code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from math import log from scipy.constants import Boltzmann, physical_constants lowerCAmelCase : List[Any] = 3_00 # TEMPERATURE (unit = K) def A_ ( a , a , a , ): """simple docstring""" if donor_conc <= 0: raise ValueError('Donor concentration should be positive' ) elif acceptor_conc <= 0: raise ValueError('Acceptor concentration should be positive' ) elif intrinsic_conc <= 0: raise ValueError('Intrinsic concentration should be positive' ) elif donor_conc <= intrinsic_conc: raise ValueError( 'Donor concentration should be greater than intrinsic concentration' ) elif acceptor_conc <= intrinsic_conc: raise ValueError( 'Acceptor concentration should be greater than intrinsic concentration' ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
253
"""simple docstring""" from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration lowerCamelCase_ : Any = HfArgumentParser(InitializationArguments) lowerCamelCase_ : Union[str, Any] = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization lowerCamelCase_ : List[Any] = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks lowerCamelCase_ : Tuple = { 'vocab_size': len(tokenizer), 'scale_attn_by_inverse_layer_idx': True, 'reorder_and_upcast_attn': True, } # Load model config (GPT-2 large in this case) lowerCamelCase_ : int = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config lowerCamelCase_ : Any = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
286
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = "markuplm" def __init__( self : List[Any] , snake_case_ : List[Any]=30_522 , snake_case_ : Tuple=768 , snake_case_ : Union[str, Any]=12 , snake_case_ : str=12 , snake_case_ : Optional[Any]=3_072 , snake_case_ : Optional[Any]="gelu" , snake_case_ : str=0.1 , snake_case_ : List[Any]=0.1 , snake_case_ : Dict=512 , snake_case_ : Tuple=2 , snake_case_ : List[str]=0.02 , snake_case_ : int=1E-1_2 , snake_case_ : Any=0 , snake_case_ : Any=0 , snake_case_ : str=2 , snake_case_ : Optional[int]=256 , snake_case_ : Optional[int]=1_024 , snake_case_ : str=216 , snake_case_ : List[str]=1_001 , snake_case_ : Optional[Any]=32 , snake_case_ : int=50 , snake_case_ : Tuple="absolute" , snake_case_ : Tuple=True , snake_case_ : int=None , **snake_case_ : str , ): super().__init__( pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ , ) snake_case__ : Tuple = vocab_size snake_case__ : Optional[int] = hidden_size snake_case__ : Union[str, Any] = num_hidden_layers snake_case__ : Union[str, Any] = num_attention_heads snake_case__ : List[str] = hidden_act snake_case__ : Dict = intermediate_size snake_case__ : Optional[Any] = hidden_dropout_prob snake_case__ : Any = attention_probs_dropout_prob snake_case__ : int = max_position_embeddings snake_case__ : Optional[int] = type_vocab_size snake_case__ : List[str] = initializer_range snake_case__ : str = layer_norm_eps snake_case__ : List[Any] = position_embedding_type snake_case__ : Any = use_cache snake_case__ : Union[str, Any] = classifier_dropout # additional properties snake_case__ : List[str] = max_depth snake_case__ : int = max_xpath_tag_unit_embeddings snake_case__ : Tuple = max_xpath_subs_unit_embeddings snake_case__ : Dict = tag_pad_id snake_case__ : Union[str, Any] = subs_pad_id snake_case__ : Tuple = xpath_unit_hidden_size
43
'''simple docstring''' import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCAmelCase_ ( _a , unittest.TestCase ): """simple docstring""" lowercase = DDIMPipeline lowercase = UNCONDITIONAL_IMAGE_GENERATION_PARAMS lowercase = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "latents", "callback", "callback_steps", } lowercase = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS lowercase = False def lowerCamelCase ( self : List[str] ): torch.manual_seed(0 ) snake_case__ : Any = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) snake_case__ : Optional[Any] = DDIMScheduler() snake_case__ : Any = {"""unet""": unet, """scheduler""": scheduler} return components def lowerCamelCase ( self : List[Any] , snake_case_ : List[Any] , snake_case_ : Union[str, Any]=0 ): if str(snake_case_ ).startswith("""mps""" ): snake_case__ : str = torch.manual_seed(snake_case_ ) else: snake_case__ : List[Any] = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) snake_case__ : Union[str, Any] = { """batch_size""": 1, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def lowerCamelCase ( self : List[Any] ): snake_case__ : Optional[Any] = """cpu""" snake_case__ : List[str] = self.get_dummy_components() snake_case__ : str = self.pipeline_class(**snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) snake_case__ : Union[str, Any] = self.get_dummy_inputs(snake_case_ ) snake_case__ : str = pipe(**snake_case_ ).images snake_case__ : str = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) snake_case__ : Union[str, Any] = np.array( [1.0_0_0E0_0, 5.7_1_7E-0_1, 4.7_1_7E-0_1, 1.0_0_0E0_0, 0.0_0_0E0_0, 1.0_0_0E0_0, 3.0_0_0E-0_4, 0.0_0_0E0_0, 9.0_0_0E-0_4] ) snake_case__ : Dict = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(snake_case_ , 1E-3 ) def lowerCamelCase ( self : List[str] ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def lowerCamelCase ( self : Tuple ): super().test_save_load_local(expected_max_difference=3E-3 ) def lowerCamelCase ( self : Optional[int] ): super().test_save_load_optional_components(expected_max_difference=3E-3 ) def lowerCamelCase ( self : str ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase ( self : Any ): snake_case__ : Optional[Any] = """google/ddpm-cifar10-32""" snake_case__ : Optional[Any] = UNetaDModel.from_pretrained(snake_case_ ) snake_case__ : List[Any] = DDIMScheduler() snake_case__ : List[str] = DDIMPipeline(unet=snake_case_ , scheduler=snake_case_ ) ddim.to(snake_case_ ) ddim.set_progress_bar_config(disable=snake_case_ ) snake_case__ : Optional[Any] = torch.manual_seed(0 ) snake_case__ : Optional[int] = ddim(generator=snake_case_ , eta=0.0 , output_type="""numpy""" ).images snake_case__ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case__ : Optional[Any] = np.array([0.1723, 0.1617, 0.1600, 0.1626, 0.1497, 0.1513, 0.1505, 0.1442, 0.1453] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase ( self : List[Any] ): snake_case__ : Dict = """google/ddpm-ema-bedroom-256""" snake_case__ : Dict = UNetaDModel.from_pretrained(snake_case_ ) snake_case__ : Optional[int] = DDIMScheduler.from_pretrained(snake_case_ ) snake_case__ : Tuple = DDIMPipeline(unet=snake_case_ , scheduler=snake_case_ ) ddpm.to(snake_case_ ) ddpm.set_progress_bar_config(disable=snake_case_ ) snake_case__ : List[Any] = torch.manual_seed(0 ) snake_case__ : int = ddpm(generator=snake_case_ , output_type="""numpy""" ).images snake_case__ : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) snake_case__ : Optional[Any] = np.array([0.0060, 0.0201, 0.0344, 0.0024, 0.0018, 0.0002, 0.0022, 0.0000, 0.0069] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
43
1
"""simple docstring""" from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
74
"""simple docstring""" import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) def _snake_case ( snake_case__ : str , snake_case__ : str ): A = RobertaPreLayerNormConfig.from_pretrained( snake_case__ , architectures=['RobertaPreLayerNormForMaskedLM'] ) # convert state_dict A = torch.load(hf_hub_download(repo_id=snake_case__ , filename='pytorch_model.bin' ) ) A = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith('roberta.' ): A = 'roberta_prelayernorm.' + tensor_key[len('roberta.' ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith('.self.LayerNorm.weight' ) or tensor_key.endswith('.self.LayerNorm.bias' ): continue A = tensor_value A = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=snake_case__ , config=snake_case__ , state_dict=snake_case__ ) model.save_pretrained(snake_case__ ) # convert tokenizer A = AutoTokenizer.from_pretrained(snake_case__ ) tokenizer.save_pretrained(snake_case__ ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint-repo''', default=None, type=str, required=True, help='''Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _lowercase = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
74
1
'''simple docstring''' from scipy.stats import pearsonr import datasets a : List[Any] = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' a : List[Any] = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' a : int = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): def A_ ( self : int ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def A_ ( self : Optional[int] , lowercase_ : Tuple , lowercase_ : Dict , lowercase_ : Any=False ): if return_pvalue: snake_case_ = pearsonr(lowercase_ , lowercase_ ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(lowercase_ , lowercase_ )[0] )}
350
'''simple docstring''' import pytest import datasets # Import fixture modules as plugins a : int = ['tests.fixtures.files', 'tests.fixtures.hub', 'tests.fixtures.fsspec'] def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> Tuple: '''simple docstring''' for item in items: if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ): continue item.add_marker(pytest.mark.unit ) def __magic_name__ ( __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' config.addinivalue_line('''markers''', '''torchaudio_latest: mark test to run with torchaudio>=0.12''' ) @pytest.fixture(autouse=__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> List[Any]: '''simple docstring''' snake_case_ = tmp_path_factory.getbasetemp() / '''cache''' snake_case_ = test_hf_cache_home / '''datasets''' snake_case_ = test_hf_cache_home / '''metrics''' snake_case_ = test_hf_cache_home / '''modules''' monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''', str(__UpperCAmelCase ) ) monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''', str(__UpperCAmelCase ) ) monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''', str(__UpperCAmelCase ) ) snake_case_ = test_hf_datasets_cache / '''downloads''' monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''', str(__UpperCAmelCase ) ) snake_case_ = test_hf_datasets_cache / '''downloads''' / '''extracted''' monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''', str(__UpperCAmelCase ) ) @pytest.fixture(autouse=__UpperCAmelCase, scope='''session''' ) def __magic_name__ ( ) -> List[Any]: '''simple docstring''' datasets.disable_progress_bar() @pytest.fixture(autouse=__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''', __UpperCAmelCase ) @pytest.fixture def __magic_name__ ( __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''', __UpperCAmelCase )
72
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase = logging.get_logger(__name__) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__=False ) -> Optional[Any]: A_ = [] # fmt: off # stem: rename_keys.append(("""cls_token""", """vit.embeddings.cls_token""") ) rename_keys.append(("""pos_embed""", """vit.embeddings.position_embeddings""") ) rename_keys.append(("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias""") ) # backbone rename_keys.append(("""patch_embed.backbone.stem.conv.weight""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight""") ) rename_keys.append(("""patch_embed.backbone.stem.norm.weight""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight""") ) rename_keys.append(("""patch_embed.backbone.stem.norm.bias""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias""") ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias''') ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" A_ = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) # fmt: on return rename_keys def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__=False ) -> List[Any]: for i in range(config.num_hidden_layers ): if base_model: A_ = """""" else: A_ = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A_ = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) A_ = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict A_ = in_proj_weight[ : config.hidden_size, : ] A_ = in_proj_bias[: config.hidden_size] A_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A_ = in_proj_weight[ -config.hidden_size :, : ] A_ = in_proj_bias[-config.hidden_size :] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> List[str]: A_ = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(UpperCAmelCase__, UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> int: A_ = dct.pop(UpperCAmelCase__ ) A_ = val def UpperCAmelCase__ ( ) -> Dict: A_ = """http://images.cocodataset.org/val2017/000000039769.jpg""" A_ = Image.open(requests.get(UpperCAmelCase__, stream=UpperCAmelCase__ ).raw ) return im @torch.no_grad() def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__=False ) -> List[str]: A_ = BitConfig( global_padding="""same""", layer_type="""bottleneck""", depths=(3, 4, 9), out_features=["""stage3"""], embedding_dynamic_padding=UpperCAmelCase__, ) A_ = ViTHybridConfig(backbone_config=UpperCAmelCase__, image_size=3_84, num_labels=10_00 ) A_ = False # load original model from timm A_ = timm.create_model(UpperCAmelCase__, pretrained=UpperCAmelCase__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys A_ = timm_model.state_dict() if base_model: remove_classification_head_(UpperCAmelCase__ ) A_ = create_rename_keys(UpperCAmelCase__, UpperCAmelCase__ ) for src, dest in rename_keys: rename_key(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) read_in_q_k_v(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) A_ = """huggingface/label-files""" A_ = """imagenet-1k-id2label.json""" A_ = json.load(open(hf_hub_download(UpperCAmelCase__, UpperCAmelCase__, repo_type="""dataset""" ), """r""" ) ) A_ = {int(UpperCAmelCase__ ): v for k, v in idalabel.items()} A_ = idalabel A_ = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": A_ = ViTHybridModel(UpperCAmelCase__ ).eval() else: A_ = ViTHybridForImageClassification(UpperCAmelCase__ ).eval() model.load_state_dict(UpperCAmelCase__ ) # create image processor A_ = create_transform(**resolve_data_config({}, model=UpperCAmelCase__ ) ) A_ = transform.transforms A_ = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } A_ = ViTHybridImageProcessor( do_resize=UpperCAmelCase__, size={"""shortest_edge""": timm_transforms[0].size}, resample=pillow_resamplings[timm_transforms[0].interpolation.value], do_center_crop=UpperCAmelCase__, crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]}, do_normalize=UpperCAmelCase__, image_mean=timm_transforms[-1].mean.tolist(), image_std=timm_transforms[-1].std.tolist(), ) A_ = prepare_img() A_ = transform(UpperCAmelCase__ ).unsqueeze(0 ) A_ = processor(UpperCAmelCase__, return_tensors="""pt""" ).pixel_values # verify pixel values assert torch.allclose(UpperCAmelCase__, UpperCAmelCase__ ) # verify logits with torch.no_grad(): A_ = model(UpperCAmelCase__ ) A_ = outputs.logits print("""Predicted class:""", logits.argmax(-1 ).item() ) if base_model: A_ = timm_model.forward_features(UpperCAmelCase__ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(UpperCAmelCase__, outputs.pooler_output, atol=1e-3 ) else: A_ = timm_model(UpperCAmelCase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(UpperCAmelCase__, outputs.logits, atol=1e-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ ) print(F'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCAmelCase__ ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(UpperCAmelCase__ ) if push_to_hub: print(F'''Pushing model and processor to the hub {vit_name}''' ) model.push_to_hub(F'''ybelkada/{vit_name}''' ) processor.push_to_hub(F'''ybelkada/{vit_name}''' ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--vit_name''', default='''vit_base_r50_s16_384''', type=str, help='''Name of the hybrid ViT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to upload the model to the HuggingFace hub.''' ) __lowerCamelCase = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
162
'''simple docstring''' import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def _lowerCamelCase ( lowercase : Union[str, Any] , lowercase : int , lowercase : int=1024 , lowercase : int=1024 , lowercase : Tuple=False , **lowercase : Optional[int] ) -> Union[str, Any]: _a = AutoTokenizer.from_pretrained(lowercase ) _a = SeqaSeqDataset(lowercase , lowercase , lowercase , lowercase , type_path="train" , **lowercase ) _a = tok.pad_token_id def get_lens(lowercase : Optional[int] ): _a = tqdm( DataLoader(lowercase , batch_size=512 , num_workers=8 , shuffle=lowercase , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) _a = [] for batch in dl: _a = batch["input_ids"].ne(lowercase ).sum(1 ).tolist() _a = batch["labels"].ne(lowercase ).sum(1 ).tolist() if consider_target: for src, tgt in zip(lowercase , lowercase ): max_lens.append(max(lowercase , lowercase ) ) else: max_lens.extend(lowercase ) return max_lens _a = get_lens(lowercase ) _a = SeqaSeqDataset(lowercase , lowercase , lowercase , lowercase , type_path="val" , **lowercase ) _a = get_lens(lowercase ) pickle_save(lowercase , train_ds.len_file ) pickle_save(lowercase , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
63
0
from functools import lru_cache @lru_cache def UpperCamelCase__( UpperCamelCase__ : int )->int: if num < 0: raise ValueError('''Number should not be negative.''' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
39
from __future__ import annotations import time import numpy as np a__: Optional[Any] = [8, 5, 9, 7] a__: Dict = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] a__: List[Any] = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class SCREAMING_SNAKE_CASE__ : def __init__( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,): A__ = claim_vector A__ = allocated_resources_table A__ = maximum_claim_table def UpperCamelCase ( self ): return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def UpperCamelCase ( self ): return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def UpperCamelCase ( self ): return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(__lowerCamelCase ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def UpperCamelCase ( self ): return {self.__need().index(__lowerCamelCase ): i for i in self.__need()} def UpperCamelCase ( self,**__lowerCamelCase ): A__ = self.__need() A__ = self.__allocated_resources_table A__ = self.__available_resources() A__ = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('''_''' * 50 + '''\n''' ) while need_list: A__ = False for each_need in need_list: A__ = True for index, need in enumerate(__lowerCamelCase ): if need > available_resources[index]: A__ = False break if execution: A__ = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: A__ = original_need_index print(f"Process {process_number + 1} is executing." ) # remove the process run from stack need_list.remove(__lowerCamelCase ) # update available/freed resources stack A__ = np.array(__lowerCamelCase ) + np.array( alloc_resources_table[process_number] ) print( '''Updated available resource stack for processes: ''' + ''' '''.join([str(__lowerCamelCase ) for x in available_resources] ) ) break if safe: print('''The process is in a safe state.\n''' ) else: print('''System in unsafe state. Aborting...\n''' ) break def UpperCamelCase ( self ): print(''' ''' * 9 + '''Allocated Resource Table''' ) for item in self.__allocated_resources_table: print( f"P{self.__allocated_resources_table.index(__lowerCamelCase ) + 1}" + ''' '''.join(f"{it:>8}" for it in item ) + '''\n''' ) print(''' ''' * 9 + '''System Resource Table''' ) for item in self.__maximum_claim_table: print( f"P{self.__maximum_claim_table.index(__lowerCamelCase ) + 1}" + ''' '''.join(f"{it:>8}" for it in item ) + '''\n''' ) print( '''Current Usage by Active Processes: ''' + ''' '''.join(str(__lowerCamelCase ) for x in self.__claim_vector ) ) print( '''Initial Available Resources: ''' + ''' '''.join(str(__lowerCamelCase ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
39
1
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCAmelCase : Union[str, Any] =logging.get_logger(__name__) __lowerCAmelCase : List[str] ={'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} __lowerCAmelCase : Union[str, Any] ={ 'vocab_file': { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json', 'allenai/longformer-large-4096': ( 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json' ), 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json' ), }, 'merges_file': { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt', 'allenai/longformer-large-4096': ( 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt' ), 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt' ), }, } __lowerCAmelCase : List[str] ={ 'allenai/longformer-base-4096': 4_0_9_6, 'allenai/longformer-large-4096': 4_0_9_6, 'allenai/longformer-large-4096-finetuned-triviaqa': 4_0_9_6, 'allenai/longformer-base-4096-extra.pos.embd.only': 4_0_9_6, 'allenai/longformer-large-4096-extra.pos.embd.only': 4_0_9_6, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : List[str] = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) __SCREAMING_SNAKE_CASE : Tuple = bs[:] __SCREAMING_SNAKE_CASE : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(lowercase__ ) cs.append(2**8 + n ) n += 1 __SCREAMING_SNAKE_CASE : Dict = [chr(lowercase__ ) for n in cs] return dict(zip(lowercase__ , lowercase__ ) ) def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Dict = set() __SCREAMING_SNAKE_CASE : List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __SCREAMING_SNAKE_CASE : List[str] = char return pairs class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Any = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : Union[str, Any] = ['''input_ids''', '''attention_mask'''] def __init__( self :str , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Any , lowerCAmelCase__ :List[Any]="replace" , lowerCAmelCase__ :Union[str, Any]="<s>" , lowerCAmelCase__ :str="</s>" , lowerCAmelCase__ :str="</s>" , lowerCAmelCase__ :Any="<s>" , lowerCAmelCase__ :Optional[Any]="<unk>" , lowerCAmelCase__ :Tuple="<pad>" , lowerCAmelCase__ :Optional[Any]="<mask>" , lowerCAmelCase__ :Any=False , **lowerCAmelCase__ :str , ) -> str: __SCREAMING_SNAKE_CASE : Optional[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token __SCREAMING_SNAKE_CASE : Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token __SCREAMING_SNAKE_CASE : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token __SCREAMING_SNAKE_CASE : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token __SCREAMING_SNAKE_CASE : Optional[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token __SCREAMING_SNAKE_CASE : Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __SCREAMING_SNAKE_CASE : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding='''utf-8''' ) as vocab_handle: __SCREAMING_SNAKE_CASE : Any = json.load(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = {v: k for k, v in self.encoder.items()} __SCREAMING_SNAKE_CASE : List[Any] = errors # how to handle errors in decoding __SCREAMING_SNAKE_CASE : str = bytes_to_unicode() __SCREAMING_SNAKE_CASE : Any = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding='''utf-8''' ) as merges_handle: __SCREAMING_SNAKE_CASE : List[Any] = merges_handle.read().split('''\n''' )[1:-1] __SCREAMING_SNAKE_CASE : Any = [tuple(merge.split() ) for merge in bpe_merges] __SCREAMING_SNAKE_CASE : Any = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __SCREAMING_SNAKE_CASE : Any = {} __SCREAMING_SNAKE_CASE : str = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __SCREAMING_SNAKE_CASE : Optional[Any] = re.compile(r'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property def __magic_name__( self :Tuple ) -> List[Any]: return len(self.encoder ) def __magic_name__( self :Dict ) -> str: return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__( self :Union[str, Any] , lowerCAmelCase__ :Any ) -> Dict: if token in self.cache: return self.cache[token] __SCREAMING_SNAKE_CASE : Optional[int] = tuple(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: __SCREAMING_SNAKE_CASE : str = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Any = bigram __SCREAMING_SNAKE_CASE : List[Any] = [] __SCREAMING_SNAKE_CASE : List[Any] = 0 while i < len(lowerCAmelCase__ ): try: __SCREAMING_SNAKE_CASE : Optional[int] = word.index(lowerCAmelCase__ , lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __SCREAMING_SNAKE_CASE : List[Any] = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __SCREAMING_SNAKE_CASE : Union[str, Any] = tuple(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = new_word if len(lowerCAmelCase__ ) == 1: break else: __SCREAMING_SNAKE_CASE : Optional[Any] = get_pairs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = ''' '''.join(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = word return word def __magic_name__( self :Tuple , lowerCAmelCase__ :List[Any] ) -> Tuple: __SCREAMING_SNAKE_CASE : Optional[int] = [] for token in re.findall(self.pat , lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : str = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(''' ''' ) ) return bpe_tokens def __magic_name__( self :Dict , lowerCAmelCase__ :Dict ) -> int: return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token ) ) def __magic_name__( self :int , lowerCAmelCase__ :List[str] ) -> int: return self.decoder.get(lowerCAmelCase__ ) def __magic_name__( self :str , lowerCAmelCase__ :str ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Dict = ''''''.join(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def __magic_name__( self :Optional[int] , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __SCREAMING_SNAKE_CASE : Any = os.path.join( lowerCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) __SCREAMING_SNAKE_CASE : Dict = os.path.join( lowerCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + '''\n''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = 0 with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) __SCREAMING_SNAKE_CASE : Tuple = token_index writer.write(''' '''.join(lowerCAmelCase__ ) + '''\n''' ) index += 1 return vocab_file, merge_file def __magic_name__( self :Any , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __SCREAMING_SNAKE_CASE : Union[str, Any] = [self.cls_token_id] __SCREAMING_SNAKE_CASE : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __magic_name__( self :str , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :Optional[List[int]] = None , lowerCAmelCase__ :bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def __magic_name__( self :Union[str, Any] , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :Optional[List[int]] = None ) -> List[int]: __SCREAMING_SNAKE_CASE : Optional[Any] = [self.sep_token_id] __SCREAMING_SNAKE_CASE : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __magic_name__( self :str , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[str]=False , **lowerCAmelCase__ :Any ) -> List[Any]: __SCREAMING_SNAKE_CASE : Tuple = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()): __SCREAMING_SNAKE_CASE : int = ''' ''' + text return (text, kwargs)
9
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = TransfoXLTokenizer SCREAMING_SNAKE_CASE__ : int = False SCREAMING_SNAKE_CASE__ : Optional[Any] = False def __magic_name__( self :str ) -> Dict: super().setUp() __SCREAMING_SNAKE_CASE : List[str] = [ '''<unk>''', '''[CLS]''', '''[SEP]''', '''want''', '''unwanted''', '''wa''', '''un''', '''running''', ''',''', '''low''', '''l''', ] __SCREAMING_SNAKE_CASE : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __magic_name__( self :Any , **lowerCAmelCase__ :int ) -> str: __SCREAMING_SNAKE_CASE : Optional[Any] = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def __magic_name__( self :Union[str, Any] , lowerCAmelCase__ :List[Any] ) -> Tuple: __SCREAMING_SNAKE_CASE : Dict = '''<unk> UNwanted , running''' __SCREAMING_SNAKE_CASE : List[str] = '''<unk> unwanted, running''' return input_text, output_text def __magic_name__( self :Any ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : int = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = tokenizer.tokenize('''<unk> UNwanted , running''' ) self.assertListEqual(lowerCAmelCase__ , ['''<unk>''', '''unwanted''', ''',''', '''running'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [0, 4, 8, 7] ) def __magic_name__( self :Tuple ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Optional[int] = TransfoXLTokenizer(lower_case=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) def __magic_name__( self :Tuple ) -> List[Any]: __SCREAMING_SNAKE_CASE : Union[str, Any] = TransfoXLTokenizer(lower_case=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __magic_name__( self :Dict ) -> List[Any]: __SCREAMING_SNAKE_CASE : List[str] = TransfoXLTokenizer(lower_case=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = '''Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?''' __SCREAMING_SNAKE_CASE : Optional[int] = [ '''Hello''', '''(''', '''bracket''', ''')''', '''and''', '''side''', '''@-@''', '''scrolled''', '''[''', '''and''', ''']''', '''Henry''', '''\'s''', '''$''', '''5''', '''@,@''', '''000''', '''with''', '''3''', '''@.@''', '''34''', '''m''', '''.''', '''What''', '''\'s''', '''up''', '''!''', '''?''', ] self.assertListEqual(tokenizer.tokenize(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(tokenizer.convert_tokens_to_string(lowerCAmelCase__ ) , lowerCAmelCase__ ) def __magic_name__( self :str ) -> int: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Any = len(lowerCAmelCase__ ) tokenizer.add_tokens(['''new1''', '''new2'''] ) tokenizer.move_added_token('''new1''' , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(lowerCAmelCase__ ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('''new1''' ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , '''new1''' )
9
1
'''simple docstring''' import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed _lowerCamelCase : List[Any] = logging.getLogger(__name__) def __lowerCamelCase ( A__=2 , A__=3 , A__=16 , A__ = 10 , A__ = 2 ) -> int: """simple docstring""" def get_dataset(A__ ): UpperCamelCase = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(A__ , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) UpperCamelCase = get_dataset(A__ ) UpperCamelCase = get_dataset(A__ ) UpperCamelCase = DataLoader(A__ , shuffle=A__ , batch_size=A__ , num_workers=4 ) UpperCamelCase = DataLoader(A__ , shuffle=A__ , batch_size=A__ , num_workers=4 ) return (train_dataloader, valid_dataloader) def __lowerCamelCase ( A__ , A__ , A__ , A__ , A__ , A__=None ) -> Optional[int]: """simple docstring""" UpperCamelCase = [] for epoch in range(A__ ): # Train quickly model.train() for batch in dataloader: UpperCamelCase , UpperCamelCase = batch UpperCamelCase = model(A__ ) UpperCamelCase = torch.nn.functional.mse_loss(A__ , A__ ) accelerator.backward(A__ ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" def __init__( self : int ): """simple docstring""" super().__init__() UpperCamelCase = nn.Parameter(torch.randn(1 ) ) UpperCamelCase = nn.Parameter(torch.randn(1 ) ) def A ( self : List[Any] , UpperCamelCase__ : Optional[Any] ): """simple docstring""" return x * self.a + self.b class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def A ( self : int ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCamelCase = DummyModel() UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCamelCase , UpperCamelCase = dummy_dataloaders() UpperCamelCase = ProjectConfiguration(total_limit=1 , project_dir=UpperCamelCase__ , automatic_checkpoint_naming=UpperCamelCase__ ) # Train baseline UpperCamelCase = Accelerator(project_config=UpperCamelCase__ ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = accelerator.prepare( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def A ( self : Union[str, Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCamelCase = DummyModel() UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCamelCase , UpperCamelCase = dummy_dataloaders() # Train baseline UpperCamelCase = Accelerator() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = accelerator.prepare( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Save initial UpperCamelCase = os.path.join(UpperCamelCase__ , 'initial' ) accelerator.save_state(UpperCamelCase__ ) ((UpperCamelCase) , (UpperCamelCase)) = model.a.item(), model.b.item() UpperCamelCase = optimizer.state_dict() UpperCamelCase = train(3 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ((UpperCamelCase) , (UpperCamelCase)) = model.a.item(), model.b.item() UpperCamelCase = optimizer.state_dict() # Train partially set_seed(4_2 ) UpperCamelCase = DummyModel() UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCamelCase , UpperCamelCase = dummy_dataloaders() UpperCamelCase = Accelerator() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = accelerator.prepare( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) accelerator.load_state(UpperCamelCase__ ) ((UpperCamelCase) , (UpperCamelCase)) = model.a.item(), model.b.item() UpperCamelCase = optimizer.state_dict() self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase = train(2 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Save everything UpperCamelCase = os.path.join(UpperCamelCase__ , 'checkpoint' ) accelerator.save_state(UpperCamelCase__ ) # Load everything back in and make sure all states work accelerator.load_state(UpperCamelCase__ ) test_rands += train(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ((UpperCamelCase) , (UpperCamelCase)) = model.a.item(), model.b.item() UpperCamelCase = optimizer.state_dict() self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) def A ( self : Any ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCamelCase = DummyModel() UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCamelCase , UpperCamelCase = dummy_dataloaders() UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=UpperCamelCase__ ) # Train baseline UpperCamelCase = Accelerator(project_dir=UpperCamelCase__ , project_config=UpperCamelCase__ ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = accelerator.prepare( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Save initial accelerator.save_state() ((UpperCamelCase) , (UpperCamelCase)) = model.a.item(), model.b.item() UpperCamelCase = optimizer.state_dict() UpperCamelCase = train(3 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ((UpperCamelCase) , (UpperCamelCase)) = model.a.item(), model.b.item() UpperCamelCase = optimizer.state_dict() # Train partially set_seed(4_2 ) UpperCamelCase = DummyModel() UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCamelCase , UpperCamelCase = dummy_dataloaders() UpperCamelCase = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=UpperCamelCase__ ) UpperCamelCase = Accelerator(project_dir=UpperCamelCase__ , project_config=UpperCamelCase__ ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = accelerator.prepare( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) accelerator.load_state(os.path.join(UpperCamelCase__ , 'checkpoints' , 'checkpoint_0' ) ) ((UpperCamelCase) , (UpperCamelCase)) = model.a.item(), model.b.item() UpperCamelCase = optimizer.state_dict() self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase = train(2 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(UpperCamelCase__ , 'checkpoints' , 'checkpoint_1' ) ) test_rands += train(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ((UpperCamelCase) , (UpperCamelCase)) = model.a.item(), model.b.item() UpperCamelCase = optimizer.state_dict() self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) def A ( self : List[str] ): """simple docstring""" UpperCamelCase = torch.tensor([1, 2, 3] ) UpperCamelCase = torch.tensor([2, 3, 4] ) UpperCamelCase = DummyModel() UpperCamelCase = torch.optim.Adam(net.parameters() ) UpperCamelCase = Accelerator() with self.assertRaises(UpperCamelCase__ ) as ve: accelerator.register_for_checkpointing(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase = str(ve.exception ) self.assertTrue('Item at index 0' in message ) self.assertTrue('Item at index 1' in message ) self.assertFalse('Item at index 2' in message ) self.assertFalse('Item at index 3' in message ) def A ( self : List[Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCamelCase = DummyModel() UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCamelCase = torch.optim.lr_scheduler.StepLR(UpperCamelCase__ , step_size=1 , gamma=0.9_9 ) UpperCamelCase , UpperCamelCase = dummy_dataloaders() UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=UpperCamelCase__ ) # Train baseline UpperCamelCase = Accelerator(project_dir=UpperCamelCase__ , project_config=UpperCamelCase__ ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = accelerator.prepare( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Save initial accelerator.save_state() UpperCamelCase = scheduler.state_dict() train(3 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) self.assertNotEqual(UpperCamelCase__ , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(UpperCamelCase__ , 'checkpoints' , 'checkpoint_0' ) ) self.assertEqual(UpperCamelCase__ , scheduler.state_dict() ) def A ( self : Any ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCamelCase = DummyModel() UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=UpperCamelCase__ , total_limit=2 ) # Train baseline UpperCamelCase = Accelerator(project_dir=UpperCamelCase__ , project_config=UpperCamelCase__ ) UpperCamelCase = accelerator.prepare(UpperCamelCase__ ) # Save 3 states: for _ in range(1_1 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(UpperCamelCase__ , 'checkpoints' , 'checkpoint_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase__ , 'checkpoints' , 'checkpoint_9' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase__ , 'checkpoints' , 'checkpoint_10' ) ) ) @require_cuda def A ( self : Tuple ): """simple docstring""" UpperCamelCase = ['torchrun', f"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(UpperCamelCase__ , env=os.environ.copy() ) if __name__ == "__main__": _lowerCamelCase : Optional[Any] = "/tmp/accelerate/state_checkpointing" _lowerCamelCase : Any = DummyModel() _lowerCamelCase : Union[str, Any] = torch.optim.Adam(params=model.parameters(), lr=1e-3) _lowerCamelCase : int = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) _lowerCamelCase ,_lowerCamelCase : Optional[Any] = dummy_dataloaders() _lowerCamelCase : List[Any] = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline _lowerCamelCase : Union[str, Any] = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="no") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) _lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase : Dict = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) _lowerCamelCase ,_lowerCamelCase : List[str] = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: _lowerCamelCase : int = group["params"][0].device break assert param_device.type == accelerator.device.type _lowerCamelCase : Any = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="cpu") for group in optimizer.param_groups: _lowerCamelCase : int = group["params"][0].device break assert ( param_device.type == torch.device("cpu").type ), f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="on_device") for group in optimizer.param_groups: _lowerCamelCase : Union[str, Any] = group["params"][0].device break assert ( param_device.type == accelerator.device.type ), f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="Unsupported optimizer map location passed"): accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="invalid") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
249
'''simple docstring''' import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def __lowerCamelCase ( A__ , A__ , A__ ) -> Optional[int]: """simple docstring""" UpperCamelCase = ('dense.weight', 'attention.self.query', 'attention.self.key', 'attention.self.value') UpperCamelCase = ( ('layer.', 'layer_'), ('word_embeddings.weight', 'word_embeddings'), ('position_embeddings.weight', 'position_embeddings'), ('token_type_embeddings.weight', 'token_type_embeddings'), ('.', '/'), ('LayerNorm/weight', 'LayerNorm/gamma'), ('LayerNorm/bias', 'LayerNorm/beta'), ('weight', 'kernel'), ) if not os.path.isdir(A__ ): os.makedirs(A__ ) UpperCamelCase = model.state_dict() def to_tf_var_name(A__ ): for patt, repl in iter(A__ ): UpperCamelCase = name.replace(A__ , A__ ) return F"""bert/{name}""" def create_tf_var(A__ , A__ , A__ ): UpperCamelCase = tf.dtypes.as_dtype(tensor.dtype ) UpperCamelCase = tf.get_variable(dtype=A__ , shape=tensor.shape , name=A__ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(A__ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: UpperCamelCase = to_tf_var_name(A__ ) UpperCamelCase = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): UpperCamelCase = torch_tensor.T UpperCamelCase = create_tf_var(tensor=A__ , name=A__ , session=A__ ) tf.keras.backend.set_value(A__ , A__ ) UpperCamelCase = session.run(A__ ) print(F"""Successfully created {tf_name}: {np.allclose(A__ , A__ )}""" ) UpperCamelCase = tf.train.Saver(tf.trainable_variables() ) saver.save(A__ , os.path.join(A__ , model_name.replace('-' , '_' ) + '.ckpt' ) ) def __lowerCamelCase ( A__=None ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = argparse.ArgumentParser() parser.add_argument('--model_name' , type=A__ , required=A__ , help='model name e.g. bert-base-uncased' ) parser.add_argument( '--cache_dir' , type=A__ , default=A__ , required=A__ , help='Directory containing pytorch model' ) parser.add_argument('--pytorch_model_path' , type=A__ , required=A__ , help='/path/to/<pytorch-model-name>.bin' ) parser.add_argument('--tf_cache_dir' , type=A__ , required=A__ , help='Directory in which to save tensorflow model' ) UpperCamelCase = parser.parse_args(A__ ) UpperCamelCase = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=A__ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
249
1
'''simple docstring''' import random class snake_case__ : @staticmethod def A ( _A : str ) -> tuple[list[int], list[int]]: UpperCAmelCase_ : Dict = [ord(_A ) for i in text] UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : Any = [] for i in plain: UpperCAmelCase_ : int = random.randint(1 , 3_00 ) UpperCAmelCase_ : str = (i + k) * k cipher.append(_A ) key.append(_A ) return cipher, key @staticmethod def A ( _A : list[int] , _A : list[int] ) -> str: UpperCAmelCase_ : Dict = [] for i in range(len(_A ) ): UpperCAmelCase_ : int = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(_A ) ) return "".join(_A ) if __name__ == "__main__": _UpperCamelCase , _UpperCamelCase : Any = Onepad().encrypt('Hello') print(c, k) print(Onepad().decrypt(c, k))
304
'''simple docstring''' import functools def __UpperCAmelCase ( A : str , A : str ) -> int: UpperCAmelCase_ : Optional[Any] = len(A ) UpperCAmelCase_ : List[str] = len(A ) @functools.cache def min_distance(A : int , A : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa UpperCAmelCase_ : Any = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , A ) , 1 + min_distance(A , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
304
1
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : Any = logging.get_logger(__name__) def __snake_case ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any]=False ) -> Tuple: '''simple docstring''' _UpperCAmelCase : str = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith("head" ): _UpperCAmelCase : Dict = 'segformer.encoder.' + key if key.startswith("backbone" ): _UpperCAmelCase : Optional[int] = key.replace("backbone" , "segformer.encoder" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 _UpperCAmelCase : Dict = key[key.find("patch_embed" ) + len("patch_embed" )] _UpperCAmelCase : Union[str, Any] = key.replace(f'patch_embed{idx}' , f'patch_embeddings.{int(lowercase__ )-1}' ) if "norm" in key: _UpperCAmelCase : Tuple = key.replace("norm" , "layer_norm" ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 _UpperCAmelCase : int = key[key.find("segformer.encoder.layer_norm" ) + len("segformer.encoder.layer_norm" )] _UpperCAmelCase : Optional[Any] = key.replace(f'layer_norm{idx}' , f'layer_norm.{int(lowercase__ )-1}' ) if "layer_norm1" in key: _UpperCAmelCase : Any = key.replace("layer_norm1" , "layer_norm_1" ) if "layer_norm2" in key: _UpperCAmelCase : Dict = key.replace("layer_norm2" , "layer_norm_2" ) if "block" in key: # replace for example block1 by block.0 _UpperCAmelCase : Dict = key[key.find("block" ) + len("block" )] _UpperCAmelCase : str = key.replace(f'block{idx}' , f'block.{int(lowercase__ )-1}' ) if "attn.q" in key: _UpperCAmelCase : Union[str, Any] = key.replace("attn.q" , "attention.self.query" ) if "attn.proj" in key: _UpperCAmelCase : List[Any] = key.replace("attn.proj" , "attention.output.dense" ) if "attn" in key: _UpperCAmelCase : Tuple = key.replace("attn" , "attention.self" ) if "fc1" in key: _UpperCAmelCase : int = key.replace("fc1" , "dense1" ) if "fc2" in key: _UpperCAmelCase : Optional[Any] = key.replace("fc2" , "dense2" ) if "linear_pred" in key: _UpperCAmelCase : Dict = key.replace("linear_pred" , "classifier" ) if "linear_fuse" in key: _UpperCAmelCase : List[str] = key.replace("linear_fuse.conv" , "linear_fuse" ) _UpperCAmelCase : Tuple = key.replace("linear_fuse.bn" , "batch_norm" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 _UpperCAmelCase : Optional[int] = key[key.find("linear_c" ) + len("linear_c" )] _UpperCAmelCase : Optional[int] = key.replace(f'linear_c{idx}' , f'linear_c.{int(lowercase__ )-1}' ) if key.startswith("head" ): _UpperCAmelCase : Union[str, Any] = key.replace("head" , "classifier" ) _UpperCAmelCase : int = value return new_state_dict def __snake_case ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] ) -> Any: '''simple docstring''' for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) _UpperCAmelCase : Optional[int] = state_dict.pop(f'segformer.encoder.block.{i}.{j}.attention.self.kv.weight' ) _UpperCAmelCase : str = state_dict.pop(f'segformer.encoder.block.{i}.{j}.attention.self.kv.bias' ) # next, add keys and values (in that order) to the state dict _UpperCAmelCase : Dict = kv_weight[ : config.hidden_sizes[i], : ] _UpperCAmelCase : List[Any] = kv_bias[: config.hidden_sizes[i]] _UpperCAmelCase : int = kv_weight[ config.hidden_sizes[i] :, : ] _UpperCAmelCase : str = kv_bias[ config.hidden_sizes[i] : ] def __snake_case ( ) -> Any: '''simple docstring''' _UpperCAmelCase : Any = 'http://images.cocodataset.org/val2017/000000039769.jpg' _UpperCAmelCase : Tuple = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return image @torch.no_grad() def __snake_case ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[str]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = SegformerConfig() _UpperCAmelCase : Union[str, Any] = False # set attributes based on model_name _UpperCAmelCase : Union[str, Any] = 'huggingface/label-files' if "segformer" in model_name: _UpperCAmelCase : Tuple = model_name[len("segformer." ) : len("segformer." ) + 2] if "ade" in model_name: _UpperCAmelCase : List[Any] = 150 _UpperCAmelCase : Tuple = 'ade20k-id2label.json' _UpperCAmelCase : str = (1, 150, 128, 128) elif "city" in model_name: _UpperCAmelCase : List[Any] = 19 _UpperCAmelCase : Dict = 'cityscapes-id2label.json' _UpperCAmelCase : Dict = (1, 19, 128, 128) else: raise ValueError(f'Model {model_name} not supported' ) elif "mit" in model_name: _UpperCAmelCase : List[Any] = True _UpperCAmelCase : str = model_name[4:6] _UpperCAmelCase : Any = 1_000 _UpperCAmelCase : Any = 'imagenet-1k-id2label.json' _UpperCAmelCase : Union[str, Any] = (1, 1_000) else: raise ValueError(f'Model {model_name} not supported' ) # set config attributes _UpperCAmelCase : Union[str, Any] = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="dataset" ) , "r" ) ) _UpperCAmelCase : Optional[Any] = {int(lowercase__ ): v for k, v in idalabel.items()} _UpperCAmelCase : Tuple = idalabel _UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": _UpperCAmelCase : Dict = [64, 128, 320, 512] _UpperCAmelCase : List[str] = 256 elif size == "b2": _UpperCAmelCase : int = [64, 128, 320, 512] _UpperCAmelCase : str = 768 _UpperCAmelCase : Optional[Any] = [3, 4, 6, 3] elif size == "b3": _UpperCAmelCase : Any = [64, 128, 320, 512] _UpperCAmelCase : Any = 768 _UpperCAmelCase : int = [3, 4, 18, 3] elif size == "b4": _UpperCAmelCase : Tuple = [64, 128, 320, 512] _UpperCAmelCase : int = 768 _UpperCAmelCase : Union[str, Any] = [3, 8, 27, 3] elif size == "b5": _UpperCAmelCase : Dict = [64, 128, 320, 512] _UpperCAmelCase : int = 768 _UpperCAmelCase : Any = [3, 6, 40, 3] else: raise ValueError(f'Size {size} not supported' ) # load image processor (only resize + normalize) _UpperCAmelCase : Dict = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=lowercase__ , align=lowercase__ , do_random_crop=lowercase__ ) # prepare image _UpperCAmelCase : Dict = prepare_img() _UpperCAmelCase : Optional[Any] = image_processor(images=lowercase__ , return_tensors="pt" ).pixel_values logger.info(f'Converting model {model_name}...' ) # load original state dict if encoder_only: _UpperCAmelCase : Any = torch.load(lowercase__ , map_location=torch.device("cpu" ) ) else: _UpperCAmelCase : Dict = torch.load(lowercase__ , map_location=torch.device("cpu" ) )['state_dict'] # rename keys _UpperCAmelCase : Dict = rename_keys(lowercase__ , encoder_only=lowercase__ ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(lowercase__ , lowercase__ ) # create HuggingFace model and load state dict if encoder_only: _UpperCAmelCase : Union[str, Any] = False _UpperCAmelCase : str = SegformerForImageClassification(lowercase__ ) else: _UpperCAmelCase : Optional[int] = SegformerForSemanticSegmentation(lowercase__ ) model.load_state_dict(lowercase__ ) model.eval() # forward pass _UpperCAmelCase : List[Any] = model(lowercase__ ) _UpperCAmelCase : Optional[Any] = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": _UpperCAmelCase : List[str] = torch.tensor( [ [[-4.6_310, -5.5_232, -6.2_356], [-5.1_921, -6.1_444, -6.5_996], [-5.4_424, -6.2_790, -6.7_574]], [[-12.1_391, -13.3_122, -13.9_554], [-12.8_732, -13.9_352, -14.3_563], [-12.9_438, -13.8_226, -14.2_513]], [[-12.5_134, -13.4_686, -14.4_915], [-12.8_669, -14.4_343, -14.7_758], [-13.2_523, -14.5_819, -15.0_694]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": _UpperCAmelCase : Union[str, Any] = torch.tensor( [ [[-7.5_820, -8.7_231, -8.3_215], [-8.0_600, -10.3_529, -10.0_304], [-7.5_208, -9.4_103, -9.6_239]], [[-12.6_918, -13.8_994, -13.7_137], [-13.3_196, -15.7_523, -15.4_789], [-12.9_343, -14.8_757, -14.9_689]], [[-11.1_911, -11.9_421, -11.3_243], [-11.3_342, -13.6_839, -13.3_581], [-10.3_909, -12.1_832, -12.4_858]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": _UpperCAmelCase : Union[str, Any] = torch.tensor( [ [[-11.8_173, -14.3_850, -16.3_128], [-14.5_648, -16.5_804, -18.6_568], [-14.7_223, -15.7_387, -18.4_218]], [[-15.7_290, -17.9_171, -19.4_423], [-18.3_105, -19.9_448, -21.4_661], [-17.9_296, -18.6_497, -20.7_910]], [[-15.0_783, -17.0_336, -18.2_789], [-16.8_771, -18.6_870, -20.1_612], [-16.2_454, -17.1_426, -19.5_055]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": _UpperCAmelCase : Union[str, Any] = torch.tensor( [ [[-9.0_878, -10.2_081, -10.1_891], [-9.3_144, -10.7_941, -10.9_843], [-9.2_294, -10.3_855, -10.5_704]], [[-12.2_316, -13.9_068, -13.6_102], [-12.9_161, -14.3_702, -14.3_235], [-12.5_233, -13.7_174, -13.7_932]], [[-14.6_275, -15.2_490, -14.9_727], [-14.3_400, -15.9_687, -16.2_827], [-14.1_484, -15.4_033, -15.8_937]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": _UpperCAmelCase : int = torch.tensor( [ [[-12.3_144, -13.2_447, -14.0_802], [-13.3_614, -14.5_816, -15.6_117], [-13.3_340, -14.4_433, -16.2_219]], [[-19.2_781, -20.4_128, -20.7_506], [-20.6_153, -21.6_566, -22.0_998], [-19.9_800, -21.0_430, -22.1_494]], [[-18.8_739, -19.7_804, -21.1_834], [-20.1_233, -21.6_765, -23.2_944], [-20.0_315, -21.2_641, -23.6_944]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": _UpperCAmelCase : Tuple = torch.tensor( [ [[-9.5_524, -12.0_835, -11.7_348], [-10.5_229, -13.6_446, -14.5_662], [-9.5_842, -12.8_851, -13.9_414]], [[-15.3_432, -17.5_323, -17.0_818], [-16.3_330, -18.9_255, -19.2_101], [-15.1_340, -17.7_848, -18.3_971]], [[-12.6_072, -14.9_486, -14.6_631], [-13.7_629, -17.0_907, -17.7_745], [-12.7_899, -16.1_695, -17.1_671]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": _UpperCAmelCase : Optional[int] = torch.tensor( [ [[-11.9_295, -13.4_057, -14.8_106], [-13.3_431, -14.8_179, -15.3_781], [-14.2_836, -15.5_942, -16.1_588]], [[-11.4_906, -12.8_067, -13.6_564], [-13.1_189, -14.0_500, -14.1_543], [-13.8_748, -14.5_136, -14.8_789]], [[0.5_374, 0.1_067, -0.4_742], [0.1_141, -0.2_255, -0.7_099], [-0.3_000, -0.5_924, -1.3_105]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": _UpperCAmelCase : Dict = torch.tensor( [ [[-7.8_217, -9.8_767, -10.1_717], [-9.4_438, -10.9_058, -11.4_047], [-9.7_939, -12.3_495, -12.1_079]], [[-7.1_514, -9.5_336, -10.0_860], [-9.7_776, -11.6_822, -11.8_439], [-10.1_411, -12.7_655, -12.8_972]], [[0.3_021, 0.0_805, -0.2_310], [-0.0_328, -0.1_605, -0.2_714], [-0.1_408, -0.5_477, -0.6_976]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": _UpperCAmelCase : Optional[Any] = torch.tensor( [ [ [-1.1372E01, -1.2787E01, -1.3477E01], [-1.2536E01, -1.4194E01, -1.4409E01], [-1.3217E01, -1.4888E01, -1.5327E01], ], [ [-1.4791E01, -1.7122E01, -1.8277E01], [-1.7163E01, -1.9192E01, -1.9533E01], [-1.7897E01, -1.9991E01, -2.0315E01], ], [ [7.6723E-01, 4.1921E-01, -7.7878E-02], [4.7772E-01, 9.5557E-03, -2.8082E-01], [3.6032E-01, -2.4826E-01, -5.1168E-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": _UpperCAmelCase : Optional[Any] = torch.tensor( [ [[-9.4_959, -11.3_087, -11.7_479], [-11.0_025, -12.6_540, -12.3_319], [-11.4_064, -13.0_487, -12.9_905]], [[-9.8_905, -11.3_084, -12.0_854], [-11.1_726, -12.7_698, -12.9_583], [-11.5_985, -13.3_278, -14.1_774]], [[0.2_213, 0.0_192, -0.2_466], [-0.1_731, -0.4_213, -0.4_874], [-0.3_126, -0.6_541, -1.1_389]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": _UpperCAmelCase : Dict = torch.tensor( [ [[-13.5_748, -13.9_111, -12.6_500], [-14.3_500, -15.3_683, -14.2_328], [-14.7_532, -16.0_424, -15.6_087]], [[-17.1_651, -15.8_725, -12.9_653], [-17.2_580, -17.3_718, -14.8_223], [-16.6_058, -16.8_783, -16.7_452]], [[-3.6_456, -3.0_209, -1.4_203], [-3.0_797, -3.1_959, -2.0_000], [-1.8_757, -1.9_217, -1.6_997]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": _UpperCAmelCase : Tuple = torch.tensor( [ [[-16.0_976, -16.4_856, -17.3_962], [-16.6_234, -19.0_342, -19.7_685], [-16.0_900, -18.0_661, -19.1_180]], [[-18.4_750, -18.8_488, -19.5_074], [-19.4_030, -22.1_570, -22.5_977], [-19.1_191, -20.8_486, -22.3_783]], [[-4.5_178, -5.5_037, -6.5_109], [-5.0_884, -7.2_174, -8.0_334], [-4.4_156, -5.8_117, -7.2_970]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": _UpperCAmelCase : List[str] = torch.tensor( [ [[-14.2_081, -14.4_732, -14.1_977], [-14.5_867, -16.4_423, -16.6_356], [-13.4_441, -14.9_685, -16.8_696]], [[-14.4_576, -14.7_073, -15.0_451], [-15.0_816, -17.6_237, -17.9_873], [-14.4_213, -16.0_199, -18.5_992]], [[-4.7_349, -4.9_588, -5.0_966], [-4.3_210, -6.9_325, -7.2_591], [-3.4_312, -4.7_484, -7.1_917]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": _UpperCAmelCase : Optional[int] = torch.tensor( [ [[-11.7_737, -11.9_526, -11.3_273], [-13.6_692, -14.4_574, -13.8_878], [-13.8_937, -14.6_924, -15.9_345]], [[-14.6_706, -14.5_330, -14.1_306], [-16.1_502, -16.8_180, -16.4_269], [-16.8_338, -17.8_939, -20.1_746]], [[1.0_491, 0.8_289, 1.0_310], [1.1_044, 0.5_219, 0.8_055], [1.0_899, 0.6_926, 0.5_590]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": _UpperCAmelCase : Union[str, Any] = torch.tensor( [ [[-12.5_641, -13.4_777, -13.0_684], [-13.9_587, -15.8_983, -16.6_557], [-13.3_109, -15.7_350, -16.3_141]], [[-14.7_074, -15.4_352, -14.5_944], [-16.6_353, -18.1_663, -18.6_120], [-15.1_702, -18.0_329, -18.1_547]], [[-1.7_990, -2.0_951, -1.7_784], [-2.6_397, -3.8_245, -3.9_686], [-1.5_264, -2.8_126, -2.9_316]], ] ) else: _UpperCAmelCase : Optional[int] = logits.argmax(-1 ).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , lowercase__ , atol=1E-2 ) # finally, save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) model.save_pretrained(lowercase__ ) image_processor.save_pretrained(lowercase__ ) if __name__ == "__main__": _lowerCAmelCase : Dict = argparse.ArgumentParser() parser.add_argument( "--model_name", default="segformer.b0.512x512.ade.160k", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) _lowerCAmelCase : Tuple = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
362
"""simple docstring""" import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def __snake_case ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str]=7 ) -> Tuple: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = None if token is not None: _UpperCAmelCase : str = {"Accept": "application/vnd.github+json", "Authorization": f'Bearer {token}'} # The id of a workflow (not of a workflow run) _UpperCAmelCase : Any = "636036" _UpperCAmelCase : Dict = f'https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += f'?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}' _UpperCAmelCase : Tuple = requests.get(SCREAMING_SNAKE_CASE__ , headers=SCREAMING_SNAKE_CASE__ ).json() return result["workflow_runs"] def __snake_case ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : int = get_daily_ci_runs(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : Optional[int] = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": _UpperCAmelCase : str = workflow_run["id"] break return workflow_run_id def __snake_case ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> List[str]: '''simple docstring''' _UpperCAmelCase : List[str] = get_last_daily_ci_runs(SCREAMING_SNAKE_CASE__ ) if workflow_run_id is not None: _UpperCAmelCase : Any = get_artifacts_links(worflow_run_id=SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: _UpperCAmelCase : List[str] = artifacts_links[artifact_name] download_artifact( artifact_name=SCREAMING_SNAKE_CASE__ , artifact_url=SCREAMING_SNAKE_CASE__ , output_dir=SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ ) def __snake_case ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' get_last_daily_ci_artifacts(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : Any = {} for artifact_name in artifact_names: _UpperCAmelCase : Dict = os.path.join(SCREAMING_SNAKE_CASE__ , f'{artifact_name}.zip' ) if os.path.isfile(SCREAMING_SNAKE_CASE__ ): _UpperCAmelCase : str = {} with zipfile.ZipFile(SCREAMING_SNAKE_CASE__ ) as z: for filename in z.namelist(): if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): # read the file with z.open(SCREAMING_SNAKE_CASE__ ) as f: _UpperCAmelCase : List[str] = f.read().decode("UTF-8" ) return results
202
0
import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class __UpperCamelCase : """simple docstring""" def __init__( self : Union[str, Any] , _A : Optional[int] , _A : List[str]=13 , _A : Tuple=7 , _A : Tuple=True , _A : List[str]=True , _A : Dict=99 , _A : Tuple=32 , _A : str=5 , _A : List[Any]=4 , _A : Tuple=37 , _A : Any="gelu" , _A : List[Any]=0.1 , _A : Any=0.1 , _A : List[Any]=50 , _A : List[str]=0.02 , _A : List[str]=True , _A : Dict=None , ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = parent __SCREAMING_SNAKE_CASE : Dict = batch_size __SCREAMING_SNAKE_CASE : Optional[Any] = seq_length __SCREAMING_SNAKE_CASE : Tuple = is_training __SCREAMING_SNAKE_CASE : int = use_input_mask __SCREAMING_SNAKE_CASE : Dict = vocab_size __SCREAMING_SNAKE_CASE : Optional[int] = hidden_size __SCREAMING_SNAKE_CASE : str = num_hidden_layers __SCREAMING_SNAKE_CASE : str = num_attention_heads __SCREAMING_SNAKE_CASE : Tuple = intermediate_size __SCREAMING_SNAKE_CASE : Any = hidden_act __SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob __SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Any = max_position_embeddings __SCREAMING_SNAKE_CASE : List[str] = initializer_range __SCREAMING_SNAKE_CASE : str = use_labels __SCREAMING_SNAKE_CASE : Dict = scope def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE : List[str] = None if self.use_input_mask: __SCREAMING_SNAKE_CASE : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: __SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE : Any = self.get_config() return config, input_ids, input_mask, token_labels def UpperCAmelCase__ ( self : str ): """simple docstring""" return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=_A , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self : Dict ): """simple docstring""" ( ( __SCREAMING_SNAKE_CASE ), ( __SCREAMING_SNAKE_CASE ), ( __SCREAMING_SNAKE_CASE ), ( __SCREAMING_SNAKE_CASE ), ) : int = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE : Tuple = True __SCREAMING_SNAKE_CASE : Dict = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCAmelCase__ ( self : Dict , _A : List[Any] , _A : Tuple , _A : Tuple , _A : Dict , **_A : int , ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = BertGenerationEncoder(config=_A ) model.to(_A ) model.eval() __SCREAMING_SNAKE_CASE : Optional[Any] = model(_A , attention_mask=_A ) __SCREAMING_SNAKE_CASE : Tuple = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Any , _A : int , _A : Any , _A : Union[str, Any] , _A : Union[str, Any] , _A : Optional[int] , _A : Optional[Any] , **_A : Any , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = True __SCREAMING_SNAKE_CASE : int = BertGenerationEncoder(config=_A ) model.to(_A ) model.eval() __SCREAMING_SNAKE_CASE : Tuple = model( _A , attention_mask=_A , encoder_hidden_states=_A , encoder_attention_mask=_A , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = model( _A , attention_mask=_A , encoder_hidden_states=_A , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Optional[int] , _A : int , _A : Any , _A : Dict , _A : Optional[int] , _A : str , _A : Any , **_A : Any , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = True __SCREAMING_SNAKE_CASE : List[str] = True __SCREAMING_SNAKE_CASE : Dict = BertGenerationDecoder(config=_A ).to(_A ).eval() # first forward pass __SCREAMING_SNAKE_CASE : Dict = model( _A , attention_mask=_A , encoder_hidden_states=_A , encoder_attention_mask=_A , use_cache=_A , ) __SCREAMING_SNAKE_CASE : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) __SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __SCREAMING_SNAKE_CASE : int = torch.cat([input_ids, next_tokens] , dim=-1 ) __SCREAMING_SNAKE_CASE : int = torch.cat([input_mask, next_mask] , dim=-1 ) __SCREAMING_SNAKE_CASE : Optional[Any] = model( _A , attention_mask=_A , encoder_hidden_states=_A , encoder_attention_mask=_A , output_hidden_states=_A , )['''hidden_states'''][0] __SCREAMING_SNAKE_CASE : str = model( _A , attention_mask=_A , encoder_hidden_states=_A , encoder_attention_mask=_A , past_key_values=_A , output_hidden_states=_A , )['''hidden_states'''][0] # select random slice __SCREAMING_SNAKE_CASE : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item() __SCREAMING_SNAKE_CASE : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() __SCREAMING_SNAKE_CASE : str = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_A , _A , atol=1e-3 ) ) def UpperCAmelCase__ ( self : Union[str, Any] , _A : str , _A : int , _A : Optional[int] , _A : List[str] , *_A : int , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = BertGenerationDecoder(_A ) model.to(_A ) model.eval() __SCREAMING_SNAKE_CASE : Optional[int] = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : List[str] = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE : str = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" lowerCAmelCase_ = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () lowerCAmelCase_ = (BertGenerationDecoder,) if is_torch_available() else () lowerCAmelCase_ = ( {'''feature-extraction''': BertGenerationEncoder, '''text-generation''': BertGenerationDecoder} if is_torch_available() else {} ) def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = BertGenerationEncoderTester(self ) __SCREAMING_SNAKE_CASE : Tuple = ConfigTester(self , config_class=_A , hidden_size=37 ) def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE : List[Any] = '''bert''' self.model_tester.create_and_check_model(_A , _A , _A , _A ) def UpperCAmelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_A ) def UpperCAmelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*_A ) def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" ( ( __SCREAMING_SNAKE_CASE ), ( __SCREAMING_SNAKE_CASE ), ( __SCREAMING_SNAKE_CASE ), ( __SCREAMING_SNAKE_CASE ), ( __SCREAMING_SNAKE_CASE ), ( __SCREAMING_SNAKE_CASE ), ) : Tuple = self.model_tester.prepare_config_and_inputs_for_decoder() __SCREAMING_SNAKE_CASE : Union[str, Any] = None self.model_tester.create_and_check_model_as_decoder( _A , _A , _A , _A , _A , _A , ) def UpperCAmelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*_A ) @slow def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) self.assertIsNotNone(_A ) @require_torch class __UpperCamelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) __SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] ) with torch.no_grad(): __SCREAMING_SNAKE_CASE : Optional[int] = model(_A )[0] __SCREAMING_SNAKE_CASE : Optional[Any] = torch.Size([1, 8, 1024] ) self.assertEqual(output.shape , _A ) __SCREAMING_SNAKE_CASE : List[Any] = torch.tensor( [[[0.17_75, 0.00_83, -0.03_21], [1.60_02, 0.12_87, 0.39_12], [2.14_73, 0.57_91, 0.60_66]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _A , atol=1e-4 ) ) @require_torch class __UpperCamelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = BertGenerationDecoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] ) with torch.no_grad(): __SCREAMING_SNAKE_CASE : List[str] = model(_A )[0] __SCREAMING_SNAKE_CASE : str = torch.Size([1, 8, 5_0358] ) self.assertEqual(output.shape , _A ) __SCREAMING_SNAKE_CASE : int = torch.tensor( [[[-0.57_88, -2.59_94, -3.70_54], [0.04_38, 4.79_97, 1.87_95], [1.58_62, 6.64_09, 4.46_38]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _A , atol=1e-4 ) )
303
def a__ ( snake_case = 1_000_000 ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = 1 __SCREAMING_SNAKE_CASE : Optional[Any] = 1 __SCREAMING_SNAKE_CASE : Optional[int] = {1: 1} for inputa in range(2 , snake_case ): __SCREAMING_SNAKE_CASE : Tuple = 0 __SCREAMING_SNAKE_CASE : Optional[Any] = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: __SCREAMING_SNAKE_CASE : List[Any] = (3 * number) + 1 counter += 1 if inputa not in counters: __SCREAMING_SNAKE_CASE : str = counter if counter > pre_counter: __SCREAMING_SNAKE_CASE : Optional[int] = inputa __SCREAMING_SNAKE_CASE : str = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
303
1
"""simple docstring""" import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING a : Optional[Any] = logging.get_logger(__name__) a : Optional[Any] = { """facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""", # See all DETR models at https://huggingface.co/models?filter=detr } class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" __lowerCamelCase = "detr" __lowerCamelCase = ["past_key_values"] __lowerCamelCase = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , snake_case__=True , snake_case__=None , snake_case__=3 , snake_case__=100 , snake_case__=6 , snake_case__=2048 , snake_case__=8 , snake_case__=6 , snake_case__=2048 , snake_case__=8 , snake_case__=0.0 , snake_case__=0.0 , snake_case__=True , snake_case__="relu" , snake_case__=256 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.02 , snake_case__=1.0 , snake_case__=False , snake_case__="sine" , snake_case__="resnet50" , snake_case__=True , snake_case__=False , snake_case__=1 , snake_case__=5 , snake_case__=2 , snake_case__=1 , snake_case__=1 , snake_case__=5 , snake_case__=2 , snake_case__=0.1 , **snake_case__ , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("You can\'t specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) lowercase__ : Optional[int]= CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(__a , __a ): lowercase__ : Optional[Any]= backbone_config.get("model_type" ) lowercase__ : Optional[int]= CONFIG_MAPPING[backbone_model_type] lowercase__ : Tuple= config_class.from_dict(__a ) # set timm attributes to None lowercase__, lowercase__, lowercase__ : int= None, None, None lowercase__ : List[Any]= use_timm_backbone lowercase__ : List[str]= backbone_config lowercase__ : int= num_channels lowercase__ : List[str]= num_queries lowercase__ : List[Any]= d_model lowercase__ : Optional[int]= encoder_ffn_dim lowercase__ : Union[str, Any]= encoder_layers lowercase__ : Tuple= encoder_attention_heads lowercase__ : str= decoder_ffn_dim lowercase__ : Any= decoder_layers lowercase__ : Optional[Any]= decoder_attention_heads lowercase__ : Any= dropout lowercase__ : Any= attention_dropout lowercase__ : List[Any]= activation_dropout lowercase__ : Optional[int]= activation_function lowercase__ : Optional[Any]= init_std lowercase__ : List[Any]= init_xavier_std lowercase__ : str= encoder_layerdrop lowercase__ : List[str]= decoder_layerdrop lowercase__ : Union[str, Any]= encoder_layers lowercase__ : str= auxiliary_loss lowercase__ : List[Any]= position_embedding_type lowercase__ : int= backbone lowercase__ : Union[str, Any]= use_pretrained_backbone lowercase__ : Any= dilation # Hungarian matcher lowercase__ : List[str]= class_cost lowercase__ : Dict= bbox_cost lowercase__ : Any= giou_cost # Loss coefficients lowercase__ : List[Any]= mask_loss_coefficient lowercase__ : Tuple= dice_loss_coefficient lowercase__ : Union[str, Any]= bbox_loss_coefficient lowercase__ : List[Any]= giou_loss_coefficient lowercase__ : int= eos_coefficient super().__init__(is_encoder_decoder=__a , **__a ) @property def UpperCAmelCase_ ( self ): '''simple docstring''' return self.encoder_attention_heads @property def UpperCAmelCase_ ( self ): '''simple docstring''' return self.d_model @classmethod def UpperCAmelCase_ ( cls , snake_case__ , **snake_case__ ): '''simple docstring''' return cls(backbone_config=__a , **__a ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Union[str, Any]= copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: lowercase__ : Any= self.backbone_config.to_dict() lowercase__ : Optional[int]= self.__class__.model_type return output class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" __lowerCamelCase = version.parse("1.11" ) @property def UpperCAmelCase_ ( self ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def UpperCAmelCase_ ( self ): '''simple docstring''' return 1e-5 @property def UpperCAmelCase_ ( self ): '''simple docstring''' return 12
362
