TestCase ): SCREAMING_SNAKE_CASE__ : Optional[int] = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def snake_case_ ( self , a__ , a__ , a__ ): _lowerCamelCase = pipeline('visual-question-answering' , model='hf-internal-testing/tiny-vilt-random-vqa' ) _lowerCamelCase = [ { '''image''': Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), '''question''': '''How many cats are there?''', }, { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''question''': '''How many cats are there?''', }, ] return vqa_pipeline, examples def snake_case_ ( self , a__ , a__ ): _lowerCamelCase = vqa_pipeline(snake_case__ , top_k=1 ) self.assertEqual( snake_case__ , [ [{'score': ANY(snake_case__ ), 'answer': ANY(snake_case__ )}], [{'score': ANY(snake_case__ ), 'answer': ANY(snake_case__ )}], ] , ) @require_torch def snake_case_ ( self ): _lowerCamelCase = pipeline('visual-question-answering' , model='hf-internal-testing/tiny-vilt-random-vqa' ) _lowerCamelCase = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' _lowerCamelCase = '''How many cats are there?''' _lowerCamelCase = vqa_pipeline(image=snake_case__ , question='How many cats are there?' , top_k=2 ) self.assertEqual( snake_case__ , [{'score': ANY(snake_case__ ), 'answer': ANY(snake_case__ )}, {'score': ANY(snake_case__ ), 'answer': ANY(snake_case__ )}] ) _lowerCamelCase = vqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( snake_case__ , [{'score': ANY(snake_case__ ), 'answer': ANY(snake_case__ )}, {'score': ANY(snake_case__ ), 'answer': ANY(snake_case__ )}] ) @slow @require_torch def snake_case_ ( self ): _lowerCamelCase = pipeline('visual-question-answering' , model='dandelin/vilt-b32-finetuned-vqa' ) _lowerCamelCase = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' _lowerCamelCase = '''How many cats are there?''' _lowerCamelCase = vqa_pipeline(image=snake_case__ , question=snake_case__ , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [{'score': 0.8799, 'answer': '2'}, {'score': 0.296, 'answer': '1'}] ) _lowerCamelCase = vqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [{'score': 0.8799, 'answer': '2'}, {'score': 0.296, 'answer': '1'}] ) _lowerCamelCase = vqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [[{'score': 0.8799, 'answer': '2'}, {'score': 0.296, 'answer': '1'}]] * 2 , ) @require_tf @unittest.skip('Visual question answering not implemented in TF' ) def snake_case_ ( self ): pass
362
"""simple docstring""" import numpy as np def SCREAMING_SNAKE_CASE_ ( snake_case : np.ndarray )-> np.ndarray: return 1 / (1 + np.exp(-vector )) def SCREAMING_SNAKE_CASE_ ( snake_case : np.ndarray )-> np.ndarray: return vector * sigmoid(snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
80
0
import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" if gpta_config_file == "": snake_case = GPTaConfig() else: snake_case = GPTaConfig.from_json_file(UpperCamelCase_ ) snake_case = GPTaModel(UpperCamelCase_ ) # Load weights from numpy load_tf_weights_in_gpta(UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ) # Save pytorch-model snake_case = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME snake_case = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(model.state_dict() ,UpperCamelCase_ ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(UpperCamelCase_ ,'''w''' ,encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--gpt2_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--gpt2_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained OpenAI model. \n" "This specifies the model architecture." ), ) _SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
127
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class A__ : """simple docstring""" __magic_name__ = XGLMConfig __magic_name__ = {} __magic_name__ = 'gelu' def __init__( self , __snake_case , __snake_case=1_4 , __snake_case=7 , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=9_9 , __snake_case=3_2 , __snake_case=2 , __snake_case=4 , __snake_case=3_7 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_1_2 , __snake_case=0.02 , ): snake_case = parent snake_case = batch_size snake_case = seq_length snake_case = is_training snake_case = use_input_mask snake_case = use_labels snake_case = vocab_size snake_case = d_model snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = ffn_dim snake_case = activation_function snake_case = activation_dropout snake_case = attention_dropout snake_case = max_position_embeddings snake_case = initializer_range snake_case = None snake_case = 0 snake_case = 2 snake_case = 1 def a_ ( self ): return XGLMConfig.from_pretrained('''facebook/xglm-564M''' ) def a_ ( self ): snake_case = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) snake_case = None if self.use_input_mask: snake_case = random_attention_mask([self.batch_size, self.seq_length] ) snake_case = self.get_config() snake_case = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def a_ ( self ): return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=__snake_case , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=__snake_case , ) def a_ ( self ): snake_case = self.prepare_config_and_inputs() ( ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ) = config_and_inputs snake_case = { '''input_ids''': input_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_tf class A__ ( snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" __magic_name__ = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () __magic_name__ = (TFXGLMForCausalLM,) if is_tf_available() else () __magic_name__ = ( {'feature-extraction': TFXGLMModel, 'text-generation': TFXGLMForCausalLM} if is_tf_available() else {} ) __magic_name__ = False __magic_name__ = False __magic_name__ = False def a_ ( self ): snake_case = TFXGLMModelTester(self ) snake_case = ConfigTester(self , config_class=__snake_case , n_embd=3_7 ) def a_ ( self ): self.config_tester.run_common_tests() @slow def a_ ( self ): for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case = TFXGLMModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @unittest.skip(reason='''Currently, model embeddings are going to undergo a major refactor.''' ) def a_ ( self ): super().test_resize_token_embeddings() @require_tf class A__ ( unittest.TestCase ): """simple docstring""" @slow def a_ ( self , __snake_case=True ): snake_case = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) snake_case = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off snake_case = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1] # fmt: on snake_case = model.generate(__snake_case , do_sample=__snake_case , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , __snake_case ) @slow def a_ ( self ): snake_case = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) snake_case = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) tf.random.set_seed(0 ) snake_case = tokenizer('''Today is a nice day and''' , return_tensors='''tf''' ) snake_case = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(''':/CPU:0''' ): snake_case = model.generate(__snake_case , do_sample=__snake_case , seed=[7, 0] ) snake_case = tokenizer.decode(output_ids[0] , skip_special_tokens=__snake_case ) snake_case = ( '''Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due''' ) self.assertEqual(__snake_case , __snake_case ) @slow def a_ ( self ): snake_case = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) snake_case = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) snake_case = '''left''' # use different length sentences to test batching snake_case = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When''', '''Hello, my dog is a little''', ] snake_case = tokenizer(__snake_case , return_tensors='''tf''' , padding=__snake_case ) snake_case = inputs['''input_ids'''] snake_case = model.generate(input_ids=__snake_case , attention_mask=inputs['''attention_mask'''] , max_new_tokens=1_2 ) snake_case = tokenizer(sentences[0] , return_tensors='''tf''' ).input_ids snake_case = model.generate(input_ids=__snake_case , max_new_tokens=1_2 ) snake_case = tokenizer(sentences[1] , return_tensors='''tf''' ).input_ids snake_case = model.generate(input_ids=__snake_case , max_new_tokens=1_2 ) snake_case = tokenizer.batch_decode(__snake_case , skip_special_tokens=__snake_case ) snake_case = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__snake_case ) snake_case = tokenizer.decode(output_padded[0] , skip_special_tokens=__snake_case ) snake_case = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ''' '''a single''', '''Hello, my dog is a little bit of a shy one, but he is very friendly''', ] self.assertListEqual(__snake_case , __snake_case ) self.assertListEqual(__snake_case , [non_padded_sentence, padded_sentence] )
127
1
from random import shuffle import tensorflow as tf from numpy import array def _A ( lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any] ): """simple docstring""" lowerCAmelCase__ = int(lowercase__ ) assert noofclusters < len(lowercase__ ) # Find out the dimensionality lowerCAmelCase__ = len(vectors[0] ) # Will help select random centroids from among the available vectors lowerCAmelCase__ = list(range(len(lowercase__ ) ) ) shuffle(lowercase__ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. lowerCAmelCase__ = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION lowerCAmelCase__ = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points lowerCAmelCase__ = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase__ ) ] ##These nodes will assign the centroid Variables the appropriate ##values lowerCAmelCase__ = tf.placeholder("float64" , [dim] ) lowerCAmelCase__ = [] for centroid in centroids: cent_assigns.append(tf.assign(lowercase__ , lowercase__ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) lowerCAmelCase__ = [tf.Variable(0 ) for i in range(len(lowercase__ ) )] ##These nodes will assign an assignment Variable the appropriate ##value lowerCAmelCase__ = tf.placeholder("int32" ) lowerCAmelCase__ = [] for assignment in assignments: cluster_assigns.append(tf.assign(lowercase__ , lowercase__ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input lowerCAmelCase__ = tf.placeholder("float" , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors lowerCAmelCase__ = tf.reduce_mean(lowercase__ , 0 ) ##Node for computing Euclidean distances # Placeholders for input lowerCAmelCase__ = tf.placeholder("float" , [dim] ) lowerCAmelCase__ = tf.placeholder("float" , [dim] ) lowerCAmelCase__ = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase__ , lowercase__ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input lowerCAmelCase__ = tf.placeholder("float" , [noofclusters] ) lowerCAmelCase__ = tf.argmin(lowercase__ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. lowerCAmelCase__ = tf.initialize_all_variables() # Initialize all variables sess.run(lowercase__ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. lowerCAmelCase__ = 100 for _ in range(lowercase__ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(lowercase__ ) ): lowerCAmelCase__ = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. lowerCAmelCase__ = [ sess.run(lowercase__ , feed_dict={va: vect, va: sess.run(lowercase__ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input lowerCAmelCase__ = sess.run( lowercase__ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(lowercase__ ): # Collect all the vectors assigned to this cluster lowerCAmelCase__ = [ vectors[i] for i in range(len(lowercase__ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location lowerCAmelCase__ = sess.run( lowercase__ , feed_dict={mean_input: array(lowercase__ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments lowerCAmelCase__ = sess.run(lowercase__ ) lowerCAmelCase__ = sess.run(lowercase__ ) return centroids, assignments
362
import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig UpperCamelCase = logging.get_logger(__name__) # General docstring UpperCamelCase = 'PoolFormerConfig' # Base docstring UpperCamelCase = 'sail/poolformer_s12' UpperCamelCase = [1, 512, 7, 7] # Image classification docstring UpperCamelCase = 'sail/poolformer_s12' UpperCamelCase = 'tabby, tabby cat' UpperCamelCase = [ 'sail/poolformer_s12', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def _A ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : float = 0.0 , lowerCAmelCase_ : bool = False ): """simple docstring""" if drop_prob == 0.0 or not training: return input lowerCAmelCase__ = 1 - drop_prob lowerCAmelCase__ = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets lowerCAmelCase__ = keep_prob + torch.rand(lowerCAmelCase_ , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize lowerCAmelCase__ = input.div(lowerCAmelCase_ ) * random_tensor return output class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[float] = None ) -> None: super().__init__() lowerCAmelCase__ = drop_prob def a ( self : str , SCREAMING_SNAKE_CASE__ : torch.Tensor ) -> torch.Tensor: return drop_path(SCREAMING_SNAKE_CASE__ , self.drop_prob , self.training ) def a ( self : Optional[Any] ) -> str: return "p={}".format(self.drop_prob ) class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str=None ) -> Optional[Any]: super().__init__() lowerCAmelCase__ = patch_size if isinstance(SCREAMING_SNAKE_CASE__ , collections.abc.Iterable ) else (patch_size, patch_size) lowerCAmelCase__ = stride if isinstance(SCREAMING_SNAKE_CASE__ , collections.abc.Iterable ) else (stride, stride) lowerCAmelCase__ = padding if isinstance(SCREAMING_SNAKE_CASE__ , collections.abc.Iterable ) else (padding, padding) lowerCAmelCase__ = nn.Convad(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , kernel_size=SCREAMING_SNAKE_CASE__ , stride=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = norm_layer(SCREAMING_SNAKE_CASE__ ) if norm_layer else nn.Identity() def a ( self : int , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Union[str, Any]: lowerCAmelCase__ = self.projection(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.norm(SCREAMING_SNAKE_CASE__ ) return embeddings class __lowerCamelCase ( nn.GroupNorm ): """simple docstring""" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , **SCREAMING_SNAKE_CASE__ : Any ) -> Dict: super().__init__(1 , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int ) -> List[Any]: super().