code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
79
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _UpperCAmelCase ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" snake_case = CycleDiffusionPipeline snake_case = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { '''negative_prompt''', '''height''', '''width''', '''negative_prompt_embeds''', } snake_case = PipelineTesterMixin.required_optional_params - {'''latents'''} snake_case = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''source_prompt'''} ) snake_case = IMAGE_TO_IMAGE_IMAGE_PARAMS snake_case = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) _A = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) _A = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , num_train_timesteps=1000 , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , ) torch.manual_seed(0 ) _A = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) _A = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) _A = CLIPTextModel(__UpperCAmelCase ) _A = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _A = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[Any]=0 ): '''simple docstring''' _A = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) _A = image / 2 + 0.5 if str(__UpperCAmelCase ).startswith("mps" ): _A = torch.manual_seed(__UpperCAmelCase ) else: _A = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) _A = { "prompt": "An astronaut riding an elephant", "source_prompt": "An astronaut riding a horse", "image": image, "generator": generator, "num_inference_steps": 2, "eta": 0.1, "strength": 0.8, "guidance_scale": 3, "source_guidance_scale": 1, "output_type": "numpy", } return inputs def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' _A = "cpu" # ensure determinism for the device-dependent torch.Generator _A = self.get_dummy_components() _A = CycleDiffusionPipeline(**__UpperCAmelCase ) _A = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _A = self.get_dummy_inputs(__UpperCAmelCase ) _A = pipe(**__UpperCAmelCase ) _A = output.images _A = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) _A = np.array([0.4459, 0.4943, 0.4544, 0.6643, 0.5474, 0.4327, 0.5701, 0.5959, 0.5179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' _A = self.get_dummy_components() for name, module in components.items(): if hasattr(__UpperCAmelCase , "half" ): _A = module.half() _A = CycleDiffusionPipeline(**__UpperCAmelCase ) _A = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _A = self.get_dummy_inputs(__UpperCAmelCase ) _A = pipe(**__UpperCAmelCase ) _A = output.images _A = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) _A = np.array([0.3506, 0.4543, 0.446, 0.4575, 0.5195, 0.4155, 0.5273, 0.518, 0.4116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def lowerCAmelCase ( self : Any ): '''simple docstring''' return super().test_save_load_local() @unittest.skip("non-deterministic pipeline" ) def lowerCAmelCase ( self : str ): '''simple docstring''' return super().test_inference_batch_single_identical() @skip_mps def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent() @skip_mps def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def lowerCAmelCase ( self : str ): '''simple docstring''' return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _A = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/cycle-diffusion/black_colored_car.png" ) _A = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy" ) _A = init_image.resize((512, 512) ) _A = "CompVis/stable-diffusion-v1-4" _A = DDIMScheduler.from_pretrained(__UpperCAmelCase , subfolder="scheduler" ) _A = CycleDiffusionPipeline.from_pretrained( __UpperCAmelCase , scheduler=__UpperCAmelCase , safety_checker=__UpperCAmelCase , torch_dtype=torch.floataa , revision="fp16" ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) pipe.enable_attention_slicing() _A = "A black colored car" _A = "A blue colored car" _A = torch.manual_seed(0 ) _A = pipe( prompt=__UpperCAmelCase , source_prompt=__UpperCAmelCase , image=__UpperCAmelCase , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=__UpperCAmelCase , output_type="np" , ) _A = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5E-1 def lowerCAmelCase ( self : List[str] ): '''simple docstring''' _A = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/cycle-diffusion/black_colored_car.png" ) _A = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy" ) _A = init_image.resize((512, 512) ) _A = "CompVis/stable-diffusion-v1-4" _A = DDIMScheduler.from_pretrained(__UpperCAmelCase , subfolder="scheduler" ) _A = CycleDiffusionPipeline.from_pretrained(__UpperCAmelCase , scheduler=__UpperCAmelCase , safety_checker=__UpperCAmelCase ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) pipe.enable_attention_slicing() _A = "A black colored car" _A = "A blue colored car" _A = torch.manual_seed(0 ) _A = pipe( prompt=__UpperCAmelCase , source_prompt=__UpperCAmelCase , image=__UpperCAmelCase , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=__UpperCAmelCase , output_type="np" , ) _A = output.images assert np.abs(image - expected_image ).max() < 2E-2
79
1
'''simple docstring''' def _A ( A__ ): """simple docstring""" __lowercase = [int(A__ ) for i in ip_va_address.split('''.''' ) if i.isdigit()] return len(A__ ) == 4 and all(0 <= int(A__ ) <= 254 for octet in octets ) if __name__ == "__main__": lowerCAmelCase__ = input().strip() lowerCAmelCase__ = '''valid''' if is_ip_va_address_valid(ip) else '''invalid''' print(f'{ip} is a {valid_or_invalid} IP v4 address.')
52
'''simple docstring''' lowerCAmelCase__ = '''ABCDEFGHIJKLMNOPQRSTUVWXYZ''' def _A ( ): """simple docstring""" __lowercase = input('''Enter message: ''' ) __lowercase = input('''Enter key [alphanumeric]: ''' ) __lowercase = input('''Encrypt/Decrypt [e/d]: ''' ) if mode.lower().startswith('''e''' ): __lowercase = '''encrypt''' __lowercase = encrypt_message(A__ , A__ ) elif mode.lower().startswith('''d''' ): __lowercase = '''decrypt''' __lowercase = decrypt_message(A__ , A__ ) print(F"\n{mode.title()}ed message:" ) print(A__ ) def _A ( A__ , A__ ): """simple docstring""" return translate_message(A__ , A__ , '''encrypt''' ) def _A ( A__ , A__ ): """simple docstring""" return translate_message(A__ , A__ , '''decrypt''' ) def _A ( A__ , A__ , A__ ): """simple docstring""" __lowercase = [] __lowercase = 0 __lowercase = key.upper() for symbol in message: __lowercase = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(A__ ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(A__ ): __lowercase = 0 else: translated.append(A__ ) return "".join(A__ ) if __name__ == "__main__": main()
52
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( __snake_case , unittest.TestCase ): """simple docstring""" _snake_case = KandinskyInpaintPipeline _snake_case = ['prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image'] _snake_case = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image', ] _snake_case = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] _snake_case = False @property def A__ ( self )-> Tuple: '''simple docstring''' return 32 @property def A__ ( self )-> str: '''simple docstring''' return 32 @property def A__ ( self )-> Union[str, Any]: '''simple docstring''' return self.time_input_dim @property def A__ ( self )-> Tuple: '''simple docstring''' return self.time_input_dim * 4 @property def A__ ( self )-> Any: '''simple docstring''' return 100 @property def A__ ( self )-> str: '''simple docstring''' __UpperCamelCase = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def A__ ( self )-> Tuple: '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) __UpperCamelCase = MultilingualCLIP(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = text_encoder.eval() return text_encoder @property def A__ ( self )-> Dict: '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase = { '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } __UpperCamelCase = UNetaDConditionModel(**SCREAMING_SNAKE_CASE_ ) return model @property def A__ ( self )-> Dict: '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A__ ( self )-> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase = VQModel(**self.dummy_movq_kwargs ) return model def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = self.dummy_text_encoder __UpperCamelCase = self.dummy_tokenizer __UpperCamelCase = self.dummy_unet __UpperCamelCase = self.dummy_movq __UpperCamelCase = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='''linear''' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=SCREAMING_SNAKE_CASE_ , set_alpha_to_one=SCREAMING_SNAKE_CASE_ , steps_offset=1 , prediction_type='''epsilon''' , thresholding=SCREAMING_SNAKE_CASE_ , ) __UpperCamelCase = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0 )-> List[str]: '''simple docstring''' __UpperCamelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(SCREAMING_SNAKE_CASE_ ) # create init_image __UpperCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] __UpperCamelCase = Image.fromarray(np.uinta(SCREAMING_SNAKE_CASE_ ) ).convert('''RGB''' ).resize((256, 256) ) # create mask __UpperCamelCase = np.ones((64, 64) , dtype=np.floataa ) __UpperCamelCase = 0 if str(SCREAMING_SNAKE_CASE_ ).startswith('''mps''' ): __UpperCamelCase = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: __UpperCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = { '''prompt''': '''horse''', '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def A__ ( self )-> List[str]: '''simple docstring''' __UpperCamelCase = '''cpu''' __UpperCamelCase = self.get_dummy_components() __UpperCamelCase = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) ) __UpperCamelCase = output.images __UpperCamelCase = pipe( **self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) , return_dict=SCREAMING_SNAKE_CASE_ , )[0] __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] print(F"image.shape {image.shape}" ) assert image.shape == (1, 64, 64, 3) __UpperCamelCase = np.array( [0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" def A__ ( self )-> Optional[int]: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def A__ ( self )-> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy''' ) __UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) __UpperCamelCase = np.ones((768, 768) , dtype=np.floataa ) __UpperCamelCase = 0 __UpperCamelCase = '''a hat''' __UpperCamelCase = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = KandinskyInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-inpaint''' , torch_dtype=torch.floataa ) __UpperCamelCase = pipeline.to(SCREAMING_SNAKE_CASE_ ) pipeline.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __UpperCamelCase , __UpperCamelCase = pipe_prior( SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() __UpperCamelCase = pipeline( SCREAMING_SNAKE_CASE_ , image=SCREAMING_SNAKE_CASE_ , mask_image=SCREAMING_SNAKE_CASE_ , image_embeds=SCREAMING_SNAKE_CASE_ , negative_image_embeds=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , num_inference_steps=100 , height=768 , width=768 , output_type='''np''' , ) __UpperCamelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
328
'''simple docstring''' import argparse from collections import defaultdict def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = f"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(_SCREAMING_SNAKE_CASE , """r""" ) as f: _snake_case = f.readlines() _snake_case = f"""class {class_name}(""" _snake_case = f"""{4 * " "}def {test_name}(""" _snake_case = f"""{8 * " "}{correct_line.split()[0]}""" _snake_case = f"""{16 * " "}{correct_line.split()[0]}""" _snake_case = False _snake_case = False _snake_case = False _snake_case = False _snake_case = 0 _snake_case = 0 _snake_case = [] for line in lines: if line.startswith(_SCREAMING_SNAKE_CASE ): _snake_case = True elif in_class and line.startswith(_SCREAMING_SNAKE_CASE ): _snake_case = True elif in_class and in_func and (line.startswith(_SCREAMING_SNAKE_CASE ) or line.startswith(_SCREAMING_SNAKE_CASE )): _snake_case = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: _snake_case = True if in_class and in_func and in_line: if ")" not in line: continue else: _snake_case = True if in_class and in_func and in_line and insert_line: new_lines.append(f"""{spaces * " "}{correct_line}""" ) _snake_case = _snake_case = _snake_case = _snake_case = False else: new_lines.append(_SCREAMING_SNAKE_CASE ) with open(_SCREAMING_SNAKE_CASE , """w""" ) as f: for line in new_lines: f.write(_SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ): if fail is not None: with open(_SCREAMING_SNAKE_CASE , """r""" ) as f: _snake_case = {l.strip() for l in f.readlines()} else: _snake_case = None with open(_SCREAMING_SNAKE_CASE , """r""" ) as f: _snake_case = f.readlines() _snake_case = defaultdict(_SCREAMING_SNAKE_CASE ) for line in correct_lines: _snake_case, _snake_case, _snake_case, _snake_case = line.split(""";""" ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('--correct_filename', help='filename of tests with expected result') parser.add_argument('--fail_filename', help='filename of test failures', type=str, default=None) __lowerCAmelCase = parser.parse_args() main(args.correct_filename, args.fail_filename)
341
0
import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = 'T5Config' def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[str]: '''simple docstring''' UpperCamelCase = jnp.zeros_like(_A ) UpperCamelCase = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) UpperCamelCase = shifted_input_ids.at[:, 0].set(_A ) UpperCamelCase = jnp.where(shifted_input_ids == -100 , _A , _A ) return shifted_input_ids class SCREAMING_SNAKE_CASE_ ( lowerCamelCase__ ): __lowerCAmelCase = """mt5""" __lowerCAmelCase = MTaConfig class SCREAMING_SNAKE_CASE_ ( lowerCamelCase__ ): __lowerCAmelCase = """mt5""" __lowerCAmelCase = MTaConfig class SCREAMING_SNAKE_CASE_ ( lowerCamelCase__ ): __lowerCAmelCase = """mt5""" __lowerCAmelCase = MTaConfig
358
import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def lowercase( UpperCamelCase_ ) -> Optional[int]: '''simple docstring''' UpperCamelCase = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: UpperCamelCase = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: UpperCamelCase = 4 UpperCamelCase = 48 UpperCamelCase = """pixelshuffle_aux""" elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: UpperCamelCase = [6, 6, 6, 6] UpperCamelCase = 60 UpperCamelCase = [6, 6, 6, 6] UpperCamelCase = """pixelshuffledirect""" elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: UpperCamelCase = 4 UpperCamelCase = """nearest+conv""" elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: UpperCamelCase = 1 UpperCamelCase = 1 UpperCamelCase = 126 UpperCamelCase = 7 UpperCamelCase = 2_5_5.0 UpperCamelCase = """""" return config def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Dict: '''simple docstring''' if "patch_embed.proj" in name and "layers" not in name: UpperCamelCase = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: UpperCamelCase = name.replace("""patch_embed.norm""" , """embeddings.patch_embeddings.layernorm""" ) if "layers" in name: UpperCamelCase = name.replace("""layers""" , """encoder.stages""" ) if "residual_group.blocks" in name: UpperCamelCase = name.replace("""residual_group.blocks""" , """layers""" ) if "attn.proj" in name: UpperCamelCase = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: UpperCamelCase = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: UpperCamelCase = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: UpperCamelCase = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: UpperCamelCase = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: UpperCamelCase = name.replace("""mlp.fc2""" , """output.dense""" ) if "q_bias" in name: UpperCamelCase = name.replace("""q_bias""" , """query.bias""" ) if "k_bias" in name: UpperCamelCase = name.replace("""k_bias""" , """key.bias""" ) if "v_bias" in name: UpperCamelCase = name.replace("""v_bias""" , """value.bias""" ) if "cpb_mlp" in name: UpperCamelCase = name.replace("""cpb_mlp""" , """continuous_position_bias_mlp""" ) if "patch_embed.proj" in name: UpperCamelCase = name.replace("""patch_embed.proj""" , """patch_embed.projection""" ) if name == "norm.weight": UpperCamelCase = """layernorm.weight""" if name == "norm.bias": UpperCamelCase = """layernorm.bias""" if "conv_first" in name: UpperCamelCase = name.replace("""conv_first""" , """first_convolution""" ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: UpperCamelCase = name.replace("""conv_last""" , """final_convolution""" ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: UpperCamelCase = name.replace("""conv_before_upsample.0""" , """conv_before_upsample""" ) if "upsample.0" in name: UpperCamelCase = name.replace("""upsample.0""" , """upsample.convolution_0""" ) if "upsample.2" in name: UpperCamelCase = name.replace("""upsample.2""" , """upsample.convolution_1""" ) UpperCamelCase = """upsample.""" + name elif config.upsampler == "pixelshuffledirect": UpperCamelCase = name.replace("""upsample.0.weight""" , """upsample.conv.weight""" ) UpperCamelCase = name.replace("""upsample.0.bias""" , """upsample.conv.bias""" ) else: pass else: UpperCamelCase = """swin2sr.""" + name return name def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Union[str, Any]: '''simple docstring''' for key in orig_state_dict.copy().keys(): UpperCamelCase = orig_state_dict.pop(UpperCamelCase_ ) if "qkv" in key: UpperCamelCase = key.split(""".""" ) UpperCamelCase = int(key_split[1] ) UpperCamelCase = int(key_split[4] ) UpperCamelCase = config.embed_dim if "weight" in key: UpperCamelCase = val[:dim, :] UpperCamelCase = val[dim : dim * 2, :] UpperCamelCase = val[-dim:, :] else: UpperCamelCase = val[:dim] UpperCamelCase = val[dim : dim * 2] UpperCamelCase = val[-dim:] pass else: UpperCamelCase = val return orig_state_dict def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: '''simple docstring''' UpperCamelCase = get_config(UpperCamelCase_ ) UpperCamelCase = SwinaSRForImageSuperResolution(UpperCamelCase_ ) model.eval() UpperCamelCase = torch.hub.load_state_dict_from_url(UpperCamelCase_ , map_location="""cpu""" ) UpperCamelCase = convert_state_dict(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase , UpperCamelCase = model.load_state_dict(UpperCamelCase_ , strict=UpperCamelCase_ ) if len(UpperCamelCase_ ) > 0: raise ValueError("""Missing keys when converting: {}""".format(UpperCamelCase_ ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(f"""Unexpected key {key} in state_dict""" ) # verify values UpperCamelCase = """https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true""" UpperCamelCase = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ).convert("""RGB""" ) UpperCamelCase = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values UpperCamelCase = 126 if """Jpeg""" in checkpoint_url else 256 UpperCamelCase = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) UpperCamelCase = transforms(UpperCamelCase_ ).unsqueeze(0 ) if config.num_channels == 1: UpperCamelCase = pixel_values[:, 0, :, :].unsqueeze(1 ) UpperCamelCase = model(UpperCamelCase_ ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: UpperCamelCase = torch.Size([1, 3, 512, 512] ) UpperCamelCase = torch.tensor( [[-0.7_0_8_7, -0.7_1_3_8, -0.6_7_2_1], [-0.8_3_4_0, -0.8_0_9_5, -0.7_2_9_8], [-0.9_1_4_9, -0.8_4_1_4, -0.7_9_4_0]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: UpperCamelCase = torch.Size([1, 3, 1024, 1024] ) UpperCamelCase = torch.tensor( [[-0.7_7_7_5, -0.8_1_0_5, -0.8_9_3_3], [-0.7_7_6_4, -0.8_3_5_6, -0.9_2_2_5], [-0.7_9_7_6, -0.8_6_8_6, -0.9_5_7_9]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here UpperCamelCase = torch.Size([1, 3, 1024, 1024] ) UpperCamelCase = torch.tensor( [[-0.8_0_3_5, -0.7_5_0_4, -0.7_4_9_1], [-0.8_5_3_8, -0.8_1_2_4, -0.7_7_8_2], [-0.8_8_0_4, -0.8_6_5_1, -0.8_4_9_3]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: UpperCamelCase = torch.Size([1, 3, 512, 512] ) UpperCamelCase = torch.tensor( [[-0.7_6_6_9, -0.8_6_6_2, -0.8_7_6_7], [-0.8_8_1_0, -0.9_9_6_2, -0.9_8_2_0], [-0.9_3_4_0, -1.0_3_2_2, -1.1_1_4_9]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: UpperCamelCase = torch.Size([1, 3, 1024, 1024] ) UpperCamelCase = torch.tensor( [[-0.5_2_3_8, -0.5_5_5_7, -0.6_3_2_1], [-0.6_0_1_6, -0.5_9_0_3, -0.6_3_9_1], [-0.6_2_4_4, -0.6_3_3_4, -0.6_8_8_9]] ) assert ( outputs.reconstruction.shape == expected_shape ), f"""Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}""" assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , UpperCamelCase_ , atol=1E-3 ) print("""Looks ok!""" ) UpperCamelCase = { """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""": ( """swin2SR-classical-sr-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth""": ( """swin2SR-classical-sr-x4-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth""": ( """swin2SR-compressed-sr-x4-48""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth""": ( """swin2SR-lightweight-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth""": ( """swin2SR-realworld-sr-x4-64-bsrgan-psnr""" ), } UpperCamelCase = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCamelCase_ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(UpperCamelCase_ ) if push_to_hub: model.push_to_hub(f"""caidas/{model_name}""" ) processor.push_to_hub(f"""caidas/{model_name}""" ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""", type=str, help="""URL of the original Swin2SR checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the converted model to the hub.""") _SCREAMING_SNAKE_CASE = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
165
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __lowercase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = ["""NllbTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = ["""NllbTokenizerFast"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys __lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
40
def A_ ( A__ , A__ ) -> str: if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) a__ : List[str] = str(bin(A__ ) )[2:] # remove the leading "0b" a__ : Optional[int] = str(bin(A__ ) )[2:] # remove the leading "0b" a__ : List[str] = max(len(A__ ) , len(A__ ) ) return "0b" + "".join( str(int(char_a == '1' and char_b == '1' ) ) for char_a, char_b in zip(a_binary.zfill(A__ ) , b_binary.zfill(A__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
99
0
from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def __lowercase ( _UpperCamelCase ) ->str: """simple docstring""" return {key.lstrip('''-''' ): value for key, value in zip(unknown_args[::2], unknown_args[1::2] )} def __lowercase ( ) ->Dict: """simple docstring""" lowercase : Union[str, Any] = ArgumentParser( '''HuggingFace Datasets CLI tool''', usage='''datasets-cli <command> [<args>]''', allow_abbrev=_UpperCamelCase ) lowercase : Optional[Any] = parser.add_subparsers(help='''datasets-cli command helpers''' ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(_UpperCamelCase ) EnvironmentCommand.register_subcommand(_UpperCamelCase ) TestCommand.register_subcommand(_UpperCamelCase ) RunBeamCommand.register_subcommand(_UpperCamelCase ) DummyDataCommand.register_subcommand(_UpperCamelCase ) # Parse args lowercase , lowercase : Optional[Any] = parser.parse_known_args() if not hasattr(_UpperCamelCase, '''func''' ): parser.print_help() exit(1 ) lowercase : Union[str, Any] = parse_unknown_args(_UpperCamelCase ) # Run lowercase : Union[str, Any] = args.func(_UpperCamelCase, **_UpperCamelCase ) service.run() if __name__ == "__main__": main()
173
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def __lowercase ( _UpperCamelCase, _UpperCamelCase=0.9_9_9, _UpperCamelCase="cosine", ) ->Tuple: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(_UpperCamelCase ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_UpperCamelCase ): return math.exp(t * -1_2.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) lowercase : List[str] = [] for i in range(_UpperCamelCase ): lowercase : List[str] = i / num_diffusion_timesteps lowercase : Any = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_UpperCamelCase ) / alpha_bar_fn(_UpperCamelCase ), _UpperCamelCase ) ) return torch.tensor(_UpperCamelCase, dtype=torch.floataa ) class __SCREAMING_SNAKE_CASE ( A__ , A__ ): A : Any = [e.name for e in KarrasDiffusionSchedulers] A : Dict = 2 @register_to_config def __init__( self , SCREAMING_SNAKE_CASE__ = 1000 , SCREAMING_SNAKE_CASE__ = 0.00085 , SCREAMING_SNAKE_CASE__ = 0.012 , SCREAMING_SNAKE_CASE__ = "linear" , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = "epsilon" , SCREAMING_SNAKE_CASE__ = "linspace" , SCREAMING_SNAKE_CASE__ = 0 , ): if trained_betas is not None: lowercase : str = torch.tensor(SCREAMING_SNAKE_CASE__ , dtype=torch.floataa ) elif beta_schedule == "linear": lowercase : Union[str, Any] = torch.linspace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowercase : Union[str, Any] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , SCREAMING_SNAKE_CASE__ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowercase : str = betas_for_alpha_bar(SCREAMING_SNAKE_CASE__ ) else: raise NotImplementedError(f"""{beta_schedule} does is not implemented for {self.__class__}""" ) lowercase : Optional[int] = 1.0 - self.betas lowercase : Union[str, Any] = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ): if schedule_timesteps is None: lowercase : Union[str, Any] = self.timesteps lowercase : int = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: lowercase : List[Any] = 1 if len(SCREAMING_SNAKE_CASE__ ) > 1 else 0 else: lowercase : int = timestep.cpu().item() if torch.is_tensor(SCREAMING_SNAKE_CASE__ ) else timestep lowercase : Optional[Any] = self._index_counter[timestep_int] return indices[pos].item() @property def __lowerCamelCase ( self ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ): lowercase : Optional[Any] = self.index_for_timestep(SCREAMING_SNAKE_CASE__ ) if self.state_in_first_order: lowercase : Any = self.sigmas[step_index] else: lowercase : Optional[int] = self.sigmas_interpol[step_index] lowercase : Union[str, Any] = sample / ((sigma**2 + 1) ** 0.5) return sample def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , ): lowercase : Any = num_inference_steps lowercase : Optional[Any] = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": lowercase : Dict = np.linspace(0 , num_train_timesteps - 1 , SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ )[::-1].copy() elif self.config.timestep_spacing == "leading": lowercase : int = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowercase : Union[str, Any] = (np.arange(0 , SCREAMING_SNAKE_CASE__ ) * step_ratio).round()[::-1].copy().astype(SCREAMING_SNAKE_CASE__ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": lowercase : str = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowercase : Dict = (np.arange(SCREAMING_SNAKE_CASE__ , 0 , -step_ratio )).round().copy().astype(SCREAMING_SNAKE_CASE__ ) timesteps -= 1 else: raise ValueError( f"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) lowercase : int = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) lowercase : Optional[int] = torch.from_numpy(np.log(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = np.interp(SCREAMING_SNAKE_CASE__ , np.arange(0 , len(SCREAMING_SNAKE_CASE__ ) ) , SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) lowercase : str = torch.from_numpy(SCREAMING_SNAKE_CASE__ ).to(device=SCREAMING_SNAKE_CASE__ ) # interpolate sigmas lowercase : int = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() lowercase : Optional[Any] = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) lowercase : Optional[int] = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(SCREAMING_SNAKE_CASE__ ).startswith('''mps''' ): # mps does not support float64 lowercase : Any = torch.from_numpy(SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ , dtype=torch.floataa ) else: lowercase : List[Any] = torch.from_numpy(SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) # interpolate timesteps lowercase : Any = self.sigma_to_t(SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ , dtype=timesteps.dtype ) lowercase : List[Any] = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() lowercase : Dict = torch.cat([timesteps[:1], interleaved_timesteps] ) lowercase : int = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter lowercase : Dict = defaultdict(SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): # get log sigma lowercase : Any = sigma.log() # get distribution lowercase : Optional[Any] = log_sigma - self.log_sigmas[:, None] # get sigmas range lowercase : List[Any] = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) lowercase : str = low_idx + 1 lowercase : Union[str, Any] = self.log_sigmas[low_idx] lowercase : Union[str, Any] = self.log_sigmas[high_idx] # interpolate sigmas lowercase : Dict = (low - log_sigma) / (low - high) lowercase : Union[str, Any] = w.clamp(0 , 1 ) # transform interpolation to time range lowercase : List[str] = (1 - w) * low_idx + w * high_idx lowercase : Tuple = t.view(sigma.shape ) return t @property def __lowerCamelCase ( self ): return self.sample is None def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = True , ): lowercase : Optional[Any] = self.index_for_timestep(SCREAMING_SNAKE_CASE__ ) # advance index counter by 1 lowercase : Dict = timestep.cpu().item() if torch.is_tensor(SCREAMING_SNAKE_CASE__ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: lowercase : Union[str, Any] = self.sigmas[step_index] lowercase : List[Any] = self.sigmas_interpol[step_index + 1] lowercase : Any = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method lowercase : Any = self.sigmas[step_index - 1] lowercase : List[Any] = self.sigmas_interpol[step_index] lowercase : Optional[int] = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API lowercase : Union[str, Any] = 0 lowercase : List[Any] = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": lowercase : List[Any] = sigma_hat if self.state_in_first_order else sigma_interpol lowercase : Any = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": lowercase : List[str] = sigma_hat if self.state_in_first_order else sigma_interpol lowercase : Any = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('''prediction_type not implemented yet: sample''' ) else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order lowercase : List[str] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep lowercase : Union[str, Any] = sigma_interpol - sigma_hat # store for 2nd order step lowercase : Optional[Any] = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order lowercase : str = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep lowercase : str = sigma_next - sigma_hat lowercase : List[str] = self.sample lowercase : Optional[int] = None lowercase : str = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples lowercase : int = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(SCREAMING_SNAKE_CASE__ ): # mps does not support float64 lowercase : Tuple = self.timesteps.to(original_samples.device , dtype=torch.floataa ) lowercase : List[Any] = timesteps.to(original_samples.device , dtype=torch.floataa ) else: lowercase : List[str] = self.timesteps.to(original_samples.device ) lowercase : Any = timesteps.to(original_samples.device ) lowercase : Tuple = [self.index_for_timestep(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for t in timesteps] lowercase : Union[str, Any] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): lowercase : Any = sigma.unsqueeze(-1 ) lowercase : Optional[Any] = original_samples + noise * sigma return noisy_samples def __len__( self ): return self.config.num_train_timesteps
173
1
'''simple docstring''' import math def lowercase__ ( __lowercase : int ) -> bool: """simple docstring""" return math.sqrt(__lowercase ) * math.sqrt(__lowercase ) == num def lowercase__ ( __lowercase : int ) -> bool: """simple docstring""" __UpperCamelCase = 0 __UpperCamelCase = n while left <= right: __UpperCamelCase = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: __UpperCamelCase = mid - 1 else: __UpperCamelCase = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
53
'''simple docstring''' import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration snake_case_ : Union[str, Any] = 50_00_00 snake_case_ ,snake_case_ : Optional[int] = os.path.split(__file__) snake_case_ : Optional[Any] = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json")) @get_duration def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : datasets.Dataset, **SCREAMING_SNAKE_CASE__ : Dict ) -> str: UpperCAmelCase_ : List[str] = dataset.map(**SCREAMING_SNAKE_CASE__ ) @get_duration def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : datasets.Dataset, **SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Any: UpperCAmelCase_ : Optional[int] = dataset.filter(**SCREAMING_SNAKE_CASE__ ) def lowerCamelCase_ ( ) -> Any: UpperCAmelCase_ : List[str] = {'''num examples''': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : Optional[int] = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} ) UpperCAmelCase_ : Dict = generate_example_dataset( os.path.join(SCREAMING_SNAKE_CASE__, '''dataset.arrow''' ), SCREAMING_SNAKE_CASE__, num_examples=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Any = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''', use_fast=SCREAMING_SNAKE_CASE__ ) def tokenize(SCREAMING_SNAKE_CASE__ : Union[str, Any] ): return tokenizer(examples['''text'''] ) UpperCAmelCase_ : List[str] = map(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Union[str, Any] = map(SCREAMING_SNAKE_CASE__, batched=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : str = map(SCREAMING_SNAKE_CASE__, function=lambda SCREAMING_SNAKE_CASE__ : None, batched=SCREAMING_SNAKE_CASE__ ) with dataset.formatted_as(type='''numpy''' ): UpperCAmelCase_ : Dict = map(SCREAMING_SNAKE_CASE__, function=lambda SCREAMING_SNAKE_CASE__ : None, batched=SCREAMING_SNAKE_CASE__ ) with dataset.formatted_as(type='''pandas''' ): UpperCAmelCase_ : Union[str, Any] = map(SCREAMING_SNAKE_CASE__, function=lambda SCREAMING_SNAKE_CASE__ : None, batched=SCREAMING_SNAKE_CASE__ ) with dataset.formatted_as(type='''torch''', columns='''numbers''' ): UpperCAmelCase_ : Optional[int] = map(SCREAMING_SNAKE_CASE__, function=lambda SCREAMING_SNAKE_CASE__ : None, batched=SCREAMING_SNAKE_CASE__ ) with dataset.formatted_as(type='''tensorflow''', columns='''numbers''' ): UpperCAmelCase_ : Optional[Any] = map(SCREAMING_SNAKE_CASE__, function=lambda SCREAMING_SNAKE_CASE__ : None, batched=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Any = map(SCREAMING_SNAKE_CASE__, function=SCREAMING_SNAKE_CASE__, batched=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Tuple = filter(SCREAMING_SNAKE_CASE__ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(SCREAMING_SNAKE_CASE__, '''wb''' ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE__ ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
125
0
def __a ( __lowerCamelCase ): if any(not isinstance(lowerCAmelCase_, lowerCAmelCase_ ) or x < 0 for x in sequence ): raise TypeError("Sequence must be list of non-negative integers" ) for _ in range(len(lowerCAmelCase_ ) ): for i, (rod_upper, rod_lower) in enumerate(zip(lowerCAmelCase_, sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
368
"""simple docstring""" import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels _a = object() # For specifying empty leaf dict `{}` _a = object() def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Any = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(__lowerCamelCase ) - len(__lowerCamelCase ) + 1 ): UpperCAmelCase_ : List[str] = [x.match(__lowerCamelCase ) for x, y in zip(__lowerCamelCase, ks[i:] )] if matches and all(__lowerCamelCase ): return True return False def __a ( __lowerCamelCase ): def replace(__lowerCamelCase, __lowerCamelCase ): for rule, replacement in rules: if _match(__lowerCamelCase, __lowerCamelCase ): return replacement return val return replace def __a ( ): return [ # embeddings (("transformer", "wpe", "embedding"), P("mp", __lowerCamelCase )), (("transformer", "wte", "embedding"), P("mp", __lowerCamelCase )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__lowerCamelCase, "mp" )), (("attention", "out_proj", "kernel"), P("mp", __lowerCamelCase )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(__lowerCamelCase, "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp", __lowerCamelCase )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def __a ( __lowerCamelCase ): UpperCAmelCase_ : List[str] = _get_partition_rules() UpperCAmelCase_ : Any = _replacement_rules(__lowerCamelCase ) UpperCAmelCase_ : Any = {k: _unmatched for k in flatten_dict(__lowerCamelCase )} UpperCAmelCase_ : Dict = {k: replace(__lowerCamelCase, __lowerCamelCase ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(__lowerCamelCase ) )
23
0
'''simple docstring''' import unittest import numpy as np def _lowerCAmelCase ( _UpperCamelCase : np.ndarray , _UpperCamelCase : np.ndarray , _UpperCamelCase : np.ndarray , _UpperCamelCase : np.ndarray | None = None , ) -> np.ndarray: """simple docstring""" _SCREAMING_SNAKE_CASE =np.shape(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =np.shape(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =np.shape(_UpperCamelCase ) if shape_a[0] != shape_b[0]: _SCREAMING_SNAKE_CASE =( 'Expected the same number of rows for A and B. ' f"Instead found A of size {shape_a} and B of size {shape_b}" ) raise ValueError(_UpperCamelCase ) if shape_b[1] != shape_c[1]: _SCREAMING_SNAKE_CASE =( 'Expected the same number of columns for B and C. ' f"Instead found B of size {shape_b} and C of size {shape_c}" ) raise ValueError(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =pseudo_inv if a_inv is None: try: _SCREAMING_SNAKE_CASE =np.linalg.inv(_UpperCamelCase ) except np.linalg.LinAlgError: raise ValueError( 'Input matrix A is not invertible. Cannot compute Schur complement.' ) return mat_c - mat_b.T @ a_inv @ mat_b class A__ ( unittest.TestCase ): def A ( self : Dict ) -> None: '''simple docstring''' _SCREAMING_SNAKE_CASE =np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) _SCREAMING_SNAKE_CASE =np.array([[0, 3], [3, 0], [2, 3]] ) _SCREAMING_SNAKE_CASE =np.array([[2, 1], [6, 3]] ) _SCREAMING_SNAKE_CASE =schur_complement(_a , _a , _a ) _SCREAMING_SNAKE_CASE =np.block([[a, b], [b.T, c]] ) _SCREAMING_SNAKE_CASE =np.linalg.det(_a ) _SCREAMING_SNAKE_CASE =np.linalg.det(_a ) _SCREAMING_SNAKE_CASE =np.linalg.det(_a ) self.assertAlmostEqual(_a , det_a * det_s ) def A ( self : str ) -> None: '''simple docstring''' _SCREAMING_SNAKE_CASE =np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) _SCREAMING_SNAKE_CASE =np.array([[0, 3], [3, 0], [2, 3]] ) _SCREAMING_SNAKE_CASE =np.array([[2, 1], [6, 3]] ) with self.assertRaises(_a ): schur_complement(_a , _a , _a ) def A ( self : List[Any] ) -> None: '''simple docstring''' _SCREAMING_SNAKE_CASE =np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) _SCREAMING_SNAKE_CASE =np.array([[0, 3], [3, 0], [2, 3]] ) _SCREAMING_SNAKE_CASE =np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(_a ): schur_complement(_a , _a , _a ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
47
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : Union[str, Any] = { "Salesforce/instruct-blip-flan-t5": "https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json", } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'instructblip_vision_model' def __init__( self , __snake_case=1408 , __snake_case=6144 , __snake_case=39 , __snake_case=16 , __snake_case=224 , __snake_case=14 , __snake_case="gelu" , __snake_case=1e-6 , __snake_case=0.0 , __snake_case=1e-10 , __snake_case=True , **__snake_case , ) -> str: '''simple docstring''' super().__init__(**__snake_case ) __a =hidden_size __a =intermediate_size __a =num_hidden_layers __a =num_attention_heads __a =patch_size __a =image_size __a =initializer_range __a =attention_dropout __a =layer_norm_eps __a =hidden_act __a =qkv_bias @classmethod def __magic_name__ ( cls , __snake_case , **__snake_case ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(__snake_case ) __a , __a =cls.get_config_dict(__snake_case , **__snake_case ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": __a =config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(__snake_case , **__snake_case ) class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'instructblip_qformer' def __init__( self , __snake_case=3_0522 , __snake_case=768 , __snake_case=12 , __snake_case=12 , __snake_case=3072 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=512 , __snake_case=0.02 , __snake_case=1e-12 , __snake_case=0 , __snake_case="absolute" , __snake_case=2 , __snake_case=1408 , **__snake_case , ) -> List[str]: '''simple docstring''' super().__init__(pad_token_id=__snake_case , **__snake_case ) __a =vocab_size __a =hidden_size __a =num_hidden_layers __a =num_attention_heads __a =hidden_act __a =intermediate_size __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =max_position_embeddings __a =initializer_range __a =layer_norm_eps __a =position_embedding_type __a =cross_attention_frequency __a =encoder_hidden_size @classmethod def __magic_name__ ( cls , __snake_case , **__snake_case ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(__snake_case ) __a , __a =cls.get_config_dict(__snake_case , **__snake_case ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": __a =config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(__snake_case , **__snake_case ) class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'instructblip' SCREAMING_SNAKE_CASE = True def __init__( self , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=32 , **__snake_case ) -> str: '''simple docstring''' super().__init__(**__snake_case ) if vision_config is None: __a ={} logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.' ) if qformer_config is None: __a ={} logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.' ) if text_config is None: __a ={} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) __a =InstructBlipVisionConfig(**__snake_case ) __a =InstructBlipQFormerConfig(**__snake_case ) __a =text_config['model_type'] if 'model_type' in text_config else 'opt' __a =CONFIG_MAPPING[text_model_type](**__snake_case ) __a =self.text_config.tie_word_embeddings __a =self.text_config.is_encoder_decoder __a =num_query_tokens __a =self.vision_config.hidden_size __a =self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __a =1.0 __a =0.02 @classmethod def __magic_name__ ( cls , __snake_case , __snake_case , __snake_case , **__snake_case , ) -> Optional[Any]: '''simple docstring''' return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__snake_case , ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =copy.deepcopy(self.__dict__ ) __a =self.vision_config.to_dict() __a =self.qformer_config.to_dict() __a =self.text_config.to_dict() __a =self.__class__.model_type return output
218
0
"""simple docstring""" import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py snake_case__ : int = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. snake_case__ : Union[str, Any] = importlib.util.spec_from_file_location( '''transformers''', os.path.join(PATH_TO_TRANSFORMERS, '''__init__.py'''), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) snake_case__ : Optional[Any] = spec.loader.load_module() snake_case__ : Union[str, Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` snake_case__ : int = re.compile('''\[(.+?)\]\((https://huggingface\.co/.+?)\)''') snake_case__ : Union[str, Any] = { '''CLIPConfigMixin''', '''DecisionTransformerConfigMixin''', '''EncoderDecoderConfigMixin''', '''RagConfigMixin''', '''SpeechEncoderDecoderConfigMixin''', '''VisionEncoderDecoderConfigMixin''', '''VisionTextDualEncoderConfigMixin''', } def _snake_case ( ): lowerCAmelCase : str = [] for config_class in list(CONFIG_MAPPING.values() ): lowerCAmelCase : int = False # source code of `config_class` lowerCAmelCase : Dict = inspect.getsource(_snake_case ) lowerCAmelCase : Tuple = _re_checkpoint.findall(_snake_case ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` lowerCAmelCase : str = checkpoint # verify the checkpoint name corresponds to the checkpoint link lowerCAmelCase : Tuple = f'''https://huggingface.co/{ckpt_name}''' if ckpt_link == ckpt_link_from_name: lowerCAmelCase : Tuple = True break lowerCAmelCase : Optional[Any] = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(_snake_case ) if len(_snake_case ) > 0: lowerCAmelCase : Tuple = '''\n'''.join(sorted(_snake_case ) ) raise ValueError(f'''The following configurations don\'t contain any valid checkpoint:\n{message}''' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
356
"""simple docstring""" import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow snake_case__ : Optional[Any] = False class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : List[Any]=3_2 ): set_seed(0 ) lowerCAmelCase : Tuple = UNetaDModel(sample_size=UpperCamelCase_ , in_channels=3 , out_channels=3 ) lowerCAmelCase : List[str] = torch.optim.SGD(model.parameters() , lr=0.0_001 ) return model, optimizer @slow def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : List[str] = '''cpu''' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable lowerCAmelCase : str = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_start=0.0_001 , beta_end=0.02 , beta_schedule='''linear''' , clip_sample=UpperCamelCase_ , ) lowerCAmelCase : int = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_start=0.0_001 , beta_end=0.02 , beta_schedule='''linear''' , clip_sample=UpperCamelCase_ , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) lowerCAmelCase : int = [torch.randn((4, 3, 3_2, 3_2) ).clip(-1 , 1 ).to(UpperCamelCase_ ) for _ in range(4 )] lowerCAmelCase : Optional[int] = [torch.randn((4, 3, 3_2, 3_2) ).to(UpperCamelCase_ ) for _ in range(4 )] lowerCAmelCase : Optional[int] = [torch.randint(0 , 1_0_0_0 , (4,) ).long().to(UpperCamelCase_ ) for _ in range(4 )] # train with a DDPM scheduler lowerCAmelCase, lowerCAmelCase : str = self.get_model_optimizer(resolution=3_2 ) model.train().to(UpperCamelCase_ ) for i in range(4 ): optimizer.zero_grad() lowerCAmelCase : List[Any] = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) lowerCAmelCase : List[str] = model(UpperCamelCase_ , timesteps[i] ).sample lowerCAmelCase : Dict = torch.nn.functional.mse_loss(UpperCamelCase_ , noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM lowerCAmelCase, lowerCAmelCase : List[Any] = self.get_model_optimizer(resolution=3_2 ) model.train().to(UpperCamelCase_ ) for i in range(4 ): optimizer.zero_grad() lowerCAmelCase : Union[str, Any] = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) lowerCAmelCase : Optional[int] = model(UpperCamelCase_ , timesteps[i] ).sample lowerCAmelCase : int = torch.nn.functional.mse_loss(UpperCamelCase_ , noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) ) self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) )
314
0
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: __a = None __a = logging.get_logger(__name__) __a = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} __a = { 'vocab_file': { 'facebook/mbart-large-en-ro': ( 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model' ), 'facebook/mbart-large-cc25': ( 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/mbart-large-en-ro': 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json', 'facebook/mbart-large-cc25': 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json', }, } __a = { 'facebook/mbart-large-en-ro': 1_0_2_4, 'facebook/mbart-large-cc25': 1_0_2_4, } # fmt: off __a = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN'] class lowercase__( _UpperCAmelCase ): """simple docstring""" a :Dict = VOCAB_FILES_NAMES a :Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a :str = PRETRAINED_VOCAB_FILES_MAP a :int = ['input_ids', 'attention_mask'] a :Tuple = MBartTokenizer a :List[int] = [] a :List[int] = [] def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : str=None , SCREAMING_SNAKE_CASE_ : int=None , SCREAMING_SNAKE_CASE_ : Any="<s>" , SCREAMING_SNAKE_CASE_ : Any="</s>" , SCREAMING_SNAKE_CASE_ : Any="</s>" , SCREAMING_SNAKE_CASE_ : List[str]="<s>" , SCREAMING_SNAKE_CASE_ : List[str]="<unk>" , SCREAMING_SNAKE_CASE_ : Dict="<pad>" , SCREAMING_SNAKE_CASE_ : List[Any]="<mask>" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=None , SCREAMING_SNAKE_CASE_ : Any=None , SCREAMING_SNAKE_CASE_ : Union[str, Any]=None , **SCREAMING_SNAKE_CASE_ : int , ) -> str: lowercase_ = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else mask_token super().__init__( vocab_file=a__ , tokenizer_file=a__ , bos_token=a__ , eos_token=a__ , sep_token=a__ , cls_token=a__ , unk_token=a__ , pad_token=a__ , mask_token=a__ , src_lang=a__ , tgt_lang=a__ , additional_special_tokens=a__ , **a__ , ) lowercase_ = vocab_file lowercase_ = False if not self.vocab_file else True lowercase_ = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) lowercase_ = { lang_code: self.convert_tokens_to_ids(a__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowercase_ = src_lang if src_lang is not None else '''en_XX''' lowercase_ = self.convert_tokens_to_ids(self._src_lang ) lowercase_ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _lowercase ( self : Optional[int] ) -> Dict: return self._src_lang @src_lang.setter def _lowercase ( self : Tuple , SCREAMING_SNAKE_CASE_ : str ) -> List[Any]: lowercase_ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _lowercase ( self : Tuple , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> Tuple: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> Tuple: lowercase_ = [self.sep_token_id] lowercase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] , SCREAMING_SNAKE_CASE_ : Optional[str] , **SCREAMING_SNAKE_CASE_ : int ) -> Dict: if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) lowercase_ = src_lang lowercase_ = self(a__ , add_special_tokens=a__ , return_tensors=a__ , **a__ ) lowercase_ = self.convert_tokens_to_ids(a__ ) lowercase_ = tgt_lang_id return inputs def _lowercase ( self : Tuple , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str = "en_XX" , SCREAMING_SNAKE_CASE_ : Optional[List[str]] = None , SCREAMING_SNAKE_CASE_ : str = "ro_RO" , **SCREAMING_SNAKE_CASE_ : Tuple , ) -> Dict: lowercase_ = src_lang lowercase_ = tgt_lang return super().prepare_seqaseq_batch(a__ , a__ , **a__ ) def _lowercase ( self : str ) -> Optional[int]: return self.set_src_lang_special_tokens(self.src_lang ) def _lowercase ( self : List[Any] ) -> Any: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : str ) -> Tuple: lowercase_ = self.convert_tokens_to_ids(a__ ) lowercase_ = [] lowercase_ = [self.eos_token_id, self.cur_lang_code] lowercase_ = self.convert_ids_to_tokens(self.prefix_tokens ) lowercase_ = self.convert_ids_to_tokens(self.suffix_tokens ) lowercase_ = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _lowercase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str ) -> Any: lowercase_ = self.convert_tokens_to_ids(a__ ) lowercase_ = [] lowercase_ = [self.eos_token_id, self.cur_lang_code] lowercase_ = self.convert_ids_to_tokens(self.prefix_tokens ) lowercase_ = self.convert_ids_to_tokens(self.suffix_tokens ) lowercase_ = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _lowercase ( self : int , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ) -> str: if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(a__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''' ) return lowercase_ = os.path.join( a__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a__ ): copyfile(self.vocab_file , a__ ) return (out_vocab_file,)
30
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__(self : Any , a__ : List[Any] , a__ : Dict=13 , a__ : str=32 , a__ : Tuple=3 , a__ : Optional[Any]=4 , a__ : Optional[int]=[10, 20, 30, 40] , a__ : List[Any]=[2, 2, 3, 2] , a__ : List[Any]=True , a__ : int=True , a__ : List[Any]=37 , a__ : Any="gelu" , a__ : int=10 , a__ : Dict=0.0_2 , a__ : Dict=["stage2", "stage3", "stage4"] , a__ : Tuple=[2, 3, 4] , a__ : List[str]=None , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = image_size __snake_case = num_channels __snake_case = num_stages __snake_case = hidden_sizes __snake_case = depths __snake_case = is_training __snake_case = use_labels __snake_case = intermediate_size __snake_case = hidden_act __snake_case = num_labels __snake_case = initializer_range __snake_case = out_features __snake_case = out_indices __snake_case = scope def a (self : Dict ): """simple docstring""" __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.num_labels ) __snake_case = self.get_config() return config, pixel_values, labels def a (self : List[str] ): """simple docstring""" return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=a__ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def a (self : str , a__ : Union[str, Any] , a__ : List[str] , a__ : List[Any] ): """simple docstring""" __snake_case = ConvNextModel(config=a__ ) model.to(a__ ) model.eval() __snake_case = model(a__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a (self : Optional[Any] , a__ : List[Any] , a__ : str , a__ : List[Any] ): """simple docstring""" __snake_case = ConvNextForImageClassification(a__ ) model.to(a__ ) model.eval() __snake_case = model(a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a (self : Tuple , a__ : List[Any] , a__ : List[str] , a__ : List[str] ): """simple docstring""" __snake_case = ConvNextBackbone(config=a__ ) model.to(a__ ) model.eval() __snake_case = model(a__ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __snake_case = None __snake_case = ConvNextBackbone(config=a__ ) model.to(a__ ) model.eval() __snake_case = model(a__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def a (self : Tuple ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case = config_and_inputs __snake_case = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): A_ : Dict = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) A_ : Optional[Any] = ( {'feature-extraction': ConvNextModel, 'image-classification': ConvNextForImageClassification} if is_torch_available() else {} ) A_ : Dict = True A_ : Optional[Any] = False A_ : int = False A_ : int = False A_ : List[str] = False def a (self : List[str] ): """simple docstring""" __snake_case = ConvNextModelTester(self ) __snake_case = ConfigTester(self , config_class=a__ , has_text_modality=a__ , hidden_size=37 ) def a (self : Tuple ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a (self : str ): """simple docstring""" return @unittest.skip(reason='''ConvNext does not use inputs_embeds''' ) def a (self : int ): """simple docstring""" pass @unittest.skip(reason='''ConvNext does not support input and output embeddings''' ) def a (self : Dict ): """simple docstring""" pass @unittest.skip(reason='''ConvNext does not use feedforward chunking''' ) def a (self : List[Any] ): """simple docstring""" pass def a (self : Optional[Any] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a__ ) __snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , a__ ) def a (self : List[Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def a (self : Dict ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*a__ ) def a (self : Dict ): """simple docstring""" def check_hidden_states_output(a__ : List[str] , a__ : str , a__ : Tuple ): __snake_case = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): __snake_case = model(**self._prepare_for_class(a__ , a__ ) ) __snake_case = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __snake_case = self.model_tester.num_stages self.assertEqual(len(a__ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = True check_hidden_states_output(a__ , a__ , a__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case = True check_hidden_states_output(a__ , a__ , a__ ) def a (self : Optional[Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a__ ) @slow def a (self : Any ): """simple docstring""" for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = ConvNextModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def lowerCamelCase__ ( ) -> List[str]: __snake_case = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def a (self : Tuple ): """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/convnext-tiny-224''' ) if is_vision_available() else None @slow def a (self : Optional[Any] ): """simple docstring""" __snake_case = ConvNextForImageClassification.from_pretrained('''facebook/convnext-tiny-224''' ).to(a__ ) __snake_case = self.default_image_processor __snake_case = prepare_img() __snake_case = image_processor(images=a__ , return_tensors='''pt''' ).to(a__ ) # forward pass with torch.no_grad(): __snake_case = model(**a__ ) # verify the logits __snake_case = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , a__ ) __snake_case = torch.tensor([-0.0_2_6_0, -0.4_7_3_9, 0.1_9_1_1] ).to(a__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a__ , atol=1E-4 ) ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase , _UpperCAmelCase ): A_ : Union[str, Any] = (ConvNextBackbone,) if is_torch_available() else () A_ : List[Any] = ConvNextConfig A_ : Optional[Any] = False def a (self : Optional[int] ): """simple docstring""" __snake_case = ConvNextModelTester(self )
24
0
"""simple docstring""" import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCamelCase ( A__ ): '''simple docstring''' a_ : Dict = ["""image_processor""", """tokenizer"""] a_ : str = """FlavaImageProcessor""" a_ : List[Any] = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : List[Any] , a_ : List[str]=None , a_ : Dict=None , **a_ : List[Any] ): lowerCAmelCase_ : List[str] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , a_ , ) lowerCAmelCase_ : int = kwargs.pop("feature_extractor" ) lowerCAmelCase_ : int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(a_ , a_ ) lowerCAmelCase_ : Union[str, Any] = self.image_processor def __call__( self : Union[str, Any] , a_ : Optional[ImageInput] = None , a_ : Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None , a_ : bool = True , a_ : Union[bool, str, PaddingStrategy] = False , a_ : Union[bool, str, TruncationStrategy] = False , a_ : Optional[int] = None , a_ : int = 0 , a_ : Optional[int] = None , a_ : Optional[bool] = None , a_ : Optional[bool] = None , a_ : Optional[bool] = None , a_ : Optional[bool] = None , a_ : bool = False , a_ : bool = False , a_ : bool = False , a_ : bool = False , a_ : bool = True , a_ : Optional[Union[str, TensorType]] = None , **a_ : Optional[int] , ): if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: lowerCAmelCase_ : str = self.tokenizer( text=a_ , add_special_tokens=a_ , padding=a_ , truncation=a_ , max_length=a_ , stride=a_ , pad_to_multiple_of=a_ , return_token_type_ids=a_ , return_attention_mask=a_ , return_overflowing_tokens=a_ , return_special_tokens_mask=a_ , return_offsets_mapping=a_ , return_length=a_ , verbose=a_ , return_tensors=a_ , **a_ , ) if images is not None: lowerCAmelCase_ : int = self.image_processor( a_ , return_image_mask=a_ , return_codebook_pixels=a_ , return_tensors=a_ , **a_ , ) if text is not None and images is not None: encoding.update(a_ ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a_ ) , tensor_type=a_ ) def lowerCamelCase ( self : List[Any] , *a_ : Optional[int] , **a_ : Optional[int] ): return self.tokenizer.batch_decode(*a_ , **a_ ) def lowerCamelCase ( self : Dict , *a_ : int , **a_ : str ): return self.tokenizer.decode(*a_ , **a_ ) @property def lowerCamelCase ( self : Optional[int] ): lowerCAmelCase_ : Any = self.tokenizer.model_input_names lowerCAmelCase_ : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowerCamelCase ( self : List[str] ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , a_ , ) return self.image_processor_class @property def lowerCamelCase ( self : str ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , a_ , ) return self.image_processor
161
"""simple docstring""" import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class __lowerCamelCase : '''simple docstring''' def __init__( self : List[str] , a_ : Any , a_ : Any=None , a_ : int=None , a_ : str=None , a_ : Optional[int]="resnet50" , a_ : str=3 , a_ : str=32 , a_ : Union[str, Any]=3 , a_ : Tuple=True , a_ : List[str]=True , ): lowerCAmelCase_ : Optional[int] = parent lowerCAmelCase_ : Dict = out_indices if out_indices is not None else [4] lowerCAmelCase_ : int = stage_names lowerCAmelCase_ : Optional[Any] = out_features lowerCAmelCase_ : Tuple = backbone lowerCAmelCase_ : List[str] = batch_size lowerCAmelCase_ : Tuple = image_size lowerCAmelCase_ : List[Any] = num_channels lowerCAmelCase_ : Optional[int] = use_pretrained_backbone lowerCAmelCase_ : List[Any] = is_training def lowerCamelCase ( self : Any ): lowerCAmelCase_ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ : Optional[int] = self.get_config() return config, pixel_values def lowerCamelCase ( self : Dict ): return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowerCamelCase ( self : Union[str, Any] , a_ : str , a_ : Optional[int] ): lowerCAmelCase_ : Union[str, Any] = TimmBackbone(config=a_ ) model.to(a_ ) model.eval() with torch.no_grad(): lowerCAmelCase_ : int = model(a_ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def lowerCamelCase ( self : Dict ): lowerCAmelCase_ : List[Any] = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = config_and_inputs lowerCAmelCase_ : str = {"pixel_values": pixel_values} return config, inputs_dict @require_torch @require_timm class __lowerCamelCase ( A__ , A__ , A__ , unittest.TestCase ): '''simple docstring''' a_ : Union[str, Any] = (TimmBackbone,) if is_torch_available() else () a_ : int = {"""feature-extraction""": TimmBackbone} if is_torch_available() else {} a_ : Union[str, Any] = False a_ : str = False a_ : List[Any] = False a_ : Dict = False def lowerCamelCase ( self : Any ): lowerCAmelCase_ : Union[str, Any] = TimmBackboneModelTester(self ) lowerCAmelCase_ : List[str] = ConfigTester(self , config_class=a_ , has_text_modality=a_ ) def lowerCamelCase ( self : Dict ): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase ( self : List[Any] ): lowerCAmelCase_ : Optional[int] = "resnet18" lowerCAmelCase_ : List[Any] = "microsoft/resnet-18" lowerCAmelCase_ : Tuple = AutoBackbone.from_pretrained(a_ , use_timm_backbone=a_ ) lowerCAmelCase_ : str = AutoBackbone.from_pretrained(a_ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) lowerCAmelCase_ : Dict = AutoBackbone.from_pretrained(a_ , use_timm_backbone=a_ , out_indices=[1, 2, 3] ) lowerCAmelCase_ : Any = AutoBackbone.from_pretrained(a_ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("TimmBackbone doesn't support feed forward chunking" ) def lowerCamelCase ( self : Optional[int] ): pass @unittest.skip("TimmBackbone doesn't have num_hidden_layers attribute" ) def lowerCamelCase ( self : Dict ): pass @unittest.skip("TimmBackbone initialization is managed on the timm side" ) def lowerCamelCase ( self : List[Any] ): pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds" ) def lowerCamelCase ( self : Dict ): pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds" ) def lowerCamelCase ( self : Any ): pass @unittest.skip("TimmBackbone model cannot be created without specifying a backbone checkpoint" ) def lowerCamelCase ( self : Tuple ): pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def lowerCamelCase ( self : str ): pass @unittest.skip("model weights aren't tied in TimmBackbone." ) def lowerCamelCase ( self : Any ): pass @unittest.skip("model weights aren't tied in TimmBackbone." ) def lowerCamelCase ( self : List[str] ): pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def lowerCamelCase ( self : Tuple ): pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def lowerCamelCase ( self : Optional[int] ): pass @unittest.skip("TimmBackbone doesn't have hidden size info in its configuration." ) def lowerCamelCase ( self : Dict ): pass @unittest.skip("TimmBackbone doesn't support output_attentions." ) def lowerCamelCase ( self : int ): pass @unittest.skip("Safetensors is not supported by timm." ) def lowerCamelCase ( self : Union[str, Any] ): pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowerCamelCase ( self : Union[str, Any] ): pass def lowerCamelCase ( self : Optional[int] ): lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : str = model_class(a_ ) lowerCAmelCase_ : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ : str = [*signature.parameters.keys()] lowerCAmelCase_ : List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , a_ ) def lowerCamelCase ( self : Any ): lowerCAmelCase_ , lowerCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ : Optional[int] = True lowerCAmelCase_ : List[Any] = self.has_attentions # no need to test all models as different heads yield the same functionality lowerCAmelCase_ : int = self.all_model_classes[0] lowerCAmelCase_ : Optional[int] = model_class(a_ ) model.to(a_ ) lowerCAmelCase_ : Union[str, Any] = self._prepare_for_class(a_ , a_ ) lowerCAmelCase_ : str = model(**a_ ) lowerCAmelCase_ : Any = outputs[0][-1] # Encoder-/Decoder-only models lowerCAmelCase_ : Optional[int] = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: lowerCAmelCase_ : Optional[int] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=a_ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def lowerCamelCase ( self : str ): lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Dict = model_class(a_ ) model.to(a_ ) model.eval() lowerCAmelCase_ : Tuple = model(**a_ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None lowerCAmelCase_ : Optional[int] = copy.deepcopy(a_ ) lowerCAmelCase_ : Tuple = None lowerCAmelCase_ : Any = model_class(a_ ) model.to(a_ ) model.eval() lowerCAmelCase_ : int = model(**a_ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights lowerCAmelCase_ : str = copy.deepcopy(a_ ) lowerCAmelCase_ : Dict = False lowerCAmelCase_ : Optional[int] = model_class(a_ ) model.to(a_ ) model.eval() lowerCAmelCase_ : Optional[Any] = model(**a_ )
161
1
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration _lowerCamelCase : Optional[Any] = [ # tf -> hf ("""/""", """."""), ("""layer_""", """layers."""), ("""kernel""", """weight"""), ("""beta""", """bias"""), ("""gamma""", """weight"""), ("""pegasus""", """model"""), ] _lowerCamelCase : Optional[int] = [ (""".output.dense""", """.fc2"""), ("""intermediate.LayerNorm""", """final_layer_norm"""), ("""intermediate.dense""", """fc1"""), ] _lowerCamelCase : List[Any] = ( INIT_COMMON + [ ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.out_proj"""), ("""attention.self""", """self_attn"""), ("""attention.encdec.LayerNorm""", """encoder_attn_layer_norm"""), ("""attention.encdec_output.dense""", """encoder_attn.out_proj"""), ("""attention.encdec""", """encoder_attn"""), ("""key""", """k_proj"""), ("""value""", """v_proj"""), ("""query""", """q_proj"""), ("""decoder.LayerNorm""", """decoder.layernorm_embedding"""), ] + END_COMMON ) _lowerCamelCase : Optional[int] = ( INIT_COMMON + [ ("""embeddings.word_embeddings""", """shared.weight"""), ("""embeddings.position_embeddings""", """embed_positions.weight"""), ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.output"""), ("""attention.self""", """self_attn.self"""), ("""encoder.LayerNorm""", """encoder.layernorm_embedding"""), ] + END_COMMON ) _lowerCamelCase : Dict = [ """encdec/key/bias""", """encdec/query/bias""", """encdec/value/bias""", """self/key/bias""", """self/query/bias""", """self/value/bias""", """encdec_output/dense/bias""", """attention/output/dense/bias""", ] def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> List[Any]: """simple docstring""" for tf_name, hf_name in patterns: A__ = k.replace(lowercase_ , lowercase_ ) return k def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> BigBirdPegasusForConditionalGeneration: """simple docstring""" A__ = BigBirdPegasusConfig(**lowercase_ ) A__ = BigBirdPegasusForConditionalGeneration(lowercase_ ) A__ = torch_model.state_dict() A__ = {} # separating decoder weights A__ = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} A__ = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items() , '''tf -> hf conversion''' ): A__ = [k.endswith(lowercase_ ) for ending in KEYS_TO_IGNORE] if any(lowercase_ ): continue A__ = DECODER_PATTERNS A__ = rename_state_dict_key(lowercase_ , lowercase_ ) if new_k not in state_dict: raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): A__ = v.T A__ = torch.from_numpy(lowercase_ ) assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" for k, v in tqdm(remaining_weights.items() , '''tf -> hf conversion''' ): A__ = [k.endswith(lowercase_ ) for ending in KEYS_TO_IGNORE] if any(lowercase_ ): continue A__ = REMAINING_PATTERNS A__ = rename_state_dict_key(lowercase_ , lowercase_ ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): A__ = v.T A__ = torch.from_numpy(lowercase_ ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" A__ = mapping['''model.embed_positions.weight'''] A__ = mapping.pop('''model.embed_positions.weight''' ) A__ , A__ = torch_model.load_state_dict(lowercase_ , strict=lowercase_ ) A__ = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], f"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], f"""no matches found for the following tf keys {extra}""" return torch_model def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Dict: """simple docstring""" A__ = tf.train.list_variables(lowercase_ ) A__ = {} A__ = ['''global_step'''] for name, shape in tqdm(lowercase_ , desc='''converting tf checkpoint to dict''' ): A__ = any(pat in name for pat in ignore_name ) if skip_key: continue A__ = tf.train.load_variable(lowercase_ , lowercase_ ) A__ = array return tf_weights def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Any: """simple docstring""" A__ = get_tf_weights_as_numpy(lowercase_ ) A__ = convert_bigbird_pegasus(lowercase_ , lowercase_ ) torch_model.save_pretrained(lowercase_ ) if __name__ == "__main__": _lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument("""--tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""--save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") _lowerCamelCase : int = parser.parse_args() _lowerCamelCase : List[Any] = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
14
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[Any] ) -> int: '''simple docstring''' lowercase = [0 for i in range(r + 1 )] # nc0 = 1 lowercase = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. lowercase = min(lowerCAmelCase__ , lowerCAmelCase__ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=1_0, r=5))
197
0
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("""Input value must be an 'int' type""" ) lowerCAmelCase__ : Dict = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
370
'''simple docstring''' import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def UpperCAmelCase_ ( self ) -> Dict: lowerCAmelCase__ : str = tempfile.mkdtemp() lowerCAmelCase__ : List[Any] = 8 # DPR tok lowerCAmelCase__ : int = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowerCAmelCase__ : List[Any] = os.path.join(self.tmpdirname ,"""dpr_tokenizer""" ) os.makedirs(__UpperCAmelCase ,exist_ok=__UpperCAmelCase ) lowerCAmelCase__ : Dict = os.path.join(__UpperCAmelCase ,DPR_VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) # BART tok lowerCAmelCase__ : str = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] lowerCAmelCase__ : List[Any] = dict(zip(__UpperCAmelCase ,range(len(__UpperCAmelCase ) ) ) ) lowerCAmelCase__ : Optional[Any] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] lowerCAmelCase__ : Any = {"""unk_token""": """<unk>"""} lowerCAmelCase__ : str = os.path.join(self.tmpdirname ,"""bart_tokenizer""" ) os.makedirs(__UpperCAmelCase ,exist_ok=__UpperCAmelCase ) lowerCAmelCase__ : Any = os.path.join(__UpperCAmelCase ,BART_VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCAmelCase__ : Dict = os.path.join(__UpperCAmelCase ,BART_VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + """\n""" ) with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__UpperCAmelCase ) ) def UpperCAmelCase_ ( self ) -> DPRQuestionEncoderTokenizer: return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname ,"""dpr_tokenizer""" ) ) def UpperCAmelCase_ ( self ) -> BartTokenizer: return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname ,"""bart_tokenizer""" ) ) def UpperCAmelCase_ ( self ) -> Any: shutil.rmtree(self.tmpdirname ) @require_tokenizers def UpperCAmelCase_ ( self ) -> int: lowerCAmelCase__ : Any = os.path.join(self.tmpdirname ,"""rag_tokenizer""" ) lowerCAmelCase__ : Any = RagConfig(question_encoder=DPRConfig().to_dict() ,generator=BartConfig().to_dict() ) lowerCAmelCase__ : str = RagTokenizer(question_encoder=self.get_dpr_tokenizer() ,generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(__UpperCAmelCase ) rag_tokenizer.save_pretrained(__UpperCAmelCase ) lowerCAmelCase__ : Any = RagTokenizer.from_pretrained(__UpperCAmelCase ,config=__UpperCAmelCase ) self.assertIsInstance(new_rag_tokenizer.question_encoder ,__UpperCAmelCase ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() ,rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator ,__UpperCAmelCase ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() ,rag_tokenizer.generator.get_vocab() ) @slow def UpperCAmelCase_ ( self ) -> Union[str, Any]: lowerCAmelCase__ : List[str] = RagTokenizer.from_pretrained("""facebook/rag-token-nq""" ) lowerCAmelCase__ : Optional[Any] = [ """who got the first nobel prize in physics""", """when is the next deadpool movie being released""", """which mode is used for short wave broadcast service""", """who is the owner of reading football club""", """when is the next scandal episode coming out""", """when is the last time the philadelphia won the superbowl""", """what is the most current adobe flash player version""", """how many episodes are there in dragon ball z""", """what is the first step in the evolution of the eye""", """where is gall bladder situated in human body""", """what is the main mineral in lithium batteries""", """who is the president of usa right now""", """where do the greasers live in the outsiders""", """panda is a national animal of which country""", """what is the name of manchester united stadium""", ] lowerCAmelCase__ : Dict = tokenizer(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @slow def UpperCAmelCase_ ( self ) -> Union[str, Any]: lowerCAmelCase__ : str = RagTokenizer.from_pretrained("""facebook/rag-sequence-nq""" ) lowerCAmelCase__ : str = [ """who got the first nobel prize in physics""", """when is the next deadpool movie being released""", """which mode is used for short wave broadcast service""", """who is the owner of reading football club""", """when is the next scandal episode coming out""", """when is the last time the philadelphia won the superbowl""", """what is the most current adobe flash player version""", """how many episodes are there in dragon ball z""", """what is the first step in the evolution of the eye""", """where is gall bladder situated in human body""", """what is the main mineral in lithium batteries""", """who is the president of usa right now""", """where do the greasers live in the outsiders""", """panda is a national animal of which country""", """what is the name of manchester united stadium""", ] lowerCAmelCase__ : Tuple = tokenizer(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase )