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , ): '''simple docstring''' super().__init__() self.register_modules(transformer=snake_case__ , vae=snake_case__ , scheduler=snake_case__ ) # create a imagenet -> id dictionary for easier use lowercase__ : int= {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split("," ): lowercase__ : Tuple= int(snake_case__ ) lowercase__ : Union[str, Any]= dict(sorted(self.labels.items() ) ) def UpperCAmelCase_ ( self , snake_case__ ): '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ): lowercase__ : List[Any]= list(snake_case__ ) for l in label: if l not in self.labels: raise ValueError( F'''{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.''' ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self , snake_case__ , snake_case__ = 4.0 , snake_case__ = None , snake_case__ = 50 , snake_case__ = "pil" , snake_case__ = True , ): '''simple docstring''' lowercase__ : List[Any]= len(snake_case__ ) lowercase__ : Optional[int]= self.transformer.config.sample_size lowercase__ : List[str]= self.transformer.config.in_channels lowercase__ : Any= randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=snake_case__ , device=self.device , dtype=self.transformer.dtype , ) lowercase__ : Any= torch.cat([latents] * 2 ) if guidance_scale > 1 else latents lowercase__ : Tuple= torch.tensor(snake_case__ , device=self.device ).reshape(-1 ) lowercase__ : Any= torch.tensor([1000] * batch_size , device=self.device ) lowercase__ : Tuple= torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(snake_case__ ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: lowercase__ : List[str]= latent_model_input[: len(snake_case__ ) // 2] lowercase__ : int= torch.cat([half, half] , dim=0 ) lowercase__ : Union[str, Any]= self.scheduler.scale_model_input(snake_case__ , snake_case__ ) lowercase__ : Optional[int]= t if not torch.is_tensor(snake_case__ ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) lowercase__ : List[str]= latent_model_input.device.type == "mps" if isinstance(snake_case__ , snake_case__ ): lowercase__ : int= torch.floataa if is_mps else torch.floataa else: lowercase__ : Dict= torch.intaa if is_mps else torch.intaa lowercase__ : Tuple= torch.tensor([timesteps] , dtype=snake_case__ , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: lowercase__ : Dict= timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML lowercase__ : int= timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output lowercase__ : Union[str, Any]= self.transformer( snake_case__ , timestep=snake_case__ , class_labels=snake_case__ ).sample # perform guidance if guidance_scale > 1: lowercase__, lowercase__ : Tuple= noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] lowercase__, lowercase__ : Union[str, Any]= torch.split(snake_case__ , len(snake_case__ ) // 2 , dim=0 ) lowercase__ : str= uncond_eps + guidance_scale * (cond_eps - uncond_eps) lowercase__ : Dict= torch.cat([half_eps, half_eps] , dim=0 ) lowercase__ : Optional[int]= torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: lowercase__, lowercase__ : Union[str, Any]= torch.split(snake_case__ , snake_case__ , dim=1 ) else: lowercase__ : int= noise_pred # compute previous image: x_t -> x_t-1 lowercase__ : List[Any]= self.scheduler.step(snake_case__ , snake_case__ , snake_case__ ).prev_sample if guidance_scale > 1: lowercase__, lowercase__ : Any= latent_model_input.chunk(2 , dim=0 ) else: lowercase__ : str= latent_model_input lowercase__ : Dict= 1 / self.vae.config.scaling_factor * latents lowercase__ : Any= self.vae.decode(snake_case__ ).sample lowercase__ : Tuple= (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowercase__ : List[Any]= samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowercase__ : Optional[Any]= self.numpy_to_pil(snake_case__ ) if not return_dict: return (samples,) return ImagePipelineOutput(images=snake_case__ )
150
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A : int = logging.get_logger(__name__) __A : List[Any] = { '''facebook/deit-base-distilled-patch16-224''': ( '''https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json''' ), # See all DeiT models at https://huggingface.co/models?filter=deit } class _UpperCAmelCase ( _A ): SCREAMING_SNAKE_CASE_ : List[Any] = "deit" def __init__( self : Dict , A : str=7_68 , A : str=12 , A : List[Any]=12 , A : List[str]=30_72 , A : List[str]="gelu" , A : Optional[int]=0.0 , A : Optional[Any]=0.0 , A : List[Any]=0.02 , A : Optional[Any]=1e-12 , A : Any=2_24 , A : Tuple=16 , A : List[str]=3 , A : Tuple=True , A : Union[str, Any]=16 , **A : str , ) -> List[Any]: super().__init__(**__lowerCamelCase ) lowercase_ : Dict = hidden_size lowercase_ : Tuple = num_hidden_layers lowercase_ : List[str] = num_attention_heads lowercase_ : int = intermediate_size lowercase_ : Optional[int] = hidden_act lowercase_ : List[str] = hidden_dropout_prob lowercase_ : Tuple = attention_probs_dropout_prob lowercase_ : int = initializer_range lowercase_ : Any = layer_norm_eps lowercase_ : Tuple = image_size lowercase_ : Union[str, Any] = patch_size lowercase_ : str = num_channels lowercase_ : Dict = qkv_bias lowercase_ : Dict = encoder_stride class _UpperCAmelCase ( _A ): SCREAMING_SNAKE_CASE_ : int = version.parse("1.11" ) @property def A ( self : Dict ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def A ( self : List[str] ) -> float: return 1e-4
33
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class lowerCAmelCase__ : '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase=1_3 , __lowerCamelCase=3_2 , __lowerCamelCase=2 , __lowerCamelCase=3 , __lowerCamelCase=1_6 , __lowerCamelCase=[1, 2, 1] , __lowerCamelCase=[2, 2, 4] , __lowerCamelCase=2 , __lowerCamelCase=2.0 , __lowerCamelCase=True , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=0.1 , __lowerCamelCase="gelu" , __lowerCamelCase=False , __lowerCamelCase=True , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-5 , __lowerCamelCase=True , __lowerCamelCase=None , __lowerCamelCase=True , __lowerCamelCase=1_0 , __lowerCamelCase=8 , __lowerCamelCase=["stage1", "stage2", "stage3"] , __lowerCamelCase=[1, 2, 3] , ) -> Optional[Any]: _A : int = parent _A : Optional[Any] = batch_size _A : str = image_size _A : Tuple = patch_size _A : Tuple = num_channels _A : Optional[int] = embed_dim _A : Dict = depths _A : Any = num_heads _A : Any = window_size _A : int = mlp_ratio _A : Any = qkv_bias _A : Union[str, Any] = hidden_dropout_prob _A : Optional[Any] = attention_probs_dropout_prob _A : Dict = drop_path_rate _A : List[Any] = hidden_act _A : Any = use_absolute_embeddings _A : Optional[int] = patch_norm _A : Tuple = layer_norm_eps _A : List[str] = initializer_range _A : Optional[int] = is_training _A : Optional[Any] = scope _A : Optional[int] = use_labels _A : Dict = type_sequence_label_size _A : str = encoder_stride _A : Optional[int] = out_features _A : Optional[int] = out_indices def _lowerCamelCase ( self) -> Union[str, Any]: _A : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _A : Optional[Any] = None if self.use_labels: _A : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size) _A : Optional[int] = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self) -> Union[str, Any]: return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> List[Any]: _A : Dict = MaskFormerSwinModel(config=__lowerCamelCase) model.to(__lowerCamelCase) model.eval() _A : int = model(__lowerCamelCase) _A : Any = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1)) _A : List[str] = int(config.embed_dim * 2 ** (len(config.depths) - 1)) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim)) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> Dict: _A : Optional[Any] = MaskFormerSwinBackbone(config=__lowerCamelCase) model.to(__lowerCamelCase) model.eval() _A : Dict = model(__lowerCamelCase) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [1_3, 1_6, 1_6, 1_6]) # verify channels self.parent.assertEqual(len(model.channels) , len(config.out_features)) self.parent.assertListEqual(model.channels , [1_6, 3_2, 6_4]) # verify ValueError with self.parent.assertRaises(__lowerCamelCase): _A : Union[str, Any] = ["stem"] _A : Union[str, Any] = MaskFormerSwinBackbone(config=__lowerCamelCase) def _lowerCamelCase ( self) -> Dict: _A : Any = self.prepare_config_and_inputs() _A , _A , _A : List[Any] = config_and_inputs _A : Optional[int] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__ ( a , a , unittest.TestCase): '''simple docstring''' __SCREAMING_SNAKE_CASE = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def _lowerCamelCase ( self) -> str: _A : Union[str, Any] = MaskFormerSwinModelTester(self) _A : Optional[int] = ConfigTester(self , config_class=__lowerCamelCase , embed_dim=3_7) @require_torch_multi_gpu @unittest.skip( reason=( "`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with" " `nn.DataParallel`" )) def _lowerCamelCase ( self) -> Union[str, Any]: pass def _lowerCamelCase ( self) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCamelCase ( self) -> str: return def _lowerCamelCase ( self) -> List[Any]: _A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase) def _lowerCamelCase ( self) -> Union[str, Any]: _A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__lowerCamelCase) @unittest.skip("Swin does not use inputs_embeds") def _lowerCamelCase ( self) -> str: pass @unittest.skip("Swin does not support feedforward chunking") def _lowerCamelCase ( self) -> List[Any]: pass def _lowerCamelCase ( self) -> Optional[int]: _A , _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : Union[str, Any] = model_class(__lowerCamelCase) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) _A : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCamelCase , nn.Linear)) def _lowerCamelCase ( self) -> Any: _A , _A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : int = model_class(__lowerCamelCase) _A : Optional[int] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A : int = [*signature.parameters.keys()] _A : Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase) @unittest.skip(reason="MaskFormerSwin is only used as backbone and doesn't support output_attentions") def _lowerCamelCase ( self) -> Tuple: pass @unittest.skip(reason="MaskFormerSwin is only used as an internal backbone") def _lowerCamelCase ( self) -> str: pass def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> Optional[int]: _A : Any = model_class(__lowerCamelCase) model.to(__lowerCamelCase) model.eval() with torch.no_grad(): _A : str = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase)) _A : Tuple = outputs.hidden_states _A : Any = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths) + 1) self.assertEqual(len(__lowerCamelCase) , __lowerCamelCase) # Swin has a different seq_length _A : Optional[int] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) _A : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [num_patches, self.model_tester.embed_dim] , ) def _lowerCamelCase ( self) -> Dict: _A , _A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _A : Any = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _A : List[Any] = True self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A : Optional[int] = True self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) def _lowerCamelCase ( self) -> Tuple: _A , _A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _A : Optional[int] = 3 _A : Dict = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) _A : Optional[int] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) _A : int = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _A : Dict = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _A : List[Any] = True self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , (padded_height, padded_width)) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A : Union[str, Any] = True self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , (padded_height, padded_width)) @unittest.skip(reason="MaskFormerSwin doesn't have pretrained checkpoints") def _lowerCamelCase ( self) -> List[str]: pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin") def _lowerCamelCase ( self) -> List[str]: pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin") def _lowerCamelCase ( self) -> str: pass def _lowerCamelCase ( self) -> Optional[Any]: _A , _A : Any = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(__lowerCamelCase): _A : Optional[int] = 0 return t def check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase={}): with torch.no_grad(): _A : Any = model(**__lowerCamelCase , return_dict=__lowerCamelCase , **__lowerCamelCase) _A : int = model(**__lowerCamelCase , return_dict=__lowerCamelCase , **__lowerCamelCase).to_tuple() def recursive_check(__lowerCamelCase , __lowerCamelCase): if isinstance(__lowerCamelCase , (List, Tuple)): for tuple_iterable_value, dict_iterable_value in zip(__lowerCamelCase , __lowerCamelCase): recursive_check(__lowerCamelCase , __lowerCamelCase) elif isinstance(__lowerCamelCase , __lowerCamelCase): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values()): recursive_check(__lowerCamelCase , __lowerCamelCase) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(__lowerCamelCase) , set_nan_tensor_to_zero(__lowerCamelCase) , atol=1e-5) , msg=( "Tuple and dict output are not equal. Difference:" F" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:" F" {torch.isnan(__lowerCamelCase).any()} and `inf`: {torch.isinf(__lowerCamelCase)}. Dict has" F" `nan`: {torch.isnan(__lowerCamelCase).any()} and `inf`: {torch.isinf(__lowerCamelCase)}." ) , ) recursive_check(__lowerCamelCase , __lowerCamelCase) for model_class in self.all_model_classes: _A : List[Any] = model_class(__lowerCamelCase) model.to(__lowerCamelCase) model.eval() _A : str = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase) _A : Tuple = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase) _A : Any = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase) _A : List[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase) _A : List[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase) _A : str = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , {"output_hidden_states": True}) _A : Union[str, Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase) _A : Optional[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , {"output_hidden_states": True}) @require_torch class lowerCAmelCase__ ( unittest.TestCase , a): '''simple docstring''' __SCREAMING_SNAKE_CASE = (MaskFormerSwinBackbone,) if is_torch_available() else () __SCREAMING_SNAKE_CASE = MaskFormerSwinConfig def _lowerCamelCase ( self) -> Optional[Any]: _A : Tuple = MaskFormerSwinModelTester(self) def _lowerCamelCase ( self) -> Optional[Any]: _A , _A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _A : Union[str, Any] = inputs_dict["pixel_values"].shape[0] for backbone_class in self.all_model_classes: _A : Optional[Any] = backbone_class(__lowerCamelCase) backbone.to(__lowerCamelCase) backbone.eval() _A : List[Any] = backbone(**__lowerCamelCase) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , __lowerCamelCase) self.assertTrue(len(outputs.feature_maps) == len(backbone.channels)) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels)) self.assertIsNone(outputs.hidden_states) self.assertIsNone(outputs.attentions) # Test output_hidden_states=True _A : List[str] = backbone(**__lowerCamelCase , output_hidden_states=__lowerCamelCase) self.assertIsNotNone(outputs.hidden_states) self.assertTrue(len(outputs.hidden_states) , len(backbone.stage_names)) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) _A , _A , _A : List[str] = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels)) # Test output_attentions=True if self.has_attentions: _A : int = backbone(**__lowerCamelCase , output_attentions=__lowerCamelCase) self.assertIsNotNone(outputs.attentions)
11
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCAmelCase : List[str] = { """configuration_megatron_bert""": ["""MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegatronBertConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Dict = [ """MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MegatronBertForCausalLM""", """MegatronBertForMaskedLM""", """MegatronBertForMultipleChoice""", """MegatronBertForNextSentencePrediction""", """MegatronBertForPreTraining""", """MegatronBertForQuestionAnswering""", """MegatronBertForSequenceClassification""", """MegatronBertForTokenClassification""", """MegatronBertModel""", """MegatronBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys _UpperCAmelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
200
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
200
1
from __future__ import annotations import time lowercase : Optional[int] = list[tuple[int, int]] lowercase : List[Any] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowercase : Optional[int] = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class __snake_case : def __init__( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : Tuple = pos_x lowercase : str = pos_y lowercase : Any = (pos_y, pos_x) lowercase : int = goal_x lowercase : int = goal_y lowercase : Dict = parent class __snake_case : def __init__( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : List[Any] = Node(start[1] ,start[0] ,goal[1] ,goal[0] ,snake_case ) lowercase : Optional[Any] = Node(goal[1] ,goal[0] ,goal[1] ,goal[0] ,snake_case ) lowercase : Union[str, Any] = [self.start] lowercase : Any = False def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' while self.node_queue: lowercase : int = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: lowercase : Dict = True return self.retrace_path(snake_case ) lowercase : List[str] = self.get_successors(snake_case ) for node in successors: self.node_queue.append(snake_case ) if not self.reached: return [self.start.pos] return None def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Any = [] for action in delta: lowercase : Any = parent.pos_x + action[1] lowercase : str = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(snake_case ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(snake_case ,snake_case ,self.target.pos_y ,self.target.pos_x ,snake_case ) ) return successors def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Tuple = node lowercase : str = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) lowercase : Tuple = current_node.parent path.reverse() return path class __snake_case : def __init__( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : int = BreadthFirstSearch(snake_case ,snake_case ) lowercase : Any = BreadthFirstSearch(snake_case ,snake_case ) lowercase : Union[str, Any] = False def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: lowercase : Any = self.fwd_bfs.node_queue.pop(0 ) lowercase : Optional[int] = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: lowercase : int = True return self.retrace_bidirectional_path( snake_case ,snake_case ) lowercase : Dict = current_bwd_node lowercase : List[Any] = current_fwd_node lowercase : Optional[Any] = { self.fwd_bfs: self.fwd_bfs.get_successors(snake_case ), self.bwd_bfs: self.bwd_bfs.get_successors(snake_case ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(snake_case ) if not self.reached: return [self.fwd_bfs.start.pos] return None def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : str = self.fwd_bfs.retrace_path(snake_case ) lowercase : Union[str, Any] = self.bwd_bfs.retrace_path(snake_case ) bwd_path.pop() bwd_path.reverse() lowercase : Tuple = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() lowercase : Tuple = (0, 0) lowercase : Union[str, Any] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) lowercase : Dict = time.time() lowercase : Optional[int] = BreadthFirstSearch(init, goal) lowercase : Dict = bfs.search() lowercase : Dict = time.time() - start_bfs_time print("""Unidirectional BFS computation time : """, bfs_time) lowercase : List[str] = time.time() lowercase : int = BidirectionalBreadthFirstSearch(init, goal) lowercase : Any = bd_bfs.search() lowercase : Dict = time.time() - start_bd_bfs_time print("""Bidirectional BFS computation time : """, bd_bfs_time)
20
"""simple docstring""" def __lowerCAmelCase ( lowercase : List[str] , lowercase : Union[str, Any] , lowercase : List[str] , lowercase : Tuple , lowercase : List[Any] , lowercase : int ) -> List[Any]: """simple docstring""" if index == r: for j in range(lowercase ): print(data[j] , end=" " ) print(" " ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location snake_case : Union[str, Any] = arr[i] combination_util(lowercase , lowercase , lowercase , index + 1 , lowercase , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(lowercase , lowercase , lowercase , lowercase , lowercase , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def __lowerCAmelCase ( lowercase : Any , lowercase : Union[str, Any] , lowercase : Optional[int] ) -> List[Any]: """simple docstring""" snake_case : Any = [0] * r # Print all combination using temporary array 'data[]' combination_util(lowercase , lowercase , lowercase , 0 , lowercase , 0 ) if __name__ == "__main__": # Driver code to check the function above __snake_case = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
203
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class a ( unittest.TestCase ): '''simple docstring''' def __init__( self : Dict , __snake_case : List[Any] , __snake_case : List[str]=7 , __snake_case : Union[str, Any]=3 , __snake_case : Any=30 , __snake_case : List[str]=4_00 , __snake_case : Union[str, Any]=True , __snake_case : Union[str, Any]=None , __snake_case : Union[str, Any]=True , __snake_case : Dict=[0.5, 0.5, 0.5] , __snake_case : Union[str, Any]=[0.5, 0.5, 0.5] , __snake_case : Any=True , __snake_case : Any=1 / 2_55 , __snake_case : Optional[int]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p UpperCAmelCase_ = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 13_33} UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = min_resolution UpperCAmelCase_ = max_resolution UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean UpperCAmelCase_ = image_std UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_pad def lowerCamelCase_ ( self : Tuple ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCamelCase_ ( self : Any , __snake_case : Tuple , __snake_case : Optional[int]=False ): if not batched: UpperCAmelCase_ = image_inputs[0] if isinstance(__snake_case , Image.Image ): UpperCAmelCase_ , UpperCAmelCase_ = image.size else: UpperCAmelCase_ , UpperCAmelCase_ = image.shape[1], image.shape[2] if w < h: UpperCAmelCase_ = int(self.size['''shortest_edge'''] * h / w ) UpperCAmelCase_ = self.size['''shortest_edge'''] elif w > h: UpperCAmelCase_ = self.size['''shortest_edge'''] UpperCAmelCase_ = int(self.size['''shortest_edge'''] * w / h ) else: UpperCAmelCase_ = self.size['''shortest_edge'''] UpperCAmelCase_ = self.size['''shortest_edge'''] else: UpperCAmelCase_ = [] for image in image_inputs: UpperCAmelCase_ , UpperCAmelCase_ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCAmelCase_ = max(__snake_case , key=lambda __snake_case : item[0] )[0] UpperCAmelCase_ = max(__snake_case , key=lambda __snake_case : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class a ( _A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase : List[str] = YolosImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self : Tuple ): UpperCAmelCase_ = YolosImageProcessingTester(self ) @property def lowerCamelCase_ ( self : Tuple ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self : Dict ): UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , '''image_mean''' ) ) self.assertTrue(hasattr(__snake_case , '''image_std''' ) ) self.assertTrue(hasattr(__snake_case , '''do_normalize''' ) ) self.assertTrue(hasattr(__snake_case , '''do_resize''' ) ) self.assertTrue(hasattr(__snake_case , '''size''' ) ) def lowerCamelCase_ ( self : List[str] ): UpperCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 13_33} ) self.assertEqual(image_processor.do_pad , __snake_case ) UpperCAmelCase_ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__snake_case ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , __snake_case ) def lowerCamelCase_ ( self : Optional[int] ): pass def lowerCamelCase_ ( self : Optional[Any] ): # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(__snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(__snake_case , batched=__snake_case ) UpperCAmelCase_ = image_processing(__snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase_ ( self : Tuple ): # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , numpify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , np.ndarray ) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(__snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ = image_processing(__snake_case , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(__snake_case , batched=__snake_case ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase_ ( self : Optional[int] ): # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , torch.Tensor ) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(__snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ = image_processing(__snake_case , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(__snake_case , batched=__snake_case ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase_ ( self : Any ): # Initialize image_processings UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) UpperCAmelCase_ = self.image_processing_class(do_resize=__snake_case , do_normalize=__snake_case , do_rescale=__snake_case ) # create random PyTorch tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors UpperCAmelCase_ = image_processing_a.pad(__snake_case , return_tensors='''pt''' ) UpperCAmelCase_ = image_processing_a(__snake_case , return_tensors='''pt''' ) self.assertTrue( torch.allclose(encoded_images_with_method['''pixel_values'''] , encoded_images['''pixel_values'''] , atol=1E-4 ) ) @slow def lowerCamelCase_ ( self : List[Any] ): # prepare image and target UpperCAmelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: UpperCAmelCase_ = json.loads(f.read() ) UpperCAmelCase_ = {'''image_id''': 3_97_69, '''annotations''': target} # encode them UpperCAmelCase_ = YolosImageProcessor.from_pretrained('''hustvl/yolos-small''' ) UpperCAmelCase_ = image_processing(images=__snake_case , annotations=__snake_case , return_tensors='''pt''' ) # verify pixel values UpperCAmelCase_ = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , __snake_case ) UpperCAmelCase_ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __snake_case , atol=1E-4 ) ) # verify area UpperCAmelCase_ = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __snake_case ) ) # verify boxes UpperCAmelCase_ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __snake_case ) UpperCAmelCase_ = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __snake_case , atol=1E-3 ) ) # verify image_id UpperCAmelCase_ = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __snake_case ) ) # verify is_crowd UpperCAmelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __snake_case ) ) # verify class_labels UpperCAmelCase_ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __snake_case ) ) # verify orig_size UpperCAmelCase_ = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __snake_case ) ) # verify size UpperCAmelCase_ = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __snake_case ) ) @slow def lowerCamelCase_ ( self : Any ): # prepare image, target and masks_path UpperCAmelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: UpperCAmelCase_ = json.loads(f.read() ) UpperCAmelCase_ = {'''file_name''': '''000000039769.png''', '''image_id''': 3_97_69, '''segments_info''': target} UpperCAmelCase_ = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them UpperCAmelCase_ = YolosImageProcessor(format='''coco_panoptic''' ) UpperCAmelCase_ = image_processing(images=__snake_case , annotations=__snake_case , masks_path=__snake_case , return_tensors='''pt''' ) # verify pixel values UpperCAmelCase_ = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , __snake_case ) UpperCAmelCase_ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __snake_case , atol=1E-4 ) ) # verify area UpperCAmelCase_ = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __snake_case ) ) # verify boxes UpperCAmelCase_ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __snake_case ) UpperCAmelCase_ = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __snake_case , atol=1E-3 ) ) # verify image_id UpperCAmelCase_ = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __snake_case ) ) # verify is_crowd UpperCAmelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __snake_case ) ) # verify class_labels UpperCAmelCase_ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __snake_case ) ) # verify masks UpperCAmelCase_ = 82_28_73 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , __snake_case ) # verify orig_size UpperCAmelCase_ = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __snake_case ) ) # verify size UpperCAmelCase_ = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __snake_case ) )
177
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCamelCase = { 'configuration_roberta': ['ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RobertaConfig', 'RobertaOnnxConfig'], 'tokenization_roberta': ['RobertaTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = ['RobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ 'ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'RobertaForCausalLM', 'RobertaForMaskedLM', 'RobertaForMultipleChoice', 'RobertaForQuestionAnswering', 'RobertaForSequenceClassification', 'RobertaForTokenClassification', 'RobertaModel', 'RobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ 'TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRobertaForCausalLM', 'TFRobertaForMaskedLM', 'TFRobertaForMultipleChoice', 'TFRobertaForQuestionAnswering', 'TFRobertaForSequenceClassification', 'TFRobertaForTokenClassification', 'TFRobertaMainLayer', 'TFRobertaModel', 'TFRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ 'FlaxRobertaForCausalLM', 'FlaxRobertaForMaskedLM', 'FlaxRobertaForMultipleChoice', 'FlaxRobertaForQuestionAnswering', 'FlaxRobertaForSequenceClassification', 'FlaxRobertaForTokenClassification', 'FlaxRobertaModel', 'FlaxRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys _lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
177
1
from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class __snake_case ( lowerCamelCase__ ): def __init__( self , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = False , snake_case__ = False , snake_case__ = None , **snake_case__ , ) -> Dict: '''simple docstring''' UpperCAmelCase : Optional[int] =path_or_paths UpperCAmelCase : Any =split if split or isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else """train""" UpperCAmelCase : Optional[Any] =features UpperCAmelCase : Optional[Any] =cache_dir UpperCAmelCase : List[Any] =keep_in_memory UpperCAmelCase : Optional[int] =streaming UpperCAmelCase : str =num_proc UpperCAmelCase : Any =kwargs @abstractmethod def UpperCAmelCase__ ( self ) -> Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]: '''simple docstring''' pass class __snake_case ( lowerCamelCase__ ): def __init__( self , snake_case__ = None , snake_case__ = None , snake_case__ = False , snake_case__ = False , snake_case__ = None , **snake_case__ , ) -> Any: '''simple docstring''' UpperCAmelCase : Optional[int] =features UpperCAmelCase : Union[str, Any] =cache_dir UpperCAmelCase : Optional[Any] =keep_in_memory UpperCAmelCase : str =streaming UpperCAmelCase : List[Any] =num_proc UpperCAmelCase : Tuple =kwargs @abstractmethod def UpperCAmelCase__ ( self ) -> Union[Dataset, IterableDataset]: '''simple docstring''' pass
348
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class a__ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : int ) ->Dict: """simple docstring""" return f"gaussian_noise_s={seed}_shape={'_'.join([str(UpperCAmelCase__ ) for s in shape] )}.npy" def _lowercase ( self : Any ) ->Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() def _lowercase ( self : str , UpperCAmelCase__ : str=0 , UpperCAmelCase__ : Tuple=(4, 4, 6_4, 6_4) , UpperCAmelCase__ : Optional[int]=False ) ->List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : int = jnp.bfloataa if fpaa else jnp.floataa SCREAMING_SNAKE_CASE : Tuple = jnp.array(load_hf_numpy(self.get_file_format(UpperCAmelCase__ , UpperCAmelCase__ ) ) , dtype=UpperCAmelCase__ ) return image def _lowercase ( self : Tuple , UpperCAmelCase__ : Dict=False , UpperCAmelCase__ : Tuple="CompVis/stable-diffusion-v1-4" ) ->Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = jnp.bfloataa if fpaa else jnp.floataa SCREAMING_SNAKE_CASE : Dict = """bf16""" if fpaa else None SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = FlaxUNetaDConditionModel.from_pretrained( UpperCAmelCase__ , subfolder="""unet""" , dtype=UpperCAmelCase__ , revision=UpperCAmelCase__ ) return model, params def _lowercase ( self : Optional[int] , UpperCAmelCase__ : int=0 , UpperCAmelCase__ : List[str]=(4, 7_7, 7_6_8) , UpperCAmelCase__ : Optional[Any]=False ) ->int: """simple docstring""" SCREAMING_SNAKE_CASE : str = jnp.bfloataa if fpaa else jnp.floataa SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.array(load_hf_numpy(self.get_file_format(UpperCAmelCase__ , UpperCAmelCase__ ) ) , dtype=UpperCAmelCase__ ) return hidden_states @parameterized.expand( [ # fmt: off [8_3, 4, [-0.23_23, -0.13_04, 0.08_13, -0.30_93, -0.09_19, -0.15_71, -0.11_25, -0.58_06]], [1_7, 0.55, [-0.08_31, -0.24_43, 0.09_01, -0.09_19, 0.33_96, 0.01_03, -0.37_43, 0.07_01]], [8, 0.89, [-0.48_63, 0.08_59, 0.08_75, -0.16_58, 0.91_99, -0.01_14, 0.48_39, 0.46_39]], [3, 1_0_0_0, [-0.56_49, 0.24_02, -0.55_18, 0.12_48, 1.13_28, -0.24_43, -0.03_25, -1.00_78]], # fmt: on ] ) def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[int] ) ->List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.get_unet_model(model_id="""CompVis/stable-diffusion-v1-4""" , fpaa=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = self.get_latents(UpperCAmelCase__ , fpaa=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Dict = self.get_encoder_hidden_states(UpperCAmelCase__ , fpaa=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : List[str] = model.apply( {"""params""": params} , UpperCAmelCase__ , jnp.array(UpperCAmelCase__ , dtype=jnp.intaa ) , encoder_hidden_states=UpperCAmelCase__ , ).sample assert sample.shape == latents.shape SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE : str = jnp.array(UpperCAmelCase__ , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [8_3, 4, [0.15_14, 0.08_07, 0.16_24, 0.10_16, -0.18_96, 0.02_63, 0.06_77, 0.23_10]], [1_7, 0.55, [0.11_64, -0.02_16, 0.01_70, 0.15_89, -0.31_20, 0.10_05, -0.05_81, -0.14_58]], [8, 0.89, [-0.17_58, -0.01_69, 0.10_04, -0.14_11, 0.13_12, 0.11_03, -0.19_96, 0.21_39]], [3, 1_0_0_0, [0.12_14, 0.03_52, -0.07_31, -0.15_62, -0.09_94, -0.09_06, -0.23_40, -0.05_39]], # fmt: on ] ) def _lowercase ( self : int , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int ) ->Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.get_unet_model(model_id="""stabilityai/stable-diffusion-2""" , fpaa=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : List[str] = self.get_latents(UpperCAmelCase__ , shape=(4, 4, 9_6, 9_6) , fpaa=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = self.get_encoder_hidden_states(UpperCAmelCase__ , shape=(4, 7_7, 1_0_2_4) , fpaa=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : str = model.apply( {"""params""": params} , UpperCAmelCase__ , jnp.array(UpperCAmelCase__ , dtype=jnp.intaa ) , encoder_hidden_states=UpperCAmelCase__ , ).sample assert sample.shape == latents.shape SCREAMING_SNAKE_CASE : str = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE : Dict = jnp.array(UpperCAmelCase__ , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1e-2 )
245
0
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _A : Any =logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-classification/requirements.txt''') _A : Optional[int] =list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) _A : List[str] =tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> List[Any]: with open(lowerCAmelCase_ , """rb""" ) as f: lowerCamelCase__ : Optional[Any] = Image.open(lowerCAmelCase_ ) return im.convert("""RGB""" ) @dataclass class _lowercase : a = field( default=_UpperCamelCase , metadata={ """help""": """Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).""" } , ) a = field( default=_UpperCamelCase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) a = field(default=_UpperCamelCase , metadata={"""help""": """A folder containing the training data."""} ) a = field(default=_UpperCamelCase , metadata={"""help""": """A folder containing the validation data."""} ) a = field( default=0.15 , metadata={"""help""": """Percent to split off of train for validation."""} ) a = field( default=_UpperCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) a = field( default=_UpperCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def lowerCamelCase_ ( self: int ): if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( """You must specify either a dataset name from the hub or a train and/or validation directory.""" ) @dataclass class _lowercase : a = field( default="""google/vit-base-patch16-224-in21k""" , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} , ) a = field( default=_UpperCamelCase , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(_UpperCamelCase )} , ) a = field( default=_UpperCamelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a = field( default=_UpperCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} ) a = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) a = field(default=_UpperCamelCase , metadata={"""help""": """Name or path of preprocessor config."""} ) a = field( default=_UpperCamelCase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) a = field( default=_UpperCamelCase , metadata={"""help""": """Will enable to load a pretrained model whose head dimensions are different."""} , ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> Dict: lowerCamelCase__ : Tuple = torch.stack([example["""pixel_values"""] for example in examples] ) lowerCamelCase__ : Tuple = torch.tensor([example["""labels"""] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def SCREAMING_SNAKE_CASE_ () -> int: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCamelCase__ : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase__ : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase__ : List[str] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_image_classification""" , lowerCAmelCase_ , lowerCAmelCase_ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCamelCase__ : Optional[Any] = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase_ ) transformers.utils.logging.set_verbosity(lowerCAmelCase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. lowerCamelCase__ : Tuple = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase__ : Any = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: lowerCamelCase__ : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task="""image-classification""" , use_auth_token=True if model_args.use_auth_token else None , ) else: lowerCamelCase__ : Any = {} if data_args.train_dir is not None: lowerCamelCase__ : int = os.path.join(data_args.train_dir , """**""" ) if data_args.validation_dir is not None: lowerCamelCase__ : int = os.path.join(data_args.validation_dir , """**""" ) lowerCamelCase__ : Any = load_dataset( """imagefolder""" , data_files=lowerCAmelCase_ , cache_dir=model_args.cache_dir , task="""image-classification""" , ) # If we don't have a validation split, split off a percentage of train as validation. lowerCamelCase__ : Any = None if 'validation' in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , lowerCAmelCase_ ) and data_args.train_val_split > 0.0: lowerCamelCase__ : Union[str, Any] = dataset['train'].train_test_split(data_args.train_val_split ) lowerCamelCase__ : List[Any] = split['train'] lowerCamelCase__ : int = split['test'] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. lowerCamelCase__ : Union[str, Any] = dataset['train'].features['labels'].names lowerCamelCase__ : Any = {}, {} for i, label in enumerate(lowerCAmelCase_ ): lowerCamelCase__ : List[str] = str(lowerCAmelCase_ ) lowerCamelCase__ : Any = label # Load the accuracy metric from the datasets package lowerCamelCase__ : List[Any] = evaluate.load("""accuracy""" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(UpperCamelCase ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) lowerCamelCase__ : Optional[int] = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(lowerCAmelCase_ ) , labelaid=lowerCAmelCase_ , idalabel=lowerCAmelCase_ , finetuning_task="""image-classification""" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase__ : Optional[int] = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCAmelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) lowerCamelCase__ : List[Any] = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: lowerCamelCase__ : str = image_processor.size['shortest_edge'] else: lowerCamelCase__ : Union[str, Any] = (image_processor.size['height'], image_processor.size['width']) lowerCamelCase__ : Any = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) lowerCamelCase__ : Dict = Compose( [ RandomResizedCrop(lowerCAmelCase_ ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) lowerCamelCase__ : Union[str, Any] = Compose( [ Resize(lowerCAmelCase_ ), CenterCrop(lowerCAmelCase_ ), ToTensor(), normalize, ] ) def train_transforms(UpperCamelCase ): lowerCamelCase__ : Any = [ _train_transforms(pil_img.convert("""RGB""" ) ) for pil_img in example_batch['image'] ] return example_batch def val_transforms(UpperCamelCase ): lowerCamelCase__ : Dict = [_val_transforms(pil_img.convert("""RGB""" ) ) for pil_img in example_batch['image']] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: lowerCamelCase__ : Tuple = ( dataset['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(lowerCAmelCase_ ) if training_args.do_eval: if "validation" not in dataset: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: lowerCamelCase__ : Any = ( dataset['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(lowerCAmelCase_ ) # Initalize our trainer lowerCamelCase__ : str = Trainer( model=lowerCAmelCase_ , args=lowerCAmelCase_ , train_dataset=dataset["""train"""] if training_args.do_train else None , eval_dataset=dataset["""validation"""] if training_args.do_eval else None , compute_metrics=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ , data_collator=lowerCAmelCase_ , ) # Training if training_args.do_train: lowerCamelCase__ : Optional[Any] = None if training_args.resume_from_checkpoint is not None: lowerCamelCase__ : Dict = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase__ : Optional[Any] = last_checkpoint lowerCamelCase__ : Optional[Any] = trainer.train(resume_from_checkpoint=lowerCAmelCase_ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowerCamelCase__ : List[str] = trainer.evaluate() trainer.log_metrics("""eval""" , lowerCAmelCase_ ) trainer.save_metrics("""eval""" , lowerCAmelCase_ ) # Write model card and (optionally) push to hub lowerCamelCase__ : Tuple = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'image-classification', 'dataset': data_args.dataset_name, 'tags': ['image-classification', 'vision'], } if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase_ ) else: trainer.create_model_card(**lowerCAmelCase_ ) if __name__ == "__main__": main()
369
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging _A : Optional[Any] =logging.get_logger(__name__) _A : List[str] ={ '''Helsinki-NLP/opus-mt-en-de''': '''https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json''', # See all Marian models at https://huggingface.co/models?filter=marian } class _lowercase ( _lowercase ): a = """marian""" a = ["""past_key_values"""] a = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self: Tuple , UpperCamelCase__: Optional[Any]=58_101 , UpperCamelCase__: Optional[int]=None , UpperCamelCase__: Union[str, Any]=1_024 , UpperCamelCase__: Any=12 , UpperCamelCase__: Optional[int]=4_096 , UpperCamelCase__: Tuple=16 , UpperCamelCase__: Dict=12 , UpperCamelCase__: Optional[Any]=4_096 , UpperCamelCase__: Any=16 , UpperCamelCase__: List[str]=0.0 , UpperCamelCase__: Tuple=0.0 , UpperCamelCase__: str=True , UpperCamelCase__: Optional[int]=True , UpperCamelCase__: Optional[int]="gelu" , UpperCamelCase__: Union[str, Any]=1_024 , UpperCamelCase__: Optional[int]=0.1 , UpperCamelCase__: Optional[Any]=0.0 , UpperCamelCase__: Optional[Any]=0.0 , UpperCamelCase__: Optional[int]=0.02 , UpperCamelCase__: str=58_100 , UpperCamelCase__: Tuple=False , UpperCamelCase__: Optional[Any]=58_100 , UpperCamelCase__: int=0 , UpperCamelCase__: Union[str, Any]=0 , UpperCamelCase__: List[str]=True , **UpperCamelCase__: str , ): lowerCamelCase__ : int = vocab_size lowerCamelCase__ : Tuple = decoder_vocab_size or vocab_size lowerCamelCase__ : List[str] = max_position_embeddings lowerCamelCase__ : Optional[Any] = d_model lowerCamelCase__ : int = encoder_ffn_dim lowerCamelCase__ : Union[str, Any] = encoder_layers lowerCamelCase__ : Dict = encoder_attention_heads lowerCamelCase__ : Optional[int] = decoder_ffn_dim lowerCamelCase__ : List[str] = decoder_layers lowerCamelCase__ : Dict = decoder_attention_heads lowerCamelCase__ : int = dropout lowerCamelCase__ : str = attention_dropout lowerCamelCase__ : Dict = activation_dropout lowerCamelCase__ : List[str] = activation_function lowerCamelCase__ : Union[str, Any] = init_std lowerCamelCase__ : str = encoder_layerdrop lowerCamelCase__ : Any = decoder_layerdrop lowerCamelCase__ : List[str] = use_cache lowerCamelCase__ : List[str] = encoder_layers lowerCamelCase__ : int = scale_embedding # scale factor will be sqrt(d_model) if True lowerCamelCase__ : str = share_encoder_decoder_embeddings super().__init__( pad_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , decoder_start_token_id=UpperCamelCase__ , forced_eos_token_id=UpperCamelCase__ , **UpperCamelCase__ , ) class _lowercase ( _lowercase ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def lowerCamelCase_ ( self: Union[str, Any] ): if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ : List[str] = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: lowerCamelCase__ : Dict = {0: """batch"""} lowerCamelCase__ : Union[str, Any] = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: lowerCamelCase__ : Any = {0: """batch""", 1: """decoder_sequence"""} lowerCamelCase__ : Dict = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(UpperCamelCase__ , direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. lowerCamelCase__ : Union[str, Any] = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: lowerCamelCase__ , lowerCamelCase__ : Tuple = self.num_layers for i in range(UpperCamelCase__ ): lowerCamelCase__ : Union[str, Any] = {0: """batch""", 2: """past_sequence + sequence"""} lowerCamelCase__ : List[str] = {0: """batch""", 2: """past_sequence + sequence"""} else: lowerCamelCase__ : int = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def lowerCamelCase_ ( self: Optional[Any] ): if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ : Dict = super().outputs else: lowerCamelCase__ : Any = super(UpperCamelCase__ , self ).outputs if self.use_past: lowerCamelCase__ , lowerCamelCase__ : str = self.num_layers for i in range(UpperCamelCase__ ): lowerCamelCase__ : Tuple = {0: """batch""", 2: """past_sequence + sequence"""} lowerCamelCase__ : Union[str, Any] = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def lowerCamelCase_ ( self: str , UpperCamelCase__: PreTrainedTokenizer , UpperCamelCase__: int = -1 , UpperCamelCase__: int = -1 , UpperCamelCase__: bool = False , UpperCamelCase__: Optional[TensorType] = None , ): lowerCamelCase__ : Union[str, Any] = self._generate_dummy_inputs_for_encoder_and_decoder( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Generate decoder inputs lowerCamelCase__ : Any = seq_length if not self.use_past else 1 lowerCamelCase__ : Optional[Any] = self._generate_dummy_inputs_for_encoder_and_decoder( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase__ : str = {F'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} lowerCamelCase__ : Optional[int] = dict(**UpperCamelCase__ , **UpperCamelCase__ ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = common_inputs["""input_ids"""].shape lowerCamelCase__ : Tuple = common_inputs["""decoder_input_ids"""].shape[1] lowerCamelCase__ , lowerCamelCase__ : List[str] = self.num_attention_heads lowerCamelCase__ : Any = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCamelCase__ : Tuple = decoder_seq_length + 3 lowerCamelCase__ : int = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) lowerCamelCase__ : Optional[int] = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(UpperCamelCase__ , UpperCamelCase__ )] , dim=1 ) lowerCamelCase__ : Any = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered lowerCamelCase__ , lowerCamelCase__ : Any = self.num_layers lowerCamelCase__ : str = min(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase__ : str = max(UpperCamelCase__ , UpperCamelCase__ ) - min_num_layers lowerCamelCase__ : int = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(UpperCamelCase__ ): common_inputs["past_key_values"].append( ( torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ ), ) ) # TODO: test this. lowerCamelCase__ : Union[str, Any] = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(UpperCamelCase__ , UpperCamelCase__ ): common_inputs["past_key_values"].append((torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ )) ) return common_inputs def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase__: PreTrainedTokenizer , UpperCamelCase__: int = -1 , UpperCamelCase__: int = -1 , UpperCamelCase__: bool = False , UpperCamelCase__: Optional[TensorType] = None , ): lowerCamelCase__ : Any = self._generate_dummy_inputs_for_encoder_and_decoder( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowerCamelCase__ , lowerCamelCase__ : Any = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values lowerCamelCase__ : Optional[Any] = seqlen + 2 lowerCamelCase__ , lowerCamelCase__ : Dict = self.num_layers lowerCamelCase__ , lowerCamelCase__ : Dict = self.num_attention_heads lowerCamelCase__ : Optional[Any] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCamelCase__ : Optional[Any] = common_inputs["""attention_mask"""].dtype lowerCamelCase__ : int = torch.cat( [common_inputs["""attention_mask"""], torch.ones(UpperCamelCase__ , UpperCamelCase__ , dtype=UpperCamelCase__ )] , dim=1 ) lowerCamelCase__ : int = [ (torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ )) for _ in range(UpperCamelCase__ ) ] return common_inputs def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase__: PreTrainedTokenizer , UpperCamelCase__: int = -1 , UpperCamelCase__: int = -1 , UpperCamelCase__: bool = False , UpperCamelCase__: Optional[TensorType] = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowerCamelCase__ : List[Any] = compute_effective_axis_dimension( UpperCamelCase__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowerCamelCase__ : Union[str, Any] = tokenizer.num_special_tokens_to_add(UpperCamelCase__ ) lowerCamelCase__ : Any = compute_effective_axis_dimension( UpperCamelCase__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=UpperCamelCase__ ) # Generate dummy inputs according to compute batch and sequence lowerCamelCase__ : Union[str, Any] = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size lowerCamelCase__ : str = dict(tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ ) ) return common_inputs def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase__: PreTrainedTokenizer , UpperCamelCase__: int = -1 , UpperCamelCase__: int = -1 , UpperCamelCase__: bool = False , UpperCamelCase__: Optional[TensorType] = None , ): if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ : Dict = self._generate_dummy_inputs_for_default_and_seqaseq_lm( UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) else: lowerCamelCase__ : Tuple = self._generate_dummy_inputs_for_causal_lm( UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) return common_inputs def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase__: Optional[Any] , UpperCamelCase__: List[Any] , UpperCamelCase__: Dict , UpperCamelCase__: Optional[Any] ): if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ : Dict = super()._flatten_past_key_values_(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: lowerCamelCase__ : List[Any] = super(UpperCamelCase__ , self )._flatten_past_key_values_( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) @property def lowerCamelCase_ ( self: Union[str, Any] ): return 1e-4
129
0
import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig _a = logging.get_logger(__name__) class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = question_encoder _UpperCAmelCase = generator _UpperCAmelCase = self.question_encoder def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" if os.path.isfile(UpperCAmelCase ): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(UpperCAmelCase , exist_ok=UpperCAmelCase ) _UpperCAmelCase = os.path.join(UpperCAmelCase , 'question_encoder_tokenizer' ) _UpperCAmelCase = os.path.join(UpperCAmelCase , 'generator_tokenizer' ) self.question_encoder.save_pretrained(UpperCAmelCase ) self.generator.save_pretrained(UpperCAmelCase ) @classmethod def UpperCamelCase ( cls , UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" from ..auto.tokenization_auto import AutoTokenizer _UpperCAmelCase = kwargs.pop('config' , UpperCAmelCase ) if config is None: _UpperCAmelCase = RagConfig.from_pretrained(UpperCAmelCase ) _UpperCAmelCase = AutoTokenizer.from_pretrained( UpperCAmelCase , config=config.question_encoder , subfolder='question_encoder_tokenizer' ) _UpperCAmelCase = AutoTokenizer.from_pretrained( UpperCAmelCase , config=config.generator , subfolder='generator_tokenizer' ) return cls(question_encoder=UpperCAmelCase , generator=UpperCAmelCase ) def __call__( self , *UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" return self.current_tokenizer(*UpperCAmelCase , **UpperCAmelCase ) def UpperCamelCase ( self , *UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" return self.generator.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def UpperCamelCase ( self , *UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" return self.generator.decode(*UpperCAmelCase , **UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.question_encoder def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.generator def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = "longest" , UpperCAmelCase = None , UpperCAmelCase = True , **UpperCAmelCase , ): """simple docstring""" warnings.warn( '`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ' 'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ' 'context manager to prepare your targets. See the documentation of your specific tokenizer for more ' 'details' , UpperCAmelCase , ) if max_length is None: _UpperCAmelCase = self.current_tokenizer.model_max_length _UpperCAmelCase = self( UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_tensors=UpperCAmelCase , max_length=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , **UpperCAmelCase , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: _UpperCAmelCase = self.current_tokenizer.model_max_length _UpperCAmelCase = self( text_target=UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_tensors=UpperCAmelCase , padding=UpperCAmelCase , max_length=UpperCAmelCase , truncation=UpperCAmelCase , **UpperCAmelCase , ) _UpperCAmelCase = labels['input_ids'] return model_inputs
39
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCamelCase ( snake_case__): """simple docstring""" UpperCamelCase__ = ["image_processor", "tokenizer"] UpperCamelCase__ = "Pix2StructImageProcessor" UpperCamelCase__ = ("T5Tokenizer", "T5TokenizerFast") def __init__( self , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = False super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self , UpperCAmelCase=None , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = 2048 , UpperCAmelCase = 0 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = True , UpperCAmelCase = None , **UpperCAmelCase , ): """simple docstring""" if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None and not self.image_processor.is_vqa: _UpperCAmelCase = self.tokenizer _UpperCAmelCase = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values _UpperCAmelCase = self.image_processor( UpperCAmelCase , return_tensors=UpperCAmelCase , max_patches=UpperCAmelCase , **UpperCAmelCase ) else: # add pixel_values and bbox _UpperCAmelCase = self.image_processor( UpperCAmelCase , return_tensors=UpperCAmelCase , max_patches=UpperCAmelCase , header_text=UpperCAmelCase , **UpperCAmelCase ) if text is not None and not self.image_processor.is_vqa: _UpperCAmelCase = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) if "attention_mask" in text_encoding: _UpperCAmelCase = text_encoding.pop('attention_mask' ) if "input_ids" in text_encoding: _UpperCAmelCase = text_encoding.pop('input_ids' ) else: _UpperCAmelCase = None if text_encoding is not None: encoding_image_processor.update(UpperCAmelCase ) return encoding_image_processor def UpperCamelCase ( self , *UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def UpperCamelCase ( self , *UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.tokenizer.model_input_names _UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
39
1
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class _UpperCAmelCase ( lowercase__ ): '''simple docstring''' __A = 42 class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , lowercase_ : List[str]=3 , lowercase_ : Optional[int]=3 , lowercase_ : List[Any]=("DownEncoderBlock2D",) , lowercase_ : Tuple=(64,) , lowercase_ : Dict=2 , lowercase_ : Optional[int]=32 , lowercase_ : Tuple="silu" , lowercase_ : Tuple=True , ) -> Tuple: """simple docstring""" super().__init__() _UpperCamelCase = layers_per_block _UpperCamelCase = torch.nn.Convad( _a , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) _UpperCamelCase = None _UpperCamelCase = nn.ModuleList([]) # down _UpperCamelCase = block_out_channels[0] for i, down_block_type in enumerate(_a): _UpperCamelCase = output_channel _UpperCamelCase = block_out_channels[i] _UpperCamelCase = i == len(_a) - 1 _UpperCamelCase = get_down_block( _a , num_layers=self.layers_per_block , in_channels=_a , out_channels=_a , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=_a , resnet_groups=_a , attention_head_dim=_a , temb_channels=_a , ) self.down_blocks.append(_a) # mid _UpperCamelCase = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=_a , output_scale_factor=1 , resnet_time_scale_shift="default" , attention_head_dim=block_out_channels[-1] , resnet_groups=_a , temb_channels=_a , ) # out _UpperCamelCase = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=_a , eps=1e-6) _UpperCamelCase = nn.SiLU() _UpperCamelCase = 2 * out_channels if double_z else out_channels _UpperCamelCase = nn.Convad(block_out_channels[-1] , _a , 3 , padding=1) _UpperCamelCase = False def __UpperCAmelCase ( self : Tuple , lowercase_ : Optional[Any]) -> Any: """simple docstring""" _UpperCamelCase = x _UpperCamelCase = self.conv_in(_a) if self.training and self.gradient_checkpointing: def create_custom_forward(lowercase_ : str): def custom_forward(*lowercase_ : str): return module(*_a) return custom_forward # down if is_torch_version(">=" , "1.11.0"): for down_block in self.down_blocks: _UpperCamelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(_a) , _a , use_reentrant=_a) # middle _UpperCamelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block) , _a , use_reentrant=_a) else: for down_block in self.down_blocks: _UpperCamelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(_a) , _a) # middle _UpperCamelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block) , _a) else: # down for down_block in self.down_blocks: _UpperCamelCase = down_block(_a) # middle _UpperCamelCase = self.mid_block(_a) # post-process _UpperCamelCase = self.conv_norm_out(_a) _UpperCamelCase = self.conv_act(_a) _UpperCamelCase = self.conv_out(_a) return sample class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , lowercase_ : Dict=3 , lowercase_ : Optional[int]=3 , lowercase_ : List[Any]=("UpDecoderBlock2D",) , lowercase_ : Union[str, Any]=(64,) , lowercase_ : Union[str, Any]=2 , lowercase_ : List[str]=32 , lowercase_ : Optional[int]="silu" , lowercase_ : Optional[Any]="group" , ) -> Any: """simple docstring""" super().__init__() _UpperCamelCase = layers_per_block _UpperCamelCase = nn.Convad( _a , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) _UpperCamelCase = None _UpperCamelCase = nn.ModuleList([]) _UpperCamelCase = in_channels if norm_type == 'spatial' else None # mid _UpperCamelCase = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=_a , output_scale_factor=1 , resnet_time_scale_shift="default" if norm_type == "group" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=_a , temb_channels=_a , ) # up _UpperCamelCase = list(reversed(_a)) _UpperCamelCase = reversed_block_out_channels[0] for i, up_block_type in enumerate(_a): _UpperCamelCase = output_channel _UpperCamelCase = reversed_block_out_channels[i] _UpperCamelCase = i == len(_a) - 1 _UpperCamelCase = get_up_block( _a , num_layers=self.layers_per_block + 1 , in_channels=_a , out_channels=_a , prev_output_channel=_a , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=_a , resnet_groups=_a , attention_head_dim=_a , temb_channels=_a , resnet_time_scale_shift=_a , ) self.up_blocks.append(_a) _UpperCamelCase = output_channel # out if norm_type == "spatial": _UpperCamelCase = SpatialNorm(block_out_channels[0] , _a) else: _UpperCamelCase = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=_a , eps=1e-6) _UpperCamelCase = nn.SiLU() _UpperCamelCase = nn.Convad(block_out_channels[0] , _a , 3 , padding=1) _UpperCamelCase = False def __UpperCAmelCase ( self : Tuple , lowercase_ : Union[str, Any] , lowercase_ : List[str]=None) -> Optional[Any]: """simple docstring""" _UpperCamelCase = z _UpperCamelCase = self.conv_in(_a) _UpperCamelCase = next(iter(self.up_blocks.parameters())).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(lowercase_ : Optional[Any]): def custom_forward(*lowercase_ : int): return module(*_a) return custom_forward if is_torch_version(">=" , "1.11.0"): # middle _UpperCamelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block) , _a , _a , use_reentrant=_a) _UpperCamelCase = sample.to(_a) # up for up_block in self.up_blocks: _UpperCamelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(_a) , _a , _a , use_reentrant=_a) else: # middle _UpperCamelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block) , _a , _a) _UpperCamelCase = sample.to(_a) # up for up_block in self.up_blocks: _UpperCamelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(_a) , _a , _a) else: # middle _UpperCamelCase = self.mid_block(_a , _a) _UpperCamelCase = sample.to(_a) # up for up_block in self.up_blocks: _UpperCamelCase = up_block(_a , _a) # post-process if latent_embeds is None: _UpperCamelCase = self.conv_norm_out(_a) else: _UpperCamelCase = self.conv_norm_out(_a , _a) _UpperCamelCase = self.conv_act(_a) _UpperCamelCase = self.conv_out(_a) return sample class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowercase_ : Optional[Any] , lowercase_ : Tuple , lowercase_ : List[str] , lowercase_ : int=None , lowercase_ : List[str]="random" , lowercase_ : List[Any]=False , lowercase_ : str=True) -> Dict: """simple docstring""" super().__init__() _UpperCamelCase = n_e _UpperCamelCase = vq_embed_dim _UpperCamelCase = beta _UpperCamelCase = legacy _UpperCamelCase = nn.Embedding(self.n_e , self.vq_embed_dim) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e) _UpperCamelCase = remap if self.remap is not None: self.register_buffer("used" , torch.tensor(np.load(self.remap))) _UpperCamelCase = self.used.shape[0] _UpperCamelCase = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": _UpperCamelCase = self.re_embed _UpperCamelCase = self.re_embed + 1 print( f'Remapping {self.n_e} indices to {self.re_embed} indices. ' f'Using {self.unknown_index} for unknown indices.') else: _UpperCamelCase = n_e _UpperCamelCase = sane_index_shape def __UpperCAmelCase ( self : Optional[Any] , lowercase_ : Dict) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = inds.shape assert len(_a) > 1 _UpperCamelCase = inds.reshape(ishape[0] , -1) _UpperCamelCase = self.used.to(_a) _UpperCamelCase = (inds[:, :, None] == used[None, None, ...]).long() _UpperCamelCase = match.argmax(-1) _UpperCamelCase = match.sum(2) < 1 if self.unknown_index == "random": _UpperCamelCase = torch.randint(0 , self.re_embed , size=new[unknown].shape).to(device=new.device) else: _UpperCamelCase = self.unknown_index return new.reshape(_a) def __UpperCAmelCase ( self : List[Any] , lowercase_ : Dict) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = inds.shape assert len(_a) > 1 _UpperCamelCase = inds.reshape(ishape[0] , -1) _UpperCamelCase = self.used.to(_a) if self.re_embed > self.used.shape[0]: # extra token _UpperCamelCase = 0 # simply set to zero _UpperCamelCase = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , _a) return back.reshape(_a) def __UpperCAmelCase ( self : Optional[int] , lowercase_ : str) -> List[str]: """simple docstring""" _UpperCamelCase = z.permute(0 , 2 , 3 , 1).contiguous() _UpperCamelCase = z.view(-1 , self.vq_embed_dim) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z _UpperCamelCase = torch.argmin(torch.cdist(_a , self.embedding.weight) , dim=1) _UpperCamelCase = self.embedding(_a).view(z.shape) _UpperCamelCase = None _UpperCamelCase = None # compute loss for embedding if not self.legacy: _UpperCamelCase = self.beta * torch.mean((z_q.detach() - z) ** 2) + torch.mean((z_q - z.detach()) ** 2) else: _UpperCamelCase = torch.mean((z_q.detach() - z) ** 2) + self.beta * torch.mean((z_q - z.detach()) ** 2) # preserve gradients _UpperCamelCase = z + (z_q - z).detach() # reshape back to match original input shape _UpperCamelCase = z_q.permute(0 , 3 , 1 , 2).contiguous() if self.remap is not None: _UpperCamelCase = min_encoding_indices.reshape(z.shape[0] , -1) # add batch axis _UpperCamelCase = self.remap_to_used(_a) _UpperCamelCase = min_encoding_indices.reshape(-1 , 1) # flatten if self.sane_index_shape: _UpperCamelCase = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3]) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def __UpperCAmelCase ( self : str , lowercase_ : Optional[int] , lowercase_ : Tuple) -> Tuple: """simple docstring""" if self.remap is not None: _UpperCamelCase = indices.reshape(shape[0] , -1) # add batch axis _UpperCamelCase = self.unmap_to_all(_a) _UpperCamelCase = indices.reshape(-1) # flatten again # get quantized latent vectors _UpperCamelCase = self.embedding(_a) if shape is not None: _UpperCamelCase = z_q.view(_a) # reshape back to match original input shape _UpperCamelCase = z_q.permute(0 , 3 , 1 , 2).contiguous() return z_q class _UpperCAmelCase ( lowercase__ ): '''simple docstring''' def __init__( self : Optional[int] , lowercase_ : Optional[Any] , lowercase_ : List[str]=False) -> str: """simple docstring""" _UpperCamelCase = parameters _UpperCamelCase = torch.chunk(_a , 2 , dim=1) _UpperCamelCase = torch.clamp(self.logvar , -30.0 , 20.0) _UpperCamelCase = deterministic _UpperCamelCase = torch.exp(0.5 * self.logvar) _UpperCamelCase = torch.exp(self.logvar) if self.deterministic: _UpperCamelCase = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype) def __UpperCAmelCase ( self : Optional[int] , lowercase_ : Optional[torch.Generator] = None) -> List[Any]: """simple docstring""" _UpperCamelCase = randn_tensor( self.mean.shape , generator=_a , device=self.parameters.device , dtype=self.parameters.dtype) _UpperCamelCase = self.mean + self.std * sample return x def __UpperCAmelCase ( self : Optional[int] , lowercase_ : List[str]=None) -> str: """simple docstring""" if self.deterministic: return torch.Tensor([0.0]) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2) + self.var - 1.0 - self.logvar , dim=[1, 2, 3]) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def __UpperCAmelCase ( self : Any , lowercase_ : Tuple , lowercase_ : Dict=[1, 2, 3]) -> Optional[Any]: """simple docstring""" if self.deterministic: return torch.Tensor([0.0]) _UpperCamelCase = np.log(2.0 * np.pi) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2) / self.var , dim=_a) def __UpperCAmelCase ( self : int) -> Optional[int]: """simple docstring""" return self.mean
355
import requests from bsa import BeautifulSoup def lowerCAmelCase__ ( a__ = "https://www.worldometers.info/coronavirus" ) ->dict: '''simple docstring''' _UpperCamelCase = BeautifulSoup(requests.get(a__ ).text , "html.parser" ) _UpperCamelCase = soup.findAll("h1" ) _UpperCamelCase = soup.findAll("div" , {"class": "maincounter-number"} ) keys += soup.findAll("span" , {"class": "panel-title"} ) values += soup.findAll("div" , {"class": "number-table-main"} ) return {key.text.strip(): value.text.strip() for key, value in zip(a__ , a__ )} if __name__ == "__main__": print('''\033[1m''' + '''COVID-19 Status of the World''' + '''\033[0m\n''') for key, value in world_covidaa_stats().items(): print(F"{key}\n{value}\n")
63
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) a_ = { 'configuration_blip': [ 'BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlipConfig', 'BlipTextConfig', 'BlipVisionConfig', ], 'processing_blip': ['BlipProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['BlipImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'BLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlipModel', 'BlipPreTrainedModel', 'BlipForConditionalGeneration', 'BlipForQuestionAnswering', 'BlipVisionModel', 'BlipTextModel', 'BlipForImageTextRetrieval', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFBlipModel', 'TFBlipPreTrainedModel', 'TFBlipForConditionalGeneration', 'TFBlipForQuestionAnswering', 'TFBlipVisionModel', 'TFBlipTextModel', 'TFBlipForImageTextRetrieval', ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
249