__init__() lowerCAmelCase__ = nn.AvgPoolad(SCREAMING_SNAKE_CASE__ , stride=1 , padding=pool_size // 2 , count_include_pad=SCREAMING_SNAKE_CASE__ ) def a ( self : int , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]: return self.pool(SCREAMING_SNAKE_CASE__ ) - hidden_states class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple ) -> Dict: super().__init__() lowerCAmelCase__ = nn.Convad(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 1 ) lowerCAmelCase__ = nn.Convad(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 1 ) lowerCAmelCase__ = PoolFormerDropPath(SCREAMING_SNAKE_CASE__ ) if isinstance(config.hidden_act , SCREAMING_SNAKE_CASE__ ): lowerCAmelCase__ = ACTaFN[config.hidden_act] else: lowerCAmelCase__ = config.hidden_act def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> List[Any]: lowerCAmelCase__ = self.conva(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.act_fn(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.drop(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.conva(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.drop(SCREAMING_SNAKE_CASE__ ) return hidden_states class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]: super().__init__() lowerCAmelCase__ = PoolFormerPooling(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = PoolFormerOutput(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = PoolFormerGroupNorm(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = PoolFormerGroupNorm(SCREAMING_SNAKE_CASE__ ) # Useful for training neural nets lowerCAmelCase__ = PoolFormerDropPath(SCREAMING_SNAKE_CASE__ ) if drop_path > 0.0 else nn.Identity() lowerCAmelCase__ = config.use_layer_scale if config.use_layer_scale: lowerCAmelCase__ = nn.Parameter( config.layer_scale_init_value * torch.ones((SCREAMING_SNAKE_CASE__) ) , requires_grad=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = nn.Parameter( config.layer_scale_init_value * torch.ones((SCREAMING_SNAKE_CASE__) ) , requires_grad=SCREAMING_SNAKE_CASE__ ) def a ( self : Dict , SCREAMING_SNAKE_CASE__ : str ) -> int: if self.use_layer_scale: lowerCAmelCase__ = self.pooling(self.before_norm(SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase__ = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection lowerCAmelCase__ = hidden_states + self.drop_path(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = () lowerCAmelCase__ = self.output(self.after_norm(SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase__ = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection lowerCAmelCase__ = hidden_states + self.drop_path(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = (output,) + outputs return outputs else: lowerCAmelCase__ = self.drop_path(self.pooling(self.before_norm(SCREAMING_SNAKE_CASE__ ) ) ) # First residual connection lowerCAmelCase__ = pooling_output + hidden_states lowerCAmelCase__ = () # Second residual connection inside the PoolFormerOutput block lowerCAmelCase__ = self.drop_path(self.output(self.after_norm(SCREAMING_SNAKE_CASE__ ) ) ) lowerCAmelCase__ = hidden_states + layer_output lowerCAmelCase__ = (output,) + outputs return outputs class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Dict ) -> Any: super().__init__() lowerCAmelCase__ = config # stochastic depth decay rule lowerCAmelCase__ = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings lowerCAmelCase__ = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) lowerCAmelCase__ = nn.ModuleList(SCREAMING_SNAKE_CASE__ ) # Transformer blocks lowerCAmelCase__ = [] lowerCAmelCase__ = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers lowerCAmelCase__ = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( SCREAMING_SNAKE_CASE__ , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase__ = nn.ModuleList(SCREAMING_SNAKE_CASE__ ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int=False , SCREAMING_SNAKE_CASE__ : List[str]=True ) -> Dict: lowerCAmelCase__ = () if output_hidden_states else None lowerCAmelCase__ = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): lowerCAmelCase__ , lowerCAmelCase__ = layers # Get patch embeddings from hidden_states lowerCAmelCase__ = embedding_layer(SCREAMING_SNAKE_CASE__ ) # Send the embeddings through the blocks for _, blk in enumerate(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase__ = blk(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = layer_outputs[0] if output_hidden_states: lowerCAmelCase__ = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=SCREAMING_SNAKE_CASE__ , hidden_states=SCREAMING_SNAKE_CASE__ ) class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" snake_case__ = PoolFormerConfig snake_case__ = "poolformer" snake_case__ = "pixel_values" snake_case__ = True def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : int ) -> List[Any]: if isinstance(SCREAMING_SNAKE_CASE__ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(SCREAMING_SNAKE_CASE__ , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def a ( self : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False ) -> Tuple: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowerCAmelCase__ = value UpperCamelCase = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' UpperCamelCase = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n' @add_start_docstrings( "The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top." , UpperCamelCase__ , ) class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]: super().__init__(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = config lowerCAmelCase__ = PoolFormerEncoder(SCREAMING_SNAKE_CASE__ ) # Initialize weights and apply final processing self.post_init() def a ( self : Optional[int] ) -> Optional[Any]: return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=SCREAMING_SNAKE_CASE__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[torch.FloatTensor] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , ) -> Union[Tuple, BaseModelOutputWithNoAttention]: lowerCAmelCase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values" ) lowerCAmelCase__ = self.encoder( SCREAMING_SNAKE_CASE__ , output_hidden_states=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=SCREAMING_SNAKE_CASE__ , hidden_states=encoder_outputs.hidden_states , ) class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[str]: super().__init__() lowerCAmelCase__ = nn.Linear(config.hidden_size , config.hidden_size ) def a ( self : Any , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> int: lowerCAmelCase__ = self.dense(SCREAMING_SNAKE_CASE__ ) return output @add_start_docstrings( "\n PoolFormer Model transformer with an image classification head on top\n " , UpperCamelCase__ , ) class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[int]: super().__init__(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = config.num_labels lowerCAmelCase__ = PoolFormerModel(SCREAMING_SNAKE_CASE__ ) # Final norm lowerCAmelCase__ = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head lowerCAmelCase__ = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=SCREAMING_SNAKE_CASE__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def a ( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[torch.FloatTensor] = None , SCREAMING_SNAKE_CASE__ : Optional[torch.LongTensor] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]: lowerCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase__ = self.poolformer( SCREAMING_SNAKE_CASE__ , output_hidden_states=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = outputs[0] lowerCAmelCase__ = self.classifier(self.norm(SCREAMING_SNAKE_CASE__ ).mean([-2, -1] ) ) lowerCAmelCase__ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowerCAmelCase__ = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowerCAmelCase__ = "single_label_classification" else: lowerCAmelCase__ = "multi_label_classification" if self.config.problem_type == "regression": lowerCAmelCase__ = MSELoss() if self.num_labels == 1: lowerCAmelCase__ = loss_fct(logits.squeeze() , labels.squeeze() ) else: lowerCAmelCase__ = loss_fct(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif self.config.problem_type == "single_label_classification": lowerCAmelCase__ = CrossEntropyLoss() lowerCAmelCase__ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowerCAmelCase__ = BCEWithLogitsLoss() lowerCAmelCase__ = loss_fct(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if not return_dict: lowerCAmelCase__ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=SCREAMING_SNAKE_CASE__ , logits=SCREAMING_SNAKE_CASE__ , hidden_states=outputs.hidden_states )
221
0
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class _a ( unittest.TestCase ): def __snake_case (self ) -> Dict: UpperCAmelCase_: int = tempfile.mkdtemp() # fmt: off UpperCAmelCase_: Optional[int] = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest"""] # fmt: on UpperCAmelCase_: Tuple = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file, """w""", encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) UpperCAmelCase_: Dict = { """do_resize""": True, """size""": {"""height""": 18, """width""": 18}, """do_normalize""": True, """image_mean""": [0.5, 0.5, 0.5], """image_std""": [0.5, 0.5, 0.5], } UpperCAmelCase_: int = os.path.join(self.tmpdirname, SCREAMING_SNAKE_CASE_ ) with open(self.image_processor_file, """w""", encoding="""utf-8""" ) as fp: json.dump(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def __snake_case (self, **SCREAMING_SNAKE_CASE_ ) -> Dict: return BertTokenizer.from_pretrained(self.tmpdirname, **SCREAMING_SNAKE_CASE_ ) def __snake_case (self, **SCREAMING_SNAKE_CASE_ ) -> int: return ViTImageProcessor.from_pretrained(self.tmpdirname, **SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> int: shutil.rmtree(self.tmpdirname ) def __snake_case (self ) -> int: UpperCAmelCase_: Any = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta )] UpperCAmelCase_: Any = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE_, 0, -1 ) ) for x in image_inputs] return image_inputs def __snake_case (self ) -> List[Any]: UpperCAmelCase_: List[str] = self.get_tokenizer() UpperCAmelCase_: str = self.get_image_processor() UpperCAmelCase_: Any = VisionTextDualEncoderProcessor(tokenizer=SCREAMING_SNAKE_CASE_, image_processor=SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_: Union[str, Any] = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer, (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor, SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> str: UpperCAmelCase_: Dict = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_: str = self.get_tokenizer(bos_token="""(BOS)""", eos_token="""(EOS)""" ) UpperCAmelCase_: Union[str, Any] = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE_, padding_value=1.0 ) UpperCAmelCase_: Dict = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname, bos_token="""(BOS)""", eos_token="""(EOS)""", do_normalize=SCREAMING_SNAKE_CASE_, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer, (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> Dict: UpperCAmelCase_: str = self.get_image_processor() UpperCAmelCase_: Union[str, Any] = self.get_tokenizer() UpperCAmelCase_: Any = VisionTextDualEncoderProcessor(tokenizer=SCREAMING_SNAKE_CASE_, image_processor=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[str] = self.prepare_image_inputs() UpperCAmelCase_: Optional[Any] = image_processor(SCREAMING_SNAKE_CASE_, return_tensors="""np""" ) UpperCAmelCase_: Tuple = processor(images=SCREAMING_SNAKE_CASE_, return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1E-2 ) def __snake_case (self ) -> Optional[int]: UpperCAmelCase_: List[Any] = self.get_image_processor() UpperCAmelCase_: List[Any] = self.get_tokenizer() UpperCAmelCase_: Any = VisionTextDualEncoderProcessor(tokenizer=SCREAMING_SNAKE_CASE_, image_processor=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Tuple = """lower newer""" UpperCAmelCase_: Dict = processor(text=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[str] = tokenizer(SCREAMING_SNAKE_CASE_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def __snake_case (self ) -> int: UpperCAmelCase_: int = self.get_image_processor() UpperCAmelCase_: int = self.get_tokenizer() UpperCAmelCase_: List[Any] = VisionTextDualEncoderProcessor(tokenizer=SCREAMING_SNAKE_CASE_, image_processor=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Tuple = """lower newer""" UpperCAmelCase_: Any = self.prepare_image_inputs() UpperCAmelCase_: Union[str, Any] = processor(text=SCREAMING_SNAKE_CASE_, images=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(list(inputs.keys() ), ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with self.assertRaises(SCREAMING_SNAKE_CASE_ ): processor() def __snake_case (self ) -> str: UpperCAmelCase_: Dict = self.get_image_processor() UpperCAmelCase_: Any = self.get_tokenizer() UpperCAmelCase_: List[Any] = VisionTextDualEncoderProcessor(tokenizer=SCREAMING_SNAKE_CASE_, image_processor=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase_: Union[str, Any] = processor.batch_decode(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Tuple = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> List[Any]: UpperCAmelCase_: Union[str, Any] = self.get_image_processor() UpperCAmelCase_: Tuple = self.get_tokenizer() UpperCAmelCase_: Optional[Any] = VisionTextDualEncoderProcessor(tokenizer=SCREAMING_SNAKE_CASE_, image_processor=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Any = """lower newer""" UpperCAmelCase_: List[str] = self.prepare_image_inputs() UpperCAmelCase_: Any = processor(text=SCREAMING_SNAKE_CASE_, images=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(list(inputs.keys() ), processor.model_input_names )
147