184
0
def lowerCAmelCase_ ( __UpperCAmelCase: Optional[Any] ) -> Tuple: UpperCamelCase__ : Dict = len(UpperCamelCase__ ) for i in range(UpperCamelCase__ ): for j in range(i + 1 , UpperCamelCase__ ): if numbers[j] < numbers[i]: UpperCamelCase__ ,UpperCamelCase__ : str = numbers[j], numbers[i] return numbers if __name__ == "__main__": UpperCAmelCase_ = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase_ = [int(item) for item in user_input.split(',')] print(exchange_sort(unsorted))
201
"""simple docstring""" import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy __lowerCamelCase = logging.getLogger(__name__) def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = False , ): """simple docstring""" A__ = bnb_quantization_config.load_in_abit A__ = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( 'You have a version of `bitsandbytes` that is not compatible with 8bit quantization,' ' make sure you have the latest version of `bitsandbytes` installed.' ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( 'You have a version of `bitsandbytes` that is not compatible with 4bit quantization,' 'make sure you have the latest version of `bitsandbytes` installed.' ) A__ = [] # custom device map if isinstance(UpperCamelCase__ , UpperCamelCase__ ) and len(device_map.keys() ) > 1: A__ = [key for key, value in device_map.items() if value in ['disk', 'cpu']] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: A__ = get_keys_to_not_convert(UpperCamelCase__ ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(UpperCamelCase__ ) A__ = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: A__ = [] A__ = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(UpperCamelCase__ ) # compatibility with peft A__ = load_in_abit A__ = load_in_abit A__ = get_parameter_device(UpperCamelCase__ ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( 'It is not recommended to quantize a loaded model. ' 'The model should be instantiated under the `init_empty_weights` context manager.' ) A__ = replace_with_bnb_layers(UpperCamelCase__ , UpperCamelCase__ , modules_to_not_convert=UpperCamelCase__ ) # convert param to the right dtype A__ = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: A__ = name.replace('.weight' , '' ).replace('.bias' , '' ) A__ = getattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(UpperCamelCase__ ): param.to(UpperCamelCase__ ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError('No GPU found. A GPU is needed for quantization.' ) logger.info( F'''The model device type is {model_device.type}. However, cuda is needed for quantization.''' 'We move the model to cuda.' ) return model elif weights_location is None: raise RuntimeError( F'''`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ''' ) else: with init_empty_weights(): A__ = replace_with_bnb_layers( UpperCamelCase__ , UpperCamelCase__ , modules_to_not_convert=UpperCamelCase__ ) A__ = get_quantized_model_device_map( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , max_memory=UpperCamelCase__ , no_split_module_classes=UpperCamelCase__ , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): A__ = True A__ = any(x in list(device_map.values() ) for x in ['cpu', 'disk'] ) load_checkpoint_in_model( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , dtype=bnb_quantization_config.torch_dtype , offload_folder=UpperCamelCase__ , offload_state_dict=UpperCamelCase__ , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(UpperCamelCase__ , device_map=UpperCamelCase__ , offload_dir=UpperCamelCase__ ) def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None ): """simple docstring""" if device_map is None: if torch.cuda.is_available(): A__ = {'': torch.cuda.current_device()} else: raise RuntimeError('No GPU found. A GPU is needed for quantization.' ) logger.info('The device_map was not initialized.' 'Setting device_map to `{\'\':torch.cuda.current_device()}`.' ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( 'If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or ' '\'sequential\'.' ) A__ = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) A__ = {} A__ = special_dtypes A__ = no_split_module_classes A__ = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": A__ = get_balanced_memory( UpperCamelCase__ , low_zero=(device_map == 'balanced_low_0') , max_memory=UpperCamelCase__ , **UpperCamelCase__ , ) A__ = max_memory A__ = infer_auto_device_map(UpperCamelCase__ , **UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): # check if don't have any quantized module on the cpu A__ = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules A__ = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( '\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n ' ) else: logger.info( 'Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit' ) del device_map_without_some_modules return device_map def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None ): """simple docstring""" if modules_to_not_convert is None: A__ = [] A__ , A__ = _replace_with_bnb_layers( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if not has_been_replaced: logger.warning( 'You are loading your model in 8bit or 4bit but no linear modules were found in your model.' ' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.' ' Please double check your model architecture, or submit an issue on github if you think this is' ' a bug.' ) return model def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None , ): """simple docstring""" A__ = False for name, module in model.named_children(): if current_key_name is None: A__ = [] current_key_name.append(UpperCamelCase__ ) if isinstance(UpperCamelCase__ , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` A__ = '.'.join(UpperCamelCase__ ) A__ = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: A__ = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: A__ = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=UpperCamelCase__ , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: A__ = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError('load_in_8bit and load_in_4bit can\'t be both False' ) A__ = module.weight.data if module.bias is not None: A__ = module.bias.data bnb_module.requires_grad_(UpperCamelCase__ ) setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) A__ = True if len(list(module.children() ) ) > 0: A__ , A__ = _replace_with_bnb_layers( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) A__ = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" with init_empty_weights(): A__ = deepcopy(UpperCamelCase__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` A__ = find_tied_parameters(UpperCamelCase__ ) # For compatibility with Accelerate < 0.18 if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: A__ = sum(UpperCamelCase__ , [] ) A__ = len(UpperCamelCase__ ) > 0 # Check if it is a base model A__ = False if hasattr(UpperCamelCase__ , 'base_model_prefix' ): A__ = not hasattr(UpperCamelCase__ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head A__ = list(model.named_children() ) A__ = [list_modules[-1][0]] # add last module together with tied weights A__ = set(UpperCamelCase__ ) - set(UpperCamelCase__ ) A__ = list(set(UpperCamelCase__ ) ) + list(UpperCamelCase__ ) # remove ".weight" from the keys A__ = ['.weight', '.bias'] A__ = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: A__ = name.replace(UpperCamelCase__ , '' ) filtered_module_names.append(UpperCamelCase__ ) return filtered_module_names def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" for m in model.modules(): if isinstance(UpperCamelCase__ , bnb.nn.Linearabit ): return True return False def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" return next(parameter.parameters() ).device def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" if fpaa_statistics is None: set_module_tensor_to_device(UpperCamelCase__ , UpperCamelCase__ , 0 , dtype=UpperCamelCase__ , value=UpperCamelCase__ ) A__ = param_name A__ = model if "." in tensor_name: A__ = tensor_name.split('.' ) for split in splits[:-1]: A__ = getattr(UpperCamelCase__ , UpperCamelCase__ ) if new_module is None: raise ValueError(F'''{module} has no attribute {split}.''' ) A__ = new_module A__ = splits[-1] # offload weights A__ = False offload_weight(module._parameters[tensor_name] , UpperCamelCase__ , UpperCamelCase__ , index=UpperCamelCase__ ) if hasattr(module._parameters[tensor_name] , 'SCB' ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace('weight' , 'SCB' ) , UpperCamelCase__ , index=UpperCamelCase__ , ) else: offload_weight(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , index=UpperCamelCase__ ) offload_weight(UpperCamelCase__ , param_name.replace('weight' , 'SCB' ) , UpperCamelCase__ , index=UpperCamelCase__ ) set_module_tensor_to_device(UpperCamelCase__ , UpperCamelCase__ , 'meta' , dtype=UpperCamelCase__ , value=torch.empty(*param.size() ) )
221
0
'''simple docstring''' from __future__ import annotations import typing from collections.abc import Iterable import numpy as np lowerCAmelCase : Optional[int] = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 lowerCAmelCase : Optional[int] = typing.Union[np.floataa, int, float] # noqa: UP007 def A_( A : Vector , A : Vector): return np.sqrt(np.sum((np.asarray(lowerCAmelCase__) - np.asarray(lowerCAmelCase__)) ** 2)) def A_( A : Vector , A : Vector): return sum((va - va) ** 2 for va, va in zip(lowerCAmelCase__ , lowerCAmelCase__)) ** (1 / 2) if __name__ == "__main__": def A_( ): from timeit import timeit print('Without Numpy') print( timeit( 'euclidean_distance_no_np([1, 2, 3], [4, 5, 6])' , number=1_0000 , globals=globals() , )) print('With Numpy') print( timeit( 'euclidean_distance([1, 2, 3], [4, 5, 6])' , number=1_0000 , globals=globals() , )) benchmark()
361
'''simple docstring''' from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class SCREAMING_SNAKE_CASE__ : lowerCAmelCase_ = BlenderbotConfig lowerCAmelCase_ = {} lowerCAmelCase_ = """gelu""" def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=False , A_=99 , A_=32 , A_=2 , A_=4 , A_=37 , A_=0.1 , A_=0.1 , A_=20 , A_=2 , A_=1 , A_=0 , )-> List[Any]: '''simple docstring''' UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = eos_token_id UpperCamelCase = pad_token_id UpperCamelCase = bos_token_id def UpperCAmelCase_ ( self )-> Tuple: '''simple docstring''' UpperCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCamelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCamelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCamelCase = prepare_blenderbot_inputs_dict(A_ , A_ , A_ ) return config, inputs_dict def UpperCAmelCase_ ( self , A_ , A_ )-> int: '''simple docstring''' UpperCamelCase = TFBlenderbotModel(config=A_ ).get_decoder() UpperCamelCase = inputs_dict['input_ids'] UpperCamelCase = input_ids[:1, :] UpperCamelCase = inputs_dict['attention_mask'][:1, :] UpperCamelCase = inputs_dict['head_mask'] UpperCamelCase = 1 # first forward pass UpperCamelCase = model(A_ , attention_mask=A_ , head_mask=A_ , use_cache=A_ ) UpperCamelCase , UpperCamelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCamelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCamelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCamelCase = model(A_ , attention_mask=A_ )[0] UpperCamelCase = model(A_ , attention_mask=A_ , past_key_values=A_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCamelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx] UpperCamelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(A_ , A_ , rtol=1e-3 ) def A_( A : List[Any] , A : Tuple , A : Optional[Any] , A : List[str]=None , A : str=None , A : List[Any]=None , A : Dict=None , A : Any=None , ): if attention_mask is None: UpperCamelCase = tf.cast(tf.math.not_equal(A , config.pad_token_id) , tf.inta) if decoder_attention_mask is None: UpperCamelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id) , tf.inta), ] , axis=-1 , ) if head_mask is None: UpperCamelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads)) if decoder_head_mask is None: UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads)) if cross_attn_head_mask is None: UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads)) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ , unittest.TestCase): lowerCAmelCase_ = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () lowerCAmelCase_ = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () lowerCAmelCase_ = ( { """conversational""": TFBlenderbotForConditionalGeneration, """feature-extraction""": TFBlenderbotModel, """summarization""": TFBlenderbotForConditionalGeneration, """text2text-generation""": TFBlenderbotForConditionalGeneration, """translation""": TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) lowerCAmelCase_ = True lowerCAmelCase_ = False lowerCAmelCase_ = False def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' UpperCamelCase = TFBlenderbotModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=A_ ) def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*A_ ) @require_tokenizers @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): lowerCAmelCase_ = ["""My friends are cool but they eat too many carbs."""] lowerCAmelCase_ = """facebook/blenderbot-400M-distill""" @cached_property def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' UpperCamelCase = self.tokenizer(self.src_text , return_tensors='tf' ) UpperCamelCase = self.model.generate( model_inputs.input_ids , ) UpperCamelCase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=A_ )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
251
0
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class _UpperCamelCase ( lowerCAmelCase ): UpperCAmelCase_ = """char""" UpperCAmelCase_ = """bpe""" UpperCAmelCase_ = """wp""" _lowerCAmelCase : Optional[Any] = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class _UpperCamelCase ( lowerCAmelCase ): UpperCAmelCase_ = ["""image_processor""", """char_tokenizer"""] UpperCAmelCase_ = """ViTImageProcessor""" UpperCAmelCase_ = """MgpstrTokenizer""" def __init__( self :List[str] , lowerCamelCase :Dict=None , lowerCamelCase :Optional[int]=None , **lowerCamelCase :List[str] ) -> Optional[Any]: UpperCAmelCase__ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , lowerCamelCase , ) UpperCAmelCase__ = kwargs.pop("feature_extractor" ) UpperCAmelCase__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) UpperCAmelCase__ = tokenizer UpperCAmelCase__ = AutoTokenizer.from_pretrained("gpt2" ) UpperCAmelCase__ = AutoTokenizer.from_pretrained("bert-base-uncased" ) super().__init__(lowerCamelCase , lowerCamelCase ) def __call__( self :Optional[Any] , lowerCamelCase :List[str]=None , lowerCamelCase :Any=None , lowerCamelCase :Optional[Any]=None , **lowerCamelCase :Optional[int] ) -> Union[str, Any]: if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process." ) if images is not None: UpperCAmelCase__ = self.image_processor(lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase ) if text is not None: UpperCAmelCase__ = self.char_tokenizer(lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase ) if text is None: return inputs elif images is None: return encodings else: UpperCAmelCase__ = encodings["input_ids"] return inputs def UpperCAmelCase_ ( self :List[str] , lowerCamelCase :Optional[Any] ) -> Optional[Any]: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = sequences UpperCAmelCase__ = char_preds.size(0 ) UpperCAmelCase__ , UpperCAmelCase__ = self._decode_helper(lowerCamelCase , "char" ) UpperCAmelCase__ , UpperCAmelCase__ = self._decode_helper(lowerCamelCase , "bpe" ) UpperCAmelCase__ , UpperCAmelCase__ = self._decode_helper(lowerCamelCase , "wp" ) UpperCAmelCase__ = [] UpperCAmelCase__ = [] for i in range(lowerCamelCase ): UpperCAmelCase__ = [char_scores[i], bpe_scores[i], wp_scores[i]] UpperCAmelCase__ = [char_strs[i], bpe_strs[i], wp_strs[i]] UpperCAmelCase__ = scores.index(max(lowerCamelCase ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) UpperCAmelCase__ = {} UpperCAmelCase__ = final_strs UpperCAmelCase__ = final_scores UpperCAmelCase__ = char_strs UpperCAmelCase__ = bpe_strs UpperCAmelCase__ = wp_strs return out def UpperCAmelCase_ ( self :Optional[int] , lowerCamelCase :int , lowerCamelCase :List[str] ) -> Union[str, Any]: if format == DecodeType.CHARACTER: UpperCAmelCase__ = self.char_decode UpperCAmelCase__ = 1 UpperCAmelCase__ = "[s]" elif format == DecodeType.BPE: UpperCAmelCase__ = self.bpe_decode UpperCAmelCase__ = 2 UpperCAmelCase__ = "#" elif format == DecodeType.WORDPIECE: UpperCAmelCase__ = self.wp_decode UpperCAmelCase__ = 102 UpperCAmelCase__ = "[SEP]" else: raise ValueError(f'''Format {format} is not supported.''' ) UpperCAmelCase__ , UpperCAmelCase__ = [], [] UpperCAmelCase__ = pred_logits.size(0 ) UpperCAmelCase__ = pred_logits.size(1 ) UpperCAmelCase__ , UpperCAmelCase__ = pred_logits.topk(1 , dim=-1 , largest=lowerCamelCase , sorted=lowerCamelCase ) UpperCAmelCase__ = preds_index.view(-1 , lowerCamelCase )[:, 1:] UpperCAmelCase__ = decoder(lowerCamelCase ) UpperCAmelCase__ , UpperCAmelCase__ = torch.nn.functional.softmax(lowerCamelCase , dim=2 ).max(dim=2 ) UpperCAmelCase__ = preds_max_prob[:, 1:] for index in range(lowerCamelCase ): UpperCAmelCase__ = preds_str[index].find(lowerCamelCase ) UpperCAmelCase__ = preds_str[index][:pred_eos] UpperCAmelCase__ = preds_index[index].cpu().tolist() UpperCAmelCase__ = pred_index.index(lowerCamelCase ) if eos_token in pred_index else -1 UpperCAmelCase__ = preds_max_prob[index][: pred_eos_index + 1] UpperCAmelCase__ = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(lowerCamelCase ) conf_scores.append(lowerCamelCase ) return dec_strs, conf_scores def UpperCAmelCase_ ( self :Optional[int] , lowerCamelCase :int ) -> List[str]: UpperCAmelCase__ = [seq.replace(" " , "" ) for seq in self.char_tokenizer.batch_decode(lowerCamelCase )] return decode_strs def UpperCAmelCase_ ( self :Optional[Any] , lowerCamelCase :Dict ) -> Dict: return self.bpe_tokenizer.batch_decode(lowerCamelCase ) def UpperCAmelCase_ ( self :str , lowerCamelCase :str ) -> Tuple: UpperCAmelCase__ = [seq.replace(" " , "" ) for seq in self.wp_tokenizer.batch_decode(lowerCamelCase )] return decode_strs
169
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class _UpperCamelCase ( lowerCAmelCase ): UpperCAmelCase_ = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
169
1
'''simple docstring''' def _a ( _lowerCamelCase , _lowerCamelCase ) -> int: """simple docstring""" return x if y == 0 else greatest_common_divisor(__a , x % y ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> int: """simple docstring""" return (x * y) // greatest_common_divisor(__a , __a ) def _a ( _lowerCamelCase = 20 ) -> int: """simple docstring""" __snake_case : str = 1 for i in range(1 , n + 1 ): __snake_case : Tuple = lcm(__a , __a ) return g if __name__ == "__main__": print(f"""{solution() = }""")
364
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "post_extract_proj": "feature_projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.upsample.0": "encoder.upsample.projection", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" for attribute in key.split(""".""" ): __snake_case : Optional[int] = getattr(_lowerCamelCase , _lowerCamelCase ) if weight_type is not None: __snake_case : Optional[Any] = getattr(_lowerCamelCase , _lowerCamelCase ).shape else: __snake_case : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": __snake_case : Union[str, Any] = value elif weight_type == "weight_g": __snake_case : str = value elif weight_type == "weight_v": __snake_case : Tuple = value elif weight_type == "bias": __snake_case : str = value else: __snake_case : List[Any] = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: """simple docstring""" __snake_case : Tuple = [] __snake_case : List[Any] = fairseq_model.state_dict() __snake_case : int = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): __snake_case : Any = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , ) __snake_case : Optional[int] = True else: for key, mapped_key in MAPPING.items(): __snake_case : Optional[Any] = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __snake_case : Dict = True if "*" in mapped_key: __snake_case : List[Any] = name.split(_lowerCamelCase )[0].split(""".""" )[-2] __snake_case : Optional[int] = mapped_key.replace("""*""" , _lowerCamelCase ) if "weight_g" in name: __snake_case : Dict = """weight_g""" elif "weight_v" in name: __snake_case : List[str] = """weight_v""" elif "weight" in name: __snake_case : str = """weight""" elif "bias" in name: __snake_case : int = """bias""" else: __snake_case : int = None set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) continue if not is_used: unused_weights.append(_lowerCamelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Dict = full_name.split("""conv_layers.""" )[-1] __snake_case : Optional[int] = name.split(""".""" ) __snake_case : Dict = int(items[0] ) __snake_case : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __snake_case : Union[str, Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __snake_case : int = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) __snake_case : str = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) __snake_case : List[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" __snake_case : List[str] = SEWConfig() if is_finetuned: __snake_case : List[Any] = model.wav_encoder.wav_model.cfg else: __snake_case : Optional[Any] = model.cfg __snake_case : Tuple = fs_config.conv_bias __snake_case : List[Any] = eval(fs_config.conv_feature_layers ) __snake_case : List[Any] = [x[0] for x in conv_layers] __snake_case : Dict = [x[1] for x in conv_layers] __snake_case : Tuple = [x[2] for x in conv_layers] __snake_case : List[str] = """gelu""" __snake_case : Dict = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group""" __snake_case : Optional[int] = 0.0 __snake_case : Optional[Any] = fs_config.activation_fn.name __snake_case : Dict = fs_config.encoder_embed_dim __snake_case : Dict = 0.02 __snake_case : Any = fs_config.encoder_ffn_embed_dim __snake_case : Tuple = 1E-5 __snake_case : Dict = fs_config.encoder_layerdrop __snake_case : Any = fs_config.encoder_attention_heads __snake_case : int = fs_config.conv_pos_groups __snake_case : Tuple = fs_config.conv_pos __snake_case : Optional[int] = len(_lowerCamelCase ) __snake_case : int = fs_config.encoder_layers __snake_case : Optional[int] = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: __snake_case : Union[str, Any] = model.cfg __snake_case : Tuple = fs_config.final_dropout __snake_case : Tuple = fs_config.layerdrop __snake_case : Any = fs_config.activation_dropout __snake_case : int = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 __snake_case : Tuple = fs_config.attention_dropout __snake_case : List[Any] = fs_config.dropout_input __snake_case : Optional[Any] = fs_config.dropout __snake_case : str = fs_config.mask_channel_length __snake_case : Any = fs_config.mask_channel_prob __snake_case : int = fs_config.mask_length __snake_case : str = fs_config.mask_prob __snake_case : str = """Wav2Vec2FeatureExtractor""" __snake_case : Dict = """Wav2Vec2CTCTokenizer""" return config @torch.no_grad() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True ) -> int: """simple docstring""" if is_finetuned: __snake_case , __snake_case , __snake_case : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __snake_case , __snake_case , __snake_case : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: __snake_case : Optional[Any] = SEWConfig.from_pretrained(_lowerCamelCase ) else: __snake_case : int = convert_config(model[0] , _lowerCamelCase ) __snake_case : Dict = model[0].eval() __snake_case : Optional[Any] = True if config.feat_extract_norm == """layer""" else False __snake_case : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) if is_finetuned: if dict_path: __snake_case : str = Dictionary.load(_lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __snake_case : Union[str, Any] = target_dict.pad_index __snake_case : Optional[Any] = target_dict.bos_index __snake_case : Tuple = target_dict.pad_index __snake_case : List[str] = target_dict.bos_index __snake_case : Optional[Any] = target_dict.eos_index __snake_case : List[str] = len(target_dict.symbols ) __snake_case : Optional[Any] = os.path.join(_lowerCamelCase , """vocab.json""" ) if not os.path.isdir(_lowerCamelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(_lowerCamelCase ) ) return os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) with open(_lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , _lowerCamelCase ) __snake_case : List[Any] = WavaVecaCTCTokenizer( _lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=_lowerCamelCase , ) __snake_case : Optional[int] = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) __snake_case : List[str] = SEWForCTC(_lowerCamelCase ) else: __snake_case : List[str] = SEWModel(_lowerCamelCase ) feature_extractor.save_pretrained(_lowerCamelCase ) recursively_load_weights(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) hf_model.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) __UpperCamelCase = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
13
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a : str = { '''configuration_deberta''': ['''DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DebertaConfig''', '''DebertaOnnxConfig'''], '''tokenization_deberta''': ['''DebertaTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Tuple = ['''DebertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[int] = [ '''DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DebertaForMaskedLM''', '''DebertaForQuestionAnswering''', '''DebertaForSequenceClassification''', '''DebertaForTokenClassification''', '''DebertaModel''', '''DebertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Dict = [ '''TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDebertaForMaskedLM''', '''TFDebertaForQuestionAnswering''', '''TFDebertaForSequenceClassification''', '''TFDebertaForTokenClassification''', '''TFDebertaModel''', '''TFDebertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys a : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
105
"""simple docstring""" import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class __UpperCamelCase ( a__ ): lowerCamelCase : List[str] =ComputeEnvironment.AMAZON_SAGEMAKER lowerCamelCase : str =True lowerCamelCase : Union[str, Any] ="""ml.p3.2xlarge""" lowerCamelCase : str ="""accelerate_sagemaker_execution_role""" lowerCamelCase : int ="""hf-sm""" lowerCamelCase : int ="""us-east-1""" lowerCamelCase : Tuple =1 lowerCamelCase : Any ="""accelerate-sagemaker-1""" lowerCamelCase : str ="""1.6""" lowerCamelCase : Tuple ="""4.4""" lowerCamelCase : Optional[int] ="""train.py""" lowerCamelCase : Optional[Any] =[ """--model_name_or_path""", """bert""", """--do_train""", """False""", """--epochs""", """3""", """--learning_rate""", """5e-5""", """--max_steps""", """50.5""", ] lowerCamelCase : Union[str, Any] =[ """--model_name_or_path""", """bert""", """--do_train""", """--do_test""", """False""", """--do_predict""", """--epochs""", """3""", """--learning_rate""", """5e-5""", """--max_steps""", """50.5""", ] class __UpperCamelCase ( unittest.TestCase ): def __a ( self ) -> List[str]: # If no defaults are changed, `to_kwargs` returns an empty dict. a : str = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args["model_name_or_path"] , lowerCAmelCase__ ) assert isinstance(converted_args["do_train"] , lowerCAmelCase__ ) assert isinstance(converted_args["epochs"] , lowerCAmelCase__ ) assert isinstance(converted_args["learning_rate"] , lowerCAmelCase__ ) assert isinstance(converted_args["max_steps"] , lowerCAmelCase__ ) with pytest.raises(lowerCAmelCase__ ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
105
1
from math import ceil, sqrt def SCREAMING_SNAKE_CASE__ ( snake_case : int = 1_000_000 ) -> Union[str, Any]: """simple docstring""" a : List[str] = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: a : str = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: a : Dict = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f'''{solution() = }''')
357
'''simple docstring''' def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : int ) -> bool: """simple docstring""" return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
345
0
"""simple docstring""" import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = {'''vocab_file''': '''vocab.txt''', '''emoji_file''': '''emoji.json'''} __UpperCamelCase : List[Any] = { '''vocab_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt''', }, '''emoji_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json''', }, } __UpperCamelCase : Optional[Any] = { '''abeja/gpt-neox-japanese-2.7b''': 2_0_4_8, } def __SCREAMING_SNAKE_CASE ( A_ , A_ ): with open(A_ , '''r''' , encoding='''utf-8''' ) as f: lowerCAmelCase__ : Dict = json.loads(f.read() ) lowerCAmelCase__ : Union[str, Any] = collections.OrderedDict() lowerCAmelCase__ : Optional[int] = collections.OrderedDict() lowerCAmelCase__ : Optional[Any] = collections.OrderedDict() with open(A_ , '''r''' , encoding='''utf-8''' ) as f: lowerCAmelCase__ : str = f.readlines() lowerCAmelCase__ : Optional[int] = [[t.rstrip('''\n''' )] if (t == ''',''' or ''',''' not in t) else t.rstrip('''\n''' ).split(''',''' ) for t in token] for idx, b in enumerate(A_ ): lowerCAmelCase__ : int = b lowerCAmelCase__ : Dict = idx for wd in b: lowerCAmelCase__ : List[str] = idx return vocab, raw_vocab, ids_to_tokens, emoji class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = ["input_ids", "attention_mask"] def __init__( self : List[Any] ,lowercase_ : Dict ,lowercase_ : Dict ,lowercase_ : int="<|endoftext|>" ,lowercase_ : Dict="<|endoftext|>" ,lowercase_ : str="<|startoftext|>" ,lowercase_ : str="<|endoftext|>" ,lowercase_ : List[Any]=False ,**lowercase_ : Optional[Any] ,): super().__init__( unk_token=lowercase_ ,pad_token=lowercase_ ,bos_token=lowercase_ ,eos_token=lowercase_ ,do_clean_text=lowercase_ ,**lowercase_ ,) if not os.path.isfile(lowercase_ ): raise ValueError( F'Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained' ''' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`''' ) if not os.path.isfile(lowercase_ ): raise ValueError( F'Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google' ''' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`''' ) lowerCAmelCase__ : Tuple = do_clean_text lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Any = load_vocab_and_emoji(lowercase_ ,lowercase_ ) lowerCAmelCase__ : Tuple = SubWordJapaneseTokenizer( vocab=self.vocab ,ids_to_tokens=self.ids_to_tokens ,emoji=self.emoji ) @property def __lowerCAmelCase ( self : int ): # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def __lowerCAmelCase ( self : Union[str, Any] ): return dict(self.raw_vocab ,**self.added_tokens_encoder ) def __lowerCAmelCase ( self : Any ,lowercase_ : List[Any] ): return self.subword_tokenizer.tokenize(lowercase_ ,clean=self.do_clean_text ) def __lowerCAmelCase ( self : List[str] ,lowercase_ : List[str] ): return self.vocab.get(lowercase_ ,self.vocab.get(self.unk_token ) ) def __lowerCAmelCase ( self : int ,lowercase_ : str ): return self.subword_tokenizer.convert_id_to_token(lowercase_ ) def __lowerCAmelCase ( self : int ,lowercase_ : List[Any] ): lowerCAmelCase__ : Union[str, Any] = ''''''.join(lowercase_ ).strip() return out_string def __lowerCAmelCase ( self : Union[str, Any] ,lowercase_ : "Conversation" ): lowerCAmelCase__ : int = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase_ ,add_special_tokens=lowercase_ ) + [self.eos_token_id] ) if len(lowercase_ ) > self.model_max_length: lowerCAmelCase__ : Dict = input_ids[-self.model_max_length :] return input_ids def __lowerCAmelCase ( self : List[str] ,lowercase_ : str ,lowercase_ : Optional[str] = None ): lowerCAmelCase__ : Tuple = 0 if os.path.isdir(lowercase_ ): lowerCAmelCase__ : Union[str, Any] = os.path.join( lowercase_ ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCAmelCase__ : List[Any] = os.path.join( lowercase_ ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''emoji_file'''] ) else: lowerCAmelCase__ : str = ( (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory + VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCAmelCase__ : Any = ( (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory + VOCAB_FILES_NAMES['''emoji_file'''] ) with open(lowercase_ ,'''w''' ,encoding='''utf-8''' ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ''' Please check that the vocabulary is not corrupted!''' ) lowerCAmelCase__ : Dict = token_index writer.write(''','''.join(lowercase_ ) + '''\n''' ) index += 1 with open(lowercase_ ,'''w''' ,encoding='''utf-8''' ) as writer: json.dump(self.emoji ,lowercase_ ) return vocab_file, emoji_file class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" def __init__( self : str ,lowercase_ : Optional[Any] ,lowercase_ : Dict ,lowercase_ : Any ): lowerCAmelCase__ : Optional[int] = vocab # same as swe lowerCAmelCase__ : Optional[int] = ids_to_tokens # same as bpe lowerCAmelCase__ : Optional[Any] = emoji lowerCAmelCase__ : Any = np.max([len(lowercase_ ) for w in self.vocab.keys()] ) lowerCAmelCase__ : int = re.compile(R'''(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)''' ) lowerCAmelCase__ : str = re.compile(R'''[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*''' ) lowerCAmelCase__ : List[str] = re.compile(R'''[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}''' ) lowerCAmelCase__ : Union[str, Any] = re.compile( R'''([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*''' ) lowerCAmelCase__ : List[Any] = re.compile( R'''(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*''' ) lowerCAmelCase__ : Optional[int] = re.compile( R'''((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*''' ) lowerCAmelCase__ : List[Any] = '''─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿''' lowerCAmelCase__ : List[Any] = '''▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟''' lowerCAmelCase__ : List[str] = str.maketrans({k: '''<BLOCK>''' for k in keisen + blocks} ) def __len__( self : int ): return len(self.ids_to_tokens ) def __lowerCAmelCase ( self : Optional[int] ,lowercase_ : Dict ): lowerCAmelCase__ : Tuple = self.content_repattera.sub('''<URL>''' ,lowercase_ ) lowerCAmelCase__ : List[str] = self.content_repattera.sub('''<EMAIL>''' ,lowercase_ ) lowerCAmelCase__ : str = self.content_repattera.sub('''<TEL>''' ,lowercase_ ) lowerCAmelCase__ : Dict = self.content_repattera.sub('''<DATE>''' ,lowercase_ ) lowerCAmelCase__ : Optional[Any] = self.content_repattera.sub('''<DATE>''' ,lowercase_ ) lowerCAmelCase__ : Union[str, Any] = self.content_repattera.sub('''<PRICE>''' ,lowercase_ ) lowerCAmelCase__ : Optional[Any] = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: lowerCAmelCase__ : str = content.replace('''<BLOCK><BLOCK>''' ,'''<BLOCK>''' ) return content def __lowerCAmelCase ( self : List[str] ,lowercase_ : Union[str, Any] ,lowercase_ : List[str]=False ): lowerCAmelCase__ : str = text.replace(''' ''' ,'''<SP>''' ) lowerCAmelCase__ : Tuple = text.replace(''' ''' ,'''<SP>''' ) lowerCAmelCase__ : Optional[int] = text.replace('''\r\n''' ,'''<BR>''' ) lowerCAmelCase__ : str = text.replace('''\n''' ,'''<BR>''' ) lowerCAmelCase__ : Tuple = text.replace('''\r''' ,'''<BR>''' ) lowerCAmelCase__ : Union[str, Any] = text.replace('''\t''' ,'''<TAB>''' ) lowerCAmelCase__ : str = text.replace('''—''' ,'''ー''' ) lowerCAmelCase__ : Union[str, Any] = text.replace('''−''' ,'''ー''' ) for k, v in self.emoji["emoji"].items(): if k in text: lowerCAmelCase__ : Tuple = text.replace(lowercase_ ,lowercase_ ) if clean: lowerCAmelCase__ : str = self.clean_text(lowercase_ ) def check_simbol(lowercase_ : Optional[int] ): lowerCAmelCase__ : List[Any] = x.encode() if len(lowercase_ ) == 1 and len(lowercase_ ) == 2: lowerCAmelCase__ : Union[str, Any] = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0xC2_A1 and c <= 0xC2_BF) or (c >= 0xC7_80 and c <= 0xC7_83) or (c >= 0xCA_B9 and c <= 0xCB_BF) or (c >= 0xCC_80 and c <= 0xCD_A2) ): return True return False def checkuae(lowercase_ : Union[str, Any] ): lowerCAmelCase__ : List[str] = x.encode() if len(lowercase_ ) == 1 and len(lowercase_ ) == 3: lowerCAmelCase__ : int = (int(e[0] ) << 1_6) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0xE2_80_80 and c <= 0xE2_B0_7F: return True return False lowerCAmelCase__ : Tuple = 0 lowerCAmelCase__ : Optional[Any] = [] while pos < len(lowercase_ ): lowerCAmelCase__ : Optional[int] = min(len(lowercase_ ) ,pos + self.maxlen + 1 ) if text[pos] == '''<''' else pos + 3 lowerCAmelCase__ : int = [] # (token_id, token, pos) for e in range(lowercase_ ,lowercase_ ,-1 ): lowerCAmelCase__ : int = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(lowercase_ ) > 2: lowerCAmelCase__ : List[str] = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(lowercase_ ) > 0: # the smallest token_id is adopted lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Optional[Any] = sorted(lowercase_ ,key=lambda lowercase_ : x[0] )[0] result.append(lowercase_ ) lowerCAmelCase__ : Tuple = e else: lowerCAmelCase__ : Any = pos + 1 lowerCAmelCase__ : Any = text[pos:end] if check_simbol(lowercase_ ): result.append('''<KIGOU>''' ) elif checkuae(lowercase_ ): result.append('''<U2000U2BFF>''' ) else: for i in wd.encode('''utf-8''' ): result.append('''<|byte%d|>''' % i ) lowerCAmelCase__ : Dict = end return result def __lowerCAmelCase ( self : Union[str, Any] ,lowercase_ : Union[str, Any] ,lowercase_ : Dict="\n" ): lowerCAmelCase__ : Dict = [] lowerCAmelCase__ : str = [] lowerCAmelCase__ : Any = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(lowercase_ ) > 0: words.append(bytearray(lowercase_ ).decode('''utf-8''' ,errors='''replace''' ) ) lowerCAmelCase__ : Optional[int] = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['''emoji_inv'''][word] ) elif word == "<SP>": words.append(''' ''' ) elif word == "<BR>": words.append(lowercase_ ) elif word == "<TAB>": words.append('''\t''' ) elif word == "<BLOCK>": words.append('''▀''' ) elif word == "<KIGOU>": words.append('''ǀ''' ) elif word == "<U2000U2BFF>": words.append('''‖''' ) else: words.append(lowercase_ ) if len(lowercase_ ) > 0: words.append(bytearray(lowercase_ ).decode('''utf-8''' ,errors='''replace''' ) ) lowerCAmelCase__ : Any = ''''''.join(lowercase_ ) return text
106
'''simple docstring''' import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : str ) -> int: with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights UpperCAmelCase : Optional[Any] = FlaxDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=__snake_case , cache_dir=__snake_case ) UpperCAmelCase : str = [t[-1] for t in os.walk(os.path.join(__snake_case , os.listdir(__snake_case )[0] , '''snapshots''' ) )] UpperCAmelCase : str = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('''.bin''' ) for f in files ) @slow @require_flax class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : List[str] ) -> Dict: UpperCAmelCase , UpperCAmelCase : str = FlaxStableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=__snake_case ) UpperCAmelCase : List[Any] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : List[str] = jax.random.PRNGKey(0 ) UpperCAmelCase : Optional[Any] = 4 UpperCAmelCase : Optional[Any] = jax.device_count() UpperCAmelCase : Tuple = num_samples * [prompt] UpperCAmelCase : int = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : Tuple = replicate(__snake_case ) UpperCAmelCase : Any = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : Optional[Any] = shard(__snake_case ) UpperCAmelCase : Optional[int] = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_51_47_45 ) < 1E-3 assert np.abs(np.abs(__snake_case , dtype=np.floataa ).sum() - 4_99_47.8_75 ) < 5E-1 UpperCAmelCase : Union[str, Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(__snake_case ) == num_samples def A ( self : List[Any] ) -> List[str]: UpperCAmelCase , UpperCAmelCase : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''flax''' , safety_checker=__snake_case ) UpperCAmelCase : Dict = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : Optional[Any] = jax.random.PRNGKey(0 ) UpperCAmelCase : Any = 50 UpperCAmelCase : Union[str, Any] = jax.device_count() UpperCAmelCase : int = num_samples * [prompt] UpperCAmelCase : Union[str, Any] = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : Dict = replicate(__snake_case ) UpperCAmelCase : int = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : Tuple = shard(__snake_case ) UpperCAmelCase : Tuple = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_65_24_01) ) < 1E-3 assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_38_38_08.2) ) < 5E-1 def A ( self : int ) -> Dict: UpperCAmelCase , UpperCAmelCase : List[str] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__snake_case ) UpperCAmelCase : Dict = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : Union[str, Any] = jax.random.PRNGKey(0 ) UpperCAmelCase : List[str] = 50 UpperCAmelCase : Union[str, Any] = jax.device_count() UpperCAmelCase : List[Any] = num_samples * [prompt] UpperCAmelCase : int = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : Tuple = replicate(__snake_case ) UpperCAmelCase : List[Any] = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : Optional[int] = shard(__snake_case ) UpperCAmelCase : Optional[Any] = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3 assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1 def A ( self : int ) -> Any: UpperCAmelCase , UpperCAmelCase : Dict = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa ) UpperCAmelCase : List[str] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : List[str] = jax.random.PRNGKey(0 ) UpperCAmelCase : Union[str, Any] = 50 UpperCAmelCase : Optional[int] = jax.device_count() UpperCAmelCase : List[str] = num_samples * [prompt] UpperCAmelCase : Dict = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : Tuple = replicate(__snake_case ) UpperCAmelCase : Any = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : str = shard(__snake_case ) UpperCAmelCase : Optional[int] = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3 assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1 def A ( self : Tuple ) -> Optional[Any]: UpperCAmelCase : int = FlaxDDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , set_alpha_to_one=__snake_case , steps_offset=1 , ) UpperCAmelCase , UpperCAmelCase : Tuple = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , scheduler=__snake_case , safety_checker=__snake_case , ) UpperCAmelCase : Tuple = scheduler.create_state() UpperCAmelCase : Dict = scheduler_state UpperCAmelCase : str = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : int = jax.random.PRNGKey(0 ) UpperCAmelCase : Union[str, Any] = 50 UpperCAmelCase : Optional[Any] = jax.device_count() UpperCAmelCase : Any = num_samples * [prompt] UpperCAmelCase : Dict = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : str = replicate(__snake_case ) UpperCAmelCase : List[str] = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : Optional[int] = shard(__snake_case ) UpperCAmelCase : Dict = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_45_04_39_45) ) < 1E-3 assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_34_76_93.5) ) < 5E-1 def A ( self : Any ) -> Tuple: UpperCAmelCase : List[Any] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : Union[str, Any] = jax.device_count() UpperCAmelCase : List[Any] = num_samples * [prompt] UpperCAmelCase : str = jax.random.split(jax.random.PRNGKey(0 ) , __snake_case ) UpperCAmelCase , UpperCAmelCase : Tuple = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__snake_case , ) UpperCAmelCase : Dict = replicate(__snake_case ) UpperCAmelCase : Optional[Any] = pipeline.prepare_inputs(__snake_case ) UpperCAmelCase : List[str] = shard(__snake_case ) UpperCAmelCase : Any = pipeline(__snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) UpperCAmelCase : Optional[int] = images[2, 0, 256, 10:17, 1] # With memory efficient attention UpperCAmelCase , UpperCAmelCase : Any = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__snake_case , use_memory_efficient_attention=__snake_case , ) UpperCAmelCase : int = replicate(__snake_case ) UpperCAmelCase : int = pipeline.prepare_inputs(__snake_case ) UpperCAmelCase : List[Any] = shard(__snake_case ) UpperCAmelCase : Optional[Any] = pipeline(__snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) UpperCAmelCase : int = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1E-2
23
0
def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): lowercase__ = n - k # Calculate C(n,k) for i in range(SCREAMING_SNAKE_CASE ): result *= n - i result //= i + 1 return result def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return binomial_coefficient(2 * node_count , SCREAMING_SNAKE_CASE ) // (node_count + 1) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if n < 0: raise ValueError('''factorial() not defined for negative values''' ) lowercase__ = 1 for i in range(1 , n + 1 ): result *= i return result def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return catalan_number(SCREAMING_SNAKE_CASE ) * factorial(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase = int(input('Enter the number of nodes: ').strip() or 0) if node_count <= 0: raise ValueError('We need some nodes to work with.') print( f"""Given {node_count} nodes, there are {binary_tree_count(node_count)} """ f"""binary trees and {catalan_number(node_count)} binary search trees.""" )
361
def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" return base * power(SCREAMING_SNAKE_CASE , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print('Raise base to the power of exponent using recursion...') lowerCAmelCase = int(input('Enter the base: ').strip()) lowerCAmelCase = int(input('Enter the exponent: ').strip()) lowerCAmelCase = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents lowerCAmelCase = 1 / result print(f"""{base} to the power of {exponent} is {result}""")
93
0
# using dfs for finding eulerian path traversal def a_ ( _A , _A , _A , _A=None ) -> Any: """simple docstring""" snake_case__ = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: snake_case__ , snake_case__ = True, True snake_case__ = dfs(_A , _A , _A , _A ) return path def a_ ( _A , _A ) -> Any: """simple docstring""" snake_case__ = 0 snake_case__ = -1 for i in range(_A ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 snake_case__ = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def a_ ( _A , _A ) -> Dict: """simple docstring""" snake_case__ = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] snake_case__ , snake_case__ = check_circuit_or_path(_A , _A ) if check == 3: print('graph is not Eulerian' ) print('no path' ) return snake_case__ = 1 if check == 2: snake_case__ = odd_node print('graph has a Euler path' ) if check == 1: print('graph has a Euler cycle' ) snake_case__ = dfs(_A , _A , _A ) print(_A ) def a_ ( ) -> int: """simple docstring""" snake_case__ = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} snake_case__ = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} snake_case__ = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} snake_case__ = {1: [2, 3], 2: [1, 3], 3: [1, 2]} snake_case__ = { 1: [], 2: [] # all degree is zero } snake_case__ = 10 check_euler(_A , _A ) check_euler(_A , _A ) check_euler(_A , _A ) check_euler(_A , _A ) check_euler(_A , _A ) if __name__ == "__main__": main()
307
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def a_ ( _A , _A=0.999 , _A="cosine" , ) -> Optional[int]: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(_A ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_A ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) snake_case__ = [] for i in range(_A ): snake_case__ = i / num_diffusion_timesteps snake_case__ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_A ) / alpha_bar_fn(_A ) , _A ) ) return torch.tensor(_A , dtype=torch.floataa ) class __SCREAMING_SNAKE_CASE( a_ , a_ ): _UpperCAmelCase = [e.name for e in KarrasDiffusionSchedulers] _UpperCAmelCase = 2 @register_to_config def __init__( self: Dict , UpperCamelCase: int = 10_00 , UpperCamelCase: float = 0.00_085 , UpperCamelCase: float = 0.012 , UpperCamelCase: str = "linear" , UpperCamelCase: Optional[Union[np.ndarray, List[float]]] = None , UpperCamelCase: str = "epsilon" , UpperCamelCase: Optional[bool] = False , UpperCamelCase: Optional[bool] = False , UpperCamelCase: float = 1.0 , UpperCamelCase: str = "linspace" , UpperCamelCase: int = 0 , ) -> str: if trained_betas is not None: snake_case__ = torch.tensor(UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "linear": snake_case__ = torch.linspace(UpperCamelCase , UpperCamelCase , UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. snake_case__ = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , UpperCamelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule snake_case__ = betas_for_alpha_bar(UpperCamelCase , alpha_transform_type='cosine' ) elif beta_schedule == "exp": snake_case__ = betas_for_alpha_bar(UpperCamelCase , alpha_transform_type='exp' ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) snake_case__ = 1.0 - self.betas snake_case__ = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(UpperCamelCase , UpperCamelCase , UpperCamelCase ) snake_case__ = use_karras_sigmas def lowerCAmelCase_ ( self: str , UpperCamelCase: int , UpperCamelCase: Optional[int]=None ) -> str: if schedule_timesteps is None: snake_case__ = self.timesteps snake_case__ = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: snake_case__ = 1 if len(UpperCamelCase ) > 1 else 0 else: snake_case__ = timestep.cpu().item() if torch.is_tensor(UpperCamelCase ) else timestep snake_case__ = self._index_counter[timestep_int] return indices[pos].item() @property def lowerCAmelCase_ ( self: Optional[Any] ) -> List[Any]: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: torch.FloatTensor , UpperCamelCase: Union[float, torch.FloatTensor] , ) -> torch.FloatTensor: snake_case__ = self.index_for_timestep(UpperCamelCase ) snake_case__ = self.sigmas[step_index] snake_case__ = sample / ((sigma**2 + 1) ** 0.5) return sample def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: int , UpperCamelCase: Union[str, torch.device] = None , UpperCamelCase: Optional[int] = None , ) -> str: snake_case__ = num_inference_steps snake_case__ = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": snake_case__ = np.linspace(0 , num_train_timesteps - 1 , UpperCamelCase , dtype=UpperCamelCase )[::-1].copy() elif self.config.timestep_spacing == "leading": snake_case__ = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 snake_case__ = (np.arange(0 , UpperCamelCase ) * step_ratio).round()[::-1].copy().astype(UpperCamelCase ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": snake_case__ = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 snake_case__ = (np.arange(UpperCamelCase , 0 , -step_ratio )).round().copy().astype(UpperCamelCase ) timesteps -= 1 else: raise ValueError( F'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) snake_case__ = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) snake_case__ = np.log(UpperCamelCase ) snake_case__ = np.interp(UpperCamelCase , np.arange(0 , len(UpperCamelCase ) ) , UpperCamelCase ) if self.config.use_karras_sigmas: snake_case__ = self._convert_to_karras(in_sigmas=UpperCamelCase , num_inference_steps=self.num_inference_steps ) snake_case__ = np.array([self._sigma_to_t(UpperCamelCase , UpperCamelCase ) for sigma in sigmas] ) snake_case__ = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) snake_case__ = torch.from_numpy(UpperCamelCase ).to(device=UpperCamelCase ) snake_case__ = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) snake_case__ = torch.from_numpy(UpperCamelCase ) snake_case__ = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(UpperCamelCase ).startswith('mps' ): # mps does not support float64 snake_case__ = timesteps.to(UpperCamelCase , dtype=torch.floataa ) else: snake_case__ = timesteps.to(device=UpperCamelCase ) # empty dt and derivative snake_case__ = None snake_case__ = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter snake_case__ = defaultdict(UpperCamelCase ) def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: List[str] , UpperCamelCase: Dict ) -> Tuple: # get log sigma snake_case__ = np.log(UpperCamelCase ) # get distribution snake_case__ = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range snake_case__ = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) snake_case__ = low_idx + 1 snake_case__ = log_sigmas[low_idx] snake_case__ = log_sigmas[high_idx] # interpolate sigmas snake_case__ = (low - log_sigma) / (low - high) snake_case__ = np.clip(UpperCamelCase , 0 , 1 ) # transform interpolation to time range snake_case__ = (1 - w) * low_idx + w * high_idx snake_case__ = t.reshape(sigma.shape ) return t def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: torch.FloatTensor , UpperCamelCase: Dict ) -> torch.FloatTensor: snake_case__ = in_sigmas[-1].item() snake_case__ = in_sigmas[0].item() snake_case__ = 7.0 # 7.0 is the value used in the paper snake_case__ = np.linspace(0 , 1 , UpperCamelCase ) snake_case__ = sigma_min ** (1 / rho) snake_case__ = sigma_max ** (1 / rho) snake_case__ = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def lowerCAmelCase_ ( self: Dict ) -> Optional[Any]: return self.dt is None def lowerCAmelCase_ ( self: int , UpperCamelCase: Union[torch.FloatTensor, np.ndarray] , UpperCamelCase: Union[float, torch.FloatTensor] , UpperCamelCase: Union[torch.FloatTensor, np.ndarray] , UpperCamelCase: bool = True , ) -> Union[SchedulerOutput, Tuple]: snake_case__ = self.index_for_timestep(UpperCamelCase ) # advance index counter by 1 snake_case__ = timestep.cpu().item() if torch.is_tensor(UpperCamelCase ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: snake_case__ = self.sigmas[step_index] snake_case__ = self.sigmas[step_index + 1] else: # 2nd order / Heun's method snake_case__ = self.sigmas[step_index - 1] snake_case__ = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API snake_case__ = 0 snake_case__ = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": snake_case__ = sigma_hat if self.state_in_first_order else sigma_next snake_case__ = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": snake_case__ = sigma_hat if self.state_in_first_order else sigma_next snake_case__ = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": snake_case__ = model_output else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.config.clip_sample: snake_case__ = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order snake_case__ = (sample - pred_original_sample) / sigma_hat # 3. delta timestep snake_case__ = sigma_next - sigma_hat # store for 2nd order step snake_case__ = derivative snake_case__ = dt snake_case__ = sample else: # 2. 2nd order / Heun's method snake_case__ = (sample - pred_original_sample) / sigma_next snake_case__ = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample snake_case__ = self.dt snake_case__ = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" snake_case__ = None snake_case__ = None snake_case__ = None snake_case__ = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCamelCase ) def lowerCAmelCase_ ( self: Any , UpperCamelCase: torch.FloatTensor , UpperCamelCase: torch.FloatTensor , UpperCamelCase: torch.FloatTensor , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples snake_case__ = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(UpperCamelCase ): # mps does not support float64 snake_case__ = self.timesteps.to(original_samples.device , dtype=torch.floataa ) snake_case__ = timesteps.to(original_samples.device , dtype=torch.floataa ) else: snake_case__ = self.timesteps.to(original_samples.device ) snake_case__ = timesteps.to(original_samples.device ) snake_case__ = [self.index_for_timestep(UpperCamelCase , UpperCamelCase ) for t in timesteps] snake_case__ = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): snake_case__ = sigma.unsqueeze(-1 ) snake_case__ = original_samples + noise * sigma return noisy_samples def __len__( self: List[Any] ) -> Union[str, Any]: return self.config.num_train_timesteps
307
1
'''simple docstring''' from __future__ import annotations def lowerCamelCase__ ( _A ): a : int = 0.00 a : Union[str, Any] = 0 for resistor in resistors: if resistor <= 0: a : Any = f"""Resistor at index {index} has a negative or zero value!""" raise ValueError(_A ) first_sum += 1 / float(_A ) index += 1 return 1 / first_sum def lowerCamelCase__ ( _A ): a : List[Any] = 0.00 a : str = 0 for resistor in resistors: sum_r += resistor if resistor < 0: a : Dict = f"""Resistor at index {index} has a negative value!""" raise ValueError(_A ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
96
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a__( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): lowercase__ = CycleDiffusionPipeline lowercase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { """negative_prompt""", """height""", """width""", """negative_prompt_embeds""", } lowercase__ = PipelineTesterMixin.required_optional_params - {"""latents"""} lowercase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""source_prompt"""} ) lowercase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS lowercase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowercase_ ( self : Any ): torch.manual_seed(0 ) a : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) a : str = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , num_train_timesteps=10_00 , clip_sample=__snake_case , set_alpha_to_one=__snake_case , ) torch.manual_seed(0 ) a : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) a : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) a : List[str] = CLIPTextModel(__snake_case ) a : int = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) a : Tuple = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def lowercase_ ( self : Optional[int] , __snake_case : Dict , __snake_case : Any=0 ): a : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(__snake_case ) ).to(__snake_case ) a : Optional[Any] = image / 2 + 0.5 if str(__snake_case ).startswith('mps' ): a : List[str] = torch.manual_seed(__snake_case ) else: a : Union[str, Any] = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) a : List[Any] = { 'prompt': 'An astronaut riding an elephant', 'source_prompt': 'An astronaut riding a horse', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'eta': 0.1, 'strength': 0.8, 'guidance_scale': 3, 'source_guidance_scale': 1, 'output_type': 'numpy', } return inputs def lowercase_ ( self : Optional[int] ): a : Optional[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator a : int = self.get_dummy_components() a : str = CycleDiffusionPipeline(**__snake_case ) a : List[str] = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) a : Dict = self.get_dummy_inputs(__snake_case ) a : Union[str, Any] = pipe(**__snake_case ) a : List[Any] = output.images a : Optional[Any] = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) a : Tuple = np.array([0.4459, 0.4943, 0.4544, 0.6643, 0.5474, 0.4327, 0.5701, 0.5959, 0.5179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def lowercase_ ( self : int ): a : List[Any] = self.get_dummy_components() for name, module in components.items(): if hasattr(__snake_case , 'half' ): a : Any = module.half() a : Tuple = CycleDiffusionPipeline(**__snake_case ) a : Any = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) a : str = self.get_dummy_inputs(__snake_case ) a : int = pipe(**__snake_case ) a : Optional[int] = output.images a : Tuple = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) a : int = np.array([0.3506, 0.4543, 0.446, 0.4575, 0.5195, 0.4155, 0.5273, 0.518, 0.4116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def lowercase_ ( self : List[Any] ): return super().test_save_load_local() @unittest.skip('non-deterministic pipeline' ) def lowercase_ ( self : Dict ): return super().test_inference_batch_single_identical() @skip_mps def lowercase_ ( self : int ): return super().test_dict_tuple_outputs_equivalent() @skip_mps def lowercase_ ( self : Dict ): return super().test_save_load_optional_components() @skip_mps def lowercase_ ( self : List[Any] ): return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class a__( unittest.TestCase ): def lowercase_ ( self : Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self : Optional[int] ): a : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/cycle-diffusion/black_colored_car.png' ) a : Optional[int] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy' ) a : List[str] = init_image.resize((5_12, 5_12) ) a : Dict = 'CompVis/stable-diffusion-v1-4' a : List[str] = DDIMScheduler.from_pretrained(__snake_case , subfolder='scheduler' ) a : Any = CycleDiffusionPipeline.from_pretrained( __snake_case , scheduler=__snake_case , safety_checker=__snake_case , torch_dtype=torch.floataa , revision='fp16' ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) pipe.enable_attention_slicing() a : Union[str, Any] = 'A black colored car' a : Optional[Any] = 'A blue colored car' a : int = torch.manual_seed(0 ) a : Optional[Any] = pipe( prompt=__snake_case , source_prompt=__snake_case , image=__snake_case , num_inference_steps=1_00 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=__snake_case , output_type='np' , ) a : Dict = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5e-1 def lowercase_ ( self : int ): a : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/cycle-diffusion/black_colored_car.png' ) a : List[str] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy' ) a : str = init_image.resize((5_12, 5_12) ) a : Optional[int] = 'CompVis/stable-diffusion-v1-4' a : Union[str, Any] = DDIMScheduler.from_pretrained(__snake_case , subfolder='scheduler' ) a : str = CycleDiffusionPipeline.from_pretrained(__snake_case , scheduler=__snake_case , safety_checker=__snake_case ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) pipe.enable_attention_slicing() a : Tuple = 'A black colored car' a : Tuple = 'A blue colored car' a : List[str] = torch.manual_seed(0 ) a : str = pipe( prompt=__snake_case , source_prompt=__snake_case , image=__snake_case , num_inference_steps=1_00 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=__snake_case , output_type='np' , ) a : Tuple = output.images assert np.abs(image - expected_image ).max() < 2e-2
96
1
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ : List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Tuple = { 'b0': efficientnet.EfficientNetBa, 'b1': efficientnet.EfficientNetBa, 'b2': efficientnet.EfficientNetBa, 'b3': efficientnet.EfficientNetBa, 'b4': efficientnet.EfficientNetBa, 'b5': efficientnet.EfficientNetBa, 'b6': efficientnet.EfficientNetBa, 'b7': efficientnet.EfficientNetBa, } SCREAMING_SNAKE_CASE__ : Any = { 'b0': { 'hidden_dim': 1280, 'width_coef': 1.0, 'depth_coef': 1.0, 'image_size': 224, 'dropout_rate': 0.2, 'dw_padding': [], }, 'b1': { 'hidden_dim': 1280, 'width_coef': 1.0, 'depth_coef': 1.1, 'image_size': 240, 'dropout_rate': 0.2, 'dw_padding': [16], }, 'b2': { 'hidden_dim': 1408, 'width_coef': 1.1, 'depth_coef': 1.2, 'image_size': 260, 'dropout_rate': 0.3, 'dw_padding': [5, 8, 16], }, 'b3': { 'hidden_dim': 1536, 'width_coef': 1.2, 'depth_coef': 1.4, 'image_size': 300, 'dropout_rate': 0.3, 'dw_padding': [5, 18], }, 'b4': { 'hidden_dim': 1792, 'width_coef': 1.4, 'depth_coef': 1.8, 'image_size': 380, 'dropout_rate': 0.4, 'dw_padding': [6], }, 'b5': { 'hidden_dim': 2048, 'width_coef': 1.6, 'depth_coef': 2.2, 'image_size': 456, 'dropout_rate': 0.4, 'dw_padding': [13, 27], }, 'b6': { 'hidden_dim': 2304, 'width_coef': 1.8, 'depth_coef': 2.6, 'image_size': 528, 'dropout_rate': 0.5, 'dw_padding': [31], }, 'b7': { 'hidden_dim': 2560, 'width_coef': 2.0, 'depth_coef': 3.1, 'image_size': 600, 'dropout_rate': 0.5, 'dw_padding': [18], }, } def A ( _SCREAMING_SNAKE_CASE ) -> str: lowerCamelCase : int = EfficientNetConfig() lowerCamelCase : List[str] = CONFIG_MAP[model_name]["hidden_dim"] lowerCamelCase : List[str] = CONFIG_MAP[model_name]["width_coef"] lowerCamelCase : Any = CONFIG_MAP[model_name]["depth_coef"] lowerCamelCase : Union[str, Any] = CONFIG_MAP[model_name]["image_size"] lowerCamelCase : Optional[int] = CONFIG_MAP[model_name]["dropout_rate"] lowerCamelCase : str = CONFIG_MAP[model_name]["dw_padding"] lowerCamelCase : Tuple = "huggingface/label-files" lowerCamelCase : List[str] = "imagenet-1k-id2label.json" lowerCamelCase : Any = 1000 lowerCamelCase : Any = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,repo_type="dataset" ) ,"r" ) ) lowerCamelCase : List[str] = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowerCamelCase : Tuple = idalabel lowerCamelCase : Any = {v: k for k, v in idalabel.items()} return config def A ( ) -> int: lowerCamelCase : str = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCamelCase : Tuple = Image.open(requests.get(_SCREAMING_SNAKE_CASE ,stream=_SCREAMING_SNAKE_CASE ).raw ) return im def A ( _SCREAMING_SNAKE_CASE ) -> str: lowerCamelCase : List[Any] = CONFIG_MAP[model_name]["image_size"] lowerCamelCase : str = EfficientNetImageProcessor( size={"height": size, "width": size} ,image_mean=[0.485, 0.456, 0.406] ,image_std=[0.47853944, 0.4732864, 0.47434163] ,do_center_crop=_SCREAMING_SNAKE_CASE ,) return preprocessor def A ( _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: lowerCamelCase : Any = [v.split("_" )[0].split("block" )[1] for v in original_param_names if v.startswith("block" )] lowerCamelCase : Any = sorted(set(_SCREAMING_SNAKE_CASE ) ) lowerCamelCase : Dict = len(_SCREAMING_SNAKE_CASE ) lowerCamelCase : List[Any] = {b: str(_SCREAMING_SNAKE_CASE ) for b, i in zip(_SCREAMING_SNAKE_CASE ,range(_SCREAMING_SNAKE_CASE ) )} lowerCamelCase : List[Any] = [] rename_keys.append(("stem_conv/kernel:0", "embeddings.convolution.weight") ) rename_keys.append(("stem_bn/gamma:0", "embeddings.batchnorm.weight") ) rename_keys.append(("stem_bn/beta:0", "embeddings.batchnorm.bias") ) rename_keys.append(("stem_bn/moving_mean:0", "embeddings.batchnorm.running_mean") ) rename_keys.append(("stem_bn/moving_variance:0", "embeddings.batchnorm.running_var") ) for b in block_names: lowerCamelCase : Dict = block_name_mapping[b] rename_keys.append((f'''block{b}_expand_conv/kernel:0''', f'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((f'''block{b}_expand_bn/gamma:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((f'''block{b}_expand_bn/beta:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (f'''block{b}_expand_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (f'''block{b}_expand_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (f'''block{b}_dwconv/depthwise_kernel:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((f'''block{b}_bn/gamma:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((f'''block{b}_bn/beta:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (f'''block{b}_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (f'''block{b}_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((f'''block{b}_se_reduce/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((f'''block{b}_se_reduce/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((f'''block{b}_se_expand/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((f'''block{b}_se_expand/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (f'''block{b}_project_conv/kernel:0''', f'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((f'''block{b}_project_bn/gamma:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((f'''block{b}_project_bn/beta:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (f'''block{b}_project_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (f'''block{b}_project_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(("top_conv/kernel:0", "encoder.top_conv.weight") ) rename_keys.append(("top_bn/gamma:0", "encoder.top_bn.weight") ) rename_keys.append(("top_bn/beta:0", "encoder.top_bn.bias") ) rename_keys.append(("top_bn/moving_mean:0", "encoder.top_bn.running_mean") ) rename_keys.append(("top_bn/moving_variance:0", "encoder.top_bn.running_var") ) lowerCamelCase : Optional[int] = {} for item in rename_keys: if item[0] in original_param_names: lowerCamelCase : List[str] = "efficientnet." + item[1] lowerCamelCase : int = "classifier.weight" lowerCamelCase : Union[str, Any] = "classifier.bias" return key_mapping def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Dict: for key, value in tf_params.items(): if "normalization" in key: continue lowerCamelCase : Tuple = key_mapping[key] if "_conv" in key and "kernel" in key: lowerCamelCase : List[Any] = torch.from_numpy(_SCREAMING_SNAKE_CASE ).permute(3 ,2 ,0 ,1 ) elif "depthwise_kernel" in key: lowerCamelCase : int = torch.from_numpy(_SCREAMING_SNAKE_CASE ).permute(2 ,3 ,0 ,1 ) elif "kernel" in key: lowerCamelCase : List[str] = torch.from_numpy(np.transpose(_SCREAMING_SNAKE_CASE ) ) else: lowerCamelCase : Optional[Any] = torch.from_numpy(_SCREAMING_SNAKE_CASE ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(_SCREAMING_SNAKE_CASE ) @torch.no_grad() def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Optional[int]: lowerCamelCase : Optional[int] = model_classes[model_name]( include_top=_SCREAMING_SNAKE_CASE ,weights="imagenet" ,input_tensor=_SCREAMING_SNAKE_CASE ,input_shape=_SCREAMING_SNAKE_CASE ,pooling=_SCREAMING_SNAKE_CASE ,classes=1000 ,classifier_activation="softmax" ,) lowerCamelCase : List[Any] = original_model.trainable_variables lowerCamelCase : Tuple = original_model.non_trainable_variables lowerCamelCase : Union[str, Any] = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: lowerCamelCase : List[str] = param.numpy() lowerCamelCase : int = list(tf_params.keys() ) # Load HuggingFace model lowerCamelCase : Union[str, Any] = get_efficientnet_config(_SCREAMING_SNAKE_CASE ) lowerCamelCase : Optional[int] = EfficientNetForImageClassification(_SCREAMING_SNAKE_CASE ).eval() lowerCamelCase : Tuple = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("Converting parameters..." ) lowerCamelCase : Union[str, Any] = rename_keys(_SCREAMING_SNAKE_CASE ) replace_params(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) # Initialize preprocessor and preprocess input image lowerCamelCase : int = convert_image_processor(_SCREAMING_SNAKE_CASE ) lowerCamelCase : int = preprocessor(images=prepare_img() ,return_tensors="pt" ) # HF model inference hf_model.eval() with torch.no_grad(): lowerCamelCase : Optional[Any] = hf_model(**_SCREAMING_SNAKE_CASE ) lowerCamelCase : str = outputs.logits.detach().numpy() # Original model inference lowerCamelCase : Optional[Any] = False lowerCamelCase : Any = CONFIG_MAP[model_name]["image_size"] lowerCamelCase : Optional[int] = prepare_img().resize((image_size, image_size) ,resample=PIL.Image.NEAREST ) lowerCamelCase : Union[str, Any] = image.img_to_array(_SCREAMING_SNAKE_CASE ) lowerCamelCase : str = np.expand_dims(_SCREAMING_SNAKE_CASE ,axis=0 ) lowerCamelCase : Dict = original_model.predict(_SCREAMING_SNAKE_CASE ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,atol=1e-3 ), "The predicted logits are not the same." print("Model outputs match!" ) if save_model: # Create folder to save model if not os.path.isdir(_SCREAMING_SNAKE_CASE ): os.mkdir(_SCREAMING_SNAKE_CASE ) # Save converted model and image processor hf_model.save_pretrained(_SCREAMING_SNAKE_CASE ) preprocessor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: # Push model and image processor to hub print(f'''Pushing converted {model_name} to the hub...''' ) lowerCamelCase : int = f'''efficientnet-{model_name}''' preprocessor.push_to_hub(_SCREAMING_SNAKE_CASE ) hf_model.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='b0', type=str, help='Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].', ) parser.add_argument( '--pytorch_dump_folder_path', default='hf_model', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--save_model', action='store_true', help='Save model to local') parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') SCREAMING_SNAKE_CASE__ : Tuple = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
48
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(lowerCAmelCase__ ) , """Tatoeba directory does not exist.""" ) class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' @cached_property def _lowercase ( self ) -> int: lowerCamelCase : str = tempfile.mkdtemp() return TatoebaConverter(save_dir=UpperCamelCase__ ) @slow def _lowercase ( self ) -> List[Any]: self.resolver.convert_models(["heb-eng"] ) @slow def _lowercase ( self ) -> Tuple: lowerCamelCase , lowerCamelCase : Dict = self.resolver.write_model_card("opus-mt-he-en" , dry_run=UpperCamelCase__ ) assert mmeta["long_pair"] == "heb-eng"
48
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor __lowercase: Tuple = logging.get_logger(__name__) class UpperCAmelCase ( lowerCamelCase_): def __init__( self : int, *a_ : int, **a_ : Optional[int] ): """simple docstring""" warnings.warn( "The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use LayoutLMv2ImageProcessor instead.", lowerCAmelCase__, ) super().__init__(*lowerCAmelCase__, **lowerCAmelCase__ )
365