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class UpperCAmelCase_ ( snake_case ): UpperCamelCase ="audio-spectrogram-transformer" def __init__( self , UpperCamelCase_=7_68 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=30_72 , UpperCamelCase_="gelu" , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-12 , UpperCamelCase_=16 , UpperCamelCase_=True , UpperCamelCase_=10 , UpperCamelCase_=10 , UpperCamelCase_=10_24 , UpperCamelCase_=1_28 , **UpperCamelCase_ , ) -> Optional[int]: super().__init__(**UpperCamelCase_ ) __lowercase : Optional[Any] = hidden_size __lowercase : List[str] = num_hidden_layers __lowercase : List[str] = num_attention_heads __lowercase : Dict = intermediate_size __lowercase : List[str] = hidden_act __lowercase : Union[str, Any] = hidden_dropout_prob __lowercase : Optional[Any] = attention_probs_dropout_prob __lowercase : Dict = initializer_range __lowercase : Optional[int] = layer_norm_eps __lowercase : Optional[int] = patch_size __lowercase : List[str] = qkv_bias __lowercase : Union[str, Any] = frequency_stride __lowercase : List[Any] = time_stride __lowercase : Tuple = max_length __lowercase : int = num_mel_bins
249
1
import argparse import struct import unittest class _UpperCamelCase : '''simple docstring''' def __init__( self : Any , snake_case_ : Union[str, Any] ): UpperCamelCase_: Tuple = data # Initialize hash values UpperCamelCase_: str = [ 0X6a09_e667, 0Xbb67_ae85, 0X3c6e_f372, 0Xa54f_f53a, 0X510e_527f, 0X9b05_688c, 0X1f83_d9ab, 0X5be0_cd19, ] # Initialize round constants UpperCamelCase_: List[Any] = [ 0X428a_2f98, 0X7137_4491, 0Xb5c0_fbcf, 0Xe9b5_dba5, 0X3956_c25b, 0X59f1_11f1, 0X923f_82a4, 0Xab1c_5ed5, 0Xd807_aa98, 0X1283_5b01, 0X2431_85be, 0X550c_7dc3, 0X72be_5d74, 0X80de_b1fe, 0X9bdc_06a7, 0Xc19b_f174, 0Xe49b_69c1, 0Xefbe_4786, 0X0fc1_9dc6, 0X240c_a1cc, 0X2de9_2c6f, 0X4a74_84aa, 0X5cb0_a9dc, 0X76f9_88da, 0X983e_5152, 0Xa831_c66d, 0Xb003_27c8, 0Xbf59_7fc7, 0Xc6e0_0bf3, 0Xd5a7_9147, 0X06ca_6351, 0X1429_2967, 0X27b7_0a85, 0X2e1b_2138, 0X4d2c_6dfc, 0X5338_0d13, 0X650a_7354, 0X766a_0abb, 0X81c2_c92e, 0X9272_2c85, 0Xa2bf_e8a1, 0Xa81a_664b, 0Xc24b_8b70, 0Xc76c_51a3, 0Xd192_e819, 0Xd699_0624, 0Xf40e_3585, 0X106a_a070, 0X19a4_c116, 0X1e37_6c08, 0X2748_774c, 0X34b0_bcb5, 0X391c_0cb3, 0X4ed8_aa4a, 0X5b9c_ca4f, 0X682e_6ff3, 0X748f_82ee, 0X78a5_636f, 0X84c8_7814, 0X8cc7_0208, 0X90be_fffa, 0Xa450_6ceb, 0Xbef9_a3f7, 0Xc671_78f2, ] UpperCamelCase_: Dict = self.preprocessing(self.data ) self.final_hash() @staticmethod def lowerCAmelCase__ ( snake_case_ : int ): UpperCamelCase_: int = b"""\x80""" + (b"""\x00""" * (63 - (len(lowerCamelCase__ ) + 8) % 64)) UpperCamelCase_: str = struct.pack(""">Q""" , (len(lowerCamelCase__ ) * 8) ) return data + padding + big_endian_integer def lowerCAmelCase__ ( self : Union[str, Any] ): # Convert into blocks of 64 bytes UpperCamelCase_: str = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers UpperCamelCase_: str = list(struct.unpack(""">16L""" , lowerCamelCase__ ) ) # add 48 0-ed integers words += [0] * 48 UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: Optional[int] = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array UpperCamelCase_: Optional[int] = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) UpperCamelCase_: Optional[Any] = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) UpperCamelCase_: Union[str, Any] = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X1_0000_0000 # Compression UpperCamelCase_: str = self.ror(lowerCamelCase__ , 6 ) ^ self.ror(lowerCamelCase__ , 11 ) ^ self.ror(lowerCamelCase__ , 25 ) UpperCamelCase_: Any = (e & f) ^ ((~e & 0Xffff_ffff) & g) UpperCamelCase_: int = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X1_0000_0000 UpperCamelCase_: str = self.ror(lowerCamelCase__ , 2 ) ^ self.ror(lowerCamelCase__ , 13 ) ^ self.ror(lowerCamelCase__ , 22 ) UpperCamelCase_: List[Any] = (a & b) ^ (a & c) ^ (b & c) UpperCamelCase_: Optional[Any] = (sa + maj) % 0X1_0000_0000 UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: Optional[int] = ( g, f, e, ((d + tempa) % 0X1_0000_0000), c, b, a, ((tempa + tempa) % 0X1_0000_0000), ) UpperCamelCase_: int = [a, b, c, d, e, f, g, h] # Modify final values UpperCamelCase_: Any = [ ((element + mutated_hash_values[index]) % 0X1_0000_0000) for index, element in enumerate(self.hashes ) ] UpperCamelCase_: Dict = """""".join([hex(lowerCamelCase__ )[2:].zfill(8 ) for value in self.hashes] ) def lowerCAmelCase__ ( self : Optional[int] , snake_case_ : List[str] , snake_case_ : Tuple ): return 0Xffff_ffff & (value << (32 - rotations)) | (value >> rotations) class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Any ): import hashlib UpperCamelCase_: Union[str, Any] = bytes("""Test String""" , """utf-8""" ) self.assertEqual(SHAaaa(lowerCamelCase__ ).hash , hashlib.shaaaa(lowerCamelCase__ ).hexdigest() ) def A__ ( ) -> None: import doctest doctest.testmod() UpperCamelCase_: Dict = argparse.ArgumentParser() parser.add_argument( """-s""" , """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument( """-f""" , """--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) UpperCamelCase_: Dict = parser.parse_args() UpperCamelCase_: Optional[Any] = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: UpperCamelCase_: Dict = f.read() else: UpperCamelCase_: List[Any] = bytes(lowercase_ , """utf-8""" ) print(SHAaaa(lowercase_ ).hash ) if __name__ == "__main__": main()
357
import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: lowerCamelCase_ : List[str] = False lowerCamelCase_ : int = logging.get_logger(__name__) lowerCamelCase_ : Optional[int] = """ybelkada/fonts""" def A__ ( ) -> Dict: if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F'''You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use ''' """Pix2StructImageProcessor. Please upgrade torch.""" ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[int]: requires_backends(lowerCamelCase , ["""torch"""] ) _check_torch_version() UpperCamelCase_: Tuple = image_tensor.unsqueeze(0 ) UpperCamelCase_: Any = torch.nn.functional.unfold(lowerCamelCase , (patch_height, patch_width) , stride=(patch_height, patch_width) ) UpperCamelCase_: int = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , lowerCamelCase , lowerCamelCase , -1 ) UpperCamelCase_: Any = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def A__ ( lowerCamelCase , lowerCamelCase = 36 , lowerCamelCase = "black" , lowerCamelCase = "white" , lowerCamelCase = 5 , lowerCamelCase = 5 , lowerCamelCase = 5 , lowerCamelCase = 5 , lowerCamelCase = None , lowerCamelCase = None , ) -> Image.Image: requires_backends(lowerCamelCase , """vision""" ) # Add new lines so that each line is no more than 80 characters. UpperCamelCase_: List[str] = textwrap.TextWrapper(width=80 ) UpperCamelCase_: Optional[int] = wrapper.wrap(text=lowerCamelCase ) UpperCamelCase_: List[str] = """\n""".join(lowerCamelCase ) if font_bytes is not None and font_path is None: UpperCamelCase_: List[Any] = io.BytesIO(lowerCamelCase ) elif font_path is not None: UpperCamelCase_: List[Any] = font_path else: UpperCamelCase_: Tuple = hf_hub_download(lowerCamelCase , """Arial.TTF""" ) UpperCamelCase_: Optional[Any] = ImageFont.truetype(lowerCamelCase , encoding="""UTF-8""" , size=lowerCamelCase ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. UpperCamelCase_: str = ImageDraw.Draw(Image.new("""RGB""" , (1, 1) , lowerCamelCase ) ) UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: Optional[int] = temp_draw.textbbox((0, 0) , lowerCamelCase , lowerCamelCase ) # Create the actual image with a bit of padding around the text. UpperCamelCase_: Optional[int] = text_width + left_padding + right_padding UpperCamelCase_: List[str] = text_height + top_padding + bottom_padding UpperCamelCase_: Union[str, Any] = Image.new("""RGB""" , (image_width, image_height) , lowerCamelCase ) UpperCamelCase_: Optional[Any] = ImageDraw.Draw(lowerCamelCase ) draw.text(xy=(left_padding, top_padding) , text=lowerCamelCase , fill=lowerCamelCase , font=lowerCamelCase ) return image def A__ ( lowerCamelCase , lowerCamelCase , **lowerCamelCase ) -> List[str]: requires_backends(lowerCamelCase , """vision""" ) # Convert to PIL image if necessary UpperCamelCase_: List[str] = to_pil_image(lowerCamelCase ) UpperCamelCase_: Union[str, Any] = render_text(lowerCamelCase , **lowerCamelCase ) UpperCamelCase_: Tuple = max(header_image.width , image.width ) UpperCamelCase_: Tuple = int(image.height * (new_width / image.width) ) UpperCamelCase_: Dict = int(header_image.height * (new_width / header_image.width) ) UpperCamelCase_: str = Image.new("""RGB""" , (new_width, new_height + new_header_height) , """white""" ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary UpperCamelCase_: Optional[Any] = to_numpy_array(lowerCamelCase ) if infer_channel_dimension_format(lowerCamelCase ) == ChannelDimension.LAST: UpperCamelCase_: Tuple = to_channel_dimension_format(lowerCamelCase , ChannelDimension.LAST ) return new_image class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : Optional[int] = ["""flattened_patches"""] def __init__( self : int , snake_case_ : bool = True , snake_case_ : bool = True , snake_case_ : Dict[str, int] = None , snake_case_ : int = 2048 , snake_case_ : bool = False , **snake_case_ : Any , ): super().__init__(**snake_case_ ) UpperCamelCase_: int = patch_size if patch_size is not None else {"""height""": 16, """width""": 16} UpperCamelCase_: Tuple = do_normalize UpperCamelCase_: List[Any] = do_convert_rgb UpperCamelCase_: Tuple = max_patches UpperCamelCase_: Tuple = is_vqa def lowerCAmelCase__ ( self : int , snake_case_ : np.ndarray , snake_case_ : int , snake_case_ : dict , **snake_case_ : Tuple ): requires_backends(self.extract_flattened_patches , """torch""" ) _check_torch_version() # convert to torch UpperCamelCase_: int = to_channel_dimension_format(snake_case_ , ChannelDimension.FIRST ) UpperCamelCase_: List[str] = torch.from_numpy(snake_case_ ) UpperCamelCase_, UpperCamelCase_: List[Any] = patch_size["""height"""], patch_size["""width"""] UpperCamelCase_, UpperCamelCase_: Tuple = get_image_size(snake_case_ ) # maximize scale s.t. UpperCamelCase_: List[Any] = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) UpperCamelCase_: Any = max(min(math.floor(scale * image_height / patch_height ) , snake_case_ ) , 1 ) UpperCamelCase_: List[str] = max(min(math.floor(scale * image_width / patch_width ) , snake_case_ ) , 1 ) UpperCamelCase_: int = max(num_feasible_rows * patch_height , 1 ) UpperCamelCase_: Optional[Any] = max(num_feasible_cols * patch_width , 1 ) UpperCamelCase_: str = torch.nn.functional.interpolate( image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode="""bilinear""" , align_corners=snake_case_ , antialias=snake_case_ , ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] UpperCamelCase_: List[str] = torch_extract_patches(snake_case_ , snake_case_ , snake_case_ ) UpperCamelCase_: List[Any] = patches.shape UpperCamelCase_: List[str] = patches_shape[1] UpperCamelCase_: Optional[Any] = patches_shape[2] UpperCamelCase_: List[str] = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] UpperCamelCase_: Union[str, Any] = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] UpperCamelCase_: Optional[Any] = torch.arange(snake_case_ ).reshape([rows, 1] ).repeat(1 , snake_case_ ).reshape([rows * columns, 1] ) UpperCamelCase_: Optional[int] = torch.arange(snake_case_ ).reshape([1, columns] ).repeat(snake_case_ , 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] UpperCamelCase_: Union[str, Any] = row_ids.to(torch.floataa ) UpperCamelCase_: str = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] UpperCamelCase_: Optional[Any] = torch.cat([row_ids, col_ids, patches] , -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] UpperCamelCase_: Tuple = torch.nn.functional.pad(snake_case_ , [0, 0, 0, max_patches - (rows * columns)] ).float() UpperCamelCase_: List[Any] = to_numpy_array(snake_case_ ) return result def lowerCAmelCase__ ( self : List[Any] , snake_case_ : np.ndarray , snake_case_ : Optional[Union[str, ChannelDimension]] = None , **snake_case_ : Tuple ): if image.dtype == np.uinta: UpperCamelCase_: List[str] = image.astype(np.floataa ) # take mean across the whole `image` UpperCamelCase_: str = np.mean(snake_case_ ) UpperCamelCase_: str = np.std(snake_case_ ) UpperCamelCase_: str = max(snake_case_ , 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(snake_case_ , mean=snake_case_ , std=snake_case_ , **snake_case_ ) def lowerCAmelCase__ ( self : str , snake_case_ : ImageInput , snake_case_ : Optional[str] = None , snake_case_ : bool = None , snake_case_ : Optional[bool] = None , snake_case_ : Optional[int] = None , snake_case_ : Optional[Dict[str, int]] = None , snake_case_ : Optional[Union[str, TensorType]] = None , snake_case_ : ChannelDimension = ChannelDimension.FIRST , **snake_case_ : Union[str, Any] , ): UpperCamelCase_: Tuple = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase_: Tuple = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCamelCase_: Optional[Any] = patch_size if patch_size is not None else self.patch_size UpperCamelCase_: Optional[int] = max_patches if max_patches is not None else self.max_patches UpperCamelCase_: Tuple = self.is_vqa if kwargs.get("""data_format""" , snake_case_ ) is not None: raise ValueError("""data_format is not an accepted input as the outputs are """ ) UpperCamelCase_: Dict = make_list_of_images(snake_case_ ) if not valid_images(snake_case_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCamelCase_: str = [convert_to_rgb(snake_case_ ) for image in images] # All transformations expect numpy arrays. UpperCamelCase_: Union[str, Any] = [to_numpy_array(snake_case_ ) for image in images] if is_vqa: if header_text is None: raise ValueError("""A header text must be provided for VQA models.""" ) UpperCamelCase_: List[Any] = kwargs.pop("""font_bytes""" , snake_case_ ) UpperCamelCase_: List[Any] = kwargs.pop("""font_path""" , snake_case_ ) if isinstance(snake_case_ , snake_case_ ): UpperCamelCase_: str = [header_text] * len(snake_case_ ) UpperCamelCase_: str = [ render_header(snake_case_ , header_text[i] , font_bytes=snake_case_ , font_path=snake_case_ ) for i, image in enumerate(snake_case_ ) ] if do_normalize: UpperCamelCase_: Union[str, Any] = [self.normalize(image=snake_case_ ) for image in images] # convert to torch tensor and permute UpperCamelCase_: str = [ self.extract_flattened_patches(image=snake_case_ , max_patches=snake_case_ , patch_size=snake_case_ ) for image in images ] # create attention mask in numpy UpperCamelCase_: List[Any] = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] UpperCamelCase_: Optional[Any] = BatchFeature( data={"""flattened_patches""": images, """attention_mask""": attention_masks} , tensor_type=snake_case_ ) return encoded_outputs
223
0
'''simple docstring''' from __future__ import annotations from statistics import mean def UpperCAmelCase_ ( __lowercase : list[int] , __lowercase : list[int] , __lowercase : int ) -> list[int]: '''simple docstring''' _UpperCAmelCase = [0] * no_of_processes _UpperCAmelCase = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(__lowercase ): _UpperCAmelCase = burst_time[i] _UpperCAmelCase = [] _UpperCAmelCase = 0 _UpperCAmelCase = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: _UpperCAmelCase = [] _UpperCAmelCase = -1 for i in range(__lowercase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(__lowercase ) if len(__lowercase ) > 0: _UpperCAmelCase = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: _UpperCAmelCase = i total_time += burst_time[target_process] completed += 1 _UpperCAmelCase = 0 _UpperCAmelCase = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def UpperCAmelCase_ ( __lowercase : list[int] , __lowercase : int , __lowercase : list[int] ) -> list[int]: '''simple docstring''' _UpperCAmelCase = [0] * no_of_processes for i in range(__lowercase ): _UpperCAmelCase = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print('''[TEST CASE 01]''') __SCREAMING_SNAKE_CASE :Dict = 4 __SCREAMING_SNAKE_CASE :int = [2, 5, 3, 7] __SCREAMING_SNAKE_CASE :List[Any] = [0, 0, 0, 0] __SCREAMING_SNAKE_CASE :Tuple = calculate_waitingtime(arrival_time, burst_time, no_of_processes) __SCREAMING_SNAKE_CASE :Any = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print('''PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time''') for i, process_id in enumerate(list(range(1, 5))): print( F"{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t" F"{waiting_time[i]}\t\t\t\t{turn_around_time[i]}" ) print(F"\nAverage waiting time = {mean(waiting_time):.5f}") print(F"Average turnaround time = {mean(turn_around_time):.5f}")
22
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _A : Dict = logging.get_logger(__name__) def __magic_name__ ( __snake_case : Any ) -> Any: lowercase : Optional[Any] = DPTConfig() if "large" in checkpoint_url: lowercase : Optional[int] = 1024 lowercase : Dict = 4096 lowercase : Union[str, Any] = 24 lowercase : str = 16 lowercase : Dict = [5, 11, 17, 23] lowercase : Any = [256, 512, 1024, 1024] lowercase : Optional[Any] = (1, 384, 384) if "ade" in checkpoint_url: lowercase : List[Any] = True lowercase : Union[str, Any] = 150 lowercase : Dict = "huggingface/label-files" lowercase : Optional[Any] = "ade20k-id2label.json" lowercase : Optional[int] = json.load(open(cached_download(hf_hub_url(__snake_case , __snake_case , repo_type="dataset" ) ) , "r" ) ) lowercase : List[Any] = {int(__snake_case ): v for k, v in idalabel.items()} lowercase : Optional[Any] = idalabel lowercase : Optional[Any] = {v: k for k, v in idalabel.items()} lowercase : Optional[int] = [1, 150, 480, 480] return config, expected_shape def __magic_name__ ( __snake_case : Union[str, Any] ) -> Optional[int]: lowercase : Optional[Any] = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(__snake_case , __snake_case ) def __magic_name__ ( __snake_case : Union[str, Any] ) -> Optional[Any]: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowercase : Tuple = name.replace("pretrained.model" , "dpt.encoder" ) if "pretrained.model" in name: lowercase : Tuple = name.replace("pretrained.model" , "dpt.embeddings" ) if "patch_embed" in name: lowercase : Optional[int] = name.replace("patch_embed" , "patch_embeddings" ) if "pos_embed" in name: lowercase : List[Any] = name.replace("pos_embed" , "position_embeddings" ) if "attn.proj" in name: lowercase : str = name.replace("attn.proj" , "attention.output.dense" ) if "proj" in name and "project" not in name: lowercase : Any = name.replace("proj" , "projection" ) if "blocks" in name: lowercase : Tuple = name.replace("blocks" , "layer" ) if "mlp.fc1" in name: lowercase : Optional[int] = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: lowercase : str = name.replace("mlp.fc2" , "output.dense" ) if "norm1" in name: lowercase : Dict = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: lowercase : Any = name.replace("norm2" , "layernorm_after" ) if "scratch.output_conv" in name: lowercase : Optional[Any] = name.replace("scratch.output_conv" , "head" ) if "scratch" in name: lowercase : Optional[int] = name.replace("scratch" , "neck" ) if "layer1_rn" in name: lowercase : Any = name.replace("layer1_rn" , "convs.0" ) if "layer2_rn" in name: lowercase : Tuple = name.replace("layer2_rn" , "convs.1" ) if "layer3_rn" in name: lowercase : int = name.replace("layer3_rn" , "convs.2" ) if "layer4_rn" in name: lowercase : Union[str, Any] = name.replace("layer4_rn" , "convs.3" ) if "refinenet" in name: lowercase : int = int(name[len("neck.refinenet" ) : len("neck.refinenet" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowercase : Union[str, Any] = name.replace(f"""refinenet{layer_idx}""" , f"""fusion_stage.layers.{abs(layer_idx-4 )}""" ) if "out_conv" in name: lowercase : Tuple = name.replace("out_conv" , "projection" ) if "resConfUnit1" in name: lowercase : Union[str, Any] = name.replace("resConfUnit1" , "residual_layer1" ) if "resConfUnit2" in name: lowercase : List[Any] = name.replace("resConfUnit2" , "residual_layer2" ) if "conv1" in name: lowercase : Optional[int] = name.replace("conv1" , "convolution1" ) if "conv2" in name: lowercase : Union[str, Any] = name.replace("conv2" , "convolution2" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowercase : str = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0" ) if "pretrained.act_postprocess2.0.project.0" in name: lowercase : Any = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0" ) if "pretrained.act_postprocess3.0.project.0" in name: lowercase : Dict = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0" ) if "pretrained.act_postprocess4.0.project.0" in name: lowercase : str = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0" ) # resize blocks if "pretrained.act_postprocess1.3" in name: lowercase : Union[str, Any] = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection" ) if "pretrained.act_postprocess1.4" in name: lowercase : Optional[Any] = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize" ) if "pretrained.act_postprocess2.3" in name: lowercase : Union[str, Any] = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection" ) if "pretrained.act_postprocess2.4" in name: lowercase : Optional[int] = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize" ) if "pretrained.act_postprocess3.3" in name: lowercase : str = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection" ) if "pretrained.act_postprocess4.3" in name: lowercase : str = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection" ) if "pretrained.act_postprocess4.4" in name: lowercase : Any = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize" ) if "pretrained" in name: lowercase : List[str] = name.replace("pretrained" , "dpt" ) if "bn" in name: lowercase : Optional[int] = name.replace("bn" , "batch_norm" ) if "head" in name: lowercase : Union[str, Any] = name.replace("head" , "head.head" ) if "encoder.norm" in name: lowercase : List[str] = name.replace("encoder.norm" , "layernorm" ) if "auxlayer" in name: lowercase : Optional[Any] = name.replace("auxlayer" , "auxiliary_head.head" ) return name def __magic_name__ ( __snake_case : str , __snake_case : str ) -> Any: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase : Union[str, Any] = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.weight""" ) lowercase : List[str] = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowercase : Optional[int] = in_proj_weight[: config.hidden_size, :] lowercase : int = in_proj_bias[: config.hidden_size] lowercase : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase : int = in_proj_weight[ -config.hidden_size :, : ] lowercase : Tuple = in_proj_bias[-config.hidden_size :] def __magic_name__ ( ) -> int: lowercase : str = "http://images.cocodataset.org/val2017/000000039769.jpg" lowercase : str = Image.open(requests.get(__snake_case , stream=__snake_case ).raw ) return im @torch.no_grad() def __magic_name__ ( __snake_case : List[Any] , __snake_case : str , __snake_case : Tuple , __snake_case : Tuple ) -> Tuple: lowercase , lowercase : Tuple = get_dpt_config(__snake_case ) # load original state_dict from URL lowercase : List[Any] = torch.hub.load_state_dict_from_url(__snake_case , map_location="cpu" ) # remove certain keys remove_ignore_keys_(__snake_case ) # rename keys for key in state_dict.copy().keys(): lowercase : Any = state_dict.pop(__snake_case ) lowercase : Optional[int] = val # read in qkv matrices read_in_q_k_v(__snake_case , __snake_case ) # load HuggingFace model lowercase : List[str] = DPTForSemanticSegmentation(__snake_case ) if "ade" in checkpoint_url else DPTForDepthEstimation(__snake_case ) model.load_state_dict(__snake_case ) model.eval() # Check outputs on an image lowercase : Any = 480 if "ade" in checkpoint_url else 384 lowercase : Optional[Any] = DPTImageProcessor(size=__snake_case ) lowercase : Any = prepare_img() lowercase : Union[str, Any] = image_processor(__snake_case , return_tensors="pt" ) # forward pass lowercase : Optional[int] = model(**__snake_case ).logits if "ade" in checkpoint_url else model(**__snake_case ).predicted_depth # Assert logits lowercase : Optional[int] = torch.tensor([[6.31_99, 6.36_29, 6.41_48], [6.38_50, 6.36_15, 6.41_66], [6.35_19, 6.31_76, 6.35_75]] ) if "ade" in checkpoint_url: lowercase : List[str] = torch.tensor([[4.04_80, 4.24_20, 4.43_60], [4.31_24, 4.56_93, 4.82_61], [4.57_68, 4.89_65, 5.21_63]] ) assert outputs.shape == torch.Size(__snake_case ) assert ( torch.allclose(outputs[0, 0, :3, :3] , __snake_case , atol=1E-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , __snake_case ) ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__snake_case ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__snake_case ) if push_to_hub: print("Pushing model to hub..." ) model.push_to_hub( repo_path_or_name=Path(__snake_case , __snake_case ) , organization="nielsr" , commit_message="Add model" , use_temp_dir=__snake_case , ) image_processor.push_to_hub( repo_path_or_name=Path(__snake_case , __snake_case ) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=__snake_case , ) if __name__ == "__main__": _A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt""", type=str, help="""URL of the original DPT checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) parser.add_argument( """--model_name""", default="""dpt-large""", type=str, help="""Name of the model, in case you're pushing to the hub.""", ) _A : Dict = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
202
0
"""simple docstring""" from __future__ import annotations import numpy as np def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' return np.maximum(0 , lowerCAmelCase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
248
"""simple docstring""" def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(lowerCAmelCase ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__('''doctest''').testmod()
248
1
from typing import Any class __lowerCAmelCase : def __init__( self : List[Any] , snake_case__ : Any ): """simple docstring""" _UpperCAmelCase = data _UpperCAmelCase = None class __lowerCAmelCase : def __init__( self : Optional[Any] ): """simple docstring""" _UpperCAmelCase = None def UpperCamelCase ( self : List[Any] ): """simple docstring""" _UpperCAmelCase = self.head while temp is not None: print(temp.data , end=" " ) _UpperCAmelCase = temp.next print() def UpperCamelCase ( self : Any , snake_case__ : Any ): """simple docstring""" _UpperCAmelCase = Node(snake_case__ ) _UpperCAmelCase = self.head _UpperCAmelCase = new_node def UpperCamelCase ( self : List[str] , snake_case__ : int , snake_case__ : Optional[Any] ): """simple docstring""" if node_data_a == node_data_a: return else: _UpperCAmelCase = self.head while node_a is not None and node_a.data != node_data_a: _UpperCAmelCase = node_a.next _UpperCAmelCase = self.head while node_a is not None and node_a.data != node_data_a: _UpperCAmelCase = node_a.next if node_a is None or node_a is None: return _UpperCAmelCase , _UpperCAmelCase = node_a.data, node_a.data if __name__ == "__main__": lowercase_ : Union[str, Any] = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('After swapping') ll.print_list()
133
import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , snake_case_ , snake_case_=1024 ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = [], [] _UpperCAmelCase = list(zip(snake_case_ , snake_case_ ) ) _UpperCAmelCase , _UpperCAmelCase = sorted_examples[0] def is_too_big(snake_case_ ): return tok(snake_case_ , return_tensors="pt" ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): _UpperCAmelCase = new_src + " " + src _UpperCAmelCase = new_tgt + " " + tgt if is_too_big(snake_case_ ) or is_too_big(snake_case_ ): # cant fit, finalize example finished_src.append(snake_case_ ) finished_tgt.append(snake_case_ ) _UpperCAmelCase , _UpperCAmelCase = src, tgt else: # can fit, keep adding _UpperCAmelCase , _UpperCAmelCase = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(snake_case_ ) finished_tgt.append(snake_case_ ) return finished_src, finished_tgt def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' _UpperCAmelCase = Path(snake_case_ ) save_path.mkdir(exist_ok=snake_case_ ) for split in ["train"]: _UpperCAmelCase , _UpperCAmelCase = data_dir / f"""{split}.source""", data_dir / f"""{split}.target""" _UpperCAmelCase = [x.rstrip() for x in Path(snake_case_ ).open().readlines()] _UpperCAmelCase = [x.rstrip() for x in Path(snake_case_ ).open().readlines()] _UpperCAmelCase , _UpperCAmelCase = pack_examples(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) print(f"""packed {split} split from {len(snake_case_ )} examples -> {len(snake_case_ )}.""" ) Path(save_path / f"""{split}.source""" ).open("w" ).write("\n".join(snake_case_ ) ) Path(save_path / f"""{split}.target""" ).open("w" ).write("\n".join(snake_case_ ) ) for split in ["val", "test"]: _UpperCAmelCase , _UpperCAmelCase = data_dir / f"""{split}.source""", data_dir / f"""{split}.target""" shutil.copyfile(snake_case_ , save_path / f"""{split}.source""" ) shutil.copyfile(snake_case_ , save_path / f"""{split}.target""" ) def __SCREAMING_SNAKE_CASE ( ): '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("--tok_name" , type=snake_case_ , help="like facebook/bart-large-cnn,t5-base, etc." ) parser.add_argument("--max_seq_len" , type=snake_case_ , default=128 ) parser.add_argument("--data_dir" , type=snake_case_ ) parser.add_argument("--save_path" , type=snake_case_ ) _UpperCAmelCase = parser.parse_args() _UpperCAmelCase = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(snake_case_ , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
133
1
'''simple docstring''' from __future__ import annotations from typing import Any def __lowerCAmelCase ( UpperCamelCase__ ) -> None: create_state_space_tree(UpperCamelCase__ , [] , 0 ) def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> None: if index == len(UpperCamelCase__ ): print(UpperCamelCase__ ) return create_state_space_tree(UpperCamelCase__ , UpperCamelCase__ , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(UpperCamelCase__ , UpperCamelCase__ , index + 1 ) current_subsequence.pop() if __name__ == "__main__": __UpperCAmelCase =[3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(["A", "B", "C"]) generate_all_subsequences(seq)
369
'''simple docstring''' import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCAmelCase =logging.get_logger(__name__) __UpperCAmelCase ="▁" __UpperCAmelCase ={"vocab_file": "prophetnet.tokenizer"} __UpperCAmelCase ={ "vocab_file": { "microsoft/xprophetnet-large-wiki100-cased": ( "https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer" ), } } __UpperCAmelCase ={ "microsoft/xprophetnet-large-wiki100-cased": {"do_lower_case": False}, } __UpperCAmelCase ={ "microsoft/xprophetnet-large-wiki100-cased": 5_1_2, } def __lowerCAmelCase ( UpperCamelCase__ ) -> List[str]: __lowerCamelCase = collections.OrderedDict() with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' ) as reader: __lowerCamelCase = reader.readlines() for index, token in enumerate(UpperCamelCase__ ): __lowerCamelCase = token.rstrip('''\n''' ) __lowerCamelCase = index return vocab class a__ ( UpperCAmelCase__ ): lowerCamelCase : Optional[Any] =VOCAB_FILES_NAMES lowerCamelCase : Any =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Optional[int] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Union[str, Any] =["input_ids", "attention_mask"] def __init__( self : int , a : List[str] , a : Optional[int]="[SEP]" , a : int="[SEP]" , a : str="[SEP]" , a : List[Any]="[UNK]" , a : List[Any]="[PAD]" , a : str="[CLS]" , a : List[str]="[MASK]" , a : Optional[Dict[str, Any]] = None , **a : str , ): """simple docstring""" __lowerCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=a , eos_token=a , sep_token=a , unk_token=a , pad_token=a , cls_token=a , mask_token=a , sp_model_kwargs=self.sp_model_kwargs , **a , ) try: import sentencepiece as spm except ImportError: logger.warning( '''You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece''' ''' pip install sentencepiece''' ) raise __lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(a ) ) __lowerCamelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab __lowerCamelCase = {'''[PAD]''': 0, '''[CLS]''': 1, '''[SEP]''': 2, '''[UNK]''': 3, '''[MASK]''': 4} for i in range(10 ): __lowerCamelCase = f"""[unused{i}]""" __lowerCamelCase = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab __lowerCamelCase = 12 __lowerCamelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(a ) def __getstate__( self : List[str] ): """simple docstring""" __lowerCamelCase = self.__dict__.copy() __lowerCamelCase = None return state def __setstate__( self : int , a : List[Any] ): """simple docstring""" __lowerCamelCase = d try: import sentencepiece as spm except ImportError: logger.warning( '''You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece''' ''' pip install sentencepiece''' ) raise # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __lowerCamelCase = {} __lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE__ ( self : str , a : List[int] , a : Optional[List[int]] = None , a : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a , token_ids_a=a , already_has_special_tokens=a ) if token_ids_a is None: return ([0] * len(a )) + [1] return ([0] * len(a )) + [1] + ([0] * len(a )) + [1] def SCREAMING_SNAKE_CASE__ ( self : List[Any] , a : List[int] , a : Optional[List[int]] = None ): """simple docstring""" __lowerCamelCase = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" return len(self.sp_model ) + self.fairseq_offset def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" __lowerCamelCase = {self.convert_ids_to_tokens(a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE__ ( self : Tuple , a : str ): """simple docstring""" return self.sp_model.encode(a , out_type=a ) def SCREAMING_SNAKE_CASE__ ( self : Dict , a : int ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __lowerCamelCase = self.sp_model.PieceToId(a ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , a : Union[str, Any] ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , a : Tuple ): """simple docstring""" __lowerCamelCase = ''''''.join(a ).replace(a , ''' ''' ).strip() return out_string def SCREAMING_SNAKE_CASE__ ( self : int , a : str , a : Optional[str] = None ): """simple docstring""" if not os.path.isdir(a ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCamelCase = os.path.join( a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a ) elif not os.path.isfile(self.vocab_file ): with open(a , '''wb''' ) as fi: __lowerCamelCase = self.sp_model.serialized_model_proto() fi.write(a ) return (out_vocab_file,) def SCREAMING_SNAKE_CASE__ ( self : Any , a : List[int] , a : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return token_ids_a + [self.sep_token_id] __lowerCamelCase = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
237
0
import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class A ( UpperCamelCase_ ): def __init__( self : List[Any] , lowercase_ : str , lowercase_ : str=None , lowercase_ : int=True , lowercase_ : List[Any]=None , **lowercase_ : int ) -> int: """simple docstring""" _lowerCamelCase : Optional[Any] =parent _lowerCamelCase : Optional[int] =config_class _lowerCamelCase : Optional[Any] =has_text_modality _lowerCamelCase : Optional[Any] =kwargs _lowerCamelCase : Any =common_properties def lowerCamelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" _lowerCamelCase : Any =self.config_class(**self.inputs_dict ) _lowerCamelCase : List[str] =( ['hidden_size', 'num_attention_heads', 'num_hidden_layers'] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(['vocab_size'] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(lowercase_ , lowercase_ ) , msg=F'''`{prop}` does not exist''' ) # Test that config has the common properties as setter for idx, name in enumerate(lowercase_ ): try: setattr(lowercase_ , lowercase_ , lowercase_ ) self.parent.assertEqual( getattr(lowercase_ , lowercase_ ) , lowercase_ , msg=F'''`{name} value {idx} expected, but was {getattr(lowercase_ , lowercase_ )}''' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(lowercase_ ): try: _lowerCamelCase : Optional[int] =self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(lowercase_ , lowercase_ ) , lowercase_ , msg=F'''`{name} value {idx} expected, but was {getattr(lowercase_ , lowercase_ )}''' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def lowerCamelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase : int =self.config_class(**self.inputs_dict ) _lowerCamelCase : Any =json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , lowercase_ ) def lowerCamelCase ( self : Dict ) -> Optional[int]: """simple docstring""" _lowerCamelCase : List[str] =self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _lowerCamelCase : List[str] =os.path.join(lowercase_ , 'config.json' ) config_first.to_json_file(lowercase_ ) _lowerCamelCase : Optional[Any] =self.config_class.from_json_file(lowercase_ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def lowerCamelCase ( self : Any ) -> int: """simple docstring""" _lowerCamelCase : int =self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(lowercase_ ) _lowerCamelCase : int =self.config_class.from_pretrained(lowercase_ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def lowerCamelCase ( self : str ) -> str: """simple docstring""" _lowerCamelCase : Optional[Any] =self.config_class(**self.inputs_dict ) _lowerCamelCase : List[Any] ='test' with tempfile.TemporaryDirectory() as tmpdirname: _lowerCamelCase : Any =os.path.join(lowercase_ , lowercase_ ) config_first.save_pretrained(lowercase_ ) _lowerCamelCase : Union[str, Any] =self.config_class.from_pretrained(lowercase_ , subfolder=lowercase_ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def lowerCamelCase ( self : List[Any] ) -> int: """simple docstring""" _lowerCamelCase : Optional[Any] =self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) _lowerCamelCase : Dict =3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def lowerCamelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" if self.config_class.is_composition: return _lowerCamelCase : Any =self.config_class() self.parent.assertIsNotNone(lowercase_ ) def lowerCamelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" _lowerCamelCase : Optional[int] =copy.deepcopy(lowercase_ ) _lowerCamelCase : Union[str, Any] =self.config_class(**lowercase_ ) _lowerCamelCase : Union[str, Any] =[] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(('torch_dtype', config.torch_dtype, torch.floataa) ) elif getattr(lowercase_ , lowercase_ ) != value: wrong_values.append((key, getattr(lowercase_ , lowercase_ ), value) ) if len(lowercase_ ) > 0: _lowerCamelCase : Dict ='\n'.join([F'''- {v[0]}: got {v[1]} instead of {v[2]}''' for v in wrong_values] ) raise ValueError(F'''The following keys were not properly set in the config:\n{errors}''' ) def lowerCamelCase ( self : List[Any] ) -> int: """simple docstring""" self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
199
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class A ( nn.Module ): UpperCamelCase__ : int UpperCamelCase__ : int UpperCamelCase__ : float =0.0 UpperCamelCase__ : int =1 UpperCamelCase__ : int =1 UpperCamelCase__ : bool =True UpperCamelCase__ : bool =False UpperCamelCase__ : bool =False UpperCamelCase__ : bool =False UpperCamelCase__ : jnp.dtype =jnp.floataa def lowerCamelCase ( self : Any ) -> Any: """simple docstring""" _lowerCamelCase : str =[] _lowerCamelCase : Dict =[] for i in range(self.num_layers ): _lowerCamelCase : Union[str, Any] =self.in_channels if i == 0 else self.out_channels _lowerCamelCase : Any =FlaxResnetBlockaD( in_channels=lowercase_ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowercase_ ) _lowerCamelCase : Dict =FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowercase_ ) _lowerCamelCase : Optional[int] =resnets _lowerCamelCase : Dict =attentions if self.add_downsample: _lowerCamelCase : Union[str, Any] =FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Any , lowercase_ : Optional[Any] , lowercase_ : List[Any] , lowercase_ : Union[str, Any] , lowercase_ : List[str]=True ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase : Tuple =() for resnet, attn in zip(self.resnets , self.attentions ): _lowerCamelCase : Union[str, Any] =resnet(lowercase_ , lowercase_ , deterministic=lowercase_ ) _lowerCamelCase : Union[str, Any] =attn(lowercase_ , lowercase_ , deterministic=lowercase_ ) output_states += (hidden_states,) if self.add_downsample: _lowerCamelCase : Optional[int] =self.downsamplers_a(lowercase_ ) output_states += (hidden_states,) return hidden_states, output_states class A ( nn.Module ): UpperCamelCase__ : int UpperCamelCase__ : int UpperCamelCase__ : float =0.0 UpperCamelCase__ : int =1 UpperCamelCase__ : bool =True UpperCamelCase__ : jnp.dtype =jnp.floataa def lowerCamelCase ( self : Optional[int] ) -> int: """simple docstring""" _lowerCamelCase : str =[] for i in range(self.num_layers ): _lowerCamelCase : Tuple =self.in_channels if i == 0 else self.out_channels _lowerCamelCase : Any =FlaxResnetBlockaD( in_channels=lowercase_ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowercase_ ) _lowerCamelCase : Union[str, Any] =resnets if self.add_downsample: _lowerCamelCase : List[str] =FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Any , lowercase_ : Dict , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any]=True ) -> Dict: """simple docstring""" _lowerCamelCase : Optional[int] =() for resnet in self.resnets: _lowerCamelCase : Tuple =resnet(lowercase_ , lowercase_ , deterministic=lowercase_ ) output_states += (hidden_states,) if self.add_downsample: _lowerCamelCase : Tuple =self.downsamplers_a(lowercase_ ) output_states += (hidden_states,) return hidden_states, output_states class A ( nn.Module ): UpperCamelCase__ : int UpperCamelCase__ : int UpperCamelCase__ : int UpperCamelCase__ : float =0.0 UpperCamelCase__ : int =1 UpperCamelCase__ : int =1 UpperCamelCase__ : bool =True UpperCamelCase__ : bool =False UpperCamelCase__ : bool =False UpperCamelCase__ : bool =False UpperCamelCase__ : jnp.dtype =jnp.floataa def lowerCamelCase ( self : Dict ) -> Tuple: """simple docstring""" _lowerCamelCase : str =[] _lowerCamelCase : List[str] =[] for i in range(self.num_layers ): _lowerCamelCase : List[str] =self.in_channels if (i == self.num_layers - 1) else self.out_channels _lowerCamelCase : Tuple =self.prev_output_channel if i == 0 else self.out_channels _lowerCamelCase : List[str] =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowercase_ ) _lowerCamelCase : Tuple =FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowercase_ ) _lowerCamelCase : int =resnets _lowerCamelCase : Dict =attentions if self.add_upsample: _lowerCamelCase : str =FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Optional[Any] , lowercase_ : Any , lowercase_ : Any , lowercase_ : List[Any] , lowercase_ : Dict , lowercase_ : Union[str, Any]=True ) -> Optional[int]: """simple docstring""" for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states _lowerCamelCase : Optional[int] =res_hidden_states_tuple[-1] _lowerCamelCase : Union[str, Any] =res_hidden_states_tuple[:-1] _lowerCamelCase : Any =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) _lowerCamelCase : Optional[Any] =resnet(lowercase_ , lowercase_ , deterministic=lowercase_ ) _lowerCamelCase : List[Any] =attn(lowercase_ , lowercase_ , deterministic=lowercase_ ) if self.add_upsample: _lowerCamelCase : Optional[Any] =self.upsamplers_a(lowercase_ ) return hidden_states class A ( nn.Module ): UpperCamelCase__ : int UpperCamelCase__ : int UpperCamelCase__ : int UpperCamelCase__ : float =0.0 UpperCamelCase__ : int =1 UpperCamelCase__ : bool =True UpperCamelCase__ : jnp.dtype =jnp.floataa def lowerCamelCase ( self : List[Any] ) -> Dict: """simple docstring""" _lowerCamelCase : List[str] =[] for i in range(self.num_layers ): _lowerCamelCase : Tuple =self.in_channels if (i == self.num_layers - 1) else self.out_channels _lowerCamelCase : int =self.prev_output_channel if i == 0 else self.out_channels _lowerCamelCase : str =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowercase_ ) _lowerCamelCase : str =resnets if self.add_upsample: _lowerCamelCase : List[str] =FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : List[str] , lowercase_ : str , lowercase_ : Dict , lowercase_ : Union[str, Any] , lowercase_ : Any=True ) -> int: """simple docstring""" for resnet in self.resnets: # pop res hidden states _lowerCamelCase : List[str] =res_hidden_states_tuple[-1] _lowerCamelCase : str =res_hidden_states_tuple[:-1] _lowerCamelCase : List[str] =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) _lowerCamelCase : Optional[Any] =resnet(lowercase_ , lowercase_ , deterministic=lowercase_ ) if self.add_upsample: _lowerCamelCase : Union[str, Any] =self.upsamplers_a(lowercase_ ) return hidden_states class A ( nn.Module ): UpperCamelCase__ : int UpperCamelCase__ : float =0.0 UpperCamelCase__ : int =1 UpperCamelCase__ : int =1 UpperCamelCase__ : bool =False UpperCamelCase__ : bool =False UpperCamelCase__ : jnp.dtype =jnp.floataa def lowerCamelCase ( self : int ) -> Tuple: """simple docstring""" _lowerCamelCase : Optional[Any] =[ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] _lowerCamelCase : Any =[] for _ in range(self.num_layers ): _lowerCamelCase : Optional[int] =FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowercase_ ) _lowerCamelCase : Tuple =FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowercase_ ) _lowerCamelCase : List[Any] =resnets _lowerCamelCase : List[str] =attentions def __call__( self : Optional[int] , lowercase_ : List[Any] , lowercase_ : Dict , lowercase_ : Tuple , lowercase_ : List[str]=True ) -> int: """simple docstring""" _lowerCamelCase : Dict =self.resnets[0](lowercase_ , lowercase_ ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): _lowerCamelCase : Tuple =attn(lowercase_ , lowercase_ , deterministic=lowercase_ ) _lowerCamelCase : List[str] =resnet(lowercase_ , lowercase_ , deterministic=lowercase_ ) return hidden_states
199
1
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : Dict = ["image_processor", "tokenizer"] __UpperCAmelCase : List[Any] = "BlipImageProcessor" __UpperCAmelCase : Union[str, Any] = "AutoTokenizer" def __init__( self : int , lowerCamelCase : Dict , lowerCamelCase : Optional[Any] ) -> Optional[Any]: __snake_case : List[Any] = False super().__init__(lowerCamelCase , lowerCamelCase ) __snake_case : int = self.image_processor def __call__( self : List[Any] , lowerCamelCase : ImageInput = None , lowerCamelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowerCamelCase : bool = True , lowerCamelCase : Union[bool, str, PaddingStrategy] = False , lowerCamelCase : Union[bool, str, TruncationStrategy] = None , lowerCamelCase : Optional[int] = None , lowerCamelCase : int = 0 , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[bool] = None , lowerCamelCase : bool = False , lowerCamelCase : bool = False , lowerCamelCase : bool = False , lowerCamelCase : bool = False , lowerCamelCase : bool = False , lowerCamelCase : bool = True , lowerCamelCase : Optional[Union[str, TensorType]] = None , **lowerCamelCase : List[str] , ) -> BatchEncoding: if images is None and text is None: raise ValueError("You have to specify either images or text." ) # Get only text if images is None: __snake_case : str = self.tokenizer __snake_case : Any = self.tokenizer( text=lowerCamelCase , add_special_tokens=lowerCamelCase , padding=lowerCamelCase , truncation=lowerCamelCase , max_length=lowerCamelCase , stride=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_attention_mask=lowerCamelCase , return_overflowing_tokens=lowerCamelCase , return_special_tokens_mask=lowerCamelCase , return_offsets_mapping=lowerCamelCase , return_token_type_ids=lowerCamelCase , return_length=lowerCamelCase , verbose=lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase , ) return text_encoding # add pixel_values __snake_case : Any = self.image_processor(lowerCamelCase , return_tensors=lowerCamelCase ) if text is not None: __snake_case : Union[str, Any] = self.tokenizer( text=lowerCamelCase , add_special_tokens=lowerCamelCase , padding=lowerCamelCase , truncation=lowerCamelCase , max_length=lowerCamelCase , stride=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_attention_mask=lowerCamelCase , return_overflowing_tokens=lowerCamelCase , return_special_tokens_mask=lowerCamelCase , return_offsets_mapping=lowerCamelCase , return_token_type_ids=lowerCamelCase , return_length=lowerCamelCase , verbose=lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase , ) else: __snake_case : str = None if text_encoding is not None: encoding_image_processor.update(lowerCamelCase ) return encoding_image_processor def __snake_case ( self : List[Any] , *lowerCamelCase : int , **lowerCamelCase : Union[str, Any] ) -> List[str]: return self.tokenizer.batch_decode(*lowerCamelCase , **lowerCamelCase ) def __snake_case ( self : Tuple , *lowerCamelCase : Optional[Any] , **lowerCamelCase : Any ) -> int: return self.tokenizer.decode(*lowerCamelCase , **lowerCamelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def __snake_case ( self : str ) -> Tuple: __snake_case : Union[str, Any] = self.tokenizer.model_input_names __snake_case : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
356
from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP _snake_case : Optional[int] = logging.get_logger(__name__) # pylint: disable=invalid-name _snake_case : Union[str, Any] = "\n Examples:\n ```py\n >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyPriorPipeline.from_pretrained(\"kandinsky-community/Kandinsky-2-1-prior\")\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"red cat, 4k photo\"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> negative_image_emb = out.negative_image_embeds\n\n >>> pipe = KandinskyPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-1\")\n >>> pipe.to(\"cuda\")\n\n >>> image = pipe(\n ... prompt,\n ... image_embeds=image_emb,\n ... negative_image_embeds=negative_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... ).images\n\n >>> image[0].save(\"cat.png\")\n ```\n" def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=8 ): __snake_case : List[Any] = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 __snake_case : Optional[int] = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class a (_lowerCAmelCase ): """simple docstring""" def __init__( self : Union[str, Any] , lowerCamelCase : MultilingualCLIP , lowerCamelCase : XLMRobertaTokenizer , lowerCamelCase : UNetaDConditionModel , lowerCamelCase : Union[DDIMScheduler, DDPMScheduler] , lowerCamelCase : VQModel , ) -> Optional[int]: super().__init__() self.register_modules( text_encoder=lowerCamelCase , tokenizer=lowerCamelCase , unet=lowerCamelCase , scheduler=lowerCamelCase , movq=lowerCamelCase , ) __snake_case : List[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __snake_case ( self : Any , lowerCamelCase : Dict , lowerCamelCase : List[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : int ) -> Any: if latents is None: __snake_case : str = randn_tensor(lowerCamelCase , generator=lowerCamelCase , device=lowerCamelCase , dtype=lowerCamelCase ) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' ) __snake_case : Optional[int] = latents.to(lowerCamelCase ) __snake_case : List[Any] = latents * scheduler.init_noise_sigma return latents def __snake_case ( self : Optional[int] , lowerCamelCase : int , lowerCamelCase : Any , lowerCamelCase : Any , lowerCamelCase : List[Any] , lowerCamelCase : str=None , ) -> List[str]: __snake_case : Tuple = len(lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else 1 # get prompt text embeddings __snake_case : Optional[int] = self.tokenizer( lowerCamelCase , padding="max_length" , truncation=lowerCamelCase , max_length=77 , return_attention_mask=lowerCamelCase , add_special_tokens=lowerCamelCase , return_tensors="pt" , ) __snake_case : List[str] = text_inputs.input_ids __snake_case : List[Any] = self.tokenizer(lowerCamelCase , padding="longest" , return_tensors="pt" ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(lowerCamelCase , lowerCamelCase ): __snake_case : Optional[Any] = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" F' {self.tokenizer.model_max_length} tokens: {removed_text}' ) __snake_case : Any = text_input_ids.to(lowerCamelCase ) __snake_case : List[str] = text_inputs.attention_mask.to(lowerCamelCase ) __snake_case , __snake_case : List[str] = self.text_encoder( input_ids=lowerCamelCase , attention_mask=lowerCamelCase ) __snake_case : List[Any] = prompt_embeds.repeat_interleave(lowerCamelCase , dim=0 ) __snake_case : List[str] = text_encoder_hidden_states.repeat_interleave(lowerCamelCase , dim=0 ) __snake_case : Optional[int] = text_mask.repeat_interleave(lowerCamelCase , dim=0 ) if do_classifier_free_guidance: __snake_case : List[str] if negative_prompt is None: __snake_case : Any = [""] * batch_size elif type(lowerCamelCase ) is not type(lowerCamelCase ): raise TypeError( F'`negative_prompt` should be the same type to `prompt`, but got {type(lowerCamelCase )} !=' F' {type(lowerCamelCase )}.' ) elif isinstance(lowerCamelCase , lowerCamelCase ): __snake_case : List[Any] = [negative_prompt] elif batch_size != len(lowerCamelCase ): raise ValueError( F'`negative_prompt`: {negative_prompt} has batch size {len(lowerCamelCase )}, but `prompt`:' F' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches' " the batch size of `prompt`." ) else: __snake_case : int = negative_prompt __snake_case : Dict = self.tokenizer( lowerCamelCase , padding="max_length" , max_length=77 , truncation=lowerCamelCase , return_attention_mask=lowerCamelCase , add_special_tokens=lowerCamelCase , return_tensors="pt" , ) __snake_case : Dict = uncond_input.input_ids.to(lowerCamelCase ) __snake_case : List[Any] = uncond_input.attention_mask.to(lowerCamelCase ) __snake_case , __snake_case : Tuple = self.text_encoder( input_ids=lowerCamelCase , attention_mask=lowerCamelCase ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __snake_case : Dict = negative_prompt_embeds.shape[1] __snake_case : int = negative_prompt_embeds.repeat(1 , lowerCamelCase ) __snake_case : List[str] = negative_prompt_embeds.view(batch_size * num_images_per_prompt , lowerCamelCase ) __snake_case : Union[str, Any] = uncond_text_encoder_hidden_states.shape[1] __snake_case : Tuple = uncond_text_encoder_hidden_states.repeat(1 , lowerCamelCase , 1 ) __snake_case : str = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt , lowerCamelCase , -1 ) __snake_case : Optional[int] = uncond_text_mask.repeat_interleave(lowerCamelCase , dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __snake_case : Optional[int] = torch.cat([negative_prompt_embeds, prompt_embeds] ) __snake_case : List[Any] = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) __snake_case : Any = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def __snake_case ( self : List[str] , lowerCamelCase : Dict=0 ) -> Tuple: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) __snake_case : Optional[int] = torch.device(F'cuda:{gpu_id}' ) __snake_case : Optional[Any] = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowerCamelCase , lowerCamelCase ) def __snake_case ( self : List[Any] , lowerCamelCase : int=0 ) -> Optional[int]: if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) __snake_case : Optional[Any] = torch.device(F'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=lowerCamelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __snake_case : List[str] = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: __snake_case , __snake_case : List[Any] = cpu_offload_with_hook(lowerCamelCase , lowerCamelCase , prev_module_hook=lowerCamelCase ) if self.safety_checker is not None: __snake_case , __snake_case : Optional[int] = cpu_offload_with_hook(self.safety_checker , lowerCamelCase , prev_module_hook=lowerCamelCase ) # We'll offload the last model manually. __snake_case : str = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __snake_case ( self : List[Any] ) -> Optional[int]: if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(lowerCamelCase , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowerCamelCase ) def __call__( self : Dict , lowerCamelCase : Union[str, List[str]] , lowerCamelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowerCamelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowerCamelCase : Optional[Union[str, List[str]]] = None , lowerCamelCase : int = 512 , lowerCamelCase : int = 512 , lowerCamelCase : int = 100 , lowerCamelCase : float = 4.0 , lowerCamelCase : int = 1 , lowerCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase : Optional[torch.FloatTensor] = None , lowerCamelCase : Optional[str] = "pil" , lowerCamelCase : bool = True , ) -> List[Any]: if isinstance(lowerCamelCase , lowerCamelCase ): __snake_case : Optional[int] = 1 elif isinstance(lowerCamelCase , lowerCamelCase ): __snake_case : List[Any] = len(lowerCamelCase ) else: raise ValueError(F'`prompt` has to be of type `str` or `list` but is {type(lowerCamelCase )}' ) __snake_case : Any = self._execution_device __snake_case : Any = batch_size * num_images_per_prompt __snake_case : Any = guidance_scale > 1.0 __snake_case , __snake_case , __snake_case : Optional[Any] = self._encode_prompt( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ): __snake_case : List[Any] = torch.cat(lowerCamelCase , dim=0 ) if isinstance(lowerCamelCase , lowerCamelCase ): __snake_case : str = torch.cat(lowerCamelCase , dim=0 ) if do_classifier_free_guidance: __snake_case : Dict = image_embeds.repeat_interleave(lowerCamelCase , dim=0 ) __snake_case : Optional[Any] = negative_image_embeds.repeat_interleave(lowerCamelCase , dim=0 ) __snake_case : str = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to( dtype=prompt_embeds.dtype , device=lowerCamelCase ) self.scheduler.set_timesteps(lowerCamelCase , device=lowerCamelCase ) __snake_case : Tuple = self.scheduler.timesteps __snake_case : Union[str, Any] = self.unet.config.in_channels __snake_case , __snake_case : Tuple = get_new_h_w(lowerCamelCase , lowerCamelCase , self.movq_scale_factor ) # create initial latent __snake_case : Any = self.prepare_latents( (batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , lowerCamelCase , lowerCamelCase , lowerCamelCase , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowerCamelCase ) ): # expand the latents if we are doing classifier free guidance __snake_case : Any = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __snake_case : int = {"text_embeds": prompt_embeds, "image_embeds": image_embeds} __snake_case : Optional[Any] = self.unet( sample=lowerCamelCase , timestep=lowerCamelCase , encoder_hidden_states=lowerCamelCase , added_cond_kwargs=lowerCamelCase , return_dict=lowerCamelCase , )[0] if do_classifier_free_guidance: __snake_case , __snake_case : Any = noise_pred.split(latents.shape[1] , dim=1 ) __snake_case , __snake_case : Union[str, Any] = noise_pred.chunk(2 ) __snake_case , __snake_case : str = variance_pred.chunk(2 ) __snake_case : Optional[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __snake_case : Union[str, Any] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __snake_case , __snake_case : Union[str, Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 __snake_case : str = self.scheduler.step( lowerCamelCase , lowerCamelCase , lowerCamelCase , generator=lowerCamelCase , ).prev_sample # post-processing __snake_case : str = self.movq.decode(lowerCamelCase , force_not_quantize=lowerCamelCase )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: __snake_case : Union[str, Any] = image * 0.5 + 0.5 __snake_case : Union[str, Any] = image.clamp(0 , 1 ) __snake_case : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __snake_case : str = self.numpy_to_pil(lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCamelCase )
134
0
import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase : Optional[Any] = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" A__ : Union[str, Any] = XLNetTokenizer A__ : Any = XLNetTokenizerFast A__ : int = True A__ : Optional[Any] = True def snake_case_ ( self : Optional[Any] ): super().setUp() # We have a SentencePiece fixture for testing __lowercase : List[str] = XLNetTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def snake_case_ ( self : Optional[Any] ): __lowercase : str = """<s>""" __lowercase : str = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCamelCase ) , _lowerCamelCase ) def snake_case_ ( self : Union[str, Any] ): __lowercase : Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''<eod>''' ) self.assertEqual(len(_lowerCamelCase ) , 1006 ) def snake_case_ ( self : List[str] ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def snake_case_ ( self : Any ): __lowercase : Optional[Any] = XLNetTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase ) __lowercase : List[Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_lowerCamelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [285, 46, 10, 170, 382] ) __lowercase : Tuple = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __lowercase : List[Any] = tokenizer.convert_tokens_to_ids(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) __lowercase : int = tokenizer.convert_ids_to_tokens(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def snake_case_ ( self : Dict ): __lowercase : List[str] = XLNetTokenizer(_lowerCamelCase , do_lower_case=_lowerCamelCase ) __lowercase : str = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + '''''', '''i''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''se''', '''.''', ] , ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''▁he''', '''ll''', '''o'''] ) def snake_case_ ( self : List[str] ): __lowercase : Tuple = XLNetTokenizer(_lowerCamelCase , do_lower_case=_lowerCamelCase ) __lowercase : Any = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''se''', '''.''', ] , ) @slow def snake_case_ ( self : Optional[Any] ): __lowercase : Dict = XLNetTokenizer.from_pretrained('''xlnet-base-cased''' ) __lowercase : int = tokenizer.encode('''sequence builders''' , add_special_tokens=_lowerCamelCase ) __lowercase : int = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_lowerCamelCase ) __lowercase : str = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase ) __lowercase : Optional[int] = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase , _lowerCamelCase ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def snake_case_ ( self : int ): __lowercase : Tuple = {"""input_ids""": [[17, 2_1442, 270, 17, 10, 1_4645, 318, 34, 17, 4546, 3145, 787, 13, 7752, 2_2018, 23, 21, 17, 4546, 3145, 787, 13, 3352, 1_4431, 13, 5500, 11, 1176, 580, 13, 1_6819, 4797, 23, 17, 10, 1_7135, 658, 19, 457, 7932, 13, 184, 19, 3154, 1_7135, 6468, 19, 1404, 1_2269, 19, 4229, 5356, 1_6264, 46, 19, 17, 2_0545, 1_0395, 9, 9, 9, 11, 28, 6421, 9531, 2_0729, 17, 10, 353, 1_7022, 11, 21, 6421, 9531, 1_6949, 17, 10, 1_1509, 753, 11, 33, 95, 2421, 7385, 956, 1_4431, 2626, 25, 842, 7385, 4836, 21, 1429, 2272, 9855, 3120, 161, 2_4738, 19, 1_3203, 658, 218, 787, 21, 430, 1_8482, 847, 2637, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 322, 2_2178, 27, 1064, 22, 956, 13, 1_1101, 1429, 5854, 2_4313, 1_8953, 40, 422, 2_4366, 68, 1758, 37, 1_0483, 1_4257, 31, 207, 263, 21, 203, 3773, 25, 71, 9735, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 2049, 3442, 17, 1_3894, 3380, 23, 95, 18, 1_7634, 2288, 9, 4, 3]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCamelCase , model_name='''xlnet-base-cased''' , revision='''c841166438c31ec7ca9a106dee7bb312b73ae511''' , )
156
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def _a (self , _lowerCamelCase ): """simple docstring""" for model_result in results.values(): for batch_size, sequence_length in zip(model_result["""bs"""] , model_result["""ss"""] ): UpperCAmelCase__ : int = model_result["""result"""][batch_size][sequence_length] self.assertIsNotNone(_lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = """sshleifer/tiny-gpt2""" UpperCAmelCase__ : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , ) UpperCAmelCase__ : int = PyTorchBenchmark(_lowerCamelCase ) UpperCAmelCase__ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Tuple = """sgugger/tiny-distilbert-classification""" UpperCAmelCase__ : List[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , only_pretrain_model=_lowerCamelCase , ) UpperCAmelCase__ : Tuple = PyTorchBenchmark(_lowerCamelCase ) UpperCAmelCase__ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Dict = """sshleifer/tiny-gpt2""" UpperCAmelCase__ : List[str] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , torchscript=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , ) UpperCAmelCase__ : Optional[int] = PyTorchBenchmark(_lowerCamelCase ) UpperCAmelCase__ : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Dict = """sshleifer/tiny-gpt2""" UpperCAmelCase__ : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , fpaa=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , ) UpperCAmelCase__ : List[str] = PyTorchBenchmark(_lowerCamelCase ) UpperCAmelCase__ : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Any = """sshleifer/tiny-gpt2""" UpperCAmelCase__ : Dict = AutoConfig.from_pretrained(_lowerCamelCase ) # set architectures equal to `None` UpperCAmelCase__ : Tuple = None UpperCAmelCase__ : List[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , ) UpperCAmelCase__ : List[Any] = PyTorchBenchmark(_lowerCamelCase , configs=[config] ) UpperCAmelCase__ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _a (self ): """simple docstring""" UpperCAmelCase__ : List[str] = """sshleifer/tiny-gpt2""" UpperCAmelCase__ : Dict = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , ) UpperCAmelCase__ : int = PyTorchBenchmark(_lowerCamelCase ) UpperCAmelCase__ : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == """cpu""" , """Can't do half precision""" ) def _a (self ): """simple docstring""" UpperCAmelCase__ : List[Any] = """sshleifer/tiny-gpt2""" UpperCAmelCase__ : str = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_lowerCamelCase , multi_process=_lowerCamelCase , ) UpperCAmelCase__ : List[Any] = PyTorchBenchmark(_lowerCamelCase ) UpperCAmelCase__ : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _a (self ): """simple docstring""" UpperCAmelCase__ : List[Any] = """sshleifer/tiny-gpt2""" UpperCAmelCase__ : Any = AutoConfig.from_pretrained(_lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , ) UpperCAmelCase__ : Tuple = PyTorchBenchmark(_lowerCamelCase , configs=[config] ) UpperCAmelCase__ : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[int] = """sshleifer/tinier_bart""" UpperCAmelCase__ : str = AutoConfig.from_pretrained(_lowerCamelCase ) UpperCAmelCase__ : Optional[int] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , ) UpperCAmelCase__ : Union[str, Any] = PyTorchBenchmark(_lowerCamelCase , configs=[config] ) UpperCAmelCase__ : str = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = """sshleifer/tiny-gpt2""" UpperCAmelCase__ : int = AutoConfig.from_pretrained(_lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , ) UpperCAmelCase__ : Optional[int] = PyTorchBenchmark(_lowerCamelCase , configs=[config] ) UpperCAmelCase__ : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = """sshleifer/tinier_bart""" UpperCAmelCase__ : int = AutoConfig.from_pretrained(_lowerCamelCase ) UpperCAmelCase__ : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , ) UpperCAmelCase__ : Dict = PyTorchBenchmark(_lowerCamelCase , configs=[config] ) UpperCAmelCase__ : Any = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = """sshleifer/tiny-gpt2""" with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__ : Dict = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , save_to_csv=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_lowerCamelCase , """inf_time.csv""" ) , train_memory_csv_file=os.path.join(_lowerCamelCase , """train_mem.csv""" ) , inference_memory_csv_file=os.path.join(_lowerCamelCase , """inf_mem.csv""" ) , train_time_csv_file=os.path.join(_lowerCamelCase , """train_time.csv""" ) , env_info_csv_file=os.path.join(_lowerCamelCase , """env.csv""" ) , multi_process=_lowerCamelCase , ) UpperCAmelCase__ : Dict = PyTorchBenchmark(_lowerCamelCase ) benchmark.run() self.assertTrue(Path(os.path.join(_lowerCamelCase , """inf_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCamelCase , """train_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCamelCase , """inf_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCamelCase , """train_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCamelCase , """env.csv""" ) ).exists() ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = """sshleifer/tiny-gpt2""" def _check_summary_is_not_empty(_lowerCamelCase ): self.assertTrue(hasattr(_lowerCamelCase , """sequential""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """cumulative""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """current""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """total""" ) ) with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__ : int = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_lowerCamelCase , """log.txt""" ) , log_print=_lowerCamelCase , trace_memory_line_by_line=_lowerCamelCase , multi_process=_lowerCamelCase , ) UpperCAmelCase__ : Optional[int] = PyTorchBenchmark(_lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(_lowerCamelCase , """log.txt""" ) ).exists() )
171
0