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class _a ( unittest.TestCase ): def __snake_case (self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __snake_case (self ) -> Optional[Any]: torch.manual_seed(0 ) UpperCAmelCase_: Any = UNetaDModel( sample_size=(32, 64), in_channels=1, out_channels=1, layers_per_block=2, block_out_channels=(128, 128), down_block_types=("""AttnDownBlock2D""", """DownBlock2D"""), up_block_types=("""UpBlock2D""", """AttnUpBlock2D"""), ) return model @property def __snake_case (self ) -> List[Any]: torch.manual_seed(0 ) UpperCAmelCase_: Optional[int] = UNetaDConditionModel( sample_size=(64, 32), in_channels=1, out_channels=1, layers_per_block=2, block_out_channels=(128, 128), down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D"""), up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D"""), cross_attention_dim=10, ) return model @property def __snake_case (self ) -> Union[str, Any]: torch.manual_seed(0 ) UpperCAmelCase_: Optional[int] = AutoencoderKL( sample_size=(128, 64), in_channels=1, out_channels=1, latent_channels=1, layers_per_block=2, block_out_channels=(128, 128), down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D"""), up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D"""), ) UpperCAmelCase_: Optional[Any] = UNetaDModel( sample_size=(64, 32), in_channels=1, out_channels=1, layers_per_block=2, block_out_channels=(128, 128), down_block_types=("""AttnDownBlock2D""", """DownBlock2D"""), up_block_types=("""UpBlock2D""", """AttnUpBlock2D"""), ) return vqvae, unet @slow def __snake_case (self ) -> Optional[Any]: UpperCAmelCase_: str = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_: str = Mel( x_res=self.dummy_unet.config.sample_size[1], y_res=self.dummy_unet.config.sample_size[0], ) UpperCAmelCase_: Tuple = DDPMScheduler() UpperCAmelCase_: List[Any] = AudioDiffusionPipeline(vqvae=SCREAMING_SNAKE_CASE_, unet=self.dummy_unet, mel=SCREAMING_SNAKE_CASE_, scheduler=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: int = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[Any] = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(42 ) UpperCAmelCase_: str = pipe(generator=SCREAMING_SNAKE_CASE_, steps=4 ) UpperCAmelCase_: Optional[Any] = output.audios[0] UpperCAmelCase_: Optional[int] = output.images[0] UpperCAmelCase_: Dict = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(42 ) UpperCAmelCase_: Dict = pipe(generator=SCREAMING_SNAKE_CASE_, steps=4, return_dict=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Any = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) UpperCAmelCase_: Optional[Any] = np.frombuffer(image.tobytes(), dtype="""uint8""" )[:10] UpperCAmelCase_: List[Any] = np.frombuffer(image_from_tuple.tobytes(), dtype="""uint8""" )[:10] UpperCAmelCase_: Dict = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 UpperCAmelCase_: int = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1], y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0], ) UpperCAmelCase_: List[str] = DDIMScheduler() UpperCAmelCase_: int = self.dummy_vqvae_and_unet UpperCAmelCase_: Dict = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0], unet=dummy_vqvae_and_unet[1], mel=SCREAMING_SNAKE_CASE_, scheduler=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[str] = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) np.random.seed(0 ) UpperCAmelCase_: Dict = np.random.uniform(-1, 1, ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) UpperCAmelCase_: List[Any] = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(42 ) UpperCAmelCase_: Dict = pipe(raw_audio=SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, start_step=5, steps=10 ) UpperCAmelCase_: Any = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) UpperCAmelCase_: Union[str, Any] = np.frombuffer(image.tobytes(), dtype="""uint8""" )[:10] UpperCAmelCase_: Union[str, Any] = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 UpperCAmelCase_: Union[str, Any] = self.dummy_unet_condition UpperCAmelCase_: Union[str, Any] = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0], unet=SCREAMING_SNAKE_CASE_, mel=SCREAMING_SNAKE_CASE_, scheduler=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Any = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) np.random.seed(0 ) UpperCAmelCase_: List[str] = torch.rand((1, 1, 10) ) UpperCAmelCase_: Optional[int] = pipe(generator=SCREAMING_SNAKE_CASE_, encoding=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[str] = output.images[0] UpperCAmelCase_: Any = np.frombuffer(image.tobytes(), dtype="""uint8""" )[:10] UpperCAmelCase_: Any = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class _a ( unittest.TestCase ): def __snake_case (self ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case (self ) -> Optional[Any]: UpperCAmelCase_: str = torch_device UpperCAmelCase_: Any = DiffusionPipeline.from_pretrained("""teticio/audio-diffusion-ddim-256""" ) UpperCAmelCase_: Dict = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Union[str, Any] = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(42 ) UpperCAmelCase_: Union[str, Any] = pipe(generator=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[Any] = output.audios[0] UpperCAmelCase_: Optional[Any] = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] UpperCAmelCase_: Optional[Any] = np.frombuffer(image.tobytes(), dtype="""uint8""" )[:10] UpperCAmelCase_: Any = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
147
1
'''simple docstring''' def __lowercase ( __lowercase ) -> bool: '''simple docstring''' return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
351
'''simple docstring''' def __lowercase ( __lowercase ) -> int: '''simple docstring''' if not isinstance(__lowercase , __lowercase ): raise ValueError("multiplicative_persistence() only accepts integral values" ) if num < 0: raise ValueError("multiplicative_persistence() does not accept negative values" ) _A = 0 _A = str(__lowercase ) while len(__lowercase ) != 1: _A = [int(__lowercase ) for i in num_string] _A = 1 for i in range(0 , len(__lowercase ) ): total *= numbers[i] _A = str(__lowercase ) steps += 1 return steps def __lowercase ( __lowercase ) -> int: '''simple docstring''' if not isinstance(__lowercase , __lowercase ): raise ValueError("additive_persistence() only accepts integral values" ) if num < 0: raise ValueError("additive_persistence() does not accept negative values" ) _A = 0 _A = str(__lowercase ) while len(__lowercase ) != 1: _A = [int(__lowercase ) for i in num_string] _A = 0 for i in range(0 , len(__lowercase ) ): total += numbers[i] _A = str(__lowercase ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
174
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { '''facebook/levit-128S''': '''https://huggingface.co/facebook/levit-128S/resolve/main/config.json''', # See all LeViT models at https://huggingface.co/models?filter=levit } class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : List[str] = "levit" def __init__( self, SCREAMING_SNAKE_CASE_=224, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=1, SCREAMING_SNAKE_CASE_=16, SCREAMING_SNAKE_CASE_=[128, 256, 384], SCREAMING_SNAKE_CASE_=[4, 8, 12], SCREAMING_SNAKE_CASE_=[4, 4, 4], SCREAMING_SNAKE_CASE_=[16, 16, 16], SCREAMING_SNAKE_CASE_=0, SCREAMING_SNAKE_CASE_=[2, 2, 2], SCREAMING_SNAKE_CASE_=[2, 2, 2], SCREAMING_SNAKE_CASE_=0.02, **SCREAMING_SNAKE_CASE_, ) -> Tuple: super().__init__(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = image_size UpperCamelCase : str = num_channels UpperCamelCase : List[Any] = kernel_size UpperCamelCase : Any = stride UpperCamelCase : List[Any] = padding UpperCamelCase : Optional[int] = hidden_sizes UpperCamelCase : Optional[int] = num_attention_heads UpperCamelCase : List[Any] = depths UpperCamelCase : str = key_dim UpperCamelCase : Tuple = drop_path_rate UpperCamelCase : List[str] = patch_size UpperCamelCase : List[str] = attention_ratio UpperCamelCase : Optional[int] = mlp_ratio UpperCamelCase : Optional[Any] = initializer_range UpperCamelCase : List[str] = [ ['Subsample', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['Subsample', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : Optional[Any] = version.parse("1.11" ) @property def snake_case_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def snake_case_ ( self ) -> float: return 1e-4
119
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def UpperCamelCase ( snake_case__ : Dict , snake_case__ : Any=0.999 , snake_case__ : List[Any]="cosine" , ) -> Optional[int]: if alpha_transform_type == "cosine": def alpha_bar_fn(snake_case__ : int ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(snake_case__ : Optional[Any] ): return math.exp(t * -12.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) UpperCamelCase : List[Any] = [] for i in range(snake_case__ ): UpperCamelCase : Optional[Any] = i / num_diffusion_timesteps UpperCamelCase : Union[str, Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(snake_case__ ) / alpha_bar_fn(snake_case__ ) , snake_case__ ) ) return torch.tensor(snake_case__ , dtype=torch.floataa ) class lowerCAmelCase_ ( a__ , a__ ): UpperCAmelCase__ : List[Any] = [e.name for e in KarrasDiffusionSchedulers] UpperCAmelCase__ : List[str] = 2 @register_to_config def __init__( self, SCREAMING_SNAKE_CASE_ = 1000, SCREAMING_SNAKE_CASE_ = 0.0_00_85, SCREAMING_SNAKE_CASE_ = 0.0_12, SCREAMING_SNAKE_CASE_ = "linear", SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = "epsilon", SCREAMING_SNAKE_CASE_ = "linspace", SCREAMING_SNAKE_CASE_ = 0, ) -> List[str]: if trained_betas is not None: UpperCamelCase : Union[str, Any] = torch.tensor(SCREAMING_SNAKE_CASE_, dtype=torch.floataa ) elif beta_schedule == "linear": UpperCamelCase : List[Any] = torch.linspace(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. UpperCamelCase : int = ( torch.linspace(beta_start**0.5, beta_end**0.5, SCREAMING_SNAKE_CASE_, dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule UpperCamelCase : Optional[int] = betas_for_alpha_bar(SCREAMING_SNAKE_CASE_ ) else: raise NotImplementedError(F"""{beta_schedule} does is not implemented for {self.__class__}""" ) UpperCamelCase : Optional[int] = 1.0 - self.betas UpperCamelCase : int = torch.cumprod(self.alphas, dim=0 ) # set all values self.set_timesteps(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None ) -> str: if schedule_timesteps is None: UpperCamelCase : Union[str, Any] = self.timesteps UpperCamelCase : Dict = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: UpperCamelCase : Optional[int] = 1 if len(SCREAMING_SNAKE_CASE_ ) > 1 else 0 else: UpperCamelCase : str = timestep.cpu().item() if torch.is_tensor(SCREAMING_SNAKE_CASE_ ) else timestep UpperCamelCase : int = self._index_counter[timestep_int] return indices[pos].item() @property def snake_case_ ( self ) -> List[Any]: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, ) -> torch.FloatTensor: UpperCamelCase : Optional[int] = self.index_for_timestep(SCREAMING_SNAKE_CASE_ ) if self.state_in_first_order: UpperCamelCase : Dict = self.sigmas[step_index] else: UpperCamelCase : int = self.sigmas_interpol[step_index] UpperCamelCase : Any = sample / ((sigma**2 + 1) ** 0.5) return sample def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, ) -> Optional[int]: UpperCamelCase : Dict = num_inference_steps UpperCamelCase : List[Any] = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": UpperCamelCase : int = np.linspace(0, num_train_timesteps - 1, SCREAMING_SNAKE_CASE_, dtype=SCREAMING_SNAKE_CASE_ )[::-1].copy() elif self.config.timestep_spacing == "leading": UpperCamelCase : List[Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 UpperCamelCase : Optional[Any] = (np.arange(0, SCREAMING_SNAKE_CASE_ ) * step_ratio).round()[::-1].copy().astype(SCREAMING_SNAKE_CASE_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": UpperCamelCase : Optional[int] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 UpperCamelCase : Any = (np.arange(SCREAMING_SNAKE_CASE_, 0, -step_ratio )).round().copy().astype(SCREAMING_SNAKE_CASE_ ) timesteps -= 1 else: raise ValueError( F"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) UpperCamelCase : Tuple = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) UpperCamelCase : Optional[int] = torch.from_numpy(np.log(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = np.interp(SCREAMING_SNAKE_CASE_, np.arange(0, len(SCREAMING_SNAKE_CASE_ ) ), SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) UpperCamelCase : Optional[int] = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(device=SCREAMING_SNAKE_CASE_ ) # interpolate sigmas UpperCamelCase : Union[str, Any] = sigmas.log().lerp(sigmas.roll(1 ).log(), 0.5 ).exp() UpperCamelCase : Any = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) UpperCamelCase : Optional[Any] = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ): # mps does not support float64 UpperCamelCase : Any = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_, dtype=torch.floataa ) else: UpperCamelCase : Dict = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) # interpolate timesteps UpperCamelCase : int = self.sigma_to_t(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_, dtype=timesteps.dtype ) UpperCamelCase : List[str] = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]), dim=-1 ).flatten() UpperCamelCase : Optional[Any] = torch.cat([timesteps[:1], interleaved_timesteps] ) UpperCamelCase : Optional[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter UpperCamelCase : Dict = defaultdict(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: # get log sigma UpperCamelCase : List[Any] = sigma.log() # get distribution UpperCamelCase : Optional[int] = log_sigma - self.log_sigmas[:, None] # get sigmas range UpperCamelCase : Optional[int] = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) UpperCamelCase : Tuple = low_idx + 1 UpperCamelCase : List[str] = self.log_sigmas[low_idx] UpperCamelCase : Optional[Any] = self.log_sigmas[high_idx] # interpolate sigmas UpperCamelCase : int = (low - log_sigma) / (low - high) UpperCamelCase : Tuple = w.clamp(0, 1 ) # transform interpolation to time range UpperCamelCase : List[str] = (1 - w) * low_idx + w * high_idx UpperCamelCase : Dict = t.view(sigma.shape ) return t @property def snake_case_ ( self ) -> Optional[int]: return self.sample is None def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = True, ) -> Union[SchedulerOutput, Tuple]: UpperCamelCase : str = self.index_for_timestep(SCREAMING_SNAKE_CASE_ ) # advance index counter by 1 UpperCamelCase : Optional[int] = timestep.cpu().item() if torch.is_tensor(SCREAMING_SNAKE_CASE_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: UpperCamelCase : Tuple = self.sigmas[step_index] UpperCamelCase : Dict = self.sigmas_interpol[step_index + 1] UpperCamelCase : Optional[int] = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method UpperCamelCase : str = self.sigmas[step_index - 1] UpperCamelCase : Dict = self.sigmas_interpol[step_index] UpperCamelCase : Any = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API UpperCamelCase : Dict = 0 UpperCamelCase : Any = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": UpperCamelCase : Any = sigma_hat if self.state_in_first_order else sigma_interpol UpperCamelCase : List[Any] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": UpperCamelCase : Union[str, Any] = sigma_hat if self.state_in_first_order else sigma_interpol UpperCamelCase : Optional[int] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('prediction_type not implemented yet: sample' ) else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order UpperCamelCase : int = (sample - pred_original_sample) / sigma_hat # 3. delta timestep UpperCamelCase : Any = sigma_interpol - sigma_hat # store for 2nd order step UpperCamelCase : Tuple = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order UpperCamelCase : Union[str, Any] = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep UpperCamelCase : Dict = sigma_next - sigma_hat UpperCamelCase : Any = self.sample UpperCamelCase : str = None UpperCamelCase : Any = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples UpperCamelCase : Optional[Any] = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(SCREAMING_SNAKE_CASE_ ): # mps does not support float64 UpperCamelCase : List[str] = self.timesteps.to(original_samples.device, dtype=torch.floataa ) UpperCamelCase : str = timesteps.to(original_samples.device, dtype=torch.floataa ) else: UpperCamelCase : Dict = self.timesteps.to(original_samples.device ) UpperCamelCase : int = timesteps.to(original_samples.device ) UpperCamelCase : str = [self.index_for_timestep(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) for t in timesteps] UpperCamelCase : List[Any] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): UpperCamelCase : int = sigma.unsqueeze(-1 ) UpperCamelCase : Any = original_samples + noise * sigma return noisy_samples def __len__( self ) -> Optional[int]: return self.config.num_train_timesteps
