code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" def _snake_case ( lowercase__ : int ) -> str: '''simple docstring''' if number > 0: raise ValueError("""input must be a negative integer""" ) lowerCAmelCase_ :int = len(bin(_lowercase )[3:] ) lowerCAmelCase_ :Union[str, Any] = bin(abs(_lowercase ) - (1 << binary_number_length) )[3:] lowerCAmelCase_ :Any = ( ( "1" + "0" * (binary_number_length - len(_lowercase )) + twos_complement_number ) if number < 0 else "0" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
84
"""simple docstring""" a : Any = { '''a''': '''AAAAA''', '''b''': '''AAAAB''', '''c''': '''AAABA''', '''d''': '''AAABB''', '''e''': '''AABAA''', '''f''': '''AABAB''', '''g''': '''AABBA''', '''h''': '''AABBB''', '''i''': '''ABAAA''', '''j''': '''BBBAA''', '''k''': '''ABAAB''', '''l''': '''ABABA''', '''m''': '''ABABB''', '''n''': '''ABBAA''', '''o''': '''ABBAB''', '''p''': '''ABBBA''', '''q''': '''ABBBB''', '''r''': '''BAAAA''', '''s''': '''BAAAB''', '''t''': '''BAABA''', '''u''': '''BAABB''', '''v''': '''BBBAB''', '''w''': '''BABAA''', '''x''': '''BABAB''', '''y''': '''BABBA''', '''z''': '''BABBB''', ''' ''': ''' ''', } a : List[Any] = {value: key for key, value in encode_dict.items()} def _SCREAMING_SNAKE_CASE ( _lowercase : str ) ->str: '''simple docstring''' a : int = "" for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception("encode() accepts only letters of the alphabet and spaces" ) return encoded def _SCREAMING_SNAKE_CASE ( _lowercase : str ) ->str: '''simple docstring''' if set(_lowercase ) - {"A", "B", " "} != set(): raise Exception("decode() accepts only 'A', 'B' and spaces" ) a : Optional[Any] = "" for word in coded.split(): while len(_lowercase ) != 0: decoded += decode_dict[word[:5]] a : List[Any] = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
105
0
"""simple docstring""" import itertools import string from collections.abc import Generator, Iterable def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> Generator[tuple[str, ...], None, None]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = iter(UpperCAmelCase_ ) while True: SCREAMING_SNAKE_CASE__ : Optional[int] = tuple(itertools.islice(UpperCAmelCase_ , UpperCAmelCase_ ) ) if not chunk: return yield chunk def _lowercase ( __lowerCAmelCase ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = ''.join([c.upper() for c in dirty if c in string.ascii_letters] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = '' if len(UpperCAmelCase_ ) < 2: return dirty for i in range(len(UpperCAmelCase_ ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(UpperCAmelCase_ ) & 1: clean += "X" return clean def _lowercase ( __lowerCAmelCase ) -> list[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = 'ABCDEFGHIKLMNOPQRSTUVWXYZ' # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler SCREAMING_SNAKE_CASE__ : Optional[int] = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(UpperCAmelCase_ ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(UpperCAmelCase_ ) return table def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = generate_table(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = prepare_input(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ : Tuple = '' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(UpperCAmelCase_ , 2 ): SCREAMING_SNAKE_CASE__ : Any = divmod(table.index(UpperCAmelCase_ ) , 5 ) SCREAMING_SNAKE_CASE__ : Tuple = divmod(table.index(UpperCAmelCase_ ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = generate_table(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ : Any = '' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(UpperCAmelCase_ , 2 ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = divmod(table.index(UpperCAmelCase_ ) , 5 ) SCREAMING_SNAKE_CASE__ : Tuple = divmod(table.index(UpperCAmelCase_ ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
356
"""simple docstring""" import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu a :List[Any] = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: a :str = json.load(f) @require_torch class __a (unittest.TestCase): '''simple docstring''' def _a ( self , _a ) -> Optional[int]: """simple docstring""" return FSMTTokenizer.from_pretrained(_a ) def _a ( self , _a ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = FSMTForConditionalGeneration.from_pretrained(_a ).to(_a ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["""en-ru""", 26.0], ["""ru-en""", 22.0], ["""en-de""", 22.0], ["""de-en""", 29.0], ] ) @slow def _a ( self , _a , _a ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = f'''facebook/wmt19-{pair}''' SCREAMING_SNAKE_CASE__ : Dict = self.get_tokenizer(_a ) SCREAMING_SNAKE_CASE__ : Any = self.get_model(_a ) SCREAMING_SNAKE_CASE__ : Tuple = bleu_data[pair]["""src"""] SCREAMING_SNAKE_CASE__ : Any = bleu_data[pair]["""tgt"""] SCREAMING_SNAKE_CASE__ : Any = tokenizer(_a , return_tensors="""pt""" , truncation=_a , padding="""longest""" ).to(_a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = model.generate( input_ids=batch.input_ids , num_beams=8 , ) SCREAMING_SNAKE_CASE__ : List[Any] = tokenizer.batch_decode( _a , skip_special_tokens=_a , clean_up_tokenization_spaces=_a ) SCREAMING_SNAKE_CASE__ : Dict = calculate_bleu(_a , _a ) print(_a ) self.assertGreaterEqual(scores["""bleu"""] , _a )
56
0
"""simple docstring""" from __future__ import annotations def lowercase_ ( __UpperCAmelCase ) -> float: lowerCAmelCase__ : Union[str, Any] = 0.00 lowerCAmelCase__ : Any = 0 for resistor in resistors: if resistor <= 0: lowerCAmelCase__ : int = f"""Resistor at index {index} has a negative or zero value!""" raise ValueError(__UpperCAmelCase ) first_sum += 1 / float(__UpperCAmelCase ) index += 1 return 1 / first_sum def lowercase_ ( __UpperCAmelCase ) -> float: lowerCAmelCase__ : Union[str, Any] = 0.00 lowerCAmelCase__ : Optional[int] = 0 for resistor in resistors: sum_r += resistor if resistor < 0: lowerCAmelCase__ : Dict = f"""Resistor at index {index} has a negative value!""" raise ValueError(__UpperCAmelCase ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
242
"""simple docstring""" import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer _A = """bart""" _A = True @st.cache(allow_output_mutation=__UpperCAmelCase ) def lowercase_ ( ) -> Optional[Any]: if LOAD_DENSE_INDEX: lowerCAmelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained("""yjernite/retribert-base-uncased""" ) lowerCAmelCase__ : Tuple = AutoModel.from_pretrained("""yjernite/retribert-base-uncased""" ).to("""cuda:0""" ) lowerCAmelCase__ : List[str] = qar_model.eval() else: lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = (None, None) if MODEL_TYPE == "bart": lowerCAmelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained("""yjernite/bart_eli5""" ) lowerCAmelCase__ : List[Any] = AutoModelForSeqaSeqLM.from_pretrained("""yjernite/bart_eli5""" ).to("""cuda:0""" ) lowerCAmelCase__ : List[str] = torch.load("""seq2seq_models/eli5_bart_model_blm_2.pth""" ) sas_model.load_state_dict(save_dict["""model"""] ) lowerCAmelCase__ : Dict = sas_model.eval() else: lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = make_qa_sas_model( model_name="""t5-small""" , from_file="""seq2seq_models/eli5_t5_model_1024_4.pth""" , device="""cuda:0""" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=__UpperCAmelCase ) def lowercase_ ( ) -> Union[str, Any]: if LOAD_DENSE_INDEX: lowerCAmelCase__ : Union[str, Any] = faiss.StandardGpuResources() lowerCAmelCase__ : List[Any] = datasets.load_dataset(path="""wiki_snippets""" , name="""wiki40b_en_100_0""" )["""train"""] lowerCAmelCase__ : Dict = np.memmap( """wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat""" , dtype="""float32""" , mode="""r""" , shape=(wikiaab_passages.num_rows, 128) , ) lowerCAmelCase__ : str = faiss.IndexFlatIP(128 ) lowerCAmelCase__ : Optional[int] = faiss.index_cpu_to_gpu(__UpperCAmelCase , 1 , __UpperCAmelCase ) wikiaab_gpu_index_flat.add(__UpperCAmelCase ) # TODO fix for larger GPU else: lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = (None, None) lowerCAmelCase__ : Optional[int] = Elasticsearch([{"""host""": """localhost""", """port""": """9200"""}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=__UpperCAmelCase ) def lowercase_ ( ) -> List[str]: lowerCAmelCase__ : List[Any] = datasets.load_dataset("""eli5""" , name="""LFQA_reddit""" ) lowerCAmelCase__ : Tuple = elia["""train_eli5"""] lowerCAmelCase__ : Dict = np.memmap( """eli5_questions_reps.dat""" , dtype="""float32""" , mode="""r""" , shape=(elia_train.num_rows, 128) ) lowerCAmelCase__ : Dict = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(__UpperCAmelCase ) return (elia_train, eli5_train_q_index) _A , _A , _A = load_indexes() _A , _A , _A , _A = load_models() _A , _A = load_train_data() def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase=10 ) -> Optional[Any]: lowerCAmelCase__ : str = embed_questions_for_retrieval([question] , __UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = eli5_train_q_index.search(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ : List[Any] = [elia_train[int(__UpperCAmelCase )] for i in I[0]] return nn_examples def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase="wiki40b" , __UpperCAmelCase="dense" , __UpperCAmelCase=10 ) -> List[str]: if source == "none": lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = (""" <P> """.join(["""""" for _ in range(11 )] ).strip(), []) else: if method == "dense": lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = query_qa_dense_index( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) else: lowerCAmelCase__ , lowerCAmelCase__ : int = query_es_index( __UpperCAmelCase , __UpperCAmelCase , index_name="""english_wiki40b_snippets_100w""" , n_results=__UpperCAmelCase , ) lowerCAmelCase__ : Optional[int] = [ (res["""article_title"""], res["""section_title"""].strip(), res["""score"""], res["""passage_text"""]) for res in hit_lst ] lowerCAmelCase__ : Optional[Any] = """question: {} context: {}""".format(__UpperCAmelCase , __UpperCAmelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda __UpperCAmelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda __UpperCAmelCase : None), } ) def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=64 , __UpperCAmelCase=256 , __UpperCAmelCase=False , __UpperCAmelCase=2 , __UpperCAmelCase=0.95 , __UpperCAmelCase=0.8 ) -> Optional[int]: with torch.no_grad(): lowerCAmelCase__ : List[Any] = qa_sas_generate( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , num_answers=1 , num_beams=__UpperCAmelCase , min_len=__UpperCAmelCase , max_len=__UpperCAmelCase , do_sample=__UpperCAmelCase , temp=__UpperCAmelCase , top_p=__UpperCAmelCase , top_k=__UpperCAmelCase , max_input_length=1024 , device="""cuda:0""" , )[0] return (answer, support_list) st.title("""Long Form Question Answering with ELI5""") # Start sidebar _A = """<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>""" _A = """ <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class=\"img-container\"> <!