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowercase: int = logging.get_logger(__name__) __lowercase: str = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : List[str] = 'yolos' def __init__( self : List[str], a_ : Optional[int]=768, a_ : Optional[int]=12, a_ : Any=12, a_ : List[str]=3072, a_ : Any="gelu", a_ : int=0.0, a_ : List[Any]=0.0, a_ : Dict=0.02, a_ : Optional[int]=1e-1_2, a_ : List[Any]=[512, 864], a_ : Any=16, a_ : Any=3, a_ : Tuple=True, a_ : List[str]=100, a_ : Union[str, Any]=True, a_ : Any=False, a_ : List[str]=1, a_ : Tuple=5, a_ : Union[str, Any]=2, a_ : int=5, a_ : Union[str, Any]=2, a_ : Dict=0.1, **a_ : Dict, ): """simple docstring""" super().__init__(**a_ ) UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = image_size UpperCamelCase__ = patch_size UpperCamelCase__ = num_channels UpperCamelCase__ = qkv_bias UpperCamelCase__ = num_detection_tokens UpperCamelCase__ = use_mid_position_embeddings UpperCamelCase__ = auxiliary_loss # Hungarian matcher UpperCamelCase__ = class_cost UpperCamelCase__ = bbox_cost UpperCamelCase__ = giou_cost # Loss coefficients UpperCamelCase__ = bbox_loss_coefficient UpperCamelCase__ = giou_loss_coefficient UpperCamelCase__ = eos_coefficient class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : Union[str, Any] = version.parse('1.11') @property def lowercase_ ( self : str ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowercase_ ( self : Tuple ): """simple docstring""" return 1e-4 @property def lowercase_ ( self : Optional[int] ): """simple docstring""" return 12
31
0
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path _a : str= ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) _a : list[int]= [ord(letter) for letter in string.ascii_lowercase] _a : set[int]= {ord(char) for char in VALID_CHARS} _a : list[str]= ["the", "be", "to", "of", "and", "in", "that", "have"] def __UpperCAmelCase ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : tuple[int, ...] ) -> str | None: '''simple docstring''' __snake_case : str = "" __snake_case : int __snake_case : int __snake_case : int for keychar, cipherchar in zip(cycle(UpperCAmelCase_ ) , UpperCAmelCase_ ): __snake_case : Union[str, Any] = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(UpperCAmelCase_ ) return decoded def __UpperCAmelCase ( UpperCAmelCase_ : list[int] ) -> list[str]: '''simple docstring''' __snake_case : list[str] = [] for key in product(UpperCAmelCase_ , repeat=3 ): __snake_case : Dict = try_key(UpperCAmelCase_ , UpperCAmelCase_ ) if encoded is not None: possibles.append(UpperCAmelCase_ ) return possibles def __UpperCAmelCase ( UpperCAmelCase_ : list[str] , UpperCAmelCase_ : str ) -> list[str]: '''simple docstring''' return [possible for possible in possibles if common_word in possible.lower()] def __UpperCAmelCase ( UpperCAmelCase_ : str = "p059_cipher.txt" ) -> int: '''simple docstring''' __snake_case : list[int] __snake_case : list[str] __snake_case : str __snake_case : str __snake_case : str = Path(UpperCAmelCase_ ).parent.joinpath(UpperCAmelCase_ ).read_text(encoding='utf-8' ) __snake_case : Optional[Any] = [int(UpperCAmelCase_ ) for number in data.strip().split(',' )] __snake_case : Dict = filter_valid_chars(UpperCAmelCase_ ) for common_word in COMMON_WORDS: __snake_case : Any = filter_common_word(UpperCAmelCase_ , UpperCAmelCase_ ) if len(UpperCAmelCase_ ) == 1: break __snake_case : int = possibles[0] return sum(ord(UpperCAmelCase_ ) for char in decoded_text ) if __name__ == "__main__": print(f'''{solution() = }''')
172
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Union[str, Any]= logging.get_logger(__name__) _a : str= { "alibaba-damo/mgp-str-base": "https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json", } class UpperCamelCase ( lowercase ): UpperCAmelCase : List[str] = """mgp-str""" def __init__(self : List[Any] , _A : Dict=[32, 1_28] , _A : Any=4 , _A : int=3 , _A : Any=27 , _A : List[str]=38 , _A : str=5_02_57 , _A : Optional[int]=3_05_22 , _A : Union[str, Any]=7_68 , _A : Tuple=12 , _A : List[str]=12 , _A : List[str]=4.0 , _A : Optional[int]=True , _A : Optional[Any]=False , _A : Dict=1E-5 , _A : Optional[int]=0.0 , _A : str=0.0 , _A : int=0.0 , _A : str=False , _A : List[Any]=0.02 , **_A : Union[str, Any] , ) -> Tuple: super().__init__(**_A) __snake_case : Union[str, Any] = image_size __snake_case : Optional[int] = patch_size __snake_case : int = num_channels __snake_case : int = max_token_length __snake_case : List[Any] = num_character_labels __snake_case : Optional[int] = num_bpe_labels __snake_case : Optional[Any] = num_wordpiece_labels __snake_case : int = hidden_size __snake_case : List[Any] = num_hidden_layers __snake_case : List[str] = num_attention_heads __snake_case : Any = mlp_ratio __snake_case : List[str] = distilled __snake_case : List[Any] = layer_norm_eps __snake_case : List[Any] = drop_rate __snake_case : Optional[int] = qkv_bias __snake_case : Optional[int] = attn_drop_rate __snake_case : int = drop_path_rate __snake_case : List[str] = output_aa_attentions __snake_case : Optional[Any] = initializer_range
172
1
import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __lowerCAmelCase ( A , unittest.TestCase ): UpperCamelCase = MobileBertTokenizer UpperCamelCase = MobileBertTokenizerFast UpperCamelCase = True UpperCamelCase = True UpperCamelCase = filter_non_english UpperCamelCase = '''google/mobilebert-uncased''' def _lowerCamelCase ( self : Union[str, Any]) -> Any: """simple docstring""" super().setUp() _UpperCAmelCase = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens])) _UpperCAmelCase = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def _lowerCamelCase ( self : int , A : str) -> Optional[int]: """simple docstring""" _UpperCAmelCase = 'UNwant\u00E9d,running' _UpperCAmelCase = 'unwanted, running' return input_text, output_text def _lowerCamelCase ( self : str) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.tokenizer_class(self.vocab_file) _UpperCAmelCase = tokenizer.tokenize('UNwant\u00E9d,running') self.assertListEqual(A , ['un', '##want', '##ed', ',', 'runn', '##ing']) self.assertListEqual(tokenizer.convert_tokens_to_ids(A) , [9, 6, 7, 12, 10, 11]) def _lowerCamelCase ( self : Optional[int]) -> Optional[int]: """simple docstring""" if not self.test_rust_tokenizer: return _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = 'UNwant\u00E9d,running' _UpperCAmelCase = tokenizer.tokenize(A) _UpperCAmelCase = rust_tokenizer.tokenize(A) self.assertListEqual(A , A) _UpperCAmelCase = tokenizer.encode(A , add_special_tokens=A) _UpperCAmelCase = rust_tokenizer.encode(A , add_special_tokens=A) self.assertListEqual(A , A) _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = tokenizer.encode(A) _UpperCAmelCase = rust_tokenizer.encode(A) self.assertListEqual(A , A) # With lower casing _UpperCAmelCase = self.get_tokenizer(do_lower_case=A) _UpperCAmelCase = self.get_rust_tokenizer(do_lower_case=A) _UpperCAmelCase = 'UNwant\u00E9d,running' _UpperCAmelCase = tokenizer.tokenize(A) _UpperCAmelCase = rust_tokenizer.tokenize(A) self.assertListEqual(A , A) _UpperCAmelCase = tokenizer.encode(A , add_special_tokens=A) _UpperCAmelCase = rust_tokenizer.encode(A , add_special_tokens=A) self.assertListEqual(A , A) _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = tokenizer.encode(A) _UpperCAmelCase = rust_tokenizer.encode(A) self.assertListEqual(A , A) def _lowerCamelCase ( self : str) -> List[Any]: """simple docstring""" _UpperCAmelCase = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz') , ['ah', '\u535A', '\u63A8', 'zz']) def _lowerCamelCase ( self : Union[str, Any]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = BasicTokenizer(do_lower_case=A) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ') , ['hello', '!', 'how', 'are', 'you', '?']) self.assertListEqual(tokenizer.tokenize('H\u00E9llo') , ['hello']) def _lowerCamelCase ( self : Any) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = BasicTokenizer(do_lower_case=A , strip_accents=A) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ') , ['hällo', '!', 'how', 'are', 'you', '?']) self.assertListEqual(tokenizer.tokenize('H\u00E9llo') , ['h\u00E9llo']) def _lowerCamelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = BasicTokenizer(do_lower_case=A , strip_accents=A) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ') , ['hallo', '!', 'how', 'are', 'you', '?']) self.assertListEqual(tokenizer.tokenize('H\u00E9llo') , ['hello']) def _lowerCamelCase ( self : Tuple) -> int: """simple docstring""" _UpperCAmelCase = BasicTokenizer(do_lower_case=A) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ') , ['hallo', '!', 'how', 'are', 'you', '?']) self.assertListEqual(tokenizer.tokenize('H\u00E9llo') , ['hello']) def _lowerCamelCase ( self : int) -> List[Any]: """simple docstring""" _UpperCAmelCase = BasicTokenizer(do_lower_case=A) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ') , ['HeLLo', '!', 'how', 'Are', 'yoU', '?']) def _lowerCamelCase ( self : Optional[int]) -> Dict: """simple docstring""" _UpperCAmelCase = BasicTokenizer(do_lower_case=A , strip_accents=A) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ') , ['HäLLo', '!', 'how', 'Are', 'yoU', '?']) def _lowerCamelCase ( self : Optional[Any]) -> List[str]: """simple docstring""" _UpperCAmelCase = BasicTokenizer(do_lower_case=A , strip_accents=A) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ') , ['HaLLo', '!', 'how', 'Are', 'yoU', '?']) def _lowerCamelCase ( self : Optional[int]) -> List[Any]: """simple docstring""" _UpperCAmelCase = BasicTokenizer(do_lower_case=A , never_split=['[UNK]']) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]') , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]']) def _lowerCamelCase ( self : Tuple) -> List[Any]: """simple docstring""" _UpperCAmelCase = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] _UpperCAmelCase = {} for i, token in enumerate(A): _UpperCAmelCase = i _UpperCAmelCase = WordpieceTokenizer(vocab=A , unk_token='[UNK]') self.assertListEqual(tokenizer.tokenize('') , []) self.assertListEqual(tokenizer.tokenize('unwanted running') , ['un', '##want', '##ed', 'runn', '##ing']) self.assertListEqual(tokenizer.tokenize('unwantedX running') , ['[UNK]', 'runn', '##ing']) def _lowerCamelCase ( self : List[Any]) -> Optional[int]: """simple docstring""" self.assertTrue(_is_whitespace(' ')) self.assertTrue(_is_whitespace('\t')) self.assertTrue(_is_whitespace('\r')) self.assertTrue(_is_whitespace('\n')) self.assertTrue(_is_whitespace('\u00A0')) self.assertFalse(_is_whitespace('A')) self.assertFalse(_is_whitespace('-')) def _lowerCamelCase ( self : Union[str, Any]) -> Optional[Any]: """simple docstring""" self.assertTrue(_is_control('\u0005')) self.assertFalse(_is_control('A')) self.assertFalse(_is_control(' ')) self.assertFalse(_is_control('\t')) self.assertFalse(_is_control('\r')) def _lowerCamelCase ( self : Optional[int]) -> int: """simple docstring""" self.assertTrue(_is_punctuation('-')) self.assertTrue(_is_punctuation('$')) self.assertTrue(_is_punctuation('`')) self.assertTrue(_is_punctuation('.')) self.assertFalse(_is_punctuation('A')) self.assertFalse(_is_punctuation(' ')) def _lowerCamelCase ( self : Union[str, Any]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(A) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']]) self.assertListEqual( [rust_tokenizer.tokenize(A) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']]) @slow def _lowerCamelCase ( self : int) -> str: """simple docstring""" _UpperCAmelCase = self.tokenizer_class.from_pretrained('google/mobilebert-uncased') _UpperCAmelCase = tokenizer.encode('sequence builders' , add_special_tokens=A) _UpperCAmelCase = tokenizer.encode('multi-sequence build' , add_special_tokens=A) _UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(A) _UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(A , A) assert encoded_sentence == [1_01] + text + [1_02] assert encoded_pair == [1_01] + text + [1_02] + text_a + [1_02] def _lowerCamelCase ( self : List[Any]) -> Any: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})"): _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(A , **A) _UpperCAmelCase = F"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." _UpperCAmelCase = tokenizer_r.encode_plus( A , return_attention_mask=A , return_token_type_ids=A , return_offsets_mapping=A , add_special_tokens=A , ) _UpperCAmelCase = tokenizer_r.do_lower_case if hasattr(A , 'do_lower_case') else False _UpperCAmelCase = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'])) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping']) def _lowerCamelCase ( self : Tuple) -> Any: """simple docstring""" _UpperCAmelCase = ['的', '人', '有'] _UpperCAmelCase = ''.join(A) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})"): _UpperCAmelCase = True _UpperCAmelCase = self.tokenizer_class.from_pretrained(A , **A) _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(A , **A) _UpperCAmelCase = tokenizer_p.encode(A , add_special_tokens=A) _UpperCAmelCase = tokenizer_r.encode(A , add_special_tokens=A) _UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(A) _UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(A) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(A , A) self.assertListEqual(A , A) _UpperCAmelCase = False _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(A , **A) _UpperCAmelCase = self.tokenizer_class.from_pretrained(A , **A) _UpperCAmelCase = tokenizer_r.encode(A , add_special_tokens=A) _UpperCAmelCase = tokenizer_p.encode(A , add_special_tokens=A) _UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(A) _UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(A) # it is expected that only the first Chinese character is not preceded by "##". _UpperCAmelCase = [ F"##{token}" if idx != 0 else token for idx, token in enumerate(A) ] self.assertListEqual(A , A) self.assertListEqual(A , A)
290
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCAmelCase__ = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["CLIPFeatureExtractor"] UpperCAmelCase__ = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
290
1
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowercase : """simple docstring""" def __init__( self , A , A=13 , A=32 , A=2 , A=3 , A=16 , A=[32, 64, 1_28] , A=[1, 2, 1] , A=[2, 2, 4] , A=2 , A=2.0 , A=True , A=0.0 , A=0.0 , A=0.1 , A="gelu" , A=False , A=True , A=0.02 , A=1e-5 , A=True , A=None , A=True , A=10 , A=8 , A=["stage1", "stage2"] , A=[1, 2] , ) -> List[str]: '''simple docstring''' lowerCamelCase = parent lowerCamelCase = batch_size lowerCamelCase = image_size lowerCamelCase = patch_size lowerCamelCase = num_channels lowerCamelCase = embed_dim lowerCamelCase = hidden_sizes lowerCamelCase = depths lowerCamelCase = num_heads lowerCamelCase = window_size lowerCamelCase = mlp_ratio lowerCamelCase = qkv_bias lowerCamelCase = hidden_dropout_prob lowerCamelCase = attention_probs_dropout_prob lowerCamelCase = drop_path_rate lowerCamelCase = hidden_act lowerCamelCase = use_absolute_embeddings lowerCamelCase = patch_norm lowerCamelCase = layer_norm_eps lowerCamelCase = initializer_range lowerCamelCase = is_training lowerCamelCase = scope lowerCamelCase = use_labels lowerCamelCase = type_sequence_label_size lowerCamelCase = encoder_stride lowerCamelCase = out_features lowerCamelCase = out_indices def __A ( self ) -> Dict: '''simple docstring''' lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase = None if self.use_labels: lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase = self.get_config() return config, pixel_values, labels def __A ( self ) -> List[Any]: '''simple docstring''' return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def __A ( self , A , A , A ) -> Any: '''simple docstring''' lowerCamelCase = FocalNetModel(config=A ) model.to(A ) model.eval() lowerCamelCase = model(A ) lowerCamelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowerCamelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __A ( self , A , A , A ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase = FocalNetBackbone(config=A ) model.to(A ) model.eval() lowerCamelCase = model(A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None lowerCamelCase = None lowerCamelCase = FocalNetBackbone(config=A ) model.to(A ) model.eval() lowerCamelCase = model(A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __A ( self , A , A , A ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase = FocalNetForMaskedImageModeling(config=A ) model.to(A ) model.eval() lowerCamelCase = model(A ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCamelCase = 1 lowerCamelCase = FocalNetForMaskedImageModeling(A ) model.to(A ) model.eval() lowerCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase = model(A ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __A ( self , A , A , A ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase = self.type_sequence_label_size lowerCamelCase = FocalNetForImageClassification(A ) model.to(A ) model.eval() lowerCamelCase = model(A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase = 1 lowerCamelCase = FocalNetForImageClassification(A ) model.to(A ) model.eval() lowerCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __A ( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase = self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase = config_and_inputs lowerCamelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __lowercase ( a_ , a_ , unittest.TestCase ): """simple docstring""" UpperCamelCase : Optional[Any] = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) UpperCamelCase : int = ( {"feature-extraction": FocalNetModel, "image-classification": FocalNetForImageClassification} if is_torch_available() else {} ) UpperCamelCase : List[str] = False UpperCamelCase : List[Any] = False UpperCamelCase : Optional[Any] = False UpperCamelCase : str = False UpperCamelCase : List[str] = False def __A ( self ) -> int: '''simple docstring''' lowerCamelCase = FocalNetModelTester(self ) lowerCamelCase = ConfigTester(self , config_class=A , embed_dim=37 , has_text_modality=A ) def __A ( self ) -> List[str]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __A ( self ) -> List[str]: '''simple docstring''' return def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def __A ( self ) -> Dict: '''simple docstring''' lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*A ) def __A ( self ) -> int: '''simple docstring''' lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*A ) def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @unittest.skip(reason="""FocalNet does not use inputs_embeds""" ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip(reason="""FocalNet does not use feedforward chunking""" ) def __A ( self ) -> Optional[Any]: '''simple docstring''' pass def __A ( self ) -> int: '''simple docstring''' lowerCamelCase , lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowerCamelCase = model_class(A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A , nn.Linear ) ) def __A ( self ) -> Dict: '''simple docstring''' lowerCamelCase , lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowerCamelCase = model_class(A ) lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase = [*signature.parameters.keys()] lowerCamelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , A ) def __A ( self , A , A , A , A ) -> str: '''simple docstring''' lowerCamelCase = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): lowerCamelCase = model(**self._prepare_for_class(A , A ) ) lowerCamelCase = outputs.hidden_states lowerCamelCase = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(A ) , A ) # FocalNet has a different seq_length lowerCamelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCamelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) lowerCamelCase = outputs.reshaped_hidden_states self.assertEqual(len(A ) , A ) lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = reshaped_hidden_states[0].shape lowerCamelCase = ( reshaped_hidden_states[0].view(A , A , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __A ( self ) -> List[str]: '''simple docstring''' lowerCamelCase , lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: lowerCamelCase = True self.check_hidden_states_output(A , A , A , A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase = True self.check_hidden_states_output(A , A , A , A ) def __A ( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase , lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase = 3 lowerCamelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowerCamelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCamelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowerCamelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: lowerCamelCase = True self.check_hidden_states_output(A , A , A , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase = True self.check_hidden_states_output(A , A , A , (padded_height, padded_width) ) @slow def __A ( self ) -> Union[str, Any]: '''simple docstring''' for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase = FocalNetModel.from_pretrained(A ) self.assertIsNotNone(A ) def __A ( self ) -> List[Any]: '''simple docstring''' lowerCamelCase , lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase = _config_zero_init(A ) for model_class in self.all_model_classes: lowerCamelCase = model_class(config=A ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" @cached_property def __A ( self ) -> List[str]: '''simple docstring''' return AutoImageProcessor.from_pretrained("""microsoft/focalnet-tiny""" ) if is_vision_available() else None @slow def __A ( self ) -> str: '''simple docstring''' lowerCamelCase = FocalNetForImageClassification.from_pretrained("""microsoft/focalnet-tiny""" ).to(A ) lowerCamelCase = self.default_image_processor lowerCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) lowerCamelCase = image_processor(images=A , return_tensors="""pt""" ).to(A ) # forward pass with torch.no_grad(): lowerCamelCase = model(**A ) # verify the logits lowerCamelCase = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , A ) lowerCamelCase = torch.tensor([0.2166, -0.4368, 0.2191] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 2_81 ) @require_torch class __lowercase ( a_ , unittest.TestCase ): """simple docstring""" UpperCamelCase : str = (FocalNetBackbone,) if is_torch_available() else () UpperCamelCase : Dict = FocalNetConfig UpperCamelCase : Optional[Any] = False def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase = FocalNetModelTester(self )
252
import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler UpperCAmelCase : Optional[Any] = 16 UpperCAmelCase : Optional[Any] = 32 def __lowerCamelCase ( lowerCamelCase__ : List[str] ): '''simple docstring''' return int(x / 2**20 ) class __lowercase : """simple docstring""" def __enter__( self ) -> Optional[Any]: '''simple docstring''' gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero lowerCamelCase = torch.cuda.memory_allocated() return self def __exit__( self , *A ) -> int: '''simple docstring''' gc.collect() torch.cuda.empty_cache() lowerCamelCase = torch.cuda.memory_allocated() lowerCamelCase = torch.cuda.max_memory_allocated() lowerCamelCase = bamb(self.end - self.begin ) lowerCamelCase = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def __lowerCamelCase ( lowerCamelCase__ : Accelerator , lowerCamelCase__ : int = 16 , lowerCamelCase__ : str = "bert-base-cased" , lowerCamelCase__ : int = 320 , lowerCamelCase__ : int = 160 , ): '''simple docstring''' lowerCamelCase = AutoTokenizer.from_pretrained(lowerCamelCase__ ) lowerCamelCase = load_dataset( """glue""" , """mrpc""" , split={"""train""": f'train[:{n_train}]', """validation""": f'validation[:{n_val}]'} ) def tokenize_function(lowerCamelCase__ : str ): # max_length=None => use the model max length (it's actually the default) lowerCamelCase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowerCamelCase = datasets.map( lowerCamelCase__ , batched=lowerCamelCase__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=lowerCamelCase__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCamelCase = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowerCamelCase__ : Union[str, Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCamelCase__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(lowerCamelCase__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. lowerCamelCase = DataLoader( tokenized_datasets["""train"""] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=lowerCamelCase__ ) lowerCamelCase = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=lowerCamelCase__ ) return train_dataloader, eval_dataloader def __lowerCamelCase ( lowerCamelCase__ : Tuple , lowerCamelCase__ : Tuple ): '''simple docstring''' lowerCamelCase = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase = config["""lr"""] lowerCamelCase = int(config["""num_epochs"""] ) lowerCamelCase = int(config["""seed"""] ) lowerCamelCase = int(config["""batch_size"""] ) lowerCamelCase = args.model_name_or_path set_seed(lowerCamelCase__ ) lowerCamelCase , lowerCamelCase = get_dataloaders(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase = AutoModelForSequenceClassification.from_pretrained(lowerCamelCase__ , return_dict=lowerCamelCase__ ) # Instantiate optimizer lowerCamelCase = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowerCamelCase = optimizer_cls(params=model.parameters() , lr=lowerCamelCase__ ) if accelerator.state.deepspeed_plugin is not None: lowerCamelCase = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: lowerCamelCase = 1 lowerCamelCase = (len(lowerCamelCase__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowerCamelCase = get_linear_schedule_with_warmup( optimizer=lowerCamelCase__ , num_warmup_steps=0 , num_training_steps=lowerCamelCase__ , ) else: lowerCamelCase = DummyScheduler(lowerCamelCase__ , total_num_steps=lowerCamelCase__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = accelerator.prepare( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # We need to keep track of how many total steps we have iterated over lowerCamelCase = 0 # We also need to keep track of the stating epoch so files are named properly lowerCamelCase = 0 # Now we train the model lowerCamelCase = {} for epoch in range(lowerCamelCase__ , lowerCamelCase__ ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(lowerCamelCase__ ): lowerCamelCase = model(**lowerCamelCase__ ) lowerCamelCase = outputs.loss lowerCamelCase = loss / gradient_accumulation_steps accelerator.backward(lowerCamelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print("""Memory before entering the train : {}""".format(bamb(tracemalloc.begin ) ) ) accelerator.print("""Memory consumed at the end of the train (end-begin): {}""".format(tracemalloc.used ) ) accelerator.print("""Peak Memory consumed during the train (max-begin): {}""".format(tracemalloc.peaked ) ) accelerator.print( """Total Peak Memory consumed during the train (max): {}""".format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) lowerCamelCase = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[f'epoch-{epoch}'] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , """peak_memory_utilization.json""" ) , """w""" ) as f: json.dump(lowerCamelCase__ , lowerCamelCase__ ) def __lowerCamelCase ( ): '''simple docstring''' lowerCamelCase = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=lowerCamelCase__ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=lowerCamelCase__ , ) parser.add_argument( """--output_dir""" , type=lowerCamelCase__ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--peak_memory_upper_bound""" , type=lowerCamelCase__ , default=lowerCamelCase__ , help="""The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.""" , ) parser.add_argument( """--n_train""" , type=lowerCamelCase__ , default=320 , help="""Number of training examples to use.""" , ) parser.add_argument( """--n_val""" , type=lowerCamelCase__ , default=160 , help="""Number of validation examples to use.""" , ) parser.add_argument( """--num_epochs""" , type=lowerCamelCase__ , default=1 , help="""Number of train epochs.""" , ) lowerCamelCase = parser.parse_args() lowerCamelCase = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(lowerCamelCase__ , lowerCamelCase__ ) if __name__ == "__main__": main()
252
1
"""simple docstring""" from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time _lowerCAmelCase : List[str] = Lock() def __snake_case ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> int: '''simple docstring''' global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(SCREAMING_SNAKE_CASE__ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() _UpperCAmelCase : Optional[int] = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left _UpperCAmelCase : Tuple = min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(SCREAMING_SNAKE_CASE__ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() _UpperCAmelCase : int = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right _UpperCAmelCase : Optional[Any] = max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # after all swaps are performed, send the values back to main result_pipe[1].send(SCREAMING_SNAKE_CASE__ ) def __snake_case ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple: '''simple docstring''' _UpperCAmelCase : str = [] _UpperCAmelCase : List[Any] = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop _UpperCAmelCase : Union[str, Any] = Pipe() _UpperCAmelCase : str = Pipe() process_array_.append( Process( target=SCREAMING_SNAKE_CASE__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) _UpperCAmelCase : Optional[Any] = temp_rs _UpperCAmelCase : str = temp_rr for i in range(1 , len(SCREAMING_SNAKE_CASE__ ) - 1 ): _UpperCAmelCase : Optional[int] = Pipe() _UpperCAmelCase : str = Pipe() process_array_.append( Process( target=SCREAMING_SNAKE_CASE__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) _UpperCAmelCase : Tuple = temp_rs _UpperCAmelCase : List[Any] = temp_rr process_array_.append( Process( target=SCREAMING_SNAKE_CASE__ , args=( len(SCREAMING_SNAKE_CASE__ ) - 1, arr[len(SCREAMING_SNAKE_CASE__ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(SCREAMING_SNAKE_CASE__ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(SCREAMING_SNAKE_CASE__ ) ): _UpperCAmelCase : Tuple = result_pipe[p][0].recv() process_array_[p].join() return arr def __snake_case ( ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : int = list(range(10 , 0 , -1 ) ) print("Initial List" ) print(*SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : str = odd_even_transposition(SCREAMING_SNAKE_CASE__ ) print("Sorted List\n" ) print(*SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
202
"""simple docstring""" import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py _lowerCAmelCase : Dict = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. _lowerCAmelCase : List[Any] = importlib.util.spec_from_file_location( "transformers", os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) _lowerCAmelCase : Tuple = spec.loader.load_module() _lowerCAmelCase : Tuple = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` _lowerCAmelCase : Optional[int] = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)") _lowerCAmelCase : Optional[int] = { "CLIPConfigMixin", "DecisionTransformerConfigMixin", "EncoderDecoderConfigMixin", "RagConfigMixin", "SpeechEncoderDecoderConfigMixin", "VisionEncoderDecoderConfigMixin", "VisionTextDualEncoderConfigMixin", } def __snake_case ( ) -> Dict: '''simple docstring''' _UpperCAmelCase : List[str] = [] for config_class in list(CONFIG_MAPPING.values() ): _UpperCAmelCase : Union[str, Any] = False # source code of `config_class` _UpperCAmelCase : Optional[int] = inspect.getsource(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : List[Any] = _re_checkpoint.findall(SCREAMING_SNAKE_CASE__ ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` _UpperCAmelCase , _UpperCAmelCase : List[Any] = checkpoint # verify the checkpoint name corresponds to the checkpoint link _UpperCAmelCase : Optional[Any] = f'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: _UpperCAmelCase : Optional[Any] = True break _UpperCAmelCase : int = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > 0: _UpperCAmelCase : List[str] = "\n".join(sorted(SCREAMING_SNAKE_CASE__ ) ) raise ValueError(f'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
202
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE :List[Any] = { 'configuration_gpt_bigcode': ['GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTBigCodeConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Dict = [ 'GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST', 'GPTBigCodeForSequenceClassification', 'GPTBigCodeForTokenClassification', 'GPTBigCodeForCausalLM', 'GPTBigCodeModel', 'GPTBigCodePreTrainedModel', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE :List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
15
import math import sys def A_ ( _UpperCAmelCase ): if number != int(_UpperCAmelCase ): raise ValueError("the value of input must be a natural number" ) if number < 0: raise ValueError("the value of input must not be a negative number" ) if number == 0: return 1 SCREAMING_SNAKE_CASE_: List[str] = [-1] * (number + 1) SCREAMING_SNAKE_CASE_: str = 0 for i in range(1 , number + 1 ): SCREAMING_SNAKE_CASE_: str = sys.maxsize SCREAMING_SNAKE_CASE_: List[Any] = int(math.sqrt(_UpperCAmelCase ) ) for j in range(1 , root + 1 ): SCREAMING_SNAKE_CASE_: List[str] = 1 + answers[i - (j**2)] SCREAMING_SNAKE_CASE_: Optional[Any] = min(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Dict = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
13
0
import sys from collections import defaultdict class __a: """simple docstring""" def __init__( self ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = [] def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: return self.node_position[vertex] def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Optional[Any]: UpperCAmelCase_ : List[str] = pos def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Any: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: UpperCAmelCase_ : Dict = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: UpperCAmelCase_ : List[str] = 2 * start + 1 else: UpperCAmelCase_ : str = 2 * start + 2 if heap[smallest_child] < heap[start]: UpperCAmelCase_, UpperCAmelCase_ : int = heap[smallest_child], positions[smallest_child] UpperCAmelCase_, UpperCAmelCase_ : Any = ( heap[start], positions[start], ) UpperCAmelCase_, UpperCAmelCase_ : Union[str, Any] = temp, tempa UpperCAmelCase_ : Union[str, Any] = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] ,self.get_position(positions[start] ) ) self.set_position(positions[start] ,_SCREAMING_SNAKE_CASE ) self.top_to_bottom(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Tuple: UpperCAmelCase_ : str = position[index] while index != 0: UpperCAmelCase_ : Dict = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: UpperCAmelCase_ : int = heap[parent] UpperCAmelCase_ : Union[str, Any] = position[parent] self.set_position(position[parent] ,_SCREAMING_SNAKE_CASE ) else: UpperCAmelCase_ : List[str] = val UpperCAmelCase_ : int = temp self.set_position(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) break UpperCAmelCase_ : int = parent else: UpperCAmelCase_ : Optional[int] = val UpperCAmelCase_ : Any = temp self.set_position(_SCREAMING_SNAKE_CASE ,0 ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Dict: UpperCAmelCase_ : int = len(_SCREAMING_SNAKE_CASE ) // 2 - 1 for i in range(_SCREAMING_SNAKE_CASE ,-1 ,-1 ): self.top_to_bottom(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,len(_SCREAMING_SNAKE_CASE ) ,_SCREAMING_SNAKE_CASE ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> str: UpperCAmelCase_ : Optional[Any] = positions[0] UpperCAmelCase_ : Optional[Any] = sys.maxsize self.top_to_bottom(_SCREAMING_SNAKE_CASE ,0 ,len(_SCREAMING_SNAKE_CASE ) ,_SCREAMING_SNAKE_CASE ) return temp def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : str = Heap() UpperCAmelCase_ : Optional[int] = [0] * len(_lowercase ) UpperCAmelCase_ : Optional[int] = [-1] * len(_lowercase ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph UpperCAmelCase_ : Dict = [] # Heap of Distance of vertices from their neighboring vertex UpperCAmelCase_ : List[str] = [] for vertex in range(len(_lowercase ) ): distance_tv.append(sys.maxsize ) positions.append(_lowercase ) heap.node_position.append(_lowercase ) UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : List[Any] = 1 UpperCAmelCase_ : List[Any] = sys.maxsize for neighbor, distance in adjacency_list[0]: UpperCAmelCase_ : str = 0 UpperCAmelCase_ : str = distance heap.heapify(_lowercase , _lowercase ) for _ in range(1 , len(_lowercase ) ): UpperCAmelCase_ : Optional[Any] = heap.delete_minimum(_lowercase , _lowercase ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) UpperCAmelCase_ : Optional[int] = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(_lowercase )] ): UpperCAmelCase_ : int = distance heap.bottom_to_top( _lowercase , heap.get_position(_lowercase ) , _lowercase , _lowercase ) UpperCAmelCase_ : Tuple = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > __a = int(input('Enter number of edges: ').strip()) __a = defaultdict(list) for _ in range(edges_number): __a = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
235
from collections import defaultdict def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = first_str.lower().strip() UpperCAmelCase_ : Any = second_str.lower().strip() # Remove whitespace UpperCAmelCase_ : Any = first_str.replace(''' ''' , '''''' ) UpperCAmelCase_ : int = second_str.replace(''' ''' , '''''' ) # Strings of different lengths are not anagrams if len(_lowercase ) != len(_lowercase ): return False # Default values for count should be 0 UpperCAmelCase_ : defaultdict[str, int] = defaultdict(_lowercase ) # For each character in input strings, # increment count in the corresponding for i in range(len(_lowercase ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() __a = input('Enter the first string ').strip() __a = input('Enter the second string ').strip() __a = check_anagrams(input_a, input_b) print(F"""{input_a} and {input_b} are {"" if status else "not "}anagrams.""")
235
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCamelCase__ = { """configuration_data2vec_audio""": ["""DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecAudioConfig"""], """configuration_data2vec_text""": [ """DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecTextConfig""", """Data2VecTextOnnxConfig""", ], """configuration_data2vec_vision""": [ """DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecVisionConfig""", """Data2VecVisionOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecAudioForAudioFrameClassification""", """Data2VecAudioForCTC""", """Data2VecAudioForSequenceClassification""", """Data2VecAudioForXVector""", """Data2VecAudioModel""", """Data2VecAudioPreTrainedModel""", ] lowerCamelCase__ = [ """DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecTextForCausalLM""", """Data2VecTextForMaskedLM""", """Data2VecTextForMultipleChoice""", """Data2VecTextForQuestionAnswering""", """Data2VecTextForSequenceClassification""", """Data2VecTextForTokenClassification""", """Data2VecTextModel""", """Data2VecTextPreTrainedModel""", ] lowerCamelCase__ = [ """DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecVisionForImageClassification""", """Data2VecVisionForMaskedImageModeling""", """Data2VecVisionForSemanticSegmentation""", """Data2VecVisionModel""", """Data2VecVisionPreTrainedModel""", ] if is_tf_available(): lowerCamelCase__ = [ """TFData2VecVisionForImageClassification""", """TFData2VecVisionForSemanticSegmentation""", """TFData2VecVisionModel""", """TFData2VecVisionPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
86
def _a ( lowerCamelCase ): return " ".join( """""".join(word[::-1] ) if len(lowerCamelCase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words("""Hey wollef sroirraw"""))
287
0
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class a ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() def UpperCAmelCase ( self ) -> Any: _A , _A = FlaxControlNetModel.from_pretrained( """lllyasviel/sd-controlnet-canny""" , from_pt=lowerCAmelCase_ , dtype=jnp.bfloataa ) _A , _A = FlaxStableDiffusionControlNetPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , controlnet=lowerCAmelCase_ , from_pt=lowerCAmelCase_ , dtype=jnp.bfloataa ) _A = controlnet_params _A = """bird""" _A = jax.device_count() _A = pipe.prepare_text_inputs([prompts] * num_samples ) _A = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png""" ) _A = pipe.prepare_image_inputs([canny_image] * num_samples ) _A = jax.random.PRNGKey(0 ) _A = jax.random.split(lowerCAmelCase_ , jax.device_count() ) _A = replicate(lowerCAmelCase_ ) _A = shard(lowerCAmelCase_ ) _A = shard(lowerCAmelCase_ ) _A = pipe( prompt_ids=lowerCAmelCase_ , image=lowerCAmelCase_ , params=lowerCAmelCase_ , prng_seed=lowerCAmelCase_ , num_inference_steps=50 , jit=lowerCAmelCase_ , ).images assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3) _A = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _A = images[0, 2_53:2_56, 2_53:2_56, -1] _A = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _A = jnp.array( [0.16_7969, 0.11_6699, 0.08_1543, 0.15_4297, 0.13_2812, 0.10_8887, 0.16_9922, 0.16_9922, 0.20_5078] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def UpperCAmelCase ( self ) -> Dict: _A , _A = FlaxControlNetModel.from_pretrained( """lllyasviel/sd-controlnet-openpose""" , from_pt=lowerCAmelCase_ , dtype=jnp.bfloataa ) _A , _A = FlaxStableDiffusionControlNetPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , controlnet=lowerCAmelCase_ , from_pt=lowerCAmelCase_ , dtype=jnp.bfloataa ) _A = controlnet_params _A = """Chef in the kitchen""" _A = jax.device_count() _A = pipe.prepare_text_inputs([prompts] * num_samples ) _A = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png""" ) _A = pipe.prepare_image_inputs([pose_image] * num_samples ) _A = jax.random.PRNGKey(0 ) _A = jax.random.split(lowerCAmelCase_ , jax.device_count() ) _A = replicate(lowerCAmelCase_ ) _A = shard(lowerCAmelCase_ ) _A = shard(lowerCAmelCase_ ) _A = pipe( prompt_ids=lowerCAmelCase_ , image=lowerCAmelCase_ , params=lowerCAmelCase_ , prng_seed=lowerCAmelCase_ , num_inference_steps=50 , jit=lowerCAmelCase_ , ).images assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3) _A = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _A = images[0, 2_53:2_56, 2_53:2_56, -1] _A = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _A = jnp.array( [[0.27_1484, 0.26_1719, 0.27_5391, 0.27_7344, 0.27_9297, 0.29_1016, 0.29_4922, 0.30_2734, 0.30_2734]] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
370
from collections.abc import Sequence def snake_case ( snake_case__ :Sequence[float] , snake_case__ :bool = False) -> float: if not arr: return 0 _A = 0 if allow_empty_subarrays else float("""-inf""") _A = 0.0 for num in arr: _A = max(0 if allow_empty_subarrays else num , curr_sum + num) _A = max(snake_case__ , snake_case__) return max_sum if __name__ == "__main__": from doctest import testmod testmod() _SCREAMING_SNAKE_CASE = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F'''{max_subarray_sum(nums) = }''')
81
0
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings UpperCamelCase : str = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to use SortishSampler or not."} ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = super().to_dict() for k, v in d.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): __UpperCamelCase = v.to_dict() return d
316
"""simple docstring""" def A ( snake_case :list[int] , snake_case :int ) -> bool: __UpperCamelCase = len(snake_case ) __UpperCamelCase = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): __UpperCamelCase = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): __UpperCamelCase = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: __UpperCamelCase = subset[i - 1][j] if arr[i - 1] <= j: __UpperCamelCase = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
316
1
def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : str = 0 lowercase__ : Union[str, Any] = len(SCREAMING_SNAKE_CASE_ ) for i in range(n - 1 ): for j in range(i + 1 , SCREAMING_SNAKE_CASE_ ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" if len(SCREAMING_SNAKE_CASE_ ) <= 1: return arr, 0 lowercase__ : Optional[Any] = len(SCREAMING_SNAKE_CASE_ ) // 2 lowercase__ : Union[str, Any] = arr[0:mid] lowercase__ : List[Any] = arr[mid:] lowercase__ , lowercase__ : Optional[int] = count_inversions_recursive(SCREAMING_SNAKE_CASE_ ) lowercase__ , lowercase__ : int = count_inversions_recursive(SCREAMING_SNAKE_CASE_ ) lowercase__ , lowercase__ : Dict = _count_cross_inversions(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase__ : Any = inversion_p + inversions_q + cross_inversions return c, num_inversions def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowercase__ : Optional[Any] = [] lowercase__ : Dict = 0 while i < len(SCREAMING_SNAKE_CASE_ ) and j < len(SCREAMING_SNAKE_CASE_ ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(SCREAMING_SNAKE_CASE_ ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(SCREAMING_SNAKE_CASE_ ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def __lowerCamelCase ( ): """simple docstring""" lowercase__ : Tuple = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) lowercase__ : Optional[Any] = count_inversions_bf(SCREAMING_SNAKE_CASE_ ) lowercase__ , lowercase__ : Optional[int] = count_inversions_recursive(SCREAMING_SNAKE_CASE_ ) assert num_inversions_bf == num_inversions_recursive == 8 print("number of inversions = " , SCREAMING_SNAKE_CASE_ ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() lowercase__ : Union[str, Any] = count_inversions_bf(SCREAMING_SNAKE_CASE_ ) lowercase__ , lowercase__ : Optional[Any] = count_inversions_recursive(SCREAMING_SNAKE_CASE_ ) assert num_inversions_bf == num_inversions_recursive == 0 print("number of inversions = " , SCREAMING_SNAKE_CASE_ ) # an empty list should also have zero inversions lowercase__ : Optional[int] = [] lowercase__ : List[str] = count_inversions_bf(SCREAMING_SNAKE_CASE_ ) lowercase__ , lowercase__ : Optional[Any] = count_inversions_recursive(SCREAMING_SNAKE_CASE_ ) assert num_inversions_bf == num_inversions_recursive == 0 print("number of inversions = " , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
364
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : Optional[Any] = {} lowercase__ : Tuple = tokenizer(example["content"] , truncation=lowerCamelCase__ )["input_ids"] lowercase__ : Optional[int] = len(example["content"] ) / len(output["input_ids"] ) return output lowerCAmelCase__ = HfArgumentParser(PretokenizationArguments) lowerCAmelCase__ = parser.parse_args() if args.num_workers is None: lowerCAmelCase__ = multiprocessing.cpu_count() lowerCAmelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_dir) lowerCAmelCase__ = time.time() lowerCAmelCase__ = load_dataset(args.dataset_name, split='''train''') print(f'''Dataset loaded in {time.time()-t_start:.2f}s''') lowerCAmelCase__ = time.time() lowerCAmelCase__ = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ '''repo_name''', '''path''', '''copies''', '''size''', '''content''', '''license''', '''hash''', '''line_mean''', '''line_max''', '''alpha_frac''', '''autogenerated''', ], ) print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''') lowerCAmelCase__ = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
121
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Tuple = logging.get_logger(__name__) __lowerCAmelCase : Tuple = { "edbeeching/decision-transformer-gym-hopper-medium": ( "https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" A__ : Dict = '''decision_transformer''' A__ : int = ['''past_key_values'''] A__ : List[Any] = { '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : List[Any] , _snake_case : Dict=17 , _snake_case : Any=4 , _snake_case : Optional[Any]=128 , _snake_case : List[Any]=4096 , _snake_case : Optional[int]=True , _snake_case : List[str]=1 , _snake_case : Optional[int]=1024 , _snake_case : Optional[Any]=3 , _snake_case : Tuple=1 , _snake_case : Tuple=None , _snake_case : int="relu" , _snake_case : Tuple=0.1 , _snake_case : Tuple=0.1 , _snake_case : str=0.1 , _snake_case : Dict=1E-5 , _snake_case : int=0.02 , _snake_case : int=True , _snake_case : Any=True , _snake_case : int=5_0256 , _snake_case : Dict=5_0256 , _snake_case : str=False , _snake_case : Any=False , **_snake_case : List[str] , ): __lowercase : Optional[int] = state_dim __lowercase : int = act_dim __lowercase : Tuple = hidden_size __lowercase : Optional[Any] = max_ep_len __lowercase : Dict = action_tanh __lowercase : Union[str, Any] = vocab_size __lowercase : Optional[Any] = n_positions __lowercase : List[Any] = n_layer __lowercase : Optional[Any] = n_head __lowercase : List[Any] = n_inner __lowercase : Optional[int] = activation_function __lowercase : Optional[Any] = resid_pdrop __lowercase : List[str] = embd_pdrop __lowercase : Any = attn_pdrop __lowercase : Optional[Any] = layer_norm_epsilon __lowercase : Tuple = initializer_range __lowercase : Optional[Any] = scale_attn_weights __lowercase : Optional[Any] = use_cache __lowercase : str = scale_attn_by_inverse_layer_idx __lowercase : Union[str, Any] = reorder_and_upcast_attn __lowercase : Optional[Any] = bos_token_id __lowercase : List[Any] = eos_token_id super().__init__(bos_token_id=_snake_case , eos_token_id=_snake_case , **_snake_case )
156
from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract __lowerCAmelCase : List[Any] = logging.get_logger(__name__) def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: return [ int(1_000 * (box[0] / width) ), int(1_000 * (box[1] / height) ), int(1_000 * (box[2] / width) ), int(1_000 * (box[3] / height) ), ] def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None ) -> List[str]: __lowercase : Optional[int] = tesseract_config if tesseract_config is not None else '''''' # apply OCR __lowercase : Union[str, Any] = to_pil_image(__lowerCAmelCase ) __lowercase , __lowercase : Any = pil_image.size __lowercase : Union[str, Any] = pytesseract.image_to_data(__lowerCAmelCase , lang=__lowerCAmelCase , output_type='''dict''' , config=__lowerCAmelCase ) __lowercase , __lowercase , __lowercase , __lowercase , __lowercase : int = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates __lowercase : str = [idx for idx, word in enumerate(__lowerCAmelCase ) if not word.strip()] __lowercase : List[Any] = [word for idx, word in enumerate(__lowerCAmelCase ) if idx not in irrelevant_indices] __lowercase : Tuple = [coord for idx, coord in enumerate(__lowerCAmelCase ) if idx not in irrelevant_indices] __lowercase : Any = [coord for idx, coord in enumerate(__lowerCAmelCase ) if idx not in irrelevant_indices] __lowercase : str = [coord for idx, coord in enumerate(__lowerCAmelCase ) if idx not in irrelevant_indices] __lowercase : str = [coord for idx, coord in enumerate(__lowerCAmelCase ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format __lowercase : List[Any] = [] for x, y, w, h in zip(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): __lowercase : int = [x, y, x + w, y + h] actual_boxes.append(__lowerCAmelCase ) # finally, normalize the bounding boxes __lowercase : str = [] for box in actual_boxes: normalized_boxes.append(normalize_box(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ), "Not as many words as there are bounding boxes" return words, normalized_boxes class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" A__ : Dict = ['''pixel_values'''] def __init__( self : str , _snake_case : bool = True , _snake_case : Dict[str, int] = None , _snake_case : PILImageResampling = PILImageResampling.BILINEAR , _snake_case : bool = True , _snake_case : Optional[str] = None , _snake_case : Optional[str] = "" , **_snake_case : Union[str, Any] , ): super().__init__(**_snake_case ) __lowercase : Optional[int] = size if size is not None else {'''height''': 224, '''width''': 224} __lowercase : Optional[int] = get_size_dict(_snake_case ) __lowercase : Optional[int] = do_resize __lowercase : List[str] = size __lowercase : Optional[Any] = resample __lowercase : str = apply_ocr __lowercase : List[Any] = ocr_lang __lowercase : Optional[int] = tesseract_config def snake_case_ ( self : str , _snake_case : np.ndarray , _snake_case : Dict[str, int] , _snake_case : PILImageResampling = PILImageResampling.BILINEAR , _snake_case : Optional[Union[str, ChannelDimension]] = None , **_snake_case : Any , ): __lowercase : Optional[Any] = get_size_dict(_snake_case ) if "height" not in size or "width" not in size: raise ValueError(F'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) __lowercase : Dict = (size['''height'''], size['''width''']) return resize(_snake_case , size=_snake_case , resample=_snake_case , data_format=_snake_case , **_snake_case ) def snake_case_ ( self : int , _snake_case : ImageInput , _snake_case : bool = None , _snake_case : Dict[str, int] = None , _snake_case : PILImageResampling = None , _snake_case : bool = None , _snake_case : Optional[str] = None , _snake_case : Optional[str] = None , _snake_case : Optional[Union[str, TensorType]] = None , _snake_case : ChannelDimension = ChannelDimension.FIRST , **_snake_case : Optional[int] , ): __lowercase : str = do_resize if do_resize is not None else self.do_resize __lowercase : int = size if size is not None else self.size __lowercase : Dict = get_size_dict(_snake_case ) __lowercase : Union[str, Any] = resample if resample is not None else self.resample __lowercase : int = apply_ocr if apply_ocr is not None else self.apply_ocr __lowercase : List[str] = ocr_lang if ocr_lang is not None else self.ocr_lang __lowercase : Union[str, Any] = tesseract_config if tesseract_config is not None else self.tesseract_config __lowercase : Union[str, Any] = make_list_of_images(_snake_case ) if not valid_images(_snake_case ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) # All transformations expect numpy arrays. __lowercase : Optional[int] = [to_numpy_array(_snake_case ) for image in images] if apply_ocr: requires_backends(self , '''pytesseract''' ) __lowercase : Optional[int] = [] __lowercase : Tuple = [] for image in images: __lowercase , __lowercase : Dict = apply_tesseract(_snake_case , _snake_case , _snake_case ) words_batch.append(_snake_case ) boxes_batch.append(_snake_case ) if do_resize: __lowercase : int = [self.resize(image=_snake_case , size=_snake_case , resample=_snake_case ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) __lowercase : Tuple = [flip_channel_order(_snake_case ) for image in images] __lowercase : int = [to_channel_dimension_format(_snake_case , _snake_case ) for image in images] __lowercase : Optional[Any] = BatchFeature(data={'''pixel_values''': images} , tensor_type=_snake_case ) if apply_ocr: __lowercase : str = words_batch __lowercase : int = boxes_batch return data
156
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: A__ : List[str] = None A__ : int = logging.get_logger(__name__) A__ : int = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} A__ : Optional[int] = { '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json''' ), }, } A__ : str = { '''facebook/nllb-large-en-ro''': 1_0_2_4, '''facebook/nllb-200-distilled-600M''': 1_0_2_4, } # fmt: off A__ : str = ['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class snake_case__ ( __snake_case ): A__ = VOCAB_FILES_NAMES A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = PRETRAINED_VOCAB_FILES_MAP A__ = ["input_ids", "attention_mask"] A__ = NllbTokenizer A__ = [] A__ = [] def __init__( self : List[Any] , __a : List[Any]=None , __a : Optional[int]=None , __a : Tuple="<s>" , __a : Any="</s>" , __a : str="</s>" , __a : List[Any]="<s>" , __a : Optional[Any]="<unk>" , __a : List[str]="<pad>" , __a : Any="<mask>" , __a : List[str]=None , __a : List[Any]=None , __a : List[Any]=None , __a : List[Any]=False , **__a : Tuple , ) -> Tuple: '''simple docstring''' # Mask token behave like a normal word, i.e. include the space before it __snake_case : int = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else mask_token __snake_case : str = legacy_behaviour super().__init__( vocab_file=lowerCamelCase_ , tokenizer_file=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , src_lang=lowerCamelCase_ , tgt_lang=lowerCamelCase_ , additional_special_tokens=lowerCamelCase_ , legacy_behaviour=lowerCamelCase_ , **lowerCamelCase_ , ) __snake_case : Optional[int] = vocab_file __snake_case : Dict = False if not self.vocab_file else True __snake_case : List[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) __snake_case : str = { lang_code: self.convert_tokens_to_ids(lowerCamelCase_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } __snake_case : List[Any] = src_lang if src_lang is not None else """eng_Latn""" __snake_case : Dict = self.convert_tokens_to_ids(self._src_lang ) __snake_case : Dict = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def A_ ( self : Optional[Any] ) -> str: '''simple docstring''' return self._src_lang @src_lang.setter def A_ ( self : List[str] , __a : str ) -> None: '''simple docstring''' __snake_case : Optional[int] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def A_ ( self : Optional[int] , __a : List[int] , __a : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def A_ ( self : Tuple , __a : List[int] , __a : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' __snake_case : Union[str, Any] = [self.sep_token_id] __snake_case : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A_ ( self : List[str] , __a : List[str] , __a : str , __a : Optional[str] , __a : Optional[str] , **__a : int ) -> Tuple: '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) __snake_case : int = src_lang __snake_case : List[str] = self(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ ) __snake_case : Tuple = self.convert_tokens_to_ids(lowerCamelCase_ ) __snake_case : int = tgt_lang_id return inputs def A_ ( self : int , __a : List[str] , __a : str = "eng_Latn" , __a : Optional[List[str]] = None , __a : str = "fra_Latn" , **__a : Optional[Any] , ) -> BatchEncoding: '''simple docstring''' __snake_case : Optional[Any] = src_lang __snake_case : Optional[Any] = tgt_lang return super().prepare_seqaseq_batch(lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) def A_ ( self : int ) -> Optional[int]: '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def A_ ( self : str ) -> str: '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def A_ ( self : Tuple , __a : int ) -> None: '''simple docstring''' __snake_case : Union[str, Any] = self.convert_tokens_to_ids(lowerCamelCase_ ) if self.legacy_behaviour: __snake_case : str = [] __snake_case : int = [self.eos_token_id, self.cur_lang_code] else: __snake_case : Union[str, Any] = [self.cur_lang_code] __snake_case : int = [self.eos_token_id] __snake_case : Tuple = self.convert_ids_to_tokens(self.prefix_tokens ) __snake_case : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens ) __snake_case : Dict = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def A_ ( self : Any , __a : str ) -> None: '''simple docstring''' __snake_case : Any = self.convert_tokens_to_ids(lowerCamelCase_ ) if self.legacy_behaviour: __snake_case : Any = [] __snake_case : Any = [self.eos_token_id, self.cur_lang_code] else: __snake_case : Dict = [self.cur_lang_code] __snake_case : List[str] = [self.eos_token_id] __snake_case : str = self.convert_ids_to_tokens(self.prefix_tokens ) __snake_case : Dict = self.convert_ids_to_tokens(self.suffix_tokens ) __snake_case : List[str] = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def A_ ( self : Union[str, Any] , __a : str , __a : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(lowerCamelCase_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''' ) return __snake_case : Optional[Any] = os.path.join( lowerCamelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase_ ): copyfile(self.vocab_file , lowerCamelCase_ ) return (out_vocab_file,)
364
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available A__ : int = { '''configuration_groupvit''': [ '''GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GroupViTConfig''', '''GroupViTOnnxConfig''', '''GroupViTTextConfig''', '''GroupViTVisionConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Tuple = [ '''GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GroupViTModel''', '''GroupViTPreTrainedModel''', '''GroupViTTextModel''', '''GroupViTVisionModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[int] = [ '''TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFGroupViTModel''', '''TFGroupViTPreTrainedModel''', '''TFGroupViTTextModel''', '''TFGroupViTVisionModel''', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys A__ : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
0
0
'''simple docstring''' from __future__ import annotations import math def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" if depth < 0: raise ValueError("""Depth cannot be less than 0""" ) if not scores: raise ValueError("""Scores cannot be empty""" ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , UpperCamelCase , UpperCamelCase , UpperCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , UpperCamelCase , UpperCamelCase , UpperCamelCase ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , UpperCamelCase , UpperCamelCase , UpperCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , UpperCamelCase , UpperCamelCase , UpperCamelCase ) , ) ) def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : Tuple = [90, 23, 6, 33, 21, 65, 123, 34423] lowerCAmelCase__ : Optional[int] = math.log(len(UpperCamelCase ) , 2 ) print(f"""Optimal value : {minimax(0 , 0 , UpperCamelCase , UpperCamelCase , UpperCamelCase )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
37
'''simple docstring''' import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class lowerCamelCase_ (snake_case__ ): '''simple docstring''' def __init__( self : List[Any] ): _UpperCAmelCase : Union[str, Any] = [] def _A ( self : Any , A : Union[str, Any] , A : Optional[int] , A : List[str] , **A : Tuple ): self.events.append("on_init_end" ) def _A ( self : Any , A : str , A : List[Any] , A : List[Any] , **A : Tuple ): self.events.append("on_train_begin" ) def _A ( self : Tuple , A : List[str] , A : Tuple , A : int , **A : List[str] ): self.events.append("on_train_end" ) def _A ( self : Optional[Any] , A : Dict , A : Any , A : Optional[Any] , **A : List[Any] ): self.events.append("on_epoch_begin" ) def _A ( self : Optional[Any] , A : List[Any] , A : List[str] , A : Optional[int] , **A : Optional[int] ): self.events.append("on_epoch_end" ) def _A ( self : List[str] , A : Optional[int] , A : List[Any] , A : Union[str, Any] , **A : Any ): self.events.append("on_step_begin" ) def _A ( self : Tuple , A : Union[str, Any] , A : int , A : Optional[int] , **A : int ): self.events.append("on_step_end" ) def _A ( self : Optional[int] , A : Optional[Any] , A : Union[str, Any] , A : str , **A : Union[str, Any] ): self.events.append("on_evaluate" ) def _A ( self : Optional[Any] , A : Optional[int] , A : Dict , A : List[Any] , **A : Dict ): self.events.append("on_predict" ) def _A ( self : Dict , A : Dict , A : List[Any] , A : Dict , **A : str ): self.events.append("on_save" ) def _A ( self : Tuple , A : Optional[Any] , A : Union[str, Any] , A : Optional[int] , **A : Dict ): self.events.append("on_log" ) def _A ( self : Optional[int] , A : Optional[Any] , A : Tuple , A : Tuple , **A : List[str] ): self.events.append("on_prediction_step" ) @require_torch class lowerCamelCase_ (unittest.TestCase ): '''simple docstring''' def _A ( self : Optional[int] ): _UpperCAmelCase : Optional[Any] = tempfile.mkdtemp() def _A ( self : List[Any] ): shutil.rmtree(self.output_dir ) def _A ( self : Union[str, Any] , A : Optional[int]=0 , A : Optional[Any]=0 , A : Optional[Any]=64 , A : Dict=64 , A : Any=None , A : Tuple=False , **A : Optional[int] ): # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. _UpperCAmelCase : str = RegressionDataset(length=A ) _UpperCAmelCase : Union[str, Any] = RegressionDataset(length=A ) _UpperCAmelCase : Any = RegressionModelConfig(a=A , b=A ) _UpperCAmelCase : List[Any] = RegressionPreTrainedModel(A ) _UpperCAmelCase : Dict = TrainingArguments(self.output_dir , disable_tqdm=A , report_to=[] , **A ) return Trainer( A , A , train_dataset=A , eval_dataset=A , callbacks=A , ) def _A ( self : str , A : List[str] , A : List[str] ): self.assertEqual(len(A ) , len(A ) ) # Order doesn't matter _UpperCAmelCase : Tuple = sorted(A , key=lambda A : cb.__name__ if isinstance(A , A ) else cb.__class__.__name__ ) _UpperCAmelCase : Any = sorted(A , key=lambda A : cb.__name__ if isinstance(A , A ) else cb.__class__.__name__ ) for cba, cba in zip(A , A ): if isinstance(A , A ) and isinstance(A , A ): self.assertEqual(A , A ) elif isinstance(A , A ) and not isinstance(A , A ): self.assertEqual(A , cba.__class__ ) elif not isinstance(A , A ) and isinstance(A , A ): self.assertEqual(cba.__class__ , A ) else: self.assertEqual(A , A ) def _A ( self : int , A : List[str] ): _UpperCAmelCase : List[str] = ["on_init_end", "on_train_begin"] _UpperCAmelCase : str = 0 _UpperCAmelCase : Optional[Any] = len(trainer.get_eval_dataloader() ) _UpperCAmelCase : Optional[int] = ["on_prediction_step"] * len(trainer.get_eval_dataloader() ) + ["on_log", "on_evaluate"] for _ in range(trainer.state.num_train_epochs ): expected_events.append("on_epoch_begin" ) for _ in range(A ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append("on_log" ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append("on_save" ) expected_events.append("on_epoch_end" ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def _A ( self : str ): _UpperCAmelCase : Any = self.get_trainer() _UpperCAmelCase : int = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , A ) # Callbacks passed at init are added to the default callbacks _UpperCAmelCase : Optional[int] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(A ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback _UpperCAmelCase : List[Any] = self.get_trainer(disable_tqdm=A ) _UpperCAmelCase : Tuple = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , A ) def _A ( self : Optional[Any] ): _UpperCAmelCase : Dict = DEFAULT_CALLBACKS.copy() + [ProgressCallback] _UpperCAmelCase : Dict = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(A ) expected_callbacks.remove(A ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A ) _UpperCAmelCase : Optional[Any] = self.get_trainer() _UpperCAmelCase : Any = trainer.pop_callback(A ) self.assertEqual(cb.__class__ , A ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A ) trainer.add_callback(A ) expected_callbacks.insert(0 , A ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A ) # We can also add, pop, or remove by instance _UpperCAmelCase : Union[str, Any] = self.get_trainer() _UpperCAmelCase : List[Any] = trainer.callback_handler.callbacks[0] trainer.remove_callback(A ) expected_callbacks.remove(A ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A ) _UpperCAmelCase : List[Any] = self.get_trainer() _UpperCAmelCase : List[Any] = trainer.callback_handler.callbacks[0] _UpperCAmelCase : Union[str, Any] = trainer.pop_callback(A ) self.assertEqual(A , A ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A ) trainer.add_callback(A ) expected_callbacks.insert(0 , A ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A ) def _A ( self : Optional[Any] ): import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action="ignore" , category=A ) _UpperCAmelCase : Optional[int] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() _UpperCAmelCase : Union[str, Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(A , self.get_expected_events(A ) ) # Independent log/save/eval _UpperCAmelCase : Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() _UpperCAmelCase : int = trainer.callback_handler.callbacks[-2].events self.assertEqual(A , self.get_expected_events(A ) ) _UpperCAmelCase : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() _UpperCAmelCase : Tuple = trainer.callback_handler.callbacks[-2].events self.assertEqual(A , self.get_expected_events(A ) ) _UpperCAmelCase : int = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="steps" ) trainer.train() _UpperCAmelCase : Optional[int] = trainer.callback_handler.callbacks[-2].events self.assertEqual(A , self.get_expected_events(A ) ) _UpperCAmelCase : Optional[int] = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="epoch" ) trainer.train() _UpperCAmelCase : int = trainer.callback_handler.callbacks[-2].events self.assertEqual(A , self.get_expected_events(A ) ) # A bit of everything _UpperCAmelCase : int = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy="steps" , ) trainer.train() _UpperCAmelCase : Optional[int] = trainer.callback_handler.callbacks[-2].events self.assertEqual(A , self.get_expected_events(A ) ) # warning should be emitted for duplicated callbacks with patch("transformers.trainer_callback.logger.warning" ) as warn_mock: _UpperCAmelCase : Optional[Any] = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(A ) in warn_mock.call_args[0][0]
31
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = { '''configuration_clap''': [ '''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ClapAudioConfig''', '''ClapConfig''', '''ClapTextConfig''', ], '''processing_clap''': ['''ClapProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ '''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ClapModel''', '''ClapPreTrainedModel''', '''ClapTextModel''', '''ClapTextModelWithProjection''', '''ClapAudioModel''', '''ClapAudioModelWithProjection''', ] __A = ['''ClapFeatureExtractor'''] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys __A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
278
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) __A = logging.getLogger(__name__) @dataclass class lowercase_ : UpperCamelCase_ : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCamelCase_ : Optional[str] = field( default=__lowercase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) UpperCamelCase_ : Optional[str] = field( default=__lowercase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) UpperCamelCase_ : Optional[str] = field( default=__lowercase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) UpperCamelCase_ : bool = field(default=__lowercase , metadata={"help": "Whether tp freeze the encoder."} ) UpperCamelCase_ : bool = field(default=__lowercase , metadata={"help": "Whether to freeze the embeddings."} ) @dataclass class lowercase_ : UpperCamelCase_ : str = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) UpperCamelCase_ : Optional[str] = field( default="summarization" , metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"} , ) UpperCamelCase_ : Optional[int] = field( default=1_0_2_4 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) UpperCamelCase_ : Optional[int] = field( default=1_2_8 , metadata={ "help": ( "The maximum total sequence length for target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) UpperCamelCase_ : Optional[int] = field( default=1_4_2 , metadata={ "help": ( "The maximum total sequence length for validation target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded. " "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " "during ``evaluate`` and ``predict``." ) } , ) UpperCamelCase_ : Optional[int] = field( default=1_4_2 , metadata={ "help": ( "The maximum total sequence length for test target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) UpperCamelCase_ : Optional[int] = field(default=-1 , metadata={"help": "# training examples. -1 means use all."} ) UpperCamelCase_ : Optional[int] = field(default=-1 , metadata={"help": "# validation examples. -1 means use all."} ) UpperCamelCase_ : Optional[int] = field(default=-1 , metadata={"help": "# test examples. -1 means use all."} ) UpperCamelCase_ : Optional[str] = field(default=__lowercase , metadata={"help": "Source language id for translation."} ) UpperCamelCase_ : Optional[str] = field(default=__lowercase , metadata={"help": "Target language id for translation."} ) UpperCamelCase_ : Optional[int] = field(default=__lowercase , metadata={"help": "# num_beams to use for evaluation."} ) UpperCamelCase_ : bool = field( default=__lowercase , metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."} , ) def snake_case_(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> List[Any]: """simple docstring""" logger.info(F"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(F""" {key} = {metrics[key]}""" ) save_json(_UpperCamelCase , os.path.join(_UpperCamelCase , F"""{split}_results.json""" ) ) def snake_case_() -> List[Any]: """simple docstring""" _snake_case = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _snake_case, _snake_case, _snake_case = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _snake_case, _snake_case, _snake_case = parser.parse_args_into_dataclasses() check_output_dir(_UpperCamelCase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , _UpperCamelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _snake_case = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _snake_case = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): assert hasattr(_UpperCamelCase , _UpperCamelCase ), F"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(_UpperCamelCase , _UpperCamelCase , getattr(_UpperCamelCase , _UpperCamelCase ) ) _snake_case = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _snake_case = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='''.ckpt''' in model_args.model_name_or_path , config=_UpperCamelCase , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(_UpperCamelCase , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: _snake_case = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(_UpperCamelCase , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(_UpperCamelCase , _UpperCamelCase ): _snake_case = tokenizer.lang_code_to_id[data_args.tgt_lang] else: _snake_case = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(_UpperCamelCase ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) _snake_case = SeqaSeqDataset # Get datasets _snake_case = ( dataset_class( _UpperCamelCase , type_path='''train''' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_train else None ) _snake_case = ( dataset_class( _UpperCamelCase , type_path='''val''' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) _snake_case = ( dataset_class( _UpperCamelCase , type_path='''test''' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_predict else None ) # Initialize our Trainer _snake_case = ( build_compute_metrics_fn(data_args.task , _UpperCamelCase ) if training_args.predict_with_generate else None ) _snake_case = SeqaSeqTrainer( model=_UpperCamelCase , args=_UpperCamelCase , data_args=_UpperCamelCase , train_dataset=_UpperCamelCase , eval_dataset=_UpperCamelCase , data_collator=SeqaSeqDataCollator( _UpperCamelCase , _UpperCamelCase , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=_UpperCamelCase , tokenizer=_UpperCamelCase , ) _snake_case = {} # Training if training_args.do_train: logger.info('''*** Train ***''' ) _snake_case = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) _snake_case = train_result.metrics _snake_case = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('''train''' , _UpperCamelCase , training_args.output_dir ) all_metrics.update(_UpperCamelCase ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _snake_case = trainer.evaluate(metric_key_prefix='''val''' ) _snake_case = data_args.n_val _snake_case = round(metrics['''val_loss'''] , 4 ) if trainer.is_world_process_zero(): handle_metrics('''val''' , _UpperCamelCase , training_args.output_dir ) all_metrics.update(_UpperCamelCase ) if training_args.do_predict: logger.info('''*** Predict ***''' ) _snake_case = trainer.predict(test_dataset=_UpperCamelCase , metric_key_prefix='''test''' ) _snake_case = test_output.metrics _snake_case = data_args.n_test if trainer.is_world_process_zero(): _snake_case = round(metrics['''test_loss'''] , 4 ) handle_metrics('''test''' , _UpperCamelCase , training_args.output_dir ) all_metrics.update(_UpperCamelCase ) if training_args.predict_with_generate: _snake_case = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=_UpperCamelCase , clean_up_tokenization_spaces=_UpperCamelCase ) _snake_case = lmap(str.strip , _UpperCamelCase ) write_txt_file(_UpperCamelCase , os.path.join(training_args.output_dir , '''test_generations.txt''' ) ) if trainer.is_world_process_zero(): save_json(_UpperCamelCase , os.path.join(training_args.output_dir , '''all_results.json''' ) ) return all_metrics def snake_case_(_UpperCamelCase ) -> List[str]: """simple docstring""" main() if __name__ == "__main__": main()