119
1
from PIL import Image def snake_case__ ( SCREAMING_SNAKE_CASE_ : Image , SCREAMING_SNAKE_CASE_ : float ): '''simple docstring''' def brightness(SCREAMING_SNAKE_CASE_ : int ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError('level must be between -255.0 (black) and 255.0 (white)' ) return img.point(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": # Load image with Image.open('''image_data/lena.jpg''') as img: # Change brightness to 100 snake_case_ = change_brightness(img, 100) brigt_img.save('''image_data/lena_brightness.png''', format='''png''')
216
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json''' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class SCREAMING_SNAKE_CASE__ (__snake_case ): __lowerCamelCase : List[Any] = """speech_to_text_2""" __lowerCamelCase : str = ["""past_key_values"""] __lowerCamelCase : List[Any] = {"""num_attention_heads""": """decoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , a=1_0000 , a=6 , a=2048 , a=4 , a=0.0 , a=True , a="relu" , a=256 , a=0.1 , a=0.0 , a=0.0 , a=0.02 , a=2 , a=True , a=1 , a=0 , a=2 , a=1024 , **a , ): lowercase__ : Optional[int] = vocab_size lowercase__ : List[str] = d_model lowercase__ : int = decoder_ffn_dim lowercase__ : Optional[Any] = decoder_layers lowercase__ : int = decoder_attention_heads lowercase__ : Dict = dropout lowercase__ : Optional[int] = attention_dropout lowercase__ : Optional[int] = activation_dropout lowercase__ : Optional[int] = activation_function lowercase__ : Dict = init_std lowercase__ : List[Any] = decoder_layerdrop lowercase__ : int = use_cache lowercase__ : Any = decoder_layers lowercase__ : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True lowercase__ : Tuple = max_target_positions super().__init__( pad_token_id=a , bos_token_id=a , eos_token_id=a , decoder_start_token_id=a , **a , )
216
1
'''simple docstring''' def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ): while second != 0: _UpperCamelCase : str = first & second first ^= second _UpperCamelCase : Tuple = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() snake_case_ : Union[str, Any] = int(input('Enter the first number: ').strip()) snake_case_ : int = int(input('Enter the second number: ').strip()) print(F"""{add(first, second) = }""")
83
'''simple docstring''' import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class lowercase__ ( unittest.TestCase ): def __init__( self : List[str] ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : List[str]=13 ,lowerCamelCase__ : Dict=7 ,lowerCamelCase__ : Union[str, Any]=True ,lowerCamelCase__ : Any=True ,lowerCamelCase__ : List[Any]=True ,lowerCamelCase__ : Any=True ,lowerCamelCase__ : Dict=99 ,lowerCamelCase__ : int=32 ,lowerCamelCase__ : Tuple=5 ,lowerCamelCase__ : Dict=4 ,lowerCamelCase__ : Any=37 ,lowerCamelCase__ : str="gelu" ,lowerCamelCase__ : List[Any]=0.1 ,lowerCamelCase__ : Optional[Any]=0.1 ,lowerCamelCase__ : Optional[Any]=512 ,lowerCamelCase__ : Any=16 ,lowerCamelCase__ : Tuple=2 ,lowerCamelCase__ : int=0.0_2 ,lowerCamelCase__ : int=4 ,): '''simple docstring''' _UpperCamelCase : List[Any] = parent _UpperCamelCase : Dict = batch_size _UpperCamelCase : Union[str, Any] = seq_length _UpperCamelCase : Optional[Any] = is_training _UpperCamelCase : Optional[int] = use_attention_mask _UpperCamelCase : Any = use_token_type_ids _UpperCamelCase : str = use_labels _UpperCamelCase : Any = vocab_size _UpperCamelCase : List[Any] = hidden_size _UpperCamelCase : Dict = num_hidden_layers _UpperCamelCase : Dict = num_attention_heads _UpperCamelCase : str = intermediate_size _UpperCamelCase : int = hidden_act _UpperCamelCase : Any = hidden_dropout_prob _UpperCamelCase : Any = attention_probs_dropout_prob _UpperCamelCase : List[str] = max_position_embeddings _UpperCamelCase : Optional[int] = type_vocab_size _UpperCamelCase : str = type_sequence_label_size _UpperCamelCase : Dict = initializer_range _UpperCamelCase : List[Any] = num_choices def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _UpperCamelCase : int = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _UpperCamelCase : Union[str, Any] = None if self.use_attention_mask: _UpperCamelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase : Any = DistilBertConfig( vocab_size=self.vocab_size ,dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,hidden_dim=self.intermediate_size ,hidden_act=self.hidden_act ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,tie_weights_=lowerCamelCase__ ,) return config, input_ids, attention_mask def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _UpperCamelCase : List[str] = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : List[Any] = config_and_inputs _UpperCamelCase : Optional[int] = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class lowercase__ ( lowercase , unittest.TestCase ): lowercase__ = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _UpperCamelCase : List[str] = FlaxDistilBertModelTester(self ) @slow def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' for model_class_name in self.all_model_classes: _UpperCamelCase : Dict = model_class_name.from_pretrained('distilbert-base-uncased' ) _UpperCamelCase : Optional[int] = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ ) @require_flax class lowercase__ ( unittest.TestCase ): @slow def UpperCamelCase_ ( self : str ): '''simple docstring''' _UpperCamelCase : Optional[Any] = FlaxDistilBertModel.from_pretrained('distilbert-base-uncased' ) _UpperCamelCase : List[Any] = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) _UpperCamelCase : Tuple = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _UpperCamelCase : Dict = model(lowerCamelCase__ ,attention_mask=lowerCamelCase__ )[0] _UpperCamelCase : Any = (1, 11, 768) self.assertEqual(output.shape ,lowerCamelCase__ ) _UpperCamelCase : Union[str, Any] = np.array([[[-0.1_6_3_9, 0.3_2_9_9, 0.1_6_4_8], [-0.1_7_4_6, 0.3_2_8_9, 0.1_7_1_0], [-0.1_8_8_4, 0.3_3_5_7, 0.1_8_1_0]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] ,lowerCamelCase__ ,atol=1E-4 ) )
83
1
from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { 'microsoft/xprophetnet-large-wiki100-cased': ( 'https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json' ), } class A ( UpperCAmelCase_ ): __UpperCAmelCase : Optional[int] = 'xlm-prophetnet' __UpperCAmelCase : int = ['past_key_values'] __UpperCAmelCase : Optional[int] = { 'num_attention_heads': 'num_encoder_attention_heads', } def __init__(self : str , __UpperCAmelCase : Optional[float] = 0.1 , __UpperCAmelCase : Optional[Union[str, Callable]] = "gelu" , __UpperCAmelCase : Optional[int] = 3_0_5_2_2 , __UpperCAmelCase : Optional[int] = 1_0_2_4 , __UpperCAmelCase : Optional[int] = 4_0_9_6 , __UpperCAmelCase : Optional[int] = 1_2 , __UpperCAmelCase : Optional[int] = 1_6 , __UpperCAmelCase : Optional[int] = 4_0_9_6 , __UpperCAmelCase : Optional[int] = 1_2 , __UpperCAmelCase : Optional[int] = 1_6 , __UpperCAmelCase : Optional[float] = 0.1 , __UpperCAmelCase : Optional[float] = 0.1 , __UpperCAmelCase : Optional[int] = 5_1_2 , __UpperCAmelCase : Optional[float] = 0.02 , __UpperCAmelCase : Optional[bool] = True , __UpperCAmelCase : Optional[bool] = True , __UpperCAmelCase : Optional[int] = 0 , __UpperCAmelCase : Optional[int] = 2 , __UpperCAmelCase : Optional[int] = 3_2 , __UpperCAmelCase : Optional[int] = 1_2_8 , __UpperCAmelCase : Optional[bool] = False , __UpperCAmelCase : Optional[float] = 0.0 , __UpperCAmelCase : Optional[bool] = True , __UpperCAmelCase : Optional[int] = 0 , __UpperCAmelCase : Optional[int] = 1 , __UpperCAmelCase : Optional[int] = 2 , **__UpperCAmelCase : Optional[Any] , ) -> List[str]: """simple docstring""" UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = encoder_ffn_dim UpperCAmelCase__ = num_encoder_layers UpperCAmelCase__ = num_encoder_attention_heads UpperCAmelCase__ = decoder_ffn_dim UpperCAmelCase__ = num_decoder_layers UpperCAmelCase__ = num_decoder_attention_heads UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = init_std # Normal(0, this parameter) UpperCAmelCase__ = activation_function # parameters for xlmprophetnet UpperCAmelCase__ = ngram UpperCAmelCase__ = num_buckets UpperCAmelCase__ = relative_max_distance UpperCAmelCase__ = disable_ngram_loss UpperCAmelCase__ = eps # 3 Types of Dropout UpperCAmelCase__ = attention_dropout UpperCAmelCase__ = activation_dropout UpperCAmelCase__ = dropout UpperCAmelCase__ = use_cache super().__init__( pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , add_cross_attention=__UpperCAmelCase , decoder_start_token_id=__UpperCAmelCase , **__UpperCAmelCase , ) @property def lowercase_ (self : int ) -> int: """simple docstring""" return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def lowercase_ (self : Any , __UpperCAmelCase : List[Any] ) -> Union[str, Any]: """simple docstring""" raise NotImplementedError( "This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and" " `num_decoder_layers`." )
143
from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class A : def __init__(self : Tuple , __UpperCAmelCase : str , ) -> Dict: """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = 1_3 UpperCAmelCase__ = 7 UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = True UpperCAmelCase__ = 9_9 UpperCAmelCase__ = 3_2 UpperCAmelCase__ = 2 UpperCAmelCase__ = 4 UpperCAmelCase__ = 3_7 UpperCAmelCase__ = "gelu" UpperCAmelCase__ = 0.1 UpperCAmelCase__ = 0.1 UpperCAmelCase__ = 5_1_2 UpperCAmelCase__ = 1_6 UpperCAmelCase__ = 2 UpperCAmelCase__ = 0.02 UpperCAmelCase__ = 3 UpperCAmelCase__ = 4 UpperCAmelCase__ = None def lowercase_ (self : int ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ = None if self.use_input_mask: UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase__ = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase_ (self : int , __UpperCAmelCase : int , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Tuple ) -> Tuple: """simple docstring""" UpperCAmelCase__ = TFDistilBertModel(config=__UpperCAmelCase ) UpperCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask} UpperCAmelCase__ = model(__UpperCAmelCase ) UpperCAmelCase__ = [input_ids, input_mask] UpperCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ (self : str , __UpperCAmelCase : int , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : Dict ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = TFDistilBertForMaskedLM(config=__UpperCAmelCase ) UpperCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask} UpperCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ (self : int , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[str] ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = TFDistilBertForQuestionAnswering(config=__UpperCAmelCase ) UpperCAmelCase__ = { "input_ids": input_ids, "attention_mask": input_mask, } UpperCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase_ (self : Optional[int] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[str] ) -> str: """simple docstring""" UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = TFDistilBertForSequenceClassification(__UpperCAmelCase ) UpperCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask} UpperCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ (self : Optional[int] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Any ) -> int: """simple docstring""" UpperCAmelCase__ = self.num_choices UpperCAmelCase__ = TFDistilBertForMultipleChoice(__UpperCAmelCase ) UpperCAmelCase__ = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, } UpperCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase_ (self : Dict , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[str] , __UpperCAmelCase : Any , __UpperCAmelCase : Optional[int] ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = TFDistilBertForTokenClassification(__UpperCAmelCase ) UpperCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask} UpperCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase_ (self : Any ) -> Dict: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() ((UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__)) = config_and_inputs UpperCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class A ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): __UpperCAmelCase : Union[str, Any] = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) __UpperCAmelCase : Optional[int] = ( { 'feature-extraction': TFDistilBertModel, 'fill-mask': TFDistilBertForMaskedLM, 'question-answering': TFDistilBertForQuestionAnswering, 'text-classification': TFDistilBertForSequenceClassification, 'token-classification': TFDistilBertForTokenClassification, 'zero-shot': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) __UpperCAmelCase : Tuple = False __UpperCAmelCase : str = False def lowercase_ (self : Union[str, Any] ) -> str: """simple docstring""" UpperCAmelCase__ = TFDistilBertModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=__UpperCAmelCase , dim=3_7 ) def lowercase_ (self : Any ) -> int: """simple docstring""" self.config_tester.run_common_tests() def lowercase_ (self : int ) -> int: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*__UpperCAmelCase ) def lowercase_ (self : Optional[int] ) -> int: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*__UpperCAmelCase ) def lowercase_ (self : Any ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*__UpperCAmelCase ) def lowercase_ (self : List[str] ) -> str: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*__UpperCAmelCase ) def lowercase_ (self : Dict ) -> List[str]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*__UpperCAmelCase ) def lowercase_ (self : str ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*__UpperCAmelCase ) @slow def lowercase_ (self : Optional[int] ) -> Optional[int]: """simple docstring""" for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): UpperCAmelCase__ = TFDistilBertModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @require_tf class A ( unittest.TestCase ): @slow def lowercase_ (self : List[Any] ) -> Dict: """simple docstring""" UpperCAmelCase__ = TFDistilBertModel.from_pretrained("distilbert-base-uncased" ) UpperCAmelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase__ = model(__UpperCAmelCase )[0] UpperCAmelCase__ = [1, 6, 7_6_8] self.assertEqual(output.shape , __UpperCAmelCase ) UpperCAmelCase__ = tf.constant( [ [ [0.19261885, -0.13732955, 0.4119799], [0.22150156, -0.07422661, 0.39037204], [0.22756018, -0.0896414, 0.3701467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 )
143
1
import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class UpperCAmelCase_ ( a): def __init__( self, __a = "▁", __a = True, __a = "<unk>", __a = "</s>", __a = "<pad>", ): '''simple docstring''' _lowerCAmelCase : List[str] = { "pad": {"id": 0, "token": pad_token}, "eos": {"id": 1, "token": eos_token}, "unk": {"id": 2, "token": unk_token}, } _lowerCAmelCase : str = [None] * len(self.special_tokens) for token_dict in self.special_tokens.values(): _lowerCAmelCase : Dict = token_dict["token"] _lowerCAmelCase : int = Tokenizer(Unigram()) _lowerCAmelCase : Any = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(" {2,}"), " "), normalizers.Lowercase(), ]) _lowerCAmelCase : Tuple = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=__a, add_prefix_space=__a), pre_tokenizers.Digits(individual_digits=__a), pre_tokenizers.Punctuation(), ]) _lowerCAmelCase : List[str] = decoders.Metaspace(replacement=__a, add_prefix_space=__a) _lowerCAmelCase : Tuple = TemplateProcessing( single=f"$A {self.special_tokens['eos']['token']}", special_tokens=[(self.special_tokens["eos"]["token"], self.special_tokens["eos"]["id"])], ) _lowerCAmelCase : List[Any] = { "model": "SentencePieceUnigram", "replacement": replacement, "add_prefix_space": add_prefix_space, } super().__init__(__a, __a) def snake_case__ ( self, __a, __a = 8000, __a = True, ): '''simple docstring''' _lowerCAmelCase : Dict = trainers.UnigramTrainer( vocab_size=__a, special_tokens=self.special_tokens_list, show_progress=__a, ) if isinstance(__a, __a): _lowerCAmelCase : Union[str, Any] = [files] self._tokenizer.train(__a, trainer=__a) self.add_unk_id() def snake_case__ ( self, __a, __a = 8000, __a = True, ): '''simple docstring''' _lowerCAmelCase : Optional[int] = trainers.UnigramTrainer( vocab_size=__a, special_tokens=self.special_tokens_list, show_progress=__a, ) self._tokenizer.train_from_iterator(__a, trainer=__a) self.add_unk_id() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = json.loads(self._tokenizer.to_str()) _lowerCAmelCase : Tuple = self.special_tokens["unk"]["id"] _lowerCAmelCase : Any = Tokenizer.from_str(json.dumps(__a))
36
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class UpperCAmelCase_ ( a): def snake_case__ ( self, __a): '''simple docstring''' return 0.0 def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) _lowerCAmelCase : Optional[int] = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = 512 _lowerCAmelCase : Union[str, Any] = [1] + [0] * (size - 1) _lowerCAmelCase : Optional[Any] = [filter_type.process(_lowerCamelCase ) for item in inputs] _lowerCAmelCase : int = [0] * (samplerate - size) # zero-padding outputs += filler _lowerCAmelCase : str = np.abs(np.fft.fft(_lowerCamelCase ) ) _lowerCAmelCase : Union[str, Any] = 20 * np.logaa(_lowerCamelCase ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) # Display within reasonable bounds _lowerCAmelCase : List[Any] = get_bounds(_lowerCamelCase , _lowerCamelCase ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel("Gain (dB)" ) plt.plot(_lowerCamelCase ) plt.show() def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = 512 _lowerCAmelCase : Optional[Any] = [1] + [0] * (size - 1) _lowerCAmelCase : str = [filter_type.process(_lowerCamelCase ) for item in inputs] _lowerCAmelCase : Optional[Any] = [0] * (samplerate - size) # zero-padding outputs += filler _lowerCAmelCase : Optional[Any] = np.angle(np.fft.fft(_lowerCamelCase ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel("Phase shift (Radians)" ) plt.plot(np.unwrap(_lowerCamelCase , -2 * pi ) ) plt.show()
36
1
import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class A ( UpperCAmelCase_ ): def lowercase_ (self : List[str] ) -> Dict: """simple docstring""" UpperCAmelCase__ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__UpperCAmelCase , "hidden_sizes" ) ) self.parent.assertTrue(hasattr(__UpperCAmelCase , "neck_hidden_sizes" ) ) self.parent.assertTrue(hasattr(__UpperCAmelCase , "num_attention_heads" ) ) class A : def __init__(self : List[str] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[Any]=1_3 , __UpperCAmelCase : List[Any]=3_2 , __UpperCAmelCase : Optional[Any]=2 , __UpperCAmelCase : Dict=3 , __UpperCAmelCase : List[Any]=6_4_0 , __UpperCAmelCase : List[str]=4 , __UpperCAmelCase : Dict="silu" , __UpperCAmelCase : List[Any]=3 , __UpperCAmelCase : Optional[int]=3_2 , __UpperCAmelCase : Union[str, Any]=0.1 , __UpperCAmelCase : Optional[int]=0.1 , __UpperCAmelCase : List[Any]=0.1 , __UpperCAmelCase : Dict=0.02 , __UpperCAmelCase : List[Any]=True , __UpperCAmelCase : Dict=True , __UpperCAmelCase : List[Any]=1_0 , __UpperCAmelCase : str=None , ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = image_size UpperCAmelCase__ = patch_size UpperCAmelCase__ = num_channels UpperCAmelCase__ = last_hidden_size UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = hidden_act UpperCAmelCase__ = conv_kernel_size UpperCAmelCase__ = output_stride UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = classifier_dropout_prob UpperCAmelCase__ = use_labels UpperCAmelCase__ = is_training UpperCAmelCase__ = num_labels UpperCAmelCase__ = initializer_range UpperCAmelCase__ = scope def lowercase_ (self : str ) -> int: """simple docstring""" UpperCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ = None UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase__ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase__ = self.get_config() return config, pixel_values, labels, pixel_labels def lowercase_ (self : Tuple ) -> Dict: """simple docstring""" return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowercase_ (self : List[str] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : int , __UpperCAmelCase : Tuple ) -> Any: """simple docstring""" UpperCAmelCase__ = MobileViTModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() UpperCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase_ (self : List[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = MobileViTForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() UpperCAmelCase__ = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ (self : Dict , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Any ) -> List[str]: """simple docstring""" UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = MobileViTForSemanticSegmentation(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() UpperCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) UpperCAmelCase__ = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase_ (self : Optional[int] ) -> List[str]: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class A ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): __UpperCAmelCase : List[Any] = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) __UpperCAmelCase : str = ( { 'feature-extraction': MobileViTModel, 'image-classification': MobileViTForImageClassification, 'image-segmentation': MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCAmelCase : Optional[int] = False __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : Optional[int] = False __UpperCAmelCase : Tuple = False def lowercase_ (self : List[str] ) -> Dict: """simple docstring""" UpperCAmelCase__ = MobileViTModelTester(self ) UpperCAmelCase__ = MobileViTConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase ) def lowercase_ (self : Tuple ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="MobileViT does not use inputs_embeds" ) def lowercase_ (self : Dict ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason="MobileViT does not support input and output embeddings" ) def lowercase_ (self : Union[str, Any] ) -> List[str]: """simple docstring""" pass @unittest.skip(reason="MobileViT does not output attentions" ) def lowercase_ (self : List[str] ) -> Any: """simple docstring""" pass def lowercase_ (self : Optional[Any] ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(__UpperCAmelCase ) UpperCAmelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ = [*signature.parameters.keys()] UpperCAmelCase__ = ["pixel_values"] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowercase_ (self : str ) -> int: """simple docstring""" pass def lowercase_ (self : Any ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def lowercase_ (self : Union[str, Any] ) -> Any: """simple docstring""" def check_hidden_states_output(__UpperCAmelCase : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : int ): UpperCAmelCase__ = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) UpperCAmelCase__ = outputs.hidden_states UpperCAmelCase__ = 5 self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. UpperCAmelCase__ = 2 for i in range(len(__UpperCAmelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def lowercase_ (self : Union[str, Any] ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) def lowercase_ (self : Tuple ) -> Tuple: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCAmelCase ) @slow def lowercase_ (self : Dict ) -> List[str]: """simple docstring""" for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ = MobileViTModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def lowerCAmelCase_ ( ) -> List[str]: '''simple docstring''' UpperCAmelCase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class A ( unittest.TestCase ): @cached_property def lowercase_ (self : Optional[int] ) -> str: """simple docstring""" return MobileViTImageProcessor.from_pretrained("apple/mobilevit-xx-small" ) if is_vision_available() else None @slow def lowercase_ (self : int ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = MobileViTForImageClassification.from_pretrained("apple/mobilevit-xx-small" ).to(__UpperCAmelCase ) UpperCAmelCase__ = self.default_image_processor UpperCAmelCase__ = prepare_img() UpperCAmelCase__ = image_processor(images=__UpperCAmelCase , return_tensors="pt" ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase__ = model(**__UpperCAmelCase ) # verify the logits UpperCAmelCase__ = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) UpperCAmelCase__ = torch.tensor([-1.9364, -1.2327, -0.4653] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def lowercase_ (self : Union[str, Any] ) -> Dict: """simple docstring""" UpperCAmelCase__ = MobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) UpperCAmelCase__ = model.to(__UpperCAmelCase ) UpperCAmelCase__ = MobileViTImageProcessor.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) UpperCAmelCase__ = prepare_img() UpperCAmelCase__ = image_processor(images=__UpperCAmelCase , return_tensors="pt" ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase__ = model(**__UpperCAmelCase ) UpperCAmelCase__ = outputs.logits # verify the logits UpperCAmelCase__ = torch.Size((1, 2_1, 3_2, 3_2) ) self.assertEqual(logits.shape , __UpperCAmelCase ) UpperCAmelCase__ = torch.tensor( [ [[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]], [[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]], [[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]], ] , device=__UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def lowercase_ (self : List[Any] ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = MobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) UpperCAmelCase__ = model.to(__UpperCAmelCase ) UpperCAmelCase__ = MobileViTImageProcessor.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) UpperCAmelCase__ = prepare_img() UpperCAmelCase__ = image_processor(images=__UpperCAmelCase , return_tensors="pt" ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase__ = model(**__UpperCAmelCase ) UpperCAmelCase__ = outputs.logits.detach().cpu() UpperCAmelCase__ = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase , target_sizes=[(5_0, 6_0)] ) UpperCAmelCase__ = torch.Size((5_0, 6_0) ) self.assertEqual(segmentation[0].shape , __UpperCAmelCase ) UpperCAmelCase__ = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase ) UpperCAmelCase__ = torch.Size((3_2, 3_2) ) self.assertEqual(segmentation[0].shape , __UpperCAmelCase )
143