import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin __A = logging.get_logger(__name__) enable_full_determinism() class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = UNetaDModel lowercase_ = "sample" @property def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Any: '''simple docstring''' lowerCamelCase__: Optional[int] =4 lowerCamelCase__: Optional[Any] =3 lowerCamelCase__: Any =(32, 32) lowerCamelCase__: str =floats_tensor((batch_size, num_channels) + sizes).to(UpperCAmelCase_) lowerCamelCase__: Optional[int] =torch.tensor([10]).to(UpperCAmelCase_) return {"sample": noise, "timestep": time_step} @property def SCREAMING_SNAKE_CASE_ (self : Any) ->int: '''simple docstring''' return (3, 32, 32) @property def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]: '''simple docstring''' return (3, 32, 32) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: List[Any] ={ "block_out_channels": (32, 64), "down_block_types": ("DownBlock2D", "AttnDownBlock2D"), "up_block_types": ("AttnUpBlock2D", "UpBlock2D"), "attention_head_dim": 3, "out_channels": 3, "in_channels": 3, "layers_per_block": 2, "sample_size": 32, } lowerCamelCase__: Dict =self.dummy_input return init_dict, inputs_dict class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = UNetaDModel lowercase_ = "sample" @property def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Dict: '''simple docstring''' lowerCamelCase__: List[str] =4 lowerCamelCase__: Optional[Any] =4 lowerCamelCase__: Union[str, Any] =(32, 32) lowerCamelCase__: int =floats_tensor((batch_size, num_channels) + sizes).to(UpperCAmelCase_) lowerCamelCase__: List[str] =torch.tensor([10]).to(UpperCAmelCase_) return {"sample": noise, "timestep": time_step} @property def SCREAMING_SNAKE_CASE_ (self : List[str]) ->str: '''simple docstring''' return (4, 32, 32) @property def SCREAMING_SNAKE_CASE_ (self : List[str]) ->List[str]: '''simple docstring''' return (4, 32, 32) def SCREAMING_SNAKE_CASE_ (self : str) ->str: '''simple docstring''' lowerCamelCase__: Tuple ={ "sample_size": 32, "in_channels": 4, "out_channels": 4, "layers_per_block": 2, "block_out_channels": (32, 64), "attention_head_dim": 32, "down_block_types": ("DownBlock2D", "DownBlock2D"), "up_block_types": ("UpBlock2D", "UpBlock2D"), } lowerCamelCase__: int =self.dummy_input return init_dict, inputs_dict def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Tuple =UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" , output_loading_info=UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) self.assertEqual(len(loading_info["missing_keys"]) , 0) model.to(UpperCAmelCase_) lowerCamelCase__: int =model(**self.dummy_input).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != "cuda" , "This test is supposed to run on GPU") def SCREAMING_SNAKE_CASE_ (self : Dict) ->Any: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: List[Any] =UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" , output_loading_info=UpperCAmelCase_) model.to(UpperCAmelCase_) lowerCamelCase__: Tuple =model(**self.dummy_input).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != "cuda" , "This test is supposed to run on GPU") def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[str]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Tuple =UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" , output_loading_info=UpperCAmelCase_) model_accelerate.to(UpperCAmelCase_) model_accelerate.eval() lowerCamelCase__: List[Any] =torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0) , ) lowerCamelCase__: List[str] =noise.to(UpperCAmelCase_) lowerCamelCase__: Dict =torch.tensor([10] * noise.shape[0]).to(UpperCAmelCase_) lowerCamelCase__: List[str] =model_accelerate(UpperCAmelCase_ , UpperCAmelCase_)["sample"] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() lowerCamelCase__ , lowerCamelCase__: Optional[int] =UNetaDModel.from_pretrained( "fusing/unet-ldm-dummy-update" , output_loading_info=UpperCAmelCase_ , low_cpu_mem_usage=UpperCAmelCase_) model_normal_load.to(UpperCAmelCase_) model_normal_load.eval() lowerCamelCase__: Union[str, Any] =model_normal_load(UpperCAmelCase_ , UpperCAmelCase_)["sample"] assert torch_all_close(UpperCAmelCase_ , UpperCAmelCase_ , rtol=1E-3) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: Any =UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update") model.eval() model.to(UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0) , ) lowerCamelCase__: int =noise.to(UpperCAmelCase_) lowerCamelCase__: Dict =torch.tensor([10] * noise.shape[0]).to(UpperCAmelCase_) with torch.no_grad(): lowerCamelCase__: int =model(UpperCAmelCase_ , UpperCAmelCase_).sample lowerCamelCase__: List[str] =output[0, -1, -3:, -3:].flatten().cpu() # fmt: off lowerCamelCase__: List[str] =torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800]) # fmt: on self.assertTrue(torch_all_close(UpperCAmelCase_ , UpperCAmelCase_ , rtol=1E-3)) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = UNetaDModel lowercase_ = "sample" @property def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : Any=(32, 32)) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: int =4 lowerCamelCase__: str =3 lowerCamelCase__: Dict =floats_tensor((batch_size, num_channels) + sizes).to(UpperCAmelCase_) lowerCamelCase__: Tuple =torch.tensor(batch_size * [10]).to(dtype=torch.intaa , device=UpperCAmelCase_) return {"sample": noise, "timestep": time_step} @property def SCREAMING_SNAKE_CASE_ (self : Tuple) ->List[Any]: '''simple docstring''' return (3, 32, 32) @property def SCREAMING_SNAKE_CASE_ (self : Dict) ->Optional[Any]: '''simple docstring''' return (3, 32, 32) def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Tuple ={ "block_out_channels": [32, 64, 64, 64], "in_channels": 3, "layers_per_block": 1, "out_channels": 3, "time_embedding_type": "fourier", "norm_eps": 1E-6, "mid_block_scale_factor": math.sqrt(2.0), "norm_num_groups": None, "down_block_types": [ "SkipDownBlock2D", "AttnSkipDownBlock2D", "SkipDownBlock2D", "SkipDownBlock2D", ], "up_block_types": [ "SkipUpBlock2D", "SkipUpBlock2D", "AttnSkipUpBlock2D", "SkipUpBlock2D", ], } lowerCamelCase__: str =self.dummy_input return init_dict, inputs_dict @slow def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[Any]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Dict =UNetaDModel.from_pretrained("google/ncsnpp-celebahq-256" , output_loading_info=UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) self.assertEqual(len(loading_info["missing_keys"]) , 0) model.to(UpperCAmelCase_) lowerCamelCase__: Tuple =self.dummy_input lowerCamelCase__: Union[str, Any] =floats_tensor((4, 3) + (256, 256)).to(UpperCAmelCase_) lowerCamelCase__: List[Any] =noise lowerCamelCase__: Dict =model(**UpperCAmelCase_) assert image is not None, "Make sure output is not None" @slow def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Dict: '''simple docstring''' lowerCamelCase__: Any =UNetaDModel.from_pretrained("google/ncsnpp-celebahq-256") model.to(UpperCAmelCase_) lowerCamelCase__: Dict =4 lowerCamelCase__: Optional[Any] =3 lowerCamelCase__: str =(256, 256) lowerCamelCase__: Dict =torch.ones((batch_size, num_channels) + sizes).to(UpperCAmelCase_) lowerCamelCase__: List[Any] =torch.tensor(batch_size * [1E-4]).to(UpperCAmelCase_) with torch.no_grad(): lowerCamelCase__: List[Any] =model(UpperCAmelCase_ , UpperCAmelCase_).sample lowerCamelCase__: str =output[0, -3:, -3:, -1].flatten().cpu() # fmt: off lowerCamelCase__: Dict =torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -1_0980.7129, -2_0028.8535, 8148.2822, 2342.2905, 567.7608]) # fmt: on self.assertTrue(torch_all_close(UpperCAmelCase_ , UpperCAmelCase_ , rtol=1E-2)) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: List[str] =UNetaDModel.from_pretrained("fusing/ncsnpp-ffhq-ve-dummy-update") model.to(UpperCAmelCase_) lowerCamelCase__: Optional[int] =4 lowerCamelCase__: Optional[int] =3 lowerCamelCase__: Optional[Any] =(32, 32) lowerCamelCase__: int =torch.ones((batch_size, num_channels) + sizes).to(UpperCAmelCase_) lowerCamelCase__: Optional[int] =torch.tensor(batch_size * [1E-4]).to(UpperCAmelCase_) with torch.no_grad(): lowerCamelCase__: int =model(UpperCAmelCase_ , UpperCAmelCase_).sample lowerCamelCase__: Optional[int] =output[0, -3:, -3:, -1].flatten().cpu() # fmt: off lowerCamelCase__: Dict =torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256]) # fmt: on self.assertTrue(torch_all_close(UpperCAmelCase_ , UpperCAmelCase_ , rtol=1E-2)) def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Dict: '''simple docstring''' pass
273
def lowerCAmelCase_ ( __a , __a ) -> Tuple: """simple docstring""" assert x is not None assert y is not None lowerCamelCase__: Any =len(__a ) lowerCamelCase__: int =len(__a ) # declaring the array for storing the dp values lowerCamelCase__: List[Any] =[[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): lowerCamelCase__: str =1 if x[i - 1] == y[j - 1] else 0 lowerCamelCase__: str =max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) lowerCamelCase__: Any ="" lowerCamelCase__ , lowerCamelCase__: str =m, n while i > 0 and j > 0: lowerCamelCase__: Union[str, Any] =1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: lowerCamelCase__: Any =x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": __A = "AGGTAB" __A = "GXTXAYB" __A = 4 __A = "GTAB" __A , __A = longest_common_subsequence(a, b) print("len =", ln, ", sub-sequence =", subseq) import doctest doctest.testmod()
273
1
'''simple docstring''' import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : str ): _a = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertTrue(is_safetensors_compatible(__a ) ) def UpperCamelCase__ ( self : List[str] ): _a = [ "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertTrue(is_safetensors_compatible(__a ) ) def UpperCamelCase__ ( self : List[str] ): _a = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", "unet/diffusion_pytorch_model.bin", # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(__a ) ) def UpperCamelCase__ ( self : List[str] ): _a = [ "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", ] self.assertTrue(is_safetensors_compatible(__a ) ) def UpperCamelCase__ ( self : Optional[Any] ): _a = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", # Removed: 'text_encoder/model.safetensors', "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertFalse(is_safetensors_compatible(__a ) ) def UpperCamelCase__ ( self : str ): _a = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] _a = "fp16" self.assertTrue(is_safetensors_compatible(__a , variant=__a ) ) def UpperCamelCase__ ( self : Any ): _a = [ "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] _a = "fp16" self.assertTrue(is_safetensors_compatible(__a , variant=__a ) ) def UpperCamelCase__ ( self : Any ): # pass variant but use the non-variant filenames _a = [ "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] _a = "fp16" self.assertTrue(is_safetensors_compatible(__a , variant=__a ) ) def UpperCamelCase__ ( self : Optional[Any] ): _a = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", "unet/diffusion_pytorch_model.fp16.bin", # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] _a = "fp16" self.assertFalse(is_safetensors_compatible(__a , variant=__a ) ) def UpperCamelCase__ ( self : Dict ): _a = [ "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", ] _a = "fp16" self.assertTrue(is_safetensors_compatible(__a , variant=__a ) ) def UpperCamelCase__ ( self : List[str] ): # pass variant but use the non-variant filenames _a = [ "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", ] _a = "fp16" self.assertTrue(is_safetensors_compatible(__a , variant=__a ) ) def UpperCamelCase__ ( self : Optional[int] ): _a = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", # 'text_encoder/model.fp16.safetensors', "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] _a = "fp16" self.assertFalse(is_safetensors_compatible(__a , variant=__a ) )
63
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase_ : List[str] = { 'microsoft/trocr-base-handwritten': ( 'https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a ='trocr' __a =['past_key_values'] __a ={ 'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model', 'num_hidden_layers': 'decoder_layers', } def __init__( self : Optional[int] , __a : Any=5_02_65 , __a : Optional[int]=10_24 , __a : List[Any]=12 , __a : str=16 , __a : int=40_96 , __a : Optional[Any]="gelu" , __a : Union[str, Any]=5_12 , __a : Dict=0.1 , __a : List[str]=0.0 , __a : Union[str, Any]=0.0 , __a : Any=2 , __a : Union[str, Any]=0.02 , __a : Any=0.0 , __a : List[str]=True , __a : Optional[Any]=False , __a : Union[str, Any]=True , __a : Optional[Any]=True , __a : Any=1 , __a : List[Any]=0 , __a : Any=2 , **__a : Optional[Any] , ): _a = vocab_size _a = d_model _a = decoder_layers _a = decoder_attention_heads _a = decoder_ffn_dim _a = activation_function _a = max_position_embeddings _a = dropout _a = attention_dropout _a = activation_dropout _a = init_std _a = decoder_layerdrop _a = use_cache _a = scale_embedding _a = use_learned_position_embeddings _a = layernorm_embedding super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , decoder_start_token_id=__a , **__a , )
63
1
from random import randint from tempfile import TemporaryFile import numpy as np def __lowerCamelCase ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : str ): '''simple docstring''' lowerCamelCase = 0 if start < end: lowerCamelCase = randint(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase = a[end] lowerCamelCase = a[pivot] lowerCamelCase = temp lowerCamelCase , lowerCamelCase = _in_place_partition(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) count += _in_place_quick_sort(lowerCamelCase__ , lowerCamelCase__ , p - 1 ) count += _in_place_quick_sort(lowerCamelCase__ , p + 1 , lowerCamelCase__ ) return count def __lowerCamelCase ( lowerCamelCase__ : int , lowerCamelCase__ : Dict , lowerCamelCase__ : str ): '''simple docstring''' lowerCamelCase = 0 lowerCamelCase = randint(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase = a[end] lowerCamelCase = a[pivot] lowerCamelCase = temp lowerCamelCase = start - 1 for index in range(lowerCamelCase__ , lowerCamelCase__ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value lowerCamelCase = new_pivot_index + 1 lowerCamelCase = a[new_pivot_index] lowerCamelCase = a[index] lowerCamelCase = temp lowerCamelCase = a[new_pivot_index + 1] lowerCamelCase = a[end] lowerCamelCase = temp return new_pivot_index + 1, count UpperCAmelCase : Dict = TemporaryFile() UpperCAmelCase : Dict = 1_00 # 1000 elements are to be sorted UpperCAmelCase, UpperCAmelCase : Optional[int] = 0, 1 # mean and standard deviation UpperCAmelCase : List[str] = np.random.normal(mu, sigma, p) np.save(outfile, X) print("The array is") print(X) outfile.seek(0) # using the same array UpperCAmelCase : List[Any] = np.load(outfile) UpperCAmelCase : Optional[Any] = len(M) - 1 UpperCAmelCase : List[str] = _in_place_quick_sort(M, 0, r) print( "No of Comparisons for 100 elements selected from a standard normal distribution" "is :" ) print(z)
66
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class __lowercase ( pl.LightningModule ): """simple docstring""" def __init__( self , A ) -> Any: '''simple docstring''' super().__init__() lowerCamelCase = model lowerCamelCase = 2 lowerCamelCase = nn.Linear(self.model.config.hidden_size , self.num_labels ) def __A ( self ) -> int: '''simple docstring''' pass def __lowerCamelCase ( lowerCamelCase__ : str , lowerCamelCase__ : str , lowerCamelCase__ : str ): '''simple docstring''' lowerCamelCase = LongformerModel.from_pretrained(lowerCamelCase__ ) lowerCamelCase = LightningModel(lowerCamelCase__ ) lowerCamelCase = torch.load(lowerCamelCase__ , map_location=torch.device("""cpu""" ) ) lightning_model.load_state_dict(ckpt["""state_dict"""] ) # init longformer question answering model lowerCamelCase = LongformerForQuestionAnswering.from_pretrained(lowerCamelCase__ ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(lowerCamelCase__ ) print(f'Conversion successful. Model saved under {pytorch_dump_folder_path}' ) if __name__ == "__main__": UpperCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--longformer_model", default=None, type=str, required=True, help="model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.", ) parser.add_argument( "--longformer_question_answering_ckpt_path", default=None, type=str, required=True, help="Path the official PyTorch Lightning Checkpoint.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase : Optional[int] = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
66
1
'''simple docstring''' from string import ascii_uppercase __A : Tuple = {str(ord(c) - 55): c for c in ascii_uppercase} def UpperCamelCase_ ( A__ : int , A__ : int ): '''simple docstring''' if isinstance(A__ , A__ ): raise TypeError("""int() can't convert non-string with explicit base""" ) if num < 0: raise ValueError("""parameter must be positive int""" ) if isinstance(A__ , A__ ): raise TypeError("""'str' object cannot be interpreted as an integer""" ) if isinstance(A__ , A__ ): raise TypeError("""'float' object cannot be interpreted as an integer""" ) if base in (0, 1): raise ValueError("""base must be >= 2""" ) if base > 36: raise ValueError("""base must be <= 36""" ) lowerCAmelCase_ : Any = """""" lowerCAmelCase_ : Optional[int] = 0 lowerCAmelCase_ : List[str] = 0 while div != 1: lowerCAmelCase_, lowerCAmelCase_ : Any = divmod(A__ , A__ ) if base >= 11 and 9 < mod < 36: lowerCAmelCase_ : Dict = ALPHABET_VALUES[str(A__ )] else: lowerCAmelCase_ : List[str] = str(A__ ) new_value += actual_value lowerCAmelCase_ : Union[str, Any] = num // base lowerCAmelCase_ : int = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(A__ ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(1000): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
120
'''simple docstring''' import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter __A : List[Any] = True except ImportError: __A : int = False __A : str = logging.get_logger(__name__) # pylint: disable=invalid-name def UpperCamelCase_ ( A__ : Namespace ): '''simple docstring''' return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" @staticmethod def __lowercase ( lowerCamelCase : ArgumentParser ) -> int: lowerCAmelCase_ : Optional[int] = parser.add_parser("""add-new-model""" ) add_new_model_parser.add_argument("""--testing""" , action="""store_true""" , help="""If in testing mode.""" ) add_new_model_parser.add_argument("""--testing_file""" , type=lowerCamelCase , help="""Configuration file on which to run.""" ) add_new_model_parser.add_argument( """--path""" , type=lowerCamelCase , help="""Path to cookiecutter. Should only be used for testing purposes.""" ) add_new_model_parser.set_defaults(func=lowerCamelCase ) def __init__( self : List[str] , lowerCamelCase : bool , lowerCamelCase : str , lowerCamelCase : Any=None , *lowerCamelCase : List[str] ) -> Optional[Any]: lowerCAmelCase_ : int = testing lowerCAmelCase_ : Union[str, Any] = testing_file lowerCAmelCase_ : Tuple = path def __lowercase ( self : Tuple ) -> int: warnings.warn( """The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. """ """It is not actively maintained anymore, so might give a result that won't pass all tests and quality """ """checks, you should use `transformers-cli add-new-model-like` instead.""" ) if not _has_cookiecutter: raise ImportError( """Model creation dependencies are required to use the `add_new_model` command. Install them by running """ """the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n""" ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory lowerCAmelCase_ : int = [directory for directory in os.listdir() if """cookiecutter-template-""" == directory[:22]] if len(lowerCamelCase ) > 0: raise ValueError( """Several directories starting with `cookiecutter-template-` in current working directory. """ """Please clean your directory by removing all folders starting with `cookiecutter-template-` or """ """change your working directory.""" ) lowerCAmelCase_ : List[Any] = ( Path(lowerCamelCase ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) lowerCAmelCase_ : Dict = path_to_transformer_root / """templates""" / """adding_a_new_model""" # Execute cookiecutter if not self._testing: cookiecutter(str(lowerCamelCase ) ) else: with open(self._testing_file , """r""" ) as configuration_file: lowerCAmelCase_ : Tuple = json.load(lowerCamelCase ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=lowerCamelCase , extra_context=lowerCamelCase , ) lowerCAmelCase_ : List[str] = [directory for directory in os.listdir() if """cookiecutter-template-""" in directory[:22]][0] # Retrieve configuration with open(directory + """/configuration.json""" , """r""" ) as configuration_file: lowerCAmelCase_ : Tuple = json.load(lowerCamelCase ) lowerCAmelCase_ : str = configuration["""lowercase_modelname"""] lowerCAmelCase_ : List[str] = configuration["""generate_tensorflow_pytorch_and_flax"""] os.remove(F'{directory}/configuration.json' ) lowerCAmelCase_ : Dict = """PyTorch""" in generate_tensorflow_pytorch_and_flax lowerCAmelCase_ : Optional[int] = """TensorFlow""" in generate_tensorflow_pytorch_and_flax lowerCAmelCase_ : List[str] = """Flax""" in generate_tensorflow_pytorch_and_flax lowerCAmelCase_ : Union[str, Any] = F'{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}' os.makedirs(lowerCamelCase , exist_ok=lowerCamelCase ) os.makedirs(F'{path_to_transformer_root}/tests/models/{lowercase_model_name}' , exist_ok=lowerCamelCase ) # Tests require submodules as they have parent imports with open(F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py' , """w""" ): pass shutil.move( F'{directory}/__init__.py' , F'{model_dir}/__init__.py' , ) shutil.move( F'{directory}/configuration_{lowercase_model_name}.py' , F'{model_dir}/configuration_{lowercase_model_name}.py' , ) def remove_copy_lines(lowerCamelCase : Any ): with open(lowerCamelCase , """r""" ) as f: lowerCAmelCase_ : List[str] = f.readlines() with open(lowerCamelCase , """w""" ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(lowerCamelCase ) if output_pytorch: if not self._testing: remove_copy_lines(F'{directory}/modeling_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_{lowercase_model_name}.py' , F'{model_dir}/modeling_{lowercase_model_name}.py' , ) shutil.move( F'{directory}/test_modeling_{lowercase_model_name}.py' , F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py' , ) else: os.remove(F'{directory}/modeling_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_{lowercase_model_name}.py' ) if output_tensorflow: if not self._testing: remove_copy_lines(F'{directory}/modeling_tf_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_tf_{lowercase_model_name}.py' , F'{model_dir}/modeling_tf_{lowercase_model_name}.py' , ) shutil.move( F'{directory}/test_modeling_tf_{lowercase_model_name}.py' , F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py' , ) else: os.remove(F'{directory}/modeling_tf_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_tf_{lowercase_model_name}.py' ) if output_flax: if not self._testing: remove_copy_lines(F'{directory}/modeling_flax_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_flax_{lowercase_model_name}.py' , F'{model_dir}/modeling_flax_{lowercase_model_name}.py' , ) shutil.move( F'{directory}/test_modeling_flax_{lowercase_model_name}.py' , F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py' , ) else: os.remove(F'{directory}/modeling_flax_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_flax_{lowercase_model_name}.py' ) shutil.move( F'{directory}/{lowercase_model_name}.md' , F'{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md' , ) shutil.move( F'{directory}/tokenization_{lowercase_model_name}.py' , F'{model_dir}/tokenization_{lowercase_model_name}.py' , ) shutil.move( F'{directory}/tokenization_fast_{lowercase_model_name}.py' , F'{model_dir}/tokenization_{lowercase_model_name}_fast.py' , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(lowerCamelCase : str , lowerCamelCase : str , lowerCamelCase : List[str] ): # Create temp file lowerCAmelCase_, lowerCAmelCase_ : int = mkstemp() lowerCAmelCase_ : List[Any] = False with fdopen(lowerCamelCase , """w""" ) as new_file: with open(lowerCamelCase ) as old_file: for line in old_file: new_file.write(lowerCamelCase ) if line_to_copy_below in line: lowerCAmelCase_ : List[str] = True for line_to_copy in lines_to_copy: new_file.write(lowerCamelCase ) if not line_found: raise ValueError(F'Line {line_to_copy_below} was not found in file.' ) # Copy the file permissions from the old file to the new file copymode(lowerCamelCase , lowerCamelCase ) # Remove original file remove(lowerCamelCase ) # Move new file move(lowerCamelCase , lowerCamelCase ) def skip_units(lowerCamelCase : Optional[int] ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(lowerCamelCase : Any ): with open(lowerCamelCase ) as datafile: lowerCAmelCase_ : Dict = [] lowerCAmelCase_ : List[str] = False lowerCAmelCase_ : str = False for line in datafile: if "# To replace in: " in line and "##" not in line: lowerCAmelCase_ : Dict = line.split("""\"""" )[1] lowerCAmelCase_ : int = skip_units(lowerCamelCase ) elif "# Below: " in line and "##" not in line: lowerCAmelCase_ : Any = line.split("""\"""" )[1] lowerCAmelCase_ : Tuple = skip_units(lowerCamelCase ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(lowerCamelCase , lowerCamelCase , lowerCamelCase ) lowerCAmelCase_ : Dict = [] elif "# Replace with" in line and "##" not in line: lowerCAmelCase_ : int = [] elif "##" not in line: lines_to_copy.append(lowerCamelCase ) remove(lowerCamelCase ) replace_in_files(F'{directory}/to_replace_{lowercase_model_name}.py' ) os.rmdir(lowerCamelCase )
120
1
"""simple docstring""" def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: if mass < 0: raise ValueError('The mass of a body cannot be negative' ) return 0.5 * mass * abs(snake_case__ ) * abs(snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
365
from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class SCREAMING_SNAKE_CASE (UpperCAmelCase ): def __init__( self : List[str] , a : Callable , a : Optional[Features] = None , a : str = None , a : bool = False , a : bool = False , a : Optional[dict] = None , a : Optional[int] = None , **a : str , )-> Tuple: """simple docstring""" super().__init__( features=a , cache_dir=a , keep_in_memory=a , streaming=a , num_proc=a , **a , ) lowercase__ = Generator( cache_dir=a , features=a , generator=a , gen_kwargs=a , **a , ) def SCREAMING_SNAKE_CASE_ ( self : Any )-> Dict: """simple docstring""" if self.streaming: lowercase__ = self.builder.as_streaming_dataset(split='train' ) # Build regular (map-style) dataset else: lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None self.builder.download_and_prepare( download_config=a , download_mode=a , verification_mode=a , base_path=a , num_proc=self.num_proc , ) lowercase__ = self.builder.as_dataset( split='train' , verification_mode=a , in_memory=self.keep_in_memory ) return dataset
269
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging A_ :str = logging.get_logger(__name__) A_ :Tuple = { '''microsoft/git-base''': '''https://huggingface.co/microsoft/git-base/resolve/main/config.json''', } class __A ( a ): """simple docstring""" UpperCamelCase__ : Any ="""git_vision_model""" def __init__( self , lowerCamelCase__=768 , lowerCamelCase__=3072 , lowerCamelCase__=12 , lowerCamelCase__=12 , lowerCamelCase__=3 , lowerCamelCase__=224 , lowerCamelCase__=16 , lowerCamelCase__="quick_gelu" , lowerCamelCase__=1E-5 , lowerCamelCase__=0.0 , lowerCamelCase__=0.02 , **lowerCamelCase__ , ): """simple docstring""" super().__init__(**lowerCamelCase__ ) __UpperCamelCase : str =hidden_size __UpperCamelCase : Union[str, Any] =intermediate_size __UpperCamelCase : Any =num_hidden_layers __UpperCamelCase : Any =num_attention_heads __UpperCamelCase : Union[str, Any] =num_channels __UpperCamelCase : Optional[Any] =patch_size __UpperCamelCase : int =image_size __UpperCamelCase : str =initializer_range __UpperCamelCase : Optional[int] =attention_dropout __UpperCamelCase : Tuple =layer_norm_eps __UpperCamelCase : str =hidden_act @classmethod def __lowercase ( cls , lowerCamelCase__ , **lowerCamelCase__ ): """simple docstring""" cls._set_token_in_kwargs(lowerCamelCase__ ) __UpperCamelCase , __UpperCamelCase : List[Any] =cls.get_config_dict(lowerCamelCase__ , **lowerCamelCase__ ) # get the vision config dict if we are loading from GITConfig if config_dict.get('model_type' ) == "git": __UpperCamelCase : int =config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(lowerCamelCase__ , **lowerCamelCase__ ) class __A ( a ): """simple docstring""" UpperCamelCase__ : Tuple ="""git""" def __init__( self , lowerCamelCase__=None , lowerCamelCase__=30522 , lowerCamelCase__=768 , lowerCamelCase__=6 , lowerCamelCase__=12 , lowerCamelCase__=3072 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=1024 , lowerCamelCase__=0.02 , lowerCamelCase__=1E-12 , lowerCamelCase__=0 , lowerCamelCase__="absolute" , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=101 , lowerCamelCase__=102 , lowerCamelCase__=None , **lowerCamelCase__ , ): """simple docstring""" super().__init__(bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , pad_token_id=lowerCamelCase__ , **lowerCamelCase__ ) if vision_config is None: __UpperCamelCase : str ={} logger.info('vision_config is None. initializing the GitVisionConfig with default values.' ) __UpperCamelCase : Optional[int] =GitVisionConfig(**lowerCamelCase__ ) __UpperCamelCase : List[Any] =vocab_size __UpperCamelCase : int =hidden_size __UpperCamelCase : Optional[int] =num_hidden_layers __UpperCamelCase : str =num_attention_heads __UpperCamelCase : int =hidden_act __UpperCamelCase : int =intermediate_size __UpperCamelCase : List[str] =hidden_dropout_prob __UpperCamelCase : Tuple =attention_probs_dropout_prob __UpperCamelCase : Tuple =max_position_embeddings __UpperCamelCase : List[Any] =initializer_range __UpperCamelCase : Optional[int] =layer_norm_eps __UpperCamelCase : Optional[int] =position_embedding_type __UpperCamelCase : List[str] =use_cache __UpperCamelCase : Any =tie_word_embeddings __UpperCamelCase : int =num_image_with_embedding __UpperCamelCase : List[Any] =bos_token_id __UpperCamelCase : Any =eos_token_id def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Dict =copy.deepcopy(self.__dict__ ) __UpperCamelCase : Any =self.vision_config.to_dict() __UpperCamelCase : Optional[Any] =self.__class__.model_type return output
71
def SCREAMING_SNAKE_CASE__ ( __a , __a ): if density <= 0: raise ValueError('Impossible fluid density' ) if bulk_modulus <= 0: raise ValueError('Impossible bulk modulus' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
327
0
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 snake_case = get_tests_dir("""fixtures/dummy_feature_extractor_config.json""") snake_case = get_tests_dir("""fixtures/vocab.json""") snake_case = get_tests_dir("""fixtures""") class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : int = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] def _A ( self : Optional[Any] ): SCREAMING_SNAKE_CASE : Optional[int] = 0 def _A ( self : Any ): SCREAMING_SNAKE_CASE : Union[str, Any] = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h" ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) def _A ( self : Optional[int] ): with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE : Optional[int] = WavaVecaConfig() SCREAMING_SNAKE_CASE : List[str] = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h" ) # save in new folder model_config.save_pretrained(UpperCAmelCase_ ) processor.save_pretrained(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = AutoProcessor.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) def _A ( self : Any ): with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(UpperCAmelCase_ , os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) ) copyfile(UpperCAmelCase_ , os.path.join(UpperCAmelCase_ , "vocab.json" ) ) SCREAMING_SNAKE_CASE : List[str] = AutoProcessor.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) def _A ( self : Any ): with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE : List[Any] = WavaVecaFeatureExtractor() SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h" ) SCREAMING_SNAKE_CASE : Union[str, Any] = WavaVecaProcessor(UpperCAmelCase_ , UpperCAmelCase_ ) # save in new folder processor.save_pretrained(UpperCAmelCase_ ) # drop `processor_class` in tokenizer with open(os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) , "r" ) as f: SCREAMING_SNAKE_CASE : List[Any] = json.load(UpperCAmelCase_ ) config_dict.pop("processor_class" ) with open(os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) , "w" ) as f: f.write(json.dumps(UpperCAmelCase_ ) ) SCREAMING_SNAKE_CASE : List[str] = AutoProcessor.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) def _A ( self : int ): with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE : Optional[Any] = WavaVecaFeatureExtractor() SCREAMING_SNAKE_CASE : Union[str, Any] = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h" ) SCREAMING_SNAKE_CASE : Optional[int] = WavaVecaProcessor(UpperCAmelCase_ , UpperCAmelCase_ ) # save in new folder processor.save_pretrained(UpperCAmelCase_ ) # drop `processor_class` in feature extractor with open(os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) , "r" ) as f: SCREAMING_SNAKE_CASE : int = json.load(UpperCAmelCase_ ) config_dict.pop("processor_class" ) with open(os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) , "w" ) as f: f.write(json.dumps(UpperCAmelCase_ ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = AutoProcessor.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) def _A ( self : Union[str, Any] ): with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE : List[Any] = WavaVecaConfig(processor_class="Wav2Vec2Processor" ) model_config.save_pretrained(UpperCAmelCase_ ) # copy relevant files copyfile(UpperCAmelCase_ , os.path.join(UpperCAmelCase_ , "vocab.json" ) ) # create emtpy sample processor with open(os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) , "w" ) as f: f.write("{}" ) SCREAMING_SNAKE_CASE : List[Any] = AutoProcessor.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) def _A ( self : List[str] ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(UpperCAmelCase_ ): SCREAMING_SNAKE_CASE : Optional[int] = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor" ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCAmelCase_ ): SCREAMING_SNAKE_CASE : Optional[Any] = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" , trust_remote_code=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor" , trust_remote_code=UpperCAmelCase_ ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , "NewProcessor" ) SCREAMING_SNAKE_CASE : List[Any] = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) SCREAMING_SNAKE_CASE : str = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" ) # Test we can also load the slow version SCREAMING_SNAKE_CASE : List[str] = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" , trust_remote_code=UpperCAmelCase_ , use_fast=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , "NewTokenizer" ) else: self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) def _A ( self : List[str] ): try: AutoConfig.register("custom" , UpperCAmelCase_ ) AutoFeatureExtractor.register(UpperCAmelCase_ , UpperCAmelCase_ ) AutoTokenizer.register(UpperCAmelCase_ , slow_tokenizer_class=UpperCAmelCase_ ) AutoProcessor.register(UpperCAmelCase_ , UpperCAmelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCAmelCase_ ): AutoProcessor.register(UpperCAmelCase_ , UpperCAmelCase_ ) # Now that the config is registered, it can be used as any other config with the auto-API SCREAMING_SNAKE_CASE : Any = CustomFeatureExtractor.from_pretrained(UpperCAmelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE : List[Any] = os.path.join(UpperCAmelCase_ , "vocab.txt" ) with open(UpperCAmelCase_ , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE : List[str] = CustomTokenizer(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = CustomProcessor(UpperCAmelCase_ , UpperCAmelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = AutoProcessor.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def _A ( self : Optional[Any] ): class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : int = False class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Optional[int] = False class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Any = '''AutoFeatureExtractor''' UpperCamelCase_ : Any = '''AutoTokenizer''' UpperCamelCase_ : List[Any] = False try: AutoConfig.register("custom" , UpperCAmelCase_ ) AutoFeatureExtractor.register(UpperCAmelCase_ , UpperCAmelCase_ ) AutoTokenizer.register(UpperCAmelCase_ , slow_tokenizer_class=UpperCAmelCase_ ) AutoProcessor.register(UpperCAmelCase_ , UpperCAmelCase_ ) # If remote code is not set, the default is to use local classes. SCREAMING_SNAKE_CASE : List[Any] = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor" ) self.assertEqual(processor.__class__.__name__ , "NewProcessor" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. SCREAMING_SNAKE_CASE : Optional[Any] = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" , trust_remote_code=UpperCAmelCase_ ) self.assertEqual(processor.__class__.__name__ , "NewProcessor" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. SCREAMING_SNAKE_CASE : Union[str, Any] = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" , trust_remote_code=UpperCAmelCase_ ) self.assertEqual(processor.__class__.__name__ , "NewProcessor" ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def _A ( self : Any ): SCREAMING_SNAKE_CASE : Optional[Any] = AutoProcessor.from_pretrained("hf-internal-testing/tiny-random-bert" ) self.assertEqual(processor.__class__.__name__ , "BertTokenizerFast" ) def _A ( self : Dict ): SCREAMING_SNAKE_CASE : Any = AutoProcessor.from_pretrained("hf-internal-testing/tiny-random-convnext" ) self.assertEqual(processor.__class__.__name__ , "ConvNextImageProcessor" ) @is_staging_test class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : Tuple = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] @classmethod def _A ( cls : Tuple ): SCREAMING_SNAKE_CASE : Optional[Any] = TOKEN HfFolder.save_token(UpperCAmelCase_ ) @classmethod def _A ( cls : Tuple ): try: delete_repo(token=cls._token , repo_id="test-processor" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-processor-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-processor" ) except HTTPError: pass def _A ( self : List[str] ): SCREAMING_SNAKE_CASE : Union[str, Any] = WavaVecaProcessor.from_pretrained(UpperCAmelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(UpperCAmelCase_ , "test-processor" ) , push_to_hub=UpperCAmelCase_ , use_auth_token=self._token ) SCREAMING_SNAKE_CASE : Optional[int] = WavaVecaProcessor.from_pretrained(f'''{USER}/test-processor''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(UpperCAmelCase_ , getattr(new_processor.feature_extractor , UpperCAmelCase_ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def _A ( self : Tuple ): SCREAMING_SNAKE_CASE : Optional[Any] = WavaVecaProcessor.from_pretrained(UpperCAmelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(UpperCAmelCase_ , "test-processor-org" ) , push_to_hub=UpperCAmelCase_ , use_auth_token=self._token , organization="valid_org" , ) SCREAMING_SNAKE_CASE : Tuple = WavaVecaProcessor.from_pretrained("valid_org/test-processor-org" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(UpperCAmelCase_ , getattr(new_processor.feature_extractor , UpperCAmelCase_ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def _A ( self : Optional[int] ): CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() SCREAMING_SNAKE_CASE : Union[str, Any] = CustomFeatureExtractor.from_pretrained(UpperCAmelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE : List[str] = os.path.join(UpperCAmelCase_ , "vocab.txt" ) with open(UpperCAmelCase_ , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE : Any = CustomTokenizer(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = CustomProcessor(UpperCAmelCase_ , UpperCAmelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(f'''{USER}/test-dynamic-processor''' , token=self._token ) SCREAMING_SNAKE_CASE : Dict = Repository(UpperCAmelCase_ , clone_from=f'''{USER}/test-dynamic-processor''' , token=self._token ) processor.save_pretrained(UpperCAmelCase_ ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { "AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor", "AutoProcessor": "custom_processing.CustomProcessor", } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(UpperCAmelCase_ , "tokenizer_config.json" ) ) as f: SCREAMING_SNAKE_CASE : Union[str, Any] = json.load(UpperCAmelCase_ ) self.assertDictEqual( tokenizer_config["auto_map"] , { "AutoTokenizer": ["custom_tokenization.CustomTokenizer", None], "AutoProcessor": "custom_processing.CustomProcessor", } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(UpperCAmelCase_ , "custom_feature_extraction.py" ) ) ) self.assertTrue(os.path.isfile(os.path.join(UpperCAmelCase_ , "custom_tokenization.py" ) ) ) self.assertTrue(os.path.isfile(os.path.join(UpperCAmelCase_ , "custom_processing.py" ) ) ) repo.push_to_hub() SCREAMING_SNAKE_CASE : Dict = AutoProcessor.from_pretrained(f'''{USER}/test-dynamic-processor''' , trust_remote_code=UpperCAmelCase_ ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , "CustomProcessor" )
319
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: snake_case = None snake_case = logging.get_logger(__name__) snake_case = """▁""" snake_case = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} snake_case = { """vocab_file""": {"""google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"""}, """tokenizer_file""": { """google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json""" }, } snake_case = { """google/pegasus-xsum""": 512, } class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Tuple = VOCAB_FILES_NAMES UpperCamelCase_ : List[str] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : int = PegasusTokenizer UpperCamelCase_ : str = ['''input_ids''', '''attention_mask'''] def __init__( self : Union[str, Any] , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Optional[int]="<pad>" , UpperCAmelCase_ : int="</s>" , UpperCAmelCase_ : str="<unk>" , UpperCAmelCase_ : str="<mask_2>" , UpperCAmelCase_ : Optional[int]="<mask_1>" , UpperCAmelCase_ : int=None , UpperCAmelCase_ : str=103 , **UpperCAmelCase_ : Optional[int] , ): SCREAMING_SNAKE_CASE : Optional[Any] = offset if additional_special_tokens is not None: if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise TypeError( f'''additional_special_tokens should be of type {type(UpperCAmelCase_ )}, but is''' f''' {type(UpperCAmelCase_ )}''' ) SCREAMING_SNAKE_CASE : Optional[Any] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(UpperCAmelCase_ ) , self.offset - 1 ) ] if len(set(UpperCAmelCase_ ) ) != len(UpperCAmelCase_ ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) SCREAMING_SNAKE_CASE : int = additional_special_tokens_extended else: SCREAMING_SNAKE_CASE : Tuple = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] super().__init__( UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , mask_token_sent=UpperCAmelCase_ , offset=UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , **UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : str = vocab_file SCREAMING_SNAKE_CASE : str = False if not self.vocab_file else True def _A ( self : Optional[Any] , UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE : Optional[int] = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( "There should be 3 special tokens: mask_token, pad_token, and eos_token +" f''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' ) return [1 if x in all_special_ids else 0 for x in seq] def _A ( self : int , UpperCAmelCase_ : List , UpperCAmelCase_ : Optional[List] = None , UpperCAmelCase_ : bool = False ): if already_has_special_tokens: return self._special_token_mask(UpperCAmelCase_ ) elif token_ids_a is None: return self._special_token_mask(UpperCAmelCase_ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def _A ( self : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any=None ): if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _A ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(UpperCAmelCase_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE : List[str] = os.path.join( UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ): copyfile(self.vocab_file , UpperCAmelCase_ ) return (out_vocab_file,)
319
1
'''simple docstring''' import doctest from collections import deque import numpy as np class lowercase : """simple docstring""" def __init__( self ): '''simple docstring''' UpperCamelCase__ :int = [2, 1, 2, -1] UpperCamelCase__ :Tuple = [1, 2, 3, 4] def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Any = len(self.first_signal ) UpperCamelCase__ :Tuple = len(self.second_signal ) UpperCamelCase__ :Optional[int] = max(UpperCamelCase_ , UpperCamelCase_ ) # create a zero matrix of max_length x max_length UpperCamelCase__ :Dict = [[0] * max_length for i in range(UpperCamelCase_ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(UpperCamelCase_ ): UpperCamelCase__ :Any = deque(self.second_signal ) rotated_signal.rotate(UpperCamelCase_ ) for j, item in enumerate(UpperCamelCase_ ): matrix[i][j] += item # multiply the matrix with the first signal UpperCamelCase__ :str = np.matmul(np.transpose(UpperCamelCase_ ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(UpperCamelCase_ , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
97
'''simple docstring''' from datetime import datetime import matplotlib.pyplot as plt import torch def a ( __a ) -> int: '''simple docstring''' for param in module.parameters(): UpperCamelCase__ :Dict = False def a ( ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ :List[Any] = '''cuda''' if torch.cuda.is_available() else '''cpu''' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): UpperCamelCase__ :Optional[int] = '''mps''' if device == "mps": print( '''WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch''' ''' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues''' ''' with generations.''' ) return device def a ( __a ) -> Any: '''simple docstring''' UpperCamelCase__ :Dict = plt.imshow(__a ) fig.axes.get_xaxis().set_visible(__a ) fig.axes.get_yaxis().set_visible(__a ) plt.show() def a ( ) -> str: '''simple docstring''' UpperCamelCase__ :int = datetime.now() UpperCamelCase__ :str = current_time.strftime('''%H:%M:%S''' ) return timestamp
97
1
import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def _a ( a :str ) -> Optional[Any]: a = torch.exp(lowerCAmelCase__ ) a = torch.sum(lowerCAmelCase__ , dim=1 ) # sum of exp(x_i) a = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(lowerCAmelCase__ ) - B / A class lowercase_( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , __UpperCAmelCase : Optional[Any] ) ->List[str]: """simple docstring""" super().__init__() a = config.output_attentions a = config.output_hidden_states a = nn.ModuleList([BertLayer(A__ ) for _ in range(config.num_hidden_layers )] ) a = nn.ModuleList([BertHighway(A__ ) for _ in range(config.num_hidden_layers )] ) a = [-1 for _ in range(config.num_hidden_layers )] def __lowerCAmelCase ( self : Any , __UpperCAmelCase : Optional[Any] ) ->int: """simple docstring""" if (type(A__ ) is float) or (type(A__ ) is int): for i in range(len(self.early_exit_entropy ) ): a = x else: a = x def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[str] ) ->List[Any]: """simple docstring""" a = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Any , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : int=None , ) ->Union[str, Any]: """simple docstring""" a = () a = () a = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: a = all_hidden_states + (hidden_states,) a = layer_module( A__ , A__ , head_mask[i] , A__ , A__ ) a = layer_outputs[0] if self.output_attentions: a = all_attentions + (layer_outputs[1],) a = (hidden_states,) if self.output_hidden_states: a = current_outputs + (all_hidden_states,) if self.output_attentions: a = current_outputs + (all_attentions,) a = self.highway[i](A__ ) # logits, pooled_output if not self.training: a = highway_exit[0] a = entropy(A__ ) a = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy a = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: a = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(A__ , i + 1 ) else: a = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: a = all_hidden_states + (hidden_states,) a = (hidden_states,) if self.output_hidden_states: a = outputs + (all_hidden_states,) if self.output_attentions: a = outputs + (all_attentions,) a = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( '''The Bert Model transformer with early exiting (DeeBERT). ''' , SCREAMING_SNAKE_CASE__ , ) class lowercase_( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__( self : Any , __UpperCAmelCase : str ) ->Any: """simple docstring""" super().__init__(A__ ) a = config a = BertEmbeddings(A__ ) a = DeeBertEncoder(A__ ) a = BertPooler(A__ ) self.init_weights() def __lowerCAmelCase ( self : List[str] ) ->Optional[Any]: """simple docstring""" self.encoder.init_highway_pooler(self.pooler ) def __lowerCAmelCase ( self : str ) ->Any: """simple docstring""" return self.embeddings.word_embeddings def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Optional[Any] ) ->Dict: """simple docstring""" a = value def __lowerCAmelCase ( self : str , __UpperCAmelCase : List[Any] ) ->Optional[int]: """simple docstring""" for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(A__ ) @add_start_docstrings_to_model_forward(A__ ) def __lowerCAmelCase ( self : int , __UpperCAmelCase : int=None , __UpperCAmelCase : List[Any]=None , __UpperCAmelCase : List[Any]=None , __UpperCAmelCase : List[Any]=None , __UpperCAmelCase : List[Any]=None , __UpperCAmelCase : Union[str, Any]=None , __UpperCAmelCase : str=None , __UpperCAmelCase : Dict=None , ) ->int: """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError('''You cannot specify both input_ids and inputs_embeds at the same time''' ) elif input_ids is not None: a = input_ids.size() elif inputs_embeds is not None: a = inputs_embeds.size()[:-1] else: raise ValueError('''You have to specify either input_ids or inputs_embeds''' ) a = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: a = torch.ones(A__ , device=A__ ) if encoder_attention_mask is None: a = torch.ones(A__ , device=A__ ) if token_type_ids is None: a = torch.zeros(A__ , dtype=torch.long , device=A__ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. a = self.get_extended_attention_mask(A__ , A__ , A__ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: a = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: a = encoder_attention_mask[:, None, None, :] a = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility a = (1.0 - encoder_extended_attention_mask) * -10000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] a = self.get_head_mask(A__ , self.config.num_hidden_layers ) a = self.embeddings( input_ids=A__ , position_ids=A__ , token_type_ids=A__ , inputs_embeds=A__ ) a = self.encoder( A__ , attention_mask=A__ , head_mask=A__ , encoder_hidden_states=A__ , encoder_attention_mask=A__ , ) a = encoder_outputs[0] a = self.pooler(A__ ) a = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class lowercase_( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__( self : Union[str, Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[Any] ) ->Optional[Any]: """simple docstring""" a = message a = exit_layer # start from 1! class lowercase_( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , __UpperCAmelCase : Optional[Any] ) ->List[str]: """simple docstring""" super().__init__() a = BertPooler(A__ ) a = nn.Dropout(config.hidden_dropout_prob ) a = nn.Linear(config.hidden_size , config.num_labels ) def __lowerCAmelCase ( self : Any , __UpperCAmelCase : Union[str, Any] ) ->Optional[int]: """simple docstring""" a = encoder_outputs[0] a = self.pooler(A__ ) # "return" pooler_output # BertModel a = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification a = bmodel_output[1] a = self.dropout(A__ ) a = self.classifier(A__ ) return logits, pooled_output @add_start_docstrings( '''Bert Model (with early exiting - DeeBERT) with a classifier on top, also takes care of multi-layer training. ''' , SCREAMING_SNAKE_CASE__ , ) class lowercase_( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__( self : str , __UpperCAmelCase : str ) ->Any: """simple docstring""" super().__init__(A__ ) a = config.num_labels a = config.num_hidden_layers a = DeeBertModel(A__ ) a = nn.Dropout(config.hidden_dropout_prob ) a = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(A__ ) def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : List[Any]=None , __UpperCAmelCase : int=None , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : Any=-1 , __UpperCAmelCase : Tuple=False , ) ->Union[str, Any]: """simple docstring""" a = self.num_layers try: a = self.bert( A__ , attention_mask=A__ , token_type_ids=A__ , position_ids=A__ , head_mask=A__ , inputs_embeds=A__ , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits a = outputs[1] a = self.dropout(A__ ) a = self.classifier(A__ ) a = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: a = e.message a = e.exit_layer a = outputs[0] if not self.training: a = entropy(A__ ) a = [] a = [] if labels is not None: if self.num_labels == 1: # We are doing regression a = MSELoss() a = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: a = CrossEntropyLoss() a = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits a = [] for highway_exit in outputs[-1]: a = highway_exit[0] if not self.training: highway_logits_all.append(A__ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression a = MSELoss() a = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: a = CrossEntropyLoss() a = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(A__ ) if train_highway: a = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: a = (loss,) + outputs if not self.training: a = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: a = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
358
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "spiece.model"} UpperCAmelCase__ = { "vocab_file": { "TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model", } } class lowercase_ ( lowercase ): '''simple docstring''' def __init__( self : Optional[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[Any]=False , __UpperCAmelCase : Any=True , __UpperCAmelCase : Optional[Any]=False , __UpperCAmelCase : List[str]="<s>" , __UpperCAmelCase : int="</s>" , __UpperCAmelCase : Any="<unk>" , __UpperCAmelCase : Optional[Any]="<sep>" , __UpperCAmelCase : int="<pad>" , __UpperCAmelCase : Any="<cls>" , __UpperCAmelCase : List[str]="<mask>" , __UpperCAmelCase : Optional[int]=["<eop>", "<eod>"] , __UpperCAmelCase : Optional[Dict[str, Any]] = None , **__UpperCAmelCase : Union[str, Any] , ) ->None: """simple docstring""" a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token a = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , ) a = 3 a = do_lower_case a = remove_space a = keep_accents a = vocab_file a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCAmelCase ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( '''You need to install jieba to use CpmTokenizer or CpmTokenizerFast. ''' '''See https://pypi.org/project/jieba/ for installation.''' ) a = jieba a = str.maketrans(''' \n''' , '''\u2582\u2583''' ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[Any]: """simple docstring""" return len(self.sp_model ) def __lowerCAmelCase ( self : Tuple ) ->List[str]: """simple docstring""" a = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ) ->Optional[int]: """simple docstring""" a = self.__dict__.copy() a = None return state def __setstate__( self : List[str] , __UpperCAmelCase : Optional[int] ) ->str: """simple docstring""" a = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): a = {} a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[str] ) ->List[str]: """simple docstring""" if self.remove_space: a = ''' '''.join(inputs.strip().split() ) else: a = inputs a = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: a = unicodedata.normalize('''NFKD''' , __UpperCAmelCase ) a = ''''''.join([c for c in outputs if not unicodedata.combining(__UpperCAmelCase )] ) if self.do_lower_case: a = outputs.lower() return outputs def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : str ) ->List[str]: """simple docstring""" a = self.preprocess_text(__UpperCAmelCase ) a = self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) a = [] for piece in pieces: if len(__UpperCAmelCase ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): a = self.sp_model.EncodeAsPieces(piece[:-1].replace(__UpperCAmelCase , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: a = cur_pieces[1:] else: a = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__UpperCAmelCase ) else: new_pieces.append(__UpperCAmelCase ) return new_pieces def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Any ) ->Any: """simple docstring""" return self.sp_model.PieceToId(__UpperCAmelCase ) def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : Dict ) ->Union[str, Any]: """simple docstring""" return self.sp_model.IdToPiece(__UpperCAmelCase ) def __lowerCAmelCase ( self : Any , __UpperCAmelCase : str ) ->List[str]: """simple docstring""" a = ''''''.join(__UpperCAmelCase ).replace(__UpperCAmelCase , ''' ''' ).strip() return out_string def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->List[int]: """simple docstring""" a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None , __UpperCAmelCase : bool = False ) ->List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is not None: return ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] return ([0] * len(__UpperCAmelCase )) + [1, 1] def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->List[int]: """simple docstring""" a = [self.sep_token_id] a = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) ->Tuple[str]: """simple docstring""" if not os.path.isdir(__UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return a = os.path.join( __UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase , '''wb''' ) as fi: a = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,) def __lowerCAmelCase ( self : Any , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : Optional[Any] ) ->Tuple: """simple docstring""" a = super()._decode(*__UpperCAmelCase , **__UpperCAmelCase ) a = text.replace(''' ''' , '''''' ).replace('''\u2582''' , ''' ''' ).replace('''\u2583''' , '''\n''' ) return text
26
0
import numpy as np from transformers import Pipeline def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = np.max(snake_case__ ,axis=-1 ,keepdims=snake_case__ ) _SCREAMING_SNAKE_CASE = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 ,keepdims=snake_case__ ) class __UpperCAmelCase (_UpperCAmelCase ): def UpperCamelCase ( self: Union[str, Any] , **UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = {} if "second_text" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""second_text"""] return preprocess_kwargs, {}, {} def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: List[str] , UpperCAmelCase_: Dict=None ): '''simple docstring''' return self.tokenizer(UpperCAmelCase_ , text_pair=UpperCAmelCase_ , return_tensors=self.framework ) def UpperCamelCase ( self: int , UpperCAmelCase_: Tuple ): '''simple docstring''' return self.model(**UpperCAmelCase_ ) def UpperCamelCase ( self: List[str] , UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = model_outputs.logits[0].numpy() _SCREAMING_SNAKE_CASE = softmax(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = np.argmax(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.model.config.idalabel[best_class] _SCREAMING_SNAKE_CASE = probabilities[best_class].item() _SCREAMING_SNAKE_CASE = logits.tolist() return {"label": label, "score": score, "logits": logits}
306
def __lowerCamelCase ( snake_case__ ) -> list: """simple docstring""" def merge(snake_case__ ,snake_case__ ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(snake_case__ ) <= 1: return collection _SCREAMING_SNAKE_CASE = len(snake_case__ ) // 2 return merge(merge_sort(collection[:mid] ) ,merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
306
1
import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, ) UpperCAmelCase_ = logging.getLogger(__name__) def lowerCAmelCase_ ( __UpperCAmelCase: str ) -> int: UpperCamelCase__ : Optional[Any] = git.Repo(search_parent_directories=__UpperCAmelCase ) UpperCamelCase__ : Optional[int] = { '''repo_id''': str(__UpperCAmelCase ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), } with open(os.path.join(__UpperCAmelCase , '''git_log.json''' ) , '''w''' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase , indent=4 ) def lowerCAmelCase_ ( __UpperCAmelCase: List[Any] ) -> Dict: if params.n_gpu <= 0: UpperCamelCase__ : Tuple = 0 UpperCamelCase__ : Union[str, Any] = -1 UpperCamelCase__ : str = True UpperCamelCase__ : Dict = False return assert torch.cuda.is_available() logger.info('''Initializing GPUs''' ) if params.n_gpu > 1: assert params.local_rank != -1 UpperCamelCase__ : Optional[int] = int(os.environ['''WORLD_SIZE'''] ) UpperCamelCase__ : Any = int(os.environ['''N_GPU_NODE'''] ) UpperCamelCase__ : Optional[Any] = int(os.environ['''RANK'''] ) # number of nodes / node ID UpperCamelCase__ : Optional[int] = params.world_size // params.n_gpu_per_node UpperCamelCase__ : int = params.global_rank // params.n_gpu_per_node UpperCamelCase__ : Any = True assert params.n_nodes == int(os.environ['''N_NODES'''] ) assert params.node_id == int(os.environ['''NODE_RANK'''] ) # local job (single GPU) else: assert params.local_rank == -1 UpperCamelCase__ : List[Any] = 1 UpperCamelCase__ : List[Any] = 0 UpperCamelCase__ : int = 0 UpperCamelCase__ : Optional[Any] = 0 UpperCamelCase__ : Dict = 1 UpperCamelCase__ : int = 1 UpperCamelCase__ : str = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode UpperCamelCase__ : Any = params.node_id == 0 and params.local_rank == 0 UpperCamelCase__ : Optional[int] = params.n_nodes > 1 # summary UpperCamelCase__ : List[Any] = f"--- Global rank: {params.global_rank} - " logger.info(PREFIX + '''Number of nodes: %i''' % params.n_nodes ) logger.info(PREFIX + '''Node ID : %i''' % params.node_id ) logger.info(PREFIX + '''Local rank : %i''' % params.local_rank ) logger.info(PREFIX + '''World size : %i''' % params.world_size ) logger.info(PREFIX + '''GPUs per node : %i''' % params.n_gpu_per_node ) logger.info(PREFIX + '''Master : %s''' % str(params.is_master ) ) logger.info(PREFIX + '''Multi-node : %s''' % str(params.multi_node ) ) logger.info(PREFIX + '''Multi-GPU : %s''' % str(params.multi_gpu ) ) logger.info(PREFIX + '''Hostname : %s''' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('''Initializing PyTorch distributed''' ) torch.distributed.init_process_group( init_method='''env://''' , backend='''nccl''' , ) def lowerCAmelCase_ ( __UpperCAmelCase: List[Any] ) -> Tuple: np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
366
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient UpperCAmelCase_ = WebClient(token=os.environ['CI_SLACK_BOT_TOKEN']) def lowerCAmelCase_ ( __UpperCAmelCase: str ) -> Optional[Any]: UpperCamelCase__ : Any = test_results.split(''' ''' ) UpperCamelCase__ : Dict = 0 UpperCamelCase__ : int = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. UpperCamelCase__ : List[Any] = expressions[-2] if '''=''' in expressions[-1] else expressions[-1] for i, expression in enumerate(__UpperCAmelCase ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def lowerCAmelCase_ ( __UpperCAmelCase: List[str] ) -> Tuple: UpperCamelCase__ : List[Any] = {} UpperCamelCase__ : Optional[Any] = None UpperCamelCase__ : int = False for line in failures_short_lines.split('''\n''' ): if re.search(r'''_ \[doctest\]''' , __UpperCAmelCase ): UpperCamelCase__ : Any = True UpperCamelCase__ : Optional[Any] = line.split(''' ''' )[2] elif in_error and not line.split(''' ''' )[0].isdigit(): UpperCamelCase__ : List[Any] = line UpperCamelCase__ : List[Any] = False return failures class lowercase__ : '''simple docstring''' def __init__( self, __magic_name__, __magic_name__ ) -> List[str]: """simple docstring""" UpperCamelCase__ : Dict = title UpperCamelCase__ : Tuple = doc_test_results['''time_spent'''].split(''',''' )[0] UpperCamelCase__ : Optional[Any] = doc_test_results['''success'''] UpperCamelCase__ : str = doc_test_results['''failures'''] UpperCamelCase__ : str = self.n_success + self.n_failures # Failures and success of the modeling tests UpperCamelCase__ : List[Any] = doc_test_results @property def UpperCamelCase__ ( self ) -> str: """simple docstring""" UpperCamelCase__ : List[Any] = [self._time_spent] UpperCamelCase__ : str = 0 for time in time_spent: UpperCamelCase__ : List[Any] = time.split(''':''' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(__magic_name__ ) == 1: UpperCamelCase__ : List[Any] = [0, 0, time_parts[0]] UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : int = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : List[str] = total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return f"{int(__magic_name__ )}h{int(__magic_name__ )}m{int(__magic_name__ )}s" @property def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" return { "type": "section", "text": { "type": "plain_text", "text": f"🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.", "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" return { "type": "section", "text": { "type": "plain_text", "text": ( f"There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in" f" {self.time}." ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } @property def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" UpperCamelCase__ : List[Any] = 40 UpperCamelCase__ : Tuple = {k: v['''failed'''] for k, v in doc_test_results.items() if isinstance(__magic_name__, __magic_name__ )} UpperCamelCase__ : List[str] = '''''' for category, failures in category_failures.items(): if len(__magic_name__ ) == 0: continue if report != "": report += "\n\n" report += f"*{category} failures*:".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(__magic_name__ ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": f"The following examples had failures:\n\n\n{report}\n", }, } @property def UpperCamelCase__ ( self ) -> str: """simple docstring""" UpperCamelCase__ : str = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(__magic_name__ ) @staticmethod def UpperCamelCase__ ( ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : Optional[Any] = [ { '''type''': '''section''', '''text''': { '''type''': '''plain_text''', '''text''': '''There was an issue running the tests.''', }, '''accessory''': { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True}, '''url''': f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } ] print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(__magic_name__ )} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''], text='''There was an issue running the tests.''', blocks=__magic_name__, ) def UpperCamelCase__ ( self ) -> Union[str, Any]: """simple docstring""" print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(self.payload )} ) ) UpperCamelCase__ : List[str] = f"{self.n_failures} failures out of {self.n_tests} tests," if self.n_failures else '''All tests passed.''' UpperCamelCase__ : Optional[Any] = client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''], blocks=self.payload, text=__magic_name__, ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__, __magic_name__ ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : Optional[Any] = '''''' for key, value in failures.items(): UpperCamelCase__ : List[Any] = value[:200] + ''' [Truncated]''' if len(__magic_name__ ) > 250 else value failures_text += f"*{key}*\n_{value}_\n\n" UpperCamelCase__ : Union[str, Any] = job_name UpperCamelCase__ : Any = {'''type''': '''section''', '''text''': {'''type''': '''mrkdwn''', '''text''': text}} if job_link is not None: UpperCamelCase__ : Union[str, Any] = { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''GitHub Action job''', '''emoji''': True}, '''url''': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" if self.thread_ts is None: raise ValueError('''Can only post reply if a post has been made.''' ) UpperCamelCase__ : Optional[int] = self.doc_test_results.pop('''job_link''' ) self.doc_test_results.pop('''failures''' ) self.doc_test_results.pop('''success''' ) self.doc_test_results.pop('''time_spent''' ) UpperCamelCase__ : Optional[int] = sorted(self.doc_test_results.items(), key=lambda __magic_name__ : t[0] ) for job, job_result in sorted_dict: if len(job_result['''failures'''] ): UpperCamelCase__ : Any = f"*Num failures* :{len(job_result['failed'] )} \n" UpperCamelCase__ : Optional[Any] = job_result['''failures'''] UpperCamelCase__ : Optional[Any] = self.get_reply_blocks(__magic_name__, __magic_name__, __magic_name__, text=__magic_name__ ) print('''Sending the following reply''' ) print(json.dumps({'''blocks''': blocks} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''], text=f"Results for {job}", blocks=__magic_name__, thread_ts=self.thread_ts['''ts'''], ) time.sleep(1 ) def lowerCAmelCase_ ( ) -> Dict: UpperCamelCase__ : Any = os.environ['''GITHUB_RUN_ID'''] UpperCamelCase__ : Tuple = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100" UpperCamelCase__ : Optional[int] = requests.get(__UpperCAmelCase ).json() UpperCamelCase__ : List[Any] = {} try: jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) UpperCamelCase__ : List[Any] = math.ceil((result['''total_count'''] - 100) / 100 ) for i in range(__UpperCAmelCase ): UpperCamelCase__ : Any = requests.get(url + f"&page={i + 2}" ).json() jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return jobs except Exception as e: print('''Unknown error, could not fetch links.''' , __UpperCAmelCase ) return {} def lowerCAmelCase_ ( __UpperCAmelCase: str ) -> List[Any]: UpperCamelCase__ : Optional[int] = {} if os.path.exists(__UpperCAmelCase ): UpperCamelCase__ : Dict = os.listdir(__UpperCAmelCase ) for file in files: try: with open(os.path.join(__UpperCAmelCase , __UpperCAmelCase ) , encoding='''utf-8''' ) as f: UpperCamelCase__ : int = f.read() except UnicodeDecodeError as e: raise ValueError(f"Could not open {os.path.join(__UpperCAmelCase , __UpperCAmelCase )}." ) from e return _artifact def lowerCAmelCase_ ( ) -> str: class lowercase__ : '''simple docstring''' def __init__( self, __magic_name__ ) -> Tuple: """simple docstring""" UpperCamelCase__ : Any = name UpperCamelCase__ : int = [] def __str__( self ) -> Tuple: """simple docstring""" return self.name def UpperCamelCase__ ( self, __magic_name__ ) -> Union[str, Any]: """simple docstring""" self.paths.append({'''name''': self.name, '''path''': path} ) UpperCamelCase__ : Dict[str, Artifact] = {} UpperCamelCase__ : Union[str, Any] = filter(os.path.isdir , os.listdir() ) for directory in directories: UpperCamelCase__ : Optional[int] = directory if artifact_name not in _available_artifacts: UpperCamelCase__ : Union[str, Any] = Artifact(__UpperCAmelCase ) _available_artifacts[artifact_name].add_path(__UpperCAmelCase ) return _available_artifacts if __name__ == "__main__": UpperCAmelCase_ = get_job_links() UpperCAmelCase_ = retrieve_available_artifacts() UpperCAmelCase_ = collections.OrderedDict( [ ('*.py', 'API Examples'), ('*.md', 'MD Examples'), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' UpperCAmelCase_ = { v: { 'failed': [], 'failures': {}, } for v in docs.values() } # Link to the GitHub Action job UpperCAmelCase_ = github_actions_job_links.get('run_doctests') UpperCAmelCase_ = available_artifacts['doc_tests_gpu_test_reports'].paths[0] UpperCAmelCase_ = retrieve_artifact(artifact_path['name']) if "stats" in artifact: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = handle_test_results(artifact['stats']) UpperCAmelCase_ = failed UpperCAmelCase_ = success UpperCAmelCase_ = time_spent[1:-1] + ', ' UpperCAmelCase_ = extract_first_line_failure(artifact['failures_short']) for line in artifact["summary_short"].split('\n'): if re.search('FAILED', line): UpperCAmelCase_ = line.replace('FAILED ', '') UpperCAmelCase_ = line.split()[0].replace('\n', '') if "::" in line: UpperCAmelCase_ , UpperCAmelCase_ = line.split('::') else: UpperCAmelCase_ , UpperCAmelCase_ = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): UpperCAmelCase_ = docs[file_regex] doc_test_results[category]["failed"].append(test) UpperCAmelCase_ = all_failures[test] if test in all_failures else 'N/A' UpperCAmelCase_ = failure break UpperCAmelCase_ = Message('🤗 Results of the doc tests.', doc_test_results) message.post() message.post_reply()