-- Inline parent element --> %s </span> </body> </html> """ % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia _A = """ This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. """ st.sidebar.markdown(description, unsafe_allow_html=True) _A = [ """Answer the question""", """View the retrieved document only""", """View the most similar ELI5 question and answer""", """Show me everything, please!""", ] _A = st.sidebar.checkbox("""Demo options""") if demo_options: _A = st.sidebar.selectbox( """""", action_list, index=3, ) _A = action_list.index(action_st) _A = st.sidebar.selectbox( """""", ["""Show full text of passages""", """Show passage section titles"""], index=0, ) _A = show_type == """Show full text of passages""" else: _A = 3 _A = True _A = st.sidebar.checkbox("""Retrieval options""") if retrieval_options: _A = """ ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. """ st.sidebar.markdown(retriever_info) _A = st.sidebar.selectbox("""Which Wikipedia format should the model use?""", ["""wiki40b""", """none"""]) _A = st.sidebar.selectbox("""Which Wikipedia indexer should the model use?""", ["""dense""", """sparse""", """mixed"""]) else: _A = """wiki40b""" _A = """dense""" _A = """beam""" _A = 2 _A = 6_4 _A = 2_5_6 _A = None _A = None _A = st.sidebar.checkbox("""Generation options""") if generate_options: _A = """ ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder's output probabilities. """ st.sidebar.markdown(generate_info) _A = st.sidebar.selectbox("""Would you like to use beam search or sample an answer?""", ["""beam""", """sampled"""]) _A = st.sidebar.slider( """Minimum generation length""", min_value=8, max_value=2_5_6, value=6_4, step=8, format=None, key=None ) _A = st.sidebar.slider( """Maximum generation length""", min_value=6_4, max_value=5_1_2, value=2_5_6, step=1_6, format=None, key=None ) if sampled == "beam": _A = st.sidebar.slider("""Beam size""", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: _A = st.sidebar.slider( """Nucleus sampling p""", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) _A = st.sidebar.slider( """Temperature""", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) _A = None # start main text _A = [ """<MY QUESTION>""", """How do people make chocolate?""", """Why do we get a fever when we are sick?""", """How can different animals perceive different colors?""", """What is natural language processing?""", """What's the best way to treat a sunburn?""", """What exactly are vitamins ?""", """How does nuclear energy provide electricity?""", """What's the difference between viruses and bacteria?""", """Why are flutes classified as woodwinds when most of them are made out of metal ?""", """Why do people like drinking coffee even though it tastes so bad?""", """What happens when wine ages? How does it make the wine taste better?""", """If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?""", """How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?""", """How does New Zealand have so many large bird predators?""", ] _A = st.selectbox( """What would you like to ask? ---- select <MY QUESTION> to enter a new query""", questions_list, index=1, ) if question_s == "<MY QUESTION>": _A = st.text_input("""Enter your question here:""", """""") else: _A = question_s if st.button("""Show me!"""): if action in [0, 1, 3]: if index_type == "mixed": _A , _A = make_support(question, source=wiki_source, method="""dense""", n_results=1_0) _A , _A = make_support(question, source=wiki_source, method="""sparse""", n_results=1_0) _A = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] _A = support_list[:1_0] _A = """<P> """ + """ <P> """.join([res[-1] for res in support_list]) else: _A , _A = make_support(question, source=wiki_source, method=index_type, n_results=1_0) if action in [0, 3]: _A , _A = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == """sampled"""), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("""### The model generated answer is:""") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("""--- \n ### The model is drawing information from the following Wikipedia passages:""") for i, res in enumerate(support_list): _A = """https://en.wikipedia.org/wiki/{}""".format(res[0].replace(""" """, """_""")) _A = res[1].strip() if sec_titles == "": _A = """[{}]({})""".format(res[0], wiki_url) else: _A = sec_titles.split(""" & """) _A = """ & """.join( ["""[{}]({}#{})""".format(sec.strip(), wiki_url, sec.strip().replace(""" """, """_""")) for sec in sec_list] ) st.markdown( """{0:02d} - **Article**: {1:<18} <br> _Section_: {2}""".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( """> <span style=\"font-family:arial; font-size:10pt;\">""" + res[-1] + """</span>""", unsafe_allow_html=True ) if action in [2, 3]: _A = find_nearest_training(question) _A = nn_train_list[0] st.markdown( """--- \n ### The most similar question in the ELI5 training set was: \n\n {}""".format(train_exple["""title"""]) ) _A = [ """{}. {}""".format(i + 1, """ \n""".join([line.strip() for line in ans.split("""\n""") if line.strip() != """"""])) for i, (ans, sc) in enumerate(zip(train_exple["""answers"""]["""text"""], train_exple["""answers"""]["""score"""])) if i == 0 or sc > 2 ] st.markdown("""##### Its answers were: \n\n {}""".format("""\n""".join(answers_st))) _A = """ --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* """ st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
242
1
from __future__ import annotations def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> bool: '''simple docstring''' if len(_SCREAMING_SNAKE_CASE ) == 0: return False SCREAMING_SNAKE_CASE = len(_SCREAMING_SNAKE_CASE ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , _SCREAMING_SNAKE_CASE ) else: return binary_search(a_list[midpoint + 1 :] , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = input("""Enter numbers separated by comma:\n""").strip() SCREAMING_SNAKE_CASE_ = [int(item.strip()) for item in user_input.split(""",""")] SCREAMING_SNAKE_CASE_ = int(input("""Enter the number to be found in the list:\n""").strip()) SCREAMING_SNAKE_CASE_ = """""" if binary_search(sequence, target) else """not """ print(F'''{target} was {not_str}found in {sequence}''')
193
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) # General docstring SCREAMING_SNAKE_CASE_ = """RegNetConfig""" # Base docstring SCREAMING_SNAKE_CASE_ = """facebook/regnet-y-040""" SCREAMING_SNAKE_CASE_ = [1, 1_0_8_8, 7, 7] # Image classification docstring SCREAMING_SNAKE_CASE_ = """facebook/regnet-y-040""" SCREAMING_SNAKE_CASE_ = """tabby, tabby cat""" SCREAMING_SNAKE_CASE_ = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class UpperCamelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : str ,lowerCamelCase__ : int ,lowerCamelCase__ : int ,lowerCamelCase__ : int = 3 ,lowerCamelCase__ : int = 1 ,lowerCamelCase__ : int = 1 ,lowerCamelCase__ : Optional[str] = "relu" ,) -> Union[str, Any]: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE = nn.Convad( lowerCamelCase__ ,lowerCamelCase__ ,kernel_size=lowerCamelCase__ ,stride=lowerCamelCase__ ,padding=kernel_size // 2 ,groups=lowerCamelCase__ ,bias=lowerCamelCase__ ,) SCREAMING_SNAKE_CASE = nn.BatchNormad(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = ACTaFN[activation] if activation is not None else nn.Identity() def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ,lowerCamelCase__ : Tuple ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = self.convolution(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.normalization(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.activation(lowerCamelCase__ ) return hidden_state class UpperCamelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] ,lowerCamelCase__ : RegNetConfig ) -> List[str]: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE = RegNetConvLayer( config.num_channels ,config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act ) SCREAMING_SNAKE_CASE = config.num_channels def SCREAMING_SNAKE_CASE__ ( self : List[str] ,lowerCamelCase__ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" ) SCREAMING_SNAKE_CASE = self.embedder(lowerCamelCase__ ) return hidden_state class UpperCamelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] ,lowerCamelCase__ : int ,lowerCamelCase__ : int ,lowerCamelCase__ : int = 2 ) -> List[str]: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE = nn.Convad(lowerCamelCase__ ,lowerCamelCase__ ,kernel_size=1 ,stride=lowerCamelCase__ ,bias=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = nn.BatchNormad(lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : str ,lowerCamelCase__ : Tensor ) -> Tensor: '''simple docstring''' SCREAMING_SNAKE_CASE = self.convolution(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.normalization(lowerCamelCase__ ) return hidden_state class UpperCamelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] ,lowerCamelCase__ : int ,lowerCamelCase__ : int ) -> int: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE = nn.AdaptiveAvgPoolad((1, 1) ) SCREAMING_SNAKE_CASE = nn.Sequential( nn.Convad(lowerCamelCase__ ,lowerCamelCase__ ,kernel_size=1 ) ,nn.ReLU() ,nn.Convad(lowerCamelCase__ ,lowerCamelCase__ ,kernel_size=1 ) ,nn.Sigmoid() ,) def SCREAMING_SNAKE_CASE__ ( self : List[str] ,lowerCamelCase__ : Any ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = self.pooler(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.attention(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = hidden_state * attention return hidden_state class UpperCamelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] ,lowerCamelCase__ : RegNetConfig ,lowerCamelCase__ : int ,lowerCamelCase__ : int ,lowerCamelCase__ : int = 1 ) -> str: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE = in_channels != out_channels or stride != 1 SCREAMING_SNAKE_CASE = max(1 ,out_channels // config.groups_width ) SCREAMING_SNAKE_CASE = ( RegNetShortCut(lowerCamelCase__ ,lowerCamelCase__ ,stride=lowerCamelCase__ ) if should_apply_shortcut else nn.Identity() ) SCREAMING_SNAKE_CASE = nn.Sequential( RegNetConvLayer(lowerCamelCase__ ,lowerCamelCase__ ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(lowerCamelCase__ ,lowerCamelCase__ ,stride=lowerCamelCase__ ,groups=lowerCamelCase__ ,activation=config.hidden_act ) ,RegNetConvLayer(lowerCamelCase__ ,lowerCamelCase__ ,kernel_size=1 ,activation=lowerCamelCase__ ) ,) SCREAMING_SNAKE_CASE = ACTaFN[config.hidden_act] def SCREAMING_SNAKE_CASE__ ( self : Dict ,lowerCamelCase__ : Optional[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = hidden_state SCREAMING_SNAKE_CASE = self.layer(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.shortcut(lowerCamelCase__ ) hidden_state += residual SCREAMING_SNAKE_CASE = self.activation(lowerCamelCase__ ) return hidden_state class UpperCamelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : Dict ,lowerCamelCase__ : RegNetConfig ,lowerCamelCase__ : int ,lowerCamelCase__ : int ,lowerCamelCase__ : int = 1 ) -> Optional[int]: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE = in_channels != out_channels or stride != 1 SCREAMING_SNAKE_CASE = max(1 ,out_channels // config.groups_width ) SCREAMING_SNAKE_CASE = ( RegNetShortCut(lowerCamelCase__ ,lowerCamelCase__ ,stride=lowerCamelCase__ ) if should_apply_shortcut else nn.Identity() ) SCREAMING_SNAKE_CASE = nn.Sequential( RegNetConvLayer(lowerCamelCase__ ,lowerCamelCase__ ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(lowerCamelCase__ ,lowerCamelCase__ ,stride=lowerCamelCase__ ,groups=lowerCamelCase__ ,activation=config.hidden_act ) ,RegNetSELayer(lowerCamelCase__ ,reduced_channels=int(round(in_channels / 4 ) ) ) ,RegNetConvLayer(lowerCamelCase__ ,lowerCamelCase__ ,kernel_size=1 ,activation=lowerCamelCase__ ) ,) SCREAMING_SNAKE_CASE = ACTaFN[config.hidden_act] def SCREAMING_SNAKE_CASE__ ( self : Dict ,lowerCamelCase__ : Tuple ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = hidden_state SCREAMING_SNAKE_CASE = self.layer(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.shortcut(lowerCamelCase__ ) hidden_state += residual SCREAMING_SNAKE_CASE = self.activation(lowerCamelCase__ ) return hidden_state class UpperCamelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : int ,lowerCamelCase__ : RegNetConfig ,lowerCamelCase__ : int ,lowerCamelCase__ : int ,lowerCamelCase__ : int = 2 ,lowerCamelCase__ : int = 2 ,) -> Tuple: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE = RegNetXLayer if config.layer_type == """x""" else RegNetYLayer SCREAMING_SNAKE_CASE = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,stride=lowerCamelCase__ ,) ,*[layer(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) for _ in range(depth - 1 )] ,) def SCREAMING_SNAKE_CASE__ ( self : Dict ,lowerCamelCase__ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.layers(lowerCamelCase__ ) return hidden_state class UpperCamelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] ,lowerCamelCase__ : RegNetConfig ) -> str: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( lowerCamelCase__ ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,) ) SCREAMING_SNAKE_CASE = zip(config.hidden_sizes ,config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowerCamelCase__ ,config.depths[1:] ): self.stages.append(RegNetStage(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,depth=lowerCamelCase__ ) ) def SCREAMING_SNAKE_CASE__ ( self : int ,lowerCamelCase__ : Tensor ,lowerCamelCase__ : bool = False ,lowerCamelCase__ : bool = True ) -> BaseModelOutputWithNoAttention: '''simple docstring''' SCREAMING_SNAKE_CASE = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: SCREAMING_SNAKE_CASE = hidden_states + (hidden_state,) SCREAMING_SNAKE_CASE = stage_module(lowerCamelCase__ ) if output_hidden_states: SCREAMING_SNAKE_CASE = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=lowerCamelCase__ ,hidden_states=lowerCamelCase__ ) class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : List[Any] = RegNetConfig __snake_case : Union[str, Any] = "regnet" __snake_case : Optional[Any] = "pixel_values" __snake_case : List[Any] = True def SCREAMING_SNAKE_CASE__ ( self : List[str] ,lowerCamelCase__ : int ) -> Any: '''simple docstring''' if isinstance(lowerCamelCase__ ,nn.Convad ): nn.init.kaiming_normal_(module.weight ,mode="""fan_out""" ,nonlinearity="""relu""" ) elif isinstance(lowerCamelCase__ ,(nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight ,1 ) nn.init.constant_(module.bias ,0 ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : str=False ) -> str: '''simple docstring''' if isinstance(lowerCamelCase__ ,lowerCamelCase__ ): SCREAMING_SNAKE_CASE = value SCREAMING_SNAKE_CASE_ = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ SCREAMING_SNAKE_CASE_ = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , lowerCAmelCase_ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self : str ,lowerCamelCase__ : str ) -> Any: '''simple docstring''' super().