from __future__ import annotations def lowerCAmelCase_ ( __A ) -> list[int]: '''simple docstring''' if len(__A ) == 0: return array UpperCAmelCase__ , UpperCAmelCase__ = min(__A ), max(__A ) # Compute the variables UpperCAmelCase__ = _max - _min + 1 UpperCAmelCase__ , UpperCAmelCase__ = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: UpperCAmelCase__ = i - _min UpperCAmelCase__ = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. UpperCAmelCase__ = 0 for i in range(__A ): while holes_repeat[i] > 0: UpperCAmelCase__ = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__ = input('Enter numbers separated by comma:\n') UpperCamelCase__ = [int(x) for x in user_input.split(',')] print(pigeon_sort(unsorted))
143
1
"""simple docstring""" import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' super().__init__( __UpperCAmelCase , split=__UpperCAmelCase , features=__UpperCAmelCase , cache_dir=__UpperCAmelCase , keep_in_memory=__UpperCAmelCase , streaming=__UpperCAmelCase , num_proc=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCamelCase = field __UpperCamelCase = path_or_paths if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else {self.split: path_or_paths} __UpperCamelCase = Json( cache_dir=__UpperCAmelCase , data_files=__UpperCAmelCase , features=__UpperCAmelCase , field=__UpperCAmelCase , **__UpperCAmelCase , ) def UpperCAmelCase ( self ): '''simple docstring''' if self.streaming: __UpperCamelCase = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None self.builder.download_and_prepare( download_config=__UpperCAmelCase , download_mode=__UpperCAmelCase , verification_mode=__UpperCAmelCase , base_path=__UpperCAmelCase , num_proc=self.num_proc , ) __UpperCamelCase = self.builder.as_dataset( split=self.split , verification_mode=__UpperCAmelCase , in_memory=self.keep_in_memory ) return dataset class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(F'num_proc {num_proc} must be an integer > 0.' ) __UpperCamelCase = dataset __UpperCamelCase = path_or_buf __UpperCamelCase = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __UpperCamelCase = num_proc __UpperCamelCase = 'utf-8' __UpperCamelCase = to_json_kwargs def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.to_json_kwargs.pop('path_or_buf' , __UpperCAmelCase ) __UpperCamelCase = self.to_json_kwargs.pop('orient' , 'records' ) __UpperCamelCase = self.to_json_kwargs.pop('lines' , True if orient == 'records' else False ) __UpperCamelCase = self.to_json_kwargs.pop('index' , False if orient in ['split', 'table'] else True ) __UpperCamelCase = self.to_json_kwargs.pop('compression' , __UpperCAmelCase ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F'`datasets` currently does not support {compression} compression' ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , 'wb' , compression=__UpperCAmelCase ) as buffer: __UpperCamelCase = self._write(file_obj=__UpperCAmelCase , orient=__UpperCAmelCase , lines=__UpperCAmelCase , index=__UpperCAmelCase , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( F'The compression parameter is not supported when writing to a buffer, but compression={compression}' ' was passed. Please provide a local path instead.' ) __UpperCamelCase = self._write( file_obj=self.path_or_buf , orient=__UpperCAmelCase , lines=__UpperCAmelCase , index=__UpperCAmelCase , **self.to_json_kwargs ) return written def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = args __UpperCamelCase = query_table( table=self.dataset.data , key=slice(__UpperCAmelCase , offset + self.batch_size ) , indices=self.dataset._indices , ) __UpperCamelCase = batch.to_pandas().to_json( path_or_buf=__UpperCAmelCase , orient=__UpperCAmelCase , lines=__UpperCAmelCase , index=__UpperCAmelCase , **__UpperCAmelCase ) if not json_str.endswith('\n' ): json_str += "\n" return json_str.encode(self.encoding ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating json from Arrow format' , ): __UpperCamelCase = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(__UpperCAmelCase ) else: __UpperCamelCase , __UpperCamelCase = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , __UpperCAmelCase , __UpperCAmelCase )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating json from Arrow format' , ): written += file_obj.write(__UpperCAmelCase ) return written
316
"""simple docstring""" from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging UpperCamelCase : Any = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = ["pixel_values"] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = 8 , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) __UpperCamelCase = do_rescale __UpperCamelCase = rescale_factor __UpperCamelCase = do_pad __UpperCamelCase = pad_size def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase ): '''simple docstring''' return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = get_image_size(__UpperCAmelCase ) __UpperCamelCase = (old_height // size + 1) * size - old_height __UpperCamelCase = (old_width // size + 1) * size - old_width return pad(__UpperCAmelCase , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCamelCase = do_pad if do_pad is not None else self.do_pad __UpperCamelCase = pad_size if pad_size is not None else self.pad_size __UpperCamelCase = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. __UpperCamelCase = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_rescale: __UpperCamelCase = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] if do_pad: __UpperCamelCase = [self.pad(__UpperCAmelCase , size=__UpperCAmelCase ) for image in images] __UpperCamelCase = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] __UpperCamelCase = {'pixel_values': images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
316
1
from math import isclose, sqrt def lowerCAmelCase_ ( _lowercase : float , _lowercase : float , _lowercase : float) -> List[str]: """simple docstring""" a__ : Any = point_y / 4 / point_x a__ : int = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) a__ : Any = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) a__ : Optional[int] = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 a__ : Optional[int] = outgoing_gradient**2 + 4 a__ : Tuple = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) a__ : Tuple = (point_y - outgoing_gradient * point_x) ** 2 - 100 a__ : Optional[int] = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term) ) / (2 * quadratic_term) a__ : int = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term) ) / (2 * quadratic_term) # two solutions, one of which is our input point a__ : str = x_minus if isclose(lowerCAmelCase__ , lowerCAmelCase__) else x_plus a__ : Tuple = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def lowerCAmelCase_ ( _lowercase : float = 1.4 , _lowercase : float = -9.6) -> Union[str, Any]: """simple docstring""" a__ : int = 0 a__ : float = first_x_coord a__ : float = first_y_coord a__ : float = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): a__ : Tuple = next_point(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) num_reflections += 1 return num_reflections if __name__ == "__main__": print(f'{solution() = }')
366
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def lowerCAmelCase_ ( _lowercase : Union[str, Any] , _lowercase : Dict=False) -> Any: """simple docstring""" try: a__ : str = os.environ[key] except KeyError: # KEY isn't set, default to `default`. a__ : Optional[int] = default else: # KEY is set, convert it to True or False. try: a__ : Optional[int] = strtobool(_lowercase) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F'''If set, {key} must be yes or no.''') return _value _lowercase : Dict =parse_flag_from_env("RUN_SLOW", default=False) def lowerCAmelCase_ ( _lowercase : Any) -> str: """simple docstring""" return unittest.skip("""Test was skipped""")(_lowercase) def lowerCAmelCase_ ( _lowercase : str) -> List[str]: """simple docstring""" return unittest.skipUnless(_run_slow_tests , """test is slow""")(_lowercase) def lowerCAmelCase_ ( _lowercase : List[Any]) -> Union[str, Any]: """simple docstring""" return unittest.skipUnless(not torch.cuda.is_available() , """test requires only a CPU""")(_lowercase) def lowerCAmelCase_ ( _lowercase : List[Any]) -> List[Any]: """simple docstring""" return unittest.skipUnless(torch.cuda.is_available() , """test requires a GPU""")(_lowercase) def lowerCAmelCase_ ( _lowercase : Optional[int]) -> Dict: """simple docstring""" return unittest.skipUnless(is_xpu_available() , """test requires a XPU""")(_lowercase) def lowerCAmelCase_ ( _lowercase : Tuple) -> List[str]: """simple docstring""" return unittest.skipUnless(is_mps_available() , """test requires a `mps` backend support in `torch`""")(_lowercase) def lowerCAmelCase_ ( _lowercase : Dict) -> Union[str, Any]: """simple docstring""" return unittest.skipUnless( is_transformers_available() and is_datasets_available() , """test requires the Hugging Face suite""")(_lowercase) def lowerCAmelCase_ ( _lowercase : Tuple) -> Any: """simple docstring""" return unittest.skipUnless(is_bnb_available() , """test requires the bitsandbytes library""")(_lowercase) def lowerCAmelCase_ ( _lowercase : Union[str, Any]) -> List[str]: """simple docstring""" return unittest.skipUnless(is_tpu_available() , """test requires TPU""")(_lowercase) def lowerCAmelCase_ ( _lowercase : str) -> int: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() == 1 , """test requires a GPU""")(_lowercase) def lowerCAmelCase_ ( _lowercase : Any) -> List[str]: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() == 1 , """test requires a XPU""")(_lowercase) def lowerCAmelCase_ ( _lowercase : Union[str, Any]) -> Union[str, Any]: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() > 1 , """test requires multiple GPUs""")(_lowercase) def lowerCAmelCase_ ( _lowercase : int) -> Tuple: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() > 1 , """test requires multiple XPUs""")(_lowercase) def lowerCAmelCase_ ( _lowercase : int) -> Optional[Any]: """simple docstring""" return unittest.skipUnless(is_safetensors_available() , """test requires safetensors""")(_lowercase) def lowerCAmelCase_ ( _lowercase : Optional[int]) -> List[str]: """simple docstring""" return unittest.skipUnless(is_deepspeed_available() , """test requires DeepSpeed""")(_lowercase) def lowerCAmelCase_ ( _lowercase : Union[str, Any]) -> Optional[Any]: """simple docstring""" return unittest.skipUnless(is_torch_version(""">=""" , """1.12.0""") , """test requires torch version >= 1.12.0""")(_lowercase) def lowerCAmelCase_ ( _lowercase : Any=None , _lowercase : List[str]=None) -> Dict: """simple docstring""" if test_case is None: return partial(_lowercase , version=_lowercase) return unittest.skipUnless(is_torch_version(""">=""" , _lowercase) , F'''test requires torch version >= {version}''')(_lowercase) def lowerCAmelCase_ ( _lowercase : Any) -> int: """simple docstring""" return unittest.skipUnless(is_tensorboard_available() , """test requires Tensorboard""")(_lowercase) def lowerCAmelCase_ ( _lowercase : str) -> Union[str, Any]: """simple docstring""" return unittest.skipUnless(is_wandb_available() , """test requires wandb""")(_lowercase) def lowerCAmelCase_ ( _lowercase : Optional[int]) -> Union[str, Any]: """simple docstring""" return unittest.skipUnless(is_comet_ml_available() , """test requires comet_ml""")(_lowercase) _lowercase : List[str] =( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def lowerCAmelCase_ ( _lowercase : Optional[int]) -> Union[str, Any]: """simple docstring""" return unittest.skipUnless( _atleast_one_tracker_available , """test requires at least one tracker to be available and for `comet_ml` to not be installed""" , )(_lowercase) class snake_case__ (unittest.TestCase ): """simple docstring""" __lowerCAmelCase :Optional[Any] = True @classmethod def SCREAMING_SNAKE_CASE__( cls ) -> Optional[int]: """simple docstring""" a__ : Tuple = tempfile.mkdtemp() @classmethod def SCREAMING_SNAKE_CASE__( cls ) -> Dict: """simple docstring""" if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def SCREAMING_SNAKE_CASE__( self ) -> List[Any]: """simple docstring""" if self.clear_on_setup: for path in Path(self.tmpdir ).glob("""**/*""" ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(__lowercase ) class snake_case__ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__( self ) -> Union[str, Any]: """simple docstring""" super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class snake_case__ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Union[str, Any]: """simple docstring""" a__ : Tuple = mocks if isinstance(__lowercase , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def lowerCAmelCase_ ( _lowercase : Optional[int]) -> List[Any]: """simple docstring""" a__ : Tuple = AcceleratorState() a__ : List[str] = tensor[None].clone().to(state.device) a__ : Any = gather(_lowercase).cpu() a__ : Optional[Any] = tensor[0].cpu() for i in range(tensors.shape[0]): if not torch.equal(tensors[i] , _lowercase): return False return True class snake_case__ : """simple docstring""" def __init__( self , __lowercase , __lowercase , __lowercase ) -> Any: """simple docstring""" a__ : Any = returncode a__ : List[Any] = stdout a__ : Any = stderr async def lowerCAmelCase_ ( _lowercase : str , _lowercase : str) -> List[Any]: """simple docstring""" while True: a__ : str = await stream.readline() if line: callback(_lowercase) else: break async def lowerCAmelCase_ ( _lowercase : Any , _lowercase : Union[str, Any]=None , _lowercase : List[str]=None , _lowercase : Tuple=None , _lowercase : Optional[Any]=False , _lowercase : Dict=False) -> _RunOutput: """simple docstring""" if echo: print("""\nRunning: """ , """ """.join(_lowercase)) a__ : int = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=_lowercase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_lowercase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) a__ : int = [] a__ : Optional[int] = [] def tee(_lowercase : List[str] , _lowercase : Optional[int] , _lowercase : Any , _lowercase : Optional[Any]=""): a__ : int = line.decode("""utf-8""").rstrip() sink.append(_lowercase) if not quiet: print(_lowercase , _lowercase , file=_lowercase) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda _lowercase: tee(_lowercase , _lowercase , sys.stdout , label="""stdout:"""))), asyncio.create_task(_read_stream(p.stderr , lambda _lowercase: tee(_lowercase , _lowercase , sys.stderr , label="""stderr:"""))), ] , timeout=_lowercase , ) return _RunOutput(await p.wait() , _lowercase , _lowercase) def lowerCAmelCase_ ( _lowercase : Optional[int] , _lowercase : Optional[int]=None , _lowercase : Tuple=None , _lowercase : Any=180 , _lowercase : List[Any]=False , _lowercase : Dict=True) -> _RunOutput: """simple docstring""" a__ : Any = asyncio.get_event_loop() a__ : List[Any] = loop.run_until_complete( _stream_subprocess(_lowercase , env=_lowercase , stdin=_lowercase , timeout=_lowercase , quiet=_lowercase , echo=_lowercase)) a__ : Optional[int] = """ """.join(_lowercase) if result.returncode > 0: a__ : List[Any] = """\n""".join(result.stderr) raise RuntimeError( F'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' F'''The combined stderr from workers follows:\n{stderr}''') return result class snake_case__ (A__ ): """simple docstring""" pass def lowerCAmelCase_ ( _lowercase : List[str] , _lowercase : Optional[int]=False) -> Dict: """simple docstring""" try: a__ : List[Any] = subprocess.check_output(_lowercase , stderr=subprocess.STDOUT) if return_stdout: if hasattr(_lowercase , """decode"""): a__ : Tuple = output.decode("""utf-8""") return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F'''Command `{' '.join(_lowercase)}` failed with the following error:\n\n{e.output.decode()}''') from e