278
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class lowercase__ ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self : List[Any] ): lowerCamelCase_ : Optional[int] =TFXLMRobertaModel.from_pretrained("jplu/tf-xlm-roberta-base" ) lowerCamelCase_ : str ={ '''input_ids''': tf.convert_to_tensor([[0, 2646, 1_0269, 83, 9_9942, 2]] , dtype=tf.intaa ), # "My dog is cute" '''attention_mask''': tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ), } lowerCamelCase_ : Optional[Any] =model(SCREAMING_SNAKE_CASE__ )['''last_hidden_state'''] lowerCamelCase_ : int =tf.TensorShape((1, 6, 768) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE__ ) # compare the actual values for a slice. lowerCamelCase_ : Union[str, Any] =tf.convert_to_tensor( [ [ [0.0_681_762, 0.10_894_451, 0.06_772_504], [-0.06_423_668, 0.02_366_615, 0.04_329_344], [-0.06_057_295, 0.09_974_135, -0.00_070_584], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
144
"""simple docstring""" import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _SCREAMING_SNAKE_CASE( A , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Optional[Any] = ConsistencyModelPipeline SCREAMING_SNAKE_CASE_ : Any = UNCONDITIONAL_IMAGE_GENERATION_PARAMS SCREAMING_SNAKE_CASE_ : Dict = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt SCREAMING_SNAKE_CASE_ : Optional[Any] = frozenset( [ '''num_inference_steps''', '''generator''', '''latents''', '''output_type''', '''return_dict''', '''callback''', '''callback_steps''', ] ) @property def _UpperCamelCase ( self ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE :Tuple = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' ,subfolder='''test_unet''' ,) return unet @property def _UpperCamelCase ( self ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[int] = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' ,subfolder='''test_unet_class_cond''' ,) return unet def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__=False ) -> Union[str, Any]: """simple docstring""" if class_cond: __SCREAMING_SNAKE_CASE :str = self.dummy_cond_unet else: __SCREAMING_SNAKE_CASE :Optional[Any] = self.dummy_uncond_unet # Default to CM multistep sampler __SCREAMING_SNAKE_CASE :List[str] = CMStochasticIterativeScheduler( num_train_timesteps=40 ,sigma_min=0.0_0_2 ,sigma_max=8_0.0 ,) __SCREAMING_SNAKE_CASE :List[str] = { '''unet''': unet, '''scheduler''': scheduler, } return components def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=0 ) -> Dict: """simple docstring""" if str(SCREAMING_SNAKE_CASE__ ).startswith('''mps''' ): __SCREAMING_SNAKE_CASE :Tuple = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: __SCREAMING_SNAKE_CASE :Optional[Any] = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Dict = { '''batch_size''': 1, '''num_inference_steps''': None, '''timesteps''': [22, 0], '''generator''': generator, '''output_type''': '''np''', } return inputs def _UpperCamelCase ( self ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE :Union[str, Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE :List[str] = self.get_dummy_components() __SCREAMING_SNAKE_CASE :Optional[Any] = ConsistencyModelPipeline(**SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :str = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Tuple = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :int = pipe(**SCREAMING_SNAKE_CASE__ ).images assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE :List[str] = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE :Any = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _UpperCamelCase ( self ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE :Union[str, Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE :List[Any] = self.get_dummy_components(class_cond=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :str = ConsistencyModelPipeline(**SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Optional[int] = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Union[str, Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Optional[int] = 0 __SCREAMING_SNAKE_CASE :Optional[int] = pipe(**SCREAMING_SNAKE_CASE__ ).images assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE :Dict = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE :List[Any] = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _UpperCamelCase ( self ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE :Tuple = self.get_dummy_components() __SCREAMING_SNAKE_CASE :Any = ConsistencyModelPipeline(**SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :List[str] = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :str = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Dict = 1 __SCREAMING_SNAKE_CASE :List[str] = None __SCREAMING_SNAKE_CASE :List[str] = pipe(**SCREAMING_SNAKE_CASE__ ).images assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE :List[str] = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE :int = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _UpperCamelCase ( self ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE :str = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE :Any = self.get_dummy_components(class_cond=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :str = ConsistencyModelPipeline(**SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Dict = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :str = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :int = 1 __SCREAMING_SNAKE_CASE :Optional[Any] = None __SCREAMING_SNAKE_CASE :List[Any] = 0 __SCREAMING_SNAKE_CASE :Any = pipe(**SCREAMING_SNAKE_CASE__ ).images assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE :int = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE :Optional[Any] = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class _SCREAMING_SNAKE_CASE( unittest.TestCase ): def _UpperCamelCase ( self ) -> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__=0 ,SCREAMING_SNAKE_CASE__=False ,SCREAMING_SNAKE_CASE__="cpu" ,SCREAMING_SNAKE_CASE__=torch.floataa ,SCREAMING_SNAKE_CASE__=(1, 3, 64, 64) ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE :Tuple = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Tuple = { '''num_inference_steps''': None, '''timesteps''': [22, 0], '''class_labels''': 0, '''generator''': generator, '''output_type''': '''np''', } if get_fixed_latents: __SCREAMING_SNAKE_CASE :int = self.get_fixed_latents(seed=SCREAMING_SNAKE_CASE__ ,device=SCREAMING_SNAKE_CASE__ ,dtype=SCREAMING_SNAKE_CASE__ ,shape=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :int = latents return inputs def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__=0 ,SCREAMING_SNAKE_CASE__="cpu" ,SCREAMING_SNAKE_CASE__=torch.floataa ,SCREAMING_SNAKE_CASE__=(1, 3, 64, 64) ) -> int: """simple docstring""" if type(SCREAMING_SNAKE_CASE__ ) == str: __SCREAMING_SNAKE_CASE :int = torch.device(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Optional[int] = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :int = randn_tensor(SCREAMING_SNAKE_CASE__ ,generator=SCREAMING_SNAKE_CASE__ ,device=SCREAMING_SNAKE_CASE__ ,dtype=SCREAMING_SNAKE_CASE__ ) return latents def _UpperCamelCase ( self ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE :List[Any] = UNetaDModel.from_pretrained('''diffusers/consistency_models''' ,subfolder='''diffusers_cd_imagenet64_l2''' ) __SCREAMING_SNAKE_CASE :List[str] = CMStochasticIterativeScheduler( num_train_timesteps=40 ,sigma_min=0.0_0_2 ,sigma_max=8_0.0 ,) __SCREAMING_SNAKE_CASE :Dict = ConsistencyModelPipeline(unet=SCREAMING_SNAKE_CASE__ ,scheduler=SCREAMING_SNAKE_CASE__ ) pipe.to(torch_device=SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :int = self.get_inputs() __SCREAMING_SNAKE_CASE :List[str] = pipe(**SCREAMING_SNAKE_CASE__ ).images assert image.shape == (1, 64, 64, 3) __SCREAMING_SNAKE_CASE :Union[str, Any] = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE :Dict = np.array([0.0_8_8_8, 0.0_8_8_1, 0.0_6_6_6, 0.0_4_7_9, 0.0_2_9_2, 0.0_1_9_5, 0.0_2_0_1, 0.0_1_6_3, 0.0_2_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def _UpperCamelCase ( self ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :List[Any] = UNetaDModel.from_pretrained('''diffusers/consistency_models''' ,subfolder='''diffusers_cd_imagenet64_l2''' ) __SCREAMING_SNAKE_CASE :List[Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 ,sigma_min=0.0_0_2 ,sigma_max=8_0.0 ,) __SCREAMING_SNAKE_CASE :Any = ConsistencyModelPipeline(unet=SCREAMING_SNAKE_CASE__ ,scheduler=SCREAMING_SNAKE_CASE__ ) pipe.to(torch_device=SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Optional[int] = self.get_inputs() __SCREAMING_SNAKE_CASE :int = 1 __SCREAMING_SNAKE_CASE :int = None __SCREAMING_SNAKE_CASE :Union[str, Any] = pipe(**SCREAMING_SNAKE_CASE__ ).images assert image.shape == (1, 64, 64, 3) __SCREAMING_SNAKE_CASE :str = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE :List[str] = np.array([0.0_3_4_0, 0.0_1_5_2, 0.0_0_6_3, 0.0_2_6_7, 0.0_2_2_1, 0.0_1_0_7, 0.0_4_1_6, 0.0_1_8_6, 0.0_2_1_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 @require_torch_a def _UpperCamelCase ( self ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE :List[Any] = UNetaDModel.from_pretrained('''diffusers/consistency_models''' ,subfolder='''diffusers_cd_imagenet64_l2''' ) __SCREAMING_SNAKE_CASE :Any = CMStochasticIterativeScheduler( num_train_timesteps=40 ,sigma_min=0.0_0_2 ,sigma_max=8_0.0 ,) __SCREAMING_SNAKE_CASE :Any = ConsistencyModelPipeline(unet=SCREAMING_SNAKE_CASE__ ,scheduler=SCREAMING_SNAKE_CASE__ ) pipe.to(torch_device=SCREAMING_SNAKE_CASE__ ,torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :str = self.get_inputs(get_fixed_latents=SCREAMING_SNAKE_CASE__ ,device=SCREAMING_SNAKE_CASE__ ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=SCREAMING_SNAKE_CASE__ ,enable_math=SCREAMING_SNAKE_CASE__ ,enable_mem_efficient=SCREAMING_SNAKE_CASE__ ): __SCREAMING_SNAKE_CASE :Optional[Any] = pipe(**SCREAMING_SNAKE_CASE__ ).images assert image.shape == (1, 64, 64, 3) __SCREAMING_SNAKE_CASE :List[str] = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE :List[Any] = np.array([0.1_8_7_5, 0.1_4_2_8, 0.1_2_8_9, 0.2_1_5_1, 0.2_0_9_2, 0.1_4_7_7, 0.1_8_7_7, 0.1_6_4_1, 0.1_3_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @require_torch_a def _UpperCamelCase ( self ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :str = UNetaDModel.from_pretrained('''diffusers/consistency_models''' ,subfolder='''diffusers_cd_imagenet64_l2''' ) __SCREAMING_SNAKE_CASE :Dict = CMStochasticIterativeScheduler( num_train_timesteps=40 ,sigma_min=0.0_0_2 ,sigma_max=8_0.0 ,) __SCREAMING_SNAKE_CASE :int = ConsistencyModelPipeline(unet=SCREAMING_SNAKE_CASE__ ,scheduler=SCREAMING_SNAKE_CASE__ ) pipe.to(torch_device=SCREAMING_SNAKE_CASE__ ,torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Dict = self.get_inputs(get_fixed_latents=SCREAMING_SNAKE_CASE__ ,device=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :int = 1 __SCREAMING_SNAKE_CASE :int = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=SCREAMING_SNAKE_CASE__ ,enable_math=SCREAMING_SNAKE_CASE__ ,enable_mem_efficient=SCREAMING_SNAKE_CASE__ ): __SCREAMING_SNAKE_CASE :str = pipe(**SCREAMING_SNAKE_CASE__ ).images assert image.shape == (1, 64, 64, 3) __SCREAMING_SNAKE_CASE :str = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE :Optional[int] = np.array([0.1_6_6_3, 0.1_9_4_8, 0.2_2_7_5, 0.1_6_8_0, 0.1_2_0_4, 0.1_2_4_5, 0.1_8_5_8, 0.1_3_3_8, 0.2_0_9_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
191
0
"""simple docstring""" import os import re import shutil import sys import tempfile import unittest import black a__ : List[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. a__ : Any = ''' \""" Output class for the scheduler\'s step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \""" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None ''' class UpperCamelCase_ ( unittest.TestCase): """simple docstring""" def UpperCAmelCase_ ( self : Optional[Any] ) -> List[Any]: __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , "schedulers/" ) ) __SCREAMING_SNAKE_CASE = self.diffusers_dir shutil.copy( os.path.join(UpperCAmelCase__ , "src/diffusers/schedulers/scheduling_ddpm.py" ) , os.path.join(self.diffusers_dir , "schedulers/scheduling_ddpm.py" ) , ) def UpperCAmelCase_ ( self : Tuple ) -> str: __SCREAMING_SNAKE_CASE = "src/diffusers" shutil.rmtree(self.diffusers_dir ) def UpperCAmelCase_ ( self : Union[str, Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Any , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[int]=None ) -> List[str]: __SCREAMING_SNAKE_CASE = comment + F"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: __SCREAMING_SNAKE_CASE = comment + F"""\nclass {class_name}(nn.Module):\n""" + overwrite_result __SCREAMING_SNAKE_CASE = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 ) __SCREAMING_SNAKE_CASE = black.format_str(UpperCAmelCase__ , mode=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = os.path.join(self.diffusers_dir , "new_code.py" ) with open(UpperCAmelCase__ , "w" , newline="\n" ) as f: f.write(UpperCAmelCase__ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(UpperCAmelCase__ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=UpperCAmelCase__ ) with open(UpperCAmelCase__ , "r" ) as f: self.assertTrue(f.read() , UpperCAmelCase__ ) def UpperCAmelCase_ ( self : List[Any] ) -> Tuple: __SCREAMING_SNAKE_CASE = check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput" ) self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: # Base copy consistency self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , UpperCAmelCase__ , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , re.sub("DDPM" , "Test" , UpperCAmelCase__ ) , ) # Copy consistency with a really long name __SCREAMING_SNAKE_CASE = "TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( F"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , F"""{long_class_name}SchedulerOutput""" , re.sub("Bert" , UpperCAmelCase__ , UpperCAmelCase__ ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , UpperCAmelCase__ , overwrite_result=re.sub("DDPM" , "Test" , UpperCAmelCase__ ) , )
195
"""simple docstring""" import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument a__ : Optional[Any] = { '''/attention/''': '''/0/SelfAttention/''', '''/self_attention/''': '''/0/SelfAttention/''', '''/encoder_decoder_attention/''': '''/1/EncDecAttention/''', '''value''': '''v''', '''query''': '''q''', '''key''': '''k''', '''out''': '''o''', '''pre_self_attention_layer_norm''': '''0/layer_norm''', '''pre_cross_attention_layer_norm''': '''1/layer_norm''', '''pre_attention_layer_norm''': '''0/layer_norm''', # previously 1, but seems wrong '''token_embedder''': '''shared''', '''encoder_norm''': '''final_layer_norm''', '''decoder_norm''': '''final_layer_norm''', '''relpos_bias/rel_embedding''': '''block/0/layer/0/SelfAttention/relative_attention_bias/weight''', '''router/router_weights/w/''': '''router/classifier/''', '''roer/roer_weights/w/''': '''router/classifier/''', '''logits_dense''': '''lm_head''', } def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = list(s_dict.keys() ) for key in keys: __SCREAMING_SNAKE_CASE = R".*/layers_(\d+)" __SCREAMING_SNAKE_CASE = key if re.match(lowerCAmelCase_ , lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = re.sub(R"layers_(\d+)" , R"block/\1/layer" , lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = R"(encoder|decoder)\/" if re.match(lowerCAmelCase_ , lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = re.match(lowerCAmelCase_ , lowerCAmelCase_ ).groups() if groups[0] == "encoder": __SCREAMING_SNAKE_CASE = re.sub(R"/mlp/" , R"/1/mlp/" , lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = re.sub(R"/pre_mlp_layer_norm/" , R"/1/layer_norm/" , lowerCAmelCase_ ) elif groups[0] == "decoder": __SCREAMING_SNAKE_CASE = re.sub(R"/mlp/" , R"/2/mlp/" , lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = re.sub(R"/pre_mlp_layer_norm/" , R"/2/layer_norm/" , lowerCAmelCase_ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: __SCREAMING_SNAKE_CASE = new_key.replace(lowerCAmelCase_ , lowerCAmelCase_ ) print(f"""{key} -> {new_key}""" ) __SCREAMING_SNAKE_CASE = s_dict.pop(lowerCAmelCase_ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: __SCREAMING_SNAKE_CASE = s_dict[ "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: __SCREAMING_SNAKE_CASE = s_dict[ "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: __SCREAMING_SNAKE_CASE = s_dict[key].shape[0] __SCREAMING_SNAKE_CASE = s_dict[key] for idx in range(lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = expert_weihts[idx] print(f"""{key} -> {key.replace('expert/' , 'nested fstring' )}""" ) s_dict.pop(lowerCAmelCase_ ) return s_dict a__ : List[Any] = { '''NUM_ENCODER_LAYERS''': '''num_layers''', '''NUM_DECODER_LAYERS''': '''num_decoder_layers''', '''NUM_HEADS''': '''num_heads''', '''HEAD_DIM''': '''d_kv''', '''EMBED_DIM''': '''d_model''', '''MLP_DIM''': '''d_ff''', '''NUM_SELECTED_EXPERTS''': '''num_selected_experts''', '''NUM_ENCODER_SPARSE_LAYERS''': '''num_sparse_encoder_layers''', '''NUM_DECODER_SPARSE_LAYERS''': '''num_sparse_decoder_layers''', '''dense.MlpBlock.activations''': '''feed_forward_proj''', } def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' import regex as re with open(lowerCAmelCase_ , "r" ) as f: __SCREAMING_SNAKE_CASE = f.read() __SCREAMING_SNAKE_CASE = re.findall(R"(.*) = ([0-9.]*)" , lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": __SCREAMING_SNAKE_CASE = float(lowerCAmelCase_ ) if "." in value else int(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = re.findall(R"(.*activations) = \(\'(.*)\',\)" , lowerCAmelCase_ )[0] __SCREAMING_SNAKE_CASE = str(activation[1] ) __SCREAMING_SNAKE_CASE = num_experts __SCREAMING_SNAKE_CASE = SwitchTransformersConfig(**lowerCAmelCase_ ) return config def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_="./" , lowerCAmelCase_=8 ): '''simple docstring''' print(f"""Loading flax weights from : {flax_checkpoint_path}""" ) __SCREAMING_SNAKE_CASE = checkpoints.load_tax_checkpoint(lowerCAmelCase_ ) if gin_file is not None: __SCREAMING_SNAKE_CASE = convert_gin_to_config(lowerCAmelCase_ , lowerCAmelCase_ ) else: __SCREAMING_SNAKE_CASE = SwitchTransformersConfig.from_pretrained(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = SwitchTransformersForConditionalGeneration(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = flax_params["target"] __SCREAMING_SNAKE_CASE = flatten_dict(lowerCAmelCase_ , sep="/" ) __SCREAMING_SNAKE_CASE = rename_keys(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = unflatten_dict(lowerCAmelCase_ , sep="/" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(lowerCAmelCase_ , lowerCAmelCase_ ) print(f"""Save PyTorch model to {pytorch_dump_path}""" ) pt_model.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": a__ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the''' ''' model architecture. If not provided, a `gin_file` has to be provided.''' ), ) parser.add_argument( '''--gin_file''', default=None, type=str, required=False, help='''Path to the gin config file. If not provided, a `config_file` has to be passed ''', ) parser.add_argument( '''--config_name''', default=None, type=str, required=False, help='''Config name of SwitchTransformers model.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output pytorch model.''' ) parser.add_argument('''--num_experts''', default=8, type=int, required=False, help='''Number of experts''') a__ : Tuple = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
195
1
import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __a ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): _a : Any = VQModel _a : Tuple = 'sample' @property def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE=(32, 32) ) -> Any: """simple docstring""" _UpperCAmelCase = 4 _UpperCAmelCase = 3 _UpperCAmelCase = floats_tensor((batch_size, num_channels) + sizes ).to(_SCREAMING_SNAKE_CASE ) return {"sample": image} @property def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" return (3, 32, 32) @property def UpperCAmelCase__ ( self ) -> str: """simple docstring""" return (3, 32, 32) def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" _UpperCAmelCase = { 'block_out_channels': [32, 64], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 3, } _UpperCAmelCase = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase__ ( self ) -> Union[str, Any]: """simple docstring""" pass def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" pass def UpperCAmelCase__ ( self ) -> str: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = VQModel.from_pretrained('fusing/vqgan-dummy' , output_loading_info=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def UpperCAmelCase__ ( self ) -> str: """simple docstring""" _UpperCAmelCase = VQModel.from_pretrained('fusing/vqgan-dummy' ) model.to(_SCREAMING_SNAKE_CASE ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) _UpperCAmelCase = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) _UpperCAmelCase = image.to(_SCREAMING_SNAKE_CASE ) with torch.no_grad(): _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE ).sample _UpperCAmelCase = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off _UpperCAmelCase = torch.tensor([-0.0153, -0.4044, -0.1880, -0.5161, -0.2418, -0.4072, -0.1612, -0.0633, -0.0143] ) # fmt: on self.assertTrue(torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 ) )
329
import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer lowerCAmelCase__ :Optional[int] = logging.getLogger(__name__) def lowerCAmelCase__ ( ) -> Tuple: '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser( description='Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.' ) parser.add_argument( '--dataset_name' , type=a__ , default='wikitext' , help='Name of the training. Explore datasets at: hf.co/datasets.' , ) parser.add_argument( '--dataset_config' , type=a__ , default='wikitext-103-raw-v1' , help='Configuration name of the dataset.' ) parser.add_argument( '--tokenizer_name_or_path' , type=a__ , default='sayakpaul/unigram-tokenizer-wikitext' , help='Tokenizer identifier. Can be a local filepath or a Hub identifier.' , ) parser.add_argument( '--shard_size' , type=a__ , default=1_0_0_0 , help='Number of entries to go in a single shard.' , ) parser.add_argument('--split' , type=a__ , default='train' , choices=['train', 'test', 'validation'] ) parser.add_argument( '--limit' , default=a__ , type=a__ , help='Limit the number of shards (used for debugging).' , ) parser.add_argument( '--max_length' , type=a__ , default=5_1_2 , help='Maximum sequence length. For training on TPUs, it helps to have a maximum' ' sequence length that is a multiple of 8.' , ) parser.add_argument( '--output_dir' , default='tf-tpu' , type=a__ , help='Output directory where the TFRecord shards will be saved. If the' ' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord' ' shards will be directly saved to a Google Cloud Storage bucket.' , ) _UpperCAmelCase = parser.parse_args() return args def lowerCAmelCase__ ( a__: Union[str, Any] ) -> List[Any]: '''simple docstring''' def fn(a__: str ): return tokenizer(examples['text'] ) return fn def lowerCAmelCase__ ( a__: List[str] ) -> Any: '''simple docstring''' _UpperCAmelCase = [] for i in range(len(tokenized_data['input_ids'] ) ): _UpperCAmelCase = { 'input_ids': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['input_ids'][i] ) ), 'attention_mask': tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['attention_mask'][i] ) ), } _UpperCAmelCase = tf.train.Features(feature=a__ ) _UpperCAmelCase = tf.train.Example(features=a__ ) _UpperCAmelCase = example.SerializeToString() records.append(a__ ) return records def lowerCAmelCase__ ( a__: Union[str, Any] ) -> int: '''simple docstring''' _UpperCAmelCase = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: _UpperCAmelCase = min(len(a__ ) , args.limit ) _UpperCAmelCase = dataset.select(range(a__ ) ) print(F'''Limiting the dataset to {args.limit} entries.''' ) _UpperCAmelCase = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) _UpperCAmelCase = os.path.join(args.output_dir , args.split ) if not os.path.exists(a__ ): os.makedirs(a__ ) else: _UpperCAmelCase = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. _UpperCAmelCase = tokenize_function(a__ ) _UpperCAmelCase = dataset.map(a__ , batched=a__ , num_proc=4 , remove_columns=['text'] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(a__: Optional[int] ): # Concatenate all texts. _UpperCAmelCase = {k: sum(examples[k] , [] ) for k in examples.keys()} _UpperCAmelCase = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 _UpperCAmelCase = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. _UpperCAmelCase = { k: [t[i : i + args.max_length] for i in range(0 , a__ , args.max_length )] for k, t in concatenated_examples.items() } return result _UpperCAmelCase = dataset_tokenized.map(a__ , batched=a__ , batch_size=1_0_0_0 , num_proc=4 ) _UpperCAmelCase = 0 _UpperCAmelCase = 0 for shard in range(0 , len(a__ ) , args.shard_size ): _UpperCAmelCase = grouped_dataset[shard : shard + args.shard_size] _UpperCAmelCase = len(dataset_snapshot['input_ids'] ) _UpperCAmelCase = os.path.join(a__ , F'''dataset-{shard_count}-{records_containing}.tfrecord''' ) _UpperCAmelCase = get_serialized_examples(a__ ) with tf.io.TFRecordWriter(a__ ) as out_file: for i in range(len(a__ ) ): _UpperCAmelCase = serialized_examples[i] out_file.write(a__ ) print('Wrote file {} containing {} records'.format(a__ , a__ ) ) shard_count += 1 total_records += records_containing with open(F'''split-{args.split}-records-count.txt''' , 'w' ) as f: print(F'''Total {args.split} records: {total_records}''' , file=a__ ) if __name__ == "__main__": lowerCAmelCase__ :str = parse_args() main(args)
329
1
import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip _A : int = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def _a ( UpperCAmelCase ) -> Optional[Any]: """simple docstring""" if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: """simple docstring""" return max(metric_fn(UpperCAmelCase , UpperCAmelCase ) for gt in ground_truths ) def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[Any]: """simple docstring""" lowerCamelCase__ : List[Any] = [line.strip() for line in open(UpperCAmelCase , '''r''' ).readlines()] lowerCamelCase__ : str = [] if args.gold_data_mode == "qa": lowerCamelCase__ : int = pd.read_csv(UpperCAmelCase , sep='''\t''' , header=UpperCAmelCase ) for answer_list in data[1]: lowerCamelCase__ : List[Any] = ast.literal_eval(UpperCAmelCase ) answers.append(UpperCAmelCase ) else: lowerCamelCase__ : List[str] = [line.strip() for line in open(UpperCAmelCase , '''r''' ).readlines()] lowerCamelCase__ : Union[str, Any] = [[reference] for reference in references] lowerCamelCase__ : Optional[Any] = 0 for prediction, ground_truths in zip(UpperCAmelCase , UpperCAmelCase ): total += 1 em += metric_max_over_ground_truths(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) fa += metric_max_over_ground_truths(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = 1_00.0 * em / total lowerCamelCase__ : List[str] = 1_00.0 * fa / total logger.info(f"F1: {fa:.2f}" ) logger.info(f"EM: {em:.2f}" ) def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Any: """simple docstring""" lowerCamelCase__ : Optional[int] = args.k lowerCamelCase__ : Tuple = [line.strip() for line in open(UpperCAmelCase , '''r''' ).readlines()] lowerCamelCase__ : int = [line.strip() for line in open(UpperCAmelCase , '''r''' ).readlines()] lowerCamelCase__ : List[Any] = 0 for hypo, reference in zip(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase__ : Tuple = set(hypo.split('''\t''' )[:k] ) lowerCamelCase__ : int = set(reference.split('''\t''' ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k lowerCamelCase__ : Tuple = 1_00.0 * em / total logger.info(f"Precision@{k}: {em: .2f}" ) def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: """simple docstring""" def strip_title(UpperCAmelCase ): if title.startswith('''"''' ): lowerCamelCase__ : Optional[int] = title[1:] if title.endswith('''"''' ): lowerCamelCase__ : List[str] = title[:-1] return title lowerCamelCase__ : Tuple = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( UpperCAmelCase , return_tensors='''pt''' , padding=UpperCAmelCase , truncation=UpperCAmelCase , )['''input_ids'''].to(args.device ) lowerCamelCase__ : str = rag_model.rag.question_encoder(UpperCAmelCase ) lowerCamelCase__ : Optional[int] = question_enc_outputs[0] lowerCamelCase__ : int = rag_model.retriever( UpperCAmelCase , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='''pt''' , ) lowerCamelCase__ : List[Any] = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) lowerCamelCase__ : Optional[int] = [] for docs in all_docs: lowerCamelCase__ : List[Any] = [strip_title(UpperCAmelCase ) for title in docs['''title''']] provenance_strings.append('''\t'''.join(UpperCAmelCase ) ) return provenance_strings def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Tuple: """simple docstring""" with torch.no_grad(): lowerCamelCase__ : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( UpperCAmelCase , return_tensors='''pt''' , padding=UpperCAmelCase , truncation=UpperCAmelCase ) lowerCamelCase__ : str = inputs_dict.input_ids.to(args.device ) lowerCamelCase__ : int = inputs_dict.attention_mask.to(args.device ) lowerCamelCase__ : Optional[int] = rag_model.generate( # rag_model overwrites generate UpperCAmelCase , attention_mask=UpperCAmelCase , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=UpperCAmelCase , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) lowerCamelCase__ : Dict = rag_model.retriever.generator_tokenizer.batch_decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase ) if args.print_predictions: for q, a in zip(UpperCAmelCase , UpperCAmelCase ): logger.info('''Q: {} - A: {}'''.format(UpperCAmelCase , UpperCAmelCase ) ) return answers def _a ( ) -> Dict: """simple docstring""" lowerCamelCase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '''--model_type''' , choices=['''rag_sequence''', '''rag_token''', '''bart'''] , type=UpperCAmelCase , help=( '''RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the''' ''' model_name_or_path''' ) , ) parser.add_argument( '''--index_name''' , default=UpperCAmelCase , choices=['''exact''', '''compressed''', '''legacy'''] , type=UpperCAmelCase , help='''RAG model retriever type''' , ) parser.add_argument( '''--index_path''' , default=UpperCAmelCase , type=UpperCAmelCase , help='''Path to the retrieval index''' , ) parser.add_argument('''--n_docs''' , default=5 , type=UpperCAmelCase , help='''Number of retrieved docs''' ) parser.add_argument( '''--model_name_or_path''' , default=UpperCAmelCase , type=UpperCAmelCase , required=UpperCAmelCase , help='''Path to pretrained checkpoints or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--eval_mode''' , choices=['''e2e''', '''retrieval'''] , default='''e2e''' , type=UpperCAmelCase , help=( '''Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates''' ''' precision@k.''' ) , ) parser.add_argument('''--k''' , default=1 , type=UpperCAmelCase , help='''k for the precision@k calculation''' ) parser.add_argument( '''--evaluation_set''' , default=UpperCAmelCase , type=UpperCAmelCase , required=UpperCAmelCase , help='''Path to a file containing evaluation samples''' , ) parser.add_argument( '''--gold_data_path''' , default=UpperCAmelCase , type=UpperCAmelCase , required=UpperCAmelCase , help='''Path to a tab-separated file with gold samples''' , ) parser.add_argument( '''--gold_data_mode''' , default='''qa''' , type=UpperCAmelCase , choices=['''qa''', '''ans'''] , help=( '''Format of the gold data file''' '''qa - a single line in the following format: question [tab] answer_list''' '''ans - a single line of the gold file contains the expected answer string''' ) , ) parser.add_argument( '''--predictions_path''' , type=UpperCAmelCase , default='''predictions.txt''' , help='''Name of the predictions file, to be stored in the checkpoints directory''' , ) parser.add_argument( '''--eval_all_checkpoints''' , action='''store_true''' , help='''Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number''' , ) parser.add_argument( '''--eval_batch_size''' , default=8 , type=UpperCAmelCase , help='''Batch size per GPU/CPU for evaluation.''' , ) parser.add_argument( '''--recalculate''' , help='''Recalculate predictions even if the prediction file exists''' , action='''store_true''' , ) parser.add_argument( '''--num_beams''' , default=4 , type=UpperCAmelCase , help='''Number of beams to be used when generating answers''' , ) parser.add_argument('''--min_length''' , default=1 , type=UpperCAmelCase , help='''Min length of the generated answers''' ) parser.add_argument('''--max_length''' , default=50 , type=UpperCAmelCase , help='''Max length of the generated answers''' ) parser.add_argument( '''--print_predictions''' , action='''store_true''' , help='''If True, prints predictions while evaluating.''' , ) parser.add_argument( '''--print_docs''' , action='''store_true''' , help='''If True, prints docs retried while generating.''' , ) lowerCamelCase__ : Dict = parser.parse_args() lowerCamelCase__ : Union[str, Any] = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) return args def _a ( UpperCAmelCase ) -> List[str]: """simple docstring""" lowerCamelCase__ : List[str] = {} if args.model_type is None: lowerCamelCase__ : Tuple = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith('''rag''' ): lowerCamelCase__ : Optional[Any] = RagTokenForGeneration if args.model_type == '''rag_token''' else RagSequenceForGeneration lowerCamelCase__ : Optional[int] = args.n_docs if args.index_name is not None: lowerCamelCase__ : Optional[Any] = args.index_name if args.index_path is not None: lowerCamelCase__ : int = args.index_path else: lowerCamelCase__ : List[str] = BartForConditionalGeneration lowerCamelCase__ : Any = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('''Evaluate the following checkpoints: %s''' , UpperCAmelCase ) lowerCamelCase__ : str = get_scores if args.eval_mode == '''e2e''' else get_precision_at_k lowerCamelCase__ : List[Any] = evaluate_batch_eae if args.eval_mode == '''e2e''' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info('''Calculating metrics based on an existing predictions file: {}'''.format(args.predictions_path ) ) score_fn(UpperCAmelCase , args.predictions_path , args.gold_data_path ) continue logger.info('''***** Running evaluation for {} *****'''.format(UpperCAmelCase ) ) logger.info(''' Batch size = %d''' , args.eval_batch_size ) logger.info(''' Predictions will be stored under {}'''.format(args.predictions_path ) ) if args.model_type.startswith('''rag''' ): lowerCamelCase__ : str = RagRetriever.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = model_class.from_pretrained(UpperCAmelCase , retriever=UpperCAmelCase , **UpperCAmelCase ) model.retriever.init_retrieval() else: lowerCamelCase__ : Optional[Any] = model_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) model.to(args.device ) with open(args.evaluation_set , '''r''' ) as eval_file, open(args.predictions_path , '''w''' ) as preds_file: lowerCamelCase__ : int = [] for line in tqdm(UpperCAmelCase ): questions.append(line.strip() ) if len(UpperCAmelCase ) == args.eval_batch_size: lowerCamelCase__ : str = evaluate_batch_fn(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) preds_file.write('''\n'''.join(UpperCAmelCase ) + '''\n''' ) preds_file.flush() lowerCamelCase__ : List[Any] = [] if len(UpperCAmelCase ) > 0: lowerCamelCase__ : Tuple = evaluate_batch_fn(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) preds_file.write('''\n'''.join(UpperCAmelCase ) ) preds_file.flush() score_fn(UpperCAmelCase , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": _A : Dict = get_args() main(args)
265
import os from pathlib import Path def _a ( ) -> Tuple: """simple docstring""" from torch.utils.cpp_extension import load lowerCamelCase__ : List[Any] = Path(UpperCAmelCase ).resolve().parent.parent.parent / '''kernels''' / '''deformable_detr''' lowerCamelCase__ : Any = [ root / filename for filename in [ '''vision.cpp''', os.path.join('''cpu''' , '''ms_deform_attn_cpu.cpp''' ), os.path.join('''cuda''' , '''ms_deform_attn_cuda.cu''' ), ] ] load( '''MultiScaleDeformableAttention''' , UpperCAmelCase , with_cuda=UpperCAmelCase , extra_include_paths=[str(UpperCAmelCase )] , extra_cflags=['''-DWITH_CUDA=1'''] , extra_cuda_cflags=[ '''-DCUDA_HAS_FP16=1''', '''-D__CUDA_NO_HALF_OPERATORS__''', '''-D__CUDA_NO_HALF_CONVERSIONS__''', '''-D__CUDA_NO_HALF2_OPERATORS__''', ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
265
1
import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def _a ( lowerCamelCase: dict ) -> tuple: '''simple docstring''' return (data["data"], data["target"]) def _a ( lowerCamelCase: np.ndarray , lowerCamelCase: np.ndarray , lowerCamelCase: np.ndarray ) -> np.ndarray: '''simple docstring''' __A = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(lowerCamelCase , lowerCamelCase ) # Predict target for test data __A = xgb.predict(lowerCamelCase ) __A = predictions.reshape(len(lowerCamelCase ) , 1 ) return predictions def _a ( ) -> None: '''simple docstring''' __A = fetch_california_housing() __A , __A = data_handling(lowerCamelCase ) __A , __A , __A , __A = train_test_split( lowerCamelCase , lowerCamelCase , test_size=0.25 , random_state=1 ) __A = xgboost(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Error printing print(F"""Mean Absolute Error : {mean_absolute_error(lowerCamelCase , lowerCamelCase )}""" ) print(F"""Mean Square Error : {mean_squared_error(lowerCamelCase , lowerCamelCase )}""" ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
117
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration snake_case__ : Union[str, Any] = 500000 snake_case__ , snake_case__ : Optional[Any] = os.path.split(__file__) snake_case__ : List[Any] = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def _a ( lowerCamelCase: datasets.Dataset , **lowerCamelCase: Optional[int] ) -> str: '''simple docstring''' __A = dataset.map(**lowerCamelCase ) @get_duration def _a ( lowerCamelCase: datasets.Dataset , **lowerCamelCase: Optional[int] ) -> str: '''simple docstring''' __A = dataset.filter(**lowerCamelCase ) def _a ( ) -> List[Any]: '''simple docstring''' __A = {'''num examples''': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: __A = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} ) __A = generate_example_dataset( os.path.join(lowerCamelCase , '''dataset.arrow''' ) , lowerCamelCase , num_examples=lowerCamelCase ) __A = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=lowerCamelCase ) def tokenize(lowerCamelCase: List[str] ): return tokenizer(examples['''text'''] ) __A = map(lowerCamelCase ) __A = map(lowerCamelCase , batched=lowerCamelCase ) __A = map(lowerCamelCase , function=lambda lowerCamelCase : None , batched=lowerCamelCase ) with dataset.formatted_as(type='''numpy''' ): __A = map(lowerCamelCase , function=lambda lowerCamelCase : None , batched=lowerCamelCase ) with dataset.formatted_as(type='''pandas''' ): __A = map(lowerCamelCase , function=lambda lowerCamelCase : None , batched=lowerCamelCase ) with dataset.formatted_as(type='''torch''' , columns='''numbers''' ): __A = map(lowerCamelCase , function=lambda lowerCamelCase : None , batched=lowerCamelCase ) with dataset.formatted_as(type='''tensorflow''' , columns='''numbers''' ): __A = map(lowerCamelCase , function=lambda lowerCamelCase : None , batched=lowerCamelCase ) __A = map(lowerCamelCase , function=lowerCamelCase , batched=lowerCamelCase ) __A = filter(lowerCamelCase ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(lowerCamelCase , '''wb''' ) as f: f.write(json.dumps(lowerCamelCase ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
117
1
'''simple docstring''' import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput __snake_case =logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class UpperCAmelCase_ ( __lowercase ): def __init__( self : Union[str, Any] , *UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : List[Any]=None , **UpperCAmelCase__ : List[Any] ) -> List[Any]: super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ ) lowerCAmelCase = eval_examples lowerCAmelCase = post_process_function lowerCAmelCase = quant_trainer_args lowerCAmelCase = 1_2_8 # default number of calibration samples def __UpperCAmelCase ( self : Dict , UpperCAmelCase__ : List[str]=None ) -> str: if calib_dataset is None and self.calib_dataset is None: raise ValueError('Trainer: calibration requires an calib_dataset.' ) lowerCAmelCase = calib_dataset if calib_dataset is not None else self.calib_dataset lowerCAmelCase = self._remove_unused_columns(UpperCAmelCase__ , description='Calibration' ) return DataLoader( UpperCAmelCase__ , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=UpperCAmelCase__ , ) def __UpperCAmelCase ( self : int , UpperCAmelCase__ : Dict=None ) -> Optional[int]: lowerCAmelCase = self.train_dataset if calib_dataset is None else calib_dataset lowerCAmelCase = self.get_calib_dataloader(UpperCAmelCase__ ) lowerCAmelCase = self.model quant_trainer.configure_model(UpperCAmelCase__ , self.quant_trainer_args , calib=UpperCAmelCase__ ) model.eval() quant_trainer.enable_calibration(UpperCAmelCase__ ) logger.info('***** Running calibration *****' ) logger.info(F''' Num examples = {self.calib_num}''' ) logger.info(F''' Batch size = {calib_dataloader.batch_size}''' ) for step, inputs in enumerate(UpperCAmelCase__ ): # Prediction step lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = self.prediction_step(UpperCAmelCase__ , UpperCAmelCase__ , prediction_loss_only=UpperCAmelCase__ ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(UpperCAmelCase__ , self.quant_trainer_args ) lowerCAmelCase = model def __UpperCAmelCase ( self : List[Any] , UpperCAmelCase__ : Any=None , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : str = "eval" ) -> int: lowerCAmelCase = self.eval_dataset if eval_dataset is None else eval_dataset lowerCAmelCase = self.get_eval_dataloader(UpperCAmelCase__ ) lowerCAmelCase = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowerCAmelCase = self.compute_metrics lowerCAmelCase = None lowerCAmelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowerCAmelCase = eval_loop( UpperCAmelCase__ , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCAmelCase__ , ) finally: lowerCAmelCase = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: lowerCAmelCase = self.post_process_function(UpperCAmelCase__ , UpperCAmelCase__ , output.predictions ) lowerCAmelCase = self.compute_metrics(UpperCAmelCase__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): lowerCAmelCase = metrics.pop(UpperCAmelCase__ ) self.log(UpperCAmelCase__ ) else: lowerCAmelCase = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) lowerCAmelCase = self.callback_handler.on_evaluate(self.args , self.state , self.control , UpperCAmelCase__ ) return metrics def __UpperCAmelCase ( self : str , UpperCAmelCase__ : Any , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Any=None , UpperCAmelCase__ : str = "test" ) -> List[str]: lowerCAmelCase = self.get_test_dataloader(UpperCAmelCase__ ) # Temporarily disable metric computation, we will do it in the loop here. lowerCAmelCase = self.compute_metrics lowerCAmelCase = None lowerCAmelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowerCAmelCase = eval_loop( UpperCAmelCase__ , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCAmelCase__ , ) finally: lowerCAmelCase = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output lowerCAmelCase = self.post_process_function(UpperCAmelCase__ , UpperCAmelCase__ , output.predictions , 'predict' ) lowerCAmelCase = self.compute_metrics(UpperCAmelCase__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): lowerCAmelCase = metrics.pop(UpperCAmelCase__ ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=UpperCAmelCase__ ) def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : Union[str, Any]="./" ) -> str: lowerCAmelCase = self.eval_dataset lowerCAmelCase = self.get_eval_dataloader(UpperCAmelCase__ ) lowerCAmelCase = next(iter(UpperCAmelCase__ ) ) # saving device - to make it consistent lowerCAmelCase = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) # convert to tuple lowerCAmelCase = tuple(v.to(UpperCAmelCase__ ) for k, v in batch.items() ) logger.info('Converting model to be onnx compatible' ) from pytorch_quantization.nn import TensorQuantizer lowerCAmelCase = True lowerCAmelCase = self.model.to(UpperCAmelCase__ ) model.eval() model.float() lowerCAmelCase = model.module if hasattr(UpperCAmelCase__ , 'module' ) else model quant_trainer.configure_model(UpperCAmelCase__ , self.quant_trainer_args ) lowerCAmelCase = os.path.join(UpperCAmelCase__ , 'model.onnx' ) logger.info(F'''exporting model to {output_model_file}''' ) lowerCAmelCase = {0: 'batch_size', 1: 'seq_len'} torch.onnx.export( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , export_params=UpperCAmelCase__ , opset_version=1_3 , do_constant_folding=UpperCAmelCase__ , input_names=['input_ids', 'attention_mask', 'token_type_ids'] , output_names=['output_start_logits', 'output_end_logits'] , dynamic_axes={ 'input_ids': axes, 'attention_mask': axes, 'token_type_ids': axes, 'output_start_logits': axes, 'output_end_logits': axes, } , verbose=UpperCAmelCase__ , ) logger.info('onnx export finished' )
55
'''simple docstring''' import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class UpperCAmelCase_ : def __init__( self : List[str] , UpperCAmelCase__ : Any , UpperCAmelCase__ : int=3 , UpperCAmelCase__ : Optional[Any]=7 , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : Tuple=False , UpperCAmelCase__ : List[Any]=True , UpperCAmelCase__ : List[str]=9_9 , UpperCAmelCase__ : Tuple=3_2 , UpperCAmelCase__ : str=5 , UpperCAmelCase__ : List[Any]=4 , UpperCAmelCase__ : Any=3_7 , UpperCAmelCase__ : int="gelu" , UpperCAmelCase__ : Optional[Any]=0.1 , UpperCAmelCase__ : List[Any]=0.1 , UpperCAmelCase__ : Dict=5_1_2 , UpperCAmelCase__ : Dict=1_6 , UpperCAmelCase__ : Optional[Any]=2 , UpperCAmelCase__ : Dict=0.02 , UpperCAmelCase__ : Union[str, Any]=3 , UpperCAmelCase__ : List[Any]=4 , UpperCAmelCase__ : List[str]=None , ) -> str: lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope def __UpperCAmelCase ( self : Any ) -> List[str]: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCAmelCase ( self : Optional[Any] ) -> List[str]: return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=UpperCAmelCase__ , ) def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Any , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : str , UpperCAmelCase__ : str ) -> int: lowerCAmelCase = FalconModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) lowerCAmelCase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[Any] , ) -> Tuple: lowerCAmelCase = True lowerCAmelCase = FalconModel(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , ) lowerCAmelCase = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , ) lowerCAmelCase = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self : Tuple , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , ) -> List[str]: lowerCAmelCase = FalconForCausalLM(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Any , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[Any] , ) -> List[str]: lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = FalconForCausalLM(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() # first forward pass lowerCAmelCase = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , use_cache=UpperCAmelCase__ , ) lowerCAmelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCAmelCase = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ , )['hidden_states'][0] lowerCAmelCase = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , past_key_values=UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ , )['hidden_states'][0] # select random slice lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) def __UpperCAmelCase ( self : Tuple ) -> List[str]: lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): lowerCamelCase : Tuple = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase : Dict = (FalconForCausalLM,) if is_torch_available() else () lowerCamelCase : int = ( { '''feature-extraction''': FalconModel, '''text-classification''': FalconForSequenceClassification, '''text-generation''': FalconForCausalLM, '''question-answering''': FalconForQuestionAnswering, '''token-classification''': FalconForTokenClassification, '''zero-shot''': FalconForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase : int = False lowerCamelCase : Union[str, Any] = False def __UpperCAmelCase ( self : Any ) -> Optional[Any]: lowerCAmelCase = FalconModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=3_7 ) def __UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]: self.config_tester.run_common_tests() def __UpperCAmelCase ( self : Any ) -> Tuple: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def __UpperCAmelCase ( self : str ) -> Tuple: lowerCAmelCase , *lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: lowerCAmelCase = alibi self.model_tester.create_and_check_model(UpperCAmelCase__ , *UpperCAmelCase__ ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = 3 lowerCAmelCase = input_dict['input_ids'] lowerCAmelCase = input_ids.ne(1 ).to(UpperCAmelCase__ ) lowerCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase = FalconForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __UpperCAmelCase ( self : Any ) -> Dict: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = 3 lowerCAmelCase = 'single_label_classification' lowerCAmelCase = input_dict['input_ids'] lowerCAmelCase = input_ids.ne(1 ).to(UpperCAmelCase__ ) lowerCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase = FalconForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __UpperCAmelCase ( self : Tuple ) -> int: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = input_dict['input_ids'] lowerCAmelCase = FalconForCausalLM(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model(UpperCAmelCase__ , use_cache=UpperCAmelCase__ ) lowerCAmelCase = input_ids.shape[0] lowerCAmelCase = model._convert_to_rw_cache(result.past_key_values ) lowerCAmelCase = model._convert_cache_to_standard_format(UpperCAmelCase__ , UpperCAmelCase__ ) for layer in range(len(UpperCAmelCase__ ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def __UpperCAmelCase ( self : Any ) -> List[Any]: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = 3 lowerCAmelCase = 'multi_label_classification' lowerCAmelCase = input_dict['input_ids'] lowerCAmelCase = input_ids.ne(1 ).to(UpperCAmelCase__ ) lowerCAmelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCAmelCase = FalconForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: # Falcon can have different numbers of KV-heads than the number of query heads, so we need # to override this test to use the right head counts. for model_class in self.all_generative_model_classes: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(UpperCAmelCase__ , 'use_cache' ): return lowerCAmelCase = model_class(UpperCAmelCase__ ).to(UpperCAmelCase__ ) if "use_cache" not in inputs: lowerCAmelCase = True lowerCAmelCase = model(**UpperCAmelCase__ ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return lowerCAmelCase = ( getattr(UpperCAmelCase__ , 'decoder_layers' , UpperCAmelCase__ ) or getattr(UpperCAmelCase__ , 'num_decoder_layers' , UpperCAmelCase__ ) or config.num_hidden_layers ) lowerCAmelCase = getattr(UpperCAmelCase__ , 'num_kv_heads' , config.num_attention_heads ) lowerCAmelCase = getattr(UpperCAmelCase__ , 'd_model' , config.hidden_size ) lowerCAmelCase = embed_dim // num_attention_heads lowerCAmelCase = outputs['past_key_values'] self.assertEqual(len(UpperCAmelCase__ ) , UpperCAmelCase__ ) lowerCAmelCase , lowerCAmelCase = inputs['input_ids'].shape for i in range(UpperCAmelCase__ ): if config.new_decoder_architecture: lowerCAmelCase = config.num_attention_heads elif config.multi_query: lowerCAmelCase = 1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class UpperCAmelCase_ ( unittest.TestCase ): @slow def __UpperCAmelCase ( self : List[str] ) -> Dict: lowerCAmelCase = AutoTokenizer.from_pretrained('Rocketknight1/falcon-rw-1b' ) lowerCAmelCase = FalconForCausalLM.from_pretrained('Rocketknight1/falcon-rw-1b' ) model.eval() model.to(UpperCAmelCase__ ) lowerCAmelCase = tokenizer('My favorite food is' , return_tensors='pt' ).to(UpperCAmelCase__ ) lowerCAmelCase = ( 'My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.' ) lowerCAmelCase = model.generate(**UpperCAmelCase__ , do_sample=UpperCAmelCase__ , max_new_tokens=1_9 ) lowerCAmelCase = tokenizer.batch_decode(UpperCAmelCase__ )[0] self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) @slow def __UpperCAmelCase ( self : Optional[int] ) -> Dict: # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: lowerCAmelCase = AutoTokenizer.from_pretrained(UpperCAmelCase__ ) lowerCAmelCase = FalconForCausalLM.from_pretrained(UpperCAmelCase__ ) model.eval() model.to(UpperCAmelCase__ ) lowerCAmelCase = tokenizer('My favorite food is' , return_tensors='pt' ).to(UpperCAmelCase__ ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**UpperCAmelCase__ , do_sample=UpperCAmelCase__ , max_new_tokens=4 ) model.generate(**UpperCAmelCase__ , do_sample=UpperCAmelCase__ , max_new_tokens=4 ) model.generate(**UpperCAmelCase__ , num_beams=2 , max_new_tokens=4 ) @slow def __UpperCAmelCase ( self : Optional[int] ) -> Dict: # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: lowerCAmelCase = AutoTokenizer.from_pretrained(UpperCAmelCase__ ) lowerCAmelCase = FalconForCausalLM.from_pretrained(UpperCAmelCase__ ) model.eval() model.to(device=UpperCAmelCase__ ) lowerCAmelCase = tokenizer('My favorite food is' , return_tensors='pt' ).to(UpperCAmelCase__ ) # Test results are the same with and without cache lowerCAmelCase = model.generate(**UpperCAmelCase__ , do_sample=UpperCAmelCase__ , max_new_tokens=2_0 , use_cache=UpperCAmelCase__ ) lowerCAmelCase = model.generate(**UpperCAmelCase__ , do_sample=UpperCAmelCase__ , max_new_tokens=2_0 , use_cache=UpperCAmelCase__ ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
55
1
'''simple docstring''' def A__ ( UpperCAmelCase_ = 1_0_0_0_0_0_0 ): _UpperCamelCase : List[Any] = set(range(3 , UpperCAmelCase_ , 2 ) ) primes.add(2 ) for p in range(3 , UpperCAmelCase_ , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , UpperCAmelCase_ , UpperCAmelCase_ ) ) ) _UpperCamelCase : Dict = [float(UpperCAmelCase_ ) for n in range(limit + 1 )] for p in primes: for n in range(UpperCAmelCase_ , limit + 1 , UpperCAmelCase_ ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(F"""{solution() = }""")
83
"""simple docstring""" import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def _A ( ): """simple docstring""" a =ArgumentParser( description=( '''PyTorch TPU distributed training launch ''' '''helper utility that will spawn up ''' '''multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''' , type=lowercase , default=1 , help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''' , type=lowercase , help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ) , ) # rest from the training program parser.add_argument('''training_script_args''' , nargs=lowercase ) return parser.parse_args() def _A ( ): """simple docstring""" a =parse_args() # Import training_script as a module. a =Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) a =script_fpath.stem a =importlib.import_module(lowercase ) # Patch sys.argv a =[args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
81
0
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE :Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :Optional[Any] = { 'nvidia/segformer-b0-finetuned-ade-512-512': ( 'https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json' ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = "segformer" def __init__( self : int ,A : Dict=3 ,A : Optional[Any]=4 ,A : Dict=[2, 2, 2, 2] ,A : Optional[Any]=[8, 4, 2, 1] ,A : List[str]=[32, 64, 1_60, 2_56] ,A : Any=[7, 3, 3, 3] ,A : int=[4, 2, 2, 2] ,A : Tuple=[1, 2, 5, 8] ,A : Optional[Any]=[4, 4, 4, 4] ,A : List[str]="gelu" ,A : int=0.0 ,A : Any=0.0 ,A : int=0.1 ,A : Tuple=0.02 ,A : int=0.1 ,A : Dict=1E-6 ,A : Any=2_56 ,A : Dict=2_55 ,**A : Union[str, Any] ,): super().__init__(**A ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( "Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be" " removed, as the behaviour will default to that of reshape_last_stage = True." ,A ,) __A = num_channels __A = num_encoder_blocks __A = depths __A = sr_ratios __A = hidden_sizes __A = patch_sizes __A = strides __A = mlp_ratios __A = num_attention_heads __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = classifier_dropout_prob __A = initializer_range __A = drop_path_rate __A = layer_norm_eps __A = decoder_hidden_size __A = kwargs.get("reshape_last_stage" ,A ) __A = semantic_loss_ignore_index class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = version.parse("1.11" ) @property def UpperCamelCase_ ( self : Optional[Any] ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def UpperCamelCase_ ( self : List[str] ): return 1E-4 @property def UpperCamelCase_ ( self : List[Any] ): return 12
124
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging SCREAMING_SNAKE_CASE :Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :Union[str, Any] = { 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/resolve/main/config.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/config.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/config.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json', } class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = "bloom" snake_case_ = ["past_key_values"] snake_case_ = { "num_hidden_layers": "n_layer", "num_attention_heads": "n_head", } def __init__( self : Optional[Any] ,A : List[Any]=25_08_80 ,A : Optional[int]=64 ,A : List[Any]=2 ,A : Optional[int]=8 ,A : str=1E-5 ,A : str=0.02 ,A : int=True ,A : Optional[Any]=1 ,A : int=2 ,A : str=False ,A : Dict=0.0 ,A : List[Any]=0.0 ,A : str=1 ,A : List[Any]=False ,**A : List[Any] ,): __A = vocab_size # Backward compatibility with n_embed kwarg __A = kwargs.pop("n_embed" ,A ) __A = hidden_size if n_embed is None else n_embed __A = n_layer __A = n_head __A = layer_norm_epsilon __A = initializer_range __A = use_cache __A = pretraining_tp __A = apply_residual_connection_post_layernorm __A = hidden_dropout __A = attention_dropout __A = bos_token_id __A = eos_token_id __A = slow_but_exact super().__init__(bos_token_id=A ,eos_token_id=A ,**A ) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = version.parse("1.12" ) def __init__( self : str ,A : PretrainedConfig ,A : str = "default" ,A : List[PatchingSpec] = None ,A : bool = False ,): super().__init__(A ,task=A ,patching_specs=A ,use_past=A ) if not getattr(self._config ,"pad_token_id" ,A ): # TODO: how to do that better? __A = 0 @property def UpperCamelCase_ ( self : Union[str, Any] ): __A = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(A ,direction="inputs" ,inverted_values_shape=A ) __A = {0: "batch", 1: "past_sequence + sequence"} else: __A = {0: "batch", 1: "sequence"} return common_inputs @property def UpperCamelCase_ ( self : Optional[Any] ): return self._config.n_layer @property def UpperCamelCase_ ( self : List[Any] ): return self._config.n_head @property def UpperCamelCase_ ( self : Optional[int] ): return 1E-3 def UpperCamelCase_ ( self : Any ,A : "PreTrainedTokenizer" ,A : int = -1 ,A : int = -1 ,A : bool = False ,A : Optional["TensorType"] = None ,): __A = super(A ,self ).generate_dummy_inputs( A ,batch_size=A ,seq_length=A ,is_pair=A ,framework=A ) # We need to order the input in the way they appears in the forward() __A = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch __A , __A = common_inputs["input_ids"].shape # Not using the same length for past_key_values __A = seqlen + 2 __A = self._config.hidden_size // self.num_attention_heads __A = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) __A = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) __A = [ (torch.zeros(A ), torch.zeros(A )) for _ in range(self.num_layers ) ] __A = common_inputs["attention_mask"] if self.use_past: __A = ordered_inputs["attention_mask"].dtype __A = torch.cat( [ordered_inputs["attention_mask"], torch.ones(A ,A ,dtype=A )] ,dim=1 ) return ordered_inputs @property def UpperCamelCase_ ( self : int ): return 13
124
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE ={ "weiweishi/roc-bert-base-zh": "https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json", } class UpperCamelCase ( _a ): lowercase = '''roc_bert''' def __init__( self ,__UpperCamelCase=3_0522 ,__UpperCamelCase=768 ,__UpperCamelCase=12 ,__UpperCamelCase=12 ,__UpperCamelCase=3072 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=512 ,__UpperCamelCase=2 ,__UpperCamelCase=0.02 ,__UpperCamelCase=1e-12 ,__UpperCamelCase=True ,__UpperCamelCase=0 ,__UpperCamelCase="absolute" ,__UpperCamelCase=None ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=768 ,__UpperCamelCase=910 ,__UpperCamelCase=512 ,__UpperCamelCase=2_4858 ,__UpperCamelCase=True ,**__UpperCamelCase ,) -> List[str]: '''simple docstring''' lowercase_ : int = vocab_size lowercase_ : List[Any] = max_position_embeddings lowercase_ : Dict = hidden_size lowercase_ : str = num_hidden_layers lowercase_ : Optional[int] = num_attention_heads lowercase_ : Union[str, Any] = intermediate_size lowercase_ : Tuple = hidden_act lowercase_ : Tuple = hidden_dropout_prob lowercase_ : Tuple = attention_probs_dropout_prob lowercase_ : Optional[int] = initializer_range lowercase_ : int = type_vocab_size lowercase_ : Dict = layer_norm_eps lowercase_ : Union[str, Any] = use_cache lowercase_ : Optional[int] = enable_pronunciation lowercase_ : Union[str, Any] = enable_shape lowercase_ : int = pronunciation_embed_dim lowercase_ : Optional[Any] = pronunciation_vocab_size lowercase_ : Dict = shape_embed_dim lowercase_ : List[Any] = shape_vocab_size lowercase_ : Optional[int] = concat_input lowercase_ : Tuple = position_embedding_type lowercase_ : Any = classifier_dropout super().__init__(pad_token_id=__UpperCamelCase ,**__UpperCamelCase )
213
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class __lowerCAmelCase ( _a ): lowerCamelCase_ : int = '''''' lowerCamelCase_ : str = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) lowerCamelCase_ : str = None # compression type in fsspec. ex: "gzip" lowerCamelCase_ : str = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__(self , __magic_name__ = "" , __magic_name__ = None , __magic_name__ = None , **__magic_name__ ) -> Any: '''simple docstring''' super().__init__(self , **__magic_name__ ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode snake_case_ : Union[str, Any] = fsspec.open( __magic_name__ , mode='''rb''' , protocol=__magic_name__ , compression=self.compression , client_kwargs={ '''requote_redirect_url''': False, # see https://github.com/huggingface/datasets/pull/5459 '''trust_env''': True, # Enable reading proxy env variables. **(target_options or {}).pop('''client_kwargs''' , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) snake_case_ : Tuple = os.path.basename(self.file.path.split('''::''' )[0] ) snake_case_ : Optional[Any] = ( self.compressed_name[: self.compressed_name.rindex('''.''' )] if '''.''' in self.compressed_name else self.compressed_name ) snake_case_ : Dict = None @classmethod def lowerCamelCase (cls , __magic_name__ ) -> Optional[int]: '''simple docstring''' return super()._strip_protocol(__magic_name__ ).lstrip('''/''' ) def lowerCamelCase (self ) -> Union[str, Any]: '''simple docstring''' if self.dir_cache is None: snake_case_ : Optional[int] = {**self.file.fs.info(self.file.path ), '''name''': self.uncompressed_name} snake_case_ : List[str] = {f['''name''']: f} def lowerCamelCase (self , __magic_name__ ) -> Optional[Any]: '''simple docstring''' return self.file.open().read() def lowerCamelCase (self , __magic_name__ , __magic_name__ = "rb" , __magic_name__=None , __magic_name__=True , __magic_name__=None , **__magic_name__ , ) -> int: '''simple docstring''' snake_case_ : Union[str, Any] = self._strip_protocol(__magic_name__ ) if mode != "rb": raise ValueError(F'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''' ) return self.file.open() class __lowerCAmelCase ( _a ): lowerCamelCase_ : Union[str, Any] = '''bz2''' lowerCamelCase_ : Any = '''bz2''' lowerCamelCase_ : int = '''.bz2''' class __lowerCAmelCase ( _a ): lowerCamelCase_ : Union[str, Any] = '''gzip''' lowerCamelCase_ : Dict = '''gzip''' lowerCamelCase_ : int = '''.gz''' class __lowerCAmelCase ( _a ): lowerCamelCase_ : Any = '''lz4''' lowerCamelCase_ : Any = '''lz4''' lowerCamelCase_ : Optional[Any] = '''.lz4''' class __lowerCAmelCase ( _a ): lowerCamelCase_ : Tuple = '''xz''' lowerCamelCase_ : Any = '''xz''' lowerCamelCase_ : int = '''.xz''' class __lowerCAmelCase ( _a ): lowerCamelCase_ : Union[str, Any] = '''zstd''' lowerCamelCase_ : Tuple = '''zstd''' lowerCamelCase_ : Any = '''.zst''' def __init__(self , __magic_name__ , __magic_name__ = "rb" , __magic_name__ = None , __magic_name__ = None , __magic_name__ = DEFAULT_BLOCK_SIZE , **__magic_name__ , ) -> Tuple: '''simple docstring''' super().__init__( fo=__magic_name__ , mode=__magic_name__ , target_protocol=__magic_name__ , target_options=__magic_name__ , block_size=__magic_name__ , **__magic_name__ , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 snake_case_ : Dict = self.file.__enter__ class __lowerCAmelCase : def __init__(self , __magic_name__ ) -> List[Any]: '''simple docstring''' snake_case_ : str = file_ def __enter__(self ) -> List[Any]: '''simple docstring''' self._file.__enter__() return self def __exit__(self , *__magic_name__ , **__magic_name__ ) -> int: '''simple docstring''' self._file.__exit__(*__magic_name__ , **__magic_name__ ) def __iter__(self ) -> Optional[int]: '''simple docstring''' return iter(self._file ) def lowerCamelCase (self ) -> Union[str, Any]: '''simple docstring''' return next(self._file ) def __getattr__(self , __magic_name__ ) -> str: '''simple docstring''' return getattr(self._file , __magic_name__ ) def fixed_enter(*__magic_name__ , **__magic_name__ ): return WrappedFile(_enter(*__magic_name__ , **__magic_name__ ) ) snake_case_ : Tuple = fixed_enter
279
0
"""simple docstring""" def lowerCamelCase_ (UpperCamelCase__ : str ): _UpperCAmelCase : Union[str, Any] = [0] * len(UpperCamelCase__ ) for i in range(1 , len(UpperCamelCase__ ) ): # use last results for better performance - dynamic programming _UpperCAmelCase : List[str] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: _UpperCAmelCase : Optional[int] = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 _UpperCAmelCase : Tuple = j return prefix_result def lowerCamelCase_ (UpperCamelCase__ : str ): return max(prefix_function(UpperCamelCase__ ) ) if __name__ == "__main__": import doctest doctest.testmod()
68
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self ) -> Dict: # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. _UpperCAmelCase : List[str] = [[1, 2, 4], [1, 2, 3, 4]] _UpperCAmelCase : List[str] = DisjunctiveConstraint(A ) self.assertTrue(isinstance(dc.token_ids , A ) ) with self.assertRaises(A ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(A ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def __lowerCAmelCase ( self ) -> List[Any]: # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). _UpperCAmelCase : Optional[int] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(A ): DisjunctiveConstraint(A ) # fails here def __lowerCAmelCase ( self ) -> Tuple: _UpperCAmelCase : Optional[Any] = [[1, 2, 3], [1, 2, 4]] _UpperCAmelCase : Optional[int] = DisjunctiveConstraint(A ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Tuple = dc.update(1 ) _UpperCAmelCase : Dict = stepped is True and completed is False and reset is False self.assertTrue(A ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[int] = dc.update(2 ) _UpperCAmelCase : Any = stepped is True and completed is False and reset is False self.assertTrue(A ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Any = dc.update(3 ) _UpperCAmelCase : Optional[int] = stepped is True and completed is True and reset is False self.assertTrue(A ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def __lowerCAmelCase ( self ) -> Optional[int]: _UpperCAmelCase : Tuple = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] _UpperCAmelCase : Any = DisjunctiveConstraint(A ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[int] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[int] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Any = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[int] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[Any] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[int] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
68
1
from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand __lowerCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name def UpperCamelCase ( __lowerCamelCase : str ): if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(__lowerCamelCase ): return ext raise Exception( f"""Unable to determine file format from file extension {path}. """ f"""Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}""" ) def UpperCamelCase ( __lowerCamelCase : Tuple ): snake_case : Any = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) snake_case : int = try_infer_format_from_ext(args.input ) if args.format == "infer" else args.format snake_case : Optional[int] = PipelineDataFormat.from_str( format=__lowerCamelCase , output_path=args.output , input_path=args.input , column=args.column if args.column else nlp.default_input_names , overwrite=args.overwrite , ) return RunCommand(__lowerCamelCase , __lowerCamelCase ) class UpperCAmelCase ( A_ ): def __init__(self : str , snake_case__ : Pipeline , snake_case__ : PipelineDataFormat ) -> Dict: '''simple docstring''' snake_case : int = nlp snake_case : Union[str, Any] = reader @staticmethod def _SCREAMING_SNAKE_CASE (snake_case__ : ArgumentParser ) -> Optional[Any]: '''simple docstring''' snake_case : Dict = parser.add_parser("run" , help="Run a pipeline through the CLI" ) run_parser.add_argument("--task" , choices=get_supported_tasks() , help="Task to run" ) run_parser.add_argument("--input" , type=snake_case__ , help="Path to the file to use for inference" ) run_parser.add_argument("--output" , type=snake_case__ , help="Path to the file that will be used post to write results." ) run_parser.add_argument("--model" , type=snake_case__ , help="Name or path to the model to instantiate." ) run_parser.add_argument("--config" , type=snake_case__ , help="Name or path to the model's config to instantiate." ) run_parser.add_argument( "--tokenizer" , type=snake_case__ , help="Name of the tokenizer to use. (default: same as the model name)" ) run_parser.add_argument( "--column" , type=snake_case__ , help="Name of the column to use as input. (For multi columns input as QA use column1,columns2)" , ) run_parser.add_argument( "--format" , type=snake_case__ , default="infer" , choices=PipelineDataFormat.SUPPORTED_FORMATS , help="Input format to read from" , ) run_parser.add_argument( "--device" , type=snake_case__ , default=-1 , help="Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)" , ) run_parser.add_argument("--overwrite" , action="store_true" , help="Allow overwriting the output file." ) run_parser.set_defaults(func=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Any ) -> Optional[Any]: '''simple docstring''' snake_case , snake_case : List[str] = self._nlp, [] for entry in self._reader: snake_case : Optional[Any] = nlp(**snake_case__ ) if self._reader.is_multi_columns else nlp(snake_case__ ) if isinstance(snake_case__ , snake_case__ ): outputs.append(snake_case__ ) else: outputs += output # Saving data if self._nlp.binary_output: snake_case : str = self._reader.save_binary(snake_case__ ) logger.warning(f"""Current pipeline requires output to be in binary format, saving at {binary_path}""" ) else: self._reader.save(snake_case__ )