__init__(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = config SCREAMING_SNAKE_CASE = RegNetEmbeddings(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = RegNetEncoder(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCamelCase__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=lowerCamelCase__ ,config_class=_CONFIG_FOR_DOC ,modality="""vision""" ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ,lowerCamelCase__ : Tensor ,lowerCamelCase__ : Optional[bool] = None ,lowerCamelCase__ : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: '''simple docstring''' SCREAMING_SNAKE_CASE = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE = self.embedder(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.encoder( lowerCamelCase__ ,output_hidden_states=lowerCamelCase__ ,return_dict=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = encoder_outputs[0] SCREAMING_SNAKE_CASE = self.pooler(lowerCamelCase__ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCamelCase__ ,pooler_output=lowerCamelCase__ ,hidden_states=encoder_outputs.hidden_states ,) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , lowerCAmelCase_ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self : Any ,lowerCamelCase__ : Optional[int] ) -> List[Any]: '''simple docstring''' super().__init__(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = config.num_labels SCREAMING_SNAKE_CASE = RegNetModel(lowerCamelCase__ ) # classification head SCREAMING_SNAKE_CASE = nn.Sequential( nn.Flatten() ,nn.Linear(config.hidden_sizes[-1] ,config.num_labels ) if config.num_labels > 0 else nn.Identity() ,) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCamelCase__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=lowerCamelCase__ ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def SCREAMING_SNAKE_CASE__ ( self : str ,lowerCamelCase__ : Optional[torch.FloatTensor] = None ,lowerCamelCase__ : Optional[torch.LongTensor] = None ,lowerCamelCase__ : Optional[bool] = None ,lowerCamelCase__ : Optional[bool] = None ,) -> ImageClassifierOutputWithNoAttention: '''simple docstring''' SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE = self.regnet(lowerCamelCase__ ,output_hidden_states=lowerCamelCase__ ,return_dict=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = outputs.pooler_output if return_dict else outputs[1] SCREAMING_SNAKE_CASE = self.classifier(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE = """single_label_classification""" else: SCREAMING_SNAKE_CASE = """multi_label_classification""" if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE = loss_fct(logits.squeeze() ,labels.squeeze() ) else: SCREAMING_SNAKE_CASE = loss_fct(lowerCamelCase__ ,lowerCamelCase__ ) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE = CrossEntropyLoss() SCREAMING_SNAKE_CASE = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE = loss_fct(lowerCamelCase__ ,lowerCamelCase__ ) if not return_dict: SCREAMING_SNAKE_CASE = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowerCamelCase__ ,logits=lowerCamelCase__ ,hidden_states=outputs.hidden_states )
193
1
def __UpperCAmelCase ( __a : int ,__a : list[int] ,__a : int ) -> int: """simple docstring""" def count_of_possible_combinations(__a : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(__a ) def __UpperCAmelCase ( __a : int ,__a : list[int] ,__a : int ) -> int: """simple docstring""" def count_of_possible_combinations_with_dp_array( __a : int ,__a : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] _a : Union[str, Any] = sum( count_of_possible_combinations_with_dp_array(target - item ,__a ) for item in array ) _a : Optional[int] = answer return answer _a : int = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(__a ,__a ) def __UpperCAmelCase ( __a : int ,__a : list[int] ,__a : int ) -> int: """simple docstring""" _a : str = [0] * (target + 1) _a : Optional[Any] = 1 for i in range(1 ,target + 1 ): for j in range(__a ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() a__ = 3 a__ = 5 a__ = [1, 2, 5] print(combination_sum_iv(n, array, target))
235
def __UpperCAmelCase ( __a : int ,__a : list[int] ,__a : int ) -> int: """simple docstring""" def count_of_possible_combinations(__a : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(__a ) def __UpperCAmelCase ( __a : int ,__a : list[int] ,__a : int ) -> int: """simple docstring""" def count_of_possible_combinations_with_dp_array( __a : int ,__a : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] _a : Union[str, Any] = sum( count_of_possible_combinations_with_dp_array(target - item ,__a ) for item in array ) _a : Optional[int] = answer return answer _a : int = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(__a ,__a ) def __UpperCAmelCase ( __a : int ,__a : list[int] ,__a : int ) -> int: """simple docstring""" _a : str = [0] * (target + 1) _a : Optional[Any] = 1 for i in range(1 ,target + 1 ): for j in range(__a ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() a__ = 3 a__ = 5 a__ = [1, 2, 5] print(combination_sum_iv(n, array, target))
235
1
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def A ( a_ ,a_ ) -> Optional[int]: if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer __UpperCamelCase : Dict =flax_key_tuple[:-1] + ('weight',) __UpperCamelCase : Dict =torch.permute(a_ ,(0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(a_ ): # linear layer __UpperCamelCase : str =flax_key_tuple[:-1] + ('weight',) __UpperCamelCase : Union[str, Any] =flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: __UpperCamelCase : Any =flax_key_tuple[:-1] + ('weight',) return flax_key_tuple, flax_tensor def A ( a_ ,a_ ,a_ ) -> Any: if "metadata" in layer: __UpperCamelCase : Any =layer.split('metadata' ) __UpperCamelCase : Optional[Any] =''.join(split_layer[0] )[:-1] __UpperCamelCase : Any =[tuple(('metadata' + split_layer[1]).split('/' ) )] elif "kvstore" in layer: __UpperCamelCase : Optional[int] =layer.split('kvstore' ) __UpperCamelCase : Any =''.join(split_layer[0] )[:-1] __UpperCamelCase : Union[str, Any] =[tuple(('kvstore' + split_layer[1]).split('/' ) )] else: __UpperCamelCase : int =layer.split('/' ) __UpperCamelCase : Any ='/'.join(split_layer[:-1] ) __UpperCamelCase : List[str] =(split_layer[-1],) if "kvstore/path" in layer: __UpperCamelCase : List[Any] =F'{switch_checkpoint_path}/{checkpoint_info[layer]}' elif "kvstore/driver" in layer: __UpperCamelCase : Optional[int] ='file' else: __UpperCamelCase : int =checkpoint_info[layer] return curr_real_layer_name, split_layer, content def A ( a_ ,a_ ) -> Optional[Any]: __UpperCamelCase : Optional[int] =rename_keys(a_ ) __UpperCamelCase : List[str] ={} for k, v in current_block.items(): __UpperCamelCase : Any =v __UpperCamelCase : Any =new_current_block torch.save(a_ ,a_ ) def A ( a_ ,a_ ,a_ ,a_ ,a_ = WEIGHTS_NAME ) -> Union[str, Any]: __UpperCamelCase : Optional[int] =convert_file_size_to_int(a_ ) __UpperCamelCase : Any =[] __UpperCamelCase : Tuple ={} __UpperCamelCase : str =0 __UpperCamelCase : int =0 os.makedirs(a_ ,exist_ok=a_ ) with gfile.GFile(switch_checkpoint_path + '/checkpoint' ,'rb' ) as fp: __UpperCamelCase : Tuple =serialization.msgpack_restore(fp.read() )['optimizer']['target'] __UpperCamelCase : List[Any] =flatten_dict(a_ ,sep='/' ) __UpperCamelCase : str ={} for layer in checkpoint_info.keys(): __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Union[str, Any] =get_key_and_tensorstore_dict( a_ ,a_ ,a_ ) if curr_real_layer_name in all_layers: __UpperCamelCase : Optional[Any] =content else: __UpperCamelCase : List[Any] ={split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file __UpperCamelCase : Any =ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() __UpperCamelCase : Any =torch.tensor(a_ ) __UpperCamelCase : Optional[int] =raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts __UpperCamelCase , __UpperCamelCase : List[str] =rename_base_flax_keys(tuple(key.split('/' ) ) ,a_ ) __UpperCamelCase : int ='/'.join(a_ ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: __UpperCamelCase : Any =os.path.join( a_ ,weights_name.replace('.bin' ,F'-{len(a_ )+1:05d}-of-???.bin' ) ) rename_and_save_block(a_ ,a_ ) sharded_state_dicts.append(current_block.keys() ) del current_block __UpperCamelCase : str ={} __UpperCamelCase : str =0 __UpperCamelCase : int =raw_weights.to(getattr(a_ ,a_ ) ) current_block_size += weight_size total_size += weight_size # Add the last block __UpperCamelCase : Any =os.path.join(a_ ,weights_name.replace('.bin' ,F'-{len(a_ )+1:05d}-of-???.bin' ) ) rename_and_save_block(a_ ,a_ ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(a_ ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index __UpperCamelCase : Union[str, Any] ={} __UpperCamelCase : Any ={} for idx, shard in enumerate(a_ ): __UpperCamelCase : Optional[Any] =weights_name.replace( '.bin' ,F'-{idx+1:05d}-of-{len(a_ ):05d}.bin' ) # len(sharded_state_dicts):05d} __UpperCamelCase : List[Any] =os.path.join(a_ ,weights_name.replace('.bin' ,F'-{idx+1:05d}-of-???.bin' ) ) os.rename(a_ ,os.path.join(a_ ,a_ ) ) __UpperCamelCase : Any =shard for key in shard: __UpperCamelCase : Union[str, Any] =shard_file # Add the metadata __UpperCamelCase : int ={'total_size': total_size} __UpperCamelCase : Any ={'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(a_ ,a_ ) ,'w' ,encoding='utf-8' ) as f: __UpperCamelCase : List[str] =json.dumps(a_ ,indent=2 ,sort_keys=a_ ) + '\n' f.write(a_ ) return metadata, index if __name__ == "__main__": A_ :Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default='''/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--max_shard_size''', default='''10GB''', required=False, help='''Max shard size''') parser.add_argument('''--dtype''', default='''bfloat16''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted''', type=str, required=False, help='''Path to the output pytorch model.''', ) A_ :Optional[Any] = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def A ( ) -> str: from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer __UpperCamelCase : Optional[int] =SwitchTransformersConfig.from_pretrained('google/switch-base-8' ) config.save_pretrained('/home/arthur_huggingface_co/transformers/switch_converted' ) __UpperCamelCase : int =SwitchTransformersForConditionalGeneration.from_pretrained( '/home/arthur_huggingface_co/transformers/switch_converted' ,device_map='auto' ) __UpperCamelCase : List[str] =TaTokenizer.from_pretrained('t5-small' ) __UpperCamelCase : Any ='A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.' __UpperCamelCase : Dict =tokenizer(a_ ,return_tensors='pt' ).input_ids __UpperCamelCase : Any =model.generate(a_ ,decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
245