247
0
import warnings from ..trainer import Trainer from ..utils import logging __lowerCamelCase : List[Any] = logging.get_logger(__name__) class __snake_case ( lowerCamelCase_ ): def __init__( self : Tuple , _lowercase : Optional[int]=None , **_lowercase : List[Any] ): """simple docstring""" warnings.warn( """`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` """ """instead.""" , _lowercase , ) super().__init__(args=_lowercase , **_lowercase )
219
def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : int ) -> str: """simple docstring""" if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) SCREAMING_SNAKE_CASE__ = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" SCREAMING_SNAKE_CASE__ = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" SCREAMING_SNAKE_CASE__ = max(len(__UpperCamelCase ) , len(__UpperCamelCase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(__UpperCamelCase ) , b_binary.zfill(__UpperCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
219
1
def lowerCAmelCase_ ( _lowercase : str , _lowercase : int) -> list: """simple docstring""" a__ : Optional[Any] = word.split() def justify(_lowercase : list , _lowercase : int , _lowercase : int) -> str: a__ : int = max_width - width a__ : str = len(_lowercase) if len(_lowercase) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: a__ : Union[str, Any] = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] a__ : Union[str, Any] = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] a__ : Tuple = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(_lowercase): num_spaces_between_words_list[i] += 1 a__ : int = [] for i in range(_lowercase): # add the word aligned_words_list.append(line[i]) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * """ """) # just add the last word to the sentence aligned_words_list.append(line[-1]) # join the aligned words list to form a justified line return "".join(_lowercase) a__ : Optional[int] = [] a__ : list[str] = [] a__ : int = 0 for word in words: if width + len(_lowercase) + len(_lowercase) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(_lowercase) width += len(_lowercase) else: # justify the line and add it to result answer.append(justify(_lowercase , _lowercase , _lowercase)) # reset new line and new width a__ , a__ : Any = [word], len(_lowercase) a__ : str = max_width - width - len(_lowercase) answer.append(""" """.join(_lowercase) + (remaining_spaces + 1) * """ """) return answer if __name__ == "__main__": from doctest import testmod testmod()
266
import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class snake_case__ (A__ , unittest.TestCase ): """simple docstring""" __lowerCAmelCase :Union[str, Any] = ProphetNetTokenizer __lowerCAmelCase :Any = False def SCREAMING_SNAKE_CASE__( self ) -> Union[str, Any]: """simple docstring""" super().setUp() a__ : Optional[Any] = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] a__ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> str: """simple docstring""" a__ : Any = """UNwant\u00E9d,running""" a__ : Dict = """unwanted, running""" return input_text, output_text def SCREAMING_SNAKE_CASE__( self ) -> Dict: """simple docstring""" a__ : Tuple = self.tokenizer_class(self.vocab_file ) a__ : int = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(__lowercase , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) , [9, 6, 7, 1_2, 1_0, 1_1] ) def SCREAMING_SNAKE_CASE__( self ) -> Union[str, Any]: """simple docstring""" a__ : str = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) , ["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def SCREAMING_SNAKE_CASE__( self ) -> int: """simple docstring""" a__ : int = BasicTokenizer(do_lower_case=__lowercase ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def SCREAMING_SNAKE_CASE__( self ) -> List[Any]: """simple docstring""" a__ : str = BasicTokenizer(do_lower_case=__lowercase , strip_accents=__lowercase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""h\u00E9llo"""] ) def SCREAMING_SNAKE_CASE__( self ) -> str: """simple docstring""" a__ : List[str] = BasicTokenizer(do_lower_case=__lowercase , strip_accents=__lowercase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def SCREAMING_SNAKE_CASE__( self ) -> List[Any]: """simple docstring""" a__ : Optional[Any] = BasicTokenizer(do_lower_case=__lowercase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def SCREAMING_SNAKE_CASE__( self ) -> Optional[int]: """simple docstring""" a__ : List[str] = BasicTokenizer(do_lower_case=__lowercase ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def SCREAMING_SNAKE_CASE__( self ) -> List[str]: """simple docstring""" a__ : str = BasicTokenizer(do_lower_case=__lowercase , strip_accents=__lowercase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def SCREAMING_SNAKE_CASE__( self ) -> Optional[Any]: """simple docstring""" a__ : List[str] = BasicTokenizer(do_lower_case=__lowercase , strip_accents=__lowercase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def SCREAMING_SNAKE_CASE__( self ) -> List[Any]: """simple docstring""" a__ : Union[str, Any] = BasicTokenizer(do_lower_case=__lowercase , never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def SCREAMING_SNAKE_CASE__( self ) -> Optional[Any]: """simple docstring""" a__ : Optional[Any] = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] a__ : Dict = {} for i, token in enumerate(__lowercase ): a__ : Optional[Any] = i a__ : str = WordpieceTokenizer(vocab=__lowercase , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) , ["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) , ["""[UNK]""", """runn""", """##ing"""] ) @require_torch def SCREAMING_SNAKE_CASE__( self ) -> List[Any]: """simple docstring""" a__ : List[Any] = self.tokenizer_class.from_pretrained("""microsoft/prophetnet-large-uncased""" ) a__ : List[Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] a__ : Optional[Any] = [1_0_3_7, 2_1_4_6, 2_0_4_2_3, 2_0_0_5, 7_6_8_0, 7_8_4_9, 3_9_8_9, 1_0_1_2, 1_0_2] a__ : List[Any] = tokenizer(__lowercase , padding=__lowercase , return_tensors="""pt""" ) self.assertIsInstance(__lowercase , __lowercase ) a__ : Optional[int] = list(batch.input_ids.numpy()[0] ) self.assertListEqual(__lowercase , __lowercase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def SCREAMING_SNAKE_CASE__( self ) -> List[str]: """simple docstring""" self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def SCREAMING_SNAKE_CASE__( self ) -> Optional[Any]: """simple docstring""" self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def SCREAMING_SNAKE_CASE__( self ) -> Optional[Any]: """simple docstring""" self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) @slow def SCREAMING_SNAKE_CASE__( self ) -> Optional[int]: """simple docstring""" a__ : Optional[Any] = self.tokenizer_class.from_pretrained("""microsoft/prophetnet-large-uncased""" ) a__ : Dict = tokenizer.encode("""sequence builders""" , add_special_tokens=__lowercase ) a__ : str = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__lowercase ) a__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(__lowercase ) a__ : Optional[int] = tokenizer.build_inputs_with_special_tokens(__lowercase , __lowercase ) assert encoded_sentence == text + [1_0_2] assert encoded_pair == text + [1_0_2] + text_a + [1_0_2]
266
1
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class SCREAMING_SNAKE_CASE__ ( lowerCamelCase_ ): __SCREAMING_SNAKE_CASE = '''Wav2Vec2FeatureExtractor''' __SCREAMING_SNAKE_CASE = '''AutoTokenizer''' def __init__( self,__lowerCamelCase,__lowerCamelCase ): super().__init__(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) A__ = self.feature_extractor A__ = False @classmethod def UpperCamelCase ( cls,__lowerCamelCase,**__lowerCamelCase ): try: return super().from_pretrained(__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) except OSError: warnings.warn( f"Loading a tokenizer inside {cls.__name__} from a config that does not" ''' include a `tokenizer_class` attribute is deprecated and will be ''' '''removed in v5. Please add `\'tokenizer_class\': \'Wav2Vec2CTCTokenizer\'`''' ''' attribute to either your `config.json` or `tokenizer_config.json` ''' '''file to suppress this warning: ''',__SCREAMING_SNAKE_CASE,) A__ = WavaVecaFeatureExtractor.from_pretrained(__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) A__ = WavaVecaCTCTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) return cls(feature_extractor=__SCREAMING_SNAKE_CASE,tokenizer=__SCREAMING_SNAKE_CASE ) def __call__( self,*__lowerCamelCase,**__lowerCamelCase ): if self._in_target_context_manager: return self.current_processor(*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) A__ = kwargs.pop('''raw_speech''' ) else: A__ = kwargs.pop('''audio''',__SCREAMING_SNAKE_CASE ) A__ = kwargs.pop('''sampling_rate''',__SCREAMING_SNAKE_CASE ) A__ = kwargs.pop('''text''',__SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) > 0: A__ = args[0] A__ = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: A__ = self.feature_extractor(__SCREAMING_SNAKE_CASE,*__SCREAMING_SNAKE_CASE,sampling_rate=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) if text is not None: A__ = self.tokenizer(__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) if text is None: return inputs elif audio is None: return encodings else: A__ = encodings['''input_ids'''] return inputs def UpperCamelCase ( self,*__lowerCamelCase,**__lowerCamelCase ): if self._in_target_context_manager: return self.current_processor.pad(*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) A__ = kwargs.pop('''input_features''',__SCREAMING_SNAKE_CASE ) A__ = kwargs.pop('''labels''',__SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) > 0: A__ = args[0] A__ = args[1:] if input_features is not None: A__ = self.feature_extractor.pad(__SCREAMING_SNAKE_CASE,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) if labels is not None: A__ = self.tokenizer.pad(__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) if labels is None: return input_features elif input_features is None: return labels else: A__ = labels['''input_ids'''] return input_features def UpperCamelCase ( self,*__lowerCamelCase,**__lowerCamelCase ): return self.tokenizer.batch_decode(*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self,*__lowerCamelCase,**__lowerCamelCase ): return self.tokenizer.decode(*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) @contextmanager def UpperCamelCase ( self ): warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) A__ = True A__ = self.tokenizer yield A__ = self.feature_extractor A__ = False
193
'''simple docstring''' from __future__ import annotations from collections import Counter from random import random class lowerCAmelCase__ : def __init__( self ): """simple docstring""" lowercase_ : int = {} def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Dict = {} def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" if nodea not in self.connections: self.add_node(__SCREAMING_SNAKE_CASE ) if nodea not in self.connections: self.add_node(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = probability def _snake_case ( self ): """simple docstring""" return list(self.connections ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Any = 0 lowercase_ : Tuple = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def snake_case_ ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : list[tuple[str, str, float]] , __SCREAMING_SNAKE_CASE : int ): """simple docstring""" lowercase_ : List[Any] = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : str = Counter(graph.get_nodes() ) lowercase_ : Any = start for _ in range(__SCREAMING_SNAKE_CASE ): lowercase_ : int = graph.transition(__SCREAMING_SNAKE_CASE ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
93
0
import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device lowercase__ : List[Any] = False class a__ ( unittest.TestCase ): pass @slow @require_torch_gpu class a__ ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> Optional[Any]: '''simple docstring''' a = VersatileDiffusionImageVariationPipeline.from_pretrained("shi-labs/versatile-diffusion" ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" ) a = torch.manual_seed(0 ) a = pipe( image=a__ , generator=a__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" , ).images a = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) a = np.array([0.0_4_4_1, 0.0_4_6_9, 0.0_5_0_7, 0.0_5_7_5, 0.0_6_3_2, 0.0_6_5_0, 0.0_8_6_5, 0.0_9_0_9, 0.0_9_4_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
364
import math import sys def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> int: if number != int(__UpperCamelCase): raise ValueError("the value of input must be a natural number") if number < 0: raise ValueError("the value of input must not be a negative number") if number == 0: return 1 a = [-1] * (number + 1) a = 0 for i in range(1 , number + 1): a = sys.maxsize a = int(math.sqrt(__UpperCamelCase)) for j in range(1 , root + 1): a = 1 + answers[i - (j**2)] a = min(__UpperCamelCase , __UpperCamelCase) a = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
180
0
'''simple docstring''' from __future__ import annotations def __snake_case ( UpperCAmelCase_ : int ): lowerCamelCase_ = 2 lowerCamelCase_ = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(UpperCAmelCase_ ) if n > 1: factors.append(UpperCAmelCase_ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
55
'''simple docstring''' from __future__ import annotations def __snake_case ( UpperCAmelCase_ : int ): lowerCamelCase_ = 2 lowerCamelCase_ = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(UpperCAmelCase_ ) if n > 1: factors.append(UpperCAmelCase_ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
55
1
from __future__ import annotations _snake_case = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] _snake_case = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [] _lowerCAmelCase : Dict = len(_lowerCamelCase ) for i in range(_lowerCamelCase ): _lowerCAmelCase : float = -1 for j in range(i + 1 , _lowerCamelCase ): if arr[i] < arr[j]: _lowerCAmelCase : Optional[int] = arr[j] break result.append(_lowerCamelCase ) return result def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = [] for i, outer in enumerate(_lowerCamelCase ): _lowerCAmelCase : float = -1 for inner in arr[i + 1 :]: if outer < inner: _lowerCAmelCase : str = inner break result.append(_lowerCamelCase ) return result def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = len(_lowerCamelCase ) _lowerCAmelCase : list[float] = [] _lowerCAmelCase : list[float] = [-1] * arr_size for index in reversed(range(_lowerCamelCase ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: _lowerCAmelCase : List[Any] = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) _snake_case = ( "from __main__ import arr, next_greatest_element_slow, " "next_greatest_element_fast, next_greatest_element" ) print( "next_greatest_element_slow():", timeit("next_greatest_element_slow(arr)", setup=setup), ) print( "next_greatest_element_fast():", timeit("next_greatest_element_fast(arr)", setup=setup), ) print( " next_greatest_element():", timeit("next_greatest_element(arr)", setup=setup), )
300
_snake_case = 8.3144598 def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if temperature < 0: raise Exception("Temperature cannot be less than 0 K" ) if molar_mass <= 0: raise Exception("Molar mass cannot be less than or equal to 0 kg/mol" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example _snake_case = 300 _snake_case = 28 _snake_case = rms_speed_of_molecule(temperature, molar_mass) print(f'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
300
1
"""simple docstring""" def _A (__a ) -> list: """simple docstring""" if len(__a ) < 2: return collection def circle_sort_util(__a , __a , __a ) -> bool: SCREAMING_SNAKE_CASE_ : Tuple = False if low == high: return swapped SCREAMING_SNAKE_CASE_ : Any = low SCREAMING_SNAKE_CASE_ : List[Any] = high while left < right: if collection[left] > collection[right]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = ( collection[right], collection[left], ) SCREAMING_SNAKE_CASE_ : str = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = ( collection[right + 1], collection[left], ) SCREAMING_SNAKE_CASE_ : List[Any] = True SCREAMING_SNAKE_CASE_ : Optional[Any] = low + int((high - low) / 2 ) SCREAMING_SNAKE_CASE_ : Optional[int] = circle_sort_util(__a , __a , __a ) SCREAMING_SNAKE_CASE_ : Optional[int] = circle_sort_util(__a , mid + 1 , __a ) return swapped or left_swap or right_swap SCREAMING_SNAKE_CASE_ : str = True while is_not_sorted is True: SCREAMING_SNAKE_CASE_ : Union[str, Any] = circle_sort_util(__a , 0 , len(__a ) - 1 ) return collection if __name__ == "__main__": UpperCAmelCase_ : int = input("""Enter numbers separated by a comma:\n""").strip() UpperCAmelCase_ : Tuple = [int(item) for item in user_input.split(""",""")] print(circle_sort(unsorted))
91
"""simple docstring""" import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class A__ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> str: """simple docstring""" __lowerCAmelCase : Optional[Any] = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small") __lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained("google/mt5-small") __lowerCAmelCase : Tuple = tokenizer("Hello there" , return_tensors="np").input_ids __lowerCAmelCase : Dict = tokenizer("Hi I am" , return_tensors="np").input_ids __lowerCAmelCase : str = shift_tokens_right(_SCREAMING_SNAKE_CASE , model.config.pad_token_id , model.config.decoder_start_token_id) __lowerCAmelCase : Optional[int] = model(_SCREAMING_SNAKE_CASE , decoder_input_ids=_SCREAMING_SNAKE_CASE).logits __lowerCAmelCase : int = optax.softmax_cross_entropy(_SCREAMING_SNAKE_CASE , onehot(_SCREAMING_SNAKE_CASE , logits.shape[-1])).mean() __lowerCAmelCase : List[str] = -(labels.shape[-1] * loss.item()) __lowerCAmelCase : str = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4)
269
0
'''simple docstring''' def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str , _UpperCamelCase : list[str] ) -> str: '''simple docstring''' UpperCamelCase__ = "" for word_or_phrase in separated: if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise Exception("join() accepts only strings to be joined" ) joined += word_or_phrase + separator return joined.strip(_UpperCamelCase ) if __name__ == "__main__": from doctest import testmod testmod()
31
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowercase: int = logging.get_logger(__name__) __lowercase: str = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : List[str] = 'yolos' def __init__( self : List[str], a_ : Optional[int]=768, a_ : Optional[int]=12, a_ : Any=12, a_ : List[str]=3072, a_ : Any="gelu", a_ : int=0.0, a_ : List[Any]=0.0, a_ : Dict=0.02, a_ : Optional[int]=1e-1_2, a_ : List[Any]=[512, 864], a_ : Any=16, a_ : Any=3, a_ : Tuple=True, a_ : List[str]=100, a_ : Union[str, Any]=True, a_ : Any=False, a_ : List[str]=1, a_ : Tuple=5, a_ : Union[str, Any]=2, a_ : int=5, a_ : Union[str, Any]=2, a_ : Dict=0.1, **a_ : Dict, ): """simple docstring""" super().__init__(**a_ ) UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = image_size UpperCamelCase__ = patch_size UpperCamelCase__ = num_channels UpperCamelCase__ = qkv_bias UpperCamelCase__ = num_detection_tokens UpperCamelCase__ = use_mid_position_embeddings UpperCamelCase__ = auxiliary_loss # Hungarian matcher UpperCamelCase__ = class_cost UpperCamelCase__ = bbox_cost UpperCamelCase__ = giou_cost # Loss coefficients UpperCamelCase__ = bbox_loss_coefficient UpperCamelCase__ = giou_loss_coefficient UpperCamelCase__ = eos_coefficient class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : Union[str, Any] = version.parse('1.11') @property def lowercase_ ( self : str ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowercase_ ( self : Tuple ): """simple docstring""" return 1e-4 @property def lowercase_ ( self : Optional[int] ): """simple docstring""" return 12
31
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {} class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = '''llama''' __snake_case = ['''past_key_values'''] def __init__( self : Optional[Any] , __UpperCAmelCase : Union[str, Any]=32_000 , __UpperCAmelCase : str=4_096 , __UpperCAmelCase : int=11_008 , __UpperCAmelCase : Tuple=32 , __UpperCAmelCase : Optional[int]=32 , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : Union[str, Any]="silu" , __UpperCAmelCase : Tuple=2_048 , __UpperCAmelCase : Optional[Any]=0.02 , __UpperCAmelCase : Any=1e-6 , __UpperCAmelCase : Union[str, Any]=True , __UpperCAmelCase : Optional[int]=0 , __UpperCAmelCase : Optional[int]=1 , __UpperCAmelCase : Optional[int]=2 , __UpperCAmelCase : Tuple=1 , __UpperCAmelCase : List[str]=False , __UpperCAmelCase : Tuple=None , **__UpperCAmelCase : Tuple , ) ->str: """simple docstring""" a = vocab_size a = max_position_embeddings a = hidden_size a = intermediate_size a = num_hidden_layers a = num_attention_heads # for backward compatibility if num_key_value_heads is None: a = num_attention_heads a = num_key_value_heads a = hidden_act a = initializer_range a = rms_norm_eps a = pretraining_tp a = use_cache a = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , tie_word_embeddings=__UpperCAmelCase , **__UpperCAmelCase , ) def __lowerCAmelCase ( self : Tuple ) ->Tuple: """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __UpperCAmelCase ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' F"""got {self.rope_scaling}""" ) a = self.rope_scaling.get('''type''' , __UpperCAmelCase ) a = self.rope_scaling.get('''factor''' , __UpperCAmelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or rope_scaling_factor <= 1.0: raise ValueError(F"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
0
'''simple docstring''' import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,) -> Optional[int]: if config_name_or_path is None: __lowerCamelCase : List[Any] = 'facebook/rag-token-base' if model_type == 'rag_token' else 'facebook/rag-sequence-base' if generator_tokenizer_name_or_path is None: __lowerCamelCase : Optional[int] = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: __lowerCamelCase : Tuple = question_encoder_name_or_path __lowerCamelCase : Union[str, Any] = RagTokenForGeneration if model_type == 'rag_token' else RagSequenceForGeneration # Save model. __lowerCamelCase : Tuple = RagConfig.from_pretrained(_lowerCAmelCase ) __lowerCamelCase : List[Any] = AutoConfig.from_pretrained(_lowerCAmelCase ) __lowerCamelCase : Union[str, Any] = AutoConfig.from_pretrained(_lowerCAmelCase ) __lowerCamelCase : Tuple = gen_config __lowerCamelCase : List[Any] = question_encoder_config __lowerCamelCase : str = model_class.from_pretrained_question_encoder_generator( _lowerCAmelCase ,_lowerCAmelCase ,config=_lowerCAmelCase ) rag_model.save_pretrained(_lowerCAmelCase ) # Sanity check. model_class.from_pretrained(_lowerCAmelCase ) # Save tokenizers. __lowerCamelCase : List[str] = AutoTokenizer.from_pretrained(_lowerCAmelCase ) gen_tokenizer.save_pretrained(dest_dir / 'generator_tokenizer/' ) __lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained(_lowerCAmelCase ) question_encoder_tokenizer.save_pretrained(dest_dir / 'question_encoder_tokenizer/' ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '--model_type', choices=['rag_sequence', 'rag_token'], required=True, type=str, help='RAG model type: rag_sequence, rag_token', ) parser.add_argument('--dest', type=str, required=True, help='Path to the output checkpoint directory.') parser.add_argument('--generator_name_or_path', type=str, required=True, help='Generator model identifier') parser.add_argument( '--question_encoder_name_or_path', type=str, required=True, help='Question encoder model identifier' ) parser.add_argument( '--generator_tokenizer_name_or_path', type=str, help='Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``', ) parser.add_argument( '--question_encoder_tokenizer_name_or_path', type=str, help='Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``', ) parser.add_argument( '--config_name_or_path', type=str, help=( 'Identifier of the model config to use, if not provided, resolves to a base config for a given' ' ``model_type``' ), ) _UpperCamelCase = parser.parse_args() _UpperCamelCase = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
208
0
import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast _snake_case : Tuple = datasets.utils.logging.get_logger(__name__) @dataclass class a (datasets.BuilderConfig ): """simple docstring""" __UpperCAmelCase : int = 1_0000 __UpperCAmelCase : Optional[List[str]] = None __UpperCAmelCase : Optional[datasets.Features] = None class a (datasets.ArrowBasedBuilder ): """simple docstring""" __UpperCAmelCase : Tuple = ParquetConfig def __snake_case ( self : Union[str, Any] ) -> Optional[Any]: return datasets.DatasetInfo(features=self.config.features ) def __snake_case ( self : int , lowerCamelCase : Tuple ) -> Dict: if not self.config.data_files: raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}' ) __snake_case : Any = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCamelCase , (str, list, tuple) ): __snake_case : Dict = data_files if isinstance(lowerCamelCase , lowerCamelCase ): __snake_case : Union[str, Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __snake_case : str = [dl_manager.iter_files(lowerCamelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] __snake_case : Union[str, Any] = [] for split_name, files in data_files.items(): if isinstance(lowerCamelCase , lowerCamelCase ): __snake_case : List[str] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __snake_case : Any = [dl_manager.iter_files(lowerCamelCase ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(lowerCamelCase ): with open(lowerCamelCase , "rb" ) as f: __snake_case : Dict = datasets.Features.from_arrow_schema(pq.read_schema(lowerCamelCase ) ) break splits.append(datasets.SplitGenerator(name=lowerCamelCase , gen_kwargs={"files": files} ) ) return splits def __snake_case ( self : List[Any] , lowerCamelCase : pa.Table ) -> pa.Table: if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __snake_case : Optional[int] = table_cast(lowerCamelCase , self.info.features.arrow_schema ) return pa_table def __snake_case ( self : Optional[int] , lowerCamelCase : Dict ) -> List[str]: __snake_case : List[str] = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( F'Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'' ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCamelCase ) ): with open(lowerCamelCase , "rb" ) as f: __snake_case : int = pq.ParquetFile(lowerCamelCase ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): __snake_case : int = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield F'{file_idx}_{batch_idx}', self._cast_table(lowerCamelCase ) except ValueError as e: logger.error(F'Failed to read file \'{file}\' with error {type(lowerCamelCase )}: {e}' ) raise
134
from __future__ import annotations from functools import lru_cache from math import ceil _snake_case : Tuple = 100 _snake_case : int = set(range(3, NUM_PRIMES, 2)) primes.add(2) _snake_case : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_0_0 ) def lowerCAmelCase_ ( __lowerCamelCase ): if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} __snake_case : set[int] = set() __snake_case : int __snake_case : int for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def lowerCAmelCase_ ( __lowerCamelCase = 5_0_0_0 ): for number_to_partition in range(1 , __lowerCamelCase ): if len(partition(__lowerCamelCase ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(f'''{solution() = }''')
134
1
"""simple docstring""" # This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES lowercase__ = """tiny-wmt19-en-ru""" # Build # borrowed from a test lowercase__ = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] lowercase__ = dict(zip(vocab, range(len(vocab)))) lowercase__ = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ = Path(tmpdirname) lowercase__ = build_dir / VOCAB_FILES_NAMES["""src_vocab_file"""] lowercase__ = build_dir / VOCAB_FILES_NAMES["""tgt_vocab_file"""] lowercase__ = build_dir / VOCAB_FILES_NAMES["""merges_file"""] with open(src_vocab_file, """w""") as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, """w""") as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, """w""") as fp: fp.write("""\n""".join(merges)) lowercase__ = FSMTTokenizer( langs=["""en""", """ru"""], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) lowercase__ = FSMTConfig( langs=["""ru""", """en"""], src_vocab_size=1000, tgt_vocab_size=1000, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) lowercase__ = FSMTForConditionalGeneration(config) print(F"num of params {tiny_model.num_parameters()}") # Test lowercase__ = tokenizer(["""Making tiny model"""], return_tensors="""pt""") lowercase__ = tiny_model(**batch) print("""test output:""", len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F"Generated {mname_tiny}") # Upload # transformers-cli upload tiny-wmt19-en-ru
96
def lowerCAmelCase_ ( snake_case_,snake_case_ ): while b: _A , _A : List[str] = b, a % b return a def lowerCAmelCase_ ( snake_case_,snake_case_ ): return a if b == 0 else euclidean_gcd_recursive(snake_case_,a % b ) def lowerCAmelCase_ ( ): print(f'''euclidean_gcd(3, 5) = {euclidean_gcd(3,5 )}''' ) print(f'''euclidean_gcd(5, 3) = {euclidean_gcd(5,3 )}''' ) print(f'''euclidean_gcd(1, 3) = {euclidean_gcd(1,3 )}''' ) print(f'''euclidean_gcd(3, 6) = {euclidean_gcd(3,6 )}''' ) print(f'''euclidean_gcd(6, 3) = {euclidean_gcd(6,3 )}''' ) print(f'''euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3,5 )}''' ) print(f'''euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5,3 )}''' ) print(f'''euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1,3 )}''' ) print(f'''euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3,6 )}''' ) print(f'''euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6,3 )}''' ) if __name__ == "__main__": main()
26
0
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class A__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self) -> Dict: '''simple docstring''' a__ : List[str] = { """task_specific_params""": { """summarization""": {"""length_penalty""": 1.0, """max_length""": 128, """min_length""": 12, """num_beams""": 4}, """summarization_cnn""": {"""length_penalty""": 2.0, """max_length""": 142, """min_length""": 56, """num_beams""": 4}, """summarization_xsum""": {"""length_penalty""": 1.0, """max_length""": 62, """min_length""": 11, """num_beams""": 6}, } } a__ : Optional[Any] = { """task_specific_params.summarization.length_penalty""": 1.0, """task_specific_params.summarization.max_length""": 128, """task_specific_params.summarization.min_length""": 12, """task_specific_params.summarization.num_beams""": 4, """task_specific_params.summarization_cnn.length_penalty""": 2.0, """task_specific_params.summarization_cnn.max_length""": 142, """task_specific_params.summarization_cnn.min_length""": 56, """task_specific_params.summarization_cnn.num_beams""": 4, """task_specific_params.summarization_xsum.length_penalty""": 1.0, """task_specific_params.summarization_xsum.max_length""": 62, """task_specific_params.summarization_xsum.min_length""": 11, """task_specific_params.summarization_xsum.num_beams""": 6, } self.assertEqual(flatten_dict(_SCREAMING_SNAKE_CASE) , _SCREAMING_SNAKE_CASE) def __lowercase ( self) -> str: '''simple docstring''' a__ : str = np.random.randn(3 , 4) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE) , x.transpose())) a__ : List[Any] = np.random.randn(3 , 4 , 5) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0)) , x.transpose((1, 2, 0)))) @require_torch def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' a__ : Optional[int] = np.random.randn(3 , 4) a__ : Tuple = torch.tensor(_SCREAMING_SNAKE_CASE) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE) , transpose(_SCREAMING_SNAKE_CASE).numpy())) a__ : List[str] = np.random.randn(3 , 4 , 5) a__ : List[str] = torch.tensor(_SCREAMING_SNAKE_CASE) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0)) , transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0)).numpy())) @require_tf def __lowercase ( self) -> str: '''simple docstring''' a__ : Optional[int] = np.random.randn(3 , 4) a__ : Dict = tf.constant(_SCREAMING_SNAKE_CASE) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE) , transpose(_SCREAMING_SNAKE_CASE).numpy())) a__ : List[Any] = np.random.randn(3 , 4 , 5) a__ : List[Any] = tf.constant(_SCREAMING_SNAKE_CASE) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0)) , transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0)).numpy())) @require_flax def __lowercase ( self) -> Tuple: '''simple docstring''' a__ : List[Any] = np.random.randn(3 , 4) a__ : Union[str, Any] = jnp.array(_SCREAMING_SNAKE_CASE) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE) , np.asarray(transpose(_SCREAMING_SNAKE_CASE)))) a__ : Dict = np.random.randn(3 , 4 , 5) a__ : int = jnp.array(_SCREAMING_SNAKE_CASE) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0)) , np.asarray(transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0))))) def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' a__ : str = np.random.randn(3 , 4) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (4, 3)) , np.reshape(_SCREAMING_SNAKE_CASE , (4, 3)))) a__ : Any = np.random.randn(3 , 4 , 5) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (12, 5)) , np.reshape(_SCREAMING_SNAKE_CASE , (12, 5)))) @require_torch def __lowercase ( self) -> List[str]: '''simple docstring''' a__ : int = np.random.randn(3 , 4) a__ : str = torch.tensor(_SCREAMING_SNAKE_CASE) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (4, 3)) , reshape(_SCREAMING_SNAKE_CASE , (4, 3)).numpy())) a__ : Dict = np.random.randn(3 , 4 , 5) a__ : Tuple = torch.tensor(_SCREAMING_SNAKE_CASE) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (12, 5)) , reshape(_SCREAMING_SNAKE_CASE , (12, 5)).numpy())) @require_tf def __lowercase ( self) -> List[Any]: '''simple docstring''' a__ : int = np.random.randn(3 , 4) a__ : Union[str, Any] = tf.constant(_SCREAMING_SNAKE_CASE) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (4, 3)) , reshape(_SCREAMING_SNAKE_CASE , (4, 3)).numpy())) a__ : Optional[Any] = np.random.randn(3 , 4 , 5) a__ : List[Any] = tf.constant(_SCREAMING_SNAKE_CASE) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (12, 5)) , reshape(_SCREAMING_SNAKE_CASE , (12, 5)).numpy())) @require_flax def __lowercase ( self) -> str: '''simple docstring''' a__ : Optional[Any] = np.random.randn(3 , 4) a__ : Union[str, Any] = jnp.array(_SCREAMING_SNAKE_CASE) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (4, 3)) , np.asarray(reshape(_SCREAMING_SNAKE_CASE , (4, 3))))) a__ : List[str] = np.random.randn(3 , 4 , 5) a__ : List[str] = jnp.array(_SCREAMING_SNAKE_CASE) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (12, 5)) , np.asarray(reshape(_SCREAMING_SNAKE_CASE , (12, 5))))) def __lowercase ( self) -> int: '''simple docstring''' a__ : List[str] = np.random.randn(1 , 3 , 4) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE) , np.squeeze(_SCREAMING_SNAKE_CASE))) a__ : Union[str, Any] = np.random.randn(1 , 4 , 1 , 5) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE , axis=2) , np.squeeze(_SCREAMING_SNAKE_CASE , axis=2))) @require_torch def __lowercase ( self) -> int: '''simple docstring''' a__ : List[Any] = np.random.randn(1 , 3 , 4) a__ : List[str] = torch.tensor(_SCREAMING_SNAKE_CASE) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE) , squeeze(_SCREAMING_SNAKE_CASE).numpy())) a__ : int = np.random.randn(1 , 4 , 1 , 5) a__ : Tuple = torch.tensor(_SCREAMING_SNAKE_CASE) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE , axis=2) , squeeze(_SCREAMING_SNAKE_CASE , axis=2).numpy())) @require_tf def __lowercase ( self) -> str: '''simple docstring''' a__ : int = np.random.randn(1 , 3 , 4) a__ : Dict = tf.constant(_SCREAMING_SNAKE_CASE) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE) , squeeze(_SCREAMING_SNAKE_CASE).numpy())) a__ : Dict = np.random.randn(1 , 4 , 1 , 5) a__ : List[str] = tf.constant(_SCREAMING_SNAKE_CASE) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE , axis=2) , squeeze(_SCREAMING_SNAKE_CASE , axis=2).numpy())) @require_flax def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' a__ : int = np.random.randn(1 , 3 , 4) a__ : Optional[Any] = jnp.array(_SCREAMING_SNAKE_CASE) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE) , np.asarray(squeeze(_SCREAMING_SNAKE_CASE)))) a__ : Optional[Any] = np.random.randn(1 , 4 , 1 , 5) a__ : Optional[Any] = jnp.array(_SCREAMING_SNAKE_CASE) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE , axis=2) , np.asarray(squeeze(_SCREAMING_SNAKE_CASE , axis=2)))) def __lowercase ( self) -> List[str]: '''simple docstring''' a__ : Dict = np.random.randn(3 , 4) self.assertTrue(np.allclose(expand_dims(_SCREAMING_SNAKE_CASE , axis=1) , np.expand_dims(_SCREAMING_SNAKE_CASE , axis=1))) @require_torch def __lowercase ( self) -> str: '''simple docstring''' a__ : Tuple = np.random.randn(3 , 4) a__ : str = torch.tensor(_SCREAMING_SNAKE_CASE) self.assertTrue(np.allclose(expand_dims(_SCREAMING_SNAKE_CASE , axis=1) , expand_dims(_SCREAMING_SNAKE_CASE , axis=1).numpy())) @require_tf def __lowercase ( self) -> Optional[Any]: '''simple docstring''' a__ : int = np.random.randn(3 , 4) a__ : List[str] = tf.constant(_SCREAMING_SNAKE_CASE) self.assertTrue(np.allclose(expand_dims(_SCREAMING_SNAKE_CASE , axis=1) , expand_dims(_SCREAMING_SNAKE_CASE , axis=1).numpy())) @require_flax def __lowercase ( self) -> List[Any]: '''simple docstring''' a__ : Optional[int] = np.random.randn(3 , 4) a__ : Optional[Any] = jnp.array(_SCREAMING_SNAKE_CASE) self.assertTrue(np.allclose(expand_dims(_SCREAMING_SNAKE_CASE , axis=1) , np.asarray(expand_dims(_SCREAMING_SNAKE_CASE , axis=1))))
360
import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def A_ ( A__ , A__ , A__ ) -> Any: # Construct model if gpta_config_file == "": a__ : Optional[int] = GPTaConfig() else: a__ : List[str] = GPTaConfig.from_json_file(A__ ) a__ : List[str] = GPTaModel(A__ ) # Load weights from numpy load_tf_weights_in_gpta(A__ , A__ , A__ ) # Save pytorch-model a__ : Optional[Any] = pytorch_dump_folder_path + '/' + WEIGHTS_NAME a__ : Any = pytorch_dump_folder_path + '/' + CONFIG_NAME print(F'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(model.state_dict() , A__ ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(A__ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowercase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( """--gpt2_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--gpt2_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained OpenAI model. \n""" """This specifies the model architecture.""" ), ) lowercase : int = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
225
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class a_ ( lowerCamelCase ): lowercase = """Salesforce/blip-image-captioning-base""" lowercase = ( """This is a tool that generates a description of an image. It takes an input named `image` which should be the """ """image to caption, and returns a text that contains the description in English.""" ) lowercase = """image_captioner""" lowercase = AutoModelForVisionaSeq lowercase = ["""image"""] lowercase = ["""text"""] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" requires_backends(self , ["""vision"""] ) super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def A__ ( self , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" return self.pre_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) def A__ ( self , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" return self.model.generate(**_SCREAMING_SNAKE_CASE ) def A__ ( self , _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" return self.pre_processor.batch_decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE )[0].strip()
321
'''simple docstring''' import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem SCREAMING_SNAKE_CASE__ = importlib.util.find_spec('s3fs') is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 SCREAMING_SNAKE_CASE__ = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(f'A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.') fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def lowercase__ ( __UpperCamelCase )-> str: if "://" in dataset_path: UpperCamelCase = dataset_path.split("""://""" )[1] return dataset_path def lowercase__ ( __UpperCamelCase )-> bool: if fs is not None and fs.protocol != "file": return True else: return False def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> int: UpperCamelCase = not is_remote_filesystem(__UpperCamelCase ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(__UpperCamelCase ) , fs._strip_protocol(__UpperCamelCase ) ) else: fs.mv(__UpperCamelCase , __UpperCamelCase , recursive=__UpperCamelCase ) def lowercase__ ( )-> None: if hasattr(fsspec.asyn , """reset_lock""" ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: UpperCamelCase = None UpperCamelCase = None UpperCamelCase = threading.Lock()
321
1
from __future__ import annotations import bisect def _snake_case( SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : int = -1 ) -> int: '''simple docstring''' if hi < 0: A__ = len(SCREAMING_SNAKE_CASE__ ) while lo < hi: A__ = lo + (hi - lo) // 2 if sorted_collection[mid] < item: A__ = mid + 1 else: A__ = mid return lo def _snake_case( SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : int = -1 ) -> int: '''simple docstring''' if hi < 0: A__ = len(SCREAMING_SNAKE_CASE__ ) while lo < hi: A__ = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: A__ = mid + 1 else: A__ = mid return lo def _snake_case( SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : int = -1 ) -> None: '''simple docstring''' sorted_collection.insert(bisect_left(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : int = -1 ) -> None: '''simple docstring''' sorted_collection.insert(bisect_right(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : int ) -> int | None: '''simple docstring''' A__ = 0 A__ = len(SCREAMING_SNAKE_CASE__ ) - 1 while left <= right: A__ = left + (right - left) // 2 A__ = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: A__ = midpoint - 1 else: A__ = midpoint + 1 return None def _snake_case( SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : int ) -> int | None: '''simple docstring''' A__ = bisect.bisect_left(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if index != len(SCREAMING_SNAKE_CASE__ ) and sorted_collection[index] == item: return index return None def _snake_case( SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> int | None: '''simple docstring''' if right < left: return None A__ = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , midpoint - 1 ) else: return binary_search_by_recursion(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , midpoint + 1 , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowercase_ = input("Enter numbers separated by comma:\n").strip() lowercase_ = sorted(int(item) for item in user_input.split(",")) lowercase_ = int(input("Enter a single number to be found in the list:\n")) lowercase_ = binary_search(collection, target) if result is None: print(f"""{target} was not found in {collection}.""") else: print(f"""{target} was found at position {result} in {collection}.""")
369
import numpy as np from transformers import Pipeline def _snake_case( SCREAMING_SNAKE_CASE__ : int ) -> int: '''simple docstring''' A__ = np.max(SCREAMING_SNAKE_CASE__ , axis=-1 , keepdims=SCREAMING_SNAKE_CASE__ ) A__ = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=SCREAMING_SNAKE_CASE__ ) class A ( _UpperCAmelCase ): """simple docstring""" def snake_case__ ( self : Dict,**lowercase_ : Tuple )-> Tuple: '''simple docstring''' A__ = {} if "second_text" in kwargs: A__ = kwargs['second_text'] return preprocess_kwargs, {}, {} def snake_case__ ( self : List[Any],lowercase_ : int,lowercase_ : Optional[int]=None )-> List[str]: '''simple docstring''' return self.tokenizer(lowercase_,text_pair=lowercase_,return_tensors=self.framework ) def snake_case__ ( self : str,lowercase_ : Dict )-> List[str]: '''simple docstring''' return self.model(**lowercase_ ) def snake_case__ ( self : Dict,lowercase_ : Optional[int] )-> Dict: '''simple docstring''' A__ = model_outputs.logits[0].numpy() A__ = softmax(lowercase_ ) A__ = np.argmax(lowercase_ ) A__ = self.model.config.idalabel[best_class] A__ = probabilities[best_class].item() A__ = logits.tolist() return {"label": label, "score": score, "logits": logits}
282
0
"""simple docstring""" from __future__ import annotations from typing import Any def _SCREAMING_SNAKE_CASE ( _lowercase : list ) ->int: '''simple docstring''' if not postfix_notation: return 0 a : List[str] = {"+", "-", "*", "/"} a : list[Any] = [] for token in postfix_notation: if token in operations: a, a : int = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(_lowercase ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
105
"""simple docstring""" import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors UpperCAmelCase : Any = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = "sequence-classification" def __init__( self : Optional[Any] , lowerCAmelCase_ : int): """simple docstring""" if type(lowerCAmelCase_) == dict: lowercase_ = Namespace(**lowerCAmelCase_) lowercase_ = glue_output_modes[hparams.task] lowercase_ = glue_tasks_num_labels[hparams.task] super().__init__(lowerCAmelCase_ , lowerCAmelCase_ , self.mode) def _UpperCAmelCase ( self : Optional[int] , **lowerCAmelCase_ : Optional[int]): """simple docstring""" return self.model(**lowerCAmelCase_) def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any]): """simple docstring""" lowercase_ = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: lowercase_ = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None lowercase_ = self(**lowerCAmelCase_) lowercase_ = outputs[0] lowercase_ = self.trainer.lr_schedulers[0]["""scheduler"""] lowercase_ = {"""loss""": loss, """rate""": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = self.hparams lowercase_ = processors[args.task]() lowercase_ = processor.get_labels() for mode in ["train", "dev"]: lowercase_ = self._feature_file(lowerCAmelCase_) if os.path.exists(lowerCAmelCase_) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" , lowerCAmelCase_) else: logger.info("""Creating features from dataset file at %s""" , args.data_dir) lowercase_ = ( processor.get_dev_examples(args.data_dir) if mode == """dev""" else processor.get_train_examples(args.data_dir) ) lowercase_ = convert_examples_to_features( lowerCAmelCase_ , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info("""Saving features into cached file %s""" , lowerCAmelCase_) torch.save(lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : int , lowerCAmelCase_ : bool = False): """simple docstring""" lowercase_ = """dev""" if mode == """test""" else mode lowercase_ = self._feature_file(lowerCAmelCase_) logger.info("""Loading features from cached file %s""" , lowerCAmelCase_) lowercase_ = torch.load(lowerCAmelCase_) lowercase_ = torch.tensor([f.input_ids for f in features] , dtype=torch.long) lowercase_ = torch.tensor([f.attention_mask for f in features] , dtype=torch.long) lowercase_ = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long) if self.hparams.glue_output_mode == "classification": lowercase_ = torch.tensor([f.label for f in features] , dtype=torch.long) elif self.hparams.glue_output_mode == "regression": lowercase_ = torch.tensor([f.label for f in features] , dtype=torch.float) return DataLoader( TensorDataset(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) , batch_size=lowerCAmelCase_ , shuffle=lowerCAmelCase_ , ) def _UpperCAmelCase ( self : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any]): """simple docstring""" lowercase_ = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: lowercase_ = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None lowercase_ = self(**lowerCAmelCase_) lowercase_ , lowercase_ = outputs[:2] lowercase_ = logits.detach().cpu().numpy() lowercase_ = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _UpperCAmelCase ( self : str , lowerCAmelCase_ : int): """simple docstring""" lowercase_ = torch.stack([x["""val_loss"""] for x in outputs]).mean().detach().cpu().item() lowercase_ = np.concatenate([x["""pred"""] for x in outputs] , axis=0) if self.hparams.glue_output_mode == "classification": lowercase_ = np.argmax(lowerCAmelCase_ , axis=1) elif self.hparams.glue_output_mode == "regression": lowercase_ = np.squeeze(lowerCAmelCase_) lowercase_ = np.concatenate([x["""target"""] for x in outputs] , axis=0) lowercase_ = [[] for _ in range(out_label_ids.shape[0])] lowercase_ = [[] for _ in range(out_label_ids.shape[0])] lowercase_ = {**{"""val_loss""": val_loss_mean}, **compute_metrics(self.hparams.task , lowerCAmelCase_ , lowerCAmelCase_)} lowercase_ = dict(results.items()) lowercase_ = results return ret, preds_list, out_label_list def _UpperCAmelCase ( self : int , lowerCAmelCase_ : list): """simple docstring""" lowercase_ , lowercase_ , lowercase_ = self._eval_end(lowerCAmelCase_) lowercase_ = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _UpperCAmelCase ( self : Tuple , lowerCAmelCase_ : int): """simple docstring""" lowercase_ , lowercase_ , lowercase_ = self._eval_end(lowerCAmelCase_) lowercase_ = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _UpperCAmelCase ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str): """simple docstring""" BaseTransformer.add_model_specific_args(lowerCAmelCase_ , lowerCAmelCase_) parser.add_argument( """--max_seq_length""" , default=1_2_8 , type=lowerCAmelCase_ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--task""" , default="""""" , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help="""The GLUE task to run""" , ) parser.add_argument( """--gpus""" , default=0 , type=lowerCAmelCase_ , help="""The number of GPUs allocated for this, it is by default 0 meaning none""" , ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""") return parser def _SCREAMING_SNAKE_CASE () -> str: '''simple docstring''' lowercase_ = argparse.ArgumentParser() add_generic_args(__lowerCAmelCase , os.getcwd() ) lowercase_ = GLUETransformer.add_model_specific_args(__lowerCAmelCase , os.getcwd() ) lowercase_ = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: lowercase_ = os.path.join( """./results""" , F'''{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}''' , ) os.makedirs(args.output_dir ) lowercase_ = GLUETransformer(__lowerCAmelCase ) lowercase_ = generic_train(__lowerCAmelCase , __lowerCAmelCase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: lowercase_ = sorted(glob.glob(os.path.join(args.output_dir , """checkpoint-epoch=*.ckpt""" ) , recursive=__lowerCAmelCase ) ) lowercase_ = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(__lowerCAmelCase ) if __name__ == "__main__": main()
136
0
from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run SCREAMING_SNAKE_CASE = True except (ImportError, AttributeError): SCREAMING_SNAKE_CASE = object def _SCREAMING_SNAKE_CASE ( *lowercase_ , **lowercase_ ) -> List[str]: pass SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = logging.get_logger("transformers-cli/serving") def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> Any: A__ = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) return ServeCommand(a__ , args.host , args.port , args.workers ) class UpperCAmelCase_ ( _a ): lowercase__ = 42 class UpperCAmelCase_ ( _a ): lowercase__ = 42 lowercase__ = 42 class UpperCAmelCase_ ( _a ): lowercase__ = 42 class UpperCAmelCase_ ( _a ): lowercase__ = 42 class UpperCAmelCase_ ( _a ): @staticmethod def __magic_name__ ( snake_case_ : Optional[Any] ) -> List[str]: '''simple docstring''' A__ = parser.add_parser( "serve" , help="CLI tool to run inference requests through REST and GraphQL endpoints." ) serve_parser.add_argument( "--task" , type=__lowerCAmelCase , choices=get_supported_tasks() , help="The task to run the pipeline on" , ) serve_parser.add_argument("--host" , type=__lowerCAmelCase , default="localhost" , help="Interface the server will listen on." ) serve_parser.add_argument("--port" , type=__lowerCAmelCase , default=8_888 , help="Port the serving will listen to." ) serve_parser.add_argument("--workers" , type=__lowerCAmelCase , default=1 , help="Number of http workers" ) serve_parser.add_argument("--model" , type=__lowerCAmelCase , help="Model's name or path to stored model." ) serve_parser.add_argument("--config" , type=__lowerCAmelCase , help="Model's config name or path to stored model." ) serve_parser.add_argument("--tokenizer" , type=__lowerCAmelCase , help="Tokenizer name to use." ) serve_parser.add_argument( "--device" , type=__lowerCAmelCase , default=-1 , help="Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)" , ) serve_parser.set_defaults(func=__lowerCAmelCase ) def __init__( self : List[Any] , snake_case_ : int , snake_case_ : str , snake_case_ : List[Any] , snake_case_ : Dict ) -> Dict: '''simple docstring''' A__ = pipeline A__ = host A__ = port A__ = workers if not _serve_dependencies_installed: raise RuntimeError( "Using serve command requires FastAPI and uvicorn. " "Please install transformers with [serving]: pip install \"transformers[serving]\"." "Or install FastAPI and uvicorn separately." ) else: logger.info(F"""Serving model over {host}:{port}""" ) A__ = FastAPI( routes=[ APIRoute( "/" , self.model_info , response_model=__lowerCAmelCase , response_class=__lowerCAmelCase , methods=["GET"] , ), APIRoute( "/tokenize" , self.tokenize , response_model=__lowerCAmelCase , response_class=__lowerCAmelCase , methods=["POST"] , ), APIRoute( "/detokenize" , self.detokenize , response_model=__lowerCAmelCase , response_class=__lowerCAmelCase , methods=["POST"] , ), APIRoute( "/forward" , self.forward , response_model=__lowerCAmelCase , response_class=__lowerCAmelCase , methods=["POST"] , ), ] , timeout=600 , ) def __magic_name__ ( self : Any ) -> Any: '''simple docstring''' run(self._app , host=self.host , port=self.port , workers=self.workers ) def __magic_name__ ( self : List[str] ) -> Tuple: '''simple docstring''' return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def __magic_name__ ( self : List[Any] , snake_case_ : str = Body(__lowerCAmelCase , embed=__lowerCAmelCase ) , snake_case_ : Any = Body(__lowerCAmelCase , embed=__lowerCAmelCase ) ) -> Dict: '''simple docstring''' try: A__ = self._pipeline.tokenizer.tokenize(__lowerCAmelCase ) if return_ids: A__ = self._pipeline.tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) return ServeTokenizeResult(tokens=__lowerCAmelCase , tokens_ids=__lowerCAmelCase ) else: return ServeTokenizeResult(tokens=__lowerCAmelCase ) except Exception as e: raise HTTPException(status_code=500 , detail={"model": "", "error": str(__lowerCAmelCase )} ) def __magic_name__ ( self : Optional[Any] , snake_case_ : Tuple = Body(__lowerCAmelCase , embed=__lowerCAmelCase ) , snake_case_ : List[str] = Body(__lowerCAmelCase , embed=__lowerCAmelCase ) , snake_case_ : Dict = Body(__lowerCAmelCase , embed=__lowerCAmelCase ) , ) -> Optional[int]: '''simple docstring''' try: A__ = self._pipeline.tokenizer.decode(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return ServeDeTokenizeResult(model="" , text=__lowerCAmelCase ) except Exception as e: raise HTTPException(status_code=500 , detail={"model": "", "error": str(__lowerCAmelCase )} ) async def __magic_name__ ( self : Tuple , snake_case_ : Optional[Any]=Body(__lowerCAmelCase , embed=__lowerCAmelCase ) ) -> int: '''simple docstring''' if len(__lowerCAmelCase ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model A__ = self._pipeline(__lowerCAmelCase ) return ServeForwardResult(output=__lowerCAmelCase ) except Exception as e: raise HTTPException(500 , {"error": str(__lowerCAmelCase )} )
371
"""simple docstring""" from argparse import ArgumentParser from .env import EnvironmentCommand def _SCREAMING_SNAKE_CASE ( ) -> List[Any]: A__ = ArgumentParser("Diffusers CLI tool" , usage="diffusers-cli <command> [<args>]" ) A__ = parser.add_subparsers(help="diffusers-cli command helpers" ) # Register commands EnvironmentCommand.register_subcommand(lowercase_ ) # Let's go A__ = parser.parse_args() if not hasattr(lowercase_ , "func" ): parser.print_help() exit(1 ) # Run A__ = args.func(lowercase_ ) service.run() if __name__ == "__main__": main()
230
0
"""simple docstring""" def _snake_case ( lowercase__ : str ) -> str: '''simple docstring''' if not all(char in """01""" for char in bin_string ): raise ValueError("""Non-binary value was passed to the function""" ) if not bin_string: raise ValueError("""Empty string was passed to the function""" ) lowerCAmelCase_ :Optional[int] = """""" while len(lowercase__ ) % 3 != 0: lowerCAmelCase_ :str = """0""" + bin_string lowerCAmelCase_ :Optional[int] = [ bin_string[index : index + 3] for index in range(len(lowercase__ ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: lowerCAmelCase_ :Tuple = 0 for index, val in enumerate(lowercase__ ): oct_val += int(2 ** (2 - index) * int(lowercase__ ) ) oct_string += str(lowercase__ ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
84
"""simple docstring""" from PIL import Image def _snake_case ( lowercase__ : Image , lowercase__ : float ) -> Image: '''simple docstring''' def brightness(lowercase__ : int ) -> float: return 1_2_8 + level + (c - 1_2_8) if not -255.0 <= level <= 255.0: raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" ) return img.point(lowercase__ ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change brightness to 100 __UpperCAmelCase = change_brightness(img, 1_00) brigt_img.save('image_data/lena_brightness.png', format='png')
84
1
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING _snake_case = logging.get_logger(__name__) @add_end_docstrings(a) class UpperCAmelCase_ ( a): def __init__( self, **__a): '''simple docstring''' super().__init__(**__a) if self.framework == "tf": raise ValueError(f"The {self.__class__} is only available in PyTorch.") requires_backends(self, "vision") self.check_model_type(__a) def __call__( self, __a, __a = None, **__a, ): '''simple docstring''' if "text_queries" in kwargs: _lowerCAmelCase : str = kwargs.pop("text_queries") if isinstance(__a, (str, Image.Image)): _lowerCAmelCase : int = {"image": image, "candidate_labels": candidate_labels} else: _lowerCAmelCase : Optional[Any] = image _lowerCAmelCase : Tuple = super().__call__(__a, **__a) return results def snake_case__ ( self, **__a): '''simple docstring''' _lowerCAmelCase : Optional[int] = {} if "threshold" in kwargs: _lowerCAmelCase : Dict = kwargs["threshold"] if "top_k" in kwargs: _lowerCAmelCase : str = kwargs["top_k"] return {}, {}, postprocess_params def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Tuple = load_image(inputs["image"]) _lowerCAmelCase : Optional[Any] = inputs["candidate_labels"] if isinstance(__a, __a): _lowerCAmelCase : Optional[Any] = candidate_labels.split(",") _lowerCAmelCase : Optional[int] = torch.tensor([[image.height, image.width]], dtype=torch.intaa) for i, candidate_label in enumerate(__a): _lowerCAmelCase : Any = self.tokenizer(__a, return_tensors=self.framework) _lowerCAmelCase : Optional[Any] = self.image_processor(__a, return_tensors=self.framework) yield { "is_last": i == len(__a) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Optional[int] = model_inputs.pop("target_size") _lowerCAmelCase : str = model_inputs.pop("candidate_label") _lowerCAmelCase : str = model_inputs.pop("is_last") _lowerCAmelCase : Optional[int] = self.model(**__a) _lowerCAmelCase : Dict = {"target_size": target_size, "candidate_label": candidate_label, "is_last": is_last, **outputs} return model_outputs def snake_case__ ( self, __a, __a=0.1, __a=None): '''simple docstring''' _lowerCAmelCase : Dict = [] for model_output in model_outputs: _lowerCAmelCase : Any = model_output["candidate_label"] _lowerCAmelCase : Union[str, Any] = BaseModelOutput(__a) _lowerCAmelCase : str = self.image_processor.post_process_object_detection( outputs=__a, threshold=__a, target_sizes=model_output["target_size"])[0] for index in outputs["scores"].nonzero(): _lowerCAmelCase : int = outputs["scores"][index].item() _lowerCAmelCase : Optional[Any] = self._get_bounding_box(outputs["boxes"][index][0]) _lowerCAmelCase : Optional[int] = {"score": score, "label": label, "box": box} results.append(__a) _lowerCAmelCase : Optional[Any] = sorted(__a, key=lambda __a: x["score"], reverse=__a) if top_k: _lowerCAmelCase : Union[str, Any] = results[:top_k] return results def snake_case__ ( self, __a): '''simple docstring''' if self.framework != "pt": raise ValueError("The ZeroShotObjectDetectionPipeline is only available in PyTorch.") _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = box.int().tolist() _lowerCAmelCase : int = { "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax, } return bbox
300
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") _lowerCAmelCase : Tuple = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(_lowerCamelCase ): os.makedirs(_lowerCamelCase ) _lowerCAmelCase : Any = model.state_dict() def to_tf_var_name(_lowerCamelCase ): for patt, repl in iter(_lowerCamelCase ): _lowerCAmelCase : str = name.replace(_lowerCamelCase , _lowerCamelCase ) return F"bert/{name}" def create_tf_var(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Optional[Any] = tf.dtypes.as_dtype(tensor.dtype ) _lowerCAmelCase : Optional[int] = tf.get_variable(dtype=_lowerCamelCase , shape=tensor.shape , name=_lowerCamelCase , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(_lowerCamelCase ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: _lowerCAmelCase : Optional[Any] = to_tf_var_name(_lowerCamelCase ) _lowerCAmelCase : Any = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): _lowerCAmelCase : Tuple = torch_tensor.T _lowerCAmelCase : str = create_tf_var(tensor=_lowerCamelCase , name=_lowerCamelCase , session=_lowerCamelCase ) tf.keras.backend.set_value(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Optional[int] = session.run(_lowerCamelCase ) print(F"Successfully created {tf_name}: {np.allclose(_lowerCamelCase , _lowerCamelCase )}" ) _lowerCAmelCase : List[Any] = tf.train.Saver(tf.trainable_variables() ) saver.save(_lowerCamelCase , os.path.join(_lowerCamelCase , model_name.replace("-" , "_" ) + ".ckpt" ) ) def A ( _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : int = argparse.ArgumentParser() parser.add_argument("--model_name" , type=_lowerCamelCase , required=_lowerCamelCase , help="model name e.g. bert-base-uncased" ) parser.add_argument( "--cache_dir" , type=_lowerCamelCase , default=_lowerCamelCase , required=_lowerCamelCase , help="Directory containing pytorch model" ) parser.add_argument("--pytorch_model_path" , type=_lowerCamelCase , required=_lowerCamelCase , help="/path/to/<pytorch-model-name>.bin" ) parser.add_argument("--tf_cache_dir" , type=_lowerCamelCase , required=_lowerCamelCase , help="Directory in which to save tensorflow model" ) _lowerCAmelCase : Optional[Any] = parser.parse_args(_lowerCamelCase ) _lowerCAmelCase : List[Any] = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=_lowerCamelCase , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
300
1
import datasets from .evaluate import evaluate _snake_case = "\\n@article{hendrycks2021cuad,\n title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},\n author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},\n journal={arXiv preprint arXiv:2103.06268},\n year={2021}\n}\n" _snake_case = "\nThis metric wrap the official scoring script for version 1 of the Contract\nUnderstanding Atticus Dataset (CUAD).\nContract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510\ncommercial legal contracts that have been manually labeled to identify 41 categories of important\nclauses that lawyers look for when reviewing contracts in connection with corporate transactions.\n" _snake_case = "\nComputes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair as given in the references (see below)\n - 'prediction_text': list of possible texts for the answer, as a list of strings\n depending on a threshold on the confidence probability of each prediction.\n references: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair (see above),\n - 'answers': a Dict in the CUAD dataset format\n {\n 'text': list of possible texts for the answer, as a list of strings\n 'answer_start': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n 'exact_match': Exact match (the normalized answer exactly match the gold answer)\n 'f1': The F-score of predicted tokens versus the gold answer\n 'aupr': Area Under the Precision-Recall curve\n 'prec_at_80_recall': Precision at 80% recall\n 'prec_at_90_recall': Precision at 90% recall\nExamples:\n >>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]\n >>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]\n >>> cuad_metric = datasets.load_metric(\"cuad\")\n >>> results = cuad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class UpperCAmelCase_ ( datasets.Metric): def snake_case__ ( self): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": { "id": datasets.Value("string"), "prediction_text": datasets.features.Sequence(datasets.Value("string")), }, "references": { "id": datasets.Value("string"), "answers": datasets.features.Sequence( { "text": datasets.Value("string"), "answer_start": datasets.Value("int32"), }), }, }), codebase_urls=["https://www.atticusprojectai.org/cuad"], reference_urls=["https://www.atticusprojectai.org/cuad"], ) def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = {prediction["id"]: prediction["prediction_text"] for prediction in predictions} _lowerCAmelCase : Optional[Any] = [ { "paragraphs": [ { "qas": [ { "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]], "id": ref["id"], } for ref in references ] } ] } ] _lowerCAmelCase : int = evaluate(dataset=__a, predictions=__a) return score
36
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool __magic_name__: Tuple = { "Acehnese Arabic": "ace_Arab", "Acehnese Latin": "ace_Latn", "Mesopotamian Arabic": "acm_Arab", "Ta'izzi-Adeni Arabic": "acq_Arab", "Tunisian Arabic": "aeb_Arab", "Afrikaans": "afr_Latn", "South Levantine Arabic": "ajp_Arab", "Akan": "aka_Latn", "Amharic": "amh_Ethi", "North Levantine Arabic": "apc_Arab", "Modern Standard Arabic": "arb_Arab", "Modern Standard Arabic Romanized": "arb_Latn", "Najdi Arabic": "ars_Arab", "Moroccan Arabic": "ary_Arab", "Egyptian Arabic": "arz_Arab", "Assamese": "asm_Beng", "Asturian": "ast_Latn", "Awadhi": "awa_Deva", "Central Aymara": "ayr_Latn", "South Azerbaijani": "azb_Arab", "North Azerbaijani": "azj_Latn", "Bashkir": "bak_Cyrl", "Bambara": "bam_Latn", "Balinese": "ban_Latn", "Belarusian": "bel_Cyrl", "Bemba": "bem_Latn", "Bengali": "ben_Beng", "Bhojpuri": "bho_Deva", "Banjar Arabic": "bjn_Arab", "Banjar Latin": "bjn_Latn", "Standard Tibetan": "bod_Tibt", "Bosnian": "bos_Latn", "Buginese": "bug_Latn", "Bulgarian": "bul_Cyrl", "Catalan": "cat_Latn", "Cebuano": "ceb_Latn", "Czech": "ces_Latn", "Chokwe": "cjk_Latn", "Central Kurdish": "ckb_Arab", "Crimean Tatar": "crh_Latn", "Welsh": "cym_Latn", "Danish": "dan_Latn", "German": "deu_Latn", "Southwestern Dinka": "dik_Latn", "Dyula": "dyu_Latn", "Dzongkha": "dzo_Tibt", "Greek": "ell_Grek", "English": "eng_Latn", "Esperanto": "epo_Latn", "Estonian": "est_Latn", "Basque": "eus_Latn", "Ewe": "ewe_Latn", "Faroese": "fao_Latn", "Fijian": "fij_Latn", "Finnish": "fin_Latn", "Fon": "fon_Latn", "French": "fra_Latn", "Friulian": "fur_Latn", "Nigerian Fulfulde": "fuv_Latn", "Scottish Gaelic": "gla_Latn", "Irish": "gle_Latn", "Galician": "glg_Latn", "Guarani": "grn_Latn", "Gujarati": "guj_Gujr", "Haitian Creole": "hat_Latn", "Hausa": "hau_Latn", "Hebrew": "heb_Hebr", "Hindi": "hin_Deva", "Chhattisgarhi": "hne_Deva", "Croatian": "hrv_Latn", "Hungarian": "hun_Latn", "Armenian": "hye_Armn", "Igbo": "ibo_Latn", "Ilocano": "ilo_Latn", "Indonesian": "ind_Latn", "Icelandic": "isl_Latn", "Italian": "ita_Latn", "Javanese": "jav_Latn", "Japanese": "jpn_Jpan", "Kabyle": "kab_Latn", "Jingpho": "kac_Latn", "Kamba": "kam_Latn", "Kannada": "kan_Knda", "Kashmiri Arabic": "kas_Arab", "Kashmiri Devanagari": "kas_Deva", "Georgian": "kat_Geor", "Central Kanuri Arabic": "knc_Arab", "Central Kanuri Latin": "knc_Latn", "Kazakh": "kaz_Cyrl", "Kabiyè": "kbp_Latn", "Kabuverdianu": "kea_Latn", "Khmer": "khm_Khmr", "Kikuyu": "kik_Latn", "Kinyarwanda": "kin_Latn", "Kyrgyz": "kir_Cyrl", "Kimbundu": "kmb_Latn", "Northern Kurdish": "kmr_Latn", "Kikongo": "kon_Latn", "Korean": "kor_Hang", "Lao": "lao_Laoo", "Ligurian": "lij_Latn", "Limburgish": "lim_Latn", "Lingala": "lin_Latn", "Lithuanian": "lit_Latn", "Lombard": "lmo_Latn", "Latgalian": "ltg_Latn", "Luxembourgish": "ltz_Latn", "Luba-Kasai": "lua_Latn", "Ganda": "lug_Latn", "Luo": "luo_Latn", "Mizo": "lus_Latn", "Standard Latvian": "lvs_Latn", "Magahi": "mag_Deva", "Maithili": "mai_Deva", "Malayalam": "mal_Mlym", "Marathi": "mar_Deva", "Minangkabau Arabic ": "min_Arab", "Minangkabau Latin": "min_Latn", "Macedonian": "mkd_Cyrl", "Plateau Malagasy": "plt_Latn", "Maltese": "mlt_Latn", "Meitei Bengali": "mni_Beng", "Halh Mongolian": "khk_Cyrl", "Mossi": "mos_Latn", "Maori": "mri_Latn", "Burmese": "mya_Mymr", "Dutch": "nld_Latn", "Norwegian Nynorsk": "nno_Latn", "Norwegian Bokmål": "nob_Latn", "Nepali": "npi_Deva", "Northern Sotho": "nso_Latn", "Nuer": "nus_Latn", "Nyanja": "nya_Latn", "Occitan": "oci_Latn", "West Central Oromo": "gaz_Latn", "Odia": "ory_Orya", "Pangasinan": "pag_Latn", "Eastern Panjabi": "pan_Guru", "Papiamento": "pap_Latn", "Western Persian": "pes_Arab", "Polish": "pol_Latn", "Portuguese": "por_Latn", "Dari": "prs_Arab", "Southern Pashto": "pbt_Arab", "Ayacucho Quechua": "quy_Latn", "Romanian": "ron_Latn", "Rundi": "run_Latn", "Russian": "rus_Cyrl", "Sango": "sag_Latn", "Sanskrit": "san_Deva", "Santali": "sat_Olck", "Sicilian": "scn_Latn", "Shan": "shn_Mymr", "Sinhala": "sin_Sinh", "Slovak": "slk_Latn", "Slovenian": "slv_Latn", "Samoan": "smo_Latn", "Shona": "sna_Latn", "Sindhi": "snd_Arab", "Somali": "som_Latn", "Southern Sotho": "sot_Latn", "Spanish": "spa_Latn", "Tosk Albanian": "als_Latn", "Sardinian": "srd_Latn", "Serbian": "srp_Cyrl", "Swati": "ssw_Latn", "Sundanese": "sun_Latn", "Swedish": "swe_Latn", "Swahili": "swh_Latn", "Silesian": "szl_Latn", "Tamil": "tam_Taml", "Tatar": "tat_Cyrl", "Telugu": "tel_Telu", "Tajik": "tgk_Cyrl", "Tagalog": "tgl_Latn", "Thai": "tha_Thai", "Tigrinya": "tir_Ethi", "Tamasheq Latin": "taq_Latn", "Tamasheq Tifinagh": "taq_Tfng", "Tok Pisin": "tpi_Latn", "Tswana": "tsn_Latn", "Tsonga": "tso_Latn", "Turkmen": "tuk_Latn", "Tumbuka": "tum_Latn", "Turkish": "tur_Latn", "Twi": "twi_Latn", "Central Atlas Tamazight": "tzm_Tfng", "Uyghur": "uig_Arab", "Ukrainian": "ukr_Cyrl", "Umbundu": "umb_Latn", "Urdu": "urd_Arab", "Northern Uzbek": "uzn_Latn", "Venetian": "vec_Latn", "Vietnamese": "vie_Latn", "Waray": "war_Latn", "Wolof": "wol_Latn", "Xhosa": "xho_Latn", "Eastern Yiddish": "ydd_Hebr", "Yoruba": "yor_Latn", "Yue Chinese": "yue_Hant", "Chinese Simplified": "zho_Hans", "Chinese Traditional": "zho_Hant", "Standard Malay": "zsm_Latn", "Zulu": "zul_Latn", } class snake_case__ ( _lowerCAmelCase ): lowercase__ : List[str] = '''facebook/nllb-200-distilled-600M''' lowercase__ : List[Any] = ( '''This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ''' '''be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ''' '''which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ''' '''plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.''' ) lowercase__ : List[str] = '''translator''' lowercase__ : Optional[Any] = AutoTokenizer lowercase__ : int = AutoModelForSeqaSeqLM lowercase__ : List[Any] = LANGUAGE_CODES lowercase__ : str = ['''text''', '''text''', '''text'''] lowercase__ : Any = ['''text'''] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: if src_lang not in self.lang_to_code: raise ValueError(F'{src_lang} is not a supported language.' ) if tgt_lang not in self.lang_to_code: raise ValueError(F'{tgt_lang} is not a supported language.' ) __magic_name__ : Tuple = self.lang_to_code[src_lang] __magic_name__ : Dict = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowerCAmelCase__ , return_tensors="""pt""" , src_lang=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.model.generate(**lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowerCAmelCase__ )