59
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase__ = { "configuration_groupvit": [ "GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GroupViTConfig", "GroupViTOnnxConfig", "GroupViTTextConfig", "GroupViTVisionConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GroupViTModel", "GroupViTPreTrainedModel", "GroupViTTextModel", "GroupViTVisionModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFGroupViTModel", "TFGroupViTPreTrainedModel", "TFGroupViTTextModel", "TFGroupViTVisionModel", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
0
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCamelCase__ ( __lowercase): '''simple docstring''' snake_case_ =["image_processor", "tokenizer"] snake_case_ ="AutoImageProcessor" snake_case_ ="AutoTokenizer" def __init__(self ,__lowerCamelCase ,__lowerCamelCase ) -> int: """simple docstring""" super().__init__(snake_case_ ,snake_case_ ) lowerCAmelCase__ : Optional[Any] = self.image_processor def __call__(self ,__lowerCamelCase=None ,__lowerCamelCase=None ,__lowerCamelCase=None ,**__lowerCamelCase ) -> int: """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: lowerCAmelCase__ : Dict = self.tokenizer(snake_case_ ,return_tensors=snake_case_ ,**snake_case_ ) if images is not None: lowerCAmelCase__ : Union[str, Any] = self.image_processor(snake_case_ ,return_tensors=snake_case_ ,**snake_case_ ) if text is not None and images is not None: lowerCAmelCase__ : Dict = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**snake_case_ ) ,tensor_type=snake_case_ ) def lowerCAmelCase__ (self ,*__lowerCamelCase ,**__lowerCamelCase ) -> List[str]: """simple docstring""" return self.tokenizer.batch_decode(*snake_case_ ,**snake_case_ ) def lowerCAmelCase__ (self ,*__lowerCamelCase ,**__lowerCamelCase ) -> Dict: """simple docstring""" return self.tokenizer.decode(*snake_case_ ,**snake_case_ ) @property def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" return ["input_ids", "attention_mask", "pixel_values"]
352
from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : Any =logging.get_logger(__name__) __snake_case : Tuple ={ 'sayakpaul/vit-msn-base': 'https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ ="""vit_msn""" def __init__(self ,__lowerCamelCase=7_68 ,__lowerCamelCase=12 ,__lowerCamelCase=12 ,__lowerCamelCase=30_72 ,__lowerCamelCase="gelu" ,__lowerCamelCase=0.0 ,__lowerCamelCase=0.0 ,__lowerCamelCase=0.02 ,__lowerCamelCase=1e-06 ,__lowerCamelCase=2_24 ,__lowerCamelCase=16 ,__lowerCamelCase=3 ,__lowerCamelCase=True ,**__lowerCamelCase ,) -> Any: """simple docstring""" super().__init__(**__lowerCamelCase ) lowerCAmelCase__ : List[Any] = hidden_size lowerCAmelCase__ : str = num_hidden_layers lowerCAmelCase__ : List[str] = num_attention_heads lowerCAmelCase__ : Optional[int] = intermediate_size lowerCAmelCase__ : List[Any] = hidden_act lowerCAmelCase__ : Tuple = hidden_dropout_prob lowerCAmelCase__ : List[Any] = attention_probs_dropout_prob lowerCAmelCase__ : int = initializer_range lowerCAmelCase__ : Union[str, Any] = layer_norm_eps lowerCAmelCase__ : List[str] = image_size lowerCAmelCase__ : str = patch_size lowerCAmelCase__ : Optional[int] = num_channels lowerCAmelCase__ : int = qkv_bias
94
0
import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase_ = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right lowerCAmelCase_ = 5_00_03 lowerCAmelCase_ = 5_00_02 @require_sentencepiece @require_tokenizers class _A ( _lowerCamelCase , unittest.TestCase ): _UpperCamelCase : List[Any] = PLBartTokenizer _UpperCamelCase : Any = None _UpperCamelCase : List[str] = False def __a ( self : Optional[int] ) -> Optional[int]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase : Any = PLBartTokenizer(_A , language_codes='''base''' , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def __a ( self : Optional[Any] ) -> int: """simple docstring""" lowercase : Optional[int] = PLBartTokenizer(_A , language_codes='''base''' , keep_accents=_A ) lowercase : Optional[int] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowercase : Tuple = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) lowercase : int = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowercase : Tuple = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) lowercase : Dict = tokenizer.vocab_size lowercase : str = [tokenizer.convert_ids_to_tokens(_A ) for x in range(end - 4 , _A )] self.assertListEqual(_A , ['''__java__''', '''__python__''', '''__en_XX__''', '''<mask>'''] ) lowercase : Optional[int] = '''java.lang.Exception, python.lang.Exception, javascript, php, ruby, go''' lowercase : Optional[int] = tokenizer(_A ).input_ids self.assertEqual( tokenizer.decode(_A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A ) , _A , ) def __a ( self : List[str] ) -> List[str]: """simple docstring""" lowercase : int = PLBartTokenizer(_A , language_codes='''multi''' , keep_accents=_A ) lowercase : str = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowercase : Any = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) lowercase : List[str] = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowercase : str = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) lowercase : Optional[Any] = tokenizer.vocab_size lowercase : List[Any] = [tokenizer.convert_ids_to_tokens(_A ) for x in range(end - 7 , _A )] self.assertListEqual( _A , ['''__java__''', '''__python__''', '''__en_XX__''', '''__javascript__''', '''__php__''', '''__ruby__''', '''__go__'''] ) lowercase : Union[str, Any] = '''java.lang.Exception, python.lang.Exception, javascript, php, ruby, go''' lowercase : Any = tokenizer(_A ).input_ids self.assertEqual( tokenizer.decode(_A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A ) , _A , ) @require_torch @require_sentencepiece @require_tokenizers class _A ( unittest.TestCase ): _UpperCamelCase : Optional[Any] = '''uclanlp/plbart-python-en_XX''' _UpperCamelCase : Union[str, Any] = [ '''def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])''', '''def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])''', ] _UpperCamelCase : Dict = [ '''Returns the maximum value of a b c.''', '''Sums the values of a b c.''', ] _UpperCamelCase : Optional[int] = [ 1_3_4, 5_4_5_2, 3_3_4_6_0, 3_3_4_4_1, 3_3_4_6_3, 3_3_4_6_5, 3_3_4_6_3, 3_3_4_4_9, 9_8_8, 2_0, 3_3_4_5_6, 1_9, 3_3_4_5_6, 7_7_1, 3_9, 4_2_5_8, 8_8_9, 3_3_1_8, 3_3_4_4_1, 3_3_4_6_3, 3_3_4_6_5, 3_3_4_6_3, 3_3_4_4_9, 2_4_7_1, 2, PYTHON_CODE, ] @classmethod def __a ( cls : List[str] ) -> Optional[Any]: """simple docstring""" lowercase : PLBartTokenizer = PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes='''base''' , src_lang='''python''' , tgt_lang='''en_XX''' ) lowercase : int = 1 return cls def __a ( self : int ) -> str: """simple docstring""" self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''__java__'''] , 50_001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''__python__'''] , 50_002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''__en_XX__'''] , 50_003 ) def __a ( self : Any ) -> List[str]: """simple docstring""" lowercase : List[str] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _A ) def __a ( self : Any ) -> List[Any]: """simple docstring""" self.assertIn(_A , self.tokenizer.all_special_ids ) lowercase : Any = [EN_CODE, 9_037, 33_442, 57, 752, 153, 14, 56, 18, 9, 2] lowercase : int = self.tokenizer.decode(_A , skip_special_tokens=_A ) lowercase : Any = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_A ) self.assertEqual(_A , _A ) self.assertNotIn(self.tokenizer.eos_token , _A ) def __a ( self : int ) -> Dict: """simple docstring""" lowercase : Any = ['''def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])''' * 20] self.assertIsInstance(src_text[0] , _A ) lowercase : Optional[Any] = 10 lowercase : str = self.tokenizer(_A , max_length=_A , truncation=_A ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , _A ) self.assertEqual(len(_A ) , _A ) def __a ( self : str ) -> Tuple: """simple docstring""" self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''__java__'''] ) , [50_004, 50_001] ) def __a ( self : List[Any] ) -> str: """simple docstring""" lowercase : Union[str, Any] = tempfile.mkdtemp() lowercase : List[Any] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_A ) lowercase : int = PLBartTokenizer.from_pretrained(_A ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _A ) @require_torch def __a ( self : int ) -> Any: """simple docstring""" lowercase : Tuple = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_A , return_tensors='''pt''' ) lowercase : List[str] = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , _A ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def __a ( self : Optional[int] ) -> str: """simple docstring""" lowercase : List[Any] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=_A , truncation=_A , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) lowercase : Optional[Any] = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(_A , _A ) self.assertEqual((2, 26) , batch.input_ids.shape ) self.assertEqual((2, 26) , batch.attention_mask.shape ) lowercase : str = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , _A ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def __a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowercase : List[str] = self.tokenizer(self.src_text , padding=_A , truncation=_A , max_length=3 , return_tensors='''pt''' ) lowercase : Dict = self.tokenizer( text_target=self.tgt_text , padding=_A , truncation=_A , max_length=10 , return_tensors='''pt''' ) lowercase : int = targets['''input_ids'''] lowercase : Optional[Any] = shift_tokens_right(_A , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" lowercase : Dict = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''java''' ) self.assertEqual( nested_simplify(_A ) , { # A, test, EOS, en_XX '''input_ids''': [[150, 242, 2, 50_003]], '''attention_mask''': [[1, 1, 1, 1]], # java '''forced_bos_token_id''': 50_001, } , )
308
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class _A ( unittest.TestCase ): @slow def __a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''' ) lowercase : int = AutoTokenizer.from_pretrained('''google/mt5-small''' ) lowercase : Optional[Any] = tokenizer('''Hello there''' , return_tensors='''tf''' ).input_ids lowercase : Dict = tokenizer('''Hi I am''' , return_tensors='''tf''' ).input_ids lowercase : List[Any] = model(_A , labels=_A ).loss lowercase : Dict = -tf.math.reduce_mean(_A ).numpy() lowercase : Union[str, Any] = -21.228_168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2E-4 )
308
1
def UpperCAmelCase_ ( __UpperCAmelCase : Optional[int] ) -> str: if number > 0: raise ValueError('input must be a negative integer' ) SCREAMING_SNAKE_CASE_ = len(bin(__snake_case )[3:] ) SCREAMING_SNAKE_CASE_ = bin(abs(__snake_case ) - (1 << binary_number_length) )[3:] SCREAMING_SNAKE_CASE_ = ( ( "1" + "0" * (binary_number_length - len(__snake_case )) + twos_complement_number ) if number < 0 else "0" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
364
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar lowerCamelCase__ : Dict = TypeVar('T') def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> int: return (position - 1) // 2 def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> int: return (2 * position) + 1 def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> int: return (2 * position) + 2 class lowerCamelCase_ ( Generic[T] ): '''simple docstring''' def __init__( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = 0 def __len__( self : Optional[Any] ): return self.elements def __repr__( self : Optional[int] ): return str(self.heap ) def lowerCAmelCase_ ( self : Union[str, Any] ): # Check if the priority queue is empty return self.elements == 0 def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : T , _lowerCAmelCase : int ): # Add an element with given priority to the queue self.heap.append((elem, weight) ) SCREAMING_SNAKE_CASE_ = self.elements self.elements += 1 self._bubble_up(_lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] ): # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.heap[0] self._bubble_down(_lowerCAmelCase ) return elem def lowerCAmelCase_ ( self : Optional[int] , _lowerCAmelCase : T , _lowerCAmelCase : int ): # Update the weight of the given key SCREAMING_SNAKE_CASE_ = self.position_map[elem] SCREAMING_SNAKE_CASE_ = (elem, weight) if position > 0: SCREAMING_SNAKE_CASE_ = get_parent_position(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.heap[parent_position] if parent_weight > weight: self._bubble_up(_lowerCAmelCase ) else: self._bubble_down(_lowerCAmelCase ) else: self._bubble_down(_lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : T ): # Place a node at the proper position (upward movement) [to be used internally # only] SCREAMING_SNAKE_CASE_ = self.position_map[elem] if curr_pos == 0: return None SCREAMING_SNAKE_CASE_ = get_parent_position(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.heap[curr_pos] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(_lowerCAmelCase , _lowerCAmelCase ) return self._bubble_up(_lowerCAmelCase ) return None def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : T ): # Place a node at the proper position (downward movement) [to be used # internally only] SCREAMING_SNAKE_CASE_ = self.position_map[elem] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.heap[curr_pos] SCREAMING_SNAKE_CASE_ = get_child_left_position(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = get_child_right_position(_lowerCAmelCase ) if child_left_position < self.elements and child_right_position < self.elements: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.heap[child_left_position] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(_lowerCAmelCase , _lowerCAmelCase ) return self._bubble_down(_lowerCAmelCase ) if child_left_position < self.elements: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(_lowerCAmelCase , _lowerCAmelCase ) return self._bubble_down(_lowerCAmelCase ) else: return None if child_right_position < self.elements: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(_lowerCAmelCase , _lowerCAmelCase ) return self._bubble_down(_lowerCAmelCase ) return None def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : int , _lowerCAmelCase : int ): # Swap the nodes at the given positions SCREAMING_SNAKE_CASE_ = self.heap[nodea_pos][0] SCREAMING_SNAKE_CASE_ = self.heap[nodea_pos][0] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = ( self.heap[nodea_pos], self.heap[nodea_pos], ) SCREAMING_SNAKE_CASE_ = nodea_pos SCREAMING_SNAKE_CASE_ = nodea_pos class lowerCamelCase_ ( Generic[T] ): '''simple docstring''' def __init__( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = 0 def __repr__( self : Optional[int] ): return str(self.connections ) def __len__( self : Tuple ): return self.nodes def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : T ): # Add a node in the graph if it is not in the graph if node not in self.connections: SCREAMING_SNAKE_CASE_ = {} self.nodes += 1 def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : T , _lowerCAmelCase : T , _lowerCAmelCase : int ): # Add an edge between 2 nodes in the graph self.add_node(_lowerCAmelCase ) self.add_node(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = weight SCREAMING_SNAKE_CASE_ = weight def UpperCAmelCase_ ( __UpperCAmelCase : GraphUndirectedWeighted[T] , ) -> tuple[dict[T, int], dict[T, T | None]]: SCREAMING_SNAKE_CASE_ = {node: maxsize for node in graph.connections} SCREAMING_SNAKE_CASE_ = {node: None for node in graph.connections} SCREAMING_SNAKE_CASE_ = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(__UpperCAmelCase , __UpperCAmelCase ) if priority_queue.is_empty(): return dist, parent # initialization SCREAMING_SNAKE_CASE_ = priority_queue.extract_min() SCREAMING_SNAKE_CASE_ = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: SCREAMING_SNAKE_CASE_ = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__UpperCAmelCase , dist[neighbour] ) SCREAMING_SNAKE_CASE_ = node # running prim's algorithm while not priority_queue.is_empty(): SCREAMING_SNAKE_CASE_ = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: SCREAMING_SNAKE_CASE_ = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__UpperCAmelCase , dist[neighbour] ) SCREAMING_SNAKE_CASE_ = node return dist, parent
210
0
import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef UpperCAmelCase = ( '''This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate ''' '''library. You can have a look at this example script for pointers: ''' '''https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py''' ) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): warnings.warn(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) requires_backends(__SCREAMING_SNAKE_CASE , 'sklearn' ) return (preds == labels).mean() def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): warnings.warn(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) requires_backends(__SCREAMING_SNAKE_CASE , 'sklearn' ) lowercase = simple_accuracy(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase = fa_score(y_true=__SCREAMING_SNAKE_CASE , y_pred=__SCREAMING_SNAKE_CASE ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): warnings.warn(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) requires_backends(__SCREAMING_SNAKE_CASE , 'sklearn' ) lowercase = pearsonr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )[0] lowercase = spearmanr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): warnings.warn(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) requires_backends(__SCREAMING_SNAKE_CASE , 'sklearn' ) assert len(__SCREAMING_SNAKE_CASE ) == len(__SCREAMING_SNAKE_CASE ), F'''Predictions and labels have mismatched lengths {len(__SCREAMING_SNAKE_CASE )} and {len(__SCREAMING_SNAKE_CASE )}''' if task_name == "cola": return {"mcc": matthews_corrcoef(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )} elif task_name == "sst-2": return {"acc": simple_accuracy(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )} elif task_name == "mrpc": return acc_and_fa(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif task_name == "sts-b": return pearson_and_spearman(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif task_name == "qqp": return acc_and_fa(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )} elif task_name == "qnli": return {"acc": simple_accuracy(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )} elif task_name == "rte": return {"acc": simple_accuracy(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )} elif task_name == "wnli": return {"acc": simple_accuracy(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )} elif task_name == "hans": return {"acc": simple_accuracy(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )} else: raise KeyError(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): warnings.warn(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) requires_backends(__SCREAMING_SNAKE_CASE , 'sklearn' ) if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ): raise ValueError(F'''Predictions and labels have mismatched lengths {len(__SCREAMING_SNAKE_CASE )} and {len(__SCREAMING_SNAKE_CASE )}''' ) if task_name == "xnli": return {"acc": simple_accuracy(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )} else: raise KeyError(__SCREAMING_SNAKE_CASE )
195
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class A_ ( __lowerCamelCase ): '''simple docstring''' def __init__( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ): super().__init__() if safety_checker is None: logger.warning( F'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .' ) self.register_modules( speech_model=snake_case , speech_processor=snake_case , vae=snake_case , text_encoder=snake_case , tokenizer=snake_case , unet=snake_case , scheduler=snake_case , feature_extractor=snake_case , ) def SCREAMING_SNAKE_CASE__ ( self , snake_case = "auto" ): if slice_size == "auto": lowercase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): self.enable_attention_slicing(snake_case ) @torch.no_grad() def __call__( self , snake_case , snake_case=1_6000 , snake_case = 512 , snake_case = 512 , snake_case = 50 , snake_case = 7.5 , snake_case = None , snake_case = 1 , snake_case = 0.0 , snake_case = None , snake_case = None , snake_case = "pil" , snake_case = True , snake_case = None , snake_case = 1 , **snake_case , ): lowercase = self.speech_processor.feature_extractor( snake_case , return_tensors='pt' , sampling_rate=snake_case ).input_features.to(self.device ) lowercase = self.speech_model.generate(snake_case , max_length=48_0000 ) lowercase = self.speech_processor.tokenizer.batch_decode(snake_case , skip_special_tokens=snake_case , normalize=snake_case )[ 0 ] if isinstance(snake_case , snake_case ): lowercase = 1 elif isinstance(snake_case , snake_case ): lowercase = len(snake_case ) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(snake_case )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(snake_case , snake_case ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(snake_case )}.''' ) # get prompt text embeddings lowercase = self.tokenizer( snake_case , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) lowercase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowercase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) lowercase = text_input_ids[:, : self.tokenizer.model_max_length] lowercase = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowercase , lowercase , lowercase = text_embeddings.shape lowercase = text_embeddings.repeat(1 , snake_case , 1 ) lowercase = text_embeddings.view(bs_embed * num_images_per_prompt , snake_case , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowercase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowercase = 42 if negative_prompt is None: lowercase = [''] * batch_size elif type(snake_case ) is not type(snake_case ): raise TypeError( F'''`negative_prompt` should be the same type to `prompt`, but got {type(snake_case )} !=''' F''' {type(snake_case )}.''' ) elif isinstance(snake_case , snake_case ): lowercase = [negative_prompt] elif batch_size != len(snake_case ): raise ValueError( F'''`negative_prompt`: {negative_prompt} has batch size {len(snake_case )}, but `prompt`:''' F''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' ' the batch size of `prompt`.' ) else: lowercase = negative_prompt lowercase = text_input_ids.shape[-1] lowercase = self.tokenizer( snake_case , padding='max_length' , max_length=snake_case , truncation=snake_case , return_tensors='pt' , ) lowercase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowercase = uncond_embeddings.shape[1] lowercase = uncond_embeddings.repeat(1 , snake_case , 1 ) lowercase = uncond_embeddings.view(batch_size * num_images_per_prompt , snake_case , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowercase = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowercase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowercase = torch.randn(snake_case , generator=snake_case , device='cpu' , dtype=snake_case ).to( self.device ) else: lowercase = torch.randn(snake_case , generator=snake_case , device=self.device , dtype=snake_case ) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) lowercase = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(snake_case ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowercase = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowercase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowercase = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowercase = {} if accepts_eta: lowercase = eta for i, t in enumerate(self.progress_bar(snake_case ) ): # expand the latents if we are doing classifier free guidance lowercase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase = self.scheduler.scale_model_input(snake_case , snake_case ) # predict the noise residual lowercase = self.unet(snake_case , snake_case , encoder_hidden_states=snake_case ).sample # perform guidance if do_classifier_free_guidance: lowercase , lowercase = noise_pred.chunk(2 ) lowercase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowercase = self.scheduler.step(snake_case , snake_case , snake_case , **snake_case ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(snake_case , snake_case , snake_case ) lowercase = 1 / 0.18_215 * latents lowercase = self.vae.decode(snake_case ).sample lowercase = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowercase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowercase = self.numpy_to_pil(snake_case ) if not return_dict: return image return StableDiffusionPipelineOutput(images=snake_case , nsfw_content_detected=snake_case )
195
1
from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class __lowerCamelCase ( __snake_case ): lowerCamelCase_ : Union[str, Any] = CustomTokenizer pass
34
from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def UpperCamelCase( lowercase_ ) -> Any: '''simple docstring''' return {key.lstrip("""-""" ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def UpperCamelCase( ) -> str: '''simple docstring''' snake_case_ = ArgumentParser( """HuggingFace Datasets CLI tool""" , usage="""datasets-cli <command> [<args>]""" , allow_abbrev=lowercase_ ) snake_case_ = parser.add_subparsers(help="""datasets-cli command helpers""" ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(lowercase_ ) EnvironmentCommand.register_subcommand(lowercase_ ) TestCommand.register_subcommand(lowercase_ ) RunBeamCommand.register_subcommand(lowercase_ ) DummyDataCommand.register_subcommand(lowercase_ ) # Parse args snake_case_ , snake_case_ = parser.parse_known_args() if not hasattr(lowercase_ , """func""" ): parser.print_help() exit(1 ) snake_case_ = parse_unknown_args(lowercase_ ) # Run snake_case_ = args.func(lowercase_ , **lowercase_ ) service.run() if __name__ == "__main__": main()
34
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCamelCase_ : List[str] = { """configuration_gpt_bigcode""": ["""GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTBigCodeConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : int = [ """GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTBigCodeForSequenceClassification""", """GPTBigCodeForTokenClassification""", """GPTBigCodeForCausalLM""", """GPTBigCodeModel""", """GPTBigCodePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys lowerCamelCase_ : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
81
"""simple docstring""" def _A ( ): """simple docstring""" for n in range(1 , 1_00_00_00 ): yield n * (n + 1) // 2 def _A ( lowercase ): """simple docstring""" a =1 a =2 while i * i <= n: a =0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def _A ( ): """simple docstring""" return next(i for i in triangle_number_generator() if count_divisors(lowercase ) > 5_00 ) if __name__ == "__main__": print(solution())
81
1
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase=(), _UpperCAmelCase=None, _UpperCAmelCase="no", _UpperCAmelCase="29500" ) -> int: '''simple docstring''' lowerCAmelCase : Union[str, Any] = False lowerCAmelCase : Tuple = False if any(key.startswith('KAGGLE' ) for key in os.environ.keys() ): lowerCAmelCase : List[str] = True elif "IPython" in sys.modules: lowerCAmelCase : Tuple = 'google.colab' in str(sys.modules['IPython'].get_ipython() ) try: lowerCAmelCase : Tuple = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( f"Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}." ) if (in_colab or in_kaggle) and (os.environ.get('TPU_NAME', _UpperCAmelCase ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ' 'your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if num_processes is None: lowerCAmelCase : int = 8 lowerCAmelCase : Optional[Any] = PrepareForLaunch(_UpperCAmelCase, distributed_type='TPU' ) print(f"Launching a training on {num_processes} TPU cores." ) xmp.spawn(_UpperCAmelCase, args=_UpperCAmelCase, nprocs=_UpperCAmelCase, start_method='fork' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on one CPU.' ) function(*_UpperCAmelCase ) else: if num_processes is None: raise ValueError( 'You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ' 'inside your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if torch.cuda.is_initialized(): raise ValueError( 'To launch a multi-GPU training from your notebook, you need to avoid running any instruction ' 'using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ' 'function.' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=_UpperCAmelCase, master_addr='127.0.01', master_port=_UpperCAmelCase, mixed_precision=_UpperCAmelCase ): lowerCAmelCase : Dict = PrepareForLaunch(_UpperCAmelCase, distributed_type='MULTI_GPU' ) print(f"Launching training on {num_processes} GPUs." ) try: start_processes(_UpperCAmelCase, args=_UpperCAmelCase, nprocs=_UpperCAmelCase, start_method='fork' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( 'CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ' 'This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ' 'Please review your imports and test them when running the `notebook_launcher()` to identify ' 'which one is problematic.' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): lowerCAmelCase : str = '1' print('Launching training on MPS.' ) elif torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on CPU.' ) function(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase=(), _UpperCAmelCase=2 ) -> List[Any]: '''simple docstring''' from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=_UpperCAmelCase, master_addr='127.0.01', master_port='29500', accelerate_mixed_precision='no', accelerate_debug_rdv_file=tmp_file.name, accelerate_use_cpu='yes', ): lowerCAmelCase : Union[str, Any] = PrepareForLaunch(_UpperCAmelCase, debug=_UpperCAmelCase ) start_processes(_UpperCAmelCase, args=_UpperCAmelCase, nprocs=_UpperCAmelCase, start_method='fork' )
323
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class __A ( lowerCAmelCase ): lowerCAmelCase_ : Union[List[PIL.Image.Image], np.ndarray] lowerCAmelCase_ : Optional[List[bool]] lowerCAmelCase_ : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
323
1
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : float ): '''simple docstring''' return 10 - x * x def lowercase ( _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float ): '''simple docstring''' if equation(_SCREAMING_SNAKE_CASE ) * equation(_SCREAMING_SNAKE_CASE ) >= 0: raise ValueError('''Wrong space!''' ) _UpperCAmelCase = a while (b - a) >= 0.01: # Find middle point _UpperCAmelCase = (a + b) / 2 # Check if middle point is root if equation(_SCREAMING_SNAKE_CASE ) == 0.0: break # Decide the side to repeat the steps if equation(_SCREAMING_SNAKE_CASE ) * equation(_SCREAMING_SNAKE_CASE ) < 0: _UpperCAmelCase = c else: _UpperCAmelCase = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
260
"""simple docstring""" import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __A : int = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.14.0", "To fix: pip install -r examples/pytorch/audio-classification/requirements.txt") def lowercase ( _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : int = 1_6000 ): '''simple docstring''' _UpperCAmelCase = int(round(sample_rate * max_length ) ) if len(_SCREAMING_SNAKE_CASE ) <= sample_length: return wav _UpperCAmelCase = randint(0 , len(_SCREAMING_SNAKE_CASE ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class _a : """simple docstring""" UpperCamelCase__ = field(default=lowerCAmelCase , metadata={"""help""": """Name of a dataset from the datasets package"""}) UpperCamelCase__ = field( default=lowerCAmelCase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""}) UpperCamelCase__ = field( default=lowerCAmelCase , metadata={"""help""": """A file containing the training audio paths and labels."""}) UpperCamelCase__ = field( default=lowerCAmelCase , metadata={"""help""": """A file containing the validation audio paths and labels."""}) UpperCamelCase__ = field( default="""train""" , metadata={ """help""": """The name of the training data set split to use (via the datasets library). Defaults to 'train'""" } , ) UpperCamelCase__ = field( default="""validation""" , metadata={ """help""": ( """The name of the training data set split to use (via the datasets library). Defaults to 'validation'""" ) } , ) UpperCamelCase__ = field( default="""audio""" , metadata={"""help""": """The name of the dataset column containing the audio data. Defaults to 'audio'"""} , ) UpperCamelCase__ = field( default="""label""" , metadata={"""help""": """The name of the dataset column containing the labels. Defaults to 'label'"""}) UpperCamelCase__ = field( default=lowerCAmelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) UpperCamelCase__ = field( default=lowerCAmelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) UpperCamelCase__ = field( default=20 , metadata={"""help""": """Audio clips will be randomly cut to this length during training if the value is set."""} , ) @dataclass class _a : """simple docstring""" UpperCamelCase__ = field( default="""facebook/wav2vec2-base""" , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} , ) UpperCamelCase__ = field( default=lowerCAmelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""}) UpperCamelCase__ = field( default=lowerCAmelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from the Hub"""}) UpperCamelCase__ = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) UpperCamelCase__ = field( default=lowerCAmelCase , metadata={"""help""": """Name or path of preprocessor config."""}) UpperCamelCase__ = field( default=lowerCAmelCase , metadata={"""help""": """Whether to freeze the feature encoder layers of the model."""}) UpperCamelCase__ = field( default=lowerCAmelCase , metadata={"""help""": """Whether to generate an attention mask in the feature extractor."""}) UpperCamelCase__ = field( default=lowerCAmelCase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) UpperCamelCase__ = field( default=lowerCAmelCase , metadata={"""help""": """Whether to freeze the feature extractor layers of the model."""}) UpperCamelCase__ = field( default=lowerCAmelCase , metadata={"""help""": """Will enable to load a pretrained model whose head dimensions are different."""} , ) def lowercase__ ( self : Optional[Any] )->int: if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( '''The argument `--freeze_feature_extractor` is deprecated and ''' '''will be removed in a future version. Use `--freeze_feature_encoder`''' '''instead. Setting `freeze_feature_encoder==True`.''' , __UpperCamelCase , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( '''The argument `--freeze_feature_extractor` is deprecated and ''' '''should not be used in combination with `--freeze_feature_encoder`.''' '''Only make use of `--freeze_feature_encoder`.''' ) def lowercase ( ): '''simple docstring''' _UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_audio_classification''' , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCAmelCase = training_args.get_process_log_level() logger.setLevel(_SCREAMING_SNAKE_CASE ) transformers.utils.logging.set_verbosity(_SCREAMING_SNAKE_CASE ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} ' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. _UpperCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' '''Use --overwrite_output_dir to train from scratch.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset and prepare it for the audio classification task. _UpperCAmelCase = DatasetDict() _UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) _UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( f'--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. ' '''Make sure to set `--audio_column_name` to the correct audio column - one of ''' f'{", ".join(raw_datasets["train"].column_names )}.' ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( f'--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. ' '''Make sure to set `--label_column_name` to the correct text column - one of ''' f'{", ".join(raw_datasets["train"].column_names )}.' ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy _UpperCAmelCase = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. _UpperCAmelCase = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) _UpperCAmelCase = feature_extractor.model_input_names[0] def train_transforms(_SCREAMING_SNAKE_CASE : Tuple ): _UpperCAmelCase = [] for audio in batch[data_args.audio_column_name]: _UpperCAmelCase = random_subsample( audio['''array'''] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = feature_extractor(_SCREAMING_SNAKE_CASE , sampling_rate=feature_extractor.sampling_rate ) _UpperCAmelCase = {model_input_name: inputs.get(_SCREAMING_SNAKE_CASE )} _UpperCAmelCase = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(_SCREAMING_SNAKE_CASE : Optional[int] ): _UpperCAmelCase = [audio['''array'''] for audio in batch[data_args.audio_column_name]] _UpperCAmelCase = feature_extractor(_SCREAMING_SNAKE_CASE , sampling_rate=feature_extractor.sampling_rate ) _UpperCAmelCase = {model_input_name: inputs.get(_SCREAMING_SNAKE_CASE )} _UpperCAmelCase = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. _UpperCAmelCase = raw_datasets['''train'''].features[data_args.label_column_name].names _UpperCAmelCase , _UpperCAmelCase = {}, {} for i, label in enumerate(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = str(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = label # Load the accuracy metric from the datasets package _UpperCAmelCase = evaluate.load('''accuracy''' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(_SCREAMING_SNAKE_CASE : List[str] ): _UpperCAmelCase = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=_SCREAMING_SNAKE_CASE , references=eval_pred.label_ids ) _UpperCAmelCase = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(_SCREAMING_SNAKE_CASE ) , labelaid=_SCREAMING_SNAKE_CASE , idalabel=_SCREAMING_SNAKE_CASE , finetuning_task='''audio-classification''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _UpperCAmelCase = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: _UpperCAmelCase = ( raw_datasets['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(_SCREAMING_SNAKE_CASE , output_all_columns=_SCREAMING_SNAKE_CASE ) if training_args.do_eval: if data_args.max_eval_samples is not None: _UpperCAmelCase = ( raw_datasets['''eval'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(_SCREAMING_SNAKE_CASE , output_all_columns=_SCREAMING_SNAKE_CASE ) # Initialize our trainer _UpperCAmelCase = Trainer( model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , train_dataset=raw_datasets['''train'''] if training_args.do_train else None , eval_dataset=raw_datasets['''eval'''] if training_args.do_eval else None , compute_metrics=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , ) # Training if training_args.do_train: _UpperCAmelCase = None if training_args.resume_from_checkpoint is not None: _UpperCAmelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCAmelCase = last_checkpoint _UpperCAmelCase = trainer.train(resume_from_checkpoint=_SCREAMING_SNAKE_CASE ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _UpperCAmelCase = trainer.evaluate() trainer.log_metrics('''eval''' , _SCREAMING_SNAKE_CASE ) trainer.save_metrics('''eval''' , _SCREAMING_SNAKE_CASE ) # Write model card and (optionally) push to hub _UpperCAmelCase = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''audio-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''audio-classification'''], } if training_args.push_to_hub: trainer.push_to_hub(**_SCREAMING_SNAKE_CASE ) else: trainer.create_model_card(**_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
260
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class a ( unittest.TestCase ): """simple docstring""" def __init__( self: Any , UpperCamelCase: int , UpperCamelCase: Dict=7 , UpperCamelCase: Union[str, Any]=3 , UpperCamelCase: int=30 , UpperCamelCase: Union[str, Any]=4_00 , UpperCamelCase: List[str]=True , UpperCamelCase: Optional[int]=None , UpperCamelCase: int=True , UpperCamelCase: Dict=[0.5, 0.5, 0.5] , UpperCamelCase: List[Any]=[0.5, 0.5, 0.5] , UpperCamelCase: List[str]=True , UpperCamelCase: List[Any]=1 / 2_55 , UpperCamelCase: List[Any]=True , ): """simple docstring""" A__ = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 13_33} A__ = parent A__ = batch_size A__ = num_channels A__ = min_resolution A__ = max_resolution A__ = do_resize A__ = size A__ = do_normalize A__ = image_mean A__ = image_std A__ = do_rescale A__ = rescale_factor A__ = do_pad def UpperCamelCase ( self: Optional[Any] ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCamelCase ( self: Optional[Any] , UpperCamelCase: Tuple , UpperCamelCase: Union[str, Any]=False ): """simple docstring""" if not batched: A__ = image_inputs[0] if isinstance(UpperCamelCase , Image.Image ): A__ , A__ = image.size else: A__ , A__ = image.shape[1], image.shape[2] if w < h: A__ = int(self.size["""shortest_edge"""] * h / w ) A__ = self.size["""shortest_edge"""] elif w > h: A__ = self.size["""shortest_edge"""] A__ = int(self.size["""shortest_edge"""] * w / h ) else: A__ = self.size["""shortest_edge"""] A__ = self.size["""shortest_edge"""] else: A__ = [] for image in image_inputs: A__ , A__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) A__ = max(UpperCamelCase , key=lambda UpperCamelCase : item[0] )[0] A__ = max(UpperCamelCase , key=lambda UpperCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class a ( _lowerCamelCase, unittest.TestCase ): """simple docstring""" UpperCAmelCase = YolosImageProcessor if is_vision_available() else None def UpperCamelCase ( self: str ): """simple docstring""" A__ = YolosImageProcessingTester(self ) @property def UpperCamelCase ( self: Optional[int] ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase ( self: Union[str, Any] ): """simple docstring""" A__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(UpperCamelCase , """image_std""" ) ) self.assertTrue(hasattr(UpperCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(UpperCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(UpperCamelCase , """size""" ) ) def UpperCamelCase ( self: List[str] ): """simple docstring""" A__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 13_33} ) self.assertEqual(image_processor.do_pad , UpperCamelCase ) A__ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCamelCase ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , UpperCamelCase ) def UpperCamelCase ( self: str ): """simple docstring""" pass def UpperCamelCase ( self: List[str] ): """simple docstring""" A__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , Image.Image ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ , A__ = self.image_processor_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) A__ = image_processing(UpperCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase ( self: Optional[Any] ): """simple docstring""" A__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase , numpify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , np.ndarray ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ = image_processing(UpperCamelCase , return_tensors="""pt""" ).pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase ( self: Any ): """simple docstring""" A__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase , torchify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , torch.Tensor ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ = image_processing(UpperCamelCase , return_tensors="""pt""" ).pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase ( self: Any ): """simple docstring""" A__ = self.image_processing_class(**self.image_processor_dict ) A__ = self.image_processing_class(do_resize=UpperCamelCase , do_normalize=UpperCamelCase , do_rescale=UpperCamelCase ) # create random PyTorch tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase , torchify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors A__ = image_processing_a.pad(UpperCamelCase , return_tensors="""pt""" ) A__ = image_processing_a(UpperCamelCase , return_tensors="""pt""" ) self.assertTrue( torch.allclose(encoded_images_with_method["""pixel_values"""] , encoded_images["""pixel_values"""] , atol=1e-4 ) ) @slow def UpperCamelCase ( self: Optional[int] ): """simple docstring""" A__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: A__ = json.loads(f.read() ) A__ = {"""image_id""": 3_97_69, """annotations""": target} # encode them A__ = YolosImageProcessor.from_pretrained("""hustvl/yolos-small""" ) A__ = image_processing(images=UpperCamelCase , annotations=UpperCamelCase , return_tensors="""pt""" ) # verify pixel values A__ = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["""pixel_values"""].shape , UpperCamelCase ) A__ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , UpperCamelCase , atol=1e-4 ) ) # verify area A__ = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , UpperCamelCase ) ) # verify boxes A__ = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , UpperCamelCase ) A__ = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , UpperCamelCase , atol=1e-3 ) ) # verify image_id A__ = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , UpperCamelCase ) ) # verify is_crowd A__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , UpperCamelCase ) ) # verify class_labels A__ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , UpperCamelCase ) ) # verify orig_size A__ = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , UpperCamelCase ) ) # verify size A__ = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , UpperCamelCase ) ) @slow def UpperCamelCase ( self: Tuple ): """simple docstring""" A__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: A__ = json.loads(f.read() ) A__ = {"""file_name""": """000000039769.png""", """image_id""": 3_97_69, """segments_info""": target} A__ = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them A__ = YolosImageProcessor(format="""coco_panoptic""" ) A__ = image_processing(images=UpperCamelCase , annotations=UpperCamelCase , masks_path=UpperCamelCase , return_tensors="""pt""" ) # verify pixel values A__ = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["""pixel_values"""].shape , UpperCamelCase ) A__ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , UpperCamelCase , atol=1e-4 ) ) # verify area A__ = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , UpperCamelCase ) ) # verify boxes A__ = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , UpperCamelCase ) A__ = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , UpperCamelCase , atol=1e-3 ) ) # verify image_id A__ = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , UpperCamelCase ) ) # verify is_crowd A__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , UpperCamelCase ) ) # verify class_labels A__ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , UpperCamelCase ) ) # verify masks A__ = 82_28_73 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , UpperCamelCase ) # verify orig_size A__ = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , UpperCamelCase ) ) # verify size A__ = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , UpperCamelCase ) )
353
"""simple docstring""" import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class a : """simple docstring""" def __init__( self: Optional[int] , UpperCamelCase: List[str] , UpperCamelCase: Dict=13 , UpperCamelCase: Optional[Any]=30 , UpperCamelCase: Optional[Any]=2 , UpperCamelCase: List[str]=3 , UpperCamelCase: Tuple=True , UpperCamelCase: Dict=True , UpperCamelCase: Optional[int]=32 , UpperCamelCase: Tuple=5 , UpperCamelCase: Optional[Any]=4 , UpperCamelCase: Optional[Any]=37 , UpperCamelCase: Optional[Any]="gelu" , UpperCamelCase: Dict=0.1 , UpperCamelCase: Any=0.1 , UpperCamelCase: str=10 , UpperCamelCase: Any=0.02 , UpperCamelCase: List[Any]=None , UpperCamelCase: int=2 , ): """simple docstring""" A__ = parent A__ = batch_size A__ = image_size A__ = patch_size A__ = num_channels A__ = is_training A__ = use_labels A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = type_sequence_label_size A__ = initializer_range A__ = scope A__ = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) A__ = (image_size // patch_size) ** 2 A__ = num_patches + 1 def UpperCamelCase ( self: List[Any] ): """simple docstring""" A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ = self.get_config() return config, pixel_values, labels def UpperCamelCase ( self: int ): """simple docstring""" return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def UpperCamelCase ( self: Tuple , UpperCamelCase: str , UpperCamelCase: Union[str, Any] , UpperCamelCase: Optional[int] ): """simple docstring""" A__ = ViTModel(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() A__ = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self: Optional[int] , UpperCamelCase: Optional[Any] , UpperCamelCase: Optional[int] , UpperCamelCase: Union[str, Any] ): """simple docstring""" A__ = ViTForMaskedImageModeling(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() A__ = model(UpperCamelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images A__ = 1 A__ = ViTForMaskedImageModeling(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() A__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A__ = model(UpperCamelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCamelCase ( self: str , UpperCamelCase: Dict , UpperCamelCase: List[Any] , UpperCamelCase: List[Any] ): """simple docstring""" A__ = self.type_sequence_label_size A__ = ViTForImageClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() A__ = model(UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images A__ = 1 A__ = ViTForImageClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() A__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A__ = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase ( self: List[str] ): """simple docstring""" A__ = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ) = config_and_inputs A__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a ( _lowerCamelCase, _lowerCamelCase, unittest.TestCase ): """simple docstring""" UpperCAmelCase = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) UpperCAmelCase = ( {"feature-extraction": ViTModel, "image-classification": ViTForImageClassification} if is_torch_available() else {} ) UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def UpperCamelCase ( self: Any ): """simple docstring""" A__ = ViTModelTester(self ) A__ = ConfigTester(self , config_class=UpperCamelCase , has_text_modality=UpperCamelCase , hidden_size=37 ) def UpperCamelCase ( self: str ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def UpperCamelCase ( self: str ): """simple docstring""" pass def UpperCamelCase ( self: Tuple ): """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase , nn.Linear ) ) def UpperCamelCase ( self: Dict ): """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(UpperCamelCase ) A__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase ) def UpperCamelCase ( self: Optional[int] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) def UpperCamelCase ( self: List[Any] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCamelCase ) def UpperCamelCase ( self: List[Any] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase ) @slow def UpperCamelCase ( self: Dict ): """simple docstring""" for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = ViTModel.from_pretrained(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) def _snake_case ( ): A__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class a ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCamelCase ( self: List[Any] ): """simple docstring""" return ViTImageProcessor.from_pretrained("""google/vit-base-patch16-224""" ) if is_vision_available() else None @slow def UpperCamelCase ( self: Dict ): """simple docstring""" A__ = ViTForImageClassification.from_pretrained("""google/vit-base-patch16-224""" ).to(UpperCamelCase ) A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=UpperCamelCase , return_tensors="""pt""" ).to(UpperCamelCase ) # forward pass with torch.no_grad(): A__ = model(**UpperCamelCase ) # verify the logits A__ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , UpperCamelCase ) A__ = torch.tensor([-0.2_744, 0.8_215, -0.0_836] ).to(UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase , atol=1e-4 ) ) @slow def UpperCamelCase ( self: Tuple ): """simple docstring""" A__ = ViTModel.from_pretrained("""facebook/dino-vits8""" ).to(UpperCamelCase ) A__ = ViTImageProcessor.from_pretrained("""facebook/dino-vits8""" , size=4_80 ) A__ = prepare_img() A__ = image_processor(images=UpperCamelCase , return_tensors="""pt""" ) A__ = inputs.pixel_values.to(UpperCamelCase ) # forward pass with torch.no_grad(): A__ = model(UpperCamelCase , interpolate_pos_encoding=UpperCamelCase ) # verify the logits A__ = torch.Size((1, 36_01, 3_84) ) self.assertEqual(outputs.last_hidden_state.shape , UpperCamelCase ) A__ = torch.tensor( [[4.2_340, 4.3_906, -6.6_692], [4.5_463, 1.8_928, -6.7_257], [4.4_429, 0.8_496, -5.8_585]] ).to(UpperCamelCase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCamelCase , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def UpperCamelCase ( self: List[Any] ): """simple docstring""" A__ = ViTModel.from_pretrained("""facebook/dino-vits8""" , torch_dtype=torch.floataa , device_map="""auto""" ) A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=UpperCamelCase , return_tensors="""pt""" ) A__ = inputs.pixel_values.to(UpperCamelCase ) # forward pass to make sure inference works in fp16 with torch.no_grad(): A__ = model(UpperCamelCase )
69
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = ShapEImgaImgPipeline UpperCAmelCase__ : int = ["image"] UpperCAmelCase__ : List[str] = ["image"] UpperCAmelCase__ : int = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] UpperCAmelCase__ : List[Any] = False @property def _a ( self ) -> Tuple: return 32 @property def _a ( self ) -> int: return 32 @property def _a ( self ) -> Optional[int]: return self.time_input_dim * 4 @property def _a ( self ) -> Any: return 8 @property def _a ( self ) -> int: torch.manual_seed(0 ) __UpperCamelCase =CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) __UpperCamelCase =CLIPVisionModel(A_ ) return model @property def _a ( self ) -> List[Any]: __UpperCamelCase =CLIPImageProcessor( crop_size=224 , do_center_crop=A_ , do_normalize=A_ , do_resize=A_ , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=224 , ) return image_processor @property def _a ( self ) -> str: torch.manual_seed(0 ) __UpperCamelCase ={ 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'embedding_proj_norm_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } __UpperCamelCase =PriorTransformer(**A_ ) return model @property def _a ( self ) -> int: torch.manual_seed(0 ) __UpperCamelCase ={ 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } __UpperCamelCase =ShapERenderer(**A_ ) return model def _a ( self ) -> List[str]: __UpperCamelCase =self.dummy_prior __UpperCamelCase =self.dummy_image_encoder __UpperCamelCase =self.dummy_image_processor __UpperCamelCase =self.dummy_renderer __UpperCamelCase =HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1024 , prediction_type='sample' , use_karras_sigmas=A_ , clip_sample=A_ , clip_sample_range=1.0 , ) __UpperCamelCase ={ 'prior': prior, 'image_encoder': image_encoder, 'image_processor': image_processor, 'renderer': renderer, 'scheduler': scheduler, } return components def _a ( self , A_ , A_=0 ) -> Any: __UpperCamelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(A_ ) ).to(A_ ) if str(A_ ).startswith('mps' ): __UpperCamelCase =torch.manual_seed(A_ ) else: __UpperCamelCase =torch.Generator(device=A_ ).manual_seed(A_ ) __UpperCamelCase ={ 'image': input_image, 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def _a ( self ) -> str: __UpperCamelCase ='cpu' __UpperCamelCase =self.get_dummy_components() __UpperCamelCase =self.pipeline_class(**A_ ) __UpperCamelCase =pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase =pipe(**self.get_dummy_inputs(A_ ) ) __UpperCamelCase =output.images[0] __UpperCamelCase =image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __UpperCamelCase =np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ) -> int: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def _a ( self ) -> List[str]: __UpperCamelCase =torch_device == 'cpu' __UpperCamelCase =True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=A_ , relax_max_difference=A_ , ) def _a ( self ) -> Tuple: __UpperCamelCase =self.get_dummy_components() __UpperCamelCase =self.pipeline_class(**A_ ) __UpperCamelCase =pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase =1 __UpperCamelCase =2 __UpperCamelCase =self.get_dummy_inputs(A_ ) for key in inputs.keys(): if key in self.batch_params: __UpperCamelCase =batch_size * [inputs[key]] __UpperCamelCase =pipe(**A_ , num_images_per_prompt=A_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _a ( self ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self ) -> int: __UpperCamelCase =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/corgi.png' ) __UpperCamelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_img2img_out.npy' ) __UpperCamelCase =ShapEImgaImgPipeline.from_pretrained('openai/shap-e-img2img' ) __UpperCamelCase =pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase =torch.Generator(device=A_ ).manual_seed(0 ) __UpperCamelCase =pipe( A_ , generator=A_ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(A_ , A_ )
62
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { 'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[int] = "yolos" def __init__( self , A_=768 , A_=12 , A_=12 , A_=3072 , A_="gelu" , A_=0.0 , A_=0.0 , A_=0.02 , A_=1E-12 , A_=[512, 864] , A_=16 , A_=3 , A_=True , A_=100 , A_=True , A_=False , A_=1 , A_=5 , A_=2 , A_=5 , A_=2 , A_=0.1 , **A_ , ) -> Any: super().__init__(**A_ ) __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_act __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =initializer_range __UpperCamelCase =layer_norm_eps __UpperCamelCase =image_size __UpperCamelCase =patch_size __UpperCamelCase =num_channels __UpperCamelCase =qkv_bias __UpperCamelCase =num_detection_tokens __UpperCamelCase =use_mid_position_embeddings __UpperCamelCase =auxiliary_loss # Hungarian matcher __UpperCamelCase =class_cost __UpperCamelCase =bbox_cost __UpperCamelCase =giou_cost # Loss coefficients __UpperCamelCase =bbox_loss_coefficient __UpperCamelCase =giou_loss_coefficient __UpperCamelCase =eos_coefficient class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : str = version.parse("1.11" ) @property def _a ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _a ( self ) -> float: return 1E-4 @property def _a ( self ) -> int: return 12
62
1
"""simple docstring""" from __future__ import annotations def _lowerCamelCase( a ): __a = len(a ) # We need to create solution object to save path. __a = [[0 for _ in range(a )] for _ in range(a )] __a = run_maze(a , 0 , 0 , a ) if solved: print("\n".join(str(a ) for row in solutions ) ) else: print("No solution exists!" ) return solved def _lowerCamelCase( a , a , a , a ): __a = len(a ) # Final check point. if i == j == (size - 1): __a = 1 return True __a = (not i < 0) and (not j < 0) # Check lower bounds __a = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. __a = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited __a = 1 # check for directions if ( run_maze(a , i + 1 , a , a ) or run_maze(a , a , j + 1 , a ) or run_maze(a , i - 1 , a , a ) or run_maze(a , a , j - 1 , a ) ): return True __a = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
369
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: SCREAMING_SNAKE_CASE__:List[Any] = None SCREAMING_SNAKE_CASE__:Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__:Tuple = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE__:Optional[int] = { """vocab_file""": { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model""", }, """tokenizer_file""": { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/tokenizer.json""", }, } SCREAMING_SNAKE_CASE__:List[str] = { """camembert-base""": 512, } SCREAMING_SNAKE_CASE__:str = """▁""" class snake_case__ ( snake_case_ ): _snake_case : List[Any] = VOCAB_FILES_NAMES _snake_case : List[Any] = PRETRAINED_VOCAB_FILES_MAP _snake_case : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Any = ["""input_ids""", """attention_mask"""] _snake_case : str = CamembertTokenizer def __init__( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase="<s>" , lowerCamelCase="</s>" , lowerCamelCase="</s>" , lowerCamelCase="<s>" , lowerCamelCase="<unk>" , lowerCamelCase="<pad>" , lowerCamelCase="<mask>" , lowerCamelCase=["<s>NOTUSED", "</s>NOTUSED"] , **lowerCamelCase , ): # Mask token behave like a normal word, i.e. include the space before it __a = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else mask_token super().__init__( lowerCamelCase , tokenizer_file=lowerCamelCase , bos_token=lowerCamelCase , eos_token=lowerCamelCase , sep_token=lowerCamelCase , cls_token=lowerCamelCase , unk_token=lowerCamelCase , pad_token=lowerCamelCase , mask_token=lowerCamelCase , additional_special_tokens=lowerCamelCase , **lowerCamelCase , ) __a = vocab_file __a = False if not self.vocab_file else True def a__ ( self , lowerCamelCase , lowerCamelCase = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __a = [self.cls_token_id] __a = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def a__ ( self , lowerCamelCase , lowerCamelCase = None ): __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a__ ( self , lowerCamelCase , lowerCamelCase = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(lowerCamelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __a = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase ): copyfile(self.vocab_file , lowerCamelCase ) return (out_vocab_file,)
268
0
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask lowerCAmelCase__ = logging.getLogger(__name__) class a__ ( snake_case ): """simple docstring""" __lowerCamelCase = 'token-classification' def __init__( self , lowercase ) -> List[str]: '''simple docstring''' if type(lowercase ) == dict: A__ = Namespace(**lowercase ) A__ = import_module("tasks" ) try: A__ = getattr(lowercase , hparams.task_type ) A__ = token_classification_task_clazz() except AttributeError: raise ValueError( F'Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ' F'Available tasks classes are: {TokenClassificationTask.__subclasses__()}' ) A__ = self.token_classification_task.get_labels(hparams.labels ) A__ = CrossEntropyLoss().ignore_index super().__init__(lowercase , len(self.labels ) , self.mode ) def UpperCamelCase ( self , **lowercase ) -> Any: '''simple docstring''' return self.model(**lowercase ) def UpperCamelCase ( self , lowercase , lowercase ) -> int: '''simple docstring''' A__ = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type != "distilbert": A__ = ( batch[2] if self.config.model_type in ["bert", "xlnet"] else None ) # XLM and RoBERTa don"t use token_type_ids A__ = self(**lowercase ) A__ = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def UpperCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' A__ = self.hparams for mode in ["train", "dev", "test"]: A__ = self._feature_file(lowercase ) if os.path.exists(lowercase ) and not args.overwrite_cache: logger.info("Loading features from cached file %s" , lowercase ) A__ = torch.load(lowercase ) else: logger.info("Creating features from dataset file at %s" , args.data_dir ) A__ = self.token_classification_task.read_examples_from_file(args.data_dir , lowercase ) A__ = self.token_classification_task.convert_examples_to_features( lowercase , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["xlnet"] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["xlnet"] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=lowercase , pad_on_left=bool(self.config.model_type in ["xlnet"] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info("Saving features into cached file %s" , lowercase ) torch.save(lowercase , lowercase ) def UpperCamelCase ( self , lowercase , lowercase , lowercase = False ) -> DataLoader: '''simple docstring''' A__ = self._feature_file(lowercase ) logger.info("Loading features from cached file %s" , lowercase ) A__ = torch.load(lowercase ) A__ = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) A__ = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: A__ = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: A__ = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) A__ = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(lowercase , lowercase , lowercase , lowercase ) , batch_size=lowercase ) def UpperCamelCase ( self , lowercase , lowercase ) -> List[Any]: '''simple docstring''' """Compute validation""" "" A__ = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type != "distilbert": A__ = ( batch[2] if self.config.model_type in ["bert", "xlnet"] else None ) # XLM and RoBERTa don"t use token_type_ids A__ = self(**lowercase ) A__ , A__ = outputs[:2] A__ = logits.detach().cpu().numpy() A__ = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def UpperCamelCase ( self , lowercase ) -> Optional[Any]: '''simple docstring''' A__ = torch.stack([x["val_loss"] for x in outputs] ).mean() A__ = np.concatenate([x["pred"] for x in outputs] , axis=0 ) A__ = np.argmax(lowercase , axis=2 ) A__ = np.concatenate([x["target"] for x in outputs] , axis=0 ) A__ = dict(enumerate(self.labels ) ) A__ = [[] for _ in range(out_label_ids.shape[0] )] A__ = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) A__ = { "val_loss": val_loss_mean, "accuracy_score": accuracy_score(lowercase , lowercase ), "precision": precision_score(lowercase , lowercase ), "recall": recall_score(lowercase , lowercase ), "f1": fa_score(lowercase , lowercase ), } A__ = dict(results.items() ) A__ = results return ret, preds_list, out_label_list def UpperCamelCase ( self , lowercase ) -> int: '''simple docstring''' A__ , A__ , A__ = self._eval_end(lowercase ) A__ = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def UpperCamelCase ( self , lowercase ) -> str: '''simple docstring''' A__ , A__ , A__ = self._eval_end(lowercase ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 A__ = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def UpperCamelCase ( lowercase , lowercase ) -> Optional[int]: '''simple docstring''' BaseTransformer.add_model_specific_args(lowercase , lowercase ) parser.add_argument( "--task_type" , default="NER" , type=lowercase , help="Task type to fine tune in training (e.g. NER, POS, etc)" ) parser.add_argument( "--max_seq_length" , default=128 , type=lowercase , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--labels" , default="" , type=lowercase , help="Path to a file containing all labels. If not specified, CoNLL-2003 labels are used." , ) parser.add_argument( "--gpus" , default=0 , type=lowercase , help="The number of GPUs allocated for this, it is by default 0 meaning none" , ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) return parser if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) lowerCAmelCase__ = NERTransformer.add_model_specific_args(parser, os.getcwd()) lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = NERTransformer(args) lowerCAmelCase__ = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 lowerCAmelCase__ = sorted(glob.glob(os.path.join(args.output_dir, """checkpoint-epoch=*.ckpt"""), recursive=True)) lowerCAmelCase__ = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
68
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () UpperCamelCase__ = np.linspace(start=0, stop=7_5, num=7_5, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). UpperCamelCase__ = [0, 2_5, 5_0] UpperCamelCase__ = [2_5, 5_0, 7_5] UpperCamelCase__ = fuzz.membership.trimf(X, abca) UpperCamelCase__ = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. UpperCamelCase__ = np.ones(7_5) UpperCamelCase__ = np.zeros((7_5,)) # 1. Union = max(µA(x), µB(x)) UpperCamelCase__ = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) UpperCamelCase__ = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) UpperCamelCase__ = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) UpperCamelCase__ = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] UpperCamelCase__ = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) UpperCamelCase__ = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] UpperCamelCase__ = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] UpperCamelCase__ = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('Young') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('Middle aged') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('union') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('intersection') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('complement_a') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('difference a/b') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('alg_sum') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('alg_product') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('bdd_sum') plt.grid(True) plt.subplot(4, 3, 1_0) plt.plot(X, bdd_difference) plt.title('bdd_difference') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
65
0
import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def __lowerCamelCase ( ) -> List[Any]: """simple docstring""" print("""Making key files...""" ) make_key_files("""rsa""" , 1_0_2_4 ) print("""Key files generation successful.""" ) def __lowerCamelCase ( __a :int ) -> List[str]: """simple docstring""" print("""Generating prime p...""" ) A__ = rabinMiller.generate_large_prime(lowerCAmelCase__ ) print("""Generating prime q...""" ) A__ = rabinMiller.generate_large_prime(lowerCAmelCase__ ) A__ = p * q print("""Generating e that is relatively prime to (p - 1) * (q - 1)...""" ) while True: A__ = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(lowerCAmelCase__ , (p - 1) * (q - 1) ) == 1: break print("""Calculating d that is mod inverse of e...""" ) A__ = cryptoMath.find_mod_inverse(lowerCAmelCase__ , (p - 1) * (q - 1) ) A__ = (n, e) A__ = (n, d) return (public_key, private_key) def __lowerCamelCase ( __a :str , __a :int ) -> Any: """simple docstring""" if os.path.exists(F'{name}_pubkey.txt' ) or os.path.exists(F'{name}_privkey.txt' ): print("""\nWARNING:""" ) print( F'"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n' """Use a different name or delete these files and re-run this program.""" ) sys.exit() A__ = generate_key(lowerCAmelCase__ ) print(F'\nWriting public key to file {name}_pubkey.txt...' ) with open(F'{name}_pubkey.txt' , """w""" ) as out_file: out_file.write(F'{key_size},{public_key[0]},{public_key[1]}' ) print(F'Writing private key to file {name}_privkey.txt...' ) with open(F'{name}_privkey.txt' , """w""" ) as out_file: out_file.write(F'{key_size},{private_key[0]},{private_key[1]}' ) if __name__ == "__main__": main()
366
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : Tuple = logging.get_logger(__name__) A : Optional[int] = { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/config.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/config.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/config.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/config.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json''', '''roberta-large-openai-detector''': '''https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json''', } class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = '''roberta''' def __init__( self : Any , __lowerCAmelCase : Tuple=5_02_65 , __lowerCAmelCase : Optional[int]=7_68 , __lowerCAmelCase : Union[str, Any]=12 , __lowerCAmelCase : Dict=12 , __lowerCAmelCase : Optional[Any]=30_72 , __lowerCAmelCase : Any="gelu" , __lowerCAmelCase : Optional[Any]=0.1 , __lowerCAmelCase : Optional[int]=0.1 , __lowerCAmelCase : Optional[Any]=5_12 , __lowerCAmelCase : int=2 , __lowerCAmelCase : List[str]=0.0_2 , __lowerCAmelCase : Dict=1e-12 , __lowerCAmelCase : Optional[int]=1 , __lowerCAmelCase : Tuple=0 , __lowerCAmelCase : int=2 , __lowerCAmelCase : Dict="absolute" , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : Union[str, Any]=None , **__lowerCAmelCase : str , ) -> str: """simple docstring""" super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = initializer_range A__ = layer_norm_eps A__ = position_embedding_type A__ = use_cache A__ = classifier_dropout class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def a_ ( self : int ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": A__ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A__ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
276
0
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = tokenizer(example["""content"""] , truncation=__UpperCamelCase )["""input_ids"""] SCREAMING_SNAKE_CASE__ = len(example["""content"""] ) / len(output["""input_ids"""] ) return output __lowerCamelCase : Dict = HfArgumentParser(PretokenizationArguments) __lowerCamelCase : Union[str, Any] = parser.parse_args() if args.num_workers is None: __lowerCamelCase : Optional[Any] = multiprocessing.cpu_count() __lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained(args.tokenizer_dir) __lowerCamelCase : str = time.time() __lowerCamelCase : Union[str, Any] = load_dataset(args.dataset_name, split='''train''') print(F"""Dataset loaded in {time.time()-t_start:.2f}s""") __lowerCamelCase : Dict = time.time() __lowerCamelCase : Tuple = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ '''repo_name''', '''path''', '''copies''', '''size''', '''content''', '''license''', '''hash''', '''line_mean''', '''line_max''', '''alpha_frac''', '''autogenerated''', ], ) print(F"""Dataset tokenized in {time.time()-t_start:.2f}s""") __lowerCamelCase : Union[str, Any] = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F"""Data pushed to the hub in {time.time()-t_start:.2f}s""")
219