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging A_ :Any = logging.get_logger(__name__) if is_vision_available(): import PIL class __A ( a ): """simple docstring""" UpperCamelCase__ : Optional[Any] =["""pixel_values"""] def __init__( self , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = PILImageResampling.BICUBIC , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = True , lowerCamelCase__ = 1 / 255 , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = True , **lowerCamelCase__ , ): """simple docstring""" super().__init__(**lowerCamelCase__ ) __UpperCamelCase : Optional[int] =size if size is not None else {'shortest_edge': 224} __UpperCamelCase : Dict =get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ ) __UpperCamelCase : Optional[int] =crop_size if crop_size is not None else {'height': 224, 'width': 224} __UpperCamelCase : List[str] =get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ , param_name='crop_size' ) __UpperCamelCase : Optional[Any] =do_resize __UpperCamelCase : Optional[int] =size __UpperCamelCase : List[Any] =resample __UpperCamelCase : Optional[int] =do_center_crop __UpperCamelCase : Optional[int] =crop_size __UpperCamelCase : str =do_rescale __UpperCamelCase : Any =rescale_factor __UpperCamelCase : Union[str, Any] =do_normalize __UpperCamelCase : Union[str, Any] =image_mean if image_mean is not None else OPENAI_CLIP_MEAN __UpperCamelCase : List[Any] =image_std if image_std is not None else OPENAI_CLIP_STD __UpperCamelCase : Any =do_convert_rgb def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = PILImageResampling.BICUBIC , lowerCamelCase__ = None , **lowerCamelCase__ , ): """simple docstring""" __UpperCamelCase : Optional[Any] =get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) __UpperCamelCase : Tuple =get_resize_output_image_size(lowerCamelCase__ , size=size['shortest_edge'] , default_to_square=lowerCamelCase__ ) return resize(lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , **lowerCamelCase__ , ): """simple docstring""" __UpperCamelCase : List[str] =get_size_dict(lowerCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(lowerCamelCase__ , size=(size['height'], size['width']) , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , **lowerCamelCase__ , ): """simple docstring""" return rescale(lowerCamelCase__ , scale=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , **lowerCamelCase__ , ): """simple docstring""" return normalize(lowerCamelCase__ , mean=lowerCamelCase__ , std=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = ChannelDimension.FIRST , **lowerCamelCase__ , ): """simple docstring""" __UpperCamelCase : int =do_resize if do_resize is not None else self.do_resize __UpperCamelCase : Dict =size if size is not None else self.size __UpperCamelCase : List[Any] =get_size_dict(lowerCamelCase__ , param_name='size' , default_to_square=lowerCamelCase__ ) __UpperCamelCase : Tuple =resample if resample is not None else self.resample __UpperCamelCase : Any =do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCamelCase : Tuple =crop_size if crop_size is not None else self.crop_size __UpperCamelCase : Any =get_size_dict(lowerCamelCase__ , param_name='crop_size' , default_to_square=lowerCamelCase__ ) __UpperCamelCase : List[Any] =do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase : Optional[Any] =rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCamelCase : Dict =do_normalize if do_normalize is not None else self.do_normalize __UpperCamelCase : Optional[Any] =image_mean if image_mean is not None else self.image_mean __UpperCamelCase : List[str] =image_std if image_std is not None else self.image_std __UpperCamelCase : Union[str, Any] =do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __UpperCamelCase : int =make_list_of_images(lowerCamelCase__ ) if not valid_images(lowerCamelCase__ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __UpperCamelCase : Union[str, Any] =[convert_to_rgb(lowerCamelCase__ ) for image in images] # All transformations expect numpy arrays. __UpperCamelCase : List[str] =[to_numpy_array(lowerCamelCase__ ) for image in images] if do_resize: __UpperCamelCase : str =[self.resize(image=lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ ) for image in images] if do_center_crop: __UpperCamelCase : Union[str, Any] =[self.center_crop(image=lowerCamelCase__ , size=lowerCamelCase__ ) for image in images] if do_rescale: __UpperCamelCase : Optional[Any] =[self.rescale(image=lowerCamelCase__ , scale=lowerCamelCase__ ) for image in images] if do_normalize: __UpperCamelCase : Optional[int] =[self.normalize(image=lowerCamelCase__ , mean=lowerCamelCase__ , std=lowerCamelCase__ ) for image in images] __UpperCamelCase : List[Any] =[to_channel_dimension_format(lowerCamelCase__ , lowerCamelCase__ ) for image in images] __UpperCamelCase : List[Any] ={'pixel_values': images} return BatchFeature(data=lowerCamelCase__ , tensor_type=lowerCamelCase__ )
245
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer lowerCAmelCase__ : List[Any] = logging.get_logger(__name__) lowerCAmelCase__ : List[str] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase__ : Any = { '''vocab_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt''' ), '''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt''', '''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-openqa''': ( '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-reader''': ( '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-openqa''': ( '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-reader''': ( '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase__ : Any = { '''google/realm-cc-news-pretrained-embedder''': 5_12, '''google/realm-cc-news-pretrained-encoder''': 5_12, '''google/realm-cc-news-pretrained-scorer''': 5_12, '''google/realm-cc-news-pretrained-openqa''': 5_12, '''google/realm-orqa-nq-openqa''': 5_12, '''google/realm-orqa-nq-reader''': 5_12, '''google/realm-orqa-wq-openqa''': 5_12, '''google/realm-orqa-wq-reader''': 5_12, } lowerCAmelCase__ : List[str] = { '''google/realm-cc-news-pretrained-embedder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-encoder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-scorer''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-reader''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-reader''': {'''do_lower_case''': True}, } class __snake_case ( _lowerCamelCase ): __lowerCamelCase = VOCAB_FILES_NAMES __lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase = PRETRAINED_INIT_CONFIGURATION __lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase = RealmTokenizer def __init__( self , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=True , __UpperCamelCase="[UNK]" , __UpperCamelCase="[SEP]" , __UpperCamelCase="[PAD]" , __UpperCamelCase="[CLS]" , __UpperCamelCase="[MASK]" , __UpperCamelCase=True , __UpperCamelCase=None , **__UpperCamelCase , ) -> Optional[Any]: '''simple docstring''' super().__init__( __UpperCamelCase , tokenizer_file=__UpperCamelCase , do_lower_case=__UpperCamelCase , unk_token=__UpperCamelCase , sep_token=__UpperCamelCase , pad_token=__UpperCamelCase , cls_token=__UpperCamelCase , mask_token=__UpperCamelCase , tokenize_chinese_chars=__UpperCamelCase , strip_accents=__UpperCamelCase , **__UpperCamelCase , ) snake_case__ : Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , __UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , __UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , __UpperCamelCase ) != tokenize_chinese_chars ): snake_case__ : Optional[Any] = getattr(__UpperCamelCase , normalizer_state.pop('type' ) ) snake_case__ : Union[str, Any] = do_lower_case snake_case__ : Union[str, Any] = strip_accents snake_case__ : Dict = tokenize_chinese_chars snake_case__ : List[str] = normalizer_class(**__UpperCamelCase ) snake_case__ : str = do_lower_case def __a ( self , __UpperCamelCase , **__UpperCamelCase ) -> Optional[int]: '''simple docstring''' snake_case__ : Any = PaddingStrategy.MAX_LENGTH snake_case__ : int = text snake_case__ : List[str] = kwargs.pop('text_pair' , __UpperCamelCase ) snake_case__ : Tuple = kwargs.pop('return_tensors' , __UpperCamelCase ) snake_case__ : Dict = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(__UpperCamelCase ): if batch_text_pair is not None: snake_case__ : str = batch_text_pair[idx] else: snake_case__ : Union[str, Any] = None snake_case__ : Optional[Any] = super().__call__(__UpperCamelCase , __UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase ) snake_case__ : List[Any] = encoded_candidates.get('input_ids' ) snake_case__ : Any = encoded_candidates.get('attention_mask' ) snake_case__ : Optional[Any] = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(__UpperCamelCase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(__UpperCamelCase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(__UpperCamelCase ) snake_case__ : List[str] = {key: item for key, item in output_data.items() if len(__UpperCamelCase ) != 0} return BatchEncoding(__UpperCamelCase , tensor_type=__UpperCamelCase ) def __a ( self , __UpperCamelCase , __UpperCamelCase=None ) -> str: '''simple docstring''' snake_case__ : Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __a ( self , __UpperCamelCase , __UpperCamelCase = None ) -> List[int]: '''simple docstring''' snake_case__ : Tuple = [self.sep_token_id] snake_case__ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self , __UpperCamelCase , __UpperCamelCase = None ) -> Tuple[str]: '''simple docstring''' snake_case__ : Optional[int] = self._tokenizer.model.save(__UpperCamelCase , name=__UpperCamelCase ) return tuple(__UpperCamelCase )
143
import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin lowerCAmelCase__ : Dict = logging.get_logger(__name__) enable_full_determinism() class __snake_case ( _lowerCamelCase ,_lowerCamelCase ,unittest.TestCase ): __lowerCamelCase = UNetaDModel __lowerCamelCase = """sample""" @property def __a ( self ) -> Any: '''simple docstring''' snake_case__ : Optional[Any] = 4 snake_case__ : List[Any] = 3 snake_case__ : int = (32, 32) snake_case__ : List[str] = floats_tensor((batch_size, num_channels) + sizes ).to(__UpperCamelCase ) snake_case__ : str = torch.tensor([10] ).to(__UpperCamelCase ) return {"sample": noise, "timestep": time_step} @property def __a ( self ) -> Optional[int]: '''simple docstring''' return (3, 32, 32) @property def __a ( self ) -> Optional[int]: '''simple docstring''' return (3, 32, 32) def __a ( self ) -> Any: '''simple docstring''' snake_case__ : Union[str, Any] = { 'block_out_channels': (32, 64), 'down_block_types': ('DownBlock2D', 'AttnDownBlock2D'), 'up_block_types': ('AttnUpBlock2D', 'UpBlock2D'), 'attention_head_dim': 3, 'out_channels': 3, 'in_channels': 3, 'layers_per_block': 2, 'sample_size': 32, } snake_case__ : List[Any] = self.dummy_input return init_dict, inputs_dict class __snake_case ( _lowerCamelCase ,_lowerCamelCase ,unittest.TestCase ): __lowerCamelCase = UNetaDModel __lowerCamelCase = """sample""" @property def __a ( self ) -> Tuple: '''simple docstring''' snake_case__ : List[Any] = 4 snake_case__ : List[Any] = 4 snake_case__ : List[str] = (32, 32) snake_case__ : str = floats_tensor((batch_size, num_channels) + sizes ).to(__UpperCamelCase ) snake_case__ : int = torch.tensor([10] ).to(__UpperCamelCase ) return {"sample": noise, "timestep": time_step} @property def __a ( self ) -> int: '''simple docstring''' return (4, 32, 32) @property def __a ( self ) -> str: '''simple docstring''' return (4, 32, 32) def __a ( self ) -> Dict: '''simple docstring''' snake_case__ : Union[str, Any] = { 'sample_size': 32, 'in_channels': 4, 'out_channels': 4, 'layers_per_block': 2, 'block_out_channels': (32, 64), 'attention_head_dim': 32, 'down_block_types': ('DownBlock2D', 'DownBlock2D'), 'up_block_types': ('UpBlock2D', 'UpBlock2D'), } snake_case__ : List[Any] = self.dummy_input return init_dict, inputs_dict def __a ( self ) -> str: '''simple docstring''' snake_case__ , snake_case__ : Optional[int] = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(__UpperCamelCase ) snake_case__ : List[Any] = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != 'cuda' , 'This test is supposed to run on GPU' ) def __a ( self ) -> List[str]: '''simple docstring''' snake_case__ , snake_case__ : List[str] = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=__UpperCamelCase ) model.to(__UpperCamelCase ) snake_case__ : Union[str, Any] = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != 'cuda' , 'This test is supposed to run on GPU' ) def __a ( self ) -> str: '''simple docstring''' snake_case__ , snake_case__ : List[str] = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=__UpperCamelCase ) model_accelerate.to(__UpperCamelCase ) model_accelerate.eval() snake_case__ : Tuple = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) snake_case__ : Union[str, Any] = noise.to(__UpperCamelCase ) snake_case__ : List[str] = torch.tensor([10] * noise.shape[0] ).to(__UpperCamelCase ) snake_case__ : str = model_accelerate(__UpperCamelCase , __UpperCamelCase )['sample'] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() snake_case__ , snake_case__ : Union[str, Any] = UNetaDModel.from_pretrained( 'fusing/unet-ldm-dummy-update' , output_loading_info=__UpperCamelCase , low_cpu_mem_usage=__UpperCamelCase ) model_normal_load.to(__UpperCamelCase ) model_normal_load.eval() snake_case__ : List[str] = model_normal_load(__UpperCamelCase , __UpperCamelCase )['sample'] assert torch_all_close(__UpperCamelCase , __UpperCamelCase , rtol=1E-3 ) def __a ( self ) -> Optional[Any]: '''simple docstring''' snake_case__ : List[Any] = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' ) model.eval() model.to(__UpperCamelCase ) snake_case__ : Any = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) snake_case__ : List[Any] = noise.to(__UpperCamelCase ) snake_case__ : List[str] = torch.tensor([10] * noise.shape[0] ).to(__UpperCamelCase ) with torch.no_grad(): snake_case__ : List[str] = model(__UpperCamelCase , __UpperCamelCase ).sample snake_case__ : Tuple = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off snake_case__ : int = torch.tensor([-1_3.3_2_5_8, -2_0.1_1_0_0, -1_5.9_8_7_3, -1_7.6_6_1_7, -2_3.0_5_9_6, -1_7.9_4_1_9, -1_3.3_6_7_5, -1_6.1_8_8_9, -1_2.3_8_0_0] ) # fmt: on self.assertTrue(torch_all_close(__UpperCamelCase , __UpperCamelCase , rtol=1E-3 ) ) class __snake_case ( _lowerCamelCase ,_lowerCamelCase ,unittest.TestCase ): __lowerCamelCase = UNetaDModel __lowerCamelCase = """sample""" @property def __a ( self , __UpperCamelCase=(32, 32) ) -> Optional[Any]: '''simple docstring''' snake_case__ : Dict = 4 snake_case__ : Dict = 3 snake_case__ : str = floats_tensor((batch_size, num_channels) + sizes ).to(__UpperCamelCase ) snake_case__ : List[str] = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=__UpperCamelCase ) return {"sample": noise, "timestep": time_step} @property def __a ( self ) -> Optional[int]: '''simple docstring''' return (3, 32, 32) @property def __a ( self ) -> int: '''simple docstring''' return (3, 32, 32) def __a ( self ) -> List[str]: '''simple docstring''' snake_case__ : Optional[Any] = { 'block_out_channels': [32, 64, 64, 64], 'in_channels': 3, 'layers_per_block': 1, 'out_channels': 3, 'time_embedding_type': 'fourier', 'norm_eps': 1E-6, 'mid_block_scale_factor': math.sqrt(2.0 ), 'norm_num_groups': None, 'down_block_types': [ 'SkipDownBlock2D', 'AttnSkipDownBlock2D', 'SkipDownBlock2D', 'SkipDownBlock2D', ], 'up_block_types': [ 'SkipUpBlock2D', 'SkipUpBlock2D', 'AttnSkipUpBlock2D', 'SkipUpBlock2D', ], } snake_case__ : str = self.dummy_input return init_dict, inputs_dict @slow def __a ( self ) -> Optional[Any]: '''simple docstring''' snake_case__ , snake_case__ : str = UNetaDModel.from_pretrained('google/ncsnpp-celebahq-256' , output_loading_info=__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(__UpperCamelCase ) snake_case__ : Dict = self.dummy_input snake_case__ : Union[str, Any] = floats_tensor((4, 3) + (256, 256) ).to(__UpperCamelCase ) snake_case__ : List[Any] = noise snake_case__ : Any = model(**__UpperCamelCase ) assert image is not None, "Make sure output is not None" @slow def __a ( self ) -> Dict: '''simple docstring''' snake_case__ : str = UNetaDModel.from_pretrained('google/ncsnpp-celebahq-256' ) model.to(__UpperCamelCase ) snake_case__ : Optional[Any] = 4 snake_case__ : str = 3 snake_case__ : List[Any] = (256, 256) snake_case__ : Dict = torch.ones((batch_size, num_channels) + sizes ).to(__UpperCamelCase ) snake_case__ : int = torch.tensor(batch_size * [1E-4] ).to(__UpperCamelCase ) with torch.no_grad(): snake_case__ : str = model(__UpperCamelCase , __UpperCamelCase ).sample snake_case__ : Optional[int] = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off snake_case__ : Optional[int] = torch.tensor([-4_8_4_2.8_6_9_1, -6_4_9_9.6_6_3_1, -3_8_0_0.1_9_5_3, -7_9_7_8.2_6_8_6, -1_0_9_8_0.7_1_2_9, -2_0_0_2_8.8_5_3_5, 8_1_4_8.2_8_2_2, 2_3_4_2.2_9_0_5, 5_6_7.7_6_0_8] ) # fmt: on self.assertTrue(torch_all_close(__UpperCamelCase , __UpperCamelCase , rtol=1E-2 ) ) def __a ( self ) -> List[Any]: '''simple docstring''' snake_case__ : Dict = UNetaDModel.from_pretrained('fusing/ncsnpp-ffhq-ve-dummy-update' ) model.to(__UpperCamelCase ) snake_case__ : Dict = 4 snake_case__ : List[str] = 3 snake_case__ : Union[str, Any] = (32, 32) snake_case__ : Optional[int] = torch.ones((batch_size, num_channels) + sizes ).to(__UpperCamelCase ) snake_case__ : int = torch.tensor(batch_size * [1E-4] ).to(__UpperCamelCase ) with torch.no_grad(): snake_case__ : Tuple = model(__UpperCamelCase , __UpperCamelCase ).sample snake_case__ : List[str] = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off snake_case__ : Optional[int] = torch.tensor([-0.0_3_2_5, -0.0_9_0_0, -0.0_8_6_9, -0.0_3_3_2, -0.0_7_2_5, -0.0_2_7_0, -0.0_1_0_1, 0.0_2_2_7, 0.0_2_5_6] ) # fmt: on self.assertTrue(torch_all_close(__UpperCamelCase , __UpperCamelCase , rtol=1E-2 ) ) def __a ( self ) -> Tuple: '''simple docstring''' pass
143
1
import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def a__ ( A__, A__, A__ ): # Initialise PyTorch model SCREAMING_SNAKE_CASE_ : int = LxmertConfig.from_json_file(A__ ) print(F'''Building PyTorch model from configuration: {config}''' ) SCREAMING_SNAKE_CASE_ : Any = LxmertForPreTraining(A__ ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(A__, A__, A__ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict(), A__ ) if __name__ == "__main__": lowerCAmelCase__ : str =argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCAmelCase__ : Dict =parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
361
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def a__ ( A__ ): if is_torch_version('<', '2.0.0' ) or not hasattr(A__, '_dynamo' ): return False return isinstance(A__, torch._dynamo.eval_frame.OptimizedModule ) def a__ ( A__, A__ = True ): SCREAMING_SNAKE_CASE_ : Optional[Any] = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) SCREAMING_SNAKE_CASE_ : List[str] = is_compiled_module(A__ ) if is_compiled: SCREAMING_SNAKE_CASE_ : List[Any] = model SCREAMING_SNAKE_CASE_ : Dict = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(A__, A__ ): SCREAMING_SNAKE_CASE_ : int = model.module if not keep_fpaa_wrapper: SCREAMING_SNAKE_CASE_ : str = getattr(A__, 'forward' ) SCREAMING_SNAKE_CASE_ : Any = model.__dict__.pop('_original_forward', A__ ) if original_forward is not None: while hasattr(A__, '__wrapped__' ): SCREAMING_SNAKE_CASE_ : Optional[int] = forward.__wrapped__ if forward == original_forward: break SCREAMING_SNAKE_CASE_ : Any = forward if getattr(A__, '_converted_to_transformer_engine', A__ ): convert_model(A__, to_transformer_engine=A__ ) if is_compiled: SCREAMING_SNAKE_CASE_ : List[str] = model SCREAMING_SNAKE_CASE_ : Dict = compiled_model return model def a__ ( ): PartialState().wait_for_everyone() def a__ ( A__, A__ ): if PartialState().distributed_type == DistributedType.TPU: xm.save(A__, A__ ) elif PartialState().local_process_index == 0: torch.save(A__, A__ ) @contextmanager def a__ ( **A__ ): for key, value in kwargs.items(): SCREAMING_SNAKE_CASE_ : List[Any] = str(A__ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def a__ ( A__ ): if not hasattr(A__, '__qualname__' ) and not hasattr(A__, '__name__' ): SCREAMING_SNAKE_CASE_ : Optional[int] = getattr(A__, '__class__', A__ ) if hasattr(A__, '__qualname__' ): return obj.__qualname__ if hasattr(A__, '__name__' ): return obj.__name__ return str(A__ ) def a__ ( A__, A__ ): for key, value in source.items(): if isinstance(A__, A__ ): SCREAMING_SNAKE_CASE_ : Dict = destination.setdefault(A__, {} ) merge_dicts(A__, A__ ) else: SCREAMING_SNAKE_CASE_ : Tuple = value return destination def a__ ( A__ = None ): if port is None: SCREAMING_SNAKE_CASE_ : Tuple = 2_9_5_0_0 with socket.socket(socket.AF_INET, socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
162
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class lowercase : _SCREAMING_SNAKE_CASE = LEDConfig _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = 'gelu' def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=False , lowercase=99 , lowercase=32 , lowercase=2 , lowercase=4 , lowercase=37 , lowercase=0.1 , lowercase=0.1 , lowercase=20 , lowercase=2 , lowercase=1 , lowercase=0 , lowercase=4 , ) -> int: lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = eos_token_id lowerCAmelCase = pad_token_id lowerCAmelCase = bos_token_id lowerCAmelCase = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after lowerCAmelCase = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests lowerCAmelCase = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def _snake_case ( self ) -> Optional[int]: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowerCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowerCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) lowerCAmelCase = prepare_led_inputs_dict(lowercase , lowercase , lowercase ) lowerCAmelCase = tf.concat( [tf.zeros_like(lowercase )[:, :-1], tf.ones_like(lowercase )[:, -1:]] , axis=-1 , ) lowerCAmelCase = global_attention_mask return config, inputs_dict def _snake_case ( self , lowercase , lowercase ) -> List[Any]: lowerCAmelCase = TFLEDModel(config=lowercase ).get_decoder() lowerCAmelCase = inputs_dict["""input_ids"""] lowerCAmelCase = input_ids[:1, :] lowerCAmelCase = inputs_dict["""attention_mask"""][:1, :] lowerCAmelCase = 1 # first forward pass lowerCAmelCase = model(lowercase , attention_mask=lowercase , use_cache=lowercase ) lowerCAmelCase , lowerCAmelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowerCAmelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) lowerCAmelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowerCAmelCase = model(lowercase , attention_mask=lowercase )[0] lowerCAmelCase = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowerCAmelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx] lowerCAmelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase , lowercase , rtol=1e-3 ) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : List[Any]=None , SCREAMING_SNAKE_CASE : Optional[int]=None , SCREAMING_SNAKE_CASE : Optional[int]=None , SCREAMING_SNAKE_CASE : Optional[int]=None , ): '''simple docstring''' if attention_mask is None: lowerCAmelCase = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: lowerCAmelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: lowerCAmelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class lowercase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): _SCREAMING_SNAKE_CASE = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () _SCREAMING_SNAKE_CASE = (TFLEDForConditionalGeneration,) if is_tf_available() else () _SCREAMING_SNAKE_CASE = ( { 'conversational': TFLEDForConditionalGeneration, 'feature-extraction': TFLEDModel, 'summarization': TFLEDForConditionalGeneration, 'text2text-generation': TFLEDForConditionalGeneration, 'translation': TFLEDForConditionalGeneration, } if is_tf_available() else {} ) _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase = TFLEDModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=lowercase ) def _snake_case ( self ) -> Any: self.config_tester.run_common_tests() def _snake_case ( self ) -> List[str]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = tf.zeros_like(inputs_dict["""attention_mask"""] ) lowerCAmelCase = 2 lowerCAmelCase = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["""global_attention_mask"""] , ) lowerCAmelCase = True lowerCAmelCase = self.model_tester.seq_length lowerCAmelCase = self.model_tester.encoder_seq_length def check_decoder_attentions_output(lowercase ): lowerCAmelCase = outputs.decoder_attentions self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(lowercase ): lowerCAmelCase = [t.numpy() for t in outputs.encoder_attentions] lowerCAmelCase = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: lowerCAmelCase = True lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = model_class(lowercase ) lowerCAmelCase = model(self._prepare_for_class(lowercase , lowercase ) ) lowerCAmelCase = len(lowercase ) self.assertEqual(config.output_hidden_states , lowercase ) check_encoder_attentions_output(lowercase ) if self.is_encoder_decoder: lowerCAmelCase = model_class(lowercase ) lowerCAmelCase = model(self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(config.output_hidden_states , lowercase ) check_decoder_attentions_output(lowercase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] lowerCAmelCase = True lowerCAmelCase = model_class(lowercase ) lowerCAmelCase = model(self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(config.output_hidden_states , lowercase ) check_encoder_attentions_output(lowercase ) # Check attention is always last and order is fine lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = model_class(lowercase ) lowerCAmelCase = model(self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowercase ) ) self.assertEqual(model.config.output_hidden_states , lowercase ) check_encoder_attentions_output(lowercase ) @unittest.skip("""LED keeps using potentially symbolic tensors in conditionals and breaks tracing.""" ) def _snake_case ( self ) -> Union[str, Any]: pass def _snake_case ( self ) -> List[str]: # TODO: Head-masking not yet implement pass def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' return tf.constant(SCREAMING_SNAKE_CASE , dtype=tf.intaa ) SCREAMING_SNAKE_CASE__ = 1e-4 @slow @require_tf class lowercase ( unittest.TestCase ): def _snake_case ( self ) -> int: lowerCAmelCase = TFLEDForConditionalGeneration.from_pretrained("""allenai/led-base-16384""" ).led # change to intended input here lowerCAmelCase = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) lowerCAmelCase = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) lowerCAmelCase = prepare_led_inputs_dict(model.config , lowercase , lowercase ) lowerCAmelCase = model(**lowercase )[0] lowerCAmelCase = (1, 1_024, 768) self.assertEqual(output.shape , lowercase ) # change to expected output here lowerCAmelCase = tf.convert_to_tensor( [[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1e-3 ) def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase = TFLEDForConditionalGeneration.from_pretrained("""allenai/led-base-16384""" ) # change to intended input here lowerCAmelCase = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) lowerCAmelCase = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) lowerCAmelCase = prepare_led_inputs_dict(model.config , lowercase , lowercase ) lowerCAmelCase = model(**lowercase )[0] lowerCAmelCase = (1, 1_024, model.config.vocab_size) self.assertEqual(output.shape , lowercase ) # change to expected output here lowerCAmelCase = tf.convert_to_tensor( [[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1e-3 , rtol=1e-3 )