342
0
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging __A = logging.get_logger(__name__) __A = { 'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class __lowerCAmelCase ( lowerCamelCase__ ): """simple docstring""" snake_case_ = '''gpt_neo''' snake_case_ = ['''past_key_values'''] snake_case_ = {'''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self , lowerCamelCase__=50_257 , lowerCamelCase__=2_048 , lowerCamelCase__=2_048 , lowerCamelCase__=24 , lowerCamelCase__=[[["global", "local"], 12]] , lowerCamelCase__=16 , lowerCamelCase__=None , lowerCamelCase__=256 , lowerCamelCase__="gelu_new" , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.1 , lowerCamelCase__=1e-5 , lowerCamelCase__=0.02 , lowerCamelCase__=True , lowerCamelCase__=50_256 , lowerCamelCase__=50_256 , **lowerCamelCase__ , ) -> Tuple: '''simple docstring''' __lowerCamelCase = vocab_size __lowerCamelCase = max_position_embeddings __lowerCamelCase = hidden_size __lowerCamelCase = num_layers __lowerCamelCase = num_heads __lowerCamelCase = intermediate_size __lowerCamelCase = window_size __lowerCamelCase = activation_function __lowerCamelCase = resid_dropout __lowerCamelCase = embed_dropout __lowerCamelCase = attention_dropout __lowerCamelCase = classifier_dropout __lowerCamelCase = layer_norm_epsilon __lowerCamelCase = initializer_range __lowerCamelCase = use_cache __lowerCamelCase = bos_token_id __lowerCamelCase = eos_token_id __lowerCamelCase = attention_types __lowerCamelCase = self.expand_attention_types_params(__snake_case ) if len(self.attention_layers ) != self.num_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.attention_layers)` == `config.num_layers` ' f"""but is `len(config.attention_layers) = {len(self.attention_layers )}`, """ f"""`config.num_layers = {self.num_layers}`. """ '`config.attention_layers` is prepared using `config.attention_types`. ' 'Please verify the value of `config.attention_types` argument.' ) super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) @staticmethod def lowercase_ ( lowerCamelCase__ ) -> Any: '''simple docstring''' __lowerCamelCase = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def lowerCamelCase_ ( UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict ) -> Optional[int]: """simple docstring""" import torch __lowerCamelCase = input.size() __lowerCamelCase = len(_A ) __lowerCamelCase = shape[dimension] __lowerCamelCase = torch.arange(0 , _A , _A ) __lowerCamelCase = torch.div(sizedim - size , _A , rounding_mode='floor' ) + 1 __lowerCamelCase = torch.arange(_A ) + low_indices[:min_length][:, None] __lowerCamelCase = [slice(_A )] * rank __lowerCamelCase = indices __lowerCamelCase = input[s] __lowerCamelCase = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(_A ) def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : str ) -> Union[str, Any]: """simple docstring""" import torch __lowerCamelCase = torch.arange(1 , _A ) __lowerCamelCase = torch.remainder(_A , _A ) __lowerCamelCase = remainders == 0 __lowerCamelCase = candidates[divisor_indices] __lowerCamelCase = torch.max(_A ) return largest_divisor, torch.div(_A , _A , rounding_mode='floor' ) class __lowerCAmelCase ( lowerCamelCase__ ): """simple docstring""" @property def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(__snake_case , direction='inputs' ) __lowerCamelCase = {0: 'batch', 1: 'past_sequence + sequence'} else: __lowerCamelCase = {0: 'batch', 1: 'sequence'} return common_inputs @property def lowercase_ ( self ) -> int: '''simple docstring''' return self._config.num_heads def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = -1 , lowerCamelCase__ = -1 , lowerCamelCase__ = False , lowerCamelCase__ = None , ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = super(__snake_case , self ).generate_dummy_inputs( __snake_case , batch_size=__snake_case , seq_length=__snake_case , is_pair=__snake_case , framework=__snake_case ) # We need to order the input in the way they appears in the forward() __lowerCamelCase = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch __lowerCamelCase = common_inputs['input_ids'].shape # Not using the same length for past_key_values __lowerCamelCase = seqlen + 2 __lowerCamelCase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __lowerCamelCase = [ (torch.zeros(__snake_case ), torch.zeros(__snake_case )) for _ in range(self.num_layers ) ] __lowerCamelCase = common_inputs['attention_mask'] if self.use_past: __lowerCamelCase = ordered_inputs['attention_mask'].dtype __lowerCamelCase = torch.cat( [ordered_inputs['attention_mask'], torch.ones(__snake_case , __snake_case , dtype=__snake_case )] , dim=1 ) return ordered_inputs @property def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' return 13
358
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=__magic_name__ ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = field(default='''question-answering-extractive''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) snake_case_ = Features({'''question''': Value('''string''' ), '''context''': Value('''string''' )} ) snake_case_ = Features( { '''answers''': Sequence( { '''text''': Value('''string''' ), '''answer_start''': Value('''int32''' ), } ) } ) snake_case_ = "question" snake_case_ = "context" snake_case_ = "answers" @property def lowercase_ ( self ) -> Dict[str, str]: '''simple docstring''' return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
348
0
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib __SCREAMING_SNAKE_CASE : Optional[Any] = get_logger() __SCREAMING_SNAKE_CASE : Optional[dict] = None class lowerCamelCase_ (TensorFormatter[Mapping, "jax.Array", Mapping] ): '''simple docstring''' def __init__( self : Any , A : List[Any]=None , A : List[str]=None , **A : List[str] ): super().__init__(features=A ) import jax from jaxlib.xla_client import Device if isinstance(A , A ): raise ValueError( F"""Expected {device} to be a `str` not {type(A )}, as `jaxlib.xla_extension.Device` """ "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`." ) _UpperCAmelCase : Union[str, Any] = device if isinstance(A , A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _UpperCAmelCase : Dict = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F"""Device with string identifier {self.device} not listed among the available """ F"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """ F"""device: {str(jax.devices()[0] )}.""" ) _UpperCAmelCase : List[Any] = str(jax.devices()[0] ) _UpperCAmelCase : List[str] = jnp_array_kwargs @staticmethod def _A ( ): import jax return {str(A ): device for device in jax.devices()} def _A ( self : Optional[int] , A : int ): import jax import jax.numpy as jnp if isinstance(A , A ) and column: if all( isinstance(A , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(A , axis=0 ) return column def _A ( self : List[str] , A : Optional[Any] ): import jax import jax.numpy as jnp if isinstance(A , (str, bytes, type(A )) ): return value elif isinstance(A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() _UpperCAmelCase : Optional[Any] = {} if isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: _UpperCAmelCase : Optional[Any] = {"dtype": jnp.intaa} else: _UpperCAmelCase : List[Any] = {"dtype": jnp.intaa} elif isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): _UpperCAmelCase : List[str] = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(A , PIL.Image.Image ): _UpperCAmelCase : Optional[int] = np.asarray(A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _UpperCAmelCase : int = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(A , **{**default_dtype, **self.jnp_array_kwargs} ) def _A ( self : Optional[int] , A : Optional[int] ): import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(A , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(A , "__array__" ) and not isinstance(A , jax.Array ): _UpperCAmelCase : List[Any] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(A , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] ) elif isinstance(A , (list, tuple) ): return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] ) return self._tensorize(A ) def _A ( self : List[str] , A : dict ): return map_nested(self._recursive_tensorize , A , map_list=A ) def _A ( self : Dict , A : pa.Table ): _UpperCAmelCase : Tuple = self.numpy_arrow_extractor().extract_row(A ) _UpperCAmelCase : Optional[int] = self.python_features_decoder.decode_row(A ) return self.recursive_tensorize(A ) def _A ( self : Optional[Any] , A : pa.Table ): _UpperCAmelCase : Optional[Any] = self.numpy_arrow_extractor().extract_column(A ) _UpperCAmelCase : Any = self.python_features_decoder.decode_column(A , pa_table.column_names[0] ) _UpperCAmelCase : Union[str, Any] = self.recursive_tensorize(A ) _UpperCAmelCase : List[Any] = self._consolidate(A ) return column def _A ( self : List[str] , A : pa.Table ): _UpperCAmelCase : Optional[int] = self.numpy_arrow_extractor().extract_batch(A ) _UpperCAmelCase : Optional[int] = self.python_features_decoder.decode_batch(A ) _UpperCAmelCase : Optional[int] = self.recursive_tensorize(A ) for column_name in batch: _UpperCAmelCase : Any = self._consolidate(batch[column_name] ) return batch
31
'''simple docstring''' import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class lowerCamelCase_ (snake_case__ ): '''simple docstring''' def __init__( self : List[Any] ): _UpperCAmelCase : Union[str, Any] = [] def _A ( self : Any , A : Union[str, Any] , A : Optional[int] , A : List[str] , **A : Tuple ): self.events.append("on_init_end" ) def _A ( self : Any , A : str , A : List[Any] , A : List[Any] , **A : Tuple ): self.events.append("on_train_begin" ) def _A ( self : Tuple , A : List[str] , A : Tuple , A : int , **A : List[str] ): self.events.append("on_train_end" ) def _A ( self : Optional[Any] , A : Dict , A : Any , A : Optional[Any] , **A : List[Any] ): self.events.append("on_epoch_begin" ) def _A ( self : Optional[Any] , A : List[Any] , A : List[str] , A : Optional[int] , **A : Optional[int] ): self.events.append("on_epoch_end" ) def _A ( self : List[str] , A : Optional[int] , A : List[Any] , A : Union[str, Any] , **A : Any ): self.events.append("on_step_begin" ) def _A ( self : Tuple , A : Union[str, Any] , A : int , A : Optional[int] , **A : int ): self.events.append("on_step_end" ) def _A ( self : Optional[int] , A : Optional[Any] , A : Union[str, Any] , A : str , **A : Union[str, Any] ): self.events.append("on_evaluate" ) def _A ( self : Optional[Any] , A : Optional[int] , A : Dict , A : List[Any] , **A : Dict ): self.events.append("on_predict" ) def _A ( self : Dict , A : Dict , A : List[Any] , A : Dict , **A : str ): self.events.append("on_save" ) def _A ( self : Tuple , A : Optional[Any] , A : Union[str, Any] , A : Optional[int] , **A : Dict ): self.events.append("on_log" ) def _A ( self : Optional[int] , A : Optional[Any] , A : Tuple , A : Tuple , **A : List[str] ): self.events.append("on_prediction_step" ) @require_torch class lowerCamelCase_ (unittest.TestCase ): '''simple docstring''' def _A ( self : Optional[int] ): _UpperCAmelCase : Optional[Any] = tempfile.mkdtemp() def _A ( self : List[Any] ): shutil.rmtree(self.output_dir ) def _A ( self : Union[str, Any] , A : Optional[int]=0 , A : Optional[Any]=0 , A : Optional[Any]=64 , A : Dict=64 , A : Any=None , A : Tuple=False , **A : Optional[int] ): # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. _UpperCAmelCase : str = RegressionDataset(length=A ) _UpperCAmelCase : Union[str, Any] = RegressionDataset(length=A ) _UpperCAmelCase : Any = RegressionModelConfig(a=A , b=A ) _UpperCAmelCase : List[Any] = RegressionPreTrainedModel(A ) _UpperCAmelCase : Dict = TrainingArguments(self.output_dir , disable_tqdm=A , report_to=[] , **A ) return Trainer( A , A , train_dataset=A , eval_dataset=A , callbacks=A , ) def _A ( self : str , A : List[str] , A : List[str] ): self.assertEqual(len(A ) , len(A ) ) # Order doesn't matter _UpperCAmelCase : Tuple = sorted(A , key=lambda A : cb.__name__ if isinstance(A , A ) else cb.__class__.__name__ ) _UpperCAmelCase : Any = sorted(A , key=lambda A : cb.__name__ if isinstance(A , A ) else cb.__class__.__name__ ) for cba, cba in zip(A , A ): if isinstance(A , A ) and isinstance(A , A ): self.assertEqual(A , A ) elif isinstance(A , A ) and not isinstance(A , A ): self.assertEqual(A , cba.__class__ ) elif not isinstance(A , A ) and isinstance(A , A ): self.assertEqual(cba.__class__ , A ) else: self.assertEqual(A , A ) def _A ( self : int , A : List[str] ): _UpperCAmelCase : List[str] = ["on_init_end", "on_train_begin"] _UpperCAmelCase : str = 0 _UpperCAmelCase : Optional[Any] = len(trainer.get_eval_dataloader() ) _UpperCAmelCase : Optional[int] = ["on_prediction_step"] * len(trainer.get_eval_dataloader() ) + ["on_log", "on_evaluate"] for _ in range(trainer.state.num_train_epochs ): expected_events.append("on_epoch_begin" ) for _ in range(A ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append("on_log" ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append("on_save" ) expected_events.append("on_epoch_end" ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def _A ( self : str ): _UpperCAmelCase : Any = self.get_trainer() _UpperCAmelCase : int = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , A ) # Callbacks passed at init are added to the default callbacks _UpperCAmelCase : Optional[int] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(A ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback _UpperCAmelCase : List[Any] = self.get_trainer(disable_tqdm=A ) _UpperCAmelCase : Tuple = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , A ) def _A ( self : Optional[Any] ): _UpperCAmelCase : Dict = DEFAULT_CALLBACKS.copy() + [ProgressCallback] _UpperCAmelCase : Dict = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(A ) expected_callbacks.remove(A ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A ) _UpperCAmelCase : Optional[Any] = self.get_trainer() _UpperCAmelCase : Any = trainer.pop_callback(A ) self.assertEqual(cb.__class__ , A ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A ) trainer.add_callback(A ) expected_callbacks.insert(0 , A ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A ) # We can also add, pop, or remove by instance _UpperCAmelCase : Union[str, Any] = self.get_trainer() _UpperCAmelCase : List[Any] = trainer.callback_handler.callbacks[0] trainer.remove_callback(A ) expected_callbacks.remove(A ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A ) _UpperCAmelCase : List[Any] = self.get_trainer() _UpperCAmelCase : List[Any] = trainer.callback_handler.callbacks[0] _UpperCAmelCase : Union[str, Any] = trainer.pop_callback(A ) self.assertEqual(A , A ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A ) trainer.add_callback(A ) expected_callbacks.insert(0 , A ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A ) def _A ( self : Optional[Any] ): import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action="ignore" , category=A ) _UpperCAmelCase : Optional[int] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() _UpperCAmelCase : Union[str, Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(A , self.get_expected_events(A ) ) # Independent log/save/eval _UpperCAmelCase : Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() _UpperCAmelCase : int = trainer.callback_handler.callbacks[-2].events self.assertEqual(A , self.get_expected_events(A ) ) _UpperCAmelCase : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() _UpperCAmelCase : Tuple = trainer.callback_handler.callbacks[-2].events self.assertEqual(A , self.get_expected_events(A ) ) _UpperCAmelCase : int = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="steps" ) trainer.train() _UpperCAmelCase : Optional[int] = trainer.callback_handler.callbacks[-2].events self.assertEqual(A , self.get_expected_events(A ) ) _UpperCAmelCase : Optional[int] = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="epoch" ) trainer.train() _UpperCAmelCase : int = trainer.callback_handler.callbacks[-2].events self.assertEqual(A , self.get_expected_events(A ) ) # A bit of everything _UpperCAmelCase : int = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy="steps" , ) trainer.train() _UpperCAmelCase : Optional[int] = trainer.callback_handler.callbacks[-2].events self.assertEqual(A , self.get_expected_events(A ) ) # warning should be emitted for duplicated callbacks with patch("transformers.trainer_callback.logger.warning" ) as warn_mock: _UpperCAmelCase : Optional[Any] = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(A ) in warn_mock.call_args[0][0]
31
1
from __future__ import annotations def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) # We need to create solution object to save path. SCREAMING_SNAKE_CASE_ = [[0 for _ in range(__lowerCamelCase )] for _ in range(__lowerCamelCase )] SCREAMING_SNAKE_CASE_ = run_maze(__lowerCamelCase, 0, 0, __lowerCamelCase ) if solved: print('''\n'''.join(str(__lowerCamelCase ) for row in solutions ) ) else: print('''No solution exists!''' ) return solved def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) # Final check point. if i == j == (size - 1): SCREAMING_SNAKE_CASE_ = 1 return True SCREAMING_SNAKE_CASE_ = (not i < 0) and (not j < 0) # Check lower bounds SCREAMING_SNAKE_CASE_ = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. SCREAMING_SNAKE_CASE_ = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited SCREAMING_SNAKE_CASE_ = 1 # check for directions if ( run_maze(__lowerCamelCase, i + 1, __lowerCamelCase, __lowerCamelCase ) or run_maze(__lowerCamelCase, __lowerCamelCase, j + 1, __lowerCamelCase ) or run_maze(__lowerCamelCase, i - 1, __lowerCamelCase, __lowerCamelCase ) or run_maze(__lowerCamelCase, __lowerCamelCase, j - 1, __lowerCamelCase ) ): return True SCREAMING_SNAKE_CASE_ = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
351
__UpperCAmelCase = "\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" __UpperCAmelCase = [{"type": "code", "content": INSTALL_CONTENT}] __UpperCAmelCase = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
257
0
'''simple docstring''' a : int = 8.3_144_598 def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> float: '''simple docstring''' if temperature < 0: raise Exception('''Temperature cannot be less than 0 K''' ) if molar_mass <= 0: raise Exception('''Molar mass cannot be less than or equal to 0 kg/mol''' ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example a : Optional[Any] = 300 a : str = 28 a : Union[str, Any] = rms_speed_of_molecule(temperature, molar_mass) print(f'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
56
import random def A ( a_ ,a_ ,a_ = False ) -> dict: __UpperCamelCase : dict ={i: [] for i in range(a_ )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(a_ ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(a_ ): for j in range(i + 1 ,a_ ): if random.random() < probability: graph[i].append(a_ ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(a_ ) return graph def A ( a_ ) -> dict: return { i: [j for j in range(a_ ) if i != j] for i in range(a_ ) } if __name__ == "__main__": import doctest doctest.testmod()
71
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __A = logging.get_logger(__name__) __A = {'''vocab_file''': '''sentencepiece.model'''} __A = { '''vocab_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''', }, } __A = { '''google/rembert''': 256, } class _snake_case ( a__ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Any , UpperCAmelCase : Dict , UpperCAmelCase : int=False , UpperCAmelCase : Tuple=True , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : Optional[int]="[CLS]" , UpperCAmelCase : Optional[int]="[SEP]" , UpperCAmelCase : Any="[UNK]" , UpperCAmelCase : Tuple="[SEP]" , UpperCAmelCase : Any="[PAD]" , UpperCAmelCase : List[Any]="[CLS]" , UpperCAmelCase : Optional[Any]="[MASK]" , **UpperCAmelCase : List[str] , ): super().__init__( do_lower_case=_lowerCamelCase , remove_space=_lowerCamelCase , keep_accents=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , **_lowerCamelCase , ) __lowerCamelCase : Tuple = do_lower_case __lowerCamelCase : str = remove_space __lowerCamelCase : Optional[Any] = keep_accents __lowerCamelCase : Optional[Any] = vocab_file __lowerCamelCase : Union[str, Any] = spm.SentencePieceProcessor() self.sp_model.Load(_lowerCamelCase ) @property def lowerCamelCase__ ( self : Dict ): return len(self.sp_model ) def lowerCamelCase__ ( self : Union[str, Any] ): __lowerCamelCase : int = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Dict ): __lowerCamelCase : Dict = self.__dict__.copy() __lowerCamelCase : Dict = None return state def __setstate__( self : str , UpperCAmelCase : Any ): __lowerCamelCase : List[str] = d __lowerCamelCase : List[str] = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def lowerCamelCase__ ( self : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int]=False ): __lowerCamelCase : Optional[int] = self.sp_model.EncodeAsPieces(_lowerCamelCase ) return pieces def lowerCamelCase__ ( self : Dict , UpperCAmelCase : str ): return self.sp_model.PieceToId(_lowerCamelCase ) def lowerCamelCase__ ( self : Optional[Any] , UpperCAmelCase : int ): return self.sp_model.IdToPiece(_lowerCamelCase ) def lowerCamelCase__ ( self : List[str] , UpperCAmelCase : List[str] ): __lowerCamelCase : Optional[int] = self.sp_model.decode_pieces(_lowerCamelCase ) return out_string def lowerCamelCase__ ( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[Any] = None ): __lowerCamelCase : Tuple = [self.sep_token_id] __lowerCamelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase__ ( self : List[str] , UpperCAmelCase : int , UpperCAmelCase : Any = None , UpperCAmelCase : Optional[int] = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_lowerCamelCase )) + [1] + ([0] * len(_lowerCamelCase )) + [1] return [1] + ([0] * len(_lowerCamelCase )) + [1] def lowerCamelCase__ ( self : str , UpperCAmelCase : List[str] , UpperCAmelCase : int = None ): __lowerCamelCase : List[Any] = [self.sep_token_id] __lowerCamelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__ ( self : Tuple , UpperCAmelCase : List[str] , UpperCAmelCase : Tuple = None ): if not os.path.isdir(_lowerCamelCase ): logger.error("Vocabulary path ({}) should be a directory".format(_lowerCamelCase ) ) return __lowerCamelCase : Dict = os.path.join( _lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ): copyfile(self.vocab_file , _lowerCamelCase ) return (out_vocab_file,)
369
"""simple docstring""" from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { '''google/efficientnet-b7''': '''https://huggingface.co/google/efficientnet-b7/resolve/main/config.json''', } class _snake_case ( a__ ): snake_case__ = "efficientnet" def __init__( self : Dict , UpperCAmelCase : int = 3 , UpperCAmelCase : int = 600 , UpperCAmelCase : float = 2.0 , UpperCAmelCase : float = 3.1 , UpperCAmelCase : int = 8 , UpperCAmelCase : List[int] = [3, 3, 5, 3, 5, 5, 3] , UpperCAmelCase : List[int] = [32, 16, 24, 40, 80, 112, 192] , UpperCAmelCase : List[int] = [16, 24, 40, 80, 112, 192, 320] , UpperCAmelCase : List[int] = [] , UpperCAmelCase : List[int] = [1, 2, 2, 2, 1, 2, 1] , UpperCAmelCase : List[int] = [1, 2, 2, 3, 3, 4, 1] , UpperCAmelCase : List[int] = [1, 6, 6, 6, 6, 6, 6] , UpperCAmelCase : float = 0.2_5 , UpperCAmelCase : str = "swish" , UpperCAmelCase : int = 2560 , UpperCAmelCase : str = "mean" , UpperCAmelCase : float = 0.0_2 , UpperCAmelCase : float = 0.0_0_1 , UpperCAmelCase : float = 0.9_9 , UpperCAmelCase : float = 0.5 , UpperCAmelCase : float = 0.2 , **UpperCAmelCase : Union[str, Any] , ): super().__init__(**UpperCAmelCase ) __lowerCamelCase : Dict = num_channels __lowerCamelCase : str = image_size __lowerCamelCase : Any = width_coefficient __lowerCamelCase : Any = depth_coefficient __lowerCamelCase : Any = depth_divisor __lowerCamelCase : Optional[Any] = kernel_sizes __lowerCamelCase : Union[str, Any] = in_channels __lowerCamelCase : List[Any] = out_channels __lowerCamelCase : Optional[Any] = depthwise_padding __lowerCamelCase : int = strides __lowerCamelCase : int = num_block_repeats __lowerCamelCase : Optional[Any] = expand_ratios __lowerCamelCase : int = squeeze_expansion_ratio __lowerCamelCase : Any = hidden_act __lowerCamelCase : Optional[Any] = hidden_dim __lowerCamelCase : Union[str, Any] = pooling_type __lowerCamelCase : Optional[Any] = initializer_range __lowerCamelCase : Tuple = batch_norm_eps __lowerCamelCase : Optional[int] = batch_norm_momentum __lowerCamelCase : Any = dropout_rate __lowerCamelCase : List[Any] = drop_connect_rate __lowerCamelCase : int = sum(UpperCAmelCase ) * 4 class _snake_case ( a__ ): snake_case__ = version.parse("1.11" ) @property def lowerCamelCase__ ( self : Union[str, Any] ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowerCamelCase__ ( self : List[Any] ): return 1E-5
64
0
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class A : def __init__(self , lowerCAmelCase , lowerCAmelCase=1_3 , lowerCAmelCase=7 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=9_9 , lowerCAmelCase=1_6 , lowerCAmelCase=3_6 , lowerCAmelCase=6 , lowerCAmelCase=6 , lowerCAmelCase=6 , lowerCAmelCase=3_7 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=5_1_2 , lowerCAmelCase=1_6 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=3 , lowerCAmelCase=4 , lowerCAmelCase=None , ): __lowercase= parent __lowercase= batch_size __lowercase= seq_length __lowercase= is_training __lowercase= use_input_mask __lowercase= use_token_type_ids __lowercase= use_labels __lowercase= vocab_size __lowercase= embedding_size __lowercase= hidden_size __lowercase= num_hidden_layers __lowercase= num_hidden_groups __lowercase= num_attention_heads __lowercase= intermediate_size __lowercase= hidden_act __lowercase= hidden_dropout_prob __lowercase= attention_probs_dropout_prob __lowercase= max_position_embeddings __lowercase= type_vocab_size __lowercase= type_sequence_label_size __lowercase= initializer_range __lowercase= num_labels __lowercase= num_choices __lowercase= scope def _A (self ): __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase= None if self.use_input_mask: __lowercase= random_attention_mask([self.batch_size, self.seq_length] ) __lowercase= None if self.use_token_type_ids: __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase= None __lowercase= None __lowercase= None if self.use_labels: __lowercase= ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase= ids_tensor([self.batch_size] , self.num_choices ) __lowercase= self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _A (self ): return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= AlbertModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __lowercase= model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase ) __lowercase= model(__UpperCamelCase , token_type_ids=__UpperCamelCase ) __lowercase= model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= AlbertForPreTraining(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __lowercase= model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase , sentence_order_label=__UpperCamelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= AlbertForMaskedLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __lowercase= model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= AlbertForQuestionAnswering(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __lowercase= model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , start_positions=__UpperCamelCase , end_positions=__UpperCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= self.num_labels __lowercase= AlbertForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __lowercase= model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= self.num_labels __lowercase= AlbertForTokenClassification(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __lowercase= model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= self.num_choices __lowercase= AlbertForMultipleChoice(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __lowercase= input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase= token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase= input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase= model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _A (self ): __lowercase= self.prepare_config_and_inputs() ( ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), )= config_and_inputs __lowercase= {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A ( lowercase_ , lowercase_ , unittest.TestCase ): UpperCamelCase_ : Optional[Any] =( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) UpperCamelCase_ : int =( { '''feature-extraction''': AlbertModel, '''fill-mask''': AlbertForMaskedLM, '''question-answering''': AlbertForQuestionAnswering, '''text-classification''': AlbertForSequenceClassification, '''token-classification''': AlbertForTokenClassification, '''zero-shot''': AlbertForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase_ : Optional[Any] =True def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=False ): __lowercase= super()._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) if return_labels: if model_class in get_values(__UpperCamelCase ): __lowercase= torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__UpperCamelCase ) __lowercase= torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__UpperCamelCase ) return inputs_dict def _A (self ): __lowercase= AlbertModelTester(self ) __lowercase= ConfigTester(self , config_class=__UpperCamelCase , hidden_size=3_7 ) def _A (self ): self.config_tester.run_common_tests() def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__UpperCamelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCamelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__UpperCamelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCamelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCamelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowercase= type self.model_tester.create_and_check_model(*__UpperCamelCase ) @slow def _A (self ): for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase= AlbertModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @require_torch class A ( unittest.TestCase ): @slow def _A (self ): __lowercase= AlbertModel.from_pretrained('albert-base-v2' ) __lowercase= torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) __lowercase= torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase= model(__UpperCamelCase , attention_mask=__UpperCamelCase )[0] __lowercase= torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , __UpperCamelCase ) __lowercase= torch.tensor( [[[-0.65_13, 1.50_35, -0.27_66], [-0.65_15, 1.50_46, -0.27_80], [-0.65_12, 1.50_49, -0.27_84]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __UpperCamelCase , atol=1E-4 ) )
295
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case : Optional[int] = logging.get_logger(__name__) _snake_case : Optional[int] = { 'google/vivit-b-16x2-kinetics400': ( 'https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class _UpperCAmelCase ( lowercase_ ): UpperCamelCase = '''vivit''' def __init__( self :Optional[Any] , __UpperCamelCase :Dict=2_24 , __UpperCamelCase :int=32 , __UpperCamelCase :Union[str, Any]=[2, 16, 16] , __UpperCamelCase :Optional[Any]=3 , __UpperCamelCase :Optional[Any]=7_68 , __UpperCamelCase :Any=12 , __UpperCamelCase :List[str]=12 , __UpperCamelCase :List[str]=30_72 , __UpperCamelCase :Any="gelu_fast" , __UpperCamelCase :List[Any]=0.0 , __UpperCamelCase :str=0.0 , __UpperCamelCase :Dict=0.02 , __UpperCamelCase :Optional[Any]=1e-06 , __UpperCamelCase :Dict=True , **__UpperCamelCase :Tuple , ): A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = image_size A = num_frames A = tubelet_size A = num_channels A = qkv_bias super().__init__(**__UpperCamelCase )
292
0
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 _a : int = get_tests_dir("""fixtures""") _a : Union[str, Any] = get_tests_dir("""fixtures/dummy_feature_extractor_config.json""") _a : Tuple = get_tests_dir("""fixtures/dummy-config.json""") class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = 0 def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = AutoFeatureExtractor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(__lowerCAmelCase,__lowerCAmelCase ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = AutoFeatureExtractor.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase,__lowerCAmelCase ) def lowerCamelCase__ ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally __lowerCAmelCase = AutoFeatureExtractor.from_pretrained(__lowerCAmelCase ).to_dict() config_dict.pop("""feature_extractor_type""" ) __lowerCAmelCase = WavaVecaFeatureExtractor(**__lowerCAmelCase ) # save in new folder model_config.save_pretrained(__lowerCAmelCase ) config.save_pretrained(__lowerCAmelCase ) __lowerCAmelCase = AutoFeatureExtractor.from_pretrained(__lowerCAmelCase ) # make sure private variable is not incorrectly saved __lowerCAmelCase = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(__lowerCAmelCase,__lowerCAmelCase ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = AutoFeatureExtractor.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase,__lowerCAmelCase ) def lowerCamelCase__ ( self ): '''simple docstring''' with self.assertRaisesRegex( __lowerCAmelCase,"""bert-base is not a local folder and is not a valid model identifier""" ): __lowerCAmelCase = AutoFeatureExtractor.from_pretrained("""bert-base""" ) def lowerCamelCase__ ( self ): '''simple docstring''' with self.assertRaisesRegex( __lowerCAmelCase,R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): __lowerCAmelCase = AutoFeatureExtractor.from_pretrained(__lowerCAmelCase,revision="""aaaaaa""" ) def lowerCamelCase__ ( self ): '''simple docstring''' with self.assertRaisesRegex( __lowerCAmelCase,"""hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""",): __lowerCAmelCase = AutoFeatureExtractor.from_pretrained("""hf-internal-testing/config-no-model""" ) def lowerCamelCase__ ( self ): '''simple docstring''' with self.assertRaises(__lowerCAmelCase ): __lowerCAmelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__lowerCAmelCase ): __lowerCAmelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""",trust_remote_code=__lowerCAmelCase ) __lowerCAmelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""",trust_remote_code=__lowerCAmelCase ) self.assertEqual(feature_extractor.__class__.__name__,"""NewFeatureExtractor""" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(__lowerCAmelCase ) __lowerCAmelCase = AutoFeatureExtractor.from_pretrained(__lowerCAmelCase,trust_remote_code=__lowerCAmelCase ) self.assertEqual(reloaded_feature_extractor.__class__.__name__,"""NewFeatureExtractor""" ) def lowerCamelCase__ ( self ): '''simple docstring''' try: AutoConfig.register("""custom""",__lowerCAmelCase ) AutoFeatureExtractor.register(__lowerCAmelCase,__lowerCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowerCAmelCase ): AutoFeatureExtractor.register(__lowerCAmelCase,__lowerCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API __lowerCAmelCase = CustomFeatureExtractor.from_pretrained(__lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(__lowerCAmelCase ) __lowerCAmelCase = AutoFeatureExtractor.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase,__lowerCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def lowerCamelCase__ ( self ): '''simple docstring''' class _UpperCAmelCase ( lowerCAmelCase_ ): a : str =True try: AutoConfig.register("""custom""",__lowerCAmelCase ) AutoFeatureExtractor.register(__lowerCAmelCase,__lowerCAmelCase ) # If remote code is not set, the default is to use local __lowerCAmelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) self.assertEqual(feature_extractor.__class__.__name__,"""NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. __lowerCAmelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""",trust_remote_code=__lowerCAmelCase ) self.assertEqual(feature_extractor.__class__.__name__,"""NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub __lowerCAmelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""",trust_remote_code=__lowerCAmelCase ) self.assertEqual(feature_extractor.__class__.__name__,"""NewFeatureExtractor""" ) self.assertTrue(not hasattr(__lowerCAmelCase,"""is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
358
'''simple docstring''' import numpy as np from transformers import Pipeline def _lowerCAmelCase ( lowercase ) -> List[str]: __lowerCAmelCase = np.max(lowercase , axis=-1 , keepdims=lowercase ) __lowerCAmelCase = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=lowercase ) class _UpperCAmelCase ( lowerCAmelCase_ ): def lowerCamelCase__ ( self,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = {} if "second_text" in kwargs: __lowerCAmelCase = kwargs["""second_text"""] return preprocess_kwargs, {}, {} def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' return self.tokenizer(__SCREAMING_SNAKE_CASE,text_pair=__SCREAMING_SNAKE_CASE,return_tensors=self.framework ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.model(**__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = model_outputs.logits[0].numpy() __lowerCAmelCase = softmax(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = np.argmax(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.model.config.idalabel[best_class] __lowerCAmelCase = probabilities[best_class].item() __lowerCAmelCase = logits.tolist() return {"label": label, "score": score, "logits": logits}
46
0
"""simple docstring""" from __future__ import annotations def lowercase__ ( _UpperCAmelCase = 4 ) -> list[list[int]]: '''simple docstring''' lowercase : Optional[Any] = abs(_UpperCAmelCase ) or 4 return [[1 + x + y * row_size for x in range(_UpperCAmelCase )] for y in range(_UpperCAmelCase )] def lowercase__ ( _UpperCAmelCase ) -> list[list[int]]: '''simple docstring''' return reverse_row(transpose(_UpperCAmelCase ) ) # OR.. transpose(reverse_column(matrix)) def lowercase__ ( _UpperCAmelCase ) -> list[list[int]]: '''simple docstring''' return reverse_row(reverse_column(_UpperCAmelCase ) ) # OR.. reverse_column(reverse_row(matrix)) def lowercase__ ( _UpperCAmelCase ) -> list[list[int]]: '''simple docstring''' return reverse_column(transpose(_UpperCAmelCase ) ) # OR.. transpose(reverse_row(matrix)) def lowercase__ ( _UpperCAmelCase ) -> list[list[int]]: '''simple docstring''' lowercase : int = [list(_UpperCAmelCase ) for x in zip(*_UpperCAmelCase )] return matrix def lowercase__ ( _UpperCAmelCase ) -> list[list[int]]: '''simple docstring''' lowercase : List[Any] = matrix[::-1] return matrix def lowercase__ ( _UpperCAmelCase ) -> list[list[int]]: '''simple docstring''' lowercase : int = [x[::-1] for x in matrix] return matrix def lowercase__ ( _UpperCAmelCase ) -> None: '''simple docstring''' for i in matrix: print(*_UpperCAmelCase ) if __name__ == "__main__": _UpperCamelCase: List[Any] = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 90 counterclockwise:\n') print_matrix(rotate_aa(matrix)) _UpperCamelCase: List[Any] = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 180:\n') print_matrix(rotate_aaa(matrix)) _UpperCamelCase: Union[str, Any] = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 270 counterclockwise:\n') print_matrix(rotate_aaa(matrix))
255
"""simple docstring""" import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a__ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, unittest.TestCase ): _lowerCamelCase = StableDiffusionDiffEditPipeline _lowerCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'height', 'width', 'image'} | {'image_latents'} _lowerCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'image'} | {'image_latents'} _lowerCamelCase = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _lowerCamelCase = frozenset([] ) def lowercase ( self : Any ) -> Dict: torch.manual_seed(0 ) lowercase : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=32, attention_head_dim=(2, 4), use_linear_projection=lowerCAmelCase, ) lowercase : Tuple = DDIMScheduler( beta_start=0.0_0085, beta_end=0.012, beta_schedule='scaled_linear', clip_sample=lowerCAmelCase, set_alpha_to_one=lowerCAmelCase, ) lowercase : Any = DDIMInverseScheduler( beta_start=0.0_0085, beta_end=0.012, beta_schedule='scaled_linear', clip_sample=lowerCAmelCase, set_alpha_to_zero=lowerCAmelCase, ) torch.manual_seed(0 ) lowercase : int = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, sample_size=128, ) torch.manual_seed(0 ) lowercase : List[str] = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, hidden_act='gelu', projection_dim=512, ) lowercase : str = CLIPTextModel(lowerCAmelCase ) lowercase : int = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowercase : Tuple = { 'unet': unet, 'scheduler': scheduler, 'inverse_scheduler': inverse_scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def lowercase ( self : Tuple, lowerCAmelCase : List[str], lowerCAmelCase : Tuple=0 ) -> Union[str, Any]: lowercase : List[Any] = floats_tensor((1, 16, 16), rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase ) lowercase : Union[str, Any] = floats_tensor((1, 2, 4, 16, 16), rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase ) if str(lowerCAmelCase ).startswith('mps' ): lowercase : Optional[Any] = torch.manual_seed(lowerCAmelCase ) else: lowercase : Optional[Any] = torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) lowercase : Tuple = { 'prompt': 'a dog and a newt', 'mask_image': mask, 'image_latents': latents, 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self : Union[str, Any], lowerCAmelCase : Tuple, lowerCAmelCase : Dict=0 ) -> Optional[Any]: lowercase : Any = floats_tensor((1, 3, 32, 32), rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase ) lowercase : List[str] = image.cpu().permute(0, 2, 3, 1 )[0] lowercase : Optional[int] = Image.fromarray(np.uinta(lowerCAmelCase ) ).convert('RGB' ) if str(lowerCAmelCase ).startswith('mps' ): lowercase : Optional[int] = torch.manual_seed(lowerCAmelCase ) else: lowercase : Optional[Any] = torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) lowercase : List[Any] = { 'image': image, 'source_prompt': 'a cat and a frog', 'target_prompt': 'a dog and a newt', 'generator': generator, 'num_inference_steps': 2, 'num_maps_per_mask': 2, 'mask_encode_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self : Optional[int], lowerCAmelCase : Any, lowerCAmelCase : List[str]=0 ) -> Union[str, Any]: lowercase : Optional[int] = floats_tensor((1, 3, 32, 32), rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase ) lowercase : Tuple = image.cpu().permute(0, 2, 3, 1 )[0] lowercase : Tuple = Image.fromarray(np.uinta(lowerCAmelCase ) ).convert('RGB' ) if str(lowerCAmelCase ).startswith('mps' ): lowercase : Optional[int] = torch.manual_seed(lowerCAmelCase ) else: lowercase : List[str] = torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) lowercase : Union[str, Any] = { 'image': image, 'prompt': 'a cat and a frog', 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'decode_latents': True, 'output_type': 'numpy', } return inputs def lowercase ( self : Optional[int] ) -> str: if not hasattr(self.pipeline_class, '_optional_components' ): return lowercase : Optional[int] = self.get_dummy_components() lowercase : int = self.pipeline_class(**lowerCAmelCase ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) lowercase : List[Any] = self.get_dummy_inputs(lowerCAmelCase ) lowercase : Any = pipe(**lowerCAmelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCAmelCase ) lowercase : Any = self.pipeline_class.from_pretrained(lowerCAmelCase ) pipe_loaded.to(lowerCAmelCase ) pipe_loaded.set_progress_bar_config(disable=lowerCAmelCase ) for optional_component in pipe._optional_components: self.assertTrue( getattr(lowerCAmelCase, lowerCAmelCase ) is None, f'''`{optional_component}` did not stay set to None after loading.''', ) lowercase : Tuple = self.get_dummy_inputs(lowerCAmelCase ) lowercase : Optional[Any] = pipe_loaded(**lowerCAmelCase )[0] lowercase : List[Any] = np.abs(output - output_loaded ).max() self.assertLess(lowerCAmelCase, 1e-4 ) def lowercase ( self : Any ) -> str: lowercase : Union[str, Any] = 'cpu' lowercase : Optional[int] = self.get_dummy_components() lowercase : List[str] = self.pipeline_class(**lowerCAmelCase ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowercase : Any = self.get_dummy_mask_inputs(lowerCAmelCase ) lowercase : str = pipe.generate_mask(**lowerCAmelCase ) lowercase : str = mask[0, -3:, -3:] self.assertEqual(mask.shape, (1, 16, 16) ) lowercase : List[str] = np.array([0] * 9 ) lowercase : Dict = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCAmelCase, 1e-3 ) self.assertEqual(mask[0, -3, -4], 0 ) def lowercase ( self : int ) -> str: lowercase : int = 'cpu' lowercase : Dict = self.get_dummy_components() lowercase : Optional[int] = self.pipeline_class(**lowerCAmelCase ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowercase : Any = self.get_dummy_inversion_inputs(lowerCAmelCase ) lowercase : Tuple = pipe.invert(**lowerCAmelCase ).images lowercase : Tuple = image[0, -1, -3:, -3:] self.assertEqual(image.shape, (2, 32, 32, 3) ) lowercase : List[Any] = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.5_1050, 0.5015, 0.4407, 0.4799], ) lowercase : Union[str, Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCAmelCase, 1e-3 ) def lowercase ( self : str ) -> int: super().test_inference_batch_single_identical(expected_max_diff=5e-3 ) def lowercase ( self : List[str] ) -> Tuple: lowercase : Dict = 'cpu' lowercase : Any = self.get_dummy_components() lowercase : List[Any] = {'beta_start': 0.0_0085, 'beta_end': 0.012, 'beta_schedule': 'scaled_linear'} lowercase : List[str] = DPMSolverMultistepScheduler(**lowerCAmelCase ) lowercase : Dict = DPMSolverMultistepInverseScheduler(**lowerCAmelCase ) lowercase : str = self.pipeline_class(**lowerCAmelCase ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowercase : List[Any] = self.get_dummy_inversion_inputs(lowerCAmelCase ) lowercase : int = pipe.invert(**lowerCAmelCase ).images lowercase : Tuple = image[0, -1, -3:, -3:] self.assertEqual(image.shape, (2, 32, 32, 3) ) lowercase : Dict = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.5_1050, 0.5015, 0.4407, 0.4799], ) lowercase : str = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCAmelCase, 1e-3 ) @require_torch_gpu @slow class a__ ( unittest.TestCase ): def lowercase ( self : Optional[Any] ) -> Optional[int]: super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def lowercase ( cls : Optional[int] ) -> Tuple: lowercase : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png' ) lowercase : Optional[Any] = raw_image.convert('RGB' ).resize((768, 768) ) lowercase : Any = raw_image def lowercase ( self : Optional[Any] ) -> List[Any]: lowercase : str = torch.manual_seed(0 ) lowercase : int = StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1', safety_checker=lowerCAmelCase, torch_dtype=torch.floataa ) lowercase : List[str] = DDIMScheduler.from_config(pipe.scheduler.config ) lowercase : List[Any] = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowercase : List[Any] = 'a bowl of fruit' lowercase : List[Any] = 'a bowl of pears' lowercase : int = pipe.generate_mask( image=self.raw_image, source_prompt=lowerCAmelCase, target_prompt=lowerCAmelCase, generator=lowerCAmelCase, ) lowercase : Tuple = pipe.invert( prompt=lowerCAmelCase, image=self.raw_image, inpaint_strength=0.7, generator=lowerCAmelCase ).latents lowercase : str = pipe( prompt=lowerCAmelCase, mask_image=lowerCAmelCase, image_latents=lowerCAmelCase, generator=lowerCAmelCase, negative_prompt=lowerCAmelCase, inpaint_strength=0.7, output_type='numpy', ).images[0] lowercase : Dict = ( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5e-1 def lowercase ( self : Union[str, Any] ) -> List[Any]: lowercase : Dict = torch.manual_seed(0 ) lowercase : Union[str, Any] = StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1', safety_checker=lowerCAmelCase, torch_dtype=torch.floataa ) lowercase : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowercase : Any = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowercase : Union[str, Any] = 'a bowl of fruit' lowercase : List[Any] = 'a bowl of pears' lowercase : List[Any] = pipe.generate_mask( image=self.raw_image, source_prompt=lowerCAmelCase, target_prompt=lowerCAmelCase, generator=lowerCAmelCase, ) lowercase : List[str] = pipe.invert( prompt=lowerCAmelCase, image=self.raw_image, inpaint_strength=0.7, generator=lowerCAmelCase, num_inference_steps=25, ).latents lowercase : int = pipe( prompt=lowerCAmelCase, mask_image=lowerCAmelCase, image_latents=lowerCAmelCase, generator=lowerCAmelCase, negative_prompt=lowerCAmelCase, inpaint_strength=0.7, num_inference_steps=25, output_type='numpy', ).images[0] lowercase : Tuple = ( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5e-1
255
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : Any = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) UpperCAmelCase : Dict = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" UpperCAmelCase : str = model(_SCREAMING_SNAKE_CASE )["""last_hidden_state"""] UpperCAmelCase : List[Any] = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) # compare the actual values for a slice. UpperCAmelCase : List[str] = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
76
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): __lowerCAmelCase : Dict = 'naver-clova-ix/donut-base-finetuned-docvqa' __lowerCAmelCase : Dict = ( 'This is a tool that answers a question about an document (pdf). It takes an input named `document` which ' 'should be the document containing the information, as well as a `question` that is the question about the ' 'document. It returns a text that contains the answer to the question.' ) __lowerCAmelCase : Union[str, Any] = 'document_qa' __lowerCAmelCase : Optional[Any] = AutoProcessor __lowerCAmelCase : List[Any] = VisionEncoderDecoderModel __lowerCAmelCase : Union[str, Any] = ['image', 'text'] __lowerCAmelCase : str = ['text'] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' if not is_vision_available(): raise ValueError("""Pillow must be installed to use the DocumentQuestionAnsweringTool.""" ) super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' UpperCAmelCase : Union[str, Any] = """<s_docvqa><s_question>{user_input}</s_question><s_answer>""" UpperCAmelCase : Any = task_prompt.replace("""{user_input}""" , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Dict = self.pre_processor.tokenizer( _SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).input_ids UpperCAmelCase : Optional[Any] = self.pre_processor(_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' return self.model.generate( inputs["""pixel_values"""].to(self.device ) , decoder_input_ids=inputs["""decoder_input_ids"""].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=_SCREAMING_SNAKE_CASE , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=_SCREAMING_SNAKE_CASE , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=_SCREAMING_SNAKE_CASE , ).sequences def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' UpperCAmelCase : Tuple = self.pre_processor.batch_decode(_SCREAMING_SNAKE_CASE )[0] UpperCAmelCase : int = sequence.replace(self.pre_processor.tokenizer.eos_token , """""" ) UpperCAmelCase : Optional[int] = sequence.replace(self.pre_processor.tokenizer.pad_token , """""" ) UpperCAmelCase : Union[str, Any] = re.sub(r"""<.*?>""" , """""" , _SCREAMING_SNAKE_CASE , count=1 ).strip() # remove first task start token UpperCAmelCase : Tuple = self.pre_processor.tokenajson(_SCREAMING_SNAKE_CASE ) return sequence["answer"]
76
1
import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def UpperCamelCase ( snake_case__ : ndarray ) -> float: return np.dot(snake_case__ , snake_case__ ) class lowerCAmelCase_ : def __init__( self, *, SCREAMING_SNAKE_CASE_ = np.inf, SCREAMING_SNAKE_CASE_ = "linear", SCREAMING_SNAKE_CASE_ = 0.0, ) -> None: UpperCamelCase : str = regularization UpperCamelCase : Union[str, Any] = gamma if kernel == "linear": UpperCamelCase : Tuple = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('rbf kernel requires gamma' ) if not isinstance(self.gamma, (float, int) ): raise ValueError('gamma must be float or int' ) if not self.gamma > 0: raise ValueError('gamma must be > 0' ) UpperCamelCase : Dict = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: UpperCamelCase : Optional[Any] = F"""Unknown kernel: {kernel}""" raise ValueError(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> float: return np.dot(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> float: return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> None: UpperCamelCase : Optional[Any] = observations UpperCamelCase : Dict = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((UpperCamelCase) , ) : Optional[int] = np.shape(SCREAMING_SNAKE_CASE_ ) def to_minimize(SCREAMING_SNAKE_CASE_ ) -> float: UpperCamelCase : Optional[int] = 0 ((UpperCamelCase) , ) : List[Any] = np.shape(SCREAMING_SNAKE_CASE_ ) for i in range(SCREAMING_SNAKE_CASE_ ): for j in range(SCREAMING_SNAKE_CASE_ ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i], observations[j] ) ) return 1 / 2 * s - sum(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = LinearConstraint(SCREAMING_SNAKE_CASE_, 0, 0 ) UpperCamelCase : Optional[int] = Bounds(0, self.regularization ) UpperCamelCase : Optional[int] = minimize( SCREAMING_SNAKE_CASE_, np.ones(SCREAMING_SNAKE_CASE_ ), bounds=SCREAMING_SNAKE_CASE_, constraints=[ly_contraint] ).x UpperCamelCase : Optional[int] = l_star # calculating mean offset of separation plane to points UpperCamelCase : Union[str, Any] = 0 for i in range(SCREAMING_SNAKE_CASE_ ): for j in range(SCREAMING_SNAKE_CASE_ ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i], observations[j] ) UpperCamelCase : Any = s / n def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> int: UpperCamelCase : Optional[int] = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n], SCREAMING_SNAKE_CASE_ ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
119
import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def UpperCamelCase ( snake_case__ : str ) -> Optional[int]: monkeypatch.setattr('datasets.utils.deprecation_utils._emitted_deprecation_warnings' , set() ) @pytest.fixture def UpperCamelCase ( snake_case__ : str ) -> Any: class lowerCAmelCase_ : def __init__( self, SCREAMING_SNAKE_CASE_ ) -> Optional[int]: UpperCamelCase : Tuple = metric_id class lowerCAmelCase_ : UpperCAmelCase__ : Optional[int] = [MetricMock(a__ ) for metric_id in ["accuracy", "mse", "precision", "codeparrot/apps_metric"]] def snake_case_ ( self ) -> str: return self._metrics monkeypatch.setattr('datasets.inspect.huggingface_hub' , HfhMock() ) @pytest.mark.parametrize( 'func, args' , [(load_metric, ('metrics/mse',)), (list_metrics, ()), (inspect_metric, ('metrics/mse', 'tmp_path'))] ) def UpperCamelCase ( snake_case__ : str , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : Optional[int] , snake_case__ : Union[str, Any] ) -> int: if "tmp_path" in args: UpperCamelCase : Dict = tuple(arg if arg != 'tmp_path' else tmp_path for arg in args ) with pytest.warns(snake_case__ , match='https://huggingface.co/docs/evaluate' ): func(*snake_case__ )
119
1
'''simple docstring''' from timeit import timeit A__ : Union[str, Any] = { """MALAYALAM""": True, """String""": False, """rotor""": True, """level""": True, """A""": True, """BB""": True, """ABC""": False, """amanaplanacanalpanama""": True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def a_ ( _UpperCAmelCase : List[Any] ) -> bool: __snake_case : Any = 0 __snake_case : Optional[Any] = len(SCREAMING_SNAKE_CASE_ ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def a_ ( _UpperCAmelCase : int ) -> bool: __snake_case : Dict = len(SCREAMING_SNAKE_CASE_ ) // 2 __snake_case : str = len(SCREAMING_SNAKE_CASE_ ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(SCREAMING_SNAKE_CASE_ ) ) def a_ ( _UpperCAmelCase : Union[str, Any] ) -> bool: if len(SCREAMING_SNAKE_CASE_ ) <= 2: return True if s[0] == s[len(SCREAMING_SNAKE_CASE_ ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def a_ ( _UpperCAmelCase : List[Any] ) -> bool: return s == s[::-1] def a_ ( _UpperCAmelCase : Dict ) -> None: __snake_case : Dict = f'''all({name}(key) is value for key, value in test_data.items())''' __snake_case : Optional[Any] = f'''from __main__ import test_data, {name}''' __snake_case : Tuple = 50_00_00 __snake_case : Union[str, Any] = timeit(stmt=SCREAMING_SNAKE_CASE_ ,setup=SCREAMING_SNAKE_CASE_ ,number=SCREAMING_SNAKE_CASE_ ) print(f'''{name:<35} finished {number:,} runs in {result:.5f} seconds''' ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(F"""{key:21} {value}""") print('''a man a plan a canal panama''') # finished 500,000 runs in 0.46793 seconds benchmark_function('''is_palindrome_slice''') # finished 500,000 runs in 0.85234 seconds benchmark_function('''is_palindrome''') # finished 500,000 runs in 1.32028 seconds benchmark_function('''is_palindrome_recursive''') # finished 500,000 runs in 2.08679 seconds benchmark_function('''is_palindrome_traversal''')
365
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class snake_case__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): A__ = ShapEPipeline A__ = ['''prompt'''] A__ = ['''prompt'''] A__ = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] A__ = False @property def A_ ( self : Optional[Any] ) -> str: '''simple docstring''' return 32 @property def A_ ( self : str ) -> Optional[int]: '''simple docstring''' return 32 @property def A_ ( self : Tuple ) -> List[Any]: '''simple docstring''' return self.time_input_dim * 4 @property def A_ ( self : Tuple ) -> Dict: '''simple docstring''' return 8 @property def A_ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' __snake_case : Dict = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def A_ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) __snake_case : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(__a ) @property def A_ ( self : Union[str, Any] ) -> int: '''simple docstring''' torch.manual_seed(0 ) __snake_case : Dict = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } __snake_case : Optional[Any] = PriorTransformer(**__a ) return model @property def A_ ( self : Dict ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) __snake_case : Tuple = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } __snake_case : Optional[int] = ShapERenderer(**__a ) return model def A_ ( self : Tuple ) -> Tuple: '''simple docstring''' __snake_case : Tuple = self.dummy_prior __snake_case : Union[str, Any] = self.dummy_text_encoder __snake_case : List[str] = self.dummy_tokenizer __snake_case : Optional[Any] = self.dummy_renderer __snake_case : List[Any] = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1024 , prediction_type='sample' , use_karras_sigmas=__a , clip_sample=__a , clip_sample_range=1.0 , ) __snake_case : int = { 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def A_ ( self : Union[str, Any] , __a : Dict , __a : int=0 ) -> Optional[Any]: '''simple docstring''' if str(__a ).startswith('mps' ): __snake_case : List[str] = torch.manual_seed(__a ) else: __snake_case : Optional[Any] = torch.Generator(device=__a ).manual_seed(__a ) __snake_case : Optional[int] = { 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def A_ ( self : List[Any] ) -> List[Any]: '''simple docstring''' __snake_case : Dict = 'cpu' __snake_case : Dict = self.get_dummy_components() __snake_case : int = self.pipeline_class(**__a ) __snake_case : str = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __snake_case : Optional[Any] = pipe(**self.get_dummy_inputs(__a ) ) __snake_case : Dict = output.images[0] __snake_case : int = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __snake_case : str = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A_ ( self : Any ) -> List[str]: '''simple docstring''' # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def A_ ( self : int ) -> Tuple: '''simple docstring''' __snake_case : int = torch_device == 'cpu' __snake_case : str = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=__a , relax_max_difference=__a , ) def A_ ( self : List[str] ) -> Dict: '''simple docstring''' __snake_case : str = self.get_dummy_components() __snake_case : Tuple = self.pipeline_class(**__a ) __snake_case : Dict = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __snake_case : int = 1 __snake_case : Tuple = 2 __snake_case : Tuple = self.get_dummy_inputs(__a ) for key in inputs.keys(): if key in self.batch_params: __snake_case : Union[str, Any] = batch_size * [inputs[key]] __snake_case : str = pipe(**__a , num_images_per_prompt=__a )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class snake_case__ ( unittest.TestCase ): def A_ ( self : str ) -> Dict: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A_ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' __snake_case : Optional[int] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy' ) __snake_case : Union[str, Any] = ShapEPipeline.from_pretrained('openai/shap-e' ) __snake_case : Any = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __snake_case : Optional[int] = torch.Generator(device=__a ).manual_seed(0 ) __snake_case : Union[str, Any] = pipe( 'a shark' , generator=__a , guidance_scale=1_5.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(__a , __a )
0
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a : int = { 'configuration_maskformer': ['MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MaskFormerConfig'], 'configuration_maskformer_swin': ['MaskFormerSwinConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Tuple = ['MaskFormerFeatureExtractor'] a : Tuple = ['MaskFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Tuple = [ 'MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'MaskFormerForInstanceSegmentation', 'MaskFormerModel', 'MaskFormerPreTrainedModel', ] a : Optional[int] = [ 'MaskFormerSwinBackbone', 'MaskFormerSwinModel', 'MaskFormerSwinPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys a : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
105
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class lowercase ( unittest.TestCase): def a_ ( self : List[str] ): """simple docstring""" A_ : Tuple = tempfile.mkdtemp() # fmt: off A_ : List[Any] = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on A_ : Tuple = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) A_ : Optional[int] = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] A_ : Tuple = {'''unk_token''': '''<unk>'''} A_ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) A_ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowerCamelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_lowerCamelCase ) ) A_ : str = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48145466, 0.4578275, 0.40821073], '''image_std''': [0.26862954, 0.26130258, 0.27577711], } A_ : str = os.path.join(self.tmpdirname , _lowerCamelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_lowerCamelCase , _lowerCamelCase ) def a_ ( self : Any , **_lowerCamelCase : Dict ): """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def a_ ( self : Dict , **_lowerCamelCase : Optional[int] ): """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def a_ ( self : List[str] , **_lowerCamelCase : List[Any] ): """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def a_ ( self : int ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def a_ ( self : List[str] ): """simple docstring""" A_ : Dict = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] A_ : Dict = [Image.fromarray(np.moveaxis(_lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def a_ ( self : List[str] ): """simple docstring""" A_ : int = self.get_tokenizer() A_ : int = self.get_rust_tokenizer() A_ : Optional[Any] = self.get_image_processor() A_ : Union[str, Any] = CLIPSegProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) A_ : List[Any] = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=_lowerCamelCase ) A_ : Optional[Any] = CLIPSegProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) A_ : Any = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _lowerCamelCase ) self.assertIsInstance(processor_fast.tokenizer , _lowerCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _lowerCamelCase ) self.assertIsInstance(processor_fast.image_processor , _lowerCamelCase ) def a_ ( self : str ): """simple docstring""" A_ : Tuple = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A_ : Tuple = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) A_ : Dict = self.get_image_processor(do_normalize=_lowerCamelCase , padding_value=1.0 ) A_ : List[Any] = CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCamelCase ) def a_ ( self : int ): """simple docstring""" A_ : List[str] = self.get_image_processor() A_ : Union[str, Any] = self.get_tokenizer() A_ : Union[str, Any] = CLIPSegProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : Tuple = self.prepare_image_inputs() A_ : Dict = image_processor(_lowerCamelCase , return_tensors='''np''' ) A_ : Optional[int] = processor(images=_lowerCamelCase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def a_ ( self : str ): """simple docstring""" A_ : Optional[int] = self.get_image_processor() A_ : int = self.get_tokenizer() A_ : int = CLIPSegProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : Union[str, Any] = '''lower newer''' A_ : int = processor(text=_lowerCamelCase ) A_ : Any = tokenizer(_lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def a_ ( self : str ): """simple docstring""" A_ : str = self.get_image_processor() A_ : List[Any] = self.get_tokenizer() A_ : Tuple = CLIPSegProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : Union[str, Any] = '''lower newer''' A_ : Optional[Any] = self.prepare_image_inputs() A_ : Dict = processor(text=_lowerCamelCase , images=_lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(_lowerCamelCase ): processor() def a_ ( self : List[Any] ): """simple docstring""" A_ : Optional[int] = self.get_image_processor() A_ : int = self.get_tokenizer() A_ : Any = CLIPSegProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : Tuple = self.prepare_image_inputs() A_ : Tuple = self.prepare_image_inputs() A_ : Optional[int] = processor(images=_lowerCamelCase , visual_prompt=_lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''conditional_pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(_lowerCamelCase ): processor() def a_ ( self : List[Any] ): """simple docstring""" A_ : Optional[int] = self.get_image_processor() A_ : Union[str, Any] = self.get_tokenizer() A_ : Optional[Any] = CLIPSegProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A_ : List[str] = processor.batch_decode(_lowerCamelCase ) A_ : str = tokenizer.batch_decode(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase )
167
0
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=__lowercase ) class lowerCAmelCase__ ( __lowercase ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization a__ : str = field(default="""question-answering-extractive""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) a__ : ClassVar[Features] = Features({"""question""": Value("""string""" ), """context""": Value("""string""" )} ) a__ : ClassVar[Features] = Features( { """answers""": Sequence( { """text""": Value("""string""" ), """answer_start""": Value("""int32""" ), } ) } ) a__ : str = "question" a__ : str = "context" a__ : str = "answers" @property def __A ( self : str ) -> Dict[str, str]: return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
339