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __snake_case ( lowerCamelCase_ , unittest.TestCase ): lowerCAmelCase_ = KandinskyVaaImgaImgPipeline lowerCAmelCase_ = ["image_embeds", "negative_image_embeds", "image"] lowerCAmelCase_ = [ "image_embeds", "negative_image_embeds", "image", ] lowerCAmelCase_ = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] lowerCAmelCase_ = False @property def __a ( self : Union[str, Any] ): """simple docstring""" return 32 @property def __a ( self : Union[str, Any] ): """simple docstring""" return 32 @property def __a ( self : Optional[Any] ): """simple docstring""" return self.time_input_dim @property def __a ( self : Optional[int] ): """simple docstring""" return self.time_input_dim * 4 @property def __a ( self : List[str] ): """simple docstring""" return 1_00 @property def __a ( self : Union[str, Any] ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } SCREAMING_SNAKE_CASE__ = UNetaDConditionModel(**_lowercase ) return model @property def __a ( self : str ): """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __a ( self : Union[str, Any] ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = VQModel(**self.dummy_movq_kwargs ) return model def __a ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.dummy_unet SCREAMING_SNAKE_CASE__ = self.dummy_movq SCREAMING_SNAKE_CASE__ = { """num_train_timesteps""": 10_00, """beta_schedule""": """linear""", """beta_start""": 0.0_00_85, """beta_end""": 0.0_12, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } SCREAMING_SNAKE_CASE__ = DDIMScheduler(**_lowercase ) SCREAMING_SNAKE_CASE__ = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def __a ( self : Optional[Any] , _lowercase : Any , _lowercase : Tuple=0 ): """simple docstring""" SCREAMING_SNAKE_CASE__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowercase ) ).to(_lowercase ) SCREAMING_SNAKE_CASE__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _lowercase ) # create init_image SCREAMING_SNAKE_CASE__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowercase ) ).to(_lowercase ) SCREAMING_SNAKE_CASE__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE__ = Image.fromarray(np.uinta(_lowercase ) ).convert("""RGB""" ).resize((2_56, 2_56) ) if str(_lowercase ).startswith("""mps""" ): SCREAMING_SNAKE_CASE__ = torch.manual_seed(_lowercase ) else: SCREAMING_SNAKE_CASE__ = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) SCREAMING_SNAKE_CASE__ = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def __a ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = """cpu""" SCREAMING_SNAKE_CASE__ = self.get_dummy_components() SCREAMING_SNAKE_CASE__ = self.pipeline_class(**_lowercase ) SCREAMING_SNAKE_CASE__ = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) SCREAMING_SNAKE_CASE__ = pipe(**self.get_dummy_inputs(_lowercase ) ) SCREAMING_SNAKE_CASE__ = output.images SCREAMING_SNAKE_CASE__ = pipe( **self.get_dummy_inputs(_lowercase ) , return_dict=_lowercase , )[0] SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE__ = np.array( [0.6_19_97_78, 0.63_98_44_06, 0.46_14_57_85, 0.62_94_49_84, 0.5_62_22_15, 0.47_30_61_32, 0.47_44_14_56, 0.4_60_76_06, 0.48_71_92_63] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): def __a ( self : Optional[int] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_img2img_frog.npy""" ) SCREAMING_SNAKE_CASE__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) SCREAMING_SNAKE_CASE__ = """A red cartoon frog, 4k""" SCREAMING_SNAKE_CASE__ = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(_lowercase ) SCREAMING_SNAKE_CASE__ = KandinskyVaaImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder""" , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE__ = pipeline.to(_lowercase ) pipeline.set_progress_bar_config(disable=_lowercase ) SCREAMING_SNAKE_CASE__ = torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = pipe_prior( _lowercase , generator=_lowercase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() SCREAMING_SNAKE_CASE__ = pipeline( image=_lowercase , image_embeds=_lowercase , negative_image_embeds=_lowercase , generator=_lowercase , num_inference_steps=1_00 , height=7_68 , width=7_68 , strength=0.2 , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(_lowercase , _lowercase )
219
1
"""simple docstring""" from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) -> Dict: __lowerCamelCase : int = len(__lowerCamelCase ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append(['. ' * i + 'Q ' + '. ' * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(__lowerCamelCase ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , __lowerCamelCase , __lowerCamelCase , ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Dict: __lowerCamelCase : list[list[str]] = [] depth_first_search([] , [] , [] , __lowerCamelCase , __lowerCamelCase ) # Print all the boards for board in boards: for column in board: print(__lowerCamelCase ) print('' ) print(len(__lowerCamelCase ) , 'solutions were found.' ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
360
from ...configuration_utils import PretrainedConfig from ...utils import logging a =logging.get_logger(__name__) a ={ """sayakpaul/vit-msn-base""": """https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json""", # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : str = '''vit_msn''' def __init__( self : Any ,SCREAMING_SNAKE_CASE__ : int=7_6_8 ,SCREAMING_SNAKE_CASE__ : Optional[int]=1_2 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=1_2 ,SCREAMING_SNAKE_CASE__ : Tuple=3_0_7_2 ,SCREAMING_SNAKE_CASE__ : str="gelu" ,SCREAMING_SNAKE_CASE__ : Any=0.0 ,SCREAMING_SNAKE_CASE__ : str=0.0 ,SCREAMING_SNAKE_CASE__ : Any=0.02 ,SCREAMING_SNAKE_CASE__ : int=1E-06 ,SCREAMING_SNAKE_CASE__ : Optional[int]=2_2_4 ,SCREAMING_SNAKE_CASE__ : Dict=1_6 ,SCREAMING_SNAKE_CASE__ : int=3 ,SCREAMING_SNAKE_CASE__ : List[str]=True ,**SCREAMING_SNAKE_CASE__ : str ,): super().__init__(**SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = hidden_size __lowerCamelCase : Tuple = num_hidden_layers __lowerCamelCase : Union[str, Any] = num_attention_heads __lowerCamelCase : Dict = intermediate_size __lowerCamelCase : List[Any] = hidden_act __lowerCamelCase : Optional[Any] = hidden_dropout_prob __lowerCamelCase : str = attention_probs_dropout_prob __lowerCamelCase : List[str] = initializer_range __lowerCamelCase : Optional[int] = layer_norm_eps __lowerCamelCase : Tuple = image_size __lowerCamelCase : Union[str, Any] = patch_size __lowerCamelCase : Optional[Any] = num_channels __lowerCamelCase : List[str] = qkv_bias
113
0
'''simple docstring''' import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": __UpperCAmelCase =argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) parser.add_argument( "--original_config_file", type=str, required=True, help="The YAML config file corresponding to the original architecture.", ) parser.add_argument( "--num_in_channels", default=None, type=int, help="The number of input channels. If `None` number of input channels will be automatically inferred.", ) parser.add_argument( "--image_size", default=5_1_2, type=int, help=( "The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2" " Base. Use 768 for Stable Diffusion v2." ), ) parser.add_argument( "--extract_ema", action="store_true", help=( "Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights" " or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield" " higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning." ), ) parser.add_argument( "--upcast_attention", action="store_true", help=( "Whether the attention computation should always be upcasted. This is necessary when running stable" " diffusion 2.1." ), ) parser.add_argument( "--from_safetensors", action="store_true", help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.", ) parser.add_argument( "--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") def __lowerCAmelCase ( UpperCamelCase__ ) -> Tuple: if string == "True": return True elif string == "False": return False else: raise ValueError(f"""could not parse string as bool {string}""" ) parser.add_argument( "--use_linear_projection", help="Override for use linear projection", required=False, type=parse_bool ) parser.add_argument("--cross_attention_dim", help="Override for cross attention_dim", required=False, type=int) __UpperCAmelCase =parser.parse_args() __UpperCAmelCase =download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
67
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __a : Any = { """configuration_bloom""": ["""BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BloomConfig""", """BloomOnnxConfig"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : Optional[int] = ["""BloomTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : str = [ """BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST""", """BloomForCausalLM""", """BloomModel""", """BloomPreTrainedModel""", """BloomForSequenceClassification""", """BloomForTokenClassification""", """BloomForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __a : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
210
0
'''simple docstring''' import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class __UpperCamelCase ( lowercase__ ): lowercase : List[str] = 'Wav2Vec2FeatureExtractor' lowercase : Union[str, Any] = 'AutoTokenizer' def __init__( self :Optional[Any] ,_UpperCamelCase :Dict ,_UpperCamelCase :List[Any] ): super().__init__(_UpperCamelCase ,_UpperCamelCase ) snake_case_ : List[Any] = self.feature_extractor snake_case_ : Dict = False @classmethod def a__ ( cls :Optional[int] ,_UpperCamelCase :str ,**_UpperCamelCase :List[str] ): try: return super().from_pretrained(_UpperCamelCase ,**_UpperCamelCase ) except OSError: warnings.warn( F'''Loading a tokenizer inside {cls.__name__} from a config that does not''' """ include a `tokenizer_class` attribute is deprecated and will be """ """removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`""" """ attribute to either your `config.json` or `tokenizer_config.json` """ """file to suppress this warning: """ ,_UpperCamelCase ,) snake_case_ : Dict = WavaVecaFeatureExtractor.from_pretrained(_UpperCamelCase ,**_UpperCamelCase ) snake_case_ : Dict = WavaVecaCTCTokenizer.from_pretrained(_UpperCamelCase ,**_UpperCamelCase ) return cls(feature_extractor=_UpperCamelCase ,tokenizer=_UpperCamelCase ) def __call__( self :Optional[Any] ,*_UpperCamelCase :Any ,**_UpperCamelCase :Tuple ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_UpperCamelCase ,**_UpperCamelCase ) if "raw_speech" in kwargs: warnings.warn("""Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.""" ) snake_case_ : Optional[Any] = kwargs.pop("""raw_speech""" ) else: snake_case_ : Any = kwargs.pop("""audio""" ,_UpperCamelCase ) snake_case_ : str = kwargs.pop("""sampling_rate""" ,_UpperCamelCase ) snake_case_ : Optional[Any] = kwargs.pop("""text""" ,_UpperCamelCase ) if len(_UpperCamelCase ) > 0: snake_case_ : Tuple = args[0] snake_case_ : int = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: snake_case_ : Optional[Any] = self.feature_extractor(_UpperCamelCase ,*_UpperCamelCase ,sampling_rate=_UpperCamelCase ,**_UpperCamelCase ) if text is not None: snake_case_ : Any = self.tokenizer(_UpperCamelCase ,**_UpperCamelCase ) if text is None: return inputs elif audio is None: return encodings else: snake_case_ : str = encodings["""input_ids"""] return inputs def a__ ( self :Dict ,*_UpperCamelCase :Optional[int] ,**_UpperCamelCase :List[Any] ): # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*_UpperCamelCase ,**_UpperCamelCase ) snake_case_ : Any = kwargs.pop("""input_features""" ,_UpperCamelCase ) snake_case_ : List[Any] = kwargs.pop("""labels""" ,_UpperCamelCase ) if len(_UpperCamelCase ) > 0: snake_case_ : Any = args[0] snake_case_ : List[str] = args[1:] if input_features is not None: snake_case_ : int = self.feature_extractor.pad(_UpperCamelCase ,*_UpperCamelCase ,**_UpperCamelCase ) if labels is not None: snake_case_ : Optional[int] = self.tokenizer.pad(_UpperCamelCase ,**_UpperCamelCase ) if labels is None: return input_features elif input_features is None: return labels else: snake_case_ : List[Any] = labels["""input_ids"""] return input_features def a__ ( self :List[Any] ,*_UpperCamelCase :Any ,**_UpperCamelCase :int ): return self.tokenizer.batch_decode(*_UpperCamelCase ,**_UpperCamelCase ) def a__ ( self :Optional[Any] ,*_UpperCamelCase :Union[str, Any] ,**_UpperCamelCase :Optional[int] ): return self.tokenizer.decode(*_UpperCamelCase ,**_UpperCamelCase ) @contextmanager def a__ ( self :List[str] ): warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your audio inputs, or in a separate call.""" ) snake_case_ : str = True snake_case_ : Optional[int] = self.tokenizer yield snake_case_ : Any = self.feature_extractor snake_case_ : str = False
357
'''simple docstring''' import functools def UpperCAmelCase ( lowerCamelCase_ :str , lowerCamelCase_ :str ): '''simple docstring''' snake_case_ : List[str] = len(lowerCamelCase_ ) snake_case_ : Dict = len(lowerCamelCase_ ) @functools.cache def min_distance(lowerCamelCase_ :int , lowerCamelCase_ :int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa snake_case_ : Union[str, Any] = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , lowerCamelCase_ ) , 1 + min_distance(lowerCamelCase_ , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
8
0
'''simple docstring''' import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class _a ( __a ): __a : Any = (PNDMScheduler,) __a : Any = (("""num_inference_steps""", 50),) def A ( self : Dict , **lowercase : Tuple ): '''simple docstring''' UpperCAmelCase = { '''num_train_timesteps''': 1_000, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**lowercase ) return config def A ( self : Dict , lowercase : Dict=0 , **lowercase : str ): '''simple docstring''' UpperCAmelCase = dict(self.forward_default_kwargs ) UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase ) UpperCAmelCase = self.dummy_sample UpperCAmelCase = 0.1 * sample UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase = self.get_scheduler_config(**lowercase ) UpperCAmelCase = scheduler_class(**lowercase ) scheduler.set_timesteps(lowercase ) # copy over dummy past residuals UpperCAmelCase = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase ) UpperCAmelCase = scheduler_class.from_pretrained(lowercase ) new_scheduler.set_timesteps(lowercase ) # copy over dummy past residuals UpperCAmelCase = dummy_past_residuals[:] UpperCAmelCase = scheduler.step_prk(lowercase , lowercase , lowercase , **lowercase ).prev_sample UpperCAmelCase = new_scheduler.step_prk(lowercase , lowercase , lowercase , **lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase = scheduler.step_plms(lowercase , lowercase , lowercase , **lowercase ).prev_sample UpperCAmelCase = new_scheduler.step_plms(lowercase , lowercase , lowercase , **lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def A ( self : Tuple ): '''simple docstring''' pass def A ( self : Any , lowercase : Optional[Any]=0 , **lowercase : Optional[Any] ): '''simple docstring''' UpperCAmelCase = dict(self.forward_default_kwargs ) UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase ) UpperCAmelCase = self.dummy_sample UpperCAmelCase = 0.1 * sample UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**lowercase ) scheduler.set_timesteps(lowercase ) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase ) UpperCAmelCase = scheduler_class.from_pretrained(lowercase ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase ) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase = dummy_past_residuals[:] UpperCAmelCase = scheduler.step_prk(lowercase , lowercase , lowercase , **lowercase ).prev_sample UpperCAmelCase = new_scheduler.step_prk(lowercase , lowercase , lowercase , **lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase = scheduler.step_plms(lowercase , lowercase , lowercase , **lowercase ).prev_sample UpperCAmelCase = new_scheduler.step_plms(lowercase , lowercase , lowercase , **lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def A ( self : Optional[Any] , **lowercase : Any ): '''simple docstring''' UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config(**lowercase ) UpperCAmelCase = scheduler_class(**lowercase ) UpperCAmelCase = 10 UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(lowercase ) for i, t in enumerate(scheduler.prk_timesteps ): UpperCAmelCase = model(lowercase , lowercase ) UpperCAmelCase = scheduler.step_prk(lowercase , lowercase , lowercase ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): UpperCAmelCase = model(lowercase , lowercase ) UpperCAmelCase = scheduler.step_plms(lowercase , lowercase , lowercase ).prev_sample return sample def A ( self : Dict ): '''simple docstring''' UpperCAmelCase = dict(self.forward_default_kwargs ) UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase ) for scheduler_class in self.scheduler_classes: UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**lowercase ) UpperCAmelCase = self.dummy_sample UpperCAmelCase = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase , '''set_timesteps''' ): scheduler.set_timesteps(lowercase ) elif num_inference_steps is not None and not hasattr(lowercase , '''set_timesteps''' ): UpperCAmelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] UpperCAmelCase = dummy_past_residuals[:] UpperCAmelCase = scheduler.step_prk(lowercase , 0 , lowercase , **lowercase ).prev_sample UpperCAmelCase = scheduler.step_prk(lowercase , 1 , lowercase , **lowercase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) UpperCAmelCase = scheduler.step_plms(lowercase , 0 , lowercase , **lowercase ).prev_sample UpperCAmelCase = scheduler.step_plms(lowercase , 1 , lowercase , **lowercase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def A ( self : List[str] ): '''simple docstring''' for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=lowercase ) def A ( self : Any ): '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowercase ) UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config(steps_offset=1 ) UpperCAmelCase = scheduler_class(**lowercase ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def A ( self : Any ): '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=lowercase , beta_end=lowercase ) def A ( self : List[str] ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowercase ) def A ( self : str ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase ) def A ( self : Tuple ): '''simple docstring''' for t in [1, 5, 10]: self.check_over_forward(time_step=lowercase ) def A ( self : int ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=lowercase ) def A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase = 27 for scheduler_class in self.scheduler_classes: UpperCAmelCase = self.dummy_sample UpperCAmelCase = 0.1 * sample UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**lowercase ) scheduler.set_timesteps(lowercase ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): UpperCAmelCase = scheduler.step_prk(lowercase , lowercase , lowercase ).prev_sample def A ( self : Optional[Any] ): '''simple docstring''' with self.assertRaises(lowercase ): UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**lowercase ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase = self.full_loop() UpperCAmelCase = torch.sum(torch.abs(lowercase ) ) UpperCAmelCase = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 198.1318 ) < 1E-2 assert abs(result_mean.item() - 0.2580 ) < 1E-3 def A ( self : List[str] ): '''simple docstring''' UpperCAmelCase = self.full_loop(prediction_type='''v_prediction''' ) UpperCAmelCase = torch.sum(torch.abs(lowercase ) ) UpperCAmelCase = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 67.3986 ) < 1E-2 assert abs(result_mean.item() - 0.0878 ) < 1E-3 def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = self.full_loop(set_alpha_to_one=lowercase , beta_start=0.01 ) UpperCAmelCase = torch.sum(torch.abs(lowercase ) ) UpperCAmelCase = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 230.0399 ) < 1E-2 assert abs(result_mean.item() - 0.2995 ) < 1E-3 def A ( self : List[str] ): '''simple docstring''' UpperCAmelCase = self.full_loop(set_alpha_to_one=lowercase , beta_start=0.01 ) UpperCAmelCase = torch.sum(torch.abs(lowercase ) ) UpperCAmelCase = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 186.9482 ) < 1E-2 assert abs(result_mean.item() - 0.2434 ) < 1E-3
34
'''simple docstring''' import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow A =[ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ 'text-classification', 'language-modeling', 'summarization', 'token-classification', 'question-answering', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) A =logging.getLogger() def snake_case_ (): UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''-f''' ) UpperCAmelCase = parser.parse_args() return args.f def snake_case_ (_a : List[str] , _a : Union[str, Any]="eval" ): UpperCAmelCase = os.path.join(_a , F"{split}_results.json" ) if os.path.exists(_a ): with open(_a , '''r''' ) as f: return json.load(_a ) raise ValueError(F"can't find {path}" ) A =logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _a ( __a ): def A ( self : Any ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --eval_steps=2\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_flax_glue.main() UpperCAmelCase = get_results(lowercase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) @slow def A ( self : Any ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_clm_flax.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --block_size 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_clm_flax.main() UpperCAmelCase = get_results(lowercase ) self.assertLess(result['''eval_perplexity'''] , 100 ) @slow def A ( self : str ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_summarization.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --test_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=8\n --do_train\n --do_eval\n --do_predict\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --predict_with_generate\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_summarization_flax.main() UpperCAmelCase = get_results(lowercase , split='''test''' ) self.assertGreaterEqual(result['''test_rouge1'''] , 10 ) self.assertGreaterEqual(result['''test_rouge2'''] , 2 ) self.assertGreaterEqual(result['''test_rougeL'''] , 7 ) self.assertGreaterEqual(result['''test_rougeLsum'''] , 7 ) @slow def A ( self : int ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_mlm.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --logging_steps 2 --eval_steps 2\n --do_train\n --do_eval\n --num_train_epochs=1\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_mlm_flax.main() UpperCAmelCase = get_results(lowercase ) self.assertLess(result['''eval_perplexity'''] , 42 ) @slow def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_t5_mlm_flax.py\n --model_name_or_path t5-small\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_ta_mlm_flax.main() UpperCAmelCase = get_results(lowercase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.42 ) @slow def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = 7 if get_gpu_count() > 1 else 2 UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_flax_ner.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --do_train\n --do_eval\n --warmup_steps=2\n --learning_rate=2e-4\n --logging_steps 2 --eval_steps 2\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_flax_ner.main() UpperCAmelCase = get_results(lowercase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertGreaterEqual(result['''eval_f1'''] , 0.3 ) @slow def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_qa.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=2\n --do_train\n --do_eval\n --logging_steps 2 --eval_steps 2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_qa.main() UpperCAmelCase = get_results(lowercase ) self.assertGreaterEqual(result['''eval_f1'''] , 30 ) self.assertGreaterEqual(result['''eval_exact'''] , 30 )
34
1
'''simple docstring''' import numpy as np import qiskit def A_( A : int = 8 , A : int | None = None): UpperCamelCase = np.random.default_rng(seed=A) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. UpperCamelCase = 6 * key_len # Measurement basis for Alice's qubits. UpperCamelCase = rng.integers(2 , size=A) # The set of states Alice will prepare. UpperCamelCase = rng.integers(2 , size=A) # Measurement basis for Bob's qubits. UpperCamelCase = rng.integers(2 , size=A) # Quantum Circuit to simulate BB84 UpperCamelCase = qiskit.QuantumCircuit(A , name='BB84') # Alice prepares her qubits according to rules above. for index, _ in enumerate(A): if alice_state[index] == 1: bbaa_circ.x(A) if alice_basis[index] == 1: bbaa_circ.h(A) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(A): if bob_basis[index] == 1: bbaa_circ.h(A) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. UpperCamelCase = qiskit.Aer.get_backend('aer_simulator') # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. UpperCamelCase = qiskit.execute(A , A , shots=1 , seed_simulator=A) # Returns the result of measurement. UpperCamelCase = job.result().get_counts(A).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. UpperCamelCase = ''.join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( A , A , A) if alice_basis_bit == bob_basis_bit ]) # Get final key. Pad with 0 if too short, otherwise truncate. UpperCamelCase = gen_key[:key_len] if len(A) >= key_len else gen_key.ljust(A , '0') return key if __name__ == "__main__": print(f"""The generated key is : {bbaa(8, seed=0)}""") from doctest import testmod testmod()
251
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[int] = logging.get_logger(__name__) lowerCAmelCase : Union[str, Any] = {'openai-gpt': 'https://huggingface.co/openai-gpt/resolve/main/config.json'} class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """openai-gpt""" lowerCAmelCase_ = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , A_=40478 , A_=512 , A_=768 , A_=12 , A_=12 , A_="gelu" , A_=0.1 , A_=0.1 , A_=0.1 , A_=1e-5 , A_=0.02 , A_="cls_index" , A_=True , A_=None , A_=True , A_=0.1 , **A_ , )-> List[str]: '''simple docstring''' UpperCamelCase = vocab_size UpperCamelCase = n_positions UpperCamelCase = n_embd UpperCamelCase = n_layer UpperCamelCase = n_head UpperCamelCase = afn UpperCamelCase = resid_pdrop UpperCamelCase = embd_pdrop UpperCamelCase = attn_pdrop UpperCamelCase = layer_norm_epsilon UpperCamelCase = initializer_range UpperCamelCase = summary_type UpperCamelCase = summary_use_proj UpperCamelCase = summary_activation UpperCamelCase = summary_first_dropout UpperCamelCase = summary_proj_to_labels super().__init__(**A_ )
251
1
from numpy import exp, pi, sqrt def UpperCAmelCase ( a_ , a_ = 0.0 , a_ = 1.0 ) -> int: """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
15
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : int = { 'nvidia/segformer-b0-finetuned-ade-512-512': ( 'https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json' ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """segformer""" def __init__( self , A=3 , A=4 , A=[2, 2, 2, 2] , A=[8, 4, 2, 1] , A=[3_2, 6_4, 1_6_0, 2_5_6] , A=[7, 3, 3, 3] , A=[4, 2, 2, 2] , A=[1, 2, 5, 8] , A=[4, 4, 4, 4] , A="gelu" , A=0.0 , A=0.0 , A=0.1 , A=0.02 , A=0.1 , A=1e-6 , A=2_5_6 , A=2_5_5 , **A , ) -> Dict: super().__init__(**A ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( """Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be""" """ removed, as the behaviour will default to that of reshape_last_stage = True.""" , A , ) snake_case : List[str] = num_channels snake_case : Optional[int] = num_encoder_blocks snake_case : Optional[int] = depths snake_case : str = sr_ratios snake_case : str = hidden_sizes snake_case : Any = patch_sizes snake_case : Tuple = strides snake_case : List[str] = mlp_ratios snake_case : Optional[Any] = num_attention_heads snake_case : int = hidden_act snake_case : Tuple = hidden_dropout_prob snake_case : Any = attention_probs_dropout_prob snake_case : List[Any] = classifier_dropout_prob snake_case : Optional[Any] = initializer_range snake_case : Optional[Any] = drop_path_rate snake_case : int = layer_norm_eps snake_case : Optional[Any] = decoder_hidden_size snake_case : Tuple = kwargs.get("""reshape_last_stage""" , A ) snake_case : List[str] = semantic_loss_ignore_index class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = version.parse("""1.11""" ) @property def UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCAmelCase ( self ) -> float: return 1e-4 @property def UpperCAmelCase ( self ) -> int: return 1_2
124
0
'''simple docstring''' from __future__ import annotations import queue class _SCREAMING_SNAKE_CASE : def __init__( self : Tuple , a__ : int ): __magic_name__ = data __magic_name__ = None __magic_name__ = None def UpperCamelCase ( ) -> TreeNode: '''simple docstring''' print('''\n********Press N to stop entering at any point of time********\n''' ) __magic_name__ = input('''Enter the value of the root node: ''' ).strip().lower() __magic_name__ = queue.Queue() __magic_name__ = TreeNode(int(a ) ) q.put(a ) while not q.empty(): __magic_name__ = q.get() __magic_name__ = F'''Enter the left node of {node_found.data}: ''' __magic_name__ = input(a ).strip().lower() or '''n''' if check == "n": return tree_node __magic_name__ = TreeNode(int(a ) ) __magic_name__ = left_node q.put(a ) __magic_name__ = F'''Enter the right node of {node_found.data}: ''' __magic_name__ = input(a ).strip().lower() or '''n''' if check == "n": return tree_node __magic_name__ = TreeNode(int(a ) ) __magic_name__ = right_node q.put(a ) raise def UpperCamelCase ( a ) -> None: '''simple docstring''' if not isinstance(a , a ) or not node: return print(node.data , end=''',''' ) pre_order(node.left ) pre_order(node.right ) def UpperCamelCase ( a ) -> None: '''simple docstring''' if not isinstance(a , a ) or not node: return in_order(node.left ) print(node.data , end=''',''' ) in_order(node.right ) def UpperCamelCase ( a ) -> None: '''simple docstring''' if not isinstance(a , a ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=''',''' ) def UpperCamelCase ( a ) -> None: '''simple docstring''' if not isinstance(a , a ) or not node: return __magic_name__ = queue.Queue() q.put(a ) while not q.empty(): __magic_name__ = q.get() print(node_dequeued.data , end=''',''' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def UpperCamelCase ( a ) -> None: '''simple docstring''' if not isinstance(a , a ) or not node: return __magic_name__ = queue.Queue() q.put(a ) while not q.empty(): __magic_name__ = [] while not q.empty(): __magic_name__ = q.get() print(node_dequeued.data , end=''',''' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(a ) def UpperCamelCase ( a ) -> None: '''simple docstring''' if not isinstance(a , a ) or not node: return __magic_name__ = [] __magic_name__ = node while n or stack: while n: # start from root node, find its left child print(n.data , end=''',''' ) stack.append(a ) __magic_name__ = n.left # end of while means current node doesn't have left child __magic_name__ = stack.pop() # start to traverse its right child __magic_name__ = n.right def UpperCamelCase ( a ) -> None: '''simple docstring''' if not isinstance(a , a ) or not node: return __magic_name__ = [] __magic_name__ = node while n or stack: while n: stack.append(a ) __magic_name__ = n.left __magic_name__ = stack.pop() print(n.data , end=''',''' ) __magic_name__ = n.right def UpperCamelCase ( a ) -> None: '''simple docstring''' if not isinstance(a , a ) or not node: return __magic_name__ , __magic_name__ = [], [] __magic_name__ = node stacka.append(a ) while stacka: # to find the reversed order of post order, store it in stack2 __magic_name__ = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(a ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=''',''' ) def UpperCamelCase ( a = "" , a=50 , a="*" ) -> str: '''simple docstring''' if not s: return "\n" + width * char __magic_name__ , __magic_name__ = divmod(width - len(a ) - 2 , 2 ) return F'''{left * char} {s} {(left + extra) * char}''' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("Binary Tree Traversals")) _lowerCAmelCase = build_tree() print(prompt("Pre Order Traversal")) pre_order(node) print(prompt() + "\n") print(prompt("In Order Traversal")) in_order(node) print(prompt() + "\n") print(prompt("Post Order Traversal")) post_order(node) print(prompt() + "\n") print(prompt("Level Order Traversal")) level_order(node) print(prompt() + "\n") print(prompt("Actual Level Order Traversal")) level_order_actual(node) print("*" * 50 + "\n") print(prompt("Pre Order Traversal - Iteration Version")) pre_order_iter(node) print(prompt() + "\n") print(prompt("In Order Traversal - Iteration Version")) in_order_iter(node) print(prompt() + "\n") print(prompt("Post Order Traversal - Iteration Version")) post_order_iter(node) print(prompt())
98
'''simple docstring''' from random import randint, random def UpperCamelCase ( a , a , a , a = False , a = False , a = 5 , ) -> list: '''simple docstring''' __magic_name__ = [[-1] * number_of_cells] # Create a highway without any car __magic_name__ = 0 __magic_name__ = max(a , 0 ) while i < number_of_cells: __magic_name__ = ( randint(0 , a ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def UpperCamelCase ( a , a ) -> int: '''simple docstring''' __magic_name__ = 0 __magic_name__ = highway_now[car_index + 1 :] for cell in range(len(a ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(a , -1 ) def UpperCamelCase ( a , a , a ) -> list: '''simple docstring''' __magic_name__ = len(a ) # Beforce calculations, the highway is empty __magic_name__ = [-1] * number_of_cells for car_index in range(a ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed __magic_name__ = min(highway_now[car_index] + 1 , a ) # Number of empty cell before the next car __magic_name__ = get_distance(a , a ) - 1 # We can't have the car causing an accident __magic_name__ = min(next_highway[car_index] , a ) if random() < probability: # Randomly, a driver will slow down __magic_name__ = max(next_highway[car_index] - 1 , 0 ) return next_highway def UpperCamelCase ( a , a , a , a ) -> list: '''simple docstring''' __magic_name__ = len(highway[0] ) for i in range(a ): __magic_name__ = update(highway[i] , a , a ) __magic_name__ = [-1] * number_of_cells for car_index in range(a ): __magic_name__ = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) __magic_name__ = (car_index + speed) % number_of_cells # Commit the change of position __magic_name__ = speed highway.append(a ) return highway if __name__ == "__main__": import doctest doctest.testmod()
98
1
A_ : List[Any] = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] A_ : Optional[int] = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] A_ : List[Any] = { 0: 'Sunday', 1: 'Monday', 2: 'Tuesday', 3: 'Wednesday', 4: 'Thursday', 5: 'Friday', 6: 'Saturday', } def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' assert len(str(SCREAMING_SNAKE_CASE ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 1_2, "month should be between 1 to 12" assert 1 <= day <= 3_1, "day should be between 1 to 31" # Doomsday algorithm: __UpperCAmelCase = year // 1_0_0 __UpperCAmelCase = (5 * (century % 4) + 2) % 7 __UpperCAmelCase = year % 1_0_0 __UpperCAmelCase = centurian % 1_2 __UpperCAmelCase = ( (centurian // 1_2) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 __UpperCAmelCase = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 4_0_0) == 0) else DOOMSDAY_LEAP[month - 1] ) __UpperCAmelCase = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
333
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = '''▁''' __UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model'''} __UpperCamelCase = { '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model''' ), } } __UpperCamelCase = { '''facebook/nllb-200-distilled-600M''': 1024, } # fmt: off __UpperCamelCase = ['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] def __init__( self, lowerCAmelCase__, lowerCAmelCase__="<s>", lowerCAmelCase__="</s>", lowerCAmelCase__="</s>", lowerCAmelCase__="<s>", lowerCAmelCase__="<unk>", lowerCAmelCase__="<pad>", lowerCAmelCase__="<mask>", lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__ = None, lowerCAmelCase__=None, lowerCAmelCase__=False, **lowerCAmelCase__, ) -> Union[str, Any]: # Mask token behave like a normal word, i.e. include the space before it snake_case_ = AddedToken(lowerCAmelCase__, lstrip=lowerCAmelCase__, rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__) else mask_token snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs snake_case_ = legacy_behaviour super().__init__( bos_token=lowerCAmelCase__, eos_token=lowerCAmelCase__, unk_token=lowerCAmelCase__, sep_token=lowerCAmelCase__, cls_token=lowerCAmelCase__, pad_token=lowerCAmelCase__, mask_token=lowerCAmelCase__, tokenizer_file=lowerCAmelCase__, src_lang=lowerCAmelCase__, tgt_lang=lowerCAmelCase__, additional_special_tokens=lowerCAmelCase__, sp_model_kwargs=self.sp_model_kwargs, legacy_behaviour=lowerCAmelCase__, **lowerCAmelCase__, ) snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(lowerCAmelCase__)) snake_case_ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token snake_case_ = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab snake_case_ = 1 snake_case_ = len(self.sp_model) snake_case_ = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCAmelCase__) } snake_case_ = {v: k for k, v in self.lang_code_to_id.items()} snake_case_ = len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id) snake_case_ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} snake_case_ = list(self.lang_code_to_id.keys()) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens]) snake_case_ = src_lang if src_lang is not None else 'eng_Latn' snake_case_ = self.lang_code_to_id[self._src_lang] snake_case_ = tgt_lang self.set_src_lang_special_tokens(self._src_lang) def __getstate__( self) -> Union[str, Any]: snake_case_ = self.__dict__.copy() snake_case_ = None snake_case_ = self.sp_model.serialized_model_proto() return state def __setstate__( self, lowerCAmelCase__) -> Tuple: snake_case_ = d # for backward compatibility if not hasattr(self, 'sp_model_kwargs'): snake_case_ = {} snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.LoadFromSerializedProto(self.sp_model_proto) @property def a_ ( self) -> str: return len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def a_ ( self) -> str: return self._src_lang @src_lang.setter def a_ ( self, lowerCAmelCase__) -> None: snake_case_ = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None, lowerCAmelCase__ = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__, token_ids_a=lowerCAmelCase__, already_has_special_tokens=lowerCAmelCase__) snake_case_ = [1] * len(self.prefix_tokens) snake_case_ = [1] * len(self.suffix_tokens) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase__)) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase__)) + ([0] * len(lowerCAmelCase__)) + suffix_ones def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, **lowerCAmelCase__) -> str: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model') snake_case_ = src_lang snake_case_ = self(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__, return_tensors=lowerCAmelCase__, **lowerCAmelCase__) snake_case_ = self.convert_tokens_to_ids(lowerCAmelCase__) snake_case_ = tgt_lang_id return inputs def a_ ( self) -> List[Any]: snake_case_ = {self.convert_ids_to_tokens(lowerCAmelCase__): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def a_ ( self, lowerCAmelCase__) -> List[str]: return self.sp_model.encode(lowerCAmelCase__, out_type=lowerCAmelCase__) def a_ ( self, lowerCAmelCase__) -> Any: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case_ = self.sp_model.PieceToId(lowerCAmelCase__) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def a_ ( self, lowerCAmelCase__) -> Dict: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def a_ ( self, lowerCAmelCase__) -> List[str]: snake_case_ = ''.join(lowerCAmelCase__).replace(lowerCAmelCase__, ' ').strip() return out_string def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__): logger.error(f'Vocabulary path ({save_directory}) should be a directory') return snake_case_ = os.path.join( lowerCAmelCase__, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCAmelCase__) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, lowerCAmelCase__) elif not os.path.isfile(self.vocab_file): with open(lowerCAmelCase__, 'wb') as fi: snake_case_ = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__) return (out_vocab_file,) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = "eng_Latn", lowerCAmelCase__ = None, lowerCAmelCase__ = "fra_Latn", **lowerCAmelCase__, ) -> BatchEncoding: snake_case_ = src_lang snake_case_ = tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase__, lowerCAmelCase__, **lowerCAmelCase__) def a_ ( self) -> Union[str, Any]: return self.set_src_lang_special_tokens(self.src_lang) def a_ ( self) -> int: return self.set_tgt_lang_special_tokens(self.tgt_lang) def a_ ( self, lowerCAmelCase__) -> None: snake_case_ = self.lang_code_to_id[src_lang] if self.legacy_behaviour: snake_case_ = [] snake_case_ = [self.eos_token_id, self.cur_lang_code] else: snake_case_ = [self.cur_lang_code] snake_case_ = [self.eos_token_id] def a_ ( self, lowerCAmelCase__) -> None: snake_case_ = self.lang_code_to_id[lang] if self.legacy_behaviour: snake_case_ = [] snake_case_ = [self.eos_token_id, self.cur_lang_code] else: snake_case_ = [self.cur_lang_code] snake_case_ = [self.eos_token_id]
69
0
"""simple docstring""" import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort _lowercase : Tuple = logging.get_logger(__name__) _lowercase : Union[str, Any] = { 'tensor(bool)': np.bool_, 'tensor(int8)': np.inta, 'tensor(uint8)': np.uinta, 'tensor(int16)': np.intaa, 'tensor(uint16)': np.uintaa, 'tensor(int32)': np.intaa, 'tensor(uint32)': np.uintaa, 'tensor(int64)': np.intaa, 'tensor(uint64)': np.uintaa, 'tensor(float16)': np.floataa, 'tensor(float)': np.floataa, 'tensor(double)': np.floataa, } class _UpperCAmelCase : def __init__( self : List[Any] , _lowercase : List[str]=None , **_lowercase : Optional[Any] ): logger.info('''`diffusers.OnnxRuntimeModel` is experimental and might change in the future.''' ) __UpperCAmelCase = model __UpperCAmelCase = kwargs.get('''model_save_dir''' , _lowercase ) __UpperCAmelCase = kwargs.get('''latest_model_name''' , _lowercase ) def __call__( self : Optional[int] , **_lowercase : Union[str, Any] ): __UpperCAmelCase = {k: np.array(_lowercase ) for k, v in kwargs.items()} return self.model.run(_lowercase , _lowercase ) @staticmethod def a ( _lowercase : Union[str, Path] , _lowercase : str=None , _lowercase : Dict=None ): if provider is None: logger.info('''No onnxruntime provider specified, using CPUExecutionProvider''' ) __UpperCAmelCase = '''CPUExecutionProvider''' return ort.InferenceSession(_lowercase , providers=[provider] , sess_options=_lowercase ) def a ( self : str , _lowercase : Union[str, Path] , _lowercase : Optional[str] = None , **_lowercase : int ): __UpperCAmelCase = file_name if file_name is not None else ONNX_WEIGHTS_NAME __UpperCAmelCase = self.model_save_dir.joinpath(self.latest_model_name ) __UpperCAmelCase = Path(_lowercase ).joinpath(_lowercase ) try: shutil.copyfile(_lowercase , _lowercase ) except shutil.SameFileError: pass # copy external weights (for models >2GB) __UpperCAmelCase = self.model_save_dir.joinpath(_lowercase ) if src_path.exists(): __UpperCAmelCase = Path(_lowercase ).joinpath(_lowercase ) try: shutil.copyfile(_lowercase , _lowercase ) except shutil.SameFileError: pass def a ( self : Optional[Any] , _lowercase : Union[str, os.PathLike] , **_lowercase : Optional[int] , ): if os.path.isfile(_lowercase ): logger.error(F'''Provided path ({save_directory}) should be a directory, not a file''' ) return os.makedirs(_lowercase , exist_ok=_lowercase ) # saving model weights/files self._save_pretrained(_lowercase , **_lowercase ) @classmethod def a ( cls : str , _lowercase : Union[str, Path] , _lowercase : Optional[Union[bool, str, None]] = None , _lowercase : Optional[Union[str, None]] = None , _lowercase : bool = False , _lowercase : Optional[str] = None , _lowercase : Optional[str] = None , _lowercase : Optional[str] = None , _lowercase : Optional["ort.SessionOptions"] = None , **_lowercase : List[Any] , ): __UpperCAmelCase = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(_lowercase ): __UpperCAmelCase = OnnxRuntimeModel.load_model( os.path.join(_lowercase , _lowercase ) , provider=_lowercase , sess_options=_lowercase ) __UpperCAmelCase = Path(_lowercase ) # load model from hub else: # download model __UpperCAmelCase = hf_hub_download( repo_id=_lowercase , filename=_lowercase , use_auth_token=_lowercase , revision=_lowercase , cache_dir=_lowercase , force_download=_lowercase , ) __UpperCAmelCase = Path(_lowercase ).parent __UpperCAmelCase = Path(_lowercase ).name __UpperCAmelCase = OnnxRuntimeModel.load_model(_lowercase , provider=_lowercase , sess_options=_lowercase ) return cls(model=_lowercase , **_lowercase ) @classmethod def a ( cls : Union[str, Any] , _lowercase : Union[str, Path] , _lowercase : bool = True , _lowercase : Optional[str] = None , _lowercase : Optional[str] = None , **_lowercase : Any , ): __UpperCAmelCase = None if len(str(_lowercase ).split('''@''' ) ) == 2: __UpperCAmelCase , __UpperCAmelCase = model_id.split('''@''' ) return cls._from_pretrained( model_id=_lowercase , revision=_lowercase , cache_dir=_lowercase , force_download=_lowercase , use_auth_token=_lowercase , **_lowercase , )
86
"""simple docstring""" import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class _UpperCAmelCase : def __init__( self : Optional[int] , _lowercase : Any , _lowercase : List[str]=14 , _lowercase : Dict=7 , _lowercase : Optional[int]=True , _lowercase : Optional[int]=True , _lowercase : Any=False , _lowercase : Any=True , _lowercase : List[str]=99 , _lowercase : int=32 , _lowercase : Union[str, Any]=4 , _lowercase : Dict=4 , _lowercase : List[Any]=4 , _lowercase : Dict=37 , _lowercase : Tuple="gelu" , _lowercase : Optional[int]=0.1 , _lowercase : Dict=0.1 , _lowercase : Union[str, Any]=5_12 , _lowercase : int=0.02 , ): __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = seq_length __UpperCAmelCase = is_training __UpperCAmelCase = use_input_mask __UpperCAmelCase = use_token_type_ids __UpperCAmelCase = use_labels __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = rotary_dim __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_act __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = initializer_range __UpperCAmelCase = None __UpperCAmelCase = vocab_size - 1 __UpperCAmelCase = vocab_size - 1 __UpperCAmelCase = vocab_size - 1 def a ( self : int ): __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase = None if self.use_input_mask: __UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=_lowercase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def a ( self : str ): __UpperCAmelCase = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = config_and_inputs __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict def a ( self : List[Any] , _lowercase : Tuple , _lowercase : Optional[Any] , _lowercase : List[str] , _lowercase : List[str] ): __UpperCAmelCase = 20 __UpperCAmelCase = model_class_name(_lowercase ) __UpperCAmelCase = model.init_cache(input_ids.shape[0] , _lowercase ) __UpperCAmelCase = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) __UpperCAmelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __UpperCAmelCase = model( input_ids[:, :-1] , attention_mask=_lowercase , past_key_values=_lowercase , position_ids=_lowercase , ) __UpperCAmelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''' ) __UpperCAmelCase = model( input_ids[:, -1:] , attention_mask=_lowercase , past_key_values=outputs_cache.past_key_values , position_ids=_lowercase , ) __UpperCAmelCase = model(_lowercase ) __UpperCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) def a ( self : List[Any] , _lowercase : Optional[int] , _lowercase : Any , _lowercase : Optional[int] , _lowercase : Union[str, Any] ): __UpperCAmelCase = 20 __UpperCAmelCase = model_class_name(_lowercase ) __UpperCAmelCase = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) __UpperCAmelCase = model.init_cache(input_ids.shape[0] , _lowercase ) __UpperCAmelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __UpperCAmelCase = model( input_ids[:, :-1] , attention_mask=_lowercase , past_key_values=_lowercase , position_ids=_lowercase , ) __UpperCAmelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''' ) __UpperCAmelCase = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=_lowercase , position_ids=_lowercase , ) __UpperCAmelCase = model(_lowercase , attention_mask=_lowercase ) __UpperCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) @require_flax class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): a__ : Any = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () a__ : List[Any] = (FlaxGPTJForCausalLM,) if is_flax_available() else () def a ( self : List[Any] ): __UpperCAmelCase = FlaxGPTJModelTester(self ) def a ( self : Any ): for model_class_name in self.all_model_classes: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(_lowercase , _lowercase , _lowercase , _lowercase ) def a ( self : Union[str, Any] ): for model_class_name in self.all_model_classes: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( _lowercase , _lowercase , _lowercase , _lowercase ) @tooslow def a ( self : Tuple ): __UpperCAmelCase = GPTaTokenizer.from_pretrained('''gpt2''' , pad_token='''<|endoftext|>''' , padding_side='''left''' ) __UpperCAmelCase = tokenizer(['''Hello this is a long string''', '''Hey'''] , return_tensors='''np''' , padding=_lowercase , truncation=_lowercase ) __UpperCAmelCase = FlaxGPTJForCausalLM.from_pretrained('''EleutherAI/gpt-j-6B''' ) __UpperCAmelCase = False __UpperCAmelCase = model.config.eos_token_id __UpperCAmelCase = jax.jit(model.generate ) __UpperCAmelCase = jit_generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , pad_token_id=tokenizer.pad_token_id ).sequences __UpperCAmelCase = tokenizer.batch_decode(_lowercase , skip_special_tokens=_lowercase ) __UpperCAmelCase = [ '''Hello this is a long string of text.\n\nI\'m trying to get the text of the''', '''Hey, I\'m a little late to the party. I\'m going to''', ] self.assertListEqual(_lowercase , _lowercase ) @is_pt_flax_cross_test def a ( self : Tuple ): __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __UpperCAmelCase = self._prepare_for_class(_lowercase , _lowercase ) __UpperCAmelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __UpperCAmelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __UpperCAmelCase = getattr(_lowercase , _lowercase ) __UpperCAmelCase , __UpperCAmelCase = pt_inputs['''input_ids'''].shape __UpperCAmelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_lowercase ): __UpperCAmelCase = 0 __UpperCAmelCase = 1 __UpperCAmelCase = 0 __UpperCAmelCase = 1 __UpperCAmelCase = pt_model_class(_lowercase ).eval() __UpperCAmelCase = model_class(_lowercase , dtype=jnp.floataa ) __UpperCAmelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , _lowercase ) __UpperCAmelCase = fx_state with torch.no_grad(): __UpperCAmelCase = pt_model(**_lowercase ).to_tuple() __UpperCAmelCase = fx_model(**_lowercase ).to_tuple() self.assertEqual(len(_lowercase ) , len(_lowercase ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(_lowercase , _lowercase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(_lowercase ) __UpperCAmelCase = model_class.from_pretrained(_lowercase , from_pt=_lowercase ) __UpperCAmelCase = fx_model_loaded(**_lowercase ).to_tuple() self.assertEqual( len(_lowercase ) , len(_lowercase ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output_loaded, pt_output in zip(_lowercase , _lowercase ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @is_pt_flax_cross_test def a ( self : Any ): __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __UpperCAmelCase = self._prepare_for_class(_lowercase , _lowercase ) __UpperCAmelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __UpperCAmelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __UpperCAmelCase = getattr(_lowercase , _lowercase ) __UpperCAmelCase = pt_model_class(_lowercase ).eval() __UpperCAmelCase = model_class(_lowercase , dtype=jnp.floataa ) __UpperCAmelCase = load_flax_weights_in_pytorch_model(_lowercase , fx_model.params ) __UpperCAmelCase , __UpperCAmelCase = pt_inputs['''input_ids'''].shape __UpperCAmelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_lowercase ): __UpperCAmelCase = 0 __UpperCAmelCase = 1 __UpperCAmelCase = 0 __UpperCAmelCase = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): __UpperCAmelCase = pt_model(**_lowercase ).to_tuple() __UpperCAmelCase = fx_model(**_lowercase ).to_tuple() self.assertEqual(len(_lowercase ) , len(_lowercase ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(_lowercase , _lowercase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(_lowercase ) __UpperCAmelCase = pt_model_class.from_pretrained(_lowercase , from_flax=_lowercase ) with torch.no_grad(): __UpperCAmelCase = pt_model_loaded(**_lowercase ).to_tuple() self.assertEqual( len(_lowercase ) , len(_lowercase ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(_lowercase , _lowercase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @tooslow def a ( self : Tuple ): for model_class_name in self.all_model_classes: __UpperCAmelCase = model_class_name.from_pretrained('''EleutherAI/gpt-j-6B''' ) __UpperCAmelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowercase )
86
1
import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class snake_case_ ( __A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = AudioLDMPipeline SCREAMING_SNAKE_CASE : str = TEXT_TO_AUDIO_PARAMS SCREAMING_SNAKE_CASE : Optional[int] = TEXT_TO_AUDIO_BATCH_PARAMS SCREAMING_SNAKE_CASE : Dict = frozenset( [ "num_inference_steps", "num_waveforms_per_prompt", "generator", "latents", "output_type", "return_dict", "callback", "callback_steps", ] ) def snake_case__( self : Dict ) ->str: torch.manual_seed(0 ) snake_case_ = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=(3_2, 6_4) , class_embed_type='''simple_projection''' , projection_class_embeddings_input_dim=3_2 , class_embeddings_concat=_UpperCamelCase , ) snake_case_ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_UpperCamelCase , set_alpha_to_one=_UpperCamelCase , ) torch.manual_seed(0 ) snake_case_ = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=1 , out_channels=1 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) snake_case_ = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , projection_dim=3_2 , ) snake_case_ = ClapTextModelWithProjection(_UpperCamelCase ) snake_case_ = RobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-roberta''' , model_max_length=7_7 ) snake_case_ = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=1_6_0_0_0 , upsample_initial_channel=1_6 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=_UpperCamelCase , ) snake_case_ = SpeechTaHifiGan(_UpperCamelCase ) snake_case_ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''vocoder''': vocoder, } return components def snake_case__( self : str , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any]=0 ) ->str: if str(_UpperCamelCase ).startswith('''mps''' ): snake_case_ = torch.manual_seed(_UpperCamelCase ) else: snake_case_ = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) snake_case_ = { '''prompt''': '''A hammer hitting a wooden surface''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, } return inputs def snake_case__( self : int ) ->Optional[int]: snake_case_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ = self.get_dummy_components() snake_case_ = AudioLDMPipeline(**_UpperCamelCase ) snake_case_ = audioldm_pipe.to(_UpperCamelCase ) audioldm_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = self.get_dummy_inputs(_UpperCamelCase ) snake_case_ = audioldm_pipe(**_UpperCamelCase ) snake_case_ = output.audios[0] assert audio.ndim == 1 assert len(_UpperCamelCase ) == 2_5_6 snake_case_ = audio[:1_0] snake_case_ = np.array( [-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def snake_case__( self : List[str] ) ->Any: snake_case_ = self.get_dummy_components() snake_case_ = AudioLDMPipeline(**_UpperCamelCase ) snake_case_ = audioldm_pipe.to(_UpperCamelCase ) snake_case_ = audioldm_pipe.to(_UpperCamelCase ) audioldm_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = self.get_dummy_inputs(_UpperCamelCase ) snake_case_ = 3 * [inputs['''prompt''']] # forward snake_case_ = audioldm_pipe(**_UpperCamelCase ) snake_case_ = output.audios[0] snake_case_ = self.get_dummy_inputs(_UpperCamelCase ) snake_case_ = 3 * [inputs.pop('''prompt''' )] snake_case_ = audioldm_pipe.tokenizer( _UpperCamelCase , padding='''max_length''' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=_UpperCamelCase , return_tensors='''pt''' , ) snake_case_ = text_inputs['''input_ids'''].to(_UpperCamelCase ) snake_case_ = audioldm_pipe.text_encoder( _UpperCamelCase , ) snake_case_ = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state snake_case_ = F.normalize(_UpperCamelCase , dim=-1 ) snake_case_ = prompt_embeds # forward snake_case_ = audioldm_pipe(**_UpperCamelCase ) snake_case_ = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def snake_case__( self : Any ) ->Union[str, Any]: snake_case_ = self.get_dummy_components() snake_case_ = AudioLDMPipeline(**_UpperCamelCase ) snake_case_ = audioldm_pipe.to(_UpperCamelCase ) snake_case_ = audioldm_pipe.to(_UpperCamelCase ) audioldm_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = self.get_dummy_inputs(_UpperCamelCase ) snake_case_ = 3 * ['''this is a negative prompt'''] snake_case_ = negative_prompt snake_case_ = 3 * [inputs['''prompt''']] # forward snake_case_ = audioldm_pipe(**_UpperCamelCase ) snake_case_ = output.audios[0] snake_case_ = self.get_dummy_inputs(_UpperCamelCase ) snake_case_ = 3 * [inputs.pop('''prompt''' )] snake_case_ = [] for p in [prompt, negative_prompt]: snake_case_ = audioldm_pipe.tokenizer( _UpperCamelCase , padding='''max_length''' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=_UpperCamelCase , return_tensors='''pt''' , ) snake_case_ = text_inputs['''input_ids'''].to(_UpperCamelCase ) snake_case_ = audioldm_pipe.text_encoder( _UpperCamelCase , ) snake_case_ = text_embeds.text_embeds # additional L_2 normalization over each hidden-state snake_case_ = F.normalize(_UpperCamelCase , dim=-1 ) embeds.append(_UpperCamelCase ) snake_case_, snake_case_ = embeds # forward snake_case_ = audioldm_pipe(**_UpperCamelCase ) snake_case_ = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def snake_case__( self : List[Any] ) ->Optional[int]: snake_case_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ = self.get_dummy_components() snake_case_ = PNDMScheduler(skip_prk_steps=_UpperCamelCase ) snake_case_ = AudioLDMPipeline(**_UpperCamelCase ) snake_case_ = audioldm_pipe.to(_UpperCamelCase ) audioldm_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = self.get_dummy_inputs(_UpperCamelCase ) snake_case_ = '''egg cracking''' snake_case_ = audioldm_pipe(**_UpperCamelCase , negative_prompt=_UpperCamelCase ) snake_case_ = output.audios[0] assert audio.ndim == 1 assert len(_UpperCamelCase ) == 2_5_6 snake_case_ = audio[:1_0] snake_case_ = np.array( [-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def snake_case__( self : List[Any] ) ->Union[str, Any]: snake_case_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ = self.get_dummy_components() snake_case_ = PNDMScheduler(skip_prk_steps=_UpperCamelCase ) snake_case_ = AudioLDMPipeline(**_UpperCamelCase ) snake_case_ = audioldm_pipe.to(_UpperCamelCase ) audioldm_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = '''A hammer hitting a wooden surface''' # test num_waveforms_per_prompt=1 (default) snake_case_ = audioldm_pipe(_UpperCamelCase , num_inference_steps=2 ).audios assert audios.shape == (1, 2_5_6) # test num_waveforms_per_prompt=1 (default) for batch of prompts snake_case_ = 2 snake_case_ = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 2_5_6) # test num_waveforms_per_prompt for single prompt snake_case_ = 2 snake_case_ = audioldm_pipe(_UpperCamelCase , num_inference_steps=2 , num_waveforms_per_prompt=_UpperCamelCase ).audios assert audios.shape == (num_waveforms_per_prompt, 2_5_6) # test num_waveforms_per_prompt for batch of prompts snake_case_ = 2 snake_case_ = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=_UpperCamelCase ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 2_5_6) def snake_case__( self : Optional[int] ) ->List[str]: snake_case_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ = self.get_dummy_components() snake_case_ = AudioLDMPipeline(**_UpperCamelCase ) snake_case_ = audioldm_pipe.to(_UpperCamelCase ) audioldm_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = audioldm_pipe.vocoder.config.sampling_rate snake_case_ = self.get_dummy_inputs(_UpperCamelCase ) snake_case_ = audioldm_pipe(audio_length_in_s=0.016 , **_UpperCamelCase ) snake_case_ = output.audios[0] assert audio.ndim == 1 assert len(_UpperCamelCase ) / vocoder_sampling_rate == 0.016 snake_case_ = audioldm_pipe(audio_length_in_s=0.032 , **_UpperCamelCase ) snake_case_ = output.audios[0] assert audio.ndim == 1 assert len(_UpperCamelCase ) / vocoder_sampling_rate == 0.032 def snake_case__( self : str ) ->List[Any]: snake_case_ = self.get_dummy_components() snake_case_ = AudioLDMPipeline(**_UpperCamelCase ) snake_case_ = audioldm_pipe.to(_UpperCamelCase ) audioldm_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = ['''hey'''] snake_case_ = audioldm_pipe(_UpperCamelCase , num_inference_steps=1 ) snake_case_ = output.audios.shape assert audio_shape == (1, 2_5_6) snake_case_ = audioldm_pipe.vocoder.config config.model_in_dim *= 2 snake_case_ = SpeechTaHifiGan(_UpperCamelCase ).to(_UpperCamelCase ) snake_case_ = audioldm_pipe(_UpperCamelCase , num_inference_steps=1 ) snake_case_ = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 2_5_6) def snake_case__( self : Optional[Any] ) ->int: self._test_attention_slicing_forward_pass(test_mean_pixel_difference=_UpperCamelCase ) def snake_case__( self : int ) ->Optional[int]: self._test_inference_batch_single_identical(test_mean_pixel_difference=_UpperCamelCase ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def snake_case__( self : Optional[Any] ) ->int: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_UpperCamelCase ) @slow class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Any ) ->str: super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__( self : Tuple , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str="cpu" , _UpperCamelCase : List[Any]=torch.floataa , _UpperCamelCase : Any=0 ) ->List[str]: snake_case_ = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) snake_case_ = np.random.RandomState(_UpperCamelCase ).standard_normal((1, 8, 1_2_8, 1_6) ) snake_case_ = torch.from_numpy(_UpperCamelCase ).to(device=_UpperCamelCase , dtype=_UpperCamelCase ) snake_case_ = { '''prompt''': '''A hammer hitting a wooden surface''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 2.5, } return inputs def snake_case__( self : Any ) ->Union[str, Any]: snake_case_ = AudioLDMPipeline.from_pretrained('''cvssp/audioldm''' ) snake_case_ = audioldm_pipe.to(_UpperCamelCase ) audioldm_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = self.get_inputs(_UpperCamelCase ) snake_case_ = 2_5 snake_case_ = audioldm_pipe(**_UpperCamelCase ).audios[0] assert audio.ndim == 1 assert len(_UpperCamelCase ) == 8_1_9_2_0 snake_case_ = audio[7_7_2_3_0:7_7_2_4_0] snake_case_ = np.array( [-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315] ) snake_case_ = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1e-2 def snake_case__( self : List[Any] ) ->str: snake_case_ = AudioLDMPipeline.from_pretrained('''cvssp/audioldm''' ) snake_case_ = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) snake_case_ = audioldm_pipe.to(_UpperCamelCase ) audioldm_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = self.get_inputs(_UpperCamelCase ) snake_case_ = audioldm_pipe(**_UpperCamelCase ).audios[0] assert audio.ndim == 1 assert len(_UpperCamelCase ) == 8_1_9_2_0 snake_case_ = audio[2_7_7_8_0:2_7_7_9_0] snake_case_ = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212] ) snake_case_ = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3e-2
8
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm lowercase : List[str] = logging.get_logger(__name__) @dataclass class A__ ( __UpperCAmelCase ): """simple docstring""" __A : Optional[Any] = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__( self , **lowercase) -> Tuple: '''simple docstring''' for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: a__ : Union[str, Any] = deprecated_arg[3:] setattr(self , lowercase , not kwargs.pop(lowercase)) logger.warning( F'{deprecated_arg} is depreciated. Please use --no_{positive_arg} or' F' {positive_arg}={kwargs[positive_arg]}') a__ : Union[str, Any] = kwargs.pop('torchscript' , self.torchscript) a__ : Tuple = kwargs.pop('torch_xla_tpu_print_metrics' , self.torch_xla_tpu_print_metrics) a__ : Tuple = kwargs.pop('fp16_opt_level' , self.fpaa_opt_level) super().__init__(**lowercase) __A : bool = field(default=__UpperCAmelCase , metadata={'''help''': '''Trace the models using torchscript'''} ) __A : bool = field(default=__UpperCAmelCase , metadata={'''help''': '''Print Xla/PyTorch tpu metrics'''} ) __A : str = field( default='''O1''' , metadata={ '''help''': ( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. ''' '''See details at https://nvidia.github.io/apex/amp.html''' ) } , ) @cached_property def __lowercase ( self) -> Tuple["torch.device", int]: '''simple docstring''' requires_backends(self , ['torch']) logger.info('PyTorch: setting up devices') if not self.cuda: a__ : List[str] = torch.device('cpu') a__ : Optional[Any] = 0 elif is_torch_tpu_available(): a__ : List[str] = xm.xla_device() a__ : Union[str, Any] = 0 else: a__ : List[Any] = torch.device('cuda' if torch.cuda.is_available() else 'cpu') a__ : Optional[int] = torch.cuda.device_count() return device, n_gpu @property def __lowercase ( self) -> List[str]: '''simple docstring''' return is_torch_tpu_available() and self.tpu @property def __lowercase ( self) -> int: '''simple docstring''' requires_backends(self , ['torch']) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def __lowercase ( self) -> "torch.device": '''simple docstring''' requires_backends(self , ['torch']) return self._setup_devices[0] @property def __lowercase ( self) -> Dict: '''simple docstring''' requires_backends(self , ['torch']) return self._setup_devices[1] @property def __lowercase ( self) -> Optional[int]: '''simple docstring''' return self.n_gpu > 0
99
0
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys __snake_case : List[str] = """3""" print("""Python version:""", sys.version) print("""OS platform:""", platform.platform()) print("""OS architecture:""", platform.machine()) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) except ImportError: print("""Torch version:""", None) try: import transformers print("""transformers version:""", transformers.__version__) except ImportError: print("""transformers version:""", None)
122
import colorsys from PIL import Image # type: ignore def _UpperCamelCase ( UpperCamelCase_ : float , UpperCamelCase_ : float , UpperCamelCase_ : int ) -> float: """simple docstring""" lowerCAmelCase__ = x lowerCAmelCase__ = y for step in range(UpperCamelCase_ ): # noqa: B007 lowerCAmelCase__ = a * a - b * b + x lowerCAmelCase__ = 2 * a * b + y lowerCAmelCase__ = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def _UpperCamelCase ( UpperCamelCase_ : float ) -> tuple: """simple docstring""" if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def _UpperCamelCase ( UpperCamelCase_ : float ) -> tuple: """simple docstring""" if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(UpperCamelCase_ , 1 , 1 ) ) def _UpperCamelCase ( UpperCamelCase_ : int = 800 , UpperCamelCase_ : int = 600 , UpperCamelCase_ : float = -0.6 , UpperCamelCase_ : float = 0 , UpperCamelCase_ : float = 3.2 , UpperCamelCase_ : int = 50 , UpperCamelCase_ : bool = True , ) -> Image.Image: """simple docstring""" lowerCAmelCase__ = Image.new('RGB' , (image_width, image_height) ) lowerCAmelCase__ = img.load() # loop through the image-coordinates for image_x in range(UpperCamelCase_ ): for image_y in range(UpperCamelCase_ ): # determine the figure-coordinates based on the image-coordinates lowerCAmelCase__ = figure_width / image_width * image_height lowerCAmelCase__ = figure_center_x + (image_x / image_width - 0.5) * figure_width lowerCAmelCase__ = figure_center_y + (image_y / image_height - 0.5) * figure_height lowerCAmelCase__ = get_distance(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: lowerCAmelCase__ = get_color_coded_rgb(UpperCamelCase_ ) else: lowerCAmelCase__ = get_black_and_white_rgb(UpperCamelCase_ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure __snake_case : str = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
122
1
"""simple docstring""" import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels A = object() # For specifying empty leaf dict `{}` A = object() def __A ( a_ :int , a_ :Optional[Any]) -> str: __a : Dict = tuple((re.compile(x + '''$''') for x in qs)) for i in range(len(a_) - len(a_) + 1): __a : Optional[Any] = [x.match(a_) for x, y in zip(a_ , ks[i:])] if matches and all(a_): return True return False def __A ( a_ :Union[str, Any]) -> Optional[Any]: def replace(a_ :List[Any] , a_ :Dict): for rule, replacement in rules: if _match(a_ , a_): return replacement return val return replace def __A ( ) -> Optional[Any]: return [ # embeddings (("transformer", "wpe", "embedding"), P('''mp''' , a_)), (("transformer", "wte", "embedding"), P('''mp''' , a_)), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(a_ , '''mp''')), (("attention", "out_proj", "kernel"), P('''mp''' , a_)), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(a_ , '''mp''')), (("mlp", "c_fc", "bias"), P('''mp''')), (("mlp", "c_proj", "kernel"), P('''mp''' , a_)), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def __A ( a_ :Union[str, Any]) -> Any: __a : Tuple = _get_partition_rules() __a : int = _replacement_rules(a_) __a : Any = {k: _unmatched for k in flatten_dict(a_)} __a : Optional[int] = {k: replace(a_ , a_) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(a_))
160
"""simple docstring""" from __future__ import annotations def __A ( a_ :str , a_ :str) -> bool: __a : Optional[Any] = get_failure_array(a_) # 2) Step through text searching for pattern __a , __a : Union[str, Any] = 0, 0 # index into text, pattern while i < len(a_): if pattern[j] == text[i]: if j == (len(a_) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: __a : List[Any] = failure[j - 1] continue i += 1 return False def __A ( a_ :str) -> list[int]: __a : List[Any] = [0] __a : List[Any] = 0 __a : Any = 1 while j < len(a_): if pattern[i] == pattern[j]: i += 1 elif i > 0: __a : Any = failure[i - 1] continue j += 1 failure.append(a_) return failure if __name__ == "__main__": # Test 1) A = '''abc1abc12''' A = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' A = '''alskfjaldsk23adsfabcabc''' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) A = '''ABABX''' A = '''ABABZABABYABABX''' assert kmp(pattern, text) # Test 3) A = '''AAAB''' A = '''ABAAAAAB''' assert kmp(pattern, text) # Test 4) A = '''abcdabcy''' A = '''abcxabcdabxabcdabcdabcy''' assert kmp(pattern, text) # Test 5) A = '''aabaabaaa''' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
160
1
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A_ = { '''configuration_cpmant''': ['''CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CpmAntConfig'''], '''tokenization_cpmant''': ['''CpmAntTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ '''CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CpmAntForCausalLM''', '''CpmAntModel''', '''CpmAntPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
358
"""simple docstring""" import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def UpperCAmelCase__ (snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : int ): """simple docstring""" if isinstance(snake_case__ , snake_case__ ): _snake_case : List[Any] = np.full((len(snake_case__ ), sequence_length, 2) , snake_case__ ) else: _snake_case : Any = np.full((len(snake_case__ ), sequence_length) , snake_case__ ) for i, tensor in enumerate(snake_case__ ): if padding_side == "right": if isinstance(snake_case__ , snake_case__ ): _snake_case : Dict = tensor[:sequence_length] else: _snake_case : List[Any] = tensor[:sequence_length] else: if isinstance(snake_case__ , snake_case__ ): _snake_case : str = tensor[:sequence_length] else: _snake_case : Tuple = tensor[:sequence_length] return out_tensor.tolist() def UpperCAmelCase__ (snake_case__ : Optional[int] ): """simple docstring""" _snake_case : str = ord(snake_case__ ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 1_23 and cp <= 1_26): return True _snake_case : Union[str, Any] = unicodedata.category(snake_case__ ) if cat.startswith("""P""" ): return True return False @dataclass class lowercase( __a ): '''simple docstring''' lowercase__ = 42 lowercase__ = True lowercase__ = None lowercase__ = None lowercase__ = -1_00 lowercase__ = "pt" def UpperCamelCase_ ( self: Any, a_: Union[str, Any] ): '''simple docstring''' import torch _snake_case : Optional[Any] = """label""" if """label""" in features[0].keys() else """labels""" _snake_case : str = [feature[label_name] for feature in features] if label_name in features[0].keys() else None _snake_case : Any = self.tokenizer.pad( a_, padding=self.padding, max_length=self.max_length, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors="""pt""" if labels is None else None, ) if labels is None: return batch _snake_case : Optional[int] = torch.tensor(batch["""entity_ids"""] ).shape[1] _snake_case : Any = self.tokenizer.padding_side if padding_side == "right": _snake_case : Optional[int] = [ list(a_ ) + [self.label_pad_token_id] * (sequence_length - len(a_ )) for label in labels ] else: _snake_case : Union[str, Any] = [ [self.label_pad_token_id] * (sequence_length - len(a_ )) + list(a_ ) for label in labels ] _snake_case : List[Any] = [feature["""ner_tags"""] for feature in features] _snake_case : str = padding_tensor(a_, -1, a_, a_ ) _snake_case : Any = [feature["""original_entity_spans"""] for feature in features] _snake_case : int = padding_tensor(a_, (-1, -1), a_, a_ ) _snake_case : str = {k: torch.tensor(a_, dtype=torch.intaa ) for k, v in batch.items()} return batch