46
'''simple docstring''' import torch from torch import nn class _snake_case ( nn.Module ): def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=1 , _lowerCamelCase=False): super().__init__() UpperCAmelCase__ : List[Any] = n_token UpperCAmelCase__ : Tuple = d_embed UpperCAmelCase__ : str = d_proj UpperCAmelCase__ : str = cutoffs + [n_token] UpperCAmelCase__ : List[Any] = [0] + self.cutoffs UpperCAmelCase__ : Optional[Any] = div_val UpperCAmelCase__ : Optional[int] = self.cutoffs[0] UpperCAmelCase__ : Optional[int] = len(self.cutoffs) - 1 UpperCAmelCase__ : Union[str, Any] = self.shortlist_size + self.n_clusters if self.n_clusters > 0: UpperCAmelCase__ : int = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed)) UpperCAmelCase__ : Optional[Any] = nn.Parameter(torch.zeros(self.n_clusters)) UpperCAmelCase__ : int = nn.ModuleList() UpperCAmelCase__ : List[Any] = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs)): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(_lowerCamelCase , _lowerCamelCase))) else: self.out_projs.append(_lowerCamelCase) self.out_layers.append(nn.Linear(_lowerCamelCase , _lowerCamelCase)) else: for i in range(len(self.cutoffs)): UpperCAmelCase__ , UpperCAmelCase__ : List[str] = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCAmelCase__ : Union[str, Any] = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(_lowerCamelCase , _lowerCamelCase))) self.out_layers.append(nn.Linear(_lowerCamelCase , r_idx - l_idx)) UpperCAmelCase__ : Optional[int] = keep_order def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): if proj is None: UpperCAmelCase__ : Dict = nn.functional.linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: UpperCAmelCase__ : Optional[int] = nn.functional.linear(_lowerCamelCase , proj.t().contiguous()) UpperCAmelCase__ : List[str] = nn.functional.linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=False): if labels is not None: # Shift so that tokens < n predict n UpperCAmelCase__ : Optional[int] = hidden[..., :-1, :].contiguous() UpperCAmelCase__ : int = labels[..., 1:].contiguous() UpperCAmelCase__ : List[str] = hidden.view(-1 , hidden.size(-1)) UpperCAmelCase__ : Optional[int] = labels.view(-1) if hidden.size(0) != labels.size(0): raise RuntimeError("""Input and labels should have the same size in the batch dimension.""") else: UpperCAmelCase__ : Optional[int] = hidden.view(-1 , hidden.size(-1)) if self.n_clusters == 0: UpperCAmelCase__ : Tuple = self._compute_logit(_lowerCamelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) if labels is not None: UpperCAmelCase__ : Dict = labels != -100 UpperCAmelCase__ : Tuple = torch.zeros_like(_lowerCamelCase , dtype=hidden.dtype , device=hidden.device) UpperCAmelCase__ : List[Any] = ( -nn.functional.log_softmax(_lowerCamelCase , dim=-1)[mask].gather(1 , labels[mask].unsqueeze(1)).squeeze(1) ) else: UpperCAmelCase__ : List[str] = nn.functional.log_softmax(_lowerCamelCase , dim=-1) else: # construct weights and biases UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: UpperCAmelCase__ , UpperCAmelCase__ : int = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCAmelCase__ : Dict = self.out_layers[0].weight[l_idx:r_idx] UpperCAmelCase__ : Any = self.out_layers[0].bias[l_idx:r_idx] else: UpperCAmelCase__ : Union[str, Any] = self.out_layers[i].weight UpperCAmelCase__ : Any = self.out_layers[i].bias if i == 0: UpperCAmelCase__ : Optional[Any] = torch.cat([weight_i, self.cluster_weight] , dim=0) UpperCAmelCase__ : List[Any] = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(_lowerCamelCase) biases.append(_lowerCamelCase) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = weights[0], biases[0], self.out_projs[0] UpperCAmelCase__ : Optional[int] = self._compute_logit(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) UpperCAmelCase__ : Union[str, Any] = nn.functional.log_softmax(_lowerCamelCase , dim=1) if labels is None: UpperCAmelCase__ : str = hidden.new_empty((head_logit.size(0), self.n_token)) else: UpperCAmelCase__ : Optional[Any] = torch.zeros_like(_lowerCamelCase , dtype=hidden.dtype , device=hidden.device) UpperCAmelCase__ : Optional[int] = 0 UpperCAmelCase__ : List[str] = [0] + self.cutoffs for i in range(len(_lowerCamelCase) - 1): UpperCAmelCase__ , UpperCAmelCase__ : Dict = cutoff_values[i], cutoff_values[i + 1] if labels is not None: UpperCAmelCase__ : List[str] = (labels >= l_idx) & (labels < r_idx) UpperCAmelCase__ : str = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue UpperCAmelCase__ : List[Any] = labels.index_select(0 , _lowerCamelCase) - l_idx UpperCAmelCase__ : List[str] = head_logprob.index_select(0 , _lowerCamelCase) UpperCAmelCase__ : Optional[Any] = hidden.index_select(0 , _lowerCamelCase) else: UpperCAmelCase__ : Any = hidden if i == 0: if labels is not None: UpperCAmelCase__ : List[Any] = head_logprob_i.gather(1 , target_i[:, None]).squeeze(1) else: UpperCAmelCase__ : Tuple = head_logprob[:, : self.cutoffs[0]] else: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = weights[i], biases[i], self.out_projs[i] UpperCAmelCase__ : int = self._compute_logit(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) UpperCAmelCase__ : str = nn.functional.log_softmax(_lowerCamelCase , dim=1) UpperCAmelCase__ : int = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: UpperCAmelCase__ : Dict = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None]).squeeze(1) else: UpperCAmelCase__ : List[str] = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i UpperCAmelCase__ : Tuple = logprob_i if labels is not None: if (hasattr(self , """keep_order""") and self.keep_order) or keep_order: out.index_copy_(0 , _lowerCamelCase , -logprob_i) else: out[offset : offset + logprob_i.size(0)].copy_(-logprob_i) offset += logprob_i.size(0) return out def snake_case__ ( self , _lowerCamelCase): if self.n_clusters == 0: UpperCAmelCase__ : Union[str, Any] = self._compute_logit(_lowerCamelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) return nn.functional.log_softmax(_lowerCamelCase , dim=-1) else: # construct weights and biases UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: UpperCAmelCase__ , UpperCAmelCase__ : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCAmelCase__ : Union[str, Any] = self.out_layers[0].weight[l_idx:r_idx] UpperCAmelCase__ : Any = self.out_layers[0].bias[l_idx:r_idx] else: UpperCAmelCase__ : int = self.out_layers[i].weight UpperCAmelCase__ : List[str] = self.out_layers[i].bias if i == 0: UpperCAmelCase__ : List[Any] = torch.cat([weight_i, self.cluster_weight] , dim=0) UpperCAmelCase__ : Optional[int] = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(_lowerCamelCase) biases.append(_lowerCamelCase) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = weights[0], biases[0], self.out_projs[0] UpperCAmelCase__ : List[Any] = self._compute_logit(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) UpperCAmelCase__ : List[Any] = hidden.new_empty((head_logit.size(0), self.n_token)) UpperCAmelCase__ : int = nn.functional.log_softmax(_lowerCamelCase , dim=1) UpperCAmelCase__ : str = [0] + self.cutoffs for i in range(len(_lowerCamelCase) - 1): UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = cutoff_values[i], cutoff_values[i + 1] if i == 0: UpperCAmelCase__ : List[Any] = head_logprob[:, : self.cutoffs[0]] else: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = weights[i], biases[i], self.out_projs[i] UpperCAmelCase__ : Union[str, Any] = self._compute_logit(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) UpperCAmelCase__ : List[str] = nn.functional.log_softmax(_lowerCamelCase , dim=1) UpperCAmelCase__ : Union[str, Any] = head_logprob[:, -i] + tail_logprob_i UpperCAmelCase__ : Dict = logprob_i return out
163
0
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCamelCase_ ( a_ ): @staticmethod @abstractmethod def UpperCamelCase_ ( snake_case__ ) -> List[str]: """simple docstring""" raise NotImplementedError() @abstractmethod def UpperCamelCase_ ( self ) -> Any: """simple docstring""" raise NotImplementedError()
359
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=a_ ) class UpperCamelCase_ ( a_ ): _A : str = field(default='image-classification' , metadata={'include_in_asdict_even_if_is_default': True} ) _A : ClassVar[Features] = Features({'image': Image()} ) _A : ClassVar[Features] = Features({'labels': ClassLabel} ) _A : str = "image" _A : str = "labels" def UpperCamelCase_ ( self , snake_case__ ) -> List[str]: """simple docstring""" if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , snake_case__ ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) UpperCAmelCase = copy.deepcopy(self ) UpperCAmelCase = self.label_schema.copy() UpperCAmelCase = features[self.label_column] UpperCAmelCase = label_schema return task_template @property def UpperCamelCase_ ( self ) -> Dict[str, str]: """simple docstring""" return { self.image_column: "image", self.label_column: "labels", }
248
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: A : List[Any] = None A : List[Any] = logging.get_logger(__name__) A : Optional[Any] = '▁' A : Tuple = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} A : List[Any] = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'}, 'tokenizer_file': { 'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json' }, } A : Optional[Any] = { 'google/pegasus-xsum': 5_12, } class lowerCamelCase (UpperCamelCase__ ): """simple docstring""" lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = PegasusTokenizer lowerCamelCase__ = ['''input_ids''', '''attention_mask'''] def __init__( self : str , __magic_name__ : List[Any]=None , __magic_name__ : Dict=None , __magic_name__ : Optional[Any]="<pad>" , __magic_name__ : Optional[Any]="</s>" , __magic_name__ : str="<unk>" , __magic_name__ : List[Any]="<mask_2>" , __magic_name__ : str="<mask_1>" , __magic_name__ : Any=None , __magic_name__ : Optional[Any]=103 , **__magic_name__ : Dict , ) -> Dict: SCREAMING_SNAKE_CASE_ = offset if additional_special_tokens is not None: if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError( F'''additional_special_tokens should be of type {type(__lowerCamelCase )}, but is''' F''' {type(__lowerCamelCase )}''' ) SCREAMING_SNAKE_CASE_ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F'''<unk_{i}>''' for i in range(len(__lowerCamelCase ) , self.offset - 1 ) ] if len(set(__lowerCamelCase ) ) != len(__lowerCamelCase ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" F''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) SCREAMING_SNAKE_CASE_ = additional_special_tokens_extended else: SCREAMING_SNAKE_CASE_ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F'''<unk_{i}>''' for i in range(2 , self.offset )] super().__init__( __lowerCamelCase , tokenizer_file=__lowerCamelCase , pad_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , mask_token=__lowerCamelCase , mask_token_sent=__lowerCamelCase , offset=__lowerCamelCase , additional_special_tokens=__lowerCamelCase , **__lowerCamelCase , ) SCREAMING_SNAKE_CASE_ = vocab_file SCREAMING_SNAKE_CASE_ = False if not self.vocab_file else True def __A ( self : Optional[Any] , __magic_name__ : Union[str, Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( "There should be 3 special tokens: mask_token, pad_token, and eos_token +" F''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' ) return [1 if x in all_special_ids else 0 for x in seq] def __A ( self : Any , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] = None , __magic_name__ : Dict = False ) -> Any: if already_has_special_tokens: return self._special_token_mask(__lowerCamelCase ) elif token_ids_a is None: return self._special_token_mask(__lowerCamelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def __A ( self : List[Any] , __magic_name__ : Tuple , __magic_name__ : Optional[int]=None ) -> Tuple: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def __A ( self : Union[str, Any] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] = None ) -> str: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(__lowerCamelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE_ = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ): copyfile(self.vocab_file , __lowerCamelCase ) return (out_vocab_file,)