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class lowerCAmelCase__ ( unittest.TestCase ): def __A ( self : List[str] ) -> Dict: __lowerCamelCase = tempfile.mkdtemp() # fmt: off __lowerCamelCase = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __lowerCamelCase = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) __lowerCamelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __lowerCamelCase = {'''unk_token''': '''<unk>'''} __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(SCREAMING_SNAKE_CASE__ ) ) __lowerCamelCase = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48145466, 0.4578275, 0.40821073], '''image_std''': [0.26862954, 0.26130258, 0.27577711], } __lowerCamelCase = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE__ ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __A ( self : int , **SCREAMING_SNAKE_CASE__ : int ) -> Any: return CLIPTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def __A ( self : Dict , **SCREAMING_SNAKE_CASE__ : Dict ) -> Union[str, Any]: return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def __A ( self : Optional[int] , **SCREAMING_SNAKE_CASE__ : Any ) -> List[Any]: return ViTImageProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def __A ( self : Dict ) -> Dict: shutil.rmtree(self.tmpdirname ) def __A ( self : str ) -> Any: __lowerCamelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCamelCase = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __A ( self : List[Any] ) -> List[str]: __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = self.get_rust_tokenizer() __lowerCamelCase = self.get_image_processor() __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) processor_slow.save_pretrained(self.tmpdirname ) __lowerCamelCase = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) processor_fast.save_pretrained(self.tmpdirname ) __lowerCamelCase = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(processor_fast.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(processor_fast.image_processor , SCREAMING_SNAKE_CASE__ ) def __A ( self : Union[str, Any] ) -> int: __lowerCamelCase = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCamelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowerCamelCase = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 ) __lowerCamelCase = CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ ) def __A ( self : Optional[Any] ) -> Union[str, Any]: __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='''np''' ) __lowerCamelCase = processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __A ( self : List[Any] ) -> Optional[int]: __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = '''lower newer''' __lowerCamelCase = processor(text=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = tokenizer(SCREAMING_SNAKE_CASE__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self : List[Any] ) -> Any: __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = '''lower newer''' __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE__ ): processor() def __A ( self : Optional[Any] ) -> List[str]: __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = processor(images=SCREAMING_SNAKE_CASE__ , visual_prompt=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''conditional_pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE__ ): processor() def __A ( self : List[Any] ) -> Any: __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = CLIPSegProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCamelCase = processor.batch_decode(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
339
1
"""simple docstring""" import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): # Initialise PyTorch model _lowerCamelCase : Dict = RemBertConfig.from_json_file(lowercase__ ) print('Building PyTorch model from configuration: {}'.format(str(lowercase__ ) ) ) _lowerCamelCase : Any = RemBertModel(lowercase__ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowercase__ , lowercase__ , lowercase__ ) # Save pytorch-model print('Save PyTorch model to {}'.format(lowercase__ ) ) torch.save(model.state_dict() , lowercase__ ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--rembert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained RemBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowercase__ = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
96
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __snake_case : def __init__( self , snake_case__ , snake_case__=14 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=False , snake_case__=True , snake_case__=99 , snake_case__=32 , snake_case__=4 , snake_case__=4 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=0.02 , ) -> str: '''simple docstring''' UpperCAmelCase : str =parent UpperCAmelCase : Tuple =batch_size UpperCAmelCase : Optional[int] =seq_length UpperCAmelCase : Optional[int] =is_training UpperCAmelCase : Tuple =use_input_mask UpperCAmelCase : List[Any] =use_token_type_ids UpperCAmelCase : Optional[Any] =use_labels UpperCAmelCase : Union[str, Any] =vocab_size UpperCAmelCase : List[Any] =hidden_size UpperCAmelCase : Optional[int] =rotary_dim UpperCAmelCase : Union[str, Any] =num_hidden_layers UpperCAmelCase : List[Any] =num_attention_heads UpperCAmelCase : Dict =intermediate_size UpperCAmelCase : Union[str, Any] =hidden_act UpperCAmelCase : Any =hidden_dropout_prob UpperCAmelCase : Dict =attention_probs_dropout_prob UpperCAmelCase : Union[str, Any] =max_position_embeddings UpperCAmelCase : str =initializer_range UpperCAmelCase : Optional[int] =None UpperCAmelCase : List[Any] =vocab_size - 1 UpperCAmelCase : Optional[Any] =vocab_size - 1 UpperCAmelCase : List[Any] =vocab_size - 1 def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : List[str] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : List[Any] =None if self.use_input_mask: UpperCAmelCase : Optional[Any] =random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Dict =GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=snake_case__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : Tuple =self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Union[str, Any] =config_and_inputs UpperCAmelCase : Tuple ={'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Any =20 UpperCAmelCase : Any =model_class_name(snake_case__ ) UpperCAmelCase : str =model.init_cache(input_ids.shape[0] , snake_case__ ) UpperCAmelCase : Any =jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) UpperCAmelCase : Optional[Any] =jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) UpperCAmelCase : Optional[Any] =model( input_ids[:, :-1] , attention_mask=snake_case__ , past_key_values=snake_case__ , position_ids=snake_case__ , ) UpperCAmelCase : List[str] =jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''' ) UpperCAmelCase : Optional[Any] =model( input_ids[:, -1:] , attention_mask=snake_case__ , past_key_values=outputs_cache.past_key_values , position_ids=snake_case__ , ) UpperCAmelCase : List[Any] =model(snake_case__ ) UpperCAmelCase : Any =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Dict =20 UpperCAmelCase : Dict =model_class_name(snake_case__ ) UpperCAmelCase : Tuple =jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) UpperCAmelCase : Dict =model.init_cache(input_ids.shape[0] , snake_case__ ) UpperCAmelCase : int =jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) UpperCAmelCase : Optional[Any] =model( input_ids[:, :-1] , attention_mask=snake_case__ , past_key_values=snake_case__ , position_ids=snake_case__ , ) UpperCAmelCase : Any =jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''' ) UpperCAmelCase : str =model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=snake_case__ , position_ids=snake_case__ , ) UpperCAmelCase : Any =model(snake_case__ , attention_mask=snake_case__ ) UpperCAmelCase : Dict =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) @require_flax class __snake_case ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Tuple = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () __lowerCamelCase : Optional[Any] = (FlaxGPTJForCausalLM,) if is_flax_available() else () def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase : Union[str, Any] =FlaxGPTJModelTester(self ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int =self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) @tooslow def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Tuple =GPTaTokenizer.from_pretrained('''gpt2''' , pad_token='''<|endoftext|>''' , padding_side='''left''' ) UpperCAmelCase : Optional[Any] =tokenizer(['''Hello this is a long string''', '''Hey'''] , return_tensors='''np''' , padding=snake_case__ , truncation=snake_case__ ) UpperCAmelCase : Optional[int] =FlaxGPTJForCausalLM.from_pretrained('''EleutherAI/gpt-j-6B''' ) UpperCAmelCase : str =False UpperCAmelCase : Union[str, Any] =model.config.eos_token_id UpperCAmelCase : List[Any] =jax.jit(model.generate ) UpperCAmelCase : Dict =jit_generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , pad_token_id=tokenizer.pad_token_id ).sequences UpperCAmelCase : Any =tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ ) UpperCAmelCase : Tuple =[ '''Hello this is a long string of text.\n\nI\'m trying to get the text of the''', '''Hey, I\'m a little late to the party. I\'m going to''', ] self.assertListEqual(snake_case__ , snake_case__ ) @is_pt_flax_cross_test def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : List[str] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs UpperCAmelCase : Union[str, Any] =self._prepare_for_class(snake_case__ , snake_case__ ) UpperCAmelCase : List[str] ={k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class UpperCAmelCase : Any =model_class.__name__[4:] # Skip the "Flax" at the beginning UpperCAmelCase : Any =getattr(snake_case__ , snake_case__ ) UpperCAmelCase , UpperCAmelCase : Union[str, Any] =pt_inputs['''input_ids'''].shape UpperCAmelCase : Tuple =np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(snake_case__ ): UpperCAmelCase : int =0 UpperCAmelCase : Optional[int] =1 UpperCAmelCase : Optional[int] =0 UpperCAmelCase : Union[str, Any] =1 UpperCAmelCase : List[str] =pt_model_class(snake_case__ ).eval() UpperCAmelCase : Optional[int] =model_class(snake_case__ , dtype=jnp.floataa ) UpperCAmelCase : Any =convert_pytorch_state_dict_to_flax(pt_model.state_dict() , snake_case__ ) UpperCAmelCase : Union[str, Any] =fx_state with torch.no_grad(): UpperCAmelCase : Any =pt_model(**snake_case__ ).to_tuple() UpperCAmelCase : Dict =fx_model(**snake_case__ ).to_tuple() self.assertEqual(len(snake_case__ ) , len(snake_case__ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(snake_case__ , snake_case__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(snake_case__ ) UpperCAmelCase : str =model_class.from_pretrained(snake_case__ , from_pt=snake_case__ ) UpperCAmelCase : int =fx_model_loaded(**snake_case__ ).to_tuple() self.assertEqual( len(snake_case__ ) , len(snake_case__ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output_loaded, pt_output in zip(snake_case__ , snake_case__ ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @is_pt_flax_cross_test def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : Any =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs UpperCAmelCase : Union[str, Any] =self._prepare_for_class(snake_case__ , snake_case__ ) UpperCAmelCase : Union[str, Any] ={k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class UpperCAmelCase : int =model_class.__name__[4:] # Skip the "Flax" at the beginning UpperCAmelCase : int =getattr(snake_case__ , snake_case__ ) UpperCAmelCase : Dict =pt_model_class(snake_case__ ).eval() UpperCAmelCase : str =model_class(snake_case__ , dtype=jnp.floataa ) UpperCAmelCase : Optional[Any] =load_flax_weights_in_pytorch_model(snake_case__ , fx_model.params ) UpperCAmelCase , UpperCAmelCase : Optional[int] =pt_inputs['''input_ids'''].shape UpperCAmelCase : Optional[int] =np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(snake_case__ ): UpperCAmelCase : str =0 UpperCAmelCase : Any =1 UpperCAmelCase : List[Any] =0 UpperCAmelCase : Tuple =1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): UpperCAmelCase : Optional[Any] =pt_model(**snake_case__ ).to_tuple() UpperCAmelCase : List[Any] =fx_model(**snake_case__ ).to_tuple() self.assertEqual(len(snake_case__ ) , len(snake_case__ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(snake_case__ , snake_case__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(snake_case__ ) UpperCAmelCase : Tuple =pt_model_class.from_pretrained(snake_case__ , from_flax=snake_case__ ) with torch.no_grad(): UpperCAmelCase : Any =pt_model_loaded(**snake_case__ ).to_tuple() self.assertEqual( len(snake_case__ ) , len(snake_case__ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(snake_case__ , snake_case__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @tooslow def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase : str =model_class_name.from_pretrained('''EleutherAI/gpt-j-6B''' ) UpperCAmelCase : Tuple =model(np.ones((1, 1) ) ) self.assertIsNotNone(snake_case__ )
348
0
from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class UpperCamelCase_ : '''simple docstring''' def __init__( self : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[str]=13 , UpperCAmelCase__ : Any=7 , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Optional[int]=True , UpperCAmelCase__ : str=True , UpperCAmelCase__ : Tuple=99 , UpperCAmelCase__ : List[str]=[1, 1, 2] , UpperCAmelCase__ : Union[str, Any]=1 , UpperCAmelCase__ : str=32 , UpperCAmelCase__ : Optional[Any]=4 , UpperCAmelCase__ : int=8 , UpperCAmelCase__ : Any=37 , UpperCAmelCase__ : Optional[Any]="gelu_new" , UpperCAmelCase__ : Optional[int]=0.1 , UpperCAmelCase__ : List[str]=0.1 , UpperCAmelCase__ : str=0.0 , UpperCAmelCase__ : Optional[Any]=512 , UpperCAmelCase__ : Dict=3 , UpperCAmelCase__ : Union[str, Any]=0.02 , UpperCAmelCase__ : Any=3 , UpperCAmelCase__ : Any=4 , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : Tuple=False , ) ->Optional[Any]: '''simple docstring''' A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = block_sizes A__ = num_decoder_layers A__ = d_model A__ = n_head A__ = d_head A__ = d_inner A__ = hidden_act A__ = hidden_dropout A__ = attention_dropout A__ = activation_dropout A__ = max_position_embeddings A__ = type_vocab_size A__ = 2 A__ = num_labels A__ = num_choices A__ = scope A__ = initializer_std # Used in the tests to check the size of the first attention layer A__ = n_head # Used in the tests to check the size of the first hidden state A__ = self.d_model # Used in the tests to check the number of output hidden states/attentions A__ = sum(self.block_sizes) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: A__ = self.num_hidden_layers + 2 def SCREAMING_SNAKE_CASE ( self : int) ->str: '''simple docstring''' A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length]) A__ = None if self.use_token_type_ids: A__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) A__ = None A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size) A__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) A__ = ids_tensor([self.batch_size] , self.num_choices) A__ = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def SCREAMING_SNAKE_CASE ( self : List[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , ) ->int: '''simple docstring''' A__ = TFFunnelModel(config=UpperCAmelCase__) A__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A__ = model(UpperCAmelCase__) A__ = [input_ids, input_mask] A__ = model(UpperCAmelCase__) A__ = model(UpperCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model)) A__ = False A__ = TFFunnelModel(config=UpperCAmelCase__) A__ = model(UpperCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model)) A__ = False A__ = TFFunnelModel(config=UpperCAmelCase__) A__ = model(UpperCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model)) def SCREAMING_SNAKE_CASE ( self : List[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : Union[str, Any] , ) ->Dict: '''simple docstring''' A__ = TFFunnelBaseModel(config=UpperCAmelCase__) A__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A__ = model(UpperCAmelCase__) A__ = [input_ids, input_mask] A__ = model(UpperCAmelCase__) A__ = model(UpperCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model)) A__ = False A__ = TFFunnelBaseModel(config=UpperCAmelCase__) A__ = model(UpperCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model)) A__ = False A__ = TFFunnelBaseModel(config=UpperCAmelCase__) A__ = model(UpperCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model)) def SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase__ : Any , UpperCAmelCase__ : Any , UpperCAmelCase__ : str , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Any , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[Any] , ) ->Dict: '''simple docstring''' A__ = TFFunnelForPreTraining(config=UpperCAmelCase__) A__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A__ = model(UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length)) def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : str , ) ->Optional[Any]: '''simple docstring''' A__ = TFFunnelForMaskedLM(config=UpperCAmelCase__) A__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A__ = model(UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Any , UpperCAmelCase__ : str , ) ->int: '''simple docstring''' A__ = self.num_labels A__ = TFFunnelForSequenceClassification(config=UpperCAmelCase__) A__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A__ = model(UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : str , UpperCAmelCase__ : int , ) ->str: '''simple docstring''' A__ = self.num_choices A__ = TFFunnelForMultipleChoice(config=UpperCAmelCase__) A__ = tf.tile(tf.expand_dims(UpperCAmelCase__ , 1) , (1, self.num_choices, 1)) A__ = tf.tile(tf.expand_dims(UpperCAmelCase__ , 1) , (1, self.num_choices, 1)) A__ = tf.tile(tf.expand_dims(UpperCAmelCase__ , 1) , (1, self.num_choices, 1)) A__ = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } A__ = model(UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[Any] , ) ->str: '''simple docstring''' A__ = self.num_labels A__ = TFFunnelForTokenClassification(config=UpperCAmelCase__) A__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A__ = model(UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Tuple , ) ->List[Any]: '''simple docstring''' A__ = TFFunnelForQuestionAnswering(config=UpperCAmelCase__) A__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A__ = model(UpperCAmelCase__) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def SCREAMING_SNAKE_CASE ( self : Any) ->Tuple: '''simple docstring''' A__ = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = config_and_inputs A__ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) UpperCAmelCase__ = ( { '''feature-extraction''': (TFFunnelBaseModel, TFFunnelModel), '''fill-mask''': TFFunnelForMaskedLM, '''question-answering''': TFFunnelForQuestionAnswering, '''text-classification''': TFFunnelForSequenceClassification, '''token-classification''': TFFunnelForTokenClassification, '''zero-shot''': TFFunnelForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase__ = False UpperCAmelCase__ = False def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->List[str]: '''simple docstring''' A__ = TFFunnelModelTester(self) A__ = ConfigTester(self , config_class=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->str: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[str]) ->Dict: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Tuple) ->int: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase__) @require_tf class UpperCamelCase_ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) UpperCAmelCase__ = False UpperCAmelCase__ = False def SCREAMING_SNAKE_CASE ( self : int) ->Optional[int]: '''simple docstring''' A__ = TFFunnelModelTester(self , base=UpperCAmelCase__) A__ = ConfigTester(self , config_class=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[str]) ->Tuple: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : int) ->int: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[int]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase__)
231
from __future__ import annotations from typing import Any def SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: """simple docstring""" create_state_space_tree(lowercase_ , [] , 0 ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> None: """simple docstring""" if index == len(lowercase_ ): print(lowercase_ ) return create_state_space_tree(lowercase_ , lowercase_ , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(lowercase_ , lowercase_ , index + 1 ) current_subsequence.pop() if __name__ == "__main__": _lowerCamelCase : list[Any] = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(["""A""", """B""", """C"""]) generate_all_subsequences(seq)
231
1
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=a__ ) class _snake_case ( a__ ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization snake_case__ = field(default="question-answering-extractive" , metadata={"include_in_asdict_even_if_is_default": True} ) snake_case__ = Features({"question": Value("string" ), "context": Value("string" )} ) snake_case__ = Features( { "answers": Sequence( { "text": Value("string" ), "answer_start": Value("int32" ), } ) } ) snake_case__ = "question" snake_case__ = "context" snake_case__ = "answers" @property def lowerCamelCase__ ( self : Optional[int] ): return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
135
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __A = '''pt''' elif is_tf_available(): __A = '''tf''' else: __A = '''jax''' class _snake_case ( a__ , unittest.TestCase ): snake_case__ = PerceiverTokenizer snake_case__ = False def lowerCamelCase__ ( self : List[str] ): super().setUp() __lowerCamelCase : List[Any] = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCamelCase__ ( self : Dict ): return PerceiverTokenizer.from_pretrained("deepmind/language-perceiver" ) def lowerCamelCase__ ( self : List[Any] , **UpperCAmelCase : str ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def lowerCamelCase__ ( self : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any=False , UpperCAmelCase : str=20 , UpperCAmelCase : Union[str, Any]=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. __lowerCamelCase : Dict = [] for i in range(len(UpperCAmelCase ) ): try: __lowerCamelCase : int = tokenizer.decode([i] , clean_up_tokenization_spaces=UpperCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) __lowerCamelCase : Any = list(filter(lambda UpperCAmelCase : re.match(r"^[ a-zA-Z]+$" , t[1] ) , UpperCAmelCase ) ) __lowerCamelCase : str = list(filter(lambda UpperCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=UpperCAmelCase ) , UpperCAmelCase ) ) if max_length is not None and len(UpperCAmelCase ) > max_length: __lowerCamelCase : Optional[int] = toks[:max_length] if min_length is not None and len(UpperCAmelCase ) < min_length and len(UpperCAmelCase ) > 0: while len(UpperCAmelCase ) < min_length: __lowerCamelCase : int = toks + toks # toks_str = [t[1] for t in toks] __lowerCamelCase : str = [t[0] for t in toks] # Ensure consistency __lowerCamelCase : Optional[int] = tokenizer.decode(UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase ) if " " not in output_txt and len(UpperCAmelCase ) > 1: __lowerCamelCase : Optional[int] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=UpperCAmelCase ) + " " + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=UpperCAmelCase ) ) if with_prefix_space: __lowerCamelCase : Optional[int] = " " + output_txt __lowerCamelCase : List[Any] = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) return output_txt, output_ids def lowerCamelCase__ ( self : Any ): __lowerCamelCase : Tuple = self.perceiver_tokenizer __lowerCamelCase : Optional[int] = "Unicode €." __lowerCamelCase : Union[str, Any] = tokenizer(UpperCAmelCase ) __lowerCamelCase : List[Any] = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded["input_ids"] , UpperCAmelCase ) # decoding __lowerCamelCase : List[Any] = tokenizer.decode(UpperCAmelCase ) self.assertEqual(UpperCAmelCase , "[CLS]Unicode €.[SEP]" ) __lowerCamelCase : Optional[Any] = tokenizer("e è é ê ë" ) __lowerCamelCase : Dict = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded["input_ids"] , UpperCAmelCase ) # decoding __lowerCamelCase : Optional[Any] = tokenizer.decode(UpperCAmelCase ) self.assertEqual(UpperCAmelCase , "[CLS]e è é ê ë[SEP]" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë" ) ) , "[CLS]e è é ê ë[SEP]" ) def lowerCamelCase__ ( self : Any ): __lowerCamelCase : Dict = self.perceiver_tokenizer __lowerCamelCase : Union[str, Any] = ["A long paragraph for summarization.", "Another paragraph for summarization."] # fmt: off __lowerCamelCase : str = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on __lowerCamelCase : Dict = tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors=UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) if FRAMEWORK != "jax": __lowerCamelCase : Union[str, Any] = list(batch.input_ids.numpy()[0] ) else: __lowerCamelCase : Optional[int] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def lowerCamelCase__ ( self : Tuple ): __lowerCamelCase : str = self.perceiver_tokenizer __lowerCamelCase : Optional[Any] = ["A long paragraph for summarization.", "Another paragraph for summarization."] __lowerCamelCase : str = tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors=UpperCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn("input_ids" , UpperCAmelCase ) self.assertIn("attention_mask" , UpperCAmelCase ) self.assertNotIn("decoder_input_ids" , UpperCAmelCase ) self.assertNotIn("decoder_attention_mask" , UpperCAmelCase ) def lowerCamelCase__ ( self : Dict ): __lowerCamelCase : str = self.perceiver_tokenizer __lowerCamelCase : Union[str, Any] = [ "Summary of the text.", "Another summary.", ] __lowerCamelCase : int = tokenizer( text_target=UpperCAmelCase , max_length=32 , padding="max_length" , truncation=UpperCAmelCase , return_tensors=UpperCAmelCase ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def lowerCamelCase__ ( self : str ): # safety check on max_len default value so we are sure the test works __lowerCamelCase : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __lowerCamelCase : Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc __lowerCamelCase : int = tempfile.mkdtemp() __lowerCamelCase : Optional[int] = " He is very happy, UNwant\u00E9d,running" __lowerCamelCase : Any = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) tokenizer.save_pretrained(UpperCAmelCase ) __lowerCamelCase : Optional[int] = tokenizer.__class__.from_pretrained(UpperCAmelCase ) __lowerCamelCase : Tuple = after_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) shutil.rmtree(UpperCAmelCase ) __lowerCamelCase : int = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc __lowerCamelCase : List[Any] = tempfile.mkdtemp() __lowerCamelCase : Dict = " He is very happy, UNwant\u00E9d,running" tokenizer.add_tokens(["bim", "bambam"] ) __lowerCamelCase : List[str] = tokenizer.additional_special_tokens additional_special_tokens.append("new_additional_special_token" ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) __lowerCamelCase : Tuple = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) tokenizer.save_pretrained(UpperCAmelCase ) __lowerCamelCase : Optional[int] = tokenizer.__class__.from_pretrained(UpperCAmelCase ) __lowerCamelCase : Optional[int] = after_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertIn("new_additional_special_token" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __lowerCamelCase : Optional[int] = tokenizer.__class__.from_pretrained(UpperCAmelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(UpperCAmelCase ) def lowerCamelCase__ ( self : Optional[Any] ): __lowerCamelCase : Tuple = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(UpperCAmelCase ) with open(os.path.join(UpperCAmelCase , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: __lowerCamelCase : Optional[int] = json.load(UpperCAmelCase ) with open(os.path.join(UpperCAmelCase , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: __lowerCamelCase : Any = json.load(UpperCAmelCase ) __lowerCamelCase : Tuple = [F"""<extra_id_{i}>""" for i in range(125 )] __lowerCamelCase : Dict = added_tokens_extra_ids + [ "an_additional_special_token" ] __lowerCamelCase : Any = added_tokens_extra_ids + [ "an_additional_special_token" ] with open(os.path.join(UpperCAmelCase , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(UpperCAmelCase , UpperCAmelCase ) with open(os.path.join(UpperCAmelCase , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(UpperCAmelCase , UpperCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __lowerCamelCase : Tuple = tokenizer_class.from_pretrained( UpperCAmelCase , ) self.assertIn( "an_additional_special_token" , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ["an_additional_special_token"] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __lowerCamelCase : List[Any] = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token" , lstrip=UpperCAmelCase )] __lowerCamelCase : Tuple = tokenizer_class.from_pretrained( UpperCAmelCase , additional_special_tokens=UpperCAmelCase , ) self.assertIn("a_new_additional_special_token" , tokenizer.additional_special_tokens ) self.assertEqual( ["a_new_additional_special_token"] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"] ) ) , ) def lowerCamelCase__ ( self : Tuple ): __lowerCamelCase : str = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , "�" ) def lowerCamelCase__ ( self : List[str] ): pass def lowerCamelCase__ ( self : Union[str, Any] ): pass def lowerCamelCase__ ( self : Union[str, Any] ): pass def lowerCamelCase__ ( self : Dict ): pass def lowerCamelCase__ ( self : Optional[int] ): # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens __lowerCamelCase : List[str] = self.get_tokenizers(fast=UpperCAmelCase , do_lower_case=UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): __lowerCamelCase : List[Any] = ["[CLS]", "t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "s", "t", "[SEP]"] __lowerCamelCase : Any = tokenizer.convert_tokens_to_string(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
135
1
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging lowerCAmelCase__ = logging.get_logger(__name__) def __lowerCamelCase ( lowerCamelCase__=None , lowerCamelCase__=None ): """simple docstring""" return field(default_factory=lambda: default , metadata=lowerCamelCase__ ) @dataclass class snake_case__: """simple docstring""" lowercase_ = list_field( default=[] , metadata={ """help""": ( """Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version""" """ of all available models""" ) } , ) lowercase_ = list_field( default=[8] , metadata={"""help""": """List of batch sizes for which memory and time performance will be evaluated"""} ) lowercase_ = list_field( default=[8, 3_2, 1_2_8, 5_1_2] , metadata={"""help""": """List of sequence lengths for which memory and time performance will be evaluated"""} , ) lowercase_ = field( default=_UpperCamelCase , metadata={"""help""": """Whether to benchmark inference of model. Inference can be disabled via --no-inference."""} , ) lowercase_ = field( default=_UpperCamelCase , metadata={"""help""": """Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."""} , ) lowercase_ = field( default=_UpperCamelCase , metadata={"""help""": """Whether to run on available tpu devices. TPU can be disabled via --no-tpu."""} ) lowercase_ = field(default=_UpperCamelCase , metadata={"""help""": """Use FP16 to accelerate inference."""} ) lowercase_ = field(default=_UpperCamelCase , metadata={"""help""": """Benchmark training of model"""} ) lowercase_ = field(default=_UpperCamelCase , metadata={"""help""": """Verbose memory tracing"""} ) lowercase_ = field( default=_UpperCamelCase , metadata={"""help""": """Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."""} , ) lowercase_ = field( default=_UpperCamelCase , metadata={ """help""": """Whether to perform memory measurements. Memory measurements can be disabled via --no-memory""" } , ) lowercase_ = field(default=_UpperCamelCase , metadata={"""help""": """Trace memory line by line"""} ) lowercase_ = field(default=_UpperCamelCase , metadata={"""help""": """Save result to a CSV file"""} ) lowercase_ = field(default=_UpperCamelCase , metadata={"""help""": """Save all print statements in a log file"""} ) lowercase_ = field(default=_UpperCamelCase , metadata={"""help""": """Whether to print environment information"""} ) lowercase_ = field( default=_UpperCamelCase , metadata={ """help""": ( """Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use""" """ multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled""" """ for debugging / testing and on TPU.""" ) } , ) lowercase_ = field( default=F'''inference_time_{round(time() )}.csv''' , metadata={"""help""": """CSV filename used if saving time results to csv."""} , ) lowercase_ = field( default=F'''inference_memory_{round(time() )}.csv''' , metadata={"""help""": """CSV filename used if saving memory results to csv."""} , ) lowercase_ = field( default=F'''train_time_{round(time() )}.csv''' , metadata={"""help""": """CSV filename used if saving time results to csv for training."""} , ) lowercase_ = field( default=F'''train_memory_{round(time() )}.csv''' , metadata={"""help""": """CSV filename used if saving memory results to csv for training."""} , ) lowercase_ = field( default=F'''env_info_{round(time() )}.csv''' , metadata={"""help""": """CSV filename used if saving environment information."""} , ) lowercase_ = field( default=F'''log_{round(time() )}.csv''' , metadata={"""help""": """Log filename used if print statements are saved in log."""} , ) lowercase_ = field(default=3 , metadata={"""help""": """Times an experiment will be run."""} ) lowercase_ = field( default=_UpperCamelCase , metadata={ """help""": ( """Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain""" """ model weights.""" ) } , ) def snake_case ( self : List[Any] ): warnings.warn( f"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils""" " are deprecated in general and it is advised to use external Benchmarking libraries " " to benchmark Transformer models." , SCREAMING_SNAKE_CASE , ) def snake_case ( self : Dict ): return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def snake_case ( self : Union[str, Any] ): if len(self.models ) <= 0: raise ValueError( "Please make sure you provide at least one model name / model identifier, *e.g.* `--models" " bert-base-cased` or `args.models = ['bert-base-cased']." ) return self.models @property def snake_case ( self : Dict ): if not self.multi_process: return False elif self.is_tpu: logger.info("Multiprocessing is currently not possible on TPU." ) return False else: return True
364
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : Optional[Any] = {} lowercase__ : Tuple = tokenizer(example["content"] , truncation=lowerCamelCase__ )["input_ids"] lowercase__ : Optional[int] = len(example["content"] ) / len(output["input_ids"] ) return output lowerCAmelCase__ = HfArgumentParser(PretokenizationArguments) lowerCAmelCase__ = parser.parse_args() if args.num_workers is None: lowerCAmelCase__ = multiprocessing.cpu_count() lowerCAmelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_dir) lowerCAmelCase__ = time.time() lowerCAmelCase__ = load_dataset(args.dataset_name, split='''train''') print(f'''Dataset loaded in {time.time()-t_start:.2f}s''') lowerCAmelCase__ = time.time() lowerCAmelCase__ = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ '''repo_name''', '''path''', '''copies''', '''size''', '''content''', '''license''', '''hash''', '''line_mean''', '''line_max''', '''alpha_frac''', '''autogenerated''', ], ) print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''') lowerCAmelCase__ = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
121
0
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ : List[Any] = logging.get_logger(__name__) UpperCAmelCase_ : Any = {'''vocab_file''': '''vocab.json'''} UpperCAmelCase_ : Union[str, Any] = { '''vocab_file''': { '''mgp-str''': '''https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json''', } } UpperCAmelCase_ : Dict = {'''mgp-str''': 27} class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : Optional[Any] = VOCAB_FILES_NAMES snake_case__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP snake_case__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : int="[GO]" , __lowerCamelCase : Union[str, Any]="[GO]" , __lowerCamelCase : Tuple="[s]" , __lowerCamelCase : Any="[GO]" , **__lowerCamelCase : Optional[int] ): super().__init__( unk_token=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , pad_token=__lowerCamelCase , **__lowerCamelCase , ) with open(__lowerCamelCase , encoding="""utf-8""" ) as vocab_handle: UpperCamelCase :Tuple = json.load(__lowerCamelCase ) UpperCamelCase :int = {v: k for k, v in self.vocab.items()} @property def _A ( self : Optional[Any] ): return len(self.vocab ) def _A ( self : int ): return dict(self.vocab , **self.added_tokens_encoder ) def _A ( self : Union[str, Any] , __lowerCamelCase : Tuple ): UpperCamelCase :List[Any] = [] for s in text: char_tokens.extend(__lowerCamelCase ) return char_tokens def _A ( self : int , __lowerCamelCase : List[Any] ): return self.vocab.get(__lowerCamelCase , self.vocab.get(self.unk_token ) ) def _A ( self : str , __lowerCamelCase : List[Any] ): return self.decoder.get(__lowerCamelCase ) def _A ( self : Tuple , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): if not os.path.isdir(__lowerCamelCase ): logger.error("""Vocabulary path ({}) should be a directory""".format(__lowerCamelCase ) ) return UpperCamelCase :List[str] = os.path.join( __lowerCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) with open(__lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + """\n""" ) return (vocab_file,)
38
"""simple docstring""" from math import factorial A_ = {str(d): factorial(d) for d in range(10)} def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" return sum(DIGIT_FACTORIAL[d] for d in str(snake_case__ ) ) def UpperCAmelCase__ (): """simple docstring""" _snake_case : List[str] = 7 * factorial(9 ) + 1 return sum(i for i in range(3 , snake_case__ ) if sum_of_digit_factorial(snake_case__ ) == i ) if __name__ == "__main__": print(F'''{solution() = }''')
64
0
"""simple docstring""" import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py _lowercase : List[Any] = 'src/diffusers' # Matches is_xxx_available() _lowercase : List[Any] = re.compile(r'is\_([a-z_]*)_available\(\)') # Matches from xxx import bla _lowercase : Optional[Any] = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') _lowercase : List[Any] = '\n{0} = None\n' _lowercase : Optional[int] = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n' _lowercase : Optional[Any] = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' def lowercase__ ( snake_case_ :Tuple ): __UpperCAmelCase = _re_backend.findall(snake_case_ ) if len(snake_case_ ) == 0: return None return "_and_".join(snake_case_ ) def lowercase__ ( ): with open(os.path.join(snake_case_ , '''__init__.py''' ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCAmelCase = f.readlines() # Get to the point we do the actual imports for type checking __UpperCAmelCase = 0 __UpperCAmelCase = {} # Go through the end of the file while line_index < len(snake_case_ ): # If the line contains is_backend_available, we grab all objects associated with the `else` block __UpperCAmelCase = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('''else:''' ): line_index += 1 line_index += 1 __UpperCAmelCase = [] # Until we unindent, add backend objects to the list while line_index < len(snake_case_ ) and len(lines[line_index] ) > 1: __UpperCAmelCase = lines[line_index] __UpperCAmelCase = _re_single_line_import.search(snake_case_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(snake_case_ ) > 0: __UpperCAmelCase = objects else: line_index += 1 return backend_specific_objects def lowercase__ ( snake_case_ :List[str] , snake_case_ :List[Any] ): if name.isupper(): return DUMMY_CONSTANT.format(snake_case_ ) elif name.islower(): return DUMMY_FUNCTION.format(snake_case_ , snake_case_ ) else: return DUMMY_CLASS.format(snake_case_ , snake_case_ ) def lowercase__ ( snake_case_ :int=None ): if backend_specific_objects is None: __UpperCAmelCase = read_init() # For special correspondence backend to module name as used in the function requires_modulename __UpperCAmelCase = {} for backend, objects in backend_specific_objects.items(): __UpperCAmelCase = '''[''' + ''', '''.join(F'''"{b}"''' for b in backend.split('''_and_''' ) ) + ''']''' __UpperCAmelCase = '''# This file is autogenerated by the command `make fix-copies`, do not edit.\n''' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(snake_case_ , snake_case_ ) for o in objects] ) __UpperCAmelCase = dummy_file return dummy_files def lowercase__ ( snake_case_ :Optional[int]=False ): __UpperCAmelCase = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py __UpperCAmelCase = {'''torch''': '''pt'''} # Locate actual dummy modules and read their content. __UpperCAmelCase = os.path.join(snake_case_ , '''utils''' ) __UpperCAmelCase = { backend: os.path.join(snake_case_ , F'''dummy_{short_names.get(snake_case_ , snake_case_ )}_objects.py''' ) for backend in dummy_files.keys() } __UpperCAmelCase = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(snake_case_ ): with open(snake_case_ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCAmelCase = f.read() else: __UpperCAmelCase = '''''' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F'''Updating diffusers.utils.dummy_{short_names.get(snake_case_ , snake_case_ )}_objects.py as the main ''' '''__init__ has new objects.''' ) with open(dummy_file_paths[backend] , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( '''The main __init__ has objects that are not present in ''' F'''diffusers.utils.dummy_{short_names.get(snake_case_ , snake_case_ )}_objects.py. Run `make fix-copies` ''' '''to fix this.''' ) if __name__ == "__main__": _lowercase : int = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') _lowercase : Union[str, Any] = parser.parse_args() check_dummies(args.fix_and_overwrite)
86
"""simple docstring""" from __future__ import annotations def lowercase__ ( snake_case_ :float , snake_case_ :float , snake_case_ :float ): if days_between_payments <= 0: raise ValueError('''days_between_payments must be > 0''' ) if daily_interest_rate < 0: raise ValueError('''daily_interest_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * daily_interest_rate * days_between_payments def lowercase__ ( snake_case_ :float , snake_case_ :float , snake_case_ :float , ): if number_of_compounding_periods <= 0: raise ValueError('''number_of_compounding_periods must be > 0''' ) if nominal_annual_interest_rate_percentage < 0: raise ValueError('''nominal_annual_interest_rate_percentage must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def lowercase__ ( snake_case_ :float , snake_case_ :float , snake_case_ :float , ): if number_of_years <= 0: raise ValueError('''number_of_years must be > 0''' ) if nominal_annual_percentage_rate < 0: raise ValueError('''nominal_annual_percentage_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return compound_interest( snake_case_ , nominal_annual_percentage_rate / 365 , number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
86
1
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation A__ : str = logging.get_logger(__name__) A__ : Dict = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} A__ : Tuple = { '''vocab_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/vocab.json''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/vocab.json''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/vocab.json''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/vocab.json''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/vocab.json''', }, '''merges_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/merges.txt''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/merges.txt''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/merges.txt''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/merges.txt''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/tokenizer.json''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/tokenizer.json''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/tokenizer.json''', }, } A__ : Optional[int] = { '''gpt2''': 1024, '''gpt2-medium''': 1024, '''gpt2-large''': 1024, '''gpt2-xl''': 1024, '''distilgpt2''': 1024, } class __snake_case ( UpperCamelCase_ ): _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = ['''input_ids''', '''attention_mask'''] _a = GPTaTokenizer def __init__( self : Tuple , A_ : Any=None , A_ : Any=None , A_ : Any=None , A_ : List[Any]="<|endoftext|>" , A_ : Optional[Any]="<|endoftext|>" , A_ : Dict="<|endoftext|>" , A_ : Optional[Any]=False , **A_ : int , ): super().__init__( A_ , A_ , tokenizer_file=A_ , unk_token=A_ , bos_token=A_ , eos_token=A_ , add_prefix_space=A_ , **A_ , ) lowerCAmelCase_ : str = kwargs.pop('''add_bos_token''' , A_) lowerCAmelCase_ : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('''add_prefix_space''' , A_) != add_prefix_space: lowerCAmelCase_ : Any = getattr(A_ , pre_tok_state.pop('''type''')) lowerCAmelCase_ : List[str] = add_prefix_space lowerCAmelCase_ : int = pre_tok_class(**A_) lowerCAmelCase_ : Union[str, Any] = add_prefix_space def UpperCAmelCase__ ( self : Optional[Any] , *A_ : Optional[Any] , **A_ : Union[str, Any]): lowerCAmelCase_ : List[str] = kwargs.get('''is_split_into_words''' , A_) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*A_ , **A_) def UpperCAmelCase__ ( self : Dict , *A_ : List[str] , **A_ : Union[str, Any]): lowerCAmelCase_ : Union[str, Any] = kwargs.get('''is_split_into_words''' , A_) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*A_ , **A_) def UpperCAmelCase__ ( self : Optional[int] , A_ : str , A_ : Optional[str] = None): lowerCAmelCase_ : List[Any] = self._tokenizer.model.save(A_ , name=A_) return tuple(A_) def UpperCAmelCase__ ( self : Optional[Any] , A_ : "Conversation"): lowerCAmelCase_ : Optional[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(A_ , add_special_tokens=A_) + [self.eos_token_id]) if len(A_) > self.model_max_length: lowerCAmelCase_ : Optional[int] = input_ids[-self.model_max_length :] return input_ids
103
'''simple docstring''' from numpy import exp, pi, sqrt def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ = 0.0 , lowerCAmelCase_ = 1.0 )-> int: '''simple docstring''' return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
215
0
"""simple docstring""" from collections.abc import Sequence def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ = None ) -> Tuple: if nums is None or not nums: raise ValueError('Input sequence should not be empty' ) lowerCAmelCase__ : Optional[Any] = nums[0] for i in range(1 , len(SCREAMING_SNAKE_CASE_ ) ): lowerCAmelCase__ : int = nums[i] lowerCAmelCase__ : Any = max(SCREAMING_SNAKE_CASE_ , ans + num , SCREAMING_SNAKE_CASE_ ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user lowerCamelCase__ = int(input("""Enter number of elements : """).strip()) lowerCamelCase__ = list(map(int, input("""\nEnter the numbers : """).strip().split()))[:n] print(max_subsequence_sum(array))
360
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> str: return "".join([hex(SCREAMING_SNAKE_CASE_ )[2:].zfill(2 ).upper() for byte in list(SCREAMING_SNAKE_CASE_ )] ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(SCREAMING_SNAKE_CASE_ ) % 2) != 0: raise ValueError( 'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(SCREAMING_SNAKE_CASE_ ) <= set('0123456789ABCDEF' ): raise ValueError( 'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
307
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'microsoft/git-base': 'https://huggingface.co/microsoft/git-base/resolve/main/config.json', } class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='git_vision_model' def __init__( self : Dict , a : Optional[Any]=768 , a : Union[str, Any]=3072 , a : Tuple=12 , a : int=12 , a : List[str]=3 , a : str=224 , a : List[str]=16 , a : List[Any]="quick_gelu" , a : Any=1e-5 , a : str=0.0 , a : Optional[int]=0.02 , **a : Optional[int] , ) -> Any: """simple docstring""" super().__init__(**a ) SCREAMING_SNAKE_CASE : List[str] = hidden_size SCREAMING_SNAKE_CASE : List[Any] = intermediate_size SCREAMING_SNAKE_CASE : Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE : List[str] = num_attention_heads SCREAMING_SNAKE_CASE : List[Any] = num_channels SCREAMING_SNAKE_CASE : List[Any] = patch_size SCREAMING_SNAKE_CASE : List[str] = image_size SCREAMING_SNAKE_CASE : Tuple = initializer_range SCREAMING_SNAKE_CASE : List[Any] = attention_dropout SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_eps SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_act @classmethod def __UpperCamelCase ( cls : int , a : Union[str, os.PathLike] , **a : Union[str, Any] ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(a ) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : int = cls.get_config_dict(a , **a ) # get the vision config dict if we are loading from GITConfig if config_dict.get("model_type" ) == "git": SCREAMING_SNAKE_CASE : Dict = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(a , **a ) class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='git' def __init__( self : Optional[Any] , a : Optional[Any]=None , a : str=3_0522 , a : Dict=768 , a : int=6 , a : Optional[int]=12 , a : List[str]=3072 , a : int="gelu" , a : List[str]=0.1 , a : int=0.1 , a : List[Any]=1024 , a : Union[str, Any]=0.02 , a : Dict=1e-12 , a : Any=0 , a : Any="absolute" , a : List[Any]=True , a : Optional[Any]=False , a : Any=101 , a : Union[str, Any]=102 , a : Optional[Any]=None , **a : Any , ) -> str: """simple docstring""" super().__init__(bos_token_id=a , eos_token_id=a , pad_token_id=a , **a ) if vision_config is None: SCREAMING_SNAKE_CASE : Any = {} logger.info("vision_config is None. initializing the GitVisionConfig with default values." ) SCREAMING_SNAKE_CASE : Optional[Any] = GitVisionConfig(**a ) SCREAMING_SNAKE_CASE : Any = vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE : Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE : Dict = hidden_act SCREAMING_SNAKE_CASE : int = intermediate_size SCREAMING_SNAKE_CASE : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = max_position_embeddings SCREAMING_SNAKE_CASE : int = initializer_range SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE : int = position_embedding_type SCREAMING_SNAKE_CASE : Any = use_cache SCREAMING_SNAKE_CASE : Optional[Any] = tie_word_embeddings SCREAMING_SNAKE_CASE : Tuple = num_image_with_embedding SCREAMING_SNAKE_CASE : int = bos_token_id SCREAMING_SNAKE_CASE : Any = eos_token_id def __UpperCamelCase ( self : Dict ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE : Tuple = self.vision_config.to_dict() SCREAMING_SNAKE_CASE : Tuple = self.__class__.model_type return output
76
from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'sayakpaul/vit-msn-base': 'https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='vit_msn' def __init__( self : str , a : Tuple=768 , a : Tuple=12 , a : Any=12 , a : int=3072 , a : List[Any]="gelu" , a : Dict=0.0 , a : int=0.0 , a : str=0.02 , a : List[str]=1e-06 , a : List[Any]=224 , a : Union[str, Any]=16 , a : Union[str, Any]=3 , a : Tuple=True , **a : Dict , ) -> List[Any]: """simple docstring""" super().__init__(**a ) SCREAMING_SNAKE_CASE : Dict = hidden_size SCREAMING_SNAKE_CASE : Optional[Any] = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads SCREAMING_SNAKE_CASE : Optional[int] = intermediate_size SCREAMING_SNAKE_CASE : int = hidden_act SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Any = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = initializer_range SCREAMING_SNAKE_CASE : int = layer_norm_eps SCREAMING_SNAKE_CASE : Dict = image_size SCREAMING_SNAKE_CASE : Tuple = patch_size SCREAMING_SNAKE_CASE : Optional[int] = num_channels SCREAMING_SNAKE_CASE : List[str] = qkv_bias
76
1
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Optional[int] = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} SCREAMING_SNAKE_CASE : Any = { "vocab_file": { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json", "allenai/longformer-large-4096": ( "https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json" ), "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json" ), }, "merges_file": { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt", "allenai/longformer-large-4096": ( "https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt" ), "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt" ), }, } SCREAMING_SNAKE_CASE : int = { "allenai/longformer-base-4096": 4096, "allenai/longformer-large-4096": 4096, "allenai/longformer-large-4096-finetuned-triviaqa": 4096, "allenai/longformer-base-4096-extra.pos.embd.only": 4096, "allenai/longformer-large-4096-extra.pos.embd.only": 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def UpperCamelCase_( ) -> Any: _lowercase : Dict = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) _lowercase : Optional[int] = bs[:] _lowercase : Union[str, Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(lowerCamelCase_ ) cs.append(2**8 + n ) n += 1 _lowercase : List[Any] = [chr(lowerCamelCase_ ) for n in cs] return dict(zip(lowerCamelCase_ , lowerCamelCase_ ) ) def UpperCamelCase_( lowerCamelCase_ ) -> Optional[int]: _lowercase : Any = set() _lowercase : Optional[int] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowercase : Union[str, Any] = char return pairs class _lowerCamelCase( _a ): lowercase_ : Any = VOCAB_FILES_NAMES lowercase_ : int = PRETRAINED_VOCAB_FILES_MAP lowercase_ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ : List[Any] = ["""input_ids""", """attention_mask"""] def __init__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase="replace", lowerCamelCase="<s>", lowerCamelCase="</s>", lowerCamelCase="</s>", lowerCamelCase="<s>", lowerCamelCase="<unk>", lowerCamelCase="<pad>", lowerCamelCase="<mask>", lowerCamelCase=False, **lowerCamelCase, ) -> Optional[Any]: """simple docstring""" _lowercase : Optional[Any] = AddedToken(lowerCamelCase, lstrip=lowerCamelCase, rstrip=lowerCamelCase) if isinstance(lowerCamelCase, lowerCamelCase) else bos_token _lowercase : int = AddedToken(lowerCamelCase, lstrip=lowerCamelCase, rstrip=lowerCamelCase) if isinstance(lowerCamelCase, lowerCamelCase) else eos_token _lowercase : Optional[int] = AddedToken(lowerCamelCase, lstrip=lowerCamelCase, rstrip=lowerCamelCase) if isinstance(lowerCamelCase, lowerCamelCase) else sep_token _lowercase : Union[str, Any] = AddedToken(lowerCamelCase, lstrip=lowerCamelCase, rstrip=lowerCamelCase) if isinstance(lowerCamelCase, lowerCamelCase) else cls_token _lowercase : Dict = AddedToken(lowerCamelCase, lstrip=lowerCamelCase, rstrip=lowerCamelCase) if isinstance(lowerCamelCase, lowerCamelCase) else unk_token _lowercase : List[Any] = AddedToken(lowerCamelCase, lstrip=lowerCamelCase, rstrip=lowerCamelCase) if isinstance(lowerCamelCase, lowerCamelCase) else pad_token # Mask token behave like a normal word, i.e. include the space before it _lowercase : Dict = AddedToken(lowerCamelCase, lstrip=lowerCamelCase, rstrip=lowerCamelCase) if isinstance(lowerCamelCase, lowerCamelCase) else mask_token super().__init__( errors=lowerCamelCase, bos_token=lowerCamelCase, eos_token=lowerCamelCase, unk_token=lowerCamelCase, sep_token=lowerCamelCase, cls_token=lowerCamelCase, pad_token=lowerCamelCase, mask_token=lowerCamelCase, add_prefix_space=lowerCamelCase, **lowerCamelCase, ) with open(lowerCamelCase, encoding='utf-8') as vocab_handle: _lowercase : List[Any] = json.load(lowerCamelCase) _lowercase : Dict = {v: k for k, v in self.encoder.items()} _lowercase : List[str] = errors # how to handle errors in decoding _lowercase : List[str] = bytes_to_unicode() _lowercase : int = {v: k for k, v in self.byte_encoder.items()} with open(lowerCamelCase, encoding='utf-8') as merges_handle: _lowercase : Union[str, Any] = merges_handle.read().split('\n')[1:-1] _lowercase : List[Any] = [tuple(merge.split()) for merge in bpe_merges] _lowercase : str = dict(zip(lowerCamelCase, range(len(lowerCamelCase)))) _lowercase : Optional[int] = {} _lowercase : Optional[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _lowercase : Tuple = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+') @property def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" return len(self.encoder) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" return dict(self.encoder, **self.added_tokens_encoder) def UpperCamelCase ( self, lowerCamelCase) -> List[str]: """simple docstring""" if token in self.cache: return self.cache[token] _lowercase : List[str] = tuple(lowerCamelCase) _lowercase : Optional[Any] = get_pairs(lowerCamelCase) if not pairs: return token while True: _lowercase : List[Any] = min(lowerCamelCase, key=lambda lowerCamelCase: self.bpe_ranks.get(lowerCamelCase, float('inf'))) if bigram not in self.bpe_ranks: break _lowercase , _lowercase : Any = bigram _lowercase : int = [] _lowercase : Optional[Any] = 0 while i < len(lowerCamelCase): try: _lowercase : str = word.index(lowerCamelCase, lowerCamelCase) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) _lowercase : int = j if word[i] == first and i < len(lowerCamelCase) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 _lowercase : Union[str, Any] = tuple(lowerCamelCase) _lowercase : List[Any] = new_word if len(lowerCamelCase) == 1: break else: _lowercase : str = get_pairs(lowerCamelCase) _lowercase : Dict = ' '.join(lowerCamelCase) _lowercase : Optional[int] = word return word def UpperCamelCase ( self, lowerCamelCase) -> Optional[Any]: """simple docstring""" _lowercase : List[str] = [] for token in re.findall(self.pat, lowerCamelCase): _lowercase : str = ''.join( self.byte_encoder[b] for b in token.encode('utf-8')) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase).split(' ')) return bpe_tokens def UpperCamelCase ( self, lowerCamelCase) -> Tuple: """simple docstring""" return self.encoder.get(lowerCamelCase, self.encoder.get(self.unk_token)) def UpperCamelCase ( self, lowerCamelCase) -> Optional[int]: """simple docstring""" return self.decoder.get(lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase) -> str: """simple docstring""" _lowercase : Tuple = ''.join(lowerCamelCase) _lowercase : Dict = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors=self.errors) return text def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase = None) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCamelCase): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''') return _lowercase : Dict = os.path.join( lowerCamelCase, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) _lowercase : str = os.path.join( lowerCamelCase, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file']) with open(lowerCamelCase, 'w', encoding='utf-8') as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=lowerCamelCase, ensure_ascii=lowerCamelCase) + '\n') _lowercase : Dict = 0 with open(lowerCamelCase, 'w', encoding='utf-8') as writer: writer.write('#version: 0.2\n') for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda lowerCamelCase: kv[1]): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!') _lowercase : List[str] = token_index writer.write(' '.join(lowerCamelCase) + '\n') index += 1 return vocab_file, merge_file def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase = None) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowercase : List[str] = [self.cls_token_id] _lowercase : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = False) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase, token_ids_a=lowerCamelCase, already_has_special_tokens=lowerCamelCase) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase)) + [1] return [1] + ([0] * len(lowerCamelCase)) + [1, 1] + ([0] * len(lowerCamelCase)) + [1] def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase = None) -> List[int]: """simple docstring""" _lowercase : Any = [self.sep_token_id] _lowercase : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase=False, **lowerCamelCase) -> Tuple: """simple docstring""" _lowercase : Union[str, Any] = kwargs.pop('add_prefix_space', self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase) > 0 and not text[0].isspace()): _lowercase : Optional[int] = ' ' + text return (text, kwargs)
84
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) SCREAMING_SNAKE_CASE : str = logging.getLogger() def UpperCamelCase_( ) -> Any: _lowercase : int = argparse.ArgumentParser() parser.add_argument('-f' ) _lowercase : Optional[Any] = parser.parse_args() return args.f class _lowerCamelCase( _a ): def UpperCamelCase ( self) -> None: """simple docstring""" _lowercase : List[Any] = logging.StreamHandler(sys.stdout) logger.addHandler(lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase) -> List[str]: """simple docstring""" _lowercase : str = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0, 'run_glue_deebert.py') with patch.object(lowerCamelCase, 'argv', lowerCamelCase): _lowercase : Optional[Any] = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(lowerCamelCase, 0.6_6_6) @slow @require_torch_non_multi_gpu def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Union[str, Any] = '\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n '.split() self.run_and_check(lowerCamelCase) _lowercase : Union[str, Any] = '\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n '.split() self.run_and_check(lowerCamelCase) _lowercase : Union[str, Any] = '\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n '.split() self.run_and_check(lowerCamelCase)
84
1
"""simple docstring""" def _snake_case ( _snake_case : str , _snake_case : bool = False ): if not isinstance(_snake_case , _snake_case ): lowerCAmelCase : Optional[Any] = f'''Expected string as input, found {type(_snake_case )}''' raise ValueError(_snake_case ) if not isinstance(_snake_case , _snake_case ): lowerCAmelCase : Tuple = f'''Expected boolean as use_pascal parameter, found {type(_snake_case )}''' raise ValueError(_snake_case ) lowerCAmelCase : Any = input_str.split('''_''' ) lowerCAmelCase : str = 0 if use_pascal else 1 lowerCAmelCase : Tuple = words[start_index:] lowerCAmelCase : Dict = [word[0].upper() + word[1:] for word in words_to_capitalize] lowerCAmelCase : Dict = '''''' if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
60
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowercase_ ( lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = ShapEPipeline __snake_case = ['''prompt'''] __snake_case = ['''prompt'''] __snake_case = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] __snake_case = False @property def __lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" return 32 @property def __lowerCAmelCase ( self : Optional[Any] ) ->List[str]: """simple docstring""" return 32 @property def __lowerCAmelCase ( self : Any ) ->Tuple: """simple docstring""" return self.time_input_dim * 4 @property def __lowerCAmelCase ( self : Tuple ) ->Optional[Any]: """simple docstring""" return 8 @property def __lowerCAmelCase ( self : Tuple ) ->str: """simple docstring""" a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def __lowerCAmelCase ( self : Union[str, Any] ) ->List[Any]: """simple docstring""" torch.manual_seed(0 ) a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(__UpperCAmelCase ) @property def __lowerCAmelCase ( self : Dict ) ->Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) a = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } a = PriorTransformer(**__UpperCAmelCase ) return model @property def __lowerCAmelCase ( self : List[Any] ) ->List[str]: """simple docstring""" torch.manual_seed(0 ) a = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } a = ShapERenderer(**__UpperCAmelCase ) return model def __lowerCAmelCase ( self : List[Any] ) ->Any: """simple docstring""" a = self.dummy_prior a = self.dummy_text_encoder a = self.dummy_tokenizer a = self.dummy_renderer a = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1_024 , prediction_type='''sample''' , use_karras_sigmas=__UpperCAmelCase , clip_sample=__UpperCAmelCase , clip_sample_range=1.0 , ) a = { '''prior''': prior, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''renderer''': renderer, '''scheduler''': scheduler, } return components def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : str=0 ) ->Optional[int]: """simple docstring""" if str(__UpperCAmelCase ).startswith('''mps''' ): a = torch.manual_seed(__UpperCAmelCase ) else: a = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) a = { '''prompt''': '''horse''', '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def __lowerCAmelCase ( self : Dict ) ->Optional[int]: """simple docstring""" a = '''cpu''' a = self.get_dummy_components() a = self.pipeline_class(**__UpperCAmelCase ) a = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) a = pipe(**self.get_dummy_inputs(__UpperCAmelCase ) ) a = output.images[0] a = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) a = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __lowerCAmelCase ( self : Dict ) ->Optional[Any]: """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __lowerCAmelCase ( self : Optional[Any] ) ->Tuple: """simple docstring""" a = torch_device == '''cpu''' a = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=__UpperCAmelCase , relax_max_difference=__UpperCAmelCase , ) def __lowerCAmelCase ( self : str ) ->Optional[int]: """simple docstring""" a = self.get_dummy_components() a = self.pipeline_class(**__UpperCAmelCase ) a = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) a = 1 a = 2 a = self.get_dummy_inputs(__UpperCAmelCase ) for key in inputs.keys(): if key in self.batch_params: a = batch_size * [inputs[key]] a = pipe(**__UpperCAmelCase , num_images_per_prompt=__UpperCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowercase_ ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : int ) ->Any: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]: """simple docstring""" a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_np_out.npy''' ) a = ShapEPipeline.from_pretrained('''openai/shap-e''' ) a = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) a = torch.Generator(device=__UpperCAmelCase ).manual_seed(0 ) a = pipe( '''a shark''' , generator=__UpperCAmelCase , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase )
0
0
"""simple docstring""" import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Dict: lowercase__ : Any = multiprocessing.Manager() lowercase__ : Dict = manager.list() lowercase__ : Union[str, Any] = multiprocessing.Process(target=__lowerCamelCase , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('''timed out''' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Dict: with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil lowercase__ : List[str] = shutil.rmtree lowercase__ : Optional[Any] = os.rmdir lowercase__ : Union[str, Any] = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: lowercase__ : int = {} with swallow_io(): with time_limit(__lowerCamelCase ): exec(__lowerCamelCase , __lowerCamelCase ) result.append('''passed''' ) except TimeoutException: result.append('''timed out''' ) except BaseException as e: result.append(f"""failed: {e}""" ) # Needed for cleaning up. lowercase__ : Optional[Any] = rmtree lowercase__ : str = rmdir lowercase__ : str = chdir @contextlib.contextmanager def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[Any]: def signal_handler(__lowerCamelCase , __lowerCamelCase ): raise TimeoutException('''Timed out!''' ) signal.setitimer(signal.ITIMER_REAL , __lowerCamelCase ) signal.signal(signal.SIGALRM , __lowerCamelCase ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def __UpperCAmelCase ( ) -> Dict: lowercase__ : Optional[Any] = WriteOnlyStringIO() with contextlib.redirect_stdout(__lowerCamelCase ): with contextlib.redirect_stderr(__lowerCamelCase ): with redirect_stdin(__lowerCamelCase ): yield @contextlib.contextmanager def __UpperCAmelCase ( ) -> List[Any]: with tempfile.TemporaryDirectory() as dirname: with chdir(__lowerCamelCase ): yield dirname class __A ( A_ ): '''simple docstring''' pass class __A ( io.StringIO ): '''simple docstring''' def UpperCAmelCase ( self : Dict ,*_snake_case : int ,**_snake_case : List[Any] ) -> str: """simple docstring""" raise OSError def UpperCAmelCase ( self : Any ,*_snake_case : Tuple ,**_snake_case : Dict ) -> Any: """simple docstring""" raise OSError def UpperCAmelCase ( self : Dict ,*_snake_case : Dict ,**_snake_case : str ) -> List[str]: """simple docstring""" raise OSError def UpperCAmelCase ( self : int ,*_snake_case : str ,**_snake_case : str ) -> int: """simple docstring""" return False class __A ( contextlib._RedirectStream ): # type: ignore '''simple docstring''' lowerCAmelCase : List[Any] = "stdin" @contextlib.contextmanager def __UpperCAmelCase ( __lowerCamelCase ) -> str: if root == ".": yield return lowercase__ : List[Any] = os.getcwd() os.chdir(__lowerCamelCase ) try: yield except BaseException as exc: raise exc finally: os.chdir(__lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase=None ) -> Optional[int]: if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins lowercase__ : List[str] = None lowercase__ : Tuple = None import os lowercase__ : List[str] = '''1''' lowercase__ : Optional[int] = None lowercase__ : List[str] = None lowercase__ : Optional[Any] = None lowercase__ : List[str] = None lowercase__ : str = None lowercase__ : str = None lowercase__ : Optional[int] = None lowercase__ : Optional[Any] = None lowercase__ : Tuple = None lowercase__ : Tuple = None lowercase__ : Optional[int] = None lowercase__ : Optional[int] = None lowercase__ : Tuple = None lowercase__ : Any = None lowercase__ : Optional[int] = None lowercase__ : Tuple = None lowercase__ : str = None lowercase__ : List[Any] = None lowercase__ : Optional[Any] = None lowercase__ : Any = None lowercase__ : Tuple = None lowercase__ : Optional[int] = None lowercase__ : Optional[int] = None lowercase__ : List[str] = None lowercase__ : Union[str, Any] = None lowercase__ : Tuple = None lowercase__ : List[str] = None import shutil lowercase__ : List[Any] = None lowercase__ : List[Any] = None lowercase__ : Tuple = None import subprocess lowercase__ : Any = None # type: ignore lowercase__ : int = None import sys lowercase__ : str = None lowercase__ : Tuple = None lowercase__ : int = None lowercase__ : Optional[Any] = None lowercase__ : Optional[Any] = None
365
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_efficientnet': [ 'EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientNetConfig', 'EfficientNetOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['EfficientNetImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientNetForImageClassification', 'EfficientNetModel', 'EfficientNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
302
0