132
0
"""simple docstring""" import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( 'The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion' ) UpperCAmelCase__ : Optional[int] = None UpperCAmelCase__ : Optional[Any] = { '7B': 1_1_0_0_8, '13B': 1_3_8_2_4, '30B': 1_7_9_2_0, '65B': 2_2_0_1_6, '70B': 2_8_6_7_2, } UpperCAmelCase__ : List[str] = { '7B': 1, '7Bf': 1, '13B': 2, '13Bf': 2, '30B': 4, '65B': 8, '70B': 8, '70Bf': 8, } def lowercase_ ( _snake_case ,_snake_case=1 ,_snake_case=256 ): return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def lowercase_ ( _snake_case ): with open(_snake_case ,"""r""" ) as f: return json.load(_snake_case ) def lowercase_ ( _snake_case ,_snake_case ): with open(_snake_case ,"""w""" ) as f: json.dump(_snake_case ,_snake_case ) def lowercase_ ( _snake_case ,_snake_case ,_snake_case ,_snake_case=True ): os.makedirs(_snake_case ,exist_ok=_snake_case ) SCREAMING_SNAKE_CASE__ : Tuple = os.path.join(_snake_case ,"""tmp""" ) os.makedirs(_snake_case ,exist_ok=_snake_case ) SCREAMING_SNAKE_CASE__ : Any = read_json(os.path.join(_snake_case ,"""params.json""" ) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = NUM_SHARDS[model_size] SCREAMING_SNAKE_CASE__ : Optional[int] = params["""n_layers"""] SCREAMING_SNAKE_CASE__ : str = params["""n_heads"""] SCREAMING_SNAKE_CASE__ : List[str] = n_heads // num_shards SCREAMING_SNAKE_CASE__ : List[str] = params["""dim"""] SCREAMING_SNAKE_CASE__ : Optional[Any] = dim // n_heads SCREAMING_SNAKE_CASE__ : str = 10000.0 SCREAMING_SNAKE_CASE__ : List[str] = 1.0 / (base ** (torch.arange(0 ,_snake_case ,2 ).float() / dims_per_head)) if "n_kv_heads" in params: SCREAMING_SNAKE_CASE__ : List[str] = params["""n_kv_heads"""] # for GQA / MQA SCREAMING_SNAKE_CASE__ : str = n_heads_per_shard // num_key_value_heads SCREAMING_SNAKE_CASE__ : str = dim // num_key_value_heads else: # compatibility with other checkpoints SCREAMING_SNAKE_CASE__ : List[Any] = n_heads SCREAMING_SNAKE_CASE__ : List[Any] = n_heads_per_shard SCREAMING_SNAKE_CASE__ : List[Any] = dim # permute for sliced rotary def permute(_snake_case ,_snake_case=n_heads ,_snake_case=dim ,_snake_case=dim ): return w.view(_snake_case ,dima // n_heads // 2 ,2 ,_snake_case ).transpose(1 ,2 ).reshape(_snake_case ,_snake_case ) print(f'''Fetching all parameters from the checkpoint at {input_base_path}.''' ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) SCREAMING_SNAKE_CASE__ : List[Any] = torch.load(os.path.join(_snake_case ,"""consolidated.00.pth""" ) ,map_location="""cpu""" ) else: # Sharded SCREAMING_SNAKE_CASE__ : Tuple = [ torch.load(os.path.join(_snake_case ,f'''consolidated.{i:02d}.pth''' ) ,map_location="""cpu""" ) for i in range(_snake_case ) ] SCREAMING_SNAKE_CASE__ : List[Any] = 0 SCREAMING_SNAKE_CASE__ : List[Any] = {"""weight_map""": {}} for layer_i in range(_snake_case ): SCREAMING_SNAKE_CASE__ : Optional[int] = f'''pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin''' if model_size == "7B": # Unsharded SCREAMING_SNAKE_CASE__ : Dict = { f'''model.layers.{layer_i}.self_attn.q_proj.weight''': permute( loaded[f'''layers.{layer_i}.attention.wq.weight'''] ), f'''model.layers.{layer_i}.self_attn.k_proj.weight''': permute( loaded[f'''layers.{layer_i}.attention.wk.weight'''] ), f'''model.layers.{layer_i}.self_attn.v_proj.weight''': loaded[f'''layers.{layer_i}.attention.wv.weight'''], f'''model.layers.{layer_i}.self_attn.o_proj.weight''': loaded[f'''layers.{layer_i}.attention.wo.weight'''], f'''model.layers.{layer_i}.mlp.gate_proj.weight''': loaded[f'''layers.{layer_i}.feed_forward.w1.weight'''], f'''model.layers.{layer_i}.mlp.down_proj.weight''': loaded[f'''layers.{layer_i}.feed_forward.w2.weight'''], f'''model.layers.{layer_i}.mlp.up_proj.weight''': loaded[f'''layers.{layer_i}.feed_forward.w3.weight'''], f'''model.layers.{layer_i}.input_layernorm.weight''': loaded[f'''layers.{layer_i}.attention_norm.weight'''], f'''model.layers.{layer_i}.post_attention_layernorm.weight''': loaded[f'''layers.{layer_i}.ffn_norm.weight'''], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. SCREAMING_SNAKE_CASE__ : int = { f'''model.layers.{layer_i}.input_layernorm.weight''': loaded[0][ f'''layers.{layer_i}.attention_norm.weight''' ].clone(), f'''model.layers.{layer_i}.post_attention_layernorm.weight''': loaded[0][ f'''layers.{layer_i}.ffn_norm.weight''' ].clone(), } SCREAMING_SNAKE_CASE__ : int = permute( torch.cat( [ loaded[i][f'''layers.{layer_i}.attention.wq.weight'''].view(_snake_case ,_snake_case ,_snake_case ) for i in range(_snake_case ) ] ,dim=0 ,).reshape(_snake_case ,_snake_case ) ) SCREAMING_SNAKE_CASE__ : List[Any] = permute( torch.cat( [ loaded[i][f'''layers.{layer_i}.attention.wk.weight'''].view( _snake_case ,_snake_case ,_snake_case ) for i in range(_snake_case ) ] ,dim=0 ,).reshape(_snake_case ,_snake_case ) ,_snake_case ,_snake_case ,_snake_case ,) SCREAMING_SNAKE_CASE__ : Dict = torch.cat( [ loaded[i][f'''layers.{layer_i}.attention.wv.weight'''].view( _snake_case ,_snake_case ,_snake_case ) for i in range(_snake_case ) ] ,dim=0 ,).reshape(_snake_case ,_snake_case ) SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.cat( [loaded[i][f'''layers.{layer_i}.attention.wo.weight'''] for i in range(_snake_case )] ,dim=1 ) SCREAMING_SNAKE_CASE__ : Optional[int] = torch.cat( [loaded[i][f'''layers.{layer_i}.feed_forward.w1.weight'''] for i in range(_snake_case )] ,dim=0 ) SCREAMING_SNAKE_CASE__ : Dict = torch.cat( [loaded[i][f'''layers.{layer_i}.feed_forward.w2.weight'''] for i in range(_snake_case )] ,dim=1 ) SCREAMING_SNAKE_CASE__ : Any = torch.cat( [loaded[i][f'''layers.{layer_i}.feed_forward.w3.weight'''] for i in range(_snake_case )] ,dim=0 ) SCREAMING_SNAKE_CASE__ : Optional[Any] = inv_freq for k, v in state_dict.items(): SCREAMING_SNAKE_CASE__ : Optional[int] = filename param_count += v.numel() torch.save(_snake_case ,os.path.join(_snake_case ,_snake_case ) ) SCREAMING_SNAKE_CASE__ : int = f'''pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin''' if model_size == "7B": # Unsharded SCREAMING_SNAKE_CASE__ : Dict = { """model.embed_tokens.weight""": loaded["""tok_embeddings.weight"""], """model.norm.weight""": loaded["""norm.weight"""], """lm_head.weight""": loaded["""output.weight"""], } else: SCREAMING_SNAKE_CASE__ : Optional[Any] = { """model.norm.weight""": loaded[0]["""norm.weight"""], """model.embed_tokens.weight""": torch.cat( [loaded[i]["""tok_embeddings.weight"""] for i in range(_snake_case )] ,dim=1 ), """lm_head.weight""": torch.cat([loaded[i]["""output.weight"""] for i in range(_snake_case )] ,dim=0 ), } for k, v in state_dict.items(): SCREAMING_SNAKE_CASE__ : Tuple = filename param_count += v.numel() torch.save(_snake_case ,os.path.join(_snake_case ,_snake_case ) ) # Write configs SCREAMING_SNAKE_CASE__ : str = {"""total_size""": param_count * 2} write_json(_snake_case ,os.path.join(_snake_case ,"""pytorch_model.bin.index.json""" ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = params["""ffn_dim_multiplier"""] if """ffn_dim_multiplier""" in params else 1 SCREAMING_SNAKE_CASE__ : Tuple = params["""multiple_of"""] if """multiple_of""" in params else 256 SCREAMING_SNAKE_CASE__ : Union[str, Any] = LlamaConfig( hidden_size=_snake_case ,intermediate_size=compute_intermediate_size(_snake_case ,_snake_case ,_snake_case ) ,num_attention_heads=params["""n_heads"""] ,num_hidden_layers=params["""n_layers"""] ,rms_norm_eps=params["""norm_eps"""] ,num_key_value_heads=_snake_case ,) config.save_pretrained(_snake_case ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print("""Loading the checkpoint in a Llama model.""" ) SCREAMING_SNAKE_CASE__ : List[Any] = LlamaForCausalLM.from_pretrained(_snake_case ,torch_dtype=torch.floataa ,low_cpu_mem_usage=_snake_case ) # Avoid saving this as part of the config. del model.config._name_or_path print("""Saving in the Transformers format.""" ) model.save_pretrained(_snake_case ,safe_serialization=_snake_case ) shutil.rmtree(_snake_case ) def lowercase_ ( _snake_case ,_snake_case ): # Initialize the tokenizer based on the `spm` model SCREAMING_SNAKE_CASE__ : int = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f'''Saving a {tokenizer_class.__name__} to {tokenizer_path}.''' ) SCREAMING_SNAKE_CASE__ : Tuple = tokenizer_class(_snake_case ) tokenizer.save_pretrained(_snake_case ) def lowercase_ ( ): SCREAMING_SNAKE_CASE__ : int = argparse.ArgumentParser() parser.add_argument( """--input_dir""" ,help="""Location of LLaMA weights, which contains tokenizer.model and model folders""" ,) parser.add_argument( """--model_size""" ,choices=["""7B""", """7Bf""", """13B""", """13Bf""", """30B""", """65B""", """70B""", """70Bf""", """tokenizer_only"""] ,) parser.add_argument( """--output_dir""" ,help="""Location to write HF model and tokenizer""" ,) parser.add_argument("""--safe_serialization""" ,type=_snake_case ,help="""Whether or not to save using `safetensors`.""" ) SCREAMING_SNAKE_CASE__ : Optional[int] = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir ,input_base_path=os.path.join(args.input_dir ,args.model_size ) ,model_size=args.model_size ,safe_serialization=args.safe_serialization ,) SCREAMING_SNAKE_CASE__ : Any = os.path.join(args.input_dir ,"""tokenizer.model""" ) write_tokenizer(args.output_dir ,_snake_case ) if __name__ == "__main__": main()
25
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __UpperCamelCase = { '''configuration_blip''': [ '''BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlipConfig''', '''BlipTextConfig''', '''BlipVisionConfig''', ], '''processing_blip''': ['''BlipProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ['''BlipImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlipModel''', '''BlipPreTrainedModel''', '''BlipForConditionalGeneration''', '''BlipForQuestionAnswering''', '''BlipVisionModel''', '''BlipTextModel''', '''BlipForImageTextRetrieval''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFBlipModel''', '''TFBlipPreTrainedModel''', '''TFBlipForConditionalGeneration''', '''TFBlipForQuestionAnswering''', '''TFBlipVisionModel''', '''TFBlipTextModel''', '''TFBlipForImageTextRetrieval''', ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
113
0
"""simple docstring""" import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class lowerCAmelCase ( lowercase_ ): __lowerCamelCase = '' __lowerCamelCase = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) __lowerCamelCase = None # compression type in fsspec. ex: "gzip" __lowerCamelCase = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self :int , _lowercase :Tuple = "" , _lowercase :Union[str, Any] = None , _lowercase :Optional[Any] = None , **_lowercase :Tuple ): '''simple docstring''' super().__init__(self , **_SCREAMING_SNAKE_CASE ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode lowercase__ = fsspec.open( _SCREAMING_SNAKE_CASE , mode="rb" , protocol=_SCREAMING_SNAKE_CASE , compression=self.compression , client_kwargs={ "requote_redirect_url": False, # see https://github.com/huggingface/datasets/pull/5459 "trust_env": True, # Enable reading proxy env variables. **(target_options or {}).pop("client_kwargs" , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) lowercase__ = os.path.basename(self.file.path.split("::" )[0] ) lowercase__ = ( self.compressed_name[: self.compressed_name.rindex("." )] if '''.''' in self.compressed_name else self.compressed_name ) lowercase__ = None @classmethod def UpperCAmelCase ( cls :Optional[int] , _lowercase :str ): '''simple docstring''' return super()._strip_protocol(_SCREAMING_SNAKE_CASE ).lstrip("/" ) def UpperCAmelCase ( self :Dict ): '''simple docstring''' if self.dir_cache is None: lowercase__ = {**self.file.fs.info(self.file.path ), '''name''': self.uncompressed_name} lowercase__ = {f['''name''']: f} def UpperCAmelCase ( self :List[str] , _lowercase :Any ): '''simple docstring''' return self.file.open().read() def UpperCAmelCase ( self :List[str] , _lowercase :List[Any] , _lowercase :List[Any] = "rb" , _lowercase :Tuple=None , _lowercase :List[Any]=True , _lowercase :Dict=None , **_lowercase :Any , ): '''simple docstring''' lowercase__ = self._strip_protocol(_SCREAMING_SNAKE_CASE ) if mode != "rb": raise ValueError(f'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''' ) return self.file.open() class lowerCAmelCase ( lowercase_ ): __lowerCamelCase = 'bz2' __lowerCamelCase = 'bz2' __lowerCamelCase = '.bz2' class lowerCAmelCase ( lowercase_ ): __lowerCamelCase = 'gzip' __lowerCamelCase = 'gzip' __lowerCamelCase = '.gz' class lowerCAmelCase ( lowercase_ ): __lowerCamelCase = 'lz4' __lowerCamelCase = 'lz4' __lowerCamelCase = '.lz4' class lowerCAmelCase ( lowercase_ ): __lowerCamelCase = 'xz' __lowerCamelCase = 'xz' __lowerCamelCase = '.xz' class lowerCAmelCase ( lowercase_ ): __lowerCamelCase = 'zstd' __lowerCamelCase = 'zstd' __lowerCamelCase = '.zst' def __init__( self :List[Any] , _lowercase :Any , _lowercase :Optional[int] = "rb" , _lowercase :int = None , _lowercase :Tuple = None , _lowercase :List[Any] = DEFAULT_BLOCK_SIZE , **_lowercase :List[str] , ): '''simple docstring''' super().__init__( fo=_SCREAMING_SNAKE_CASE , mode=_SCREAMING_SNAKE_CASE , target_protocol=_SCREAMING_SNAKE_CASE , target_options=_SCREAMING_SNAKE_CASE , block_size=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 lowercase__ = self.file.__enter__ class lowerCAmelCase : def __init__( self :Tuple , _lowercase :List[str] ): '''simple docstring''' lowercase__ = file_ def __enter__( self :Dict ): '''simple docstring''' self._file.__enter__() return self def __exit__( self :Optional[int] , *_lowercase :Optional[Any] , **_lowercase :Optional[int] ): '''simple docstring''' self._file.__exit__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def __iter__( self :str ): '''simple docstring''' return iter(self._file ) def UpperCAmelCase ( self :int ): '''simple docstring''' return next(self._file ) def __getattr__( self :List[Any] , _lowercase :int ): '''simple docstring''' return getattr(self._file , _SCREAMING_SNAKE_CASE ) def fixed_enter(*_lowercase :str , **_lowercase :int ): return WrappedFile(_enter(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) ) lowercase__ = fixed_enter
371
from __future__ import annotations def _A ( __magic_name__ , __magic_name__ ): lowercase__ = 0 lowercase__ = len(__magic_name__ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: lowercase__ = i + 1 else: lowercase__ = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F"""{two_pointer([2, 7, 11, 15], 9) = }""")
201
0
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def lowerCamelCase__ ( *snake_case_ : Union[str, Any] ) -> int: with open(SCREAMING_SNAKE_CASE__ , '''r''' ) as fh: fcntl.flock(SCREAMING_SNAKE_CASE__ , fcntl.LOCK_EX ) try: print(*SCREAMING_SNAKE_CASE__ ) finally: fcntl.flock(SCREAMING_SNAKE_CASE__ , fcntl.LOCK_UN ) snake_case_ = int(os.environ['LOCAL_RANK']) torch.cuda.set_device(local_rank) snake_case_ = torch.device('cuda', local_rank) snake_case_ = socket.gethostname() snake_case_ = F'[{hostname}-{local_rank}]' try: # test distributed dist.init_process_group('nccl') dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank snake_case_ = dist.get_rank() snake_case_ = dist.get_world_size() printflock(F'{gpu} is OK (global rank: {rank}/{world_size})') dist.barrier() if rank == 0: printflock(F'pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}') except Exception: printflock(F'{gpu} is broken') raise
24
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
8
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _A : Union[str, Any] = {'configuration_reformer': ['REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ReformerConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Any = ['ReformerTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Dict = ['ReformerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : int = [ 'REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'ReformerAttention', 'ReformerForMaskedLM', 'ReformerForQuestionAnswering', 'ReformerForSequenceClassification', 'ReformerLayer', 'ReformerModel', 'ReformerModelWithLMHead', 'ReformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys _A : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
265
import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging _A : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): def __init__( self : Optional[Any] , A : AutoencoderKL , A : CLIPTextModel , A : CLIPTokenizer , A : UNetaDConditionModel , A : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , A : StableDiffusionSafetyChecker , A : CLIPImageProcessor , ) ->List[Any]: super().__init__() self.register_modules( vae=A , text_encoder=A , tokenizer=A , unet=A , scheduler=A , safety_checker=A , feature_extractor=A , ) def __lowerCamelCase ( self : Any , A : Optional[Union[str, int]] = "auto" ) ->Tuple: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowerCamelCase__ : List[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(A ) def __lowerCamelCase ( self : List[Any] ) ->List[Any]: self.enable_attention_slicing(A ) @torch.no_grad() def __call__( self : Union[str, Any] , A : Union[str, List[str]] , A : int = 5_1_2 , A : int = 5_1_2 , A : int = 5_0 , A : float = 7.5 , A : Optional[Union[str, List[str]]] = None , A : Optional[int] = 1 , A : float = 0.0 , A : Optional[torch.Generator] = None , A : Optional[torch.FloatTensor] = None , A : Optional[str] = "pil" , A : bool = True , A : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , A : int = 1 , A : Optional[torch.FloatTensor] = None , **A : int , ) ->Tuple: if isinstance(A , A ): lowerCamelCase__ : str = 1 elif isinstance(A , A ): lowerCamelCase__ : Dict = len(A ) else: raise ValueError(F"`prompt` has to be of type `str` or `list` but is {type(A )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(A , A ) or callback_steps <= 0) ): raise ValueError( F"`callback_steps` has to be a positive integer but is {callback_steps} of type" F" {type(A )}." ) # get prompt text embeddings lowerCamelCase__ : Optional[Any] = self.tokenizer( A , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) lowerCamelCase__ : Dict = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowerCamelCase__ : Optional[Any] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F" {self.tokenizer.model_max_length} tokens: {removed_text}" ) lowerCamelCase__ : Any = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: lowerCamelCase__ : str = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : int = text_embeddings.shape lowerCamelCase__ : int = text_embeddings.repeat(1 , A , 1 ) lowerCamelCase__ : str = text_embeddings.view(bs_embed * num_images_per_prompt , A , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowerCamelCase__ : Optional[Any] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowerCamelCase__ : List[str] if negative_prompt is None: lowerCamelCase__ : Optional[int] = [''''''] elif type(A ) is not type(A ): raise TypeError( F"`negative_prompt` should be the same type to `prompt`, but got {type(A )} !=" F" {type(A )}." ) elif isinstance(A , A ): lowerCamelCase__ : Optional[int] = [negative_prompt] elif batch_size != len(A ): raise ValueError( F"`negative_prompt`: {negative_prompt} has batch size {len(A )}, but `prompt`:" F" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ''' the batch size of `prompt`.''' ) else: lowerCamelCase__ : List[Any] = negative_prompt lowerCamelCase__ : int = text_input_ids.shape[-1] lowerCamelCase__ : Optional[int] = self.tokenizer( A , padding='''max_length''' , max_length=A , truncation=A , return_tensors='''pt''' , ) lowerCamelCase__ : Optional[Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCamelCase__ : Any = uncond_embeddings.shape[1] lowerCamelCase__ : Union[str, Any] = uncond_embeddings.repeat(A , A , 1 ) lowerCamelCase__ : str = uncond_embeddings.view(batch_size * num_images_per_prompt , A , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCamelCase__ : str = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowerCamelCase__ : Dict = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowerCamelCase__ : List[Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 6_4, 6_4) lowerCamelCase__ : List[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowerCamelCase__ : Dict = torch.randn( A , generator=A , device='''cpu''' , dtype=A ).to(self.device ) lowerCamelCase__ : Dict = torch.randn(A , generator=A , device='''cpu''' , dtype=A ).to( self.device ) else: lowerCamelCase__ : Optional[Any] = torch.randn( A , generator=A , device=self.device , dtype=A ) lowerCamelCase__ : Union[str, Any] = torch.randn(A , generator=A , device=self.device , dtype=A ) else: if latents_reference.shape != latents_shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) lowerCamelCase__ : Optional[Any] = latents_reference.to(self.device ) lowerCamelCase__ : Optional[int] = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images lowerCamelCase__ : List[str] = (latents_shape[3] - latents_shape_reference[3]) // 2 lowerCamelCase__ : List[Any] = (latents_shape[2] - latents_shape_reference[2]) // 2 lowerCamelCase__ : Dict = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx lowerCamelCase__ : str = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy lowerCamelCase__ : int = 0 if dx < 0 else dx lowerCamelCase__ : Optional[int] = 0 if dy < 0 else dy lowerCamelCase__ : Dict = max(-dx , 0 ) lowerCamelCase__ : int = max(-dy , 0 ) # import pdb # pdb.set_trace() lowerCamelCase__ : str = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(A ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowerCamelCase__ : Union[str, Any] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCamelCase__ : List[Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCamelCase__ : Union[str, Any] = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCamelCase__ : List[Any] = {} if accepts_eta: lowerCamelCase__ : Any = eta for i, t in enumerate(self.progress_bar(A ) ): # expand the latents if we are doing classifier free guidance lowerCamelCase__ : Optional[int] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCamelCase__ : Any = self.scheduler.scale_model_input(A , A ) # predict the noise residual lowerCamelCase__ : Union[str, Any] = self.unet(A , A , encoder_hidden_states=A ).sample # perform guidance if do_classifier_free_guidance: lowerCamelCase__ , lowerCamelCase__ : List[str] = noise_pred.chunk(2 ) lowerCamelCase__ : int = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowerCamelCase__ : Dict = self.scheduler.step(A , A , A , **A ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(A , A , A ) lowerCamelCase__ : Optional[Any] = 1 / 0.1_82_15 * latents lowerCamelCase__ : int = self.vae.decode(A ).sample lowerCamelCase__ : Dict = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCamelCase__ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: lowerCamelCase__ : Tuple = self.feature_extractor(self.numpy_to_pil(A ) , return_tensors='''pt''' ).to( self.device ) lowerCamelCase__ , lowerCamelCase__ : int = self.safety_checker( images=A , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: lowerCamelCase__ : List[Any] = None if output_type == "pil": lowerCamelCase__ : Optional[Any] = self.numpy_to_pil(A ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=A , nsfw_content_detected=A )
265
1
"""simple docstring""" import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=True , lowercase=True , lowercase=True , lowercase=99 , lowercase=64 , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=16 , lowercase=2 , lowercase=0.02 , lowercase=3 , lowercase=4 , lowercase=None , ): _lowerCamelCase : List[Any] = parent _lowerCamelCase : str = batch_size _lowerCamelCase : List[str] = seq_length _lowerCamelCase : Dict = is_training _lowerCamelCase : int = use_input_mask _lowerCamelCase : List[Any] = use_token_type_ids _lowerCamelCase : int = use_labels _lowerCamelCase : str = vocab_size _lowerCamelCase : str = hidden_size _lowerCamelCase : Any = embedding_size _lowerCamelCase : Any = num_hidden_layers _lowerCamelCase : int = num_attention_heads _lowerCamelCase : Dict = intermediate_size _lowerCamelCase : Union[str, Any] = hidden_act _lowerCamelCase : List[Any] = hidden_dropout_prob _lowerCamelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCamelCase : Any = max_position_embeddings _lowerCamelCase : List[str] = type_vocab_size _lowerCamelCase : List[Any] = type_sequence_label_size _lowerCamelCase : Optional[Any] = initializer_range _lowerCamelCase : str = num_labels _lowerCamelCase : int = num_choices _lowerCamelCase : Any = scope def A_ ( self ): _lowerCamelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCamelCase : int = None if self.use_input_mask: _lowerCamelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : Optional[Any] = None if self.use_token_type_ids: _lowerCamelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCamelCase : Dict = None _lowerCamelCase : Any = None _lowerCamelCase : Union[str, Any] = None if self.use_labels: _lowerCamelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCamelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCamelCase : Tuple = ids_tensor([self.batch_size] , self.num_choices ) _lowerCamelCase : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A_ ( self ): return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase , initializer_range=self.initializer_range , ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): _lowerCamelCase : Union[str, Any] = MobileBertModel(config=lowercase ) model.to(lowercase ) model.eval() _lowerCamelCase : Optional[int] = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase ) _lowerCamelCase : Union[str, Any] = model(lowercase , token_type_ids=lowercase ) _lowerCamelCase : List[str] = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): _lowerCamelCase : Union[str, Any] = MobileBertForMaskedLM(config=lowercase ) model.to(lowercase ) model.eval() _lowerCamelCase : Optional[Any] = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): _lowerCamelCase : List[Any] = MobileBertForNextSentencePrediction(config=lowercase ) model.to(lowercase ) model.eval() _lowerCamelCase : List[str] = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): _lowerCamelCase : str = MobileBertForPreTraining(config=lowercase ) model.to(lowercase ) model.eval() _lowerCamelCase : int = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase , next_sentence_label=lowercase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): _lowerCamelCase : Any = MobileBertForQuestionAnswering(config=lowercase ) model.to(lowercase ) model.eval() _lowerCamelCase : str = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , start_positions=lowercase , end_positions=lowercase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): _lowerCamelCase : Optional[int] = self.num_labels _lowerCamelCase : List[str] = MobileBertForSequenceClassification(lowercase ) model.to(lowercase ) model.eval() _lowerCamelCase : str = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): _lowerCamelCase : Dict = self.num_labels _lowerCamelCase : Optional[int] = MobileBertForTokenClassification(config=lowercase ) model.to(lowercase ) model.eval() _lowerCamelCase : Optional[Any] = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): _lowerCamelCase : List[str] = self.num_choices _lowerCamelCase : Optional[int] = MobileBertForMultipleChoice(config=lowercase ) model.to(lowercase ) model.eval() _lowerCamelCase : Optional[int] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCamelCase : List[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCamelCase : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCamelCase : Tuple = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A_ ( self ): _lowerCamelCase : Tuple = self.prepare_config_and_inputs() ( ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ) : Union[str, Any] = config_and_inputs _lowerCamelCase : Tuple = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( lowercase, lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase__ = ( { """feature-extraction""": MobileBertModel, """fill-mask""": MobileBertForMaskedLM, """question-answering""": MobileBertForQuestionAnswering, """text-classification""": MobileBertForSequenceClassification, """token-classification""": MobileBertForTokenClassification, """zero-shot""": MobileBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ = True def A_ ( self , lowercase , lowercase , lowercase=False ): _lowerCamelCase : Optional[int] = super()._prepare_for_class(lowercase , lowercase , return_labels=lowercase ) if return_labels: if model_class in get_values(lowercase ): _lowerCamelCase : Tuple = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowercase ) _lowerCamelCase : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase ) return inputs_dict def A_ ( self ): _lowerCamelCase : int = MobileBertModelTester(self ) _lowerCamelCase : Union[str, Any] = ConfigTester(self , config_class=lowercase , hidden_size=37 ) def A_ ( self ): self.config_tester.run_common_tests() def A_ ( self ): _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowercase ) def A_ ( self ): _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowercase ) def A_ ( self ): _lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowercase ) def A_ ( self ): _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowercase ) def A_ ( self ): _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowercase ) def A_ ( self ): _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowercase ) def A_ ( self ): _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowercase ) def A_ ( self ): _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowercase ) def _snake_case ( lowercase__ ): return torch.tensor( lowercase__ , dtype=torch.long , device=lowercase__ , ) lowercase__ = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def A_ ( self ): _lowerCamelCase : Optional[int] = MobileBertModel.from_pretrained('google/mobilebert-uncased' ).to(lowercase ) _lowerCamelCase : Tuple = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]] ) with torch.no_grad(): _lowerCamelCase : Any = model(lowercase )[0] _lowerCamelCase : Tuple = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , lowercase ) _lowerCamelCase : List[Any] = torch.tensor( [ [ [-2.473_6526E07, 8.269_1656E04, 1.652_1838E05], [-5.754_1704E-01, 3.905_6022E00, 4.401_1507E00], [2.604_7359E00, 1.567_7652E00, -1.732_4188E-01], ] ] , device=lowercase , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE _lowerCamelCase : Any = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) _lowerCamelCase : str = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
96
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated lowerCamelCase = collections.namedtuple('''_Datasets''', ['''train''', '''validation''', '''test''']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ lowerCamelCase = '''https://storage.googleapis.com/cvdf-datasets/mnist/''' def lowerCamelCase_ ( _a ): """simple docstring""" lowerCAmelCase__ : Dict = numpy.dtype(numpy.uintaa ).newbyteorder('''>''' ) return numpy.frombuffer(bytestream.read(4 ) , dtype=_a )[0] @deprecated(_a , '''Please use tf.data to implement this functionality.''' ) def lowerCamelCase_ ( _a ): """simple docstring""" print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=_a ) as bytestream: lowerCAmelCase__ : Any = _readaa(_a ) if magic != 2_051: raise ValueError( '''Invalid magic number %d in MNIST image file: %s''' % (magic, f.name) ) lowerCAmelCase__ : Any = _readaa(_a ) lowerCAmelCase__ : Tuple = _readaa(_a ) lowerCAmelCase__ : List[Any] = _readaa(_a ) lowerCAmelCase__ : Union[str, Any] = bytestream.read(rows * cols * num_images ) lowerCAmelCase__ : List[Any] = numpy.frombuffer(_a , dtype=numpy.uinta ) lowerCAmelCase__ : int = data.reshape(_a , _a , _a , 1 ) return data @deprecated(_a , '''Please use tf.one_hot on tensors.''' ) def lowerCamelCase_ ( _a , _a ): """simple docstring""" lowerCAmelCase__ : List[Any] = labels_dense.shape[0] lowerCAmelCase__ : Optional[Any] = numpy.arange(_a ) * num_classes lowerCAmelCase__ : str = numpy.zeros((num_labels, num_classes) ) lowerCAmelCase__ : Optional[Any] = 1 return labels_one_hot @deprecated(_a , '''Please use tf.data to implement this functionality.''' ) def lowerCamelCase_ ( _a , _a=False , _a=10 ): """simple docstring""" print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=_a ) as bytestream: lowerCAmelCase__ : Optional[int] = _readaa(_a ) if magic != 2_049: raise ValueError( '''Invalid magic number %d in MNIST label file: %s''' % (magic, f.name) ) lowerCAmelCase__ : Union[str, Any] = _readaa(_a ) lowerCAmelCase__ : Tuple = bytestream.read(_a ) lowerCAmelCase__ : Dict = numpy.frombuffer(_a , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(_a , _a ) return labels class _a : @deprecated( _SCREAMING_SNAKE_CASE , '''Please use alternatives such as official/mnist/_DataSet.py''' ''' from tensorflow/models.''' , ) def __init__( self : Dict , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Tuple=False , _SCREAMING_SNAKE_CASE : Any=False , _SCREAMING_SNAKE_CASE : Optional[Any]=dtypes.floataa , _SCREAMING_SNAKE_CASE : List[str]=True , _SCREAMING_SNAKE_CASE : List[str]=None , )-> List[Any]: lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = random_seed.get_seed(_SCREAMING_SNAKE_CASE ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) lowerCAmelCase__ : Optional[int] = dtypes.as_dtype(_SCREAMING_SNAKE_CASE ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('''Invalid image dtype %r, expected uint8 or float32''' % dtype ) if fake_data: lowerCAmelCase__ : int = 1_0000 lowerCAmelCase__ : List[Any] = one_hot else: assert ( images.shape[0] == labels.shape[0] ), F'images.shape: {images.shape} labels.shape: {labels.shape}' lowerCAmelCase__ : List[Any] = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 lowerCAmelCase__ : Tuple = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. lowerCAmelCase__ : Any = images.astype(numpy.floataa ) lowerCAmelCase__ : Any = numpy.multiply(_SCREAMING_SNAKE_CASE , 1.0 / 255.0 ) lowerCAmelCase__ : Tuple = images lowerCAmelCase__ : Tuple = labels lowerCAmelCase__ : List[Any] = 0 lowerCAmelCase__ : Tuple = 0 @property def UpperCAmelCase__( self : Tuple )-> Dict: return self._images @property def UpperCAmelCase__( self : Tuple )-> Optional[int]: return self._labels @property def UpperCAmelCase__( self : Tuple )-> Dict: return self._num_examples @property def UpperCAmelCase__( self : Tuple )-> Any: return self._epochs_completed def UpperCAmelCase__( self : List[Any] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Dict=False , _SCREAMING_SNAKE_CASE : Optional[int]=True )-> List[str]: if fake_data: lowerCAmelCase__ : Dict = [1] * 784 lowerCAmelCase__ : Union[str, Any] = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(_SCREAMING_SNAKE_CASE )], [fake_label for _ in range(_SCREAMING_SNAKE_CASE )], ) lowerCAmelCase__ : str = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: lowerCAmelCase__ : Union[str, Any] = numpy.arange(self._num_examples ) numpy.random.shuffle(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : List[Any] = self.images[perma] lowerCAmelCase__ : Tuple = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch lowerCAmelCase__ : Any = self._num_examples - start lowerCAmelCase__ : List[str] = self._images[start : self._num_examples] lowerCAmelCase__ : Tuple = self._labels[start : self._num_examples] # Shuffle the data if shuffle: lowerCAmelCase__ : Union[str, Any] = numpy.arange(self._num_examples ) numpy.random.shuffle(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : str = self.images[perm] lowerCAmelCase__ : List[Any] = self.labels[perm] # Start next epoch lowerCAmelCase__ : Dict = 0 lowerCAmelCase__ : Union[str, Any] = batch_size - rest_num_examples lowerCAmelCase__ : Any = self._index_in_epoch lowerCAmelCase__ : Optional[Any] = self._images[start:end] lowerCAmelCase__ : Optional[Any] = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size lowerCAmelCase__ : Dict = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(_a , '''Please write your own downloading logic.''' ) def lowerCamelCase_ ( _a , _a , _a ): """simple docstring""" if not gfile.Exists(_a ): gfile.MakeDirs(_a ) lowerCAmelCase__ : str = os.path.join(_a , _a ) if not gfile.Exists(_a ): urllib.request.urlretrieve(_a , _a ) # noqa: S310 with gfile.GFile(_a ) as f: lowerCAmelCase__ : Optional[Any] = f.size() print('''Successfully downloaded''' , _a , _a , '''bytes.''' ) return filepath @deprecated( _a , '''Please use alternatives such as:''' ''' tensorflow_datasets.load(\'mnist\')''' ) def lowerCamelCase_ ( _a , _a=False , _a=False , _a=dtypes.floataa , _a=True , _a=5_000 , _a=None , _a=DEFAULT_SOURCE_URL , ): """simple docstring""" if fake_data: def fake(): return _DataSet( [] , [] , fake_data=_a , one_hot=_a , dtype=_a , seed=_a ) lowerCAmelCase__ : Tuple = fake() lowerCAmelCase__ : Union[str, Any] = fake() lowerCAmelCase__ : Tuple = fake() return _Datasets(train=_a , validation=_a , test=_a ) if not source_url: # empty string check lowerCAmelCase__ : Optional[Any] = DEFAULT_SOURCE_URL lowerCAmelCase__ : Tuple = '''train-images-idx3-ubyte.gz''' lowerCAmelCase__ : Dict = '''train-labels-idx1-ubyte.gz''' lowerCAmelCase__ : List[str] = '''t10k-images-idx3-ubyte.gz''' lowerCAmelCase__ : Optional[int] = '''t10k-labels-idx1-ubyte.gz''' lowerCAmelCase__ : Optional[Any] = _maybe_download( _a , _a , source_url + train_images_file ) with gfile.Open(_a , '''rb''' ) as f: lowerCAmelCase__ : Optional[Any] = _extract_images(_a ) lowerCAmelCase__ : Any = _maybe_download( _a , _a , source_url + train_labels_file ) with gfile.Open(_a , '''rb''' ) as f: lowerCAmelCase__ : Any = _extract_labels(_a , one_hot=_a ) lowerCAmelCase__ : Any = _maybe_download( _a , _a , source_url + test_images_file ) with gfile.Open(_a , '''rb''' ) as f: lowerCAmelCase__ : str = _extract_images(_a ) lowerCAmelCase__ : Dict = _maybe_download( _a , _a , source_url + test_labels_file ) with gfile.Open(_a , '''rb''' ) as f: lowerCAmelCase__ : int = _extract_labels(_a , one_hot=_a ) if not 0 <= validation_size <= len(_a ): lowerCAmelCase__ : Dict = ( '''Validation size should be between 0 and ''' f'{len(_a )}. Received: {validation_size}.' ) raise ValueError(_a ) lowerCAmelCase__ : List[str] = train_images[:validation_size] lowerCAmelCase__ : Any = train_labels[:validation_size] lowerCAmelCase__ : Optional[Any] = train_images[validation_size:] lowerCAmelCase__ : Optional[int] = train_labels[validation_size:] lowerCAmelCase__ : Optional[Any] = {'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed} lowerCAmelCase__ : List[str] = _DataSet(_a , _a , **_a ) lowerCAmelCase__ : Dict = _DataSet(_a , _a , **_a ) lowerCAmelCase__ : Dict = _DataSet(_a , _a , **_a ) return _Datasets(train=_a , validation=_a , test=_a )
131
0
"""simple docstring""" import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename _a = 'http://www.mocksite.com/file1.txt' _a = '"text": ["foo", "foo"]' _a = '6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8' class A_ : '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = 200 SCREAMING_SNAKE_CASE__ : Dict = {"""Content-Length""": """100"""} SCREAMING_SNAKE_CASE__ : Dict = {} def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" return [bytes(lowercase_ , "utf-8" )] def __a ( *__lowerCamelCase, **__lowerCamelCase ): return MockResponse() @pytest.mark.parametrize("urls_type", [str, list, dict] ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): import requests monkeypatch.setattr(__lowerCamelCase, "request", __lowerCamelCase ) UpperCAmelCase_ : Tuple = URL if issubclass(__lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Union[str, Any] = url elif issubclass(__lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Tuple = [url] elif issubclass(__lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : List[str] = {"train": url} UpperCAmelCase_ : Union[str, Any] = "dummy" UpperCAmelCase_ : Optional[Any] = "downloads" UpperCAmelCase_ : Optional[int] = tmp_path UpperCAmelCase_ : List[str] = DownloadConfig( cache_dir=os.path.join(__lowerCamelCase, __lowerCamelCase ), use_etag=__lowerCamelCase, ) UpperCAmelCase_ : List[Any] = DownloadManager(dataset_name=__lowerCamelCase, download_config=__lowerCamelCase ) UpperCAmelCase_ : List[Any] = dl_manager.download(__lowerCamelCase ) UpperCAmelCase_ : List[Any] = urls for downloaded_paths in [downloaded_paths]: if isinstance(__lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : str = [downloaded_paths] UpperCAmelCase_ : int = [urls] elif isinstance(__lowerCamelCase, __lowerCamelCase ): assert "train" in downloaded_paths.keys() UpperCAmelCase_ : Tuple = downloaded_paths.values() UpperCAmelCase_ : str = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(__lowerCamelCase, __lowerCamelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] UpperCAmelCase_ : List[str] = Path(__lowerCamelCase ) UpperCAmelCase_ : List[str] = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() UpperCAmelCase_ : Union[str, Any] = downloaded_path.read_text() assert content == CONTENT UpperCAmelCase_ : str = downloaded_path.with_suffix(".json" ) assert metadata_downloaded_path.exists() UpperCAmelCase_ : Dict = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize("paths_type", [str, list, dict] ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Dict = str(__lowerCamelCase ) if issubclass(__lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : List[str] = filename elif issubclass(__lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Optional[int] = [filename] elif issubclass(__lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Optional[Any] = {"train": filename} UpperCAmelCase_ : Optional[int] = "dummy" UpperCAmelCase_ : List[Any] = xz_file.parent UpperCAmelCase_ : List[Any] = "extracted" UpperCAmelCase_ : Tuple = DownloadConfig( cache_dir=__lowerCamelCase, use_etag=__lowerCamelCase, ) UpperCAmelCase_ : Any = DownloadManager(dataset_name=__lowerCamelCase, download_config=__lowerCamelCase ) UpperCAmelCase_ : List[str] = dl_manager.extract(__lowerCamelCase ) UpperCAmelCase_ : Dict = paths for extracted_paths in [extracted_paths]: if isinstance(__lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Optional[int] = [extracted_paths] UpperCAmelCase_ : str = [paths] elif isinstance(__lowerCamelCase, __lowerCamelCase ): assert "train" in extracted_paths.keys() UpperCAmelCase_ : str = extracted_paths.values() UpperCAmelCase_ : Tuple = paths.values() assert extracted_paths for extracted_path, input_path in zip(__lowerCamelCase, __lowerCamelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] UpperCAmelCase_ : Union[str, Any] = Path(__lowerCamelCase ) UpperCAmelCase_ : List[str] = extracted_path.parts assert parts[-1] == hash_url_to_filename(__lowerCamelCase, etag=__lowerCamelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() UpperCAmelCase_ : List[str] = extracted_path.read_text() UpperCAmelCase_ : str = text_file.read_text() assert extracted_file_content == expected_file_content def __a ( __lowerCamelCase, __lowerCamelCase ): assert path.endswith(".jsonl" ) for num_items, line in enumerate(__lowerCamelCase, start=1 ): UpperCAmelCase_ : Any = json.loads(line.decode("utf-8" ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize("archive_jsonl", ["tar_jsonl_path", "zip_jsonl_path"] ) def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : int = request.getfixturevalue(__lowerCamelCase ) UpperCAmelCase_ : Dict = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(__lowerCamelCase ), start=1 ): _test_jsonl(__lowerCamelCase, __lowerCamelCase ) assert num_jsonl == 2 @pytest.mark.parametrize("archive_nested_jsonl", ["tar_nested_jsonl_path", "zip_nested_jsonl_path"] ) def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Optional[int] = request.getfixturevalue(__lowerCamelCase ) UpperCAmelCase_ : int = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(__lowerCamelCase ), start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(__lowerCamelCase ), start=1 ): _test_jsonl(__lowerCamelCase, __lowerCamelCase ) assert num_tar == 1 assert num_jsonl == 2 def __a ( __lowerCamelCase ): UpperCAmelCase_ : List[Any] = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(__lowerCamelCase ), start=1 ): assert os.path.basename(__lowerCamelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
23
"""simple docstring""" import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _a = logging.get_logger(__name__) _a = { 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = """detr""" SCREAMING_SNAKE_CASE__ : str = ["""past_key_values"""] SCREAMING_SNAKE_CASE__ : Union[str, Any] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=100 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=256 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ): """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) UpperCAmelCase_ : Union[str, Any] = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : int = backbone_config.get("model_type" ) UpperCAmelCase_ : int = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase_ : Any = config_class.from_dict(lowercase_ ) # set timm attributes to None UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = None, None, None UpperCAmelCase_ : int = use_timm_backbone UpperCAmelCase_ : int = backbone_config UpperCAmelCase_ : List[Any] = num_channels UpperCAmelCase_ : int = num_queries UpperCAmelCase_ : Union[str, Any] = d_model UpperCAmelCase_ : str = encoder_ffn_dim UpperCAmelCase_ : Tuple = encoder_layers UpperCAmelCase_ : List[Any] = encoder_attention_heads UpperCAmelCase_ : Union[str, Any] = decoder_ffn_dim UpperCAmelCase_ : Optional[Any] = decoder_layers UpperCAmelCase_ : Union[str, Any] = decoder_attention_heads UpperCAmelCase_ : Optional[int] = dropout UpperCAmelCase_ : List[str] = attention_dropout UpperCAmelCase_ : Any = activation_dropout UpperCAmelCase_ : str = activation_function UpperCAmelCase_ : Tuple = init_std UpperCAmelCase_ : Optional[Any] = init_xavier_std UpperCAmelCase_ : Optional[Any] = encoder_layerdrop UpperCAmelCase_ : Optional[int] = decoder_layerdrop UpperCAmelCase_ : Tuple = encoder_layers UpperCAmelCase_ : int = auxiliary_loss UpperCAmelCase_ : Optional[Any] = position_embedding_type UpperCAmelCase_ : Tuple = backbone UpperCAmelCase_ : Optional[int] = use_pretrained_backbone UpperCAmelCase_ : Dict = dilation # Hungarian matcher UpperCAmelCase_ : Union[str, Any] = class_cost UpperCAmelCase_ : Any = bbox_cost UpperCAmelCase_ : int = giou_cost # Loss coefficients UpperCAmelCase_ : str = mask_loss_coefficient UpperCAmelCase_ : Any = dice_loss_coefficient UpperCAmelCase_ : Optional[Any] = bbox_loss_coefficient UpperCAmelCase_ : List[str] = giou_loss_coefficient UpperCAmelCase_ : List[Any] = eos_coefficient super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def UpperCamelCase__ ( self ): """simple docstring""" return self.encoder_attention_heads @property def UpperCamelCase__ ( self ): """simple docstring""" return self.d_model @classmethod def UpperCamelCase__ ( cls , lowercase_ , **lowercase_ ): """simple docstring""" return cls(backbone_config=lowercase_ , **lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: UpperCAmelCase_ : Union[str, Any] = self.backbone_config.to_dict() UpperCAmelCase_ : str = self.__class__.model_type return output class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = version.parse("""1.11""" ) @property def UpperCamelCase__ ( self ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def UpperCamelCase__ ( self ): """simple docstring""" return 1E-5 @property def UpperCamelCase__ ( self ): """simple docstring""" return 12
23
1
"""simple docstring""" import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ : Optional[int] = logging.get_logger(__name__) def a_ ( lowerCamelCase ): UpperCAmelCase__ = SwinConfig.from_pretrained( 'microsoft/swin-tiny-patch4-window7-224' , out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) UpperCAmelCase__ = MaskFormerConfig(backbone_config=lowerCamelCase ) UpperCAmelCase__ = 'huggingface/label-files' if "ade20k-full" in model_name: # this should be ok UpperCAmelCase__ = 8_4_7 UpperCAmelCase__ = 'maskformer-ade20k-full-id2label.json' elif "ade" in model_name: # this should be ok UpperCAmelCase__ = 1_5_0 UpperCAmelCase__ = 'ade20k-id2label.json' elif "coco-stuff" in model_name: # this should be ok UpperCAmelCase__ = 1_7_1 UpperCAmelCase__ = 'maskformer-coco-stuff-id2label.json' elif "coco" in model_name: # TODO UpperCAmelCase__ = 1_3_3 UpperCAmelCase__ = 'coco-panoptic-id2label.json' elif "cityscapes" in model_name: # this should be ok UpperCAmelCase__ = 1_9 UpperCAmelCase__ = 'cityscapes-id2label.json' elif "vistas" in model_name: # this should be ok UpperCAmelCase__ = 6_5 UpperCAmelCase__ = 'mapillary-vistas-id2label.json' UpperCAmelCase__ = json.load(open(hf_hub_download(lowerCamelCase , lowerCamelCase , repo_type='dataset' ) , 'r' ) ) UpperCAmelCase__ = {int(lowerCamelCase ): v for k, v in idalabel.items()} return config def a_ ( lowerCamelCase ): UpperCAmelCase__ = [] # stem # fmt: off rename_keys.append(('backbone.patch_embed.proj.weight', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.patch_embed.proj.bias', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.patch_embed.norm.weight', 'model.pixel_level_module.encoder.model.embeddings.norm.weight') ) rename_keys.append(('backbone.patch_embed.norm.bias', 'model.pixel_level_module.encoder.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm1.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm1.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.relative_position_index''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.proj.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.proj.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm2.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm2.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc1.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc1.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc2.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc2.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.layers.{i}.downsample.reduction.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.layers.{i}.downsample.norm.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.layers.{i}.downsample.norm.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''model.pixel_level_module.encoder.hidden_states_norms.{i}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''model.pixel_level_module.encoder.hidden_states_norms.{i}.bias''') ) # FPN rename_keys.append(('sem_seg_head.layer_4.weight', 'model.pixel_level_module.decoder.fpn.stem.0.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.weight', 'model.pixel_level_module.decoder.fpn.stem.1.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.bias', 'model.pixel_level_module.decoder.fpn.stem.1.bias') ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((f'''sem_seg_head.adapter_{source_index}.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight''') ) rename_keys.append((f'''sem_seg_head.adapter_{source_index}.norm.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight''') ) rename_keys.append((f'''sem_seg_head.adapter_{source_index}.norm.bias''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias''') ) rename_keys.append((f'''sem_seg_head.layer_{source_index}.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight''') ) rename_keys.append((f'''sem_seg_head.layer_{source_index}.norm.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight''') ) rename_keys.append((f'''sem_seg_head.layer_{source_index}.norm.bias''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias''') ) rename_keys.append(('sem_seg_head.mask_features.weight', 'model.pixel_level_module.decoder.mask_projection.weight') ) rename_keys.append(('sem_seg_head.mask_features.bias', 'model.pixel_level_module.decoder.mask_projection.bias') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight''', f'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias''', f'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias''') ) # cross-attention out projection rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias''') ) # MLP 1 rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight''', f'''model.transformer_module.decoder.layers.{idx}.fc1.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias''', f'''model.transformer_module.decoder.layers.{idx}.fc1.bias''') ) # MLP 2 rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight''', f'''model.transformer_module.decoder.layers.{idx}.fc2.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias''', f'''model.transformer_module.decoder.layers.{idx}.fc2.bias''') ) # layernorm 1 (self-attention layernorm) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight''', f'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias''', f'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias''') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias''') ) # layernorm 3 (final layernorm) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight''', f'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias''', f'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias''') ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.weight', 'model.transformer_module.decoder.layernorm.weight') ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.bias', 'model.transformer_module.decoder.layernorm.bias') ) # heads on top rename_keys.append(('sem_seg_head.predictor.query_embed.weight', 'model.transformer_module.queries_embedder.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.weight', 'model.transformer_module.input_projection.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.bias', 'model.transformer_module.input_projection.bias') ) rename_keys.append(('sem_seg_head.predictor.class_embed.weight', 'class_predictor.weight') ) rename_keys.append(('sem_seg_head.predictor.class_embed.bias', 'class_predictor.bias') ) for i in range(3 ): rename_keys.append((f'''sem_seg_head.predictor.mask_embed.layers.{i}.weight''', f'''mask_embedder.{i}.0.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.mask_embed.layers.{i}.bias''', f'''mask_embedder.{i}.0.bias''') ) # fmt: on return rename_keys def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = dct.pop(lowerCamelCase ) UpperCAmelCase__ = val def a_ ( lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): UpperCAmelCase__ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) UpperCAmelCase__ = state_dict.pop(f'''backbone.layers.{i}.blocks.{j}.attn.qkv.weight''' ) UpperCAmelCase__ = state_dict.pop(f'''backbone.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase__ = in_proj_weight[:dim, :] UpperCAmelCase__ = in_proj_bias[: dim] UpperCAmelCase__ = in_proj_weight[ dim : dim * 2, : ] UpperCAmelCase__ = in_proj_bias[ dim : dim * 2 ] UpperCAmelCase__ = in_proj_weight[ -dim :, : ] UpperCAmelCase__ = in_proj_bias[-dim :] # fmt: on def a_ ( lowerCamelCase , lowerCamelCase ): # fmt: off UpperCAmelCase__ = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) UpperCAmelCase__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight''' ) UpperCAmelCase__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase__ = in_proj_weight[: hidden_size, :] UpperCAmelCase__ = in_proj_bias[:config.hidden_size] UpperCAmelCase__ = in_proj_weight[hidden_size : hidden_size * 2, :] UpperCAmelCase__ = in_proj_bias[hidden_size : hidden_size * 2] UpperCAmelCase__ = in_proj_weight[-hidden_size :, :] UpperCAmelCase__ = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) UpperCAmelCase__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight''' ) UpperCAmelCase__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase__ = in_proj_weight[: hidden_size, :] UpperCAmelCase__ = in_proj_bias[:config.hidden_size] UpperCAmelCase__ = in_proj_weight[hidden_size : hidden_size * 2, :] UpperCAmelCase__ = in_proj_bias[hidden_size : hidden_size * 2] UpperCAmelCase__ = in_proj_weight[-hidden_size :, :] UpperCAmelCase__ = in_proj_bias[-hidden_size :] # fmt: on def a_ ( ): UpperCAmelCase__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCAmelCase__ = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ) return im @torch.no_grad() def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = False ): UpperCAmelCase__ = get_maskformer_config(lowerCamelCase ) # load original state_dict with open(lowerCamelCase , 'rb' ) as f: UpperCAmelCase__ = pickle.load(lowerCamelCase ) UpperCAmelCase__ = data['model'] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys UpperCAmelCase__ = create_rename_keys(lowerCamelCase ) for src, dest in rename_keys: rename_key(lowerCamelCase , lowerCamelCase , lowerCamelCase ) read_in_swin_q_k_v(lowerCamelCase , config.backbone_config ) read_in_decoder_q_k_v(lowerCamelCase , lowerCamelCase ) # update to torch tensors for key, value in state_dict.items(): UpperCAmelCase__ = torch.from_numpy(lowerCamelCase ) # load 🤗 model UpperCAmelCase__ = MaskFormerForInstanceSegmentation(lowerCamelCase ) model.eval() for name, param in model.named_parameters(): print(lowerCamelCase , param.shape ) UpperCAmelCase__ , UpperCAmelCase__ = model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowerCamelCase ) == 0, f'''Unexpected keys: {unexpected_keys}''' # verify results UpperCAmelCase__ = prepare_img() if "vistas" in model_name: UpperCAmelCase__ = 6_5 elif "cityscapes" in model_name: UpperCAmelCase__ = 6_5_5_3_5 else: UpperCAmelCase__ = 2_5_5 UpperCAmelCase__ = True if 'ade' in model_name else False UpperCAmelCase__ = MaskFormerImageProcessor(ignore_index=lowerCamelCase , reduce_labels=lowerCamelCase ) UpperCAmelCase__ = image_processor(lowerCamelCase , return_tensors='pt' ) UpperCAmelCase__ = model(**lowerCamelCase ) print('Logits:' , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": UpperCAmelCase__ = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase , atol=1e-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f'''Saving model and image processor to {pytorch_dump_folder_path}''' ) Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) model.save_pretrained(lowerCamelCase ) image_processor.save_pretrained(lowerCamelCase ) if push_to_hub: print('Pushing model and image processor to the hub...' ) model.push_to_hub(f'''nielsr/{model_name}''' ) image_processor.push_to_hub(f'''nielsr/{model_name}''' ) if __name__ == "__main__": lowerCAmelCase__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) lowerCAmelCase__ : Optional[int] = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
98
"""simple docstring""" def a_ ( lowerCamelCase , lowerCamelCase ): if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) UpperCAmelCase__ = str(bin(lowerCamelCase ) )[2:] # remove the leading "0b" UpperCAmelCase__ = str(bin(lowerCamelCase ) )[2:] # remove the leading "0b" UpperCAmelCase__ = max(len(lowerCamelCase ) , len(lowerCamelCase ) ) return "0b" + "".join( str(int(char_a == '1' and char_b == '1' ) ) for char_a, char_b in zip(a_binary.zfill(lowerCamelCase ) , b_binary.zfill(lowerCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
98
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a :Optional[int] = logging.get_logger(__name__) a :Tuple = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class __a (UpperCamelCase_): '''simple docstring''' _SCREAMING_SNAKE_CASE :List[Any] = """data2vec-vision""" def __init__( self , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.0 , _a=0.0 , _a=0.02 , _a=1E-1_2 , _a=224 , _a=16 , _a=3 , _a=False , _a=False , _a=False , _a=False , _a=0.1 , _a=0.1 , _a=True , _a=[3, 5, 7, 11] , _a=[1, 2, 3, 6] , _a=True , _a=0.4 , _a=256 , _a=1 , _a=False , _a=255 , **_a , ) -> List[Any]: """simple docstring""" super().__init__(**_a ) SCREAMING_SNAKE_CASE__ : List[Any] = hidden_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE__ : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE__ : List[Any] = intermediate_size SCREAMING_SNAKE_CASE__ : str = hidden_act SCREAMING_SNAKE_CASE__ : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[int] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE__ : Optional[Any] = layer_norm_eps SCREAMING_SNAKE_CASE__ : Dict = image_size SCREAMING_SNAKE_CASE__ : List[Any] = patch_size SCREAMING_SNAKE_CASE__ : List[Any] = num_channels SCREAMING_SNAKE_CASE__ : int = use_mask_token SCREAMING_SNAKE_CASE__ : List[str] = use_absolute_position_embeddings SCREAMING_SNAKE_CASE__ : Union[str, Any] = use_relative_position_bias SCREAMING_SNAKE_CASE__ : Tuple = use_shared_relative_position_bias SCREAMING_SNAKE_CASE__ : Any = layer_scale_init_value SCREAMING_SNAKE_CASE__ : str = drop_path_rate SCREAMING_SNAKE_CASE__ : Union[str, Any] = use_mean_pooling # decode head attributes (semantic segmentation) SCREAMING_SNAKE_CASE__ : Any = out_indices SCREAMING_SNAKE_CASE__ : Optional[int] = pool_scales # auxiliary head attributes (semantic segmentation) SCREAMING_SNAKE_CASE__ : Tuple = use_auxiliary_head SCREAMING_SNAKE_CASE__ : Tuple = auxiliary_loss_weight SCREAMING_SNAKE_CASE__ : Any = auxiliary_channels SCREAMING_SNAKE_CASE__ : Optional[Any] = auxiliary_num_convs SCREAMING_SNAKE_CASE__ : Optional[int] = auxiliary_concat_input SCREAMING_SNAKE_CASE__ : Optional[int] = semantic_loss_ignore_index class __a (UpperCamelCase_): '''simple docstring''' _SCREAMING_SNAKE_CASE :str = version.parse("""1.11""") @property def _a ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _a ( self ) -> float: """simple docstring""" return 1E-4
56
"""simple docstring""" def _lowercase ( __lowerCAmelCase ) -> bool: if number < 0: raise ValueError("""number must not be negative""" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
56
1
import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder lowerCAmelCase__ : Union[str, Any] =logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase__ : Any =256 class UpperCAmelCase_ ( _a ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = ['''melgan'''] def __init__( self , _A , _A , _A , _A , _A , ): '''simple docstring''' super().__init__() # From MELGAN __SCREAMING_SNAKE_CASE = math.log(1e-5 ) # Matches MelGAN training. __SCREAMING_SNAKE_CASE = 4.0 # Largest value for most examples __SCREAMING_SNAKE_CASE = 128 self.register_modules( notes_encoder=lowercase__ , continuous_encoder=lowercase__ , decoder=lowercase__ , scheduler=lowercase__ , melgan=lowercase__ , ) def _A ( self , _A , _A=(-1.0, 1.0) , _A=False ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = output_range if clip: __SCREAMING_SNAKE_CASE = torch.clip(lowercase__ , self.min_value , self.max_value ) # Scale to [0, 1]. __SCREAMING_SNAKE_CASE = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def _A ( self , _A , _A=(-1.0, 1.0) , _A=False ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = input_range __SCREAMING_SNAKE_CASE = torch.clip(lowercase__ , lowercase__ , lowercase__ ) if clip else outputs # Scale to [0, 1]. __SCREAMING_SNAKE_CASE = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def _A ( self , _A , _A , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = input_tokens > 0 __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.notes_encoder( encoder_input_tokens=lowercase__ , encoder_inputs_mask=lowercase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.continuous_encoder( encoder_inputs=lowercase__ , encoder_inputs_mask=lowercase__ ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def _A ( self , _A , _A , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = noise_time if not torch.is_tensor(lowercase__ ): __SCREAMING_SNAKE_CASE = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(lowercase__ ) and len(timesteps.shape ) == 0: __SCREAMING_SNAKE_CASE = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __SCREAMING_SNAKE_CASE = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) __SCREAMING_SNAKE_CASE = self.decoder( encodings_and_masks=lowercase__ , decoder_input_tokens=lowercase__ , decoder_noise_time=lowercase__ ) return logits @torch.no_grad() def __call__( self , _A , _A = None , _A = 100 , _A = True , _A = "numpy" , _A = None , _A = 1 , ): '''simple docstring''' if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowercase__ , lowercase__ ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(lowercase__ )}.""" ) __SCREAMING_SNAKE_CASE = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) __SCREAMING_SNAKE_CASE = np.zeros([1, 0, self.n_dims] , np.floataa ) __SCREAMING_SNAKE_CASE = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=lowercase__ , device=self.device ) for i, encoder_input_tokens in enumerate(lowercase__ ): if i == 0: __SCREAMING_SNAKE_CASE = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. __SCREAMING_SNAKE_CASE = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=lowercase__ , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. __SCREAMING_SNAKE_CASE = ones __SCREAMING_SNAKE_CASE = self.scale_features( lowercase__ , output_range=[-1.0, 1.0] , clip=lowercase__ ) __SCREAMING_SNAKE_CASE = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=lowercase__ , continuous_mask=lowercase__ , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop __SCREAMING_SNAKE_CASE = randn_tensor( shape=encoder_continuous_inputs.shape , generator=lowercase__ , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(lowercase__ ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __SCREAMING_SNAKE_CASE = self.decode( encodings_and_masks=lowercase__ , input_tokens=lowercase__ , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 __SCREAMING_SNAKE_CASE = self.scheduler.step(lowercase__ , lowercase__ , lowercase__ , generator=lowercase__ ).prev_sample __SCREAMING_SNAKE_CASE = self.scale_to_features(lowercase__ , input_range=[-1.0, 1.0] ) __SCREAMING_SNAKE_CASE = mel[:1] __SCREAMING_SNAKE_CASE = mel.cpu().float().numpy() __SCREAMING_SNAKE_CASE = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowercase__ , lowercase__ ) logger.info('Generated segment' , lowercase__ ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( 'Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.' ) elif output_type == "numpy" and self.melgan is None: raise ValueError( 'Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.' ) if output_type == "numpy": __SCREAMING_SNAKE_CASE = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: __SCREAMING_SNAKE_CASE = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=lowercase__ )
257
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL A_ : Tuple = logging.get_logger(__name__) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' __UpperCAmelCase = b.T __UpperCAmelCase = np.sum(np.square(SCREAMING_SNAKE_CASE ) , axis=1 ) __UpperCAmelCase = np.sum(np.square(SCREAMING_SNAKE_CASE ) , axis=0 ) __UpperCAmelCase = np.matmul(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = aa[:, None] - 2 * ab + ba[None, :] return d def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' __UpperCAmelCase = x.reshape(-1 , 3 ) __UpperCAmelCase = squared_euclidean_distance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return np.argmin(SCREAMING_SNAKE_CASE , axis=1 ) class A_ ( _a ): '''simple docstring''' a__ = ["pixel_values"] def __init__(self , lowercase__ = None , lowercase__ = True , lowercase__ = None , lowercase__ = PILImageResampling.BILINEAR , lowercase__ = True , lowercase__ = True , **lowercase__ , ) -> None: super().__init__(**lowercase__ ) __UpperCAmelCase = size if size is not None else {'''height''': 256, '''width''': 256} __UpperCAmelCase = get_size_dict(lowercase__ ) __UpperCAmelCase = np.array(lowercase__ ) if clusters is not None else None __UpperCAmelCase = do_resize __UpperCAmelCase = size __UpperCAmelCase = resample __UpperCAmelCase = do_normalize __UpperCAmelCase = do_color_quantize def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ = PILImageResampling.BILINEAR , lowercase__ = None , **lowercase__ , ) -> np.ndarray: __UpperCAmelCase = get_size_dict(lowercase__ ) if "height" not in size or "width" not in size: raise ValueError(F'''Size dictionary must contain both height and width keys. Got {size.keys()}''' ) return resize( lowercase__ , size=(size['''height'''], size['''width''']) , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None , ) -> np.ndarray: __UpperCAmelCase = rescale(image=lowercase__ , scale=1 / 127.5 , data_format=lowercase__ ) __UpperCAmelCase = image - 1 return image def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ) -> PIL.Image.Image: __UpperCAmelCase = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase = size if size is not None else self.size __UpperCAmelCase = get_size_dict(lowercase__ ) __UpperCAmelCase = resample if resample is not None else self.resample __UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase = do_color_quantize if do_color_quantize is not None else self.do_color_quantize __UpperCAmelCase = clusters if clusters is not None else self.clusters __UpperCAmelCase = np.array(lowercase__ ) __UpperCAmelCase = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_color_quantize and clusters is None: raise ValueError('''Clusters must be specified if do_color_quantize is True.''' ) # All transformations expect numpy arrays. __UpperCAmelCase = [to_numpy_array(lowercase__ ) for image in images] if do_resize: __UpperCAmelCase = [self.resize(image=lowercase__ , size=lowercase__ , resample=lowercase__ ) for image in images] if do_normalize: __UpperCAmelCase = [self.normalize(image=lowercase__ ) for image in images] if do_color_quantize: __UpperCAmelCase = [to_channel_dimension_format(lowercase__ , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) __UpperCAmelCase = np.array(lowercase__ ) __UpperCAmelCase = color_quantize(lowercase__ , lowercase__ ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) __UpperCAmelCase = images.shape[0] __UpperCAmelCase = images.reshape(lowercase__ , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. __UpperCAmelCase = list(lowercase__ ) else: __UpperCAmelCase = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] __UpperCAmelCase = {'''input_ids''': images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
333
0
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore __lowercase = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" __lowercase = [file for file in filepaths if file != file.lower()] if upper_files: print(F'{len(upper_files)} files contain uppercase characters:') print('''\n'''.join(upper_files) + '''\n''') __lowercase = [file for file in filepaths if ''' ''' in file] if space_files: print(F'{len(space_files)} files contain space characters:') print('''\n'''.join(space_files) + '''\n''') __lowercase = [file for file in filepaths if '''-''' in file] if hyphen_files: print(F'{len(hyphen_files)} files contain hyphen characters:') print('''\n'''.join(hyphen_files) + '''\n''') __lowercase = [file for file in filepaths if os.sep not in file] if nodir_files: print(F'{len(nodir_files)} files are not in a directory:') print('''\n'''.join(nodir_files) + '''\n''') __lowercase = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
105
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
105
1
"""simple docstring""" import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm a = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex a = 10 a = 256 def _snake_case ( _snake_case : List[str] ) -> Optional[MinHash]: '''simple docstring''' if len(_snake_case ) < MIN_NUM_TOKENS: return None _A = MinHash(num_perm=_snake_case ) for token in set(_snake_case ): min_hash.update(token.encode() ) return min_hash def _snake_case ( _snake_case : str ) -> Set[str]: '''simple docstring''' return {t for t in NON_ALPHA.split(_snake_case ) if len(t.strip() ) > 0} class lowercase_ : '''simple docstring''' def __init__( self : int , *, _UpperCAmelCase : float = 0.85 , ): _A = duplication_jaccard_threshold _A = NUM_PERM _A = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) _A = defaultdict(_UpperCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : MinHash ): _A = self._index.query(_UpperCAmelCase ) if code_key in self._index.keys: print(F'''Duplicate key {code_key}''' ) return self._index.insert(_UpperCAmelCase , _UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(_UpperCAmelCase ) break else: self._duplicate_clusters[close_duplicates[0]].add(_UpperCAmelCase ) def lowerCAmelCase_ ( self : Dict ): _A = [] for base, duplicates in self._duplicate_clusters.items(): _A = [base] + list(_UpperCAmelCase ) # reformat the cluster to be a list of dict _A = [{'base_index': el[0], 'repo_name': el[1], 'path': el[2]} for el in cluster] duplicate_clusters.append(_UpperCAmelCase ) return duplicate_clusters def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Optional[int] ): _A = self.get_duplicate_clusters() with open(_UpperCAmelCase , 'w' ) as f: json.dump(_UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( _snake_case : Any ) -> Optional[Any]: '''simple docstring''' _A , _A = element _A = get_min_hash([t for t in NON_ALPHA.split(data['content'] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def _snake_case ( _snake_case : Type[Dataset] ) -> List[Any]: '''simple docstring''' with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(_snake_case , max_queue_size=1_00_00 ) , chunksize=1_00 , ): if data is not None: yield data def _snake_case ( _snake_case : Type[Dataset] , _snake_case : float ) -> List[str]: '''simple docstring''' _A = DuplicationIndex(duplication_jaccard_threshold=_snake_case ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(_snake_case ) ) , max_queue_size=1_00 ) ): di.add(_snake_case , _snake_case ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def _snake_case ( _snake_case : str , _snake_case : str ) -> float: '''simple docstring''' _A = get_tokens(_snake_case ) _A = get_tokens(_snake_case ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) a = None def _snake_case ( _snake_case : List[str] , _snake_case : List[str] ) -> Tuple: '''simple docstring''' _A = [] for elementa in cluster: _A = _shared_dataset[elementa['base_index']]['content'] for elementa in extremes: _A = _shared_dataset[elementa['base_index']]['content'] if jaccard_similarity(_snake_case , _snake_case ) >= jaccard_threshold: elementa["copies"] += 1 break else: _A = 1 extremes.append(_snake_case ) return extremes def _snake_case ( _snake_case : Tuple , _snake_case : Dict , _snake_case : str ) -> str: '''simple docstring''' global _shared_dataset _A = dataset _A = [] _A = partial(_find_cluster_extremes_shared , jaccard_threshold=_snake_case ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( _snake_case , _snake_case , ) , total=len(_snake_case ) , ): extremes_list.append(_snake_case ) return extremes_list def _snake_case ( _snake_case : Type[Dataset] , _snake_case : float = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]: '''simple docstring''' _A = make_duplicate_clusters(_snake_case , _snake_case ) _A = {x['base_index'] for cluster in duplicate_clusters for x in cluster} _A = {} _A = find_extremes(_snake_case , _snake_case , _snake_case ) for extremes in extremes_clusters: for element in extremes: _A = element _A = duplicate_indices - set(extreme_dict.keys() ) _A = dataset.filter(lambda _snake_case , _snake_case : idx not in remove_indices , with_indices=_snake_case ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: _A = element['base_index'] in extreme_dict if element["is_extreme"]: _A = extreme_dict[element['base_index']]['copies'] print(F'''Original dataset size: {len(_snake_case )}''' ) print(F'''Number of duplicate clusters: {len(_snake_case )}''' ) print(F'''Files in duplicate cluster: {len(_snake_case )}''' ) print(F'''Unique files in duplicate cluster: {len(_snake_case )}''' ) print(F'''Filtered dataset size: {len(_snake_case )}''' ) return ds_filter, duplicate_clusters