118
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def UpperCamelCase__( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple=0.999 , UpperCamelCase__ : Any="cosine" , )->List[str]: if alpha_transform_type == "cosine": def alpha_bar_fn(UpperCamelCase__ : Optional[int] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(UpperCamelCase__ : str ): return math.exp(t * -12.0 ) else: raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}" ) A__ = [] for i in range(UpperCamelCase__ ): A__ = i / num_diffusion_timesteps A__ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(UpperCamelCase__ ) / alpha_bar_fn(UpperCamelCase__ ) , UpperCamelCase__ ) ) return torch.tensor(UpperCamelCase__ , dtype=torch.floataa ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ , UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = [e.name for e in KarrasDiffusionSchedulers] __SCREAMING_SNAKE_CASE = 2 @register_to_config def __init__( self,__lowerCamelCase = 1000,__lowerCamelCase = 0.00085,__lowerCamelCase = 0.012,__lowerCamelCase = "linear",__lowerCamelCase = None,__lowerCamelCase = "epsilon",__lowerCamelCase = False,__lowerCamelCase = False,__lowerCamelCase = 1.0,__lowerCamelCase = "linspace",__lowerCamelCase = 0,): if trained_betas is not None: A__ = torch.tensor(__lowerCamelCase,dtype=torch.floataa ) elif beta_schedule == "linear": A__ = torch.linspace(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. A__ = ( torch.linspace(beta_start**0.5,beta_end**0.5,__lowerCamelCase,dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule A__ = betas_for_alpha_bar(__lowerCamelCase,alpha_transform_type='''cosine''' ) elif beta_schedule == "exp": A__ = betas_for_alpha_bar(__lowerCamelCase,alpha_transform_type='''exp''' ) else: raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}" ) A__ = 1.0 - self.betas A__ = torch.cumprod(self.alphas,dim=0 ) # set all values self.set_timesteps(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ) A__ = use_karras_sigmas def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase=None ): if schedule_timesteps is None: A__ = self.timesteps A__ = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: A__ = 1 if len(__lowerCamelCase ) > 1 else 0 else: A__ = timestep.cpu().item() if torch.is_tensor(__lowerCamelCase ) else timestep A__ = self._index_counter[timestep_int] return indices[pos].item() @property def UpperCamelCase ( self ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,): A__ = self.index_for_timestep(__lowerCamelCase ) A__ = self.sigmas[step_index] A__ = sample / ((sigma**2 + 1) ** 0.5) return sample def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None,__lowerCamelCase = None,): A__ = num_inference_steps A__ = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": A__ = np.linspace(0,num_train_timesteps - 1,__lowerCamelCase,dtype=__lowerCamelCase )[::-1].copy() elif self.config.timestep_spacing == "leading": A__ = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 A__ = (np.arange(0,__lowerCamelCase ) * step_ratio).round()[::-1].copy().astype(__lowerCamelCase ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": A__ = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 A__ = (np.arange(__lowerCamelCase,0,-step_ratio )).round().copy().astype(__lowerCamelCase ) timesteps -= 1 else: raise ValueError( f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'." ) A__ = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) A__ = np.log(__lowerCamelCase ) A__ = np.interp(__lowerCamelCase,np.arange(0,len(__lowerCamelCase ) ),__lowerCamelCase ) if self.config.use_karras_sigmas: A__ = self._convert_to_karras(in_sigmas=__lowerCamelCase,num_inference_steps=self.num_inference_steps ) A__ = np.array([self._sigma_to_t(__lowerCamelCase,__lowerCamelCase ) for sigma in sigmas] ) A__ = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) A__ = torch.from_numpy(__lowerCamelCase ).to(device=__lowerCamelCase ) A__ = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) A__ = torch.from_numpy(__lowerCamelCase ) A__ = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(__lowerCamelCase ).startswith('''mps''' ): # mps does not support float64 A__ = timesteps.to(__lowerCamelCase,dtype=torch.floataa ) else: A__ = timesteps.to(device=__lowerCamelCase ) # empty dt and derivative A__ = None A__ = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter A__ = defaultdict(__lowerCamelCase ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): # get log sigma A__ = np.log(__lowerCamelCase ) # get distribution A__ = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range A__ = np.cumsum((dists >= 0),axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) A__ = low_idx + 1 A__ = log_sigmas[low_idx] A__ = log_sigmas[high_idx] # interpolate sigmas A__ = (low - log_sigma) / (low - high) A__ = np.clip(__lowerCamelCase,0,1 ) # transform interpolation to time range A__ = (1 - w) * low_idx + w * high_idx A__ = t.reshape(sigma.shape ) return t def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): A__ = in_sigmas[-1].item() A__ = in_sigmas[0].item() A__ = 7.0 # 7.0 is the value used in the paper A__ = np.linspace(0,1,__lowerCamelCase ) A__ = sigma_min ** (1 / rho) A__ = sigma_max ** (1 / rho) A__ = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def UpperCamelCase ( self ): return self.dt is None def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase = True,): A__ = self.index_for_timestep(__lowerCamelCase ) # advance index counter by 1 A__ = timestep.cpu().item() if torch.is_tensor(__lowerCamelCase ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: A__ = self.sigmas[step_index] A__ = self.sigmas[step_index + 1] else: # 2nd order / Heun's method A__ = self.sigmas[step_index - 1] A__ = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API A__ = 0 A__ = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": A__ = sigma_hat if self.state_in_first_order else sigma_next A__ = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": A__ = sigma_hat if self.state_in_first_order else sigma_next A__ = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": A__ = model_output else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" ) if self.config.clip_sample: A__ = pred_original_sample.clamp( -self.config.clip_sample_range,self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order A__ = (sample - pred_original_sample) / sigma_hat # 3. delta timestep A__ = sigma_next - sigma_hat # store for 2nd order step A__ = derivative A__ = dt A__ = sample else: # 2. 2nd order / Heun's method A__ = (sample - pred_original_sample) / sigma_next A__ = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample A__ = self.dt A__ = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" A__ = None A__ = None A__ = None A__ = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__lowerCamelCase ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,): # Make sure sigmas and timesteps have the same device and dtype as original_samples A__ = self.sigmas.to(device=original_samples.device,dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(__lowerCamelCase ): # mps does not support float64 A__ = self.timesteps.to(original_samples.device,dtype=torch.floataa ) A__ = timesteps.to(original_samples.device,dtype=torch.floataa ) else: A__ = self.timesteps.to(original_samples.device ) A__ = timesteps.to(original_samples.device ) A__ = [self.index_for_timestep(__lowerCamelCase,__lowerCamelCase ) for t in timesteps] A__ = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): A__ = sigma.unsqueeze(-1 ) A__ = original_samples + noise * sigma return noisy_samples def __len__( self ): return self.config.num_train_timesteps
193
0
import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class a : """simple docstring""" def __init__( self : List[str] , lowerCamelCase : List[str] , lowerCamelCase : int=13 , lowerCamelCase : int=30 , lowerCamelCase : Union[str, Any]=2 , lowerCamelCase : Tuple=3 , lowerCamelCase : Optional[int]=True , lowerCamelCase : Dict=True , lowerCamelCase : Optional[int]=32 , lowerCamelCase : List[Any]=5 , lowerCamelCase : Tuple=4 , lowerCamelCase : Union[str, Any]=37 , lowerCamelCase : int="gelu" , lowerCamelCase : Dict=0.1 , lowerCamelCase : str=0.1 , lowerCamelCase : List[Any]=10 , lowerCamelCase : Optional[int]=0.02 , lowerCamelCase : List[str]=3 , lowerCamelCase : Dict=0.6 , lowerCamelCase : Dict=None , ) -> Any: __snake_case : str = parent __snake_case : Tuple = batch_size __snake_case : Optional[int] = image_size __snake_case : Dict = patch_size __snake_case : List[Any] = num_channels __snake_case : Tuple = is_training __snake_case : Dict = use_labels __snake_case : List[Any] = hidden_size __snake_case : List[str] = num_hidden_layers __snake_case : List[Any] = num_attention_heads __snake_case : Union[str, Any] = intermediate_size __snake_case : Any = hidden_act __snake_case : Tuple = hidden_dropout_prob __snake_case : Optional[int] = attention_probs_dropout_prob __snake_case : Union[str, Any] = type_sequence_label_size __snake_case : List[str] = initializer_range __snake_case : Optional[int] = mask_ratio __snake_case : Optional[int] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) __snake_case : List[str] = (image_size // patch_size) ** 2 __snake_case : List[Any] = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def __snake_case ( self : Optional[int] ) -> Union[str, Any]: __snake_case : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : List[Any] = None if self.use_labels: __snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : Optional[Any] = self.get_config() return config, pixel_values, labels def __snake_case ( self : int ) -> Union[str, Any]: return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def __snake_case ( self : List[str] , lowerCamelCase : List[Any] , lowerCamelCase : Dict , lowerCamelCase : Union[str, Any] ) -> List[str]: __snake_case : List[Any] = ViTMAEModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : Optional[Any] = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __snake_case ( self : Optional[Any] , lowerCamelCase : Tuple , lowerCamelCase : List[str] , lowerCamelCase : int ) -> Optional[Any]: __snake_case : Dict = ViTMAEForPreTraining(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : List[Any] = model(lowerCamelCase ) __snake_case : List[Any] = (self.image_size // self.patch_size) ** 2 __snake_case : str = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images __snake_case : List[Any] = 1 __snake_case : int = ViTMAEForPreTraining(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __snake_case : Optional[int] = model(lowerCamelCase ) __snake_case : Optional[Any] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def __snake_case ( self : Dict ) -> Tuple: __snake_case : Optional[int] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case : Optional[int] = config_and_inputs __snake_case : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class a (_lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () __UpperCAmelCase : List[Any] = {"feature-extraction": ViTMAEModel} if is_torch_available() else {} __UpperCAmelCase : Any = False __UpperCAmelCase : List[str] = False __UpperCAmelCase : int = False __UpperCAmelCase : Any = False def __snake_case ( self : List[str] ) -> Dict: __snake_case : Union[str, Any] = ViTMAEModelTester(self ) __snake_case : List[Any] = ConfigTester(self , config_class=lowerCamelCase , has_text_modality=lowerCamelCase , hidden_size=37 ) def __snake_case ( self : List[Any] ) -> int: self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def __snake_case ( self : str ) -> Tuple: pass def __snake_case ( self : Any ) -> List[str]: __snake_case , __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Optional[int] = model_class(lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __snake_case : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase , nn.Linear ) ) def __snake_case ( self : List[str] ) -> Optional[int]: __snake_case , __snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Dict = model_class(lowerCamelCase ) __snake_case : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : List[Any] = [*signature.parameters.keys()] __snake_case : Optional[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase ) def __snake_case ( self : int ) -> Optional[Any]: __snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def __snake_case ( self : Any ) -> Any: __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCamelCase ) def __snake_case ( self : Dict , lowerCamelCase : List[Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Any ) -> str: # make masks reproducible np.random.seed(2 ) __snake_case : List[Any] = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) __snake_case : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) __snake_case : Any = torch.from_numpy(lowerCamelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument __snake_case : Optional[int] = pt_noise super().check_pt_tf_models(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def __snake_case ( self : List[Any] ) -> Optional[Any]: __snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Union[str, Any] = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): __snake_case : str = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) __snake_case : List[Any] = outputs[0].cpu().numpy() __snake_case : Union[str, Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase ) __snake_case : List[Any] = model_class.from_pretrained(lowerCamelCase ) model.to(lowerCamelCase ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): __snake_case : str = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) # Make sure we don't have nans __snake_case : Any = after_outputs[0].cpu().numpy() __snake_case : Tuple = 0 __snake_case : List[str] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCamelCase , 1E-5 ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def __snake_case ( self : Optional[Any] ) -> Optional[int]: pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def __snake_case ( self : Dict ) -> List[Any]: pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def __snake_case ( self : int ) -> List[Any]: pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def __snake_case ( self : Dict ) -> Dict: pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __snake_case ( self : List[str] ) -> Any: pass @slow def __snake_case ( self : int ) -> str: for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : List[Any] = ViTMAEModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def lowerCAmelCase_ ( ): __snake_case : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class a (unittest.TestCase ): """simple docstring""" @cached_property def __snake_case ( self : List[Any] ) -> List[Any]: return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def __snake_case ( self : Tuple ) -> Optional[Any]: # make random mask reproducible across the PT and TF model np.random.seed(2 ) __snake_case : Optional[int] = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ).to(lowerCamelCase ) __snake_case : List[Any] = self.default_image_processor __snake_case : str = prepare_img() __snake_case : List[str] = image_processor(images=lowerCamelCase , return_tensors="pt" ).to(lowerCamelCase ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) __snake_case : Tuple = ViTMAEConfig() __snake_case : Any = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) __snake_case : Optional[Any] = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): __snake_case : int = model(**lowerCamelCase , noise=torch.from_numpy(lowerCamelCase ).to(device=lowerCamelCase ) ) # verify the logits __snake_case : Tuple = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape , lowerCamelCase ) __snake_case : Any = torch.tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(lowerCamelCase ) , atol=1E-4 ) )
134
import numpy class a : """simple docstring""" def __init__( self : str , lowerCamelCase : numpy.ndarray , lowerCamelCase : numpy.ndarray ) -> None: __snake_case : Any = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. __snake_case : int = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. __snake_case : Optional[int] = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. __snake_case : int = numpy.random.rand(3 , 1 ) # Real output values provided. __snake_case : Optional[Any] = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. __snake_case : Optional[int] = numpy.zeros(output_array.shape ) def __snake_case ( self : List[Any] ) -> numpy.ndarray: __snake_case : List[str] = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. __snake_case : str = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. __snake_case : str = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def __snake_case ( self : Union[str, Any] ) -> None: __snake_case : Optional[int] = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) __snake_case : Dict = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) __snake_case : Optional[Any] = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def __snake_case ( self : List[str] , lowerCamelCase : numpy.ndarray , lowerCamelCase : int , lowerCamelCase : bool ) -> None: for iteration in range(1 , iterations + 1 ): __snake_case : Any = self.feedforward() self.back_propagation() if give_loss: __snake_case : str = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F'Iteration {iteration} Loss: {loss}' ) def __snake_case ( self : Optional[Any] , lowerCamelCase : numpy.ndarray ) -> int: __snake_case : Any = input_arr __snake_case : List[str] = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) __snake_case : List[Any] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) __snake_case : Any = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def lowerCAmelCase_ ( __lowerCamelCase ): return 1 / (1 + numpy.exp(-value )) def lowerCAmelCase_ ( __lowerCamelCase ): return (value) * (1 - (value)) def lowerCAmelCase_ ( ): __snake_case : Dict = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. __snake_case : Union[str, Any] = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. __snake_case : int = TwoHiddenLayerNeuralNetwork( input_array=__lowerCamelCase , output_array=__lowerCamelCase ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=__lowerCamelCase , iterations=1_0 , give_loss=__lowerCamelCase ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
134
1
from typing import TYPE_CHECKING from ...utils import _LazyModule _snake_case = {"tokenization_bertweet": ["BertweetTokenizer"]} if TYPE_CHECKING: from .tokenization_bertweet import BertweetTokenizer else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
36
def lowerCAmelCase__( lowercase : int = 100_0000 ) -> int: __snake_case : List[Any] = limit + 1 __snake_case : List[str] = [0] * limit for first_term in range(1 , lowercase ): for n in range(lowercase , lowercase , lowercase ): __snake_case : Union[str, Any] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a __snake_case : Tuple = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F'''{solution() = }''')
326
0
'''simple docstring''' import math def lowerCamelCase (_SCREAMING_SNAKE_CASE : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_SCREAMING_SNAKE_CASE ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCamelCase (_SCREAMING_SNAKE_CASE : int = 10_001 ): try: __a : Any = int(_SCREAMING_SNAKE_CASE ) except (TypeError, ValueError): raise TypeError('Parameter nth must be int or castable to int.' ) from None if nth <= 0: raise ValueError('Parameter nth must be greater than or equal to one.' ) __a : list[int] = [] __a : List[Any] = 2 while len(_SCREAMING_SNAKE_CASE ) < nth: if is_prime(_SCREAMING_SNAKE_CASE ): primes.append(_SCREAMING_SNAKE_CASE ) num += 1 else: num += 1 return primes[len(_SCREAMING_SNAKE_CASE ) - 1] if __name__ == "__main__": print(f'''{solution() = }''')
294
'''simple docstring''' import re from filelock import FileLock try: import nltk __lowercase : Optional[Any] = True except (ImportError, ModuleNotFoundError): __lowercase : Dict = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def lowerCamelCase (_SCREAMING_SNAKE_CASE : str ): re.sub('<n>' , '' , _SCREAMING_SNAKE_CASE ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(_SCREAMING_SNAKE_CASE ) )
294
1
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers A : int = '3' print('Python version:', sys.version) print('transformers version:', transformers.__version__) try: import torch print('Torch version:', torch.__version__) print('Cuda available:', torch.cuda.is_available()) print('Cuda version:', torch.version.cuda) print('CuDNN version:', torch.backends.cudnn.version()) print('Number of GPUs available:', torch.cuda.device_count()) print('NCCL version:', torch.cuda.nccl.version()) except ImportError: print('Torch version:', None) try: import deepspeed print('DeepSpeed version:', deepspeed.__version__) except ImportError: print('DeepSpeed version:', None) try: import tensorflow as tf print('TensorFlow version:', tf.__version__) print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU'))) print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU'))) except ImportError: print('TensorFlow version:', None)
6
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def __UpperCAmelCase ( __UpperCamelCase ): __lowercase : Optional[int] = 3_84 __lowercase : str = 7 if "tiny" in model_name: __lowercase : List[str] = 96 __lowercase : Any = (2, 2, 6, 2) __lowercase : Dict = (3, 6, 12, 24) elif "small" in model_name: __lowercase : str = 96 __lowercase : Optional[int] = (2, 2, 18, 2) __lowercase : Tuple = (3, 6, 12, 24) elif "base" in model_name: __lowercase : Tuple = 1_28 __lowercase : Tuple = (2, 2, 18, 2) __lowercase : int = (4, 8, 16, 32) __lowercase : str = 12 __lowercase : Any = 5_12 elif "large" in model_name: __lowercase : List[str] = 1_92 __lowercase : List[Any] = (2, 2, 18, 2) __lowercase : Optional[Any] = (6, 12, 24, 48) __lowercase : Optional[int] = 12 __lowercase : Optional[Any] = 7_68 # set label information __lowercase : Any = 1_50 __lowercase : Tuple = '''huggingface/label-files''' __lowercase : int = '''ade20k-id2label.json''' __lowercase : Union[str, Any] = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='''dataset''' ) , '''r''' ) ) __lowercase : Union[str, Any] = {int(__UpperCamelCase ): v for k, v in idalabel.items()} __lowercase : Optional[Any] = {v: k for k, v in idalabel.items()} __lowercase : Any = SwinConfig( embed_dim=__UpperCamelCase , depths=__UpperCamelCase , num_heads=__UpperCamelCase , window_size=__UpperCamelCase , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) __lowercase : List[Any] = UperNetConfig( backbone_config=__UpperCamelCase , auxiliary_in_channels=__UpperCamelCase , num_labels=__UpperCamelCase , idalabel=__UpperCamelCase , labelaid=__UpperCamelCase , ) return config def __UpperCAmelCase ( __UpperCamelCase ): __lowercase : str = [] # fmt: off # stem rename_keys.append(('''backbone.patch_embed.projection.weight''', '''backbone.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.patch_embed.projection.bias''', '''backbone.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''backbone.embeddings.norm.weight''') ) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''backbone.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.norm1.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.norm1.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table""", f"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index""