266
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { """SCUT-DLVCLab/lilt-roberta-en-base""": ( """https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json""" ), } class _lowerCamelCase ( a_ ): _lowerCamelCase :Optional[int] = '''lilt''' def __init__( self : Tuple , UpperCamelCase : Tuple=3_05_22 , UpperCamelCase : int=7_68 , UpperCamelCase : Optional[int]=12 , UpperCamelCase : Union[str, Any]=12 , UpperCamelCase : Optional[int]=30_72 , UpperCamelCase : Union[str, Any]="gelu" , UpperCamelCase : str=0.1 , UpperCamelCase : str=0.1 , UpperCamelCase : Dict=5_12 , UpperCamelCase : int=2 , UpperCamelCase : str=0.02 , UpperCamelCase : Optional[Any]=1E-1_2 , UpperCamelCase : Dict=0 , UpperCamelCase : int="absolute" , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Dict=4 , UpperCamelCase : Optional[int]=10_24 , **UpperCamelCase : Dict , ) -> Tuple: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) lowerCAmelCase__ : Any = vocab_size lowerCAmelCase__ : List[str] = hidden_size lowerCAmelCase__ : Optional[Any] = num_hidden_layers lowerCAmelCase__ : Dict = num_attention_heads lowerCAmelCase__ : Dict = hidden_act lowerCAmelCase__ : int = intermediate_size lowerCAmelCase__ : str = hidden_dropout_prob lowerCAmelCase__ : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase__ : int = max_position_embeddings lowerCAmelCase__ : str = type_vocab_size lowerCAmelCase__ : Any = initializer_range lowerCAmelCase__ : List[Any] = layer_norm_eps lowerCAmelCase__ : int = position_embedding_type lowerCAmelCase__ : Any = classifier_dropout lowerCAmelCase__ : List[Any] = channel_shrink_ratio lowerCAmelCase__ : Optional[int] = max_ad_position_embeddings
242
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'sayakpaul/vit-msn-base': 'https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Dict = '''vit_msn''' def __init__( self : Optional[int] , lowerCAmelCase__ : str=7_6_8 , lowerCAmelCase__ : List[str]=1_2 , lowerCAmelCase__ : int=1_2 , lowerCAmelCase__ : Optional[Any]=3_0_7_2 , lowerCAmelCase__ : Tuple="gelu" , lowerCAmelCase__ : Tuple=0.0 , lowerCAmelCase__ : str=0.0 , lowerCAmelCase__ : Dict=0.02 , lowerCAmelCase__ : int=1e-06 , lowerCAmelCase__ : Union[str, Any]=2_2_4 , lowerCAmelCase__ : Optional[int]=1_6 , lowerCAmelCase__ : List[str]=3 , lowerCAmelCase__ : str=True , **lowerCAmelCase__ : Optional[Any] , ) -> int: """simple docstring""" super().__init__(**lowerCAmelCase__ ) _UpperCAmelCase : Any = hidden_size _UpperCAmelCase : str = num_hidden_layers _UpperCAmelCase : int = num_attention_heads _UpperCAmelCase : Any = intermediate_size _UpperCAmelCase : Any = hidden_act _UpperCAmelCase : str = hidden_dropout_prob _UpperCAmelCase : Tuple = attention_probs_dropout_prob _UpperCAmelCase : Optional[Any] = initializer_range _UpperCAmelCase : Tuple = layer_norm_eps _UpperCAmelCase : int = image_size _UpperCAmelCase : Tuple = patch_size _UpperCAmelCase : Dict = num_channels _UpperCAmelCase : Optional[int] = qkv_bias
145
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/config.json', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/config.json', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json' ), } class a ( __lowerCAmelCase ): """simple docstring""" lowerCamelCase :List[str] = '''xlm-roberta''' def __init__( self , lowerCAmelCase_=3_05_22 , lowerCAmelCase_=7_68 , lowerCAmelCase_=12 , lowerCAmelCase_=12 , lowerCAmelCase_=30_72 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=5_12 , lowerCAmelCase_=2 , lowerCAmelCase_=0.02 , lowerCAmelCase_=1E-12 , lowerCAmelCase_=1 , lowerCAmelCase_=0 , lowerCAmelCase_=2 , lowerCAmelCase_="absolute" , lowerCAmelCase_=True , lowerCAmelCase_=None , **lowerCAmelCase_ , ) -> List[Any]: super().__init__(pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = hidden_act _A = intermediate_size _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = initializer_range _A = layer_norm_eps _A = position_embedding_type _A = use_cache _A = classifier_dropout class a ( __lowerCAmelCase ): """simple docstring""" @property def UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _A = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _A = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
81
import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup _SCREAMING_SNAKE_CASE = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' ' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582' } def snake_case ( snake_case__ :str = "dhaka" , snake_case__ :int = 5) -> int: _A = min(snake_case__ , 50) # Prevent abuse! _A = { """q""": query, """tbm""": """isch""", """hl""": """en""", """ijn""": """0""", } _A = requests.get("""https://www.google.com/search""" , params=snake_case__ , headers=snake_case__) _A = BeautifulSoup(html.text , """html.parser""") _A = """""".join( re.findall(R"""AF_initDataCallback\(([^<]+)\);""" , str(soup.select("""script""")))) _A = json.dumps(snake_case__) _A = json.loads(snake_case__) _A = re.findall( R"""\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",""" , snake_case__ , ) if not matched_google_image_data: return 0 _A = re.sub( R"""\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]""" , """""" , str(snake_case__) , ) _A = re.findall( R"""(?:'|,),\[\"(https:|http.*?)\",\d+,\d+\]""" , snake_case__ , ) for index, fixed_full_res_image in enumerate(snake_case__): if index >= max_images: return index _A = bytes(snake_case__ , """ascii""").decode( """unicode-escape""") _A = bytes(snake_case__ , """ascii""").decode( """unicode-escape""") _A = urllib.request.build_opener() _A = [ ( """User-Agent""", """Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36""" """ (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582""", ) ] urllib.request.install_opener(snake_case__) _A = F'''query_{query.replace(' ' , '_')}''' if not os.path.exists(snake_case__): os.makedirs(snake_case__) urllib.request.urlretrieve( # noqa: S310 snake_case__ , F'''{path_name}/original_size_img_{index}.jpg''') return index if __name__ == "__main__": try: _SCREAMING_SNAKE_CASE = download_images_from_google_query(sys.argv[1]) print(F'''{image_count} images were downloaded to disk.''') except IndexError: print('Please provide a search term.') raise
81
1
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate __UpperCamelCase : List[str] = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("""""", """|""", """|"""), datarow=DataRow("""""", """|""", """|"""), padding=1, with_header_hide=None, ) __UpperCamelCase : Tuple = [] __UpperCamelCase : List[str] = [] __UpperCamelCase : int = {"""type""": """section""", """text""": {"""type""": """plain_text""", """text""": """No failed tests! 🤗""", """emoji""": True}} __UpperCamelCase : str = [ { """type""": """header""", """text""": { """type""": """plain_text""", """text""": f'''🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results''', """emoji""": True, }, } ] __UpperCamelCase : Tuple = 0 for log in Path().glob("""*.log"""): __UpperCamelCase : Any = 0 with open(log, """r""") as f: for line in f: __UpperCamelCase : Optional[int] = json.loads(line) if line.get("""nodeid""", """""") != "": __UpperCamelCase : Dict = line["""nodeid"""] if line.get("""duration""", None) is not None: __UpperCamelCase : Union[str, Any] = f'''{line['duration']:.4f}''' if line.get("""outcome""", """""") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("""_""")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) __UpperCamelCase : Tuple = [] log.unlink() __UpperCamelCase : List[str] = """""" __UpperCamelCase : List[Any] = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += f"*{name[1:]}: {num_failed} failed test*\n" else: message += f"*{name[1:]}: {num_failed} failed tests*\n" __UpperCamelCase : Any = [] __UpperCamelCase : Any = {} for test in failed_tests: __UpperCamelCase : Any = test[0].split("""::""") __UpperCamelCase : List[Any] = data[0].split("""/""")[-1] if data[0] not in filesafailed: __UpperCamelCase : Dict = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) __UpperCamelCase : str = [test[0] for test in failed_table] __UpperCamelCase : str = list(set(files)) # Count number of instances in failed_tests __UpperCamelCase : Dict = [] for file in individual_files: table.append([file, len(filesafailed[file])]) __UpperCamelCase : Any = tabulate( table, headers=["""Test Location""", """Num Failed"""], tablefmt=hf_table_format, stralign="""right""", ) message += f"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: __UpperCamelCase : str = """Too many failed tests, please see the full report in the Action results.""" __UpperCamelCase : Optional[Any] = len(err) + 10 __UpperCamelCase : int = message[: 3000 - offset] + f'''\n...\n```\n{err}''' print(f'''### {message}''') else: __UpperCamelCase : List[str] = """No failed tests! 🤗""" print(f'''## {message}''') payload.append(no_error_payload) if os.environ.get("""TEST_TYPE""", """""") != "": from slack_sdk import WebClient __UpperCamelCase : int = WebClient(token=os.environ["""SLACK_API_TOKEN"""]) if message != "No failed tests! 🤗": __UpperCamelCase : Dict = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": message, }, } payload.append(md_report) __UpperCamelCase : int = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": """*For more details:*""", }, """accessory""": { """type""": """button""", """text""": { """type""": """plain_text""", """text""": """Check Action results""", """emoji""": True, }, """url""": f'''https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}''', }, } payload.append(action_button) __UpperCamelCase : Dict = { """type""": """context""", """elements""": [ { """type""": """plain_text""", """text""": f'''Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}''', } ], } payload.append(date_report) __UpperCamelCase : str = client.chat_postMessage(channel="""#accelerate-ci-daily""", text=message, blocks=payload) __UpperCamelCase : int = response.data["""ts"""] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name __UpperCamelCase : Optional[Any] = """""" for i, row in enumerate(test_failures): if row[0] != test_class: __UpperCamelCase : Dict = row[0] else: __UpperCamelCase : Dict = """""" __UpperCamelCase : List[Any] = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": f'''Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```''', }, } client.chat_postMessage( channel="""#accelerate-ci-daily""", thread_ts=ts, blocks=[payload], )
307
def a_ ( _A , _A ) -> int: """simple docstring""" return 1 if input_a == input_a else 0 def a_ ( ) -> None: """simple docstring""" assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
307
1
"""simple docstring""" from numpy import exp, pi, sqrt def lowercase__ ( snake_case_ :int , snake_case_ :float = 0.0 , snake_case_ :float = 1.0 ): return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
86
"""simple docstring""" import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class _UpperCAmelCase : def __init__( self : Dict , _lowercase : int , _lowercase : List[str]=13 , _lowercase : Dict=32 , _lowercase : Any=2 , _lowercase : Optional[int]=3 , _lowercase : Optional[Any]=16 , _lowercase : Optional[int]=[1, 2, 1] , _lowercase : int=[2, 2, 4] , _lowercase : Optional[Any]=2 , _lowercase : Union[str, Any]=2.0 , _lowercase : Any=True , _lowercase : Optional[Any]=0.0 , _lowercase : Dict=0.0 , _lowercase : Dict=0.1 , _lowercase : str="gelu" , _lowercase : List[Any]=False , _lowercase : List[Any]=True , _lowercase : Optional[Any]=0.02 , _lowercase : str=1E-5 , _lowercase : str=True , _lowercase : Any=None , _lowercase : Tuple=True , _lowercase : Any=10 , _lowercase : int=8 , _lowercase : Optional[Any]=["stage1", "stage2", "stage3"] , _lowercase : Optional[Any]=[1, 2, 3] , ): __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = image_size __UpperCAmelCase = patch_size __UpperCAmelCase = num_channels __UpperCAmelCase = embed_dim __UpperCAmelCase = depths __UpperCAmelCase = num_heads __UpperCAmelCase = window_size __UpperCAmelCase = mlp_ratio __UpperCAmelCase = qkv_bias __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = drop_path_rate __UpperCAmelCase = hidden_act __UpperCAmelCase = use_absolute_embeddings __UpperCAmelCase = patch_norm __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = initializer_range __UpperCAmelCase = is_training __UpperCAmelCase = scope __UpperCAmelCase = use_labels __UpperCAmelCase = type_sequence_label_size __UpperCAmelCase = encoder_stride __UpperCAmelCase = out_features __UpperCAmelCase = out_indices def a ( self : int ): __UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase = self.get_config() return config, pixel_values, labels def a ( self : Dict ): return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def a ( self : List[Any] , _lowercase : Union[str, Any] , _lowercase : str , _lowercase : int ): __UpperCAmelCase = MaskFormerSwinModel(config=_lowercase ) model.to(_lowercase ) model.eval() __UpperCAmelCase = model(_lowercase ) __UpperCAmelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __UpperCAmelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def a ( self : int , _lowercase : Optional[Any] , _lowercase : Any , _lowercase : Dict ): __UpperCAmelCase = MaskFormerSwinBackbone(config=_lowercase ) model.to(_lowercase ) model.eval() __UpperCAmelCase = model(_lowercase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(_lowercase ): __UpperCAmelCase = ['''stem'''] __UpperCAmelCase = MaskFormerSwinBackbone(config=_lowercase ) def a ( self : Optional[int] ): __UpperCAmelCase = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = config_and_inputs __UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): a__ : List[Any] = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) a__ : Optional[int] = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} a__ : List[str] = False a__ : int = False a__ : str = False a__ : str = False a__ : Any = False def a ( self : Optional[Any] ): __UpperCAmelCase = MaskFormerSwinModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=_lowercase , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( '''`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with''' ''' `nn.DataParallel`''' ) ) def a ( self : int ): pass def a ( self : Dict ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a ( self : str ): return def a ( self : Optional[Any] ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def a ( self : Optional[int] ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_lowercase ) @unittest.skip('''Swin does not use inputs_embeds''' ) def a ( self : List[Any] ): pass @unittest.skip('''Swin does not support feedforward chunking''' ) def a ( self : str ): pass def a ( self : Union[str, Any] ): __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(_lowercase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowercase , nn.Linear ) ) def a ( self : Union[str, Any] ): __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(_lowercase ) __UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase = [*signature.parameters.keys()] __UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowercase ) @unittest.skip(reason='''MaskFormerSwin is only used as backbone and doesn\'t support output_attentions''' ) def a ( self : Optional[Any] ): pass @unittest.skip(reason='''MaskFormerSwin is only used as an internal backbone''' ) def a ( self : Optional[Any] ): pass def a ( self : List[Any] , _lowercase : Union[str, Any] , _lowercase : List[str] , _lowercase : Dict , _lowercase : Tuple ): __UpperCAmelCase = model_class(_lowercase ) model.to(_lowercase ) model.eval() with torch.no_grad(): __UpperCAmelCase = model(**self._prepare_for_class(_lowercase , _lowercase ) ) __UpperCAmelCase = outputs.hidden_states __UpperCAmelCase = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_lowercase ) , _lowercase ) # Swin has a different seq_length __UpperCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __UpperCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def a ( self : str ): __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __UpperCAmelCase = True self.check_hidden_states_output(_lowercase , _lowercase , _lowercase , _lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase = True self.check_hidden_states_output(_lowercase , _lowercase , _lowercase , _lowercase ) def a ( self : Optional[Any] ): __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase = 3 __UpperCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __UpperCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __UpperCAmelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __UpperCAmelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __UpperCAmelCase = True self.check_hidden_states_output(_lowercase , _lowercase , _lowercase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase = True self.check_hidden_states_output(_lowercase , _lowercase , _lowercase , (padded_height, padded_width) ) @unittest.skip(reason='''MaskFormerSwin doesn\'t have pretrained checkpoints''' ) def a ( self : Any ): pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def a ( self : str ): pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def a ( self : Tuple ): pass def a ( self : Tuple ): __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(_lowercase : List[str] ): __UpperCAmelCase = 0 return t def check_equivalence(_lowercase : List[Any] , _lowercase : Any , _lowercase : str , _lowercase : List[str]={} ): with torch.no_grad(): __UpperCAmelCase = model(**_lowercase , return_dict=_lowercase , **_lowercase ) __UpperCAmelCase = model(**_lowercase , return_dict=_lowercase , **_lowercase ).to_tuple() def recursive_check(_lowercase : Dict , _lowercase : Optional[Any] ): if isinstance(_lowercase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_lowercase , _lowercase ): recursive_check(_lowercase , _lowercase ) elif isinstance(_lowercase , _lowercase ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(_lowercase , _lowercase ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(_lowercase ) , set_nan_tensor_to_zero(_lowercase ) , atol=1E-5 ) , msg=( '''Tuple and dict output are not equal. Difference:''' F''' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:''' F''' {torch.isnan(_lowercase ).any()} and `inf`: {torch.isinf(_lowercase )}. Dict has''' F''' `nan`: {torch.isnan(_lowercase ).any()} and `inf`: {torch.isinf(_lowercase )}.''' ) , ) recursive_check(_lowercase , _lowercase ) for model_class in self.all_model_classes: __UpperCAmelCase = model_class(_lowercase ) model.to(_lowercase ) model.eval() __UpperCAmelCase = self._prepare_for_class(_lowercase , _lowercase ) __UpperCAmelCase = self._prepare_for_class(_lowercase , _lowercase ) check_equivalence(_lowercase , _lowercase , _lowercase ) __UpperCAmelCase = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) __UpperCAmelCase = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) check_equivalence(_lowercase , _lowercase , _lowercase ) __UpperCAmelCase = self._prepare_for_class(_lowercase , _lowercase ) __UpperCAmelCase = self._prepare_for_class(_lowercase , _lowercase ) check_equivalence(_lowercase , _lowercase , _lowercase , {'''output_hidden_states''': True} ) __UpperCAmelCase = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) __UpperCAmelCase = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) check_equivalence(_lowercase , _lowercase , _lowercase , {'''output_hidden_states''': True} ) @require_torch class _UpperCAmelCase ( unittest.TestCase , _lowerCAmelCase ): a__ : Optional[Any] = (MaskFormerSwinBackbone,) if is_torch_available() else () a__ : List[str] = MaskFormerSwinConfig def a ( self : List[str] ): __UpperCAmelCase = MaskFormerSwinModelTester(self ) def a ( self : List[Any] ): __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase = inputs_dict['''pixel_values'''].shape[0] for backbone_class in self.all_model_classes: __UpperCAmelCase = backbone_class(_lowercase ) backbone.to(_lowercase ) backbone.eval() __UpperCAmelCase = backbone(**_lowercase ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , _lowercase ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True __UpperCAmelCase = backbone(**_lowercase , output_hidden_states=_lowercase ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: __UpperCAmelCase = backbone(**_lowercase , output_attentions=_lowercase ) self.assertIsNotNone(outputs.attentions )
86
1
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __lowerCamelCase ( A__ ) -> List[str]: """simple docstring""" UpperCamelCase = [] embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight""", F"""stage{idx}.patch_embed.proj.weight""", ) ) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias""", F"""stage{idx}.patch_embed.proj.bias""", ) ) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight""", F"""stage{idx}.patch_embed.norm.weight""", ) ) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias""", F"""stage{idx}.patch_embed.norm.bias""", ) ) return embed def __lowerCamelCase ( A__ , A__ ) -> Optional[int]: """simple docstring""" UpperCamelCase = [] attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_q.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_q.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_k.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_k.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_v.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_v.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj.bias""", ) ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight""", F"""stage{idx}.blocks.{cnt}.mlp.fc1.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias""", F"""stage{idx}.blocks.{cnt}.mlp.fc1.bias""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight""", F"""stage{idx}.blocks.{cnt}.mlp.fc2.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias""", F"""stage{idx}.blocks.{cnt}.mlp.fc2.bias""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight""", F"""stage{idx}.blocks.{cnt}.norm1.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias""", F"""stage{idx}.blocks.{cnt}.norm1.bias""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight""", F"""stage{idx}.blocks.{cnt}.norm2.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias""", F"""stage{idx}.blocks.{cnt}.norm2.bias""") ) return attention_weights def __lowerCamelCase ( A__ ) -> Any: """simple docstring""" UpperCamelCase = [] token.append((F"""cvt.encoder.stages.{idx}.cls_token""", 'stage2.cls_token') ) return token def __lowerCamelCase ( ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def __lowerCamelCase ( A__ , A__ , A__ , A__ ) -> Any: """simple docstring""" UpperCamelCase = 'imagenet-1k-id2label.json' UpperCamelCase = 1_000 UpperCamelCase = 'huggingface/label-files' UpperCamelCase = num_labels UpperCamelCase = json.load(open(cached_download(hf_hub_url(A__ , A__ , repo_type='dataset' ) ) , 'r' ) ) UpperCamelCase = {int(A__ ): v for k, v in idalabel.items()} UpperCamelCase = idalabel UpperCamelCase = {v: k for k, v in idalabel.items()} UpperCamelCase = UpperCamelCase = CvtConfig(num_labels=A__ , idalabel=A__ , labelaid=A__ ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": UpperCamelCase = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": UpperCamelCase = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: UpperCamelCase = [2, 2, 20] UpperCamelCase = [3, 12, 16] UpperCamelCase = [192, 768, 1_024] UpperCamelCase = CvtForImageClassification(A__ ) UpperCamelCase = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) UpperCamelCase = image_size UpperCamelCase = torch.load(A__ , map_location=torch.device('cpu' ) ) UpperCamelCase = OrderedDict() UpperCamelCase = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: UpperCamelCase = list_of_state_dict + cls_token(A__ ) UpperCamelCase = list_of_state_dict + embeddings(A__ ) for cnt in range(config.depth[idx] ): UpperCamelCase = list_of_state_dict + attention(A__ , A__ ) UpperCamelCase = list_of_state_dict + final() for gg in list_of_state_dict: print(A__ ) for i in range(len(A__ ) ): UpperCamelCase = original_weights[list_of_state_dict[i][1]] model.load_state_dict(A__ ) model.save_pretrained(A__ ) image_processor.save_pretrained(A__ ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument( "--cvt_model", default="cvt-w24", type=str, help="Name of the cvt model you'd like to convert.", ) parser.add_argument( "--image_size", default=384, type=int, help="Input Image Size", ) parser.add_argument( "--cvt_file_name", default=R"cvtmodels\CvT-w24-384x384-IN-22k.pth", type=str, help="Input Image Size", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) _lowerCamelCase : Any = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
28
import colorsys from PIL import Image # type: ignore def lowerCamelCase__ ( a__ : float , a__ : float , a__ : int ) -> float: UpperCamelCase_ = x UpperCamelCase_ = y for step in range(a__ ): # noqa: B007 UpperCamelCase_ = a * a - b * b + x UpperCamelCase_ = 2 * a * b + y UpperCamelCase_ = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def lowerCamelCase__ ( a__ : float ) -> tuple: if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def lowerCamelCase__ ( a__ : float ) -> tuple: if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(a__ , 1 , 1 ) ) def lowerCamelCase__ ( a__ : int = 800 , a__ : int = 600 , a__ : float = -0.6 , a__ : float = 0 , a__ : float = 3.2 , a__ : int = 50 , a__ : bool = True , ) -> Image.Image: UpperCamelCase_ = Image.new("""RGB""" , (image_width, image_height) ) UpperCamelCase_ = img.load() # loop through the image-coordinates for image_x in range(a__ ): for image_y in range(a__ ): # determine the figure-coordinates based on the image-coordinates UpperCamelCase_ = figure_width / image_width * image_height UpperCamelCase_ = figure_center_x + (image_x / image_width - 0.5) * figure_width UpperCamelCase_ = figure_center_y + (image_y / image_height - 0.5) * figure_height UpperCamelCase_ = get_distance(a__ , a__ , a__ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: UpperCamelCase_ = get_color_coded_rgb(a__ ) else: UpperCamelCase_ = get_black_and_white_rgb(a__ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure _A = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
122
0
"""simple docstring""" def _snake_case ( lowerCamelCase__ : int = 600_851_475_143 ) -> int: try: lowerCamelCase_ : Tuple =int(lowerCamelCase__ ) except (TypeError, ValueError): raise TypeError("Parameter n must be int or castable to int." ) if n <= 0: raise ValueError("Parameter n must be greater than or equal to one." ) lowerCamelCase_ : List[Any] =1 lowerCamelCase_ : List[str] =2 while i * i <= n: while n % i == 0: lowerCamelCase_ : Optional[int] =i n //= i i += 1 if n > 1: lowerCamelCase_ : Any =n return int(lowerCamelCase__ ) if __name__ == "__main__": print(f'{solution() = }')
209
"""simple docstring""" from __future__ import annotations from collections import namedtuple def _snake_case ( lowerCamelCase__ : float , lowerCamelCase__ : float , lowerCamelCase__ : float ) -> tuple: lowerCamelCase_ : Optional[Any] =namedtuple("result" , "name value" ) if (voltage, current, power).count(0 ) != 1: raise ValueError("Only one argument must be 0" ) elif power < 0: raise ValueError( "Power cannot be negative in any electrical/electronics system" ) elif voltage == 0: return result("voltage" , power / current ) elif current == 0: return result("current" , power / voltage ) elif power == 0: return result("power" , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
209
1