'''simple docstring''' import logging import os import threading import time try: import warnings except ImportError: lowerCAmelCase_ : Dict = None try: import msvcrt except ImportError: lowerCAmelCase_ : Union[str, Any] = None try: import fcntl except ImportError: lowerCAmelCase_ : Optional[Any] = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: lowerCAmelCase_ : str = OSError # Data # ------------------------------------------------ lowerCAmelCase_ : List[Any] = [ 'Timeout', 'BaseFileLock', 'WindowsFileLock', 'UnixFileLock', 'SoftFileLock', 'FileLock', ] lowerCAmelCase_ : Union[str, Any] = '3.0.12' lowerCAmelCase_ : Any = None def _lowerCamelCase ( ) -> Dict: global _logger _a = _logger or logging.getLogger(__name__ ) return _logger class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : Dict , __a : List[str] ): _a = lock_file return None def __str__( self : Optional[Any] ): _a = f'The file lock \'{self.lock_file}\' could not be acquired.' return temp class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Any , __a : Optional[Any] ): _a = lock return None def __enter__( self : Union[str, Any] ): return self.lock def __exit__( self : List[str] , __a : Union[str, Any] , __a : str , __a : Union[str, Any] ): self.lock.release() return None class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Optional[Any] , __a : int , __a : List[Any]=-1 , __a : List[str]=None ): _a = max_filename_length if max_filename_length is not None else 2_55 # Hash the filename if it's too long _a = self.hash_filename_if_too_long(__a , __a ) # The path to the lock file. _a = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. _a = None # The default timeout value. _a = timeout # We use this lock primarily for the lock counter. _a = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. _a = 0 return None @property def UpperCamelCase__ ( self : Optional[Any] ): return self._lock_file @property def UpperCamelCase__ ( self : str ): return self._timeout @timeout.setter def UpperCamelCase__ ( self : Union[str, Any] , __a : Optional[Any] ): _a = float(__a ) return None def UpperCamelCase__ ( self : List[str] ): raise NotImplementedError() def UpperCamelCase__ ( self : Optional[Any] ): raise NotImplementedError() @property def UpperCamelCase__ ( self : List[str] ): return self._lock_file_fd is not None def UpperCamelCase__ ( self : Dict , __a : Any=None , __a : Union[str, Any]=0.05 ): # Use the default timeout, if no timeout is provided. if timeout is None: _a = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 _a = id(self ) _a = self._lock_file _a = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f'Attempting to acquire lock {lock_id} on {lock_filename}' ) self._acquire() if self.is_locked: logger().debug(f'Lock {lock_id} acquired on {lock_filename}' ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f'Timeout on acquiring lock {lock_id} on {lock_filename}' ) raise Timeout(self._lock_file ) else: logger().debug( f'Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...' ) time.sleep(__a ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: _a = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def UpperCamelCase__ ( self : Optional[int] , __a : Optional[int]=False ): with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: _a = id(self ) _a = self._lock_file logger().debug(f'Attempting to release lock {lock_id} on {lock_filename}' ) self._release() _a = 0 logger().debug(f'Lock {lock_id} released on {lock_filename}' ) return None def __enter__( self : List[Any] ): self.acquire() return self def __exit__( self : List[str] , __a : str , __a : str , __a : Optional[int] ): self.release() return None def __del__( self : Union[str, Any] ): self.release(force=__a ) return None def UpperCamelCase__ ( self : str , __a : str , __a : int ): _a = os.path.basename(__a ) if len(__a ) > max_length and max_length > 0: _a = os.path.dirname(__a ) _a = str(hash(__a ) ) _a = filename[: max_length - len(__a ) - 8] + "..." + hashed_filename + ".lock" return os.path.join(__a , __a ) else: return path class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : Tuple , __a : Tuple , __a : Union[str, Any]=-1 , __a : List[str]=None ): from .file_utils import relative_to_absolute_path super().__init__(__a , timeout=__a , max_filename_length=__a ) _a = "\\\\?\\" + relative_to_absolute_path(self.lock_file ) def UpperCamelCase__ ( self : Optional[int] ): _a = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: _a = os.open(self._lock_file , __a ) except OSError: pass else: try: msvcrt.locking(__a , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(__a ) else: _a = fd return None def UpperCamelCase__ ( self : int ): _a = self._lock_file_fd _a = None msvcrt.locking(__a , msvcrt.LK_UNLCK , 1 ) os.close(__a ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : Optional[Any] , __a : List[Any] , __a : str=-1 , __a : List[Any]=None ): _a = os.statvfs(os.path.dirname(__a ) ).f_namemax super().__init__(__a , timeout=__a , max_filename_length=__a ) def UpperCamelCase__ ( self : Any ): _a = os.O_RDWR | os.O_CREAT | os.O_TRUNC _a = os.open(self._lock_file , __a ) try: fcntl.flock(__a , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(__a ) else: _a = fd return None def UpperCamelCase__ ( self : Dict ): # Do not remove the lockfile: # # https://github.com/benediktschmitt/py-filelock/issues/31 # https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition _a = self._lock_file_fd _a = None fcntl.flock(__a , fcntl.LOCK_UN ) os.close(__a ) return None class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def UpperCamelCase__ ( self : int ): _a = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: _a = os.open(self._lock_file , __a ) except OSError: pass else: _a = fd return None def UpperCamelCase__ ( self : Any ): os.close(self._lock_file_fd ) _a = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None lowerCAmelCase_ : Tuple = None if msvcrt: lowerCAmelCase_ : Union[str, Any] = WindowsFileLock elif fcntl: lowerCAmelCase_ : Tuple = UnixFileLock else: lowerCAmelCase_ : Tuple = SoftFileLock if warnings is not None: warnings.warn('only soft file lock is available')
63
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase_ : Dict = logging.get_logger(__name__) lowerCAmelCase_ : Optional[int] = { 'ut/deta': 'https://huggingface.co/ut/deta/resolve/main/config.json', } class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a ='deta' __a ={ 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : List[str] , __a : List[str]=None , __a : Dict=9_00 , __a : str=20_48 , __a : Tuple=6 , __a : List[str]=20_48 , __a : str=8 , __a : Union[str, Any]=6 , __a : int=10_24 , __a : List[Any]=8 , __a : Dict=0.0 , __a : Tuple=True , __a : Optional[Any]="relu" , __a : Tuple=2_56 , __a : Optional[Any]=0.1 , __a : int=0.0 , __a : List[Any]=0.0 , __a : Optional[int]=0.02 , __a : str=1.0 , __a : Dict=True , __a : Dict=False , __a : Optional[int]="sine" , __a : Any=5 , __a : List[str]=4 , __a : Optional[int]=4 , __a : List[str]=True , __a : str=3_00 , __a : int=True , __a : int=True , __a : Tuple=1 , __a : Optional[int]=5 , __a : Tuple=2 , __a : Dict=1 , __a : Optional[int]=1 , __a : Any=5 , __a : Optional[int]=2 , __a : Dict=0.1 , __a : str=0.25 , **__a : Tuple , ): if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) _a = CONFIG_MAPPING["resnet"](out_features=["stage2", "stage3", "stage4"] ) else: if isinstance(__a , __a ): _a = backbone_config.pop("model_type" ) _a = CONFIG_MAPPING[backbone_model_type] _a = config_class.from_dict(__a ) _a = backbone_config _a = num_queries _a = max_position_embeddings _a = d_model _a = encoder_ffn_dim _a = encoder_layers _a = encoder_attention_heads _a = decoder_ffn_dim _a = decoder_layers _a = decoder_attention_heads _a = dropout _a = attention_dropout _a = activation_dropout _a = activation_function _a = init_std _a = init_xavier_std _a = encoder_layerdrop _a = auxiliary_loss _a = position_embedding_type # deformable attributes _a = num_feature_levels _a = encoder_n_points _a = decoder_n_points _a = two_stage _a = two_stage_num_proposals _a = with_box_refine _a = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError("If two_stage is True, with_box_refine must be True." ) # Hungarian matcher _a = class_cost _a = bbox_cost _a = giou_cost # Loss coefficients _a = mask_loss_coefficient _a = dice_loss_coefficient _a = bbox_loss_coefficient _a = giou_loss_coefficient _a = eos_coefficient _a = focal_alpha super().__init__(is_encoder_decoder=__a , **__a ) @property def UpperCamelCase__ ( self : Optional[Any] ): return self.encoder_attention_heads @property def UpperCamelCase__ ( self : Dict ): return self.d_model def UpperCamelCase__ ( self : List[str] ): _a = copy.deepcopy(self.__dict__ ) _a = self.backbone_config.to_dict() _a = self.__class__.model_type return output
63
1
"""simple docstring""" import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> int: if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer __lowerCAmelCase: Optional[Any] = flax_key_tuple[:-1] + ("weight",) __lowerCAmelCase: Any = torch.permute(__SCREAMING_SNAKE_CASE , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(__SCREAMING_SNAKE_CASE ): # linear layer __lowerCAmelCase: List[Any] = flax_key_tuple[:-1] + ("weight",) __lowerCAmelCase: Optional[int] = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: __lowerCAmelCase: Union[str, Any] = flax_key_tuple[:-1] + ("weight",) return flax_key_tuple, flax_tensor def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[Any]: if "metadata" in layer: __lowerCAmelCase: Tuple = layer.split("metadata" ) __lowerCAmelCase: Optional[int] = "".join(split_layer[0] )[:-1] __lowerCAmelCase: Dict = [tuple(("metadata" + split_layer[1]).split("/" ) )] elif "kvstore" in layer: __lowerCAmelCase: str = layer.split("kvstore" ) __lowerCAmelCase: Any = "".join(split_layer[0] )[:-1] __lowerCAmelCase: Optional[Any] = [tuple(("kvstore" + split_layer[1]).split("/" ) )] else: __lowerCAmelCase: Any = layer.split("/" ) __lowerCAmelCase: int = "/".join(split_layer[:-1] ) __lowerCAmelCase: Union[str, Any] = (split_layer[-1],) if "kvstore/path" in layer: __lowerCAmelCase: Union[str, Any] = F"{switch_checkpoint_path}/{checkpoint_info[layer]}" elif "kvstore/driver" in layer: __lowerCAmelCase: Optional[Any] = "file" else: __lowerCAmelCase: int = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Union[str, Any]: __lowerCAmelCase: Any = rename_keys(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Union[str, Any] = {} for k, v in current_block.items(): __lowerCAmelCase: List[str] = v __lowerCAmelCase: int = new_current_block torch.save(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = WEIGHTS_NAME ) -> Optional[int]: __lowerCAmelCase: List[str] = convert_file_size_to_int(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Union[str, Any] = [] __lowerCAmelCase: str = {} __lowerCAmelCase: Optional[int] = 0 __lowerCAmelCase: Union[str, Any] = 0 os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) with gfile.GFile(switch_checkpoint_path + "/checkpoint" , "rb" ) as fp: __lowerCAmelCase: Optional[int] = serialization.msgpack_restore(fp.read() )["optimizer"]["target"] __lowerCAmelCase: Tuple = flatten_dict(__SCREAMING_SNAKE_CASE , sep="/" ) __lowerCAmelCase: List[Any] = {} for layer in checkpoint_info.keys(): __lowerCAmelCase: List[str] = get_key_and_tensorstore_dict( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if curr_real_layer_name in all_layers: __lowerCAmelCase: List[Any] = content else: __lowerCAmelCase: List[str] = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file __lowerCAmelCase: Tuple = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() __lowerCAmelCase: Dict = torch.tensor(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Tuple = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts __lowerCAmelCase: Union[str, Any] = rename_base_flax_keys(tuple(key.split("/" ) ) , __SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Union[str, Any] = "/".join(__SCREAMING_SNAKE_CASE ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: __lowerCAmelCase: str = os.path.join( __SCREAMING_SNAKE_CASE , weights_name.replace(".bin" , F"-{len(__SCREAMING_SNAKE_CASE )+1:05d}-of-???.bin" ) ) rename_and_save_block(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) sharded_state_dicts.append(current_block.keys() ) del current_block __lowerCAmelCase: int = {} __lowerCAmelCase: int = 0 __lowerCAmelCase: List[str] = raw_weights.to(getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) current_block_size += weight_size total_size += weight_size # Add the last block __lowerCAmelCase: Tuple = os.path.join(__SCREAMING_SNAKE_CASE , weights_name.replace(".bin" , F"-{len(__SCREAMING_SNAKE_CASE )+1:05d}-of-???.bin" ) ) rename_and_save_block(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(__SCREAMING_SNAKE_CASE ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index __lowerCAmelCase: str = {} __lowerCAmelCase: List[Any] = {} for idx, shard in enumerate(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase: Optional[Any] = weights_name.replace( ".bin" , F"-{idx+1:05d}-of-{len(__SCREAMING_SNAKE_CASE ):05d}.bin" ) # len(sharded_state_dicts):05d} __lowerCAmelCase: int = os.path.join(__SCREAMING_SNAKE_CASE , weights_name.replace(".bin" , F"-{idx+1:05d}-of-???.bin" ) ) os.rename(__SCREAMING_SNAKE_CASE , os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase: Dict = shard for key in shard: __lowerCAmelCase: str = shard_file # Add the metadata __lowerCAmelCase: Any = {"total_size": total_size} __lowerCAmelCase: List[str] = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , "w" , encoding="utf-8" ) as f: __lowerCAmelCase: Dict = json.dumps(__SCREAMING_SNAKE_CASE , indent=2 , sort_keys=__SCREAMING_SNAKE_CASE ) + "\n" f.write(__SCREAMING_SNAKE_CASE ) return metadata, index if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--max_shard_size", default="10GB", required=False, help="Max shard size") parser.add_argument("--dtype", default="bfloat16", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted", type=str, required=False, help="Path to the output pytorch model.", ) __A = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def a__ ( ) -> Optional[Any]: from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer __lowerCAmelCase: int = SwitchTransformersConfig.from_pretrained("google/switch-base-8" ) config.save_pretrained("/home/arthur_huggingface_co/transformers/switch_converted" ) __lowerCAmelCase: List[str] = SwitchTransformersForConditionalGeneration.from_pretrained( "/home/arthur_huggingface_co/transformers/switch_converted" , device_map="auto" ) __lowerCAmelCase: str = TaTokenizer.from_pretrained("t5-small" ) __lowerCAmelCase: int = "A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>." __lowerCAmelCase: Union[str, Any] = tokenizer(__SCREAMING_SNAKE_CASE , return_tensors="pt" ).input_ids __lowerCAmelCase: Optional[int] = model.generate(__SCREAMING_SNAKE_CASE , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
359
"""simple docstring""" import numpy as np def a__ ( __SCREAMING_SNAKE_CASE ) -> np.array: return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
108
0
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def A_ ( ) -> List[Any]: with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(_lowerCAmelCase ): requests.request("GET" , "https://huggingface.co" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("GET" , "https://huggingface.co" , timeout=1.0 ) @pytest.mark.integration def A_ ( ) -> Tuple: with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("GET" , "https://huggingface.co" ) def A_ ( ) -> Optional[int]: with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(_lowerCAmelCase ): http_head("https://huggingface.co" )
52
'''simple docstring''' def _lowerCamelCase ( lowercase : int ) -> bool: _a = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
63
0
import torch from diffusers import DiffusionPipeline class _lowerCamelCase ( _SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->Tuple: '''simple docstring''' super().__init__() self.register_modules(unet=A_ , scheduler=A_ ) def __call__( self )->Tuple: '''simple docstring''' A_ : int = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) A_ : List[Any] = 1 A_ : int = self.unet(A_ , A_ ).sample A_ : Optional[Any] = self.scheduler.step(A_ , A_ , A_ ).prev_sample A_ : Any = scheduler_output - scheduler_output + torch.ones_like(A_ ) return result
371
from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers UpperCamelCase = [ """python""", """tqdm""", """regex""", """requests""", """packaging""", """filelock""", """numpy""", """tokenizers""", """huggingface-hub""", """safetensors""", """accelerate""", """pyyaml""", ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None ): require_version(deps[pkg] , SCREAMING_SNAKE_CASE )
65
0
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class A : '''simple docstring''' def __init__(self : Tuple , _UpperCAmelCase : str , ) -> List[str]: """simple docstring""" lowercase__ = parent lowercase__ = 13 lowercase__ = 7 lowercase__ = True lowercase__ = True lowercase__ = True lowercase__ = 99 lowercase__ = 32 lowercase__ = 2 lowercase__ = 4 lowercase__ = 37 lowercase__ = """gelu""" lowercase__ = 0.1 lowercase__ = 0.1 lowercase__ = 512 lowercase__ = 16 lowercase__ = 2 lowercase__ = 0.02 lowercase__ = 3 lowercase__ = 4 lowercase__ = None def lowerCamelCase__ (self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = None if self.use_input_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ = ids_tensor([self.batch_size] , self.num_choices ) lowercase__ = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase__ (self : List[str] ) -> Tuple: """simple docstring""" ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = self.prepare_config_and_inputs() lowercase__ = True lowercase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ) -> Tuple: """simple docstring""" lowercase__ = TFEsmModel(config=_UpperCAmelCase ) lowercase__ = {"""input_ids""": input_ids, """attention_mask""": input_mask} lowercase__ = model(_UpperCAmelCase ) lowercase__ = [input_ids, input_mask] lowercase__ = model(_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ (self : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , ) -> int: """simple docstring""" lowercase__ = True lowercase__ = TFEsmModel(config=_UpperCAmelCase ) lowercase__ = { """input_ids""": input_ids, """attention_mask""": input_mask, """encoder_hidden_states""": encoder_hidden_states, """encoder_attention_mask""": encoder_attention_mask, } lowercase__ = model(_UpperCAmelCase ) lowercase__ = [input_ids, input_mask] lowercase__ = model(_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ) # Also check the case where encoder outputs are not passed lowercase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = TFEsmForMaskedLM(config=_UpperCAmelCase ) lowercase__ = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = self.num_labels lowercase__ = TFEsmForTokenClassification(config=_UpperCAmelCase ) lowercase__ = {"""input_ids""": input_ids, """attention_mask""": input_mask} lowercase__ = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ (self : Optional[int] ) -> str: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = config_and_inputs lowercase__ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class A ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) A__ = ( { '''feature-extraction''': TFEsmModel, '''fill-mask''': TFEsmForMaskedLM, '''text-classification''': TFEsmForSequenceClassification, '''token-classification''': TFEsmForTokenClassification, '''zero-shot''': TFEsmForSequenceClassification, } if is_tf_available() else {} ) A__ = False A__ = False def lowerCamelCase__ (self : List[Any] ) -> Tuple: """simple docstring""" lowercase__ = TFEsmModelTester(self ) lowercase__ = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def lowerCamelCase__ (self : Union[str, Any] ) -> str: """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase__ (self : Tuple ) -> Optional[int]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowerCamelCase__ (self : Dict ) -> Tuple: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_UpperCAmelCase ) def lowerCamelCase__ (self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] ) -> Dict: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase ) @slow def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = TFEsmModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @unittest.skip("""Protein models do not support embedding resizing.""" ) def lowerCamelCase__ (self : List[str] ) -> Optional[Any]: """simple docstring""" pass @unittest.skip("""Protein models do not support embedding resizing.""" ) def lowerCamelCase__ (self : Tuple ) -> Tuple: """simple docstring""" pass def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(_UpperCAmelCase ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer lowercase__ = model.get_bias() assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) for k, v in name.items(): assert isinstance(_UpperCAmelCase , tf.Variable ) else: lowercase__ = model.get_output_embeddings() assert x is None lowercase__ = model.get_bias() assert name is None @require_tf class A ( unittest.TestCase ): '''simple docstring''' @slow def lowerCamelCase__ (self : int ) -> str: """simple docstring""" lowercase__ = TFEsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) lowercase__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase__ = model(_UpperCAmelCase )[0] lowercase__ = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , _UpperCAmelCase ) # compare the actual values for a slice. lowercase__ = tf.constant( [ [ [8.921_518, -10.589_814, -6.4_671_307], [-6.3_967_156, -13.911_377, -1.1_211_915], [-7.781_247, -13.951_557, -3.740_592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) ) @slow def lowerCamelCase__ (self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = TFEsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) lowercase__ = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowercase__ = model(_UpperCAmelCase )[0] # compare the actual values for a slice. lowercase__ = tf.constant( [ [ [0.14_443_092, 0.54_125_327, 0.3_247_739], [0.30_340_484, 0.00_526_676, 0.31_077_722], [0.32_278_043, -0.24_987_096, 0.3_414_628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
305
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class A ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self : Any , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int = None , _UpperCAmelCase : int = None ) -> Dict: """simple docstring""" super().__init__() lowercase__ = pad_token_id lowercase__ = max_length lowercase__ = vocab lowercase__ = merges lowercase__ = BytePairTokenizer(_UpperCAmelCase , _UpperCAmelCase , sequence_length=_UpperCAmelCase ) @classmethod def lowerCamelCase__ (cls : Optional[int] , _UpperCAmelCase : GPTaTokenizer , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : List[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = [""" """.join(_UpperCAmelCase ) for m in tokenizer.bpe_ranks.keys()] lowercase__ = tokenizer.get_vocab() return cls(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCamelCase__ (cls : Union[str, Any] , _UpperCAmelCase : Union[str, os.PathLike] , *_UpperCAmelCase : str , **_UpperCAmelCase : List[Any] ) -> Any: """simple docstring""" lowercase__ = GPTaTokenizer.from_pretrained(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) return cls.from_tokenizer(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCamelCase__ (cls : Any , _UpperCAmelCase : Tuple ) -> Union[str, Any]: """simple docstring""" return cls(**_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] ) -> List[Any]: """simple docstring""" return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def lowerCamelCase__ (self : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int = None ) -> Optional[Any]: """simple docstring""" lowercase__ = self.tf_tokenizer(_UpperCAmelCase ) lowercase__ = tf.ones_like(_UpperCAmelCase ) if self.pad_token_id is not None: # pad the tokens up to max length lowercase__ = max_length if max_length is not None else self.max_length if max_length is not None: lowercase__ , lowercase__ = pad_model_inputs( _UpperCAmelCase , max_seq_length=_UpperCAmelCase , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
305
1
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _SCREAMING_SNAKE_CASE : Dict = logging.getLogger(__name__) def UpperCamelCase_( snake_case : Optional[int] , snake_case : Tuple ): '''simple docstring''' return (preds == labels).mean() @dataclass class _snake_case : lowerCAmelCase_ : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowerCAmelCase_ : Optional[str] = field( default=lowercase_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCAmelCase_ : Optional[str] = field( default=lowercase_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) lowerCAmelCase_ : Optional[str] = field( default=lowercase_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class _snake_case : lowerCAmelCase_ : str = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} ) lowerCAmelCase_ : str = field(metadata={"help": "Should contain the data files for the task."} ) lowerCAmelCase_ : int = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) lowerCAmelCase_ : bool = field( default=lowercase_ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def UpperCamelCase_( ): '''simple docstring''' snake_case_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) snake_case_ , snake_case_ , snake_case_ = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. Use' " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , snake_case ) # Set seed set_seed(training_args.seed ) try: snake_case_ = processors[data_args.task_name]() snake_case_ = processor.get_labels() snake_case_ = len(snake_case ) except KeyError: raise ValueError("Task not found: %s" % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=snake_case , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) snake_case_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) snake_case_ = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=snake_case , cache_dir=model_args.cache_dir , ) # Get datasets snake_case_ = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) snake_case_ = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(snake_case : EvalPrediction ) -> Dict: snake_case_ = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(snake_case , p.label_ids )} # Data collator snake_case_ = DataCollatorWithPadding(snake_case , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer snake_case_ = Trainer( model=snake_case , args=snake_case , train_dataset=snake_case , eval_dataset=snake_case , compute_metrics=snake_case , data_collator=snake_case , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation snake_case_ = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) snake_case_ = trainer.evaluate() snake_case_ = os.path.join(training_args.output_dir , "eval_results.txt" ) if trainer.is_world_master(): with open(snake_case , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(" %s = %s" , snake_case , snake_case ) writer.write("%s = %s\n" % (key, value) ) results.update(snake_case ) return results def UpperCamelCase_( snake_case : Dict ): '''simple docstring''' main() if __name__ == "__main__": main()
92
'''simple docstring''' def UpperCamelCase_( snake_case : int , snake_case : int ): '''simple docstring''' while b: snake_case_ , snake_case_ = b, a % b return a def UpperCamelCase_( snake_case : int , snake_case : int ): '''simple docstring''' return a if b == 0 else euclidean_gcd_recursive(snake_case , a % b ) def UpperCamelCase_( ): '''simple docstring''' print(f'euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}' ) print(f'euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}' ) print(f'euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}' ) print(f'euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}' ) print(f'euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}' ) print(f'euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}' ) print(f'euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}' ) print(f'euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}' ) print(f'euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}' ) print(f'euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}' ) if __name__ == "__main__": main()
92
1
"""simple docstring""" import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> tuple: return (data["data"], data["target"]) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> XGBClassifier: lowercase__: List[Any] = XGBClassifier() classifier.fit(__UpperCAmelCase , __UpperCAmelCase ) return classifier def SCREAMING_SNAKE_CASE__ ( ) -> None: lowercase__: Optional[int] = load_iris() lowercase__, lowercase__: int = data_handling(__UpperCAmelCase ) lowercase__, lowercase__, lowercase__, lowercase__: Dict = train_test_split( __UpperCAmelCase , __UpperCAmelCase , test_size=0.2_5 ) lowercase__: Dict = iris['''target_names'''] # Create an XGBoost Classifier from the training data lowercase__: List[Any] = xgboost(__UpperCAmelCase , __UpperCAmelCase ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , display_labels=__UpperCAmelCase , cmap='''Blues''' , normalize='''true''' , ) plt.title('''Normalized Confusion Matrix - IRIS Dataset''' ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
177
"""simple docstring""" from __future__ import annotations from math import pi, sqrt def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> tuple: if inductance <= 0: raise ValueError('''Inductance cannot be 0 or negative''' ) elif capacitance <= 0: raise ValueError('''Capacitance cannot be 0 or negative''' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
177
1
from math import log from scipy.constants import Boltzmann, physical_constants A_ :Optional[Any] = 300 # TEMPERATURE (unit = K) def A ( a_ ,a_ ,a_ ,) -> float: if donor_conc <= 0: raise ValueError('Donor concentration should be positive' ) elif acceptor_conc <= 0: raise ValueError('Acceptor concentration should be positive' ) elif intrinsic_conc <= 0: raise ValueError('Intrinsic concentration should be positive' ) elif donor_conc <= intrinsic_conc: raise ValueError( 'Donor concentration should be greater than intrinsic concentration' ) elif acceptor_conc <= intrinsic_conc: raise ValueError( 'Acceptor concentration should be greater than intrinsic concentration' ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
365
from math import pow, sqrt def A ( *a_ ) -> bool: __UpperCamelCase : Union[str, Any] =len(a_ ) > 0 and all(value > 0.0 for value in values ) return result def A ( a_ ,a_ ) -> float | ValueError: return ( round(sqrt(molar_mass_a / molar_mass_a ) ,6 ) if validate(a_ ,a_ ) else ValueError('Input Error: Molar mass values must greater than 0.' ) ) def A ( a_ ,a_ ,a_ ) -> float | ValueError: return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) ,6 ) if validate(a_ ,a_ ,a_ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def A ( a_ ,a_ ,a_ ) -> float | ValueError: return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) ,6 ) if validate(a_ ,a_ ,a_ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def A ( a_ ,a_ ,a_ ) -> float | ValueError: return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a ,2 ) ,6 ) if validate(a_ ,a_ ,a_ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def A ( a_ ,a_ ,a_ ) -> float | ValueError: return ( round(pow(effusion_rate_a / effusion_rate_a ,2 ) / molar_mass ,6 ) if validate(a_ ,a_ ,a_ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) )
245
0
"""simple docstring""" def a_ ( _lowerCAmelCase : str , _lowerCAmelCase : str ): '''simple docstring''' lowercase__ : List[str] = len(_lowerCAmelCase ) + 1 lowercase__ : Any = len(_lowerCAmelCase ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. lowercase__ : List[str] = [[0 for i in range(_lowerCAmelCase )] for j in range(_lowerCAmelCase )] # since string of zero length match pattern of zero length lowercase__ : Any = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , _lowerCAmelCase ): lowercase__ : Tuple = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , _lowerCAmelCase ): lowercase__ : Union[str, Any] = dp[0][j - 2] if pattern[j - 1] == '*' else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , _lowerCAmelCase ): for j in range(1 , _lowerCAmelCase ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": lowercase__ : List[Any] = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: lowercase__ : Union[str, Any] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): lowercase__ : Tuple = dp[i - 1][j] else: lowercase__ : Tuple = 0 else: lowercase__ : List[Any] = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") _UpperCamelCase : Any = "aab" _UpperCamelCase : int = "c*a*b" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(f'''{input_string} matches the given pattern {pattern}''') else: print(f'''{input_string} does not match with the given pattern {pattern}''')
77
from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) __UpperCamelCase : int = 299792458 # Symbols __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Optional[int] = symbols("""ct x y z""") def a_ ( _A ) -> float: """simple docstring""" if velocity > c: raise ValueError('Speed must not exceed light speed 299,792,458 [m/s]!' ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError('Speed must be greater than or equal to 1!' ) return velocity / c def a_ ( _A ) -> float: """simple docstring""" return 1 / sqrt(1 - beta(_A ) ** 2 ) def a_ ( _A ) -> np.ndarray: """simple docstring""" return np.array( [ [gamma(_A ), -gamma(_A ) * beta(_A ), 0, 0], [-gamma(_A ) * beta(_A ), gamma(_A ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def a_ ( _A , _A = None ) -> np.ndarray: """simple docstring""" # Ensure event is not empty if event is None: snake_case__ = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(_A ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: __UpperCamelCase : List[Any] = transform(29979245) print("""Example of four vector: """) print(f'''ct\' = {four_vector[0]}''') print(f'''x\' = {four_vector[1]}''') print(f'''y\' = {four_vector[2]}''') print(f'''z\' = {four_vector[3]}''') # Substitute symbols with numerical values __UpperCamelCase : List[Any] = {ct: c, x: 1, y: 1, z: 1} __UpperCamelCase : Tuple = [four_vector[i].subs(sub_dict) for i in range(4)] print(f'''\n{numerical_vector}''')
307
0
def UpperCamelCase (lowercase_: bytes ) -> str: return "".join([hex(lowercase_ )[2:].zfill(2 ).upper() for byte in list(lowercase_ )] ) def UpperCamelCase (lowercase_: str ) -> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(lowercase_ ) % 2) != 0: raise ValueError( """Base16 encoded data is invalid: Data does not have an even number of hex digits.""" ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(lowercase_ ) <= set("""0123456789ABCDEF""" ): raise ValueError( """Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.""" ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(lowercase_ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
141
from typing import Any def UpperCamelCase (lowercase_: list ) -> list[Any]: if not input_list: return [] A__ : Any = [input_list.count(lowercase_ ) for value in input_list] A__ : List[Any] = max(lowercase_ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(lowercase_ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
141
1
'''simple docstring''' from __future__ import annotations class __a : def __init__( self : Any , __magic_name__ : int = 0 ) -> Tuple: """simple docstring""" UpperCAmelCase_ : List[Any] = key def UpperCAmelCase__ ( self : List[str] , __magic_name__ : str , __magic_name__ : int ) -> list[str]: """simple docstring""" assert isinstance(__magic_name__ , __magic_name__ ) and isinstance(__magic_name__ , __magic_name__ ) UpperCAmelCase_ : Optional[Any] = key or self.__key or 1 # make sure key is an appropriate size key %= 2_55 return [chr(ord(__magic_name__ ) ^ key ) for ch in content] def UpperCAmelCase__ ( self : str , __magic_name__ : str , __magic_name__ : int ) -> list[str]: """simple docstring""" assert isinstance(__magic_name__ , __magic_name__ ) and isinstance(__magic_name__ , __magic_name__ ) UpperCAmelCase_ : List[str] = key or self.__key or 1 # make sure key is an appropriate size key %= 2_55 return [chr(ord(__magic_name__ ) ^ key ) for ch in content] def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : str , __magic_name__ : int = 0 ) -> str: """simple docstring""" assert isinstance(__magic_name__ , __magic_name__ ) and isinstance(__magic_name__ , __magic_name__ ) UpperCAmelCase_ : List[Any] = key or self.__key or 1 # make sure key can be any size while key > 2_55: key -= 2_55 # This will be returned UpperCAmelCase_ : Optional[Any] = '''''' for ch in content: ans += chr(ord(__magic_name__ ) ^ key ) return ans def UpperCAmelCase__ ( self : List[str] , __magic_name__ : str , __magic_name__ : int = 0 ) -> str: """simple docstring""" assert isinstance(__magic_name__ , __magic_name__ ) and isinstance(__magic_name__ , __magic_name__ ) UpperCAmelCase_ : Optional[int] = key or self.__key or 1 # make sure key can be any size while key > 2_55: key -= 2_55 # This will be returned UpperCAmelCase_ : Dict = '''''' for ch in content: ans += chr(ord(__magic_name__ ) ^ key ) return ans def UpperCAmelCase__ ( self : Tuple , __magic_name__ : str , __magic_name__ : int = 0 ) -> bool: """simple docstring""" assert isinstance(__magic_name__ , __magic_name__ ) and isinstance(__magic_name__ , __magic_name__ ) try: with open(__magic_name__ ) as fin, open('''encrypt.out''' , '''w+''' ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(__magic_name__ , __magic_name__ ) ) except OSError: return False return True def UpperCAmelCase__ ( self : Any , __magic_name__ : str , __magic_name__ : int ) -> bool: """simple docstring""" assert isinstance(__magic_name__ , __magic_name__ ) and isinstance(__magic_name__ , __magic_name__ ) try: with open(__magic_name__ ) as fin, open('''decrypt.out''' , '''w+''' ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(__magic_name__ , __magic_name__ ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
125
'''simple docstring''' import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class __a : def __init__( self : Union[str, Any] , __magic_name__ : Dict=2 , __magic_name__ : Dict=3 , __magic_name__ : Any=64 , __magic_name__ : List[Any]=None ) -> int: """simple docstring""" UpperCAmelCase_ : Dict = np.random.default_rng(__magic_name__ ) UpperCAmelCase_ : Dict = length UpperCAmelCase_ : Tuple = rng.normal(size=(length,) ).astype(np.floataa ) UpperCAmelCase_ : str = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : int ) -> Union[str, Any]: """simple docstring""" return self.length def __getitem__( self : List[Any] , __magic_name__ : int ) -> Optional[int]: """simple docstring""" return {"x": self.x[i], "y": self.y[i]} class __a (torch.nn.Module ): def __init__( self : Optional[int] , __magic_name__ : Union[str, Any]=0 , __magic_name__ : List[str]=0 , __magic_name__ : List[str]=False ) -> str: """simple docstring""" super().__init__() UpperCAmelCase_ : Any = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) UpperCAmelCase_ : Any = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) UpperCAmelCase_ : Optional[int] = True def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Union[str, Any]=None ) -> Union[str, Any]: """simple docstring""" if self.first_batch: print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) UpperCAmelCase_ : Optional[Any] = False return x * self.a[0] + self.b[0] class __a (torch.nn.Module ): def __init__( self : Any , __magic_name__ : Any=0 , __magic_name__ : List[str]=0 , __magic_name__ : Any=False ) -> Dict: """simple docstring""" super().__init__() UpperCAmelCase_ : Optional[int] = torch.nn.Parameter(torch.tensor(__magic_name__ ).float() ) UpperCAmelCase_ : str = torch.nn.Parameter(torch.tensor(__magic_name__ ).float() ) UpperCAmelCase_ : Tuple = True def UpperCAmelCase__ ( self : Any , __magic_name__ : List[Any]=None ) -> Optional[int]: """simple docstring""" if self.first_batch: print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) UpperCAmelCase_ : Dict = False return x * self.a + self.b def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[int], SCREAMING_SNAKE_CASE__ : int = 16 ) -> List[Any]: from datasets import load_dataset from transformers import AutoTokenizer UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained('''bert-base-cased''' ) UpperCAmelCase_ : Optional[Any] = {'''train''': '''tests/test_samples/MRPC/train.csv''', '''validation''': '''tests/test_samples/MRPC/dev.csv'''} UpperCAmelCase_ : Union[str, Any] = load_dataset('''csv''', data_files=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Union[str, Any] = datasets['''train'''].unique('''label''' ) UpperCAmelCase_ : int = {v: i for i, v in enumerate(SCREAMING_SNAKE_CASE__ )} def tokenize_function(SCREAMING_SNAKE_CASE__ : List[Any] ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase_ : Union[str, Any] = tokenizer( examples['''sentence1'''], examples['''sentence2'''], truncation=SCREAMING_SNAKE_CASE__, max_length=SCREAMING_SNAKE_CASE__, padding='''max_length''' ) if "label" in examples: UpperCAmelCase_ : List[str] = [label_to_id[l] for l in examples['''label''']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCAmelCase_ : Tuple = datasets.map( SCREAMING_SNAKE_CASE__, batched=SCREAMING_SNAKE_CASE__, remove_columns=['''sentence1''', '''sentence2''', '''label'''], ) def collate_fn(SCREAMING_SNAKE_CASE__ : Optional[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(SCREAMING_SNAKE_CASE__, padding='''max_length''', max_length=128, return_tensors='''pt''' ) return tokenizer.pad(SCREAMING_SNAKE_CASE__, padding='''longest''', return_tensors='''pt''' ) # Instantiate dataloaders. UpperCAmelCase_ : Tuple = DataLoader(tokenized_datasets['''train'''], shuffle=SCREAMING_SNAKE_CASE__, collate_fn=SCREAMING_SNAKE_CASE__, batch_size=2 ) UpperCAmelCase_ : Optional[int] = DataLoader(tokenized_datasets['''validation'''], shuffle=SCREAMING_SNAKE_CASE__, collate_fn=SCREAMING_SNAKE_CASE__, batch_size=1 ) return train_dataloader, eval_dataloader
125
1
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) _lowerCAmelCase : Dict = { 'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class __magic_name__ ( lowercase__ ): """simple docstring""" __UpperCamelCase = 'gpt_neo' __UpperCamelCase = ['past_key_values'] __UpperCamelCase = {'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self :List[str] , snake_case :List[Any]=50_257 , snake_case :Union[str, Any]=2_048 , snake_case :List[str]=2_048 , snake_case :str=24 , snake_case :Dict=[[["global", "local"], 12]] , snake_case :Union[str, Any]=16 , snake_case :Optional[Any]=None , snake_case :Dict=256 , snake_case :Any="gelu_new" , snake_case :List[str]=0.0 , snake_case :Dict=0.0 , snake_case :Any=0.0 , snake_case :str=0.1 , snake_case :str=1e-5 , snake_case :str=0.02 , snake_case :Tuple=True , snake_case :Any=50_256 , snake_case :Any=50_256 , **snake_case :int , ): '''simple docstring''' A_ : str = vocab_size A_ : Union[str, Any] = max_position_embeddings A_ : Optional[Any] = hidden_size A_ : List[Any] = num_layers A_ : Optional[int] = num_heads A_ : Any = intermediate_size A_ : Optional[int] = window_size A_ : Tuple = activation_function A_ : Union[str, Any] = resid_dropout A_ : Optional[Any] = embed_dropout A_ : List[str] = attention_dropout A_ : Optional[int] = classifier_dropout A_ : Optional[Any] = layer_norm_epsilon A_ : Optional[int] = initializer_range A_ : List[str] = use_cache A_ : int = bos_token_id A_ : Dict = eos_token_id A_ : List[str] = attention_types A_ : Any = self.expand_attention_types_params(_UpperCamelCase ) if len(self.attention_layers ) != self.num_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.attention_layers)` == `config.num_layers` " f"but is `len(config.attention_layers) = {len(self.attention_layers )}`, " f"`config.num_layers = {self.num_layers}`. " "`config.attention_layers` is prepared using `config.attention_types`. " "Please verify the value of `config.attention_types` argument." ) super().__init__(bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) @staticmethod def SCREAMING_SNAKE_CASE ( snake_case :List[Any] ): '''simple docstring''' A_ : Union[str, Any] = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def __snake_case ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] ) -> int: import torch A_ : str = input.size() A_ : int = len(lowerCamelCase_ ) A_ : int = shape[dimension] A_ : Dict = torch.arange(0 , lowerCamelCase_ , lowerCamelCase_ ) A_ : List[str] = torch.div(sizedim - size , lowerCamelCase_ , rounding_mode="floor" ) + 1 A_ : str = torch.arange(lowerCamelCase_ ) + low_indices[:min_length][:, None] A_ : List[Any] = [slice(lowerCamelCase_ )] * rank A_ : List[Any] = indices A_ : str = input[s] A_ : Optional[int] = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(lowerCamelCase_ ) def __snake_case ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[int] ) -> Tuple: import torch A_ : Tuple = torch.arange(1 , lowerCamelCase_ ) A_ : List[Any] = torch.remainder(lowerCamelCase_ , lowerCamelCase_ ) A_ : Union[str, Any] = remainders == 0 A_ : Union[str, Any] = candidates[divisor_indices] A_ : Optional[Any] = torch.max(lowerCamelCase_ ) return largest_divisor, torch.div(lowerCamelCase_ , lowerCamelCase_ , rounding_mode="floor" ) class __magic_name__ ( lowercase__ ): """simple docstring""" @property def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' A_ : Optional[int] = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(_UpperCamelCase , direction="inputs" ) A_ : int = {0: """batch""", 1: """past_sequence + sequence"""} else: A_ : Any = {0: """batch""", 1: """sequence"""} return common_inputs @property def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' return self._config.num_heads def SCREAMING_SNAKE_CASE ( self :Optional[Any] , snake_case :PreTrainedTokenizer , snake_case :int = -1 , snake_case :int = -1 , snake_case :bool = False , snake_case :Optional[TensorType] = None , ): '''simple docstring''' A_ : List[str] = super(_UpperCamelCase , self ).generate_dummy_inputs( _UpperCamelCase , batch_size=_UpperCamelCase , seq_length=_UpperCamelCase , is_pair=_UpperCamelCase , framework=_UpperCamelCase ) # We need to order the input in the way they appears in the forward() A_ : int = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch A_ : Any = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values A_ : Any = seqlen + 2 A_ : Optional[Any] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) A_ : Optional[Any] = [ (torch.zeros(_UpperCamelCase ), torch.zeros(_UpperCamelCase )) for _ in range(self.num_layers ) ] A_ : List[str] = common_inputs["""attention_mask"""] if self.use_past: A_ : List[Any] = ordered_inputs["""attention_mask"""].dtype A_ : Tuple = torch.cat( [ordered_inputs["attention_mask"], torch.ones(_UpperCamelCase , _UpperCamelCase , dtype=_UpperCamelCase )] , dim=1 ) return ordered_inputs @property def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' return 13
358
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __snake_case ( ) -> tuple[list[int], int]: A_ : Dict = [randint(-1000 , 1000 ) for i in range(10 )] A_ : List[str] = randint(-5000 , 5000 ) return (arr, r) _lowerCAmelCase : List[Any] = make_dataset() def __snake_case ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int ) -> tuple[int, ...]: for triplet in permutations(_lowerCAmelCase , 3 ): if sum(_lowerCAmelCase ) == target: return tuple(sorted(_lowerCAmelCase ) ) return (0, 0, 0) def __snake_case ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int ) -> tuple[int, int, int]: arr.sort() A_ : Tuple = len(_lowerCAmelCase ) for i in range(n - 1 ): A_ , A_ : int = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __snake_case ( ) -> tuple[float, float]: A_ : Union[str, Any] = "\nfrom __main__ import dataset, triplet_sum1, triplet_sum2\n" A_ : Tuple = "\ntriplet_sum1(*dataset)\n" A_ : Optional[Any] = "\ntriplet_sum2(*dataset)\n" A_ : List[str] = repeat(setup=_lowerCAmelCase , stmt=_lowerCAmelCase , repeat=5 , number=10000 ) A_ : Tuple = repeat(setup=_lowerCAmelCase , stmt=_lowerCAmelCase , repeat=5 , number=10000 ) return (min(_lowerCAmelCase ), min(_lowerCAmelCase )) if __name__ == "__main__": from doctest import testmod testmod() _lowerCAmelCase : Optional[Any] = solution_times() print(F'''The time for naive implementation is {times[0]}.''') print(F'''The time for optimized implementation is {times[1]}.''')
70
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowercase_ = logging.get_logger(__name__) if is_vision_available(): import PIL class a_ ( snake_case_ ): '''simple docstring''' UpperCamelCase = ['''pixel_values'''] def __init__( self , A = True , A = None , A = PILImageResampling.BICUBIC , A = True , A = None , A = True , A = 1 / 255 , A = True , A = None , A = None , A = True , **A , ) -> None: super().__init__(**A ) _SCREAMING_SNAKE_CASE = size if size is not None else {"""shortest_edge""": 224} _SCREAMING_SNAKE_CASE = get_size_dict(A , default_to_square=A ) _SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} _SCREAMING_SNAKE_CASE = get_size_dict(A , default_to_square=A , param_name="""crop_size""" ) _SCREAMING_SNAKE_CASE = do_resize _SCREAMING_SNAKE_CASE = size _SCREAMING_SNAKE_CASE = resample _SCREAMING_SNAKE_CASE = do_center_crop _SCREAMING_SNAKE_CASE = crop_size _SCREAMING_SNAKE_CASE = do_rescale _SCREAMING_SNAKE_CASE = rescale_factor _SCREAMING_SNAKE_CASE = do_normalize _SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _SCREAMING_SNAKE_CASE = image_std if image_std is not None else OPENAI_CLIP_STD _SCREAMING_SNAKE_CASE = do_convert_rgb def snake_case_( self , A , A , A = PILImageResampling.BICUBIC , A = None , **A , ) -> np.ndarray: _SCREAMING_SNAKE_CASE = get_size_dict(A , default_to_square=A ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) _SCREAMING_SNAKE_CASE = get_resize_output_image_size(A , size=size["""shortest_edge"""] , default_to_square=A ) return resize(A , size=A , resample=A , data_format=A , **A ) def snake_case_( self , A , A , A = None , **A , ) -> np.ndarray: _SCREAMING_SNAKE_CASE = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(A , size=(size["""height"""], size["""width"""]) , data_format=A , **A ) def snake_case_( self , A , A , A = None , **A , ) -> List[str]: return rescale(A , scale=A , data_format=A , **A ) def snake_case_( self , A , A , A , A = None , **A , ) -> np.ndarray: return normalize(A , mean=A , std=A , data_format=A , **A ) def snake_case_( self , A , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = ChannelDimension.FIRST , **A , ) -> PIL.Image.Image: _SCREAMING_SNAKE_CASE = do_resize if do_resize is not None else self.do_resize _SCREAMING_SNAKE_CASE = size if size is not None else self.size _SCREAMING_SNAKE_CASE = get_size_dict(A , param_name="""size""" , default_to_square=A ) _SCREAMING_SNAKE_CASE = resample if resample is not None else self.resample _SCREAMING_SNAKE_CASE = do_center_crop if do_center_crop is not None else self.do_center_crop _SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else self.crop_size _SCREAMING_SNAKE_CASE = get_size_dict(A , param_name="""crop_size""" , default_to_square=A ) _SCREAMING_SNAKE_CASE = do_rescale if do_rescale is not None else self.do_rescale _SCREAMING_SNAKE_CASE = rescale_factor if rescale_factor is not None else self.rescale_factor _SCREAMING_SNAKE_CASE = do_normalize if do_normalize is not None else self.do_normalize _SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else self.image_mean _SCREAMING_SNAKE_CASE = image_std if image_std is not None else self.image_std _SCREAMING_SNAKE_CASE = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _SCREAMING_SNAKE_CASE = make_list_of_images(A ) if not valid_images(A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: _SCREAMING_SNAKE_CASE = [convert_to_rgb(A ) for image in images] # All transformations expect numpy arrays. _SCREAMING_SNAKE_CASE = [to_numpy_array(A ) for image in images] if do_resize: _SCREAMING_SNAKE_CASE = [self.resize(image=A , size=A , resample=A ) for image in images] if do_center_crop: _SCREAMING_SNAKE_CASE = [self.center_crop(image=A , size=A ) for image in images] if do_rescale: _SCREAMING_SNAKE_CASE = [self.rescale(image=A , scale=A ) for image in images] if do_normalize: _SCREAMING_SNAKE_CASE = [self.normalize(image=A , mean=A , std=A ) for image in images] _SCREAMING_SNAKE_CASE = [to_channel_dimension_format(A , A ) for image in images] _SCREAMING_SNAKE_CASE = {"""pixel_values""": images} return BatchFeature(data=A , tensor_type=A )
58
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase_ = logging.get_logger(__name__) def snake_case( __magic_name__ ) -> List[List[ImageInput]]: '''simple docstring''' if isinstance(__magic_name__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__magic_name__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__magic_name__ ): return [[videos]] raise ValueError(F"""Could not make batched video from {videos}""" ) class _A ( _lowerCamelCase ): _UpperCamelCase : str = ['''pixel_values'''] def __init__( self : List[str] , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = True , _A : Dict[str, int] = None , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : Optional[int] , ) -> None: """simple docstring""" super().__init__(**_A ) lowercase : List[Any] = size if size is not None else {'''shortest_edge''': 224} lowercase : Tuple = get_size_dict(_A , default_to_square=_A ) lowercase : Dict = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowercase : Dict = get_size_dict(_A , param_name='''crop_size''' ) lowercase : List[str] = do_resize lowercase : Optional[Any] = size lowercase : List[str] = do_center_crop lowercase : List[Any] = crop_size lowercase : str = resample lowercase : Tuple = do_rescale lowercase : Any = rescale_factor lowercase : Tuple = do_normalize lowercase : List[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def __a ( self : Union[str, Any] , _A : np.ndarray , _A : Dict[str, int] , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ) -> np.ndarray: """simple docstring""" lowercase : Tuple = get_size_dict(_A , default_to_square=_A ) if "shortest_edge" in size: lowercase : Dict = get_resize_output_image_size(_A , size['''shortest_edge'''] , default_to_square=_A ) elif "height" in size and "width" in size: lowercase : Union[str, Any] = (size['''height'''], size['''width''']) else: raise ValueError(f"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def __a ( self : Dict , _A : np.ndarray , _A : Dict[str, int] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ) -> np.ndarray: """simple docstring""" lowercase : Optional[Any] = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(f"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(_A , size=(size['''height'''], size['''width''']) , data_format=_A , **_A ) def __a ( self : Union[str, Any] , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Tuple , ) -> Union[str, Any]: """simple docstring""" return rescale(_A , scale=_A , data_format=_A , **_A ) def __a ( self : str , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Union[str, Any] , ) -> np.ndarray: """simple docstring""" return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def __a ( self : int , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : PILImageResampling = None , _A : bool = None , _A : Dict[str, int] = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: """simple docstring""" if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. lowercase : Union[str, Any] = to_numpy_array(_A ) if do_resize: lowercase : List[Any] = self.resize(image=_A , size=_A , resample=_A ) if do_center_crop: lowercase : Optional[int] = self.center_crop(_A , size=_A ) if do_rescale: lowercase : Tuple = self.rescale(image=_A , scale=_A ) if do_normalize: lowercase : Union[str, Any] = self.normalize(image=_A , mean=_A , std=_A ) lowercase : Any = to_channel_dimension_format(_A , _A ) return image def __a ( self : List[Any] , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : PILImageResampling = None , _A : bool = None , _A : Dict[str, int] = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : Union[str, Any] , ) -> PIL.Image.Image: """simple docstring""" lowercase : str = do_resize if do_resize is not None else self.do_resize lowercase : Optional[Any] = resample if resample is not None else self.resample lowercase : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase : str = do_rescale if do_rescale is not None else self.do_rescale lowercase : int = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase : List[str] = do_normalize if do_normalize is not None else self.do_normalize lowercase : Optional[int] = image_mean if image_mean is not None else self.image_mean lowercase : Optional[Any] = image_std if image_std is not None else self.image_std lowercase : str = size if size is not None else self.size lowercase : Any = get_size_dict(_A , default_to_square=_A ) lowercase : Optional[int] = crop_size if crop_size is not None else self.crop_size lowercase : str = get_size_dict(_A , param_name='''crop_size''' ) if not valid_images(_A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) lowercase : Union[str, Any] = make_batched(_A ) lowercase : Dict = [ [ self._preprocess_image( image=_A , do_resize=_A , size=_A , resample=_A , do_center_crop=_A , crop_size=_A , do_rescale=_A , rescale_factor=_A , do_normalize=_A , image_mean=_A , image_std=_A , data_format=_A , ) for img in video ] for video in videos ] lowercase : Tuple = {'''pixel_values''': videos} return BatchFeature(data=_A , tensor_type=_A )
308
0
import re def __lowercase ( __lowerCAmelCase : str ): a__ = re.compile(R'^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$' ) if match := re.search(__lowerCAmelCase , __lowerCAmelCase ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator('''+918827897895'''))
363
from math import ceil, sqrt def __lowercase ( __lowerCAmelCase : int = 1_0_0_0_0_0_0 ): a__ = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: a__ = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: a__ = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f"""{solution() = }""")
109
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { """uclanlp/visualbert-vqa""": """https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json""", """uclanlp/visualbert-vqa-pre""": """https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json""", """uclanlp/visualbert-vqa-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json""" ), """uclanlp/visualbert-vcr""": """https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json""", """uclanlp/visualbert-vcr-pre""": """https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json""", """uclanlp/visualbert-vcr-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json""" ), """uclanlp/visualbert-nlvr2""": """https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json""", """uclanlp/visualbert-nlvr2-pre""": """https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json""", """uclanlp/visualbert-nlvr2-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json""" ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class UpperCAmelCase_ ( lowercase ): """simple docstring""" UpperCamelCase_ : Union[str, Any] ='visual_bert' def __init__( self , SCREAMING_SNAKE_CASE_=3_0522 , SCREAMING_SNAKE_CASE_=768 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=3072 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=1e-12 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=2 , **SCREAMING_SNAKE_CASE_ , ) -> str: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) UpperCamelCase :List[Any] = vocab_size UpperCamelCase :Dict = max_position_embeddings UpperCamelCase :str = hidden_size UpperCamelCase :Optional[Any] = visual_embedding_dim UpperCamelCase :Optional[Any] = num_hidden_layers UpperCamelCase :Optional[Any] = num_attention_heads UpperCamelCase :Optional[Any] = intermediate_size UpperCamelCase :str = hidden_act UpperCamelCase :Any = hidden_dropout_prob UpperCamelCase :Dict = attention_probs_dropout_prob UpperCamelCase :Union[str, Any] = initializer_range UpperCamelCase :str = type_vocab_size UpperCamelCase :Tuple = layer_norm_eps UpperCamelCase :List[str] = bypass_transformer UpperCamelCase :Dict = special_visual_initialize
259
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def _A ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple ): return params[F'''{prefix}/{prefix}/relpos_bias/rel_embedding'''][:, i, :] def _A ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any="attention" ): UpperCamelCase :str = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/key/kernel'''][:, i, :, :] ) UpperCamelCase :Optional[Any] = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) UpperCamelCase :Optional[int] = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/out/kernel'''][:, i, :, :] ) UpperCamelCase :List[Any] = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) UpperCamelCase :Union[str, Any] = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/query/kernel'''][:, i, :, :] ) UpperCamelCase :Any = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) UpperCamelCase :str = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/value/kernel'''][:, i, :, :] ) UpperCamelCase :str = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def _A ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str]=False ): if split_mlp_wi: UpperCamelCase :List[Any] = params[F'''{prefix}/{prefix}/mlp/wi_0/kernel'''][:, i, :] UpperCamelCase :int = params[F'''{prefix}/{prefix}/mlp/wi_1/kernel'''][:, i, :] UpperCamelCase :str = (wi_a, wi_a) else: UpperCamelCase :Optional[Any] = params[F'''{prefix}/{prefix}/mlp/wi/kernel'''][:, i, :] UpperCamelCase :Optional[int] = params[F'''{prefix}/{prefix}/mlp/wo/kernel'''][:, i, :] return wi, wo def _A ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] ): return params[F'''{prefix}/{prefix}/{layer_name}/scale'''][:, i] def _A ( SCREAMING_SNAKE_CASE__ : dict , *, SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : bool , SCREAMING_SNAKE_CASE__ : bool = False ): UpperCamelCase :Tuple = traverse_util.flatten_dict(variables['''target'''] ) UpperCamelCase :List[Any] = {'''/'''.join(SCREAMING_SNAKE_CASE__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi UpperCamelCase :int = '''encoder/encoder/mlp/wi_0/kernel''' in old print('''Split MLP:''' , SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Optional[int] = collections.OrderedDict() # Shared embeddings. UpperCamelCase :int = old['''token_embedder/embedding'''] # Encoder. for i in range(SCREAMING_SNAKE_CASE__ ): # Block i, layer 0 (Self Attention). UpperCamelCase :str = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , '''encoder''' , '''pre_attention_layer_norm''' ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase :List[str] = tax_attention_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , '''encoder''' , '''attention''' ) UpperCamelCase :str = layer_norm UpperCamelCase :Dict = k.T UpperCamelCase :Optional[Any] = o.T UpperCamelCase :int = q.T UpperCamelCase :Any = v.T # Block i, layer 1 (MLP). UpperCamelCase :Tuple = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , '''encoder''' , '''pre_mlp_layer_norm''' ) UpperCamelCase , UpperCamelCase :Any = tax_mlp_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , '''encoder''' , SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Tuple = layer_norm if split_mlp_wi: UpperCamelCase :List[Any] = wi[0].T UpperCamelCase :Tuple = wi[1].T else: UpperCamelCase :Optional[Any] = wi.T UpperCamelCase :Dict = wo.T if scalable_attention: # convert the rel_embedding of each layer UpperCamelCase :List[str] = tax_relpos_bias_lookup( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , '''encoder''' ).T UpperCamelCase :Optional[Any] = old['''encoder/encoder_norm/scale'''] if not scalable_attention: UpperCamelCase :str = tax_relpos_bias_lookup( SCREAMING_SNAKE_CASE__ , 0 , '''encoder''' ).T UpperCamelCase :Any = tax_relpos_bias_lookup( SCREAMING_SNAKE_CASE__ , 0 , '''decoder''' ).T if not is_encoder_only: # Decoder. for i in range(SCREAMING_SNAKE_CASE__ ): # Block i, layer 0 (Self Attention). UpperCamelCase :Union[str, Any] = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , '''decoder''' , '''pre_self_attention_layer_norm''' ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase :Dict = tax_attention_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , '''decoder''' , '''self_attention''' ) UpperCamelCase :str = layer_norm UpperCamelCase :int = k.T UpperCamelCase :Optional[int] = o.T UpperCamelCase :Tuple = q.T UpperCamelCase :List[str] = v.T # Block i, layer 1 (Cross Attention). UpperCamelCase :str = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , '''decoder''' , '''pre_cross_attention_layer_norm''' ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase :List[Any] = tax_attention_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , '''decoder''' , '''encoder_decoder_attention''' ) UpperCamelCase :Tuple = layer_norm UpperCamelCase :Optional[Any] = k.T UpperCamelCase :List[str] = o.T UpperCamelCase :List[str] = q.T UpperCamelCase :str = v.T # Block i, layer 2 (MLP). UpperCamelCase :List[str] = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , '''decoder''' , '''pre_mlp_layer_norm''' ) UpperCamelCase , UpperCamelCase :Optional[int] = tax_mlp_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , '''decoder''' , SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Tuple = layer_norm if split_mlp_wi: UpperCamelCase :List[str] = wi[0].T UpperCamelCase :str = wi[1].T else: UpperCamelCase :Dict = wi.T UpperCamelCase :Optional[Any] = wo.T if scalable_attention: # convert the rel_embedding of each layer UpperCamelCase :Tuple = tax_relpos_bias_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , '''decoder''' ).T UpperCamelCase :Union[str, Any] = old['''decoder/decoder_norm/scale'''] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: UpperCamelCase :Union[str, Any] = old['''decoder/logits_dense/kernel'''].T return new def _A ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : bool ): UpperCamelCase :Optional[int] = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: UpperCamelCase :Dict = state_dict['''shared.weight'''] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: UpperCamelCase :Dict = state_dict['''shared.weight'''] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('''Using shared word embeddings as lm_head.''' ) UpperCamelCase :List[Any] = state_dict['''shared.weight'''] return state_dict def _A ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any ): UpperCamelCase :Dict = checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :str = convert_tax_to_pytorch( SCREAMING_SNAKE_CASE__ , num_layers=config.num_layers , is_encoder_only=SCREAMING_SNAKE_CASE__ , scalable_attention=SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Dict = make_state_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) def _A ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False , ): UpperCamelCase :Any = MTaConfig.from_json_file(SCREAMING_SNAKE_CASE__ ) print(F'''Building PyTorch model from configuration: {config}''' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: UpperCamelCase :List[str] = UMTaEncoderModel(SCREAMING_SNAKE_CASE__ ) else: UpperCamelCase :Any = UMTaForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) # Verify that we can load the checkpoint. model.from_pretrained(SCREAMING_SNAKE_CASE__ ) print('''Done''' ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser(description="""Converts a native T5X checkpoint into a PyTorch checkpoint.""") # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path to the T5X checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_encoder_only""", action="""store_true""", help="""Check if the model is encoder-decoder model""", default=False ) parser.add_argument( """--scalable_attention""", action="""store_true""", help="""Whether the model uses scaled attention (umt5 model)""", default=False, ) __snake_case = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
259
1
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Tuple: # Load checkpoint lowercase : Optional[int] = torch.load(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" ) lowercase : str = chkpt["""model"""] # We have the base model one level deeper than the original XLM repository lowercase : Tuple = {} for k, v in state_dict.items(): if "pred_layer" in k: lowercase : str = v else: lowercase : int = v lowercase : Tuple = chkpt["""params"""] lowercase : Optional[Any] = {n: v for n, v in config.items() if not isinstance(SCREAMING_SNAKE_CASE__ , (torch.FloatTensor, numpy.ndarray) )} lowercase : Union[str, Any] = chkpt["""dico_word2id"""] lowercase : Union[str, Any] = {s + """</w>""" if s.find("""@@""" ) == -1 and i > 13 else s.replace("""@@""" , """""" ): i for s, i in vocab.items()} # Save pytorch-model lowercase : Tuple = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME lowercase : Union[str, Any] = pytorch_dump_folder_path + """/""" + CONFIG_NAME lowercase : int = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""vocab_file"""] print(f"Save PyTorch model to {pytorch_weights_dump_path}" ) torch.save(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print(f"Save configuration file to {pytorch_config_dump_path}" ) with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE__ , indent=2 ) + """\n""" ) print(f"Save vocab file to {pytorch_config_dump_path}" ) with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE__ , indent=2 ) + """\n""" ) if __name__ == "__main__": lowercase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xlm_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowercase : Union[str, Any] = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
285
import math from datetime import datetime, timedelta def _snake_case( SCREAMING_SNAKE_CASE__ ) -> datetime: lowercase : Any = year % 19 lowercase : Optional[int] = year % 4 lowercase : Any = year % 7 lowercase : str = math.floor(year / 100 ) lowercase : List[str] = math.floor((13 + 8 * leap_day_inhibits) / 25 ) lowercase : Tuple = leap_day_inhibits / 4 lowercase : Any = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 lowercase : Union[str, Any] = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 lowercase : str = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon lowercase : List[Any] = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(SCREAMING_SNAKE_CASE__ , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(SCREAMING_SNAKE_CASE__ , 4 , 18 ) else: return datetime(SCREAMING_SNAKE_CASE__ , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1994, 2000, 2010, 2021, 2023): lowercase : List[str] = """will be""" if year > datetime.now().year else """was""" print(F'''Easter in {year} {tense} {gauss_easter(year)}''')
285
1