315
"""simple docstring""" import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : int , *_UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : str=None , **_UpperCAmelCase : List[Any] ): super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) _A = eval_examples _A = post_process_function def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : str=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : str = "eval" ): _A = self.eval_dataset if eval_dataset is None else eval_dataset _A = self.get_eval_dataloader(_UpperCAmelCase ) _A = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _A = self.compute_metrics _A = None _A = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _A = time.time() try: _A = eval_loop( _UpperCAmelCase , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_UpperCAmelCase , metric_key_prefix=_UpperCAmelCase , ) finally: _A = compute_metrics _A = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( _UpperCAmelCase , _UpperCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default _A = self.post_process_function(_UpperCAmelCase , _UpperCAmelCase , output.predictions ) _A = self.compute_metrics(_UpperCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): _A = metrics.pop(_UpperCAmelCase ) metrics.update(output.metrics ) else: _A = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_UpperCAmelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) _A = self.callback_handler.on_evaluate(self.args , self.state , self.control , _UpperCAmelCase ) return metrics def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : str = "test" ): _A = self.get_test_dataloader(_UpperCAmelCase ) # Temporarily disable metric computation, we will do it in the loop here. _A = self.compute_metrics _A = None _A = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _A = time.time() try: _A = eval_loop( _UpperCAmelCase , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_UpperCAmelCase , metric_key_prefix=_UpperCAmelCase , ) finally: _A = compute_metrics _A = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( _UpperCAmelCase , _UpperCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output _A = self.post_process_function(_UpperCAmelCase , _UpperCAmelCase , output.predictions , 'predict' ) _A = self.compute_metrics(_UpperCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): _A = metrics.pop(_UpperCAmelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_UpperCAmelCase )
315
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _a ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): A = StableDiffusionInstructPixaPixPipeline A = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width''', '''cross_attention_kwargs'''} A = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS A = IMAGE_TO_IMAGE_IMAGE_PARAMS A = IMAGE_TO_IMAGE_IMAGE_PARAMS def __snake_case (self ) -> Any: torch.manual_seed(0 ) UpperCAmelCase_: Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=8, out_channels=4, down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D"""), up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D"""), cross_attention_dim=32, ) UpperCAmelCase_: Optional[Any] = PNDMScheduler(skip_prk_steps=SCREAMING_SNAKE_CASE_ ) torch.manual_seed(0 ) UpperCAmelCase_: Optional[Any] = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], latent_channels=4, ) torch.manual_seed(0 ) UpperCAmelCase_: Optional[int] = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) UpperCAmelCase_: List[str] = CLIPTextModel(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) UpperCAmelCase_: Optional[int] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=0 ) -> List[str]: UpperCAmelCase_: str = floats_tensor((1, 3, 32, 32), rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Tuple = image.cpu().permute(0, 2, 3, 1 )[0] UpperCAmelCase_: Optional[int] = Image.fromarray(np.uinta(SCREAMING_SNAKE_CASE_ ) ).convert("""RGB""" ) if str(SCREAMING_SNAKE_CASE_ ).startswith("""mps""" ): UpperCAmelCase_: int = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: UpperCAmelCase_: List[str] = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: str = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """image_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def __snake_case (self ) -> List[Any]: UpperCAmelCase_: List[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_: Dict = self.get_dummy_components() UpperCAmelCase_: Dict = StableDiffusionInstructPixaPixPipeline(**SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Union[str, Any] = sd_pipe.to(SCREAMING_SNAKE_CASE_ ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[int] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[int] = sd_pipe(**SCREAMING_SNAKE_CASE_ ).images UpperCAmelCase_: Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase_: Tuple = np.array([0.7_5_2_6, 0.3_7_5_0, 0.4_5_4_7, 0.6_1_1_7, 0.5_8_6_6, 0.5_0_1_6, 0.4_3_2_7, 0.5_6_4_2, 0.4_8_1_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __snake_case (self ) -> Optional[Any]: UpperCAmelCase_: Tuple = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_: List[Any] = self.get_dummy_components() UpperCAmelCase_: Dict = StableDiffusionInstructPixaPixPipeline(**SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[Any] = sd_pipe.to(SCREAMING_SNAKE_CASE_ ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Any = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[int] = """french fries""" UpperCAmelCase_: Optional[Any] = sd_pipe(**SCREAMING_SNAKE_CASE_, negative_prompt=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Any = output.images UpperCAmelCase_: Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase_: int = np.array([0.7_5_1_1, 0.3_6_4_2, 0.4_5_5_3, 0.6_2_3_6, 0.5_7_9_7, 0.5_0_1_3, 0.4_3_4_3, 0.5_6_1_1, 0.4_8_3_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __snake_case (self ) -> List[Any]: UpperCAmelCase_: Union[str, Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_: int = self.get_dummy_components() UpperCAmelCase_: str = StableDiffusionInstructPixaPixPipeline(**SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: str = sd_pipe.to(SCREAMING_SNAKE_CASE_ ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Union[str, Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Dict = [inputs["""prompt"""]] * 2 UpperCAmelCase_: str = np.array(inputs["""image"""] ).astype(np.floataa ) / 2_5_5.0 UpperCAmelCase_: Any = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).unsqueeze(0 ).to(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Tuple = image / 2 + 0.5 UpperCAmelCase_: List[Any] = image.permute(0, 3, 1, 2 ) UpperCAmelCase_: Union[str, Any] = image.repeat(2, 1, 1, 1 ) UpperCAmelCase_: Tuple = sd_pipe(**SCREAMING_SNAKE_CASE_ ).images UpperCAmelCase_: Tuple = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) UpperCAmelCase_: Optional[Any] = np.array([0.5_8_1_2, 0.5_7_4_8, 0.5_2_2_2, 0.5_9_0_8, 0.5_6_9_5, 0.7_1_7_4, 0.6_8_0_4, 0.5_5_2_3, 0.5_5_7_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __snake_case (self ) -> Optional[int]: UpperCAmelCase_: Optional[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_: Tuple = self.get_dummy_components() UpperCAmelCase_: List[str] = EulerAncestralDiscreteScheduler( beta_start=0.0_0_0_8_5, beta_end=0.0_1_2, beta_schedule="""scaled_linear""" ) UpperCAmelCase_: Dict = StableDiffusionInstructPixaPixPipeline(**SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[int] = sd_pipe.to(SCREAMING_SNAKE_CASE_ ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[str] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Dict = sd_pipe(**SCREAMING_SNAKE_CASE_ ).images UpperCAmelCase_: Optional[Any] = image[0, -3:, -3:, -1] UpperCAmelCase_: int = [round(SCREAMING_SNAKE_CASE_, 4 ) for x in image_slice.flatten().tolist()] print(""",""".join([str(SCREAMING_SNAKE_CASE_ ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) UpperCAmelCase_: List[str] = np.array([0.7_4_1_7, 0.3_8_4_2, 0.4_7_3_2, 0.5_7_7_6, 0.5_8_9_1, 0.5_1_3_9, 0.4_0_5_2, 0.5_6_7_3, 0.4_9_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __snake_case (self ) -> Dict: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def __snake_case (self ) -> str: UpperCAmelCase_: Union[str, Any] = self.get_dummy_components() UpperCAmelCase_: Dict = StableDiffusionInstructPixaPixPipeline(**SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: int = VaeImageProcessor(do_resize=SCREAMING_SNAKE_CASE_, do_normalize=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Tuple = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Dict = pipe(**self.get_dummy_inputs_by_type(SCREAMING_SNAKE_CASE_, input_image_type="""pt""" ) )[0] UpperCAmelCase_: Union[str, Any] = components["""vae"""] UpperCAmelCase_: str = self.get_dummy_inputs_by_type(SCREAMING_SNAKE_CASE_, input_image_type="""pt""" ) for image_param in self.image_latents_params: if image_param in inputs.keys(): UpperCAmelCase_: Optional[int] = vae.encode(inputs[image_param] ).latent_dist.mode() UpperCAmelCase_: Union[str, Any] = pipe(**SCREAMING_SNAKE_CASE_ )[0] UpperCAmelCase_: Tuple = np.abs(out - out_latents_inputs ).max() self.assertLess(SCREAMING_SNAKE_CASE_, 1E-4, """passing latents as image input generate different result from passing image""" ) @slow @require_torch_gpu class _a ( unittest.TestCase ): def __snake_case (self ) -> Tuple: super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case (self, SCREAMING_SNAKE_CASE_=0 ) -> List[Any]: UpperCAmelCase_: Optional[Any] = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Tuple = load_image( """https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg""" ) UpperCAmelCase_: Any = { """prompt""": """turn him into a cyborg""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """image_guidance_scale""": 1.0, """output_type""": """numpy""", } return inputs def __snake_case (self ) -> Any: UpperCAmelCase_: Union[str, Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""", safety_checker=SCREAMING_SNAKE_CASE_ ) pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) pipe.enable_attention_slicing() UpperCAmelCase_: str = self.get_inputs() UpperCAmelCase_: str = pipe(**SCREAMING_SNAKE_CASE_ ).images UpperCAmelCase_: List[str] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) UpperCAmelCase_: int = np.array([0.5_9_0_2, 0.6_0_1_5, 0.6_0_2_7, 0.5_9_8_3, 0.6_0_9_2, 0.6_0_6_1, 0.5_7_6_5, 0.5_7_8_5, 0.5_5_5_5] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __snake_case (self ) -> List[Any]: UpperCAmelCase_: Dict = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""", safety_checker=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Tuple = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) pipe.enable_attention_slicing() UpperCAmelCase_: Optional[int] = self.get_inputs() UpperCAmelCase_: List[Any] = pipe(**SCREAMING_SNAKE_CASE_ ).images UpperCAmelCase_: int = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) UpperCAmelCase_: Dict = np.array([0.6_5_7_8, 0.6_8_1_7, 0.6_9_7_2, 0.6_7_6_1, 0.6_8_5_6, 0.6_9_1_6, 0.6_4_2_8, 0.6_5_1_6, 0.6_3_0_1] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __snake_case (self ) -> str: UpperCAmelCase_: Optional[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""", safety_checker=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: int = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) pipe.enable_attention_slicing() UpperCAmelCase_: Any = self.get_inputs() UpperCAmelCase_: Tuple = pipe(**SCREAMING_SNAKE_CASE_ ).images UpperCAmelCase_: List[str] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) UpperCAmelCase_: List[Any] = np.array([0.3_8_2_8, 0.3_8_3_4, 0.3_8_1_8, 0.3_7_9_2, 0.3_8_6_5, 0.3_7_5_2, 0.3_7_9_2, 0.3_8_4_7, 0.3_7_5_3] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __snake_case (self ) -> Dict: UpperCAmelCase_: Any = 0 def callback_fn(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> None: UpperCAmelCase_: str = True nonlocal number_of_steps number_of_steps += 1 if step == 1: UpperCAmelCase_: int = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) UpperCAmelCase_: Dict = latents[0, -3:, -3:, -1] UpperCAmelCase_: int = np.array([-0.2_4_6_3, -0.4_6_4_4, -0.9_7_5_6, 1.5_1_7_6, 1.4_4_1_4, 0.7_8_6_6, 0.9_8_9_7, 0.8_5_2_1, 0.7_9_8_3] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: UpperCAmelCase_: Dict = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) UpperCAmelCase_: int = latents[0, -3:, -3:, -1] UpperCAmelCase_: List[Any] = np.array([-0.2_6_4_4, -0.4_6_2_6, -0.9_6_5_3, 1.5_1_7_6, 1.4_5_5_1, 0.7_6_8_6, 0.9_8_0_5, 0.8_4_5_2, 0.8_1_1_5] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 UpperCAmelCase_: Optional[int] = False UpperCAmelCase_: Optional[int] = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""", safety_checker=SCREAMING_SNAKE_CASE_, torch_dtype=torch.floataa ) UpperCAmelCase_: List[str] = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) pipe.enable_attention_slicing() UpperCAmelCase_: Optional[Any] = self.get_inputs() pipe(**SCREAMING_SNAKE_CASE_, callback=SCREAMING_SNAKE_CASE_, callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def __snake_case (self ) -> Tuple: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase_: Union[str, Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""", safety_checker=SCREAMING_SNAKE_CASE_, torch_dtype=torch.floataa ) UpperCAmelCase_: Any = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() UpperCAmelCase_: Union[str, Any] = self.get_inputs() UpperCAmelCase_: Union[str, Any] = pipe(**SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Dict = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def __snake_case (self ) -> int: UpperCAmelCase_: Optional[int] = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 UpperCAmelCase_: int = inputs["""image"""].resize((504, 504) ) UpperCAmelCase_: Any = """timbrooks/instruct-pix2pix""" UpperCAmelCase_: int = StableDiffusionInstructPixaPixPipeline.from_pretrained( SCREAMING_SNAKE_CASE_, safety_checker=SCREAMING_SNAKE_CASE_, ) pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) pipe.enable_attention_slicing() UpperCAmelCase_: Any = pipe(**SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[Any] = output.images[0] UpperCAmelCase_: int = image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) UpperCAmelCase_: str = np.array([0.2_7_2_6, 0.2_5_2_9, 0.2_6_6_4, 0.2_6_5_5, 0.2_6_4_1, 0.2_6_4_2, 0.2_5_9_1, 0.2_6_4_9, 0.2_5_9_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
82
import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def lowerCAmelCase_ (lowerCAmelCase__: Optional[int] ): """simple docstring""" assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def lowerCAmelCase_ (): """simple docstring""" assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def lowerCAmelCase_ (): """simple docstring""" UpperCAmelCase_: List[Any] = """mock-s3-bucket""" UpperCAmelCase_: str = F's3://{mock_bucket}' UpperCAmelCase_: Any = extract_path_from_uri(lowerCAmelCase__ ) assert dataset_path.startswith("""s3://""" ) is False UpperCAmelCase_: Tuple = """./local/path""" UpperCAmelCase_: Any = extract_path_from_uri(lowerCAmelCase__ ) assert dataset_path == new_dataset_path def lowerCAmelCase_ (lowerCAmelCase__: Dict ): """simple docstring""" UpperCAmelCase_: int = is_remote_filesystem(lowerCAmelCase__ ) assert is_remote is True UpperCAmelCase_: Optional[Any] = fsspec.filesystem("""file""" ) UpperCAmelCase_: int = is_remote_filesystem(lowerCAmelCase__ ) assert is_remote is False @pytest.mark.parametrize("""compression_fs_class""" , lowerCAmelCase__ ) def lowerCAmelCase_ (lowerCAmelCase__: Tuple , lowerCAmelCase__: List[str] , lowerCAmelCase__: Dict , lowerCAmelCase__: List[Any] , lowerCAmelCase__: Optional[Any] , lowerCAmelCase__: List[Any] , lowerCAmelCase__: Tuple ): """simple docstring""" UpperCAmelCase_: int = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_file, """bz2""": bza_file, """lz4""": lza_file} UpperCAmelCase_: Dict = input_paths[compression_fs_class.protocol] if input_path is None: UpperCAmelCase_: str = F'for \'{compression_fs_class.protocol}\' compression protocol, ' if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(lowerCAmelCase__ ) UpperCAmelCase_: Optional[int] = fsspec.filesystem(compression_fs_class.protocol , fo=lowerCAmelCase__ ) assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_: Optional[Any] = os.path.basename(lowerCAmelCase__ ) UpperCAmelCase_: Optional[Any] = expected_filename[: expected_filename.rindex(""".""" )] assert fs.glob("""*""" ) == [expected_filename] with fs.open(lowerCAmelCase__ , """r""" , encoding="""utf-8""" ) as f, open(lowerCAmelCase__ , encoding="""utf-8""" ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize("""protocol""" , ["""zip""", """gzip"""] ) def lowerCAmelCase_ (lowerCAmelCase__: int , lowerCAmelCase__: Tuple , lowerCAmelCase__: Any ): """simple docstring""" UpperCAmelCase_: List[str] = {"""zip""": zip_jsonl_path, """gzip""": jsonl_gz_path} UpperCAmelCase_: Tuple = compressed_file_paths[protocol] UpperCAmelCase_: int = """dataset.jsonl""" UpperCAmelCase_: Any = F'{protocol}://{member_file_path}::{compressed_file_path}' UpperCAmelCase_ , *UpperCAmelCase_: Dict = fsspec.get_fs_token_paths(lowerCAmelCase__ ) assert fs.isfile(lowerCAmelCase__ ) assert not fs.isfile("""non_existing_""" + member_file_path ) @pytest.mark.integration def lowerCAmelCase_ (lowerCAmelCase__: Any , lowerCAmelCase__: List[Any] , lowerCAmelCase__: List[str] , lowerCAmelCase__: Optional[Any] ): """simple docstring""" UpperCAmelCase_: Tuple = hf_api.dataset_info(lowerCAmelCase__ , token=lowerCAmelCase__ ) UpperCAmelCase_: List[str] = HfFileSystem(repo_info=lowerCAmelCase__ , token=lowerCAmelCase__ ) assert sorted(hffs.glob("""*""" ) ) == [".gitattributes", "data"] assert hffs.isdir("""data""" ) assert hffs.isfile(""".gitattributes""" ) and hffs.isfile("""data/text_data.txt""" ) with open(lowerCAmelCase__ ) as f: assert hffs.open("""data/text_data.txt""" , """r""" ).read() == f.read() def lowerCAmelCase_ (): """simple docstring""" UpperCAmelCase_: List[str] = """bz2""" # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(lowerCAmelCase__ , lowerCAmelCase__ , clobber=lowerCAmelCase__ ) with pytest.warns(lowerCAmelCase__ ) as warning_info: importlib.reload(datasets.filesystems ) assert len(lowerCAmelCase__ ) == 1 assert ( str(warning_info[0].message ) == F'A filesystem protocol was already set for {protocol} and will be overwritten.' )
82
1
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class UpperCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ : jnp.ndarray UpperCamelCase__ : jnp.ndarray class UpperCAmelCase_ ( nn.Module ): '''simple docstring''' UpperCamelCase__ : int UpperCamelCase__ : Tuple[int] = (16, 32, 96, 256) UpperCamelCase__ : jnp.dtype = jnp.floataa def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __SCREAMING_SNAKE_CASE = [] for i in range(len(self.block_out_channels ) - 1 ): __SCREAMING_SNAKE_CASE = self.block_out_channels[i] __SCREAMING_SNAKE_CASE = self.block_out_channels[i + 1] __SCREAMING_SNAKE_CASE = nn.Conv( _A , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(_A ) __SCREAMING_SNAKE_CASE = nn.Conv( _A , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(_A ) __SCREAMING_SNAKE_CASE = blocks __SCREAMING_SNAKE_CASE = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.conv_in(_A ) __SCREAMING_SNAKE_CASE = nn.silu(_A ) for block in self.blocks: __SCREAMING_SNAKE_CASE = block(_A ) __SCREAMING_SNAKE_CASE = nn.silu(_A ) __SCREAMING_SNAKE_CASE = self.conv_out(_A ) return embedding @flax_register_to_config class UpperCAmelCase_ ( nn.Module , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ : int = 32 UpperCamelCase__ : int = 4 UpperCamelCase__ : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) UpperCamelCase__ : Union[bool, Tuple[bool]] = False UpperCamelCase__ : Tuple[int] = (320, 640, 1280, 1280) UpperCamelCase__ : int = 2 UpperCamelCase__ : Union[int, Tuple[int]] = 8 UpperCamelCase__ : Optional[Union[int, Tuple[int]]] = None UpperCamelCase__ : int = 1280 UpperCamelCase__ : float = 0.0 UpperCamelCase__ : bool = False UpperCamelCase__ : jnp.dtype = jnp.floataa UpperCamelCase__ : bool = True UpperCamelCase__ : int = 0 UpperCamelCase__ : str = "rgb" UpperCamelCase__ : Tuple[int] = (16, 32, 96, 256) def _A ( self , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = (1, self.in_channels, self.sample_size, self.sample_size) __SCREAMING_SNAKE_CASE = jnp.zeros(_A , dtype=jnp.floataa ) __SCREAMING_SNAKE_CASE = jnp.ones((1,) , dtype=jnp.intaa ) __SCREAMING_SNAKE_CASE = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) __SCREAMING_SNAKE_CASE = (1, 3, self.sample_size * 8, self.sample_size * 8) __SCREAMING_SNAKE_CASE = jnp.zeros(_A , dtype=jnp.floataa ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = jax.random.split(_A ) __SCREAMING_SNAKE_CASE = {'params': params_rng, 'dropout': dropout_rng} return self.init(_A , _A , _A , _A , _A )["params"] def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.block_out_channels __SCREAMING_SNAKE_CASE = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. __SCREAMING_SNAKE_CASE = self.num_attention_heads or self.attention_head_dim # input __SCREAMING_SNAKE_CASE = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time __SCREAMING_SNAKE_CASE = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) __SCREAMING_SNAKE_CASE = FlaxTimestepEmbedding(_A , dtype=self.dtype ) __SCREAMING_SNAKE_CASE = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) __SCREAMING_SNAKE_CASE = self.only_cross_attention if isinstance(_A , _A ): __SCREAMING_SNAKE_CASE = (only_cross_attention,) * len(self.down_block_types ) if isinstance(_A , _A ): __SCREAMING_SNAKE_CASE = (num_attention_heads,) * len(self.down_block_types ) # down __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = block_out_channels[0] __SCREAMING_SNAKE_CASE = nn.Conv( _A , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_A ) for i, down_block_type in enumerate(self.down_block_types ): __SCREAMING_SNAKE_CASE = output_channel __SCREAMING_SNAKE_CASE = block_out_channels[i] __SCREAMING_SNAKE_CASE = i == len(_A ) - 1 if down_block_type == "CrossAttnDownBlock2D": __SCREAMING_SNAKE_CASE = FlaxCrossAttnDownBlockaD( in_channels=_A , out_channels=_A , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: __SCREAMING_SNAKE_CASE = FlaxDownBlockaD( in_channels=_A , out_channels=_A , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(_A ) for _ in range(self.layers_per_block ): __SCREAMING_SNAKE_CASE = nn.Conv( _A , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_A ) if not is_final_block: __SCREAMING_SNAKE_CASE = nn.Conv( _A , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_A ) __SCREAMING_SNAKE_CASE = down_blocks __SCREAMING_SNAKE_CASE = controlnet_down_blocks # mid __SCREAMING_SNAKE_CASE = block_out_channels[-1] __SCREAMING_SNAKE_CASE = FlaxUNetMidBlockaDCrossAttn( in_channels=_A , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) __SCREAMING_SNAKE_CASE = nn.Conv( _A , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , _A , _A , _A , _A , _A = 1.0 , _A = True , _A = False , ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.controlnet_conditioning_channel_order if channel_order == "bgr": __SCREAMING_SNAKE_CASE = jnp.flip(_A , axis=1 ) # 1. time if not isinstance(_A , jnp.ndarray ): __SCREAMING_SNAKE_CASE = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(_A , jnp.ndarray ) and len(timesteps.shape ) == 0: __SCREAMING_SNAKE_CASE = timesteps.astype(dtype=jnp.floataa ) __SCREAMING_SNAKE_CASE = jnp.expand_dims(_A , 0 ) __SCREAMING_SNAKE_CASE = self.time_proj(_A ) __SCREAMING_SNAKE_CASE = self.time_embedding(_A ) # 2. pre-process __SCREAMING_SNAKE_CASE = jnp.transpose(_A , (0, 2, 3, 1) ) __SCREAMING_SNAKE_CASE = self.conv_in(_A ) __SCREAMING_SNAKE_CASE = jnp.transpose(_A , (0, 2, 3, 1) ) __SCREAMING_SNAKE_CASE = self.controlnet_cond_embedding(_A ) sample += controlnet_cond # 3. down __SCREAMING_SNAKE_CASE = (sample,) for down_block in self.down_blocks: if isinstance(_A , _A ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = down_block(_A , _A , _A , deterministic=not train ) else: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = down_block(_A , _A , deterministic=not train ) down_block_res_samples += res_samples # 4. mid __SCREAMING_SNAKE_CASE = self.mid_block(_A , _A , _A , deterministic=not train ) # 5. contronet blocks __SCREAMING_SNAKE_CASE = () for down_block_res_sample, controlnet_block in zip(_A , self.controlnet_down_blocks ): __SCREAMING_SNAKE_CASE = controlnet_block(_A ) controlnet_down_block_res_samples += (down_block_res_sample,) __SCREAMING_SNAKE_CASE = controlnet_down_block_res_samples __SCREAMING_SNAKE_CASE = self.controlnet_mid_block(_A ) # 6. scaling __SCREAMING_SNAKE_CASE = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=_A , mid_block_res_sample=_A )
257
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class UpperCAmelCase_ : '''simple docstring''' UpperCamelCase__ : int = MBartConfig UpperCamelCase__ : Optional[Any] = {} UpperCamelCase__ : Union[str, Any] = '''gelu''' def __init__( self , _A , _A=13 , _A=7 , _A=True , _A=False , _A=99 , _A=32 , _A=2 , _A=4 , _A=37 , _A=0.1 , _A=0.1 , _A=20 , _A=2 , _A=1 , _A=0 , ): '''simple docstring''' __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = eos_token_id __SCREAMING_SNAKE_CASE = pad_token_id __SCREAMING_SNAKE_CASE = bos_token_id def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __SCREAMING_SNAKE_CASE = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __SCREAMING_SNAKE_CASE = tf.concat([input_ids, eos_tensor] , axis=1 ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __SCREAMING_SNAKE_CASE = prepare_mbart_inputs_dict(_A , _A , _A ) return config, inputs_dict def _A ( self , _A , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = TFMBartModel(config=_A ).get_decoder() __SCREAMING_SNAKE_CASE = inputs_dict['input_ids'] __SCREAMING_SNAKE_CASE = input_ids[:1, :] __SCREAMING_SNAKE_CASE = inputs_dict['attention_mask'][:1, :] __SCREAMING_SNAKE_CASE = inputs_dict['head_mask'] __SCREAMING_SNAKE_CASE = 1 # first forward pass __SCREAMING_SNAKE_CASE = model(_A , attention_mask=_A , head_mask=_A , use_cache=_A ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = outputs.to_tuple() __SCREAMING_SNAKE_CASE = past_key_values[1] def __lowercase ( a__ , a__ , a__ , a__=None , a__=None , a__=None , a__=None , a__=None , ) -> str: if attention_mask is None: __SCREAMING_SNAKE_CASE = tf.cast(tf.math.not_equal(a__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __SCREAMING_SNAKE_CASE = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __SCREAMING_SNAKE_CASE = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __SCREAMING_SNAKE_CASE = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __SCREAMING_SNAKE_CASE = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase__ : Any = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () UpperCamelCase__ : int = (TFMBartForConditionalGeneration,) if is_tf_available() else () UpperCamelCase__ : Optional[Any] = ( { '''conversational''': TFMBartForConditionalGeneration, '''feature-extraction''': TFMBartModel, '''summarization''': TFMBartForConditionalGeneration, '''text2text-generation''': TFMBartForConditionalGeneration, '''translation''': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) UpperCamelCase__ : List[str] = True UpperCamelCase__ : Tuple = False UpperCamelCase__ : Union[str, Any] = False def _A ( self , _A , _A , _A , _A , _A ): '''simple docstring''' if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = TFMBartModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=_A ) def _A ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_A ) @require_sentencepiece @require_tokenizers @require_tf class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' UpperCamelCase__ : Any = [ ''' UN Chief Says There Is No Military Solution in Syria''', ] UpperCamelCase__ : str = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', ] UpperCamelCase__ : List[str] = '''facebook/mbart-large-en-ro''' @cached_property def _A ( self ): '''simple docstring''' return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _A ( self , **_A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.translate_src_text(**_A ) self.assertListEqual(self.expected_text , _A ) def _A ( self , **_A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.tokenizer(self.src_text , **_A , return_tensors='tf' ) __SCREAMING_SNAKE_CASE = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) __SCREAMING_SNAKE_CASE = self.tokenizer.batch_decode(_A , skip_special_tokens=_A ) return generated_words @slow def _A ( self ): '''simple docstring''' self._assert_generated_batch_equal_expected()
257
1
"""simple docstring""" from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance a__ : Tuple = 6_37_81_37.0 a__ : Any = 6_35_67_52.31_42_45 a__ : str = 6_3_7_8_1_3_7 def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude __SCREAMING_SNAKE_CASE = atan((1 - flattening) * tan(radians(lowerCAmelCase_ ) ) ) __SCREAMING_SNAKE_CASE = atan((1 - flattening) * tan(radians(lowerCAmelCase_ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius __SCREAMING_SNAKE_CASE = haversine_distance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) / EQUATORIAL_RADIUS # Intermediate P and Q values __SCREAMING_SNAKE_CASE = (b_lata + b_lata) / 2 __SCREAMING_SNAKE_CASE = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) __SCREAMING_SNAKE_CASE = (sin(lowerCAmelCase_ ) ** 2) * (cos(lowerCAmelCase_ ) ** 2) __SCREAMING_SNAKE_CASE = cos(sigma / 2 ) ** 2 __SCREAMING_SNAKE_CASE = (sigma - sin(lowerCAmelCase_ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) __SCREAMING_SNAKE_CASE = (cos(lowerCAmelCase_ ) ** 2) * (sin(lowerCAmelCase_ ) ** 2) __SCREAMING_SNAKE_CASE = sin(sigma / 2 ) ** 2 __SCREAMING_SNAKE_CASE = (sigma + sin(lowerCAmelCase_ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
195
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class UpperCamelCase_ ( UpperCamelCase , UpperCamelCase , unittest.TestCase): """simple docstring""" snake_case__ : str = IFInpaintingSuperResolutionPipeline snake_case__ : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} snake_case__ : Union[str, Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"}) snake_case__ : Dict = PipelineTesterMixin.required_optional_params - {"latents"} def UpperCAmelCase_ ( self : List[Any] ) -> Optional[int]: return self._get_superresolution_dummy_components() def UpperCAmelCase_ ( self : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[str]=0 ) -> List[str]: if str(UpperCAmelCase__ ).startswith("mps" ): __SCREAMING_SNAKE_CASE = torch.manual_seed(UpperCAmelCase__ ) else: __SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 1_6, 1_6) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def UpperCAmelCase_ ( self : str ) -> Dict: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCAmelCase_ ( self : str ) -> Tuple: self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def UpperCAmelCase_ ( self : Tuple ) -> Tuple: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCAmelCase_ ( self : Optional[Any] ) -> List[Any]: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCAmelCase_ ( self : Any ) -> Union[str, Any]: self._test_save_load_local() def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[Any]: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
195
1
'''simple docstring''' import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class __UpperCamelCase : def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ =TaEncoderModel.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) lowerCamelCase_ =AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) lowerCamelCase_ =UNetaDConditionModel( sample_size=32, layers_per_block=1, block_out_channels=[32, 64], down_block_types=[ '''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D''', ], mid_block_type='''UNetMidBlock2DSimpleCrossAttn''', up_block_types=['''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''], in_channels=3, out_channels=6, cross_attention_dim=32, encoder_hid_dim=32, attention_head_dim=8, addition_embed_type='''text''', addition_embed_type_num_heads=2, cross_attention_norm='''group_norm''', resnet_time_scale_shift='''scale_shift''', act_fn='''gelu''', ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) lowerCamelCase_ =DDPMScheduler( num_train_timesteps=1_000, beta_schedule='''squaredcos_cap_v2''', beta_start=0.0_0_0_1, beta_end=0.0_2, thresholding=lowerCAmelCase, dynamic_thresholding_ratio=0.9_5, sample_max_value=1.0, prediction_type='''epsilon''', variance_type='''learned_range''', ) torch.manual_seed(0 ) lowerCamelCase_ =IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ =TaEncoderModel.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) lowerCamelCase_ =AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) lowerCamelCase_ =UNetaDConditionModel( sample_size=32, layers_per_block=[1, 2], block_out_channels=[32, 64], down_block_types=[ '''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D''', ], mid_block_type='''UNetMidBlock2DSimpleCrossAttn''', up_block_types=['''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''], in_channels=6, out_channels=6, cross_attention_dim=32, encoder_hid_dim=32, attention_head_dim=8, addition_embed_type='''text''', addition_embed_type_num_heads=2, cross_attention_norm='''group_norm''', resnet_time_scale_shift='''scale_shift''', act_fn='''gelu''', class_embed_type='''timestep''', mid_block_scale_factor=1.4_1_4, time_embedding_act_fn='''gelu''', time_embedding_dim=32, ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) lowerCamelCase_ =DDPMScheduler( num_train_timesteps=1_000, beta_schedule='''squaredcos_cap_v2''', beta_start=0.0_0_0_1, beta_end=0.0_2, thresholding=lowerCAmelCase, dynamic_thresholding_ratio=0.9_5, sample_max_value=1.0, prediction_type='''epsilon''', variance_type='''learned_range''', ) torch.manual_seed(0 ) lowerCamelCase_ =DDPMScheduler( num_train_timesteps=1_000, beta_schedule='''squaredcos_cap_v2''', beta_start=0.0_0_0_1, beta_end=0.0_2, ) torch.manual_seed(0 ) lowerCamelCase_ =IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.get_dummy_components() lowerCamelCase_ =self.pipeline_class(**lowerCAmelCase ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowerCamelCase_ =self.get_dummy_inputs(lowerCAmelCase ) lowerCamelCase_ =inputs['''prompt'''] lowerCamelCase_ =inputs['''generator'''] lowerCamelCase_ =inputs['''num_inference_steps'''] lowerCamelCase_ =inputs['''output_type'''] if "image" in inputs: lowerCamelCase_ =inputs['''image'''] else: lowerCamelCase_ =None if "mask_image" in inputs: lowerCamelCase_ =inputs['''mask_image'''] else: lowerCamelCase_ =None if "original_image" in inputs: lowerCamelCase_ =inputs['''original_image'''] else: lowerCamelCase_ =None lowerCamelCase_, lowerCamelCase_ =pipe.encode_prompt(lowerCAmelCase ) # inputs with prompt converted to embeddings lowerCamelCase_ ={ '''prompt_embeds''': prompt_embeds, '''negative_prompt_embeds''': negative_prompt_embeds, '''generator''': generator, '''num_inference_steps''': num_inference_steps, '''output_type''': output_type, } if image is not None: lowerCamelCase_ =image if mask_image is not None: lowerCamelCase_ =mask_image if original_image is not None: lowerCamelCase_ =original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =pipe(**lowerCAmelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCAmelCase ) lowerCamelCase_ =self.pipeline_class.from_pretrained(lowerCAmelCase ) pipe_loaded.to(lowerCAmelCase ) pipe_loaded.set_progress_bar_config(disable=lowerCAmelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(lowerCAmelCase, lowerCAmelCase ) is None, f'''`{optional_component}` did not stay set to None after loading.''', ) lowerCamelCase_ =self.get_dummy_inputs(lowerCAmelCase ) lowerCamelCase_ =inputs['''generator'''] lowerCamelCase_ =inputs['''num_inference_steps'''] lowerCamelCase_ =inputs['''output_type'''] # inputs with prompt converted to embeddings lowerCamelCase_ ={ '''prompt_embeds''': prompt_embeds, '''negative_prompt_embeds''': negative_prompt_embeds, '''generator''': generator, '''num_inference_steps''': num_inference_steps, '''output_type''': output_type, } if image is not None: lowerCamelCase_ =image if mask_image is not None: lowerCamelCase_ =mask_image if original_image is not None: lowerCamelCase_ =original_image lowerCamelCase_ =pipe_loaded(**lowerCAmelCase )[0] lowerCamelCase_ =np.abs(to_np(lowerCAmelCase ) - to_np(lowerCAmelCase ) ).max() self.assertLess(lowerCAmelCase, 1e-4 ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.get_dummy_components() lowerCamelCase_ =self.pipeline_class(**lowerCAmelCase ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowerCamelCase_ =self.get_dummy_inputs(lowerCAmelCase ) lowerCamelCase_ =pipe(**lowerCAmelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCAmelCase ) lowerCamelCase_ =self.pipeline_class.from_pretrained(lowerCAmelCase ) pipe_loaded.to(lowerCAmelCase ) pipe_loaded.set_progress_bar_config(disable=lowerCAmelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests lowerCamelCase_ =self.get_dummy_inputs(lowerCAmelCase ) lowerCamelCase_ =pipe_loaded(**lowerCAmelCase )[0] lowerCamelCase_ =np.abs(to_np(lowerCAmelCase ) - to_np(lowerCAmelCase ) ).max() self.assertLess(lowerCAmelCase, 1e-4 )
75
def lowerCAmelCase_ ( __UpperCAmelCase: int ) -> bool: return str(__UpperCAmelCase ) == str(__UpperCAmelCase )[::-1] def lowerCAmelCase_ ( __UpperCAmelCase: int ) -> int: return int(__UpperCAmelCase ) + int(str(__UpperCAmelCase )[::-1] ) def lowerCAmelCase_ ( __UpperCAmelCase: int = 1_0000 ) -> int: UpperCamelCase__ : Optional[Any] = [] for num in range(1 , __UpperCAmelCase ): UpperCamelCase__ : str = 0 UpperCamelCase__ : Any = num while iterations < 50: UpperCamelCase__ : List[Any] = sum_reverse(__UpperCAmelCase ) iterations += 1 if is_palindrome(__UpperCAmelCase ): break else: lychrel_nums.append(__UpperCAmelCase ) return len(__UpperCAmelCase ) if __name__ == "__main__": print(F'''{solution() = }''')
201
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : int = logging.get_logger(__name__) lowercase__ : Union[str, Any] = { 'alibaba-damo/mgp-str-base': 'https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json', } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : Optional[int] = 'mgp-str' def __init__( self : Tuple , lowerCAmelCase__ : Union[str, Any]=[32, 128] , lowerCAmelCase__ : Tuple=4 , lowerCAmelCase__ : Optional[Any]=3 , lowerCAmelCase__ : Any=27 , lowerCAmelCase__ : Union[str, Any]=38 , lowerCAmelCase__ : Optional[Any]=50257 , lowerCAmelCase__ : Optional[Any]=30522 , lowerCAmelCase__ : str=768 , lowerCAmelCase__ : Tuple=12 , lowerCAmelCase__ : Dict=12 , lowerCAmelCase__ : str=4.0 , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : Union[str, Any]=False , lowerCAmelCase__ : Optional[Any]=1e-5 , lowerCAmelCase__ : Optional[Any]=0.0 , lowerCAmelCase__ : Tuple=0.0 , lowerCAmelCase__ : Tuple=0.0 , lowerCAmelCase__ : Any=False , lowerCAmelCase__ : int=0.02 , **lowerCAmelCase__ : List[str] , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) _UpperCamelCase = image_size _UpperCamelCase = patch_size _UpperCamelCase = num_channels _UpperCamelCase = max_token_length _UpperCamelCase = num_character_labels _UpperCamelCase = num_bpe_labels _UpperCamelCase = num_wordpiece_labels _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = mlp_ratio _UpperCamelCase = distilled _UpperCamelCase = layer_norm_eps _UpperCamelCase = drop_rate _UpperCamelCase = qkv_bias _UpperCamelCase = attn_drop_rate _UpperCamelCase = drop_path_rate _UpperCamelCase = output_aa_attentions _UpperCamelCase = initializer_range
287
'''simple docstring''' import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase__ : str = 16 lowercase__ : int = 32 def a__ ( lowercase : Accelerator, lowercase : int = 16 ) -> List[str]: """simple docstring""" _UpperCamelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) _UpperCamelCase = load_dataset('''glue''', '''mrpc''' ) def tokenize_function(lowercase : Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) _UpperCamelCase = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=lowercase, max_length=lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _UpperCamelCase = datasets.map( lowercase, batched=lowercase, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCamelCase = tokenized_datasets.rename_column('''label''', '''labels''' ) def collate_fn(lowercase : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. _UpperCamelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _UpperCamelCase = 16 elif accelerator.mixed_precision != "no": _UpperCamelCase = 8 else: _UpperCamelCase = None return tokenizer.pad( lowercase, padding='''longest''', max_length=lowercase, pad_to_multiple_of=lowercase, return_tensors='''pt''', ) # Instantiate dataloaders. _UpperCamelCase = DataLoader( tokenized_datasets['''train'''], shuffle=lowercase, collate_fn=lowercase, batch_size=lowercase ) _UpperCamelCase = DataLoader( tokenized_datasets['''validation'''], shuffle=lowercase, collate_fn=lowercase, batch_size=lowercase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowercase__ : str = mocked_dataloaders # noqa: F811 def a__ ( lowercase : List[Any], lowercase : List[str] ) -> Any: """simple docstring""" if os.environ.get('''TESTING_MOCKED_DATALOADERS''', lowercase ) == "1": _UpperCamelCase = 2 # Initialize accelerator _UpperCamelCase = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCamelCase = config['''lr'''] _UpperCamelCase = int(config['''num_epochs'''] ) _UpperCamelCase = int(config['''seed'''] ) _UpperCamelCase = int(config['''batch_size'''] ) _UpperCamelCase = evaluate.load('''glue''', '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=lowercase ) def inner_training_loop(lowercase : List[Any] ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(lowercase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCamelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''', return_dict=lowercase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _UpperCamelCase = model.to(accelerator.device ) # Instantiate optimizer _UpperCamelCase = AdamW(params=model.parameters(), lr=lowercase ) _UpperCamelCase , _UpperCamelCase = get_dataloaders(lowercase, lowercase ) # Instantiate scheduler _UpperCamelCase = get_linear_schedule_with_warmup( optimizer=lowercase, num_warmup_steps=100, num_training_steps=(len(lowercase ) * num_epochs), ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = accelerator.prepare( lowercase, lowercase, lowercase, lowercase, lowercase ) # Now we train the model for epoch in range(lowercase ): model.train() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _UpperCamelCase = model(**lowercase ) _UpperCamelCase = outputs.loss accelerator.backward(lowercase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCamelCase = model(**lowercase ) _UpperCamelCase = outputs.logits.argmax(dim=-1 ) _UpperCamelCase , _UpperCamelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=lowercase, references=lowercase, ) _UpperCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""", lowercase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def a__ ( ) -> str: """simple docstring""" _UpperCamelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''', type=lowercase, default=lowercase, choices=['''no''', '''fp16''', '''bf16''', '''fp8'''], help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''', ) parser.add_argument('''--cpu''', action='''store_true''', help='''If passed, will train on the CPU.''' ) _UpperCamelCase = parser.parse_args() _UpperCamelCase = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(lowercase, lowercase ) if __name__ == "__main__": main()
287
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging a : Optional[int] = logging.get_logger(__name__) a : str = {"vocab_file": "sentencepiece.bpe.model"} a : str = { "vocab_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model", } } a : List[Any] = { "camembert-base": 5_12, } a : Dict = "▁" class UpperCamelCase__ ( lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : List[str] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : List[str] = ["input_ids", "attention_mask"] def __init__( self , snake_case , snake_case="<s>" , snake_case="</s>" , snake_case="</s>" , snake_case="<s>" , snake_case="<unk>" , snake_case="<pad>" , snake_case="<mask>" , snake_case=["<s>NOTUSED", "</s>NOTUSED"] , snake_case = None , **snake_case , ): '''simple docstring''' UpperCAmelCase : Optional[Any] = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else mask_token UpperCAmelCase : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=snake_case , eos_token=snake_case , unk_token=snake_case , sep_token=snake_case , cls_token=snake_case , pad_token=snake_case , mask_token=snake_case , additional_special_tokens=snake_case , sp_model_kwargs=self.sp_model_kwargs , **snake_case , ) UpperCAmelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case ) ) UpperCAmelCase : int = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> UpperCAmelCase : List[str] = {"<s>NOTUSED": 0, "<pad>": 1, "</s>NOTUSED": 2, "<unk>": 3} UpperCAmelCase : Optional[Any] = len(self.fairseq_tokens_to_ids ) UpperCAmelCase : Union[str, Any] = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) UpperCAmelCase : Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def A_ ( self , snake_case , snake_case = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase : Any = [self.cls_token_id] UpperCAmelCase : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A_ ( self , snake_case , snake_case = None , snake_case = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case , token_ids_a=snake_case , already_has_special_tokens=snake_case ) if token_ids_a is None: return [1] + ([0] * len(snake_case )) + [1] return [1] + ([0] * len(snake_case )) + [1, 1] + ([0] * len(snake_case )) + [1] def A_ ( self , snake_case , snake_case = None ): '''simple docstring''' UpperCAmelCase : Dict = [self.sep_token_id] UpperCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def A_ ( self ): '''simple docstring''' return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Optional[int] = {self.convert_ids_to_tokens(snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def A_ ( self , snake_case ): '''simple docstring''' return self.sp_model.encode(snake_case , out_type=snake_case ) def A_ ( self , snake_case ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(snake_case ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(snake_case ) def A_ ( self , snake_case ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def A_ ( self , snake_case ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = [] UpperCAmelCase : Any = "" UpperCAmelCase : int = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(snake_case ) + token UpperCAmelCase : List[str] = True UpperCAmelCase : Optional[int] = [] else: current_sub_tokens.append(snake_case ) UpperCAmelCase : int = False out_string += self.sp_model.decode(snake_case ) return out_string.strip() def __getstate__( self ): '''simple docstring''' UpperCAmelCase : Tuple = self.__dict__.copy() UpperCAmelCase : Any = None return state def __setstate__( self , snake_case ): '''simple docstring''' UpperCAmelCase : Optional[int] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCAmelCase : Tuple = {} UpperCAmelCase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A_ ( self , snake_case , snake_case = None ): '''simple docstring''' if not os.path.isdir(snake_case ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return UpperCAmelCase : Tuple = os.path.join( snake_case , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case ) elif not os.path.isfile(self.vocab_file ): with open(snake_case , "wb" ) as fi: UpperCAmelCase : str = self.sp_model.serialized_model_proto() fi.write(snake_case ) return (out_vocab_file,)
311
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() a : Dict = logging.get_logger(__name__) def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : List[str] = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: UpperCAmelCase : Tuple = 192 UpperCAmelCase : str = 768 UpperCAmelCase : List[Any] = 12 UpperCAmelCase : List[Any] = 3 UpperCAmelCase : List[Any] = [800, 1333] UpperCAmelCase : List[str] = False elif yolos_name == "yolos_s_dWr": UpperCAmelCase : Union[str, Any] = 330 UpperCAmelCase : Union[str, Any] = 14 UpperCAmelCase : Any = 6 UpperCAmelCase : int = 1320 elif "yolos_s" in yolos_name: UpperCAmelCase : Union[str, Any] = 384 UpperCAmelCase : Dict = 1536 UpperCAmelCase : str = 12 UpperCAmelCase : List[str] = 6 elif "yolos_b" in yolos_name: UpperCAmelCase : int = [800, 1344] UpperCAmelCase : Optional[int] = 91 UpperCAmelCase : int = "huggingface/label-files" UpperCAmelCase : Union[str, Any] = "coco-detection-id2label.json" UpperCAmelCase : Optional[Any] = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ , repo_type="dataset" ) , "r" ) ) UpperCAmelCase : str = {int(__magic_name__ ): v for k, v in idalabel.items()} UpperCAmelCase : str = idalabel UpperCAmelCase : Union[str, Any] = {v: k for k, v in idalabel.items()} return config def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ = False ): '''simple docstring''' for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase : Tuple = state_dict.pop(F"blocks.{i}.attn.qkv.weight" ) UpperCAmelCase : List[Any] = state_dict.pop(F"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase : str = in_proj_weight[: config.hidden_size, :] UpperCAmelCase : Optional[int] = in_proj_bias[: config.hidden_size] UpperCAmelCase : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase : str = in_proj_weight[-config.hidden_size :, :] UpperCAmelCase : Tuple = in_proj_bias[-config.hidden_size :] def lowercase ( __magic_name__ ): '''simple docstring''' if "backbone" in name: UpperCAmelCase : int = name.replace("backbone" , "vit" ) if "cls_token" in name: UpperCAmelCase : Dict = name.replace("cls_token" , "embeddings.cls_token" ) if "det_token" in name: UpperCAmelCase : int = name.replace("det_token" , "embeddings.detection_tokens" ) if "mid_pos_embed" in name: UpperCAmelCase : Tuple = name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" ) if "pos_embed" in name: UpperCAmelCase : int = name.replace("pos_embed" , "embeddings.position_embeddings" ) if "patch_embed.proj" in name: UpperCAmelCase : str = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "blocks" in name: UpperCAmelCase : Tuple = name.replace("blocks" , "encoder.layer" ) if "attn.proj" in name: UpperCAmelCase : Tuple = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: UpperCAmelCase : Any = name.replace("attn" , "attention.self" ) if "norm1" in name: UpperCAmelCase : int = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: UpperCAmelCase : List[str] = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: UpperCAmelCase : List[str] = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: UpperCAmelCase : Dict = name.replace("mlp.fc2" , "output.dense" ) if "class_embed" in name: UpperCAmelCase : Any = name.replace("class_embed" , "class_labels_classifier" ) if "bbox_embed" in name: UpperCAmelCase : Optional[int] = name.replace("bbox_embed" , "bbox_predictor" ) if "vit.norm" in name: UpperCAmelCase : Tuple = name.replace("vit.norm" , "vit.layernorm" ) return name def lowercase ( __magic_name__ , __magic_name__ ): '''simple docstring''' for key in orig_state_dict.copy().keys(): UpperCAmelCase : Optional[int] = orig_state_dict.pop(__magic_name__ ) if "qkv" in key: UpperCAmelCase : str = key.split("." ) UpperCAmelCase : List[Any] = int(key_split[2] ) UpperCAmelCase : int = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: UpperCAmelCase : Optional[int] = val[:dim, :] UpperCAmelCase : Union[str, Any] = val[ dim : dim * 2, : ] UpperCAmelCase : Any = val[-dim:, :] else: UpperCAmelCase : Tuple = val[:dim] UpperCAmelCase : List[str] = val[dim : dim * 2] UpperCAmelCase : Any = val[-dim:] else: UpperCAmelCase : Union[str, Any] = val return orig_state_dict def lowercase ( ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase : Tuple = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ) return im @torch.no_grad() def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = False ): '''simple docstring''' UpperCAmelCase : Tuple = get_yolos_config(__magic_name__ ) # load original state_dict UpperCAmelCase : int = torch.load(__magic_name__ , map_location="cpu" )["model"] # load 🤗 model UpperCAmelCase : int = YolosForObjectDetection(__magic_name__ ) model.eval() UpperCAmelCase : Dict = convert_state_dict(__magic_name__ , __magic_name__ ) model.load_state_dict(__magic_name__ ) # Check outputs on an image, prepared by YolosImageProcessor UpperCAmelCase : Dict = 800 if yolos_name != "yolos_ti" else 512 UpperCAmelCase : int = YolosImageProcessor(format="coco_detection" , size=__magic_name__ ) UpperCAmelCase : List[Any] = image_processor(images=prepare_img() , return_tensors="pt" ) UpperCAmelCase : List[str] = model(**__magic_name__ ) UpperCAmelCase , UpperCAmelCase : Optional[int] = outputs.logits, outputs.pred_boxes UpperCAmelCase , UpperCAmelCase : Optional[Any] = None, None if yolos_name == "yolos_ti": UpperCAmelCase : str = torch.tensor( [[-3_9.5_0_2_2, -1_1.9_8_2_0, -1_7.6_8_8_8], [-2_9.9_5_7_4, -9.9_7_6_9, -1_7.7_6_9_1], [-4_2.3_2_8_1, -2_0.7_2_0_0, -3_0.6_2_9_4]] ) UpperCAmelCase : Tuple = torch.tensor( [[0.4_0_2_1, 0.0_8_3_6, 0.7_9_7_9], [0.0_1_8_4, 0.2_6_0_9, 0.0_3_6_4], [0.1_7_8_1, 0.2_0_0_4, 0.2_0_9_5]] ) elif yolos_name == "yolos_s_200_pre": UpperCAmelCase : Union[str, Any] = torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] ) UpperCAmelCase : List[str] = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] ) elif yolos_name == "yolos_s_300_pre": UpperCAmelCase : List[str] = torch.tensor( [[-3_6.2_2_2_0, -1_4.4_3_8_5, -2_3.5_4_5_7], [-3_5.6_9_7_0, -1_4.7_5_8_3, -2_1.3_9_3_5], [-3_1.5_9_3_9, -1_3.6_0_4_2, -1_6.8_0_4_9]] ) UpperCAmelCase : Dict = torch.tensor( [[0.7_6_1_4, 0.2_3_1_6, 0.4_7_2_8], [0.7_1_6_8, 0.4_4_9_5, 0.3_8_5_5], [0.4_9_9_6, 0.1_4_6_6, 0.9_9_9_6]] ) elif yolos_name == "yolos_s_dWr": UpperCAmelCase : Dict = torch.tensor( [[-4_2.8_6_6_8, -2_4.1_0_4_9, -4_1.1_6_9_0], [-3_4.7_4_5_6, -1_4.1_2_7_4, -2_4.9_1_9_4], [-3_3.7_8_9_8, -1_2.1_9_4_6, -2_5.6_4_9_5]] ) UpperCAmelCase : List[Any] = torch.tensor( [[0.5_5_8_7, 0.2_7_7_3, 0.0_6_0_5], [0.5_0_0_4, 0.3_0_1_4, 0.9_9_9_4], [0.4_9_9_9, 0.1_5_4_8, 0.9_9_9_4]] ) elif yolos_name == "yolos_base": UpperCAmelCase : str = torch.tensor( [[-4_0.6_0_6_4, -2_4.3_0_8_4, -3_2.6_4_4_7], [-5_5.1_9_9_0, -3_0.7_7_1_9, -3_5.5_8_7_7], [-5_1.4_3_1_1, -3_3.3_5_0_7, -3_5.6_4_6_2]] ) UpperCAmelCase : Union[str, Any] = torch.tensor( [[0.5_5_5_5, 0.2_7_9_4, 0.0_6_5_5], [0.9_0_4_9, 0.2_6_6_4, 0.1_8_9_4], [0.9_1_8_3, 0.1_9_8_4, 0.1_6_3_5]] ) else: raise ValueError(F"Unknown yolos_name: {yolos_name}" ) assert torch.allclose(logits[0, :3, :3] , __magic_name__ , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , __magic_name__ , atol=1e-4 ) Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) print(F"Saving model {yolos_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__magic_name__ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__magic_name__ ) if push_to_hub: UpperCAmelCase : int = { "yolos_ti": "yolos-tiny", "yolos_s_200_pre": "yolos-small", "yolos_s_300_pre": "yolos-small-300", "yolos_s_dWr": "yolos-small-dwr", "yolos_base": "yolos-base", } print("Pushing to the hub..." ) UpperCAmelCase : Tuple = model_mapping[yolos_name] image_processor.push_to_hub(__magic_name__ , organization="hustvl" ) model.push_to_hub(__magic_name__ , organization="hustvl" ) if __name__ == "__main__": a : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--yolos_name", default="yolos_s_200_pre", type=str, help=( "Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre'," " 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'." ), ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original state dict (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) a : str = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
311
1
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Union[str, Any] = { "uw-madison/mra-base-512-4": "https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json", } class UpperCamelCase ( lowercase__ ): '''simple docstring''' lowercase : Optional[int] ="""mra""" def __init__( self , UpperCamelCase_=5_0265 , UpperCamelCase_=768 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=3072 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=512 , UpperCamelCase_=1 , UpperCamelCase_=0.02 , UpperCamelCase_=1E-5 , UpperCamelCase_="absolute" , UpperCamelCase_=4 , UpperCamelCase_="full" , UpperCamelCase_=0 , UpperCamelCase_=0 , UpperCamelCase_=1 , UpperCamelCase_=0 , UpperCamelCase_=2 , **UpperCamelCase_ , ): super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) lowercase_ :str = vocab_size lowercase_ :List[Any] = max_position_embeddings lowercase_ :Tuple = hidden_size lowercase_ :str = num_hidden_layers lowercase_ :int = num_attention_heads lowercase_ :Union[str, Any] = intermediate_size lowercase_ :Tuple = hidden_act lowercase_ :List[str] = hidden_dropout_prob lowercase_ :Dict = attention_probs_dropout_prob lowercase_ :str = initializer_range lowercase_ :List[str] = type_vocab_size lowercase_ :int = layer_norm_eps lowercase_ :int = position_embedding_type lowercase_ :List[str] = block_per_row lowercase_ :Tuple = approx_mode lowercase_ :Any = initial_prior_first_n_blocks lowercase_ :Dict = initial_prior_diagonal_n_blocks
252
from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers SCREAMING_SNAKE_CASE : Dict = [ "python", "tqdm", "regex", "requests", "packaging", "filelock", "numpy", "tokenizers", "huggingface-hub", "safetensors", "accelerate", "pyyaml", ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") def UpperCamelCase ( _a , _a=None ) -> Optional[int]: '''simple docstring''' require_version(deps[pkg] , _a )
252
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase__: str = { "configuration_lxmert": ["LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LxmertConfig"], "tokenization_lxmert": ["LxmertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__: int = ["LxmertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__: Union[str, Any] = [ "LxmertEncoder", "LxmertForPreTraining", "LxmertForQuestionAnswering", "LxmertModel", "LxmertPreTrainedModel", "LxmertVisualFeatureEncoder", "LxmertXLayer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__: int = [ "TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLxmertForPreTraining", "TFLxmertMainLayer", "TFLxmertModel", "TFLxmertPreTrainedModel", "TFLxmertVisualFeatureEncoder", ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys UpperCamelCase__: Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase__: str = { "configuration_lxmert": ["LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LxmertConfig"], "tokenization_lxmert": ["LxmertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__: int = ["LxmertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__: Union[str, Any] = [ "LxmertEncoder", "LxmertForPreTraining", "LxmertForQuestionAnswering", "LxmertModel", "LxmertPreTrainedModel", "LxmertVisualFeatureEncoder", "LxmertXLayer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__: int = [ "TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLxmertForPreTraining", "TFLxmertMainLayer", "TFLxmertModel", "TFLxmertPreTrainedModel", "TFLxmertVisualFeatureEncoder", ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys UpperCamelCase__: Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
1
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() a__: Dict = logging.get_logger(__name__) a__: int = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'encoder.layer_norm_for_extract': 'layer_norm_for_extract', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'label_embs_concat': 'label_embeddings_concat', 'mask_emb': 'masked_spec_embed', 'spk_proj': 'speaker_proj', } a__: str = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'label_embeddings_concat', 'speaker_proj', 'layer_norm_for_extract', ] def UpperCamelCase__( UpperCamelCase__ : str , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str] )->List[str]: for attribute in key.split('''.''' ): A__ = getattr(UpperCamelCase__ , UpperCamelCase__ ) if weight_type is not None: A__ = getattr(UpperCamelCase__ , UpperCamelCase__ ).shape else: A__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": A__ = value elif weight_type == "weight_g": A__ = value elif weight_type == "weight_v": A__ = value elif weight_type == "bias": A__ = value else: A__ = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def UpperCamelCase__( UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any] )->Dict: A__ = [] A__ = fairseq_model.state_dict() A__ = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): A__ = False if "conv_layers" in name: load_conv_layer( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , hf_model.config.feat_extract_norm == '''group''' , ) A__ = True else: for key, mapped_key in MAPPING.items(): A__ = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue A__ = True if "*" in mapped_key: A__ = name.split(UpperCamelCase__ )[0].split('''.''' )[-2] A__ = mapped_key.replace('''*''' , UpperCamelCase__ ) if "weight_g" in name: A__ = '''weight_g''' elif "weight_v" in name: A__ = '''weight_v''' elif "bias" in name: A__ = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj A__ = '''weight''' else: A__ = None set_recursively(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) continue if not is_used: unused_weights.append(UpperCamelCase__ ) logger.warning(f"Unused weights: {unused_weights}" ) def UpperCamelCase__( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : int )->Optional[int]: A__ = full_name.split('''conv_layers.''' )[-1] A__ = name.split('''.''' ) A__ = int(items[0] ) A__ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) A__ = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) A__ = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found." ) A__ = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) A__ = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(UpperCamelCase__ ) @torch.no_grad() def UpperCamelCase__( UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : int=True )->Any: if config_path is not None: A__ = UniSpeechSatConfig.from_pretrained(UpperCamelCase__ ) else: A__ = UniSpeechSatConfig() A__ = '''''' if is_finetuned: A__ = UniSpeechSatForCTC(UpperCamelCase__ ) else: A__ = UniSpeechSatForPreTraining(UpperCamelCase__ ) A__ , A__ , A__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) A__ = model[0].eval() recursively_load_weights(UpperCamelCase__ , UpperCamelCase__ ) hf_wavavec.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": a__: int = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) a__: Optional[Any] = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
359
import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = '''MCTCTFeatureExtractor''' __SCREAMING_SNAKE_CASE = '''AutoTokenizer''' def __init__( self,__lowerCamelCase,__lowerCamelCase ): super().__init__(__lowerCamelCase,__lowerCamelCase ) A__ = self.feature_extractor A__ = False def __call__( self,*__lowerCamelCase,**__lowerCamelCase ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__lowerCamelCase,**__lowerCamelCase ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) A__ = kwargs.pop('''raw_speech''' ) else: A__ = kwargs.pop('''audio''',__lowerCamelCase ) A__ = kwargs.pop('''sampling_rate''',__lowerCamelCase ) A__ = kwargs.pop('''text''',__lowerCamelCase ) if len(__lowerCamelCase ) > 0: A__ = args[0] A__ = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: A__ = self.feature_extractor(__lowerCamelCase,*__lowerCamelCase,sampling_rate=__lowerCamelCase,**__lowerCamelCase ) if text is not None: A__ = self.tokenizer(__lowerCamelCase,**__lowerCamelCase ) if text is None: return inputs elif audio is None: return encodings else: A__ = encodings['''input_ids'''] return inputs def UpperCamelCase ( self,*__lowerCamelCase,**__lowerCamelCase ): return self.tokenizer.batch_decode(*__lowerCamelCase,**__lowerCamelCase ) def UpperCamelCase ( self,*__lowerCamelCase,**__lowerCamelCase ): # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*__lowerCamelCase,**__lowerCamelCase ) A__ = kwargs.pop('''input_features''',__lowerCamelCase ) A__ = kwargs.pop('''labels''',__lowerCamelCase ) if len(__lowerCamelCase ) > 0: A__ = args[0] A__ = args[1:] if input_features is not None: A__ = self.feature_extractor.pad(__lowerCamelCase,*__lowerCamelCase,**__lowerCamelCase ) if labels is not None: A__ = self.tokenizer.pad(__lowerCamelCase,**__lowerCamelCase ) if labels is None: return input_features elif input_features is None: return labels else: A__ = labels['''input_ids'''] return input_features def UpperCamelCase ( self,*__lowerCamelCase,**__lowerCamelCase ): return self.tokenizer.decode(*__lowerCamelCase,**__lowerCamelCase ) @contextmanager def UpperCamelCase ( self ): warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) A__ = True A__ = self.tokenizer yield A__ = self.feature_extractor A__ = False
39
0
import re def A ( a_ ) -> bool: __UpperCamelCase : Any =re.compile( r'^(?:0|94|\+94|0{2}94)' r'7(0|1|2|4|5|6|7|8)' r'(-| |)' r'\d{7}$' ) return bool(re.search(a_ ,a_ ) ) if __name__ == "__main__": A_ :List[str] = '''0094702343221''' print(is_sri_lankan_phone_number(phone))
71
"""simple docstring""" import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor lowerCAmelCase__ = logging.get_logger(__name__) class _lowerCamelCase ( _lowercase ): def __init__(self , *__a , **__a ) -> None: warnings.warn( "The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use PerceiverImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
153
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase = { '''configuration_git''': ['''GIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GitConfig''', '''GitVisionConfig'''], '''processing_git''': ['''GitProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''GIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GitForCausalLM''', '''GitModel''', '''GitPreTrainedModel''', '''GitVisionModel''', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
105
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask __lowercase = logging.getLogger(__name__) class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : str = """token-classification""" def __init__( self , __lowercase) -> str: if type(__lowercase) == dict: __UpperCamelCase :List[Any] = Namespace(**__lowercase) __UpperCamelCase :Dict = import_module('''tasks''') try: __UpperCamelCase :str = getattr(__lowercase , hparams.task_type) __UpperCamelCase :TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f"""Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ f"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""") __UpperCamelCase :Tuple = self.token_classification_task.get_labels(hparams.labels) __UpperCamelCase :Tuple = CrossEntropyLoss().ignore_index super().__init__(__lowercase , len(self.labels) , self.mode) def UpperCamelCase__ ( self , **__lowercase) -> List[Any]: return self.model(**__lowercase) def UpperCamelCase__ ( self , __lowercase , __lowercase) -> Any: __UpperCamelCase :str = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": __UpperCamelCase :Union[str, Any] = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids __UpperCamelCase :Dict = self(**__lowercase) __UpperCamelCase :str = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def UpperCamelCase__ ( self) -> List[Any]: __UpperCamelCase :List[Any] = self.hparams for mode in ["train", "dev", "test"]: __UpperCamelCase :int = self._feature_file(__lowercase) if os.path.exists(__lowercase) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , __lowercase) __UpperCamelCase :Any = torch.load(__lowercase) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir) __UpperCamelCase :Any = self.token_classification_task.read_examples_from_file(args.data_dir , __lowercase) __UpperCamelCase :Union[str, Any] = self.token_classification_task.convert_examples_to_features( __lowercase , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ['''xlnet''']) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ['''xlnet'''] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=__lowercase , pad_on_left=bool(self.config.model_type in ['''xlnet''']) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info('''Saving features into cached file %s''' , __lowercase) torch.save(__lowercase , __lowercase) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase = False) -> DataLoader: __UpperCamelCase :Tuple = self._feature_file(__lowercase) logger.info('''Loading features from cached file %s''' , __lowercase) __UpperCamelCase :str = torch.load(__lowercase) __UpperCamelCase :int = torch.tensor([f.input_ids for f in features] , dtype=torch.long) __UpperCamelCase :Optional[Any] = torch.tensor([f.attention_mask for f in features] , dtype=torch.long) if features[0].token_type_ids is not None: __UpperCamelCase :str = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long) else: __UpperCamelCase :Union[str, Any] = torch.tensor([0 for f in features] , dtype=torch.long) # HACK(we will not use this anymore soon) __UpperCamelCase :int = torch.tensor([f.label_ids for f in features] , dtype=torch.long) return DataLoader( TensorDataset(__lowercase , __lowercase , __lowercase , __lowercase) , batch_size=__lowercase) def UpperCamelCase__ ( self , __lowercase , __lowercase) -> Dict: """Compute validation""" "" __UpperCamelCase :int = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": __UpperCamelCase :Any = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids __UpperCamelCase :Any = self(**__lowercase) __UpperCamelCase , __UpperCamelCase :Tuple = outputs[:2] __UpperCamelCase :List[str] = logits.detach().cpu().numpy() __UpperCamelCase :List[str] = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def UpperCamelCase__ ( self , __lowercase) -> List[str]: __UpperCamelCase :Tuple = torch.stack([x['''val_loss'''] for x in outputs]).mean() __UpperCamelCase :str = np.concatenate([x['''pred'''] for x in outputs] , axis=0) __UpperCamelCase :Any = np.argmax(__lowercase , axis=2) __UpperCamelCase :str = np.concatenate([x['''target'''] for x in outputs] , axis=0) __UpperCamelCase :List[str] = dict(enumerate(self.labels)) __UpperCamelCase :Tuple = [[] for _ in range(out_label_ids.shape[0])] __UpperCamelCase :Any = [[] for _ in range(out_label_ids.shape[0])] for i in range(out_label_ids.shape[0]): for j in range(out_label_ids.shape[1]): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]]) preds_list[i].append(label_map[preds[i][j]]) __UpperCamelCase :Any = { '''val_loss''': val_loss_mean, '''accuracy_score''': accuracy_score(__lowercase , __lowercase), '''precision''': precision_score(__lowercase , __lowercase), '''recall''': recall_score(__lowercase , __lowercase), '''f1''': fa_score(__lowercase , __lowercase), } __UpperCamelCase :Dict = dict(results.items()) __UpperCamelCase :List[str] = results return ret, preds_list, out_label_list def UpperCamelCase__ ( self , __lowercase) -> int: # when stable __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :List[Any] = self._eval_end(__lowercase) __UpperCamelCase :Tuple = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def UpperCamelCase__ ( self , __lowercase) -> int: # updating to test_epoch_end instead of deprecated test_end __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :Optional[int] = self._eval_end(__lowercase) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 __UpperCamelCase :Optional[Any] = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def UpperCamelCase__ ( __lowercase , __lowercase) -> Union[str, Any]: # Add NER specific options BaseTransformer.add_model_specific_args(__lowercase , __lowercase) parser.add_argument( '''--task_type''' , default='''NER''' , type=__lowercase , help='''Task type to fine tune in training (e.g. NER, POS, etc)''') parser.add_argument( '''--max_seq_length''' , default=128 , type=__lowercase , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--labels''' , default='''''' , type=__lowercase , help='''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.''' , ) parser.add_argument( '''--gpus''' , default=0 , type=__lowercase , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''') return parser if __name__ == "__main__": __lowercase = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) __lowercase = NERTransformer.add_model_specific_args(parser, os.getcwd()) __lowercase = parser.parse_args() __lowercase = NERTransformer(args) __lowercase = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 __lowercase = sorted(glob.glob(os.path.join(args.output_dir, '''checkpoint-epoch=*.ckpt'''), recursive=True)) __lowercase = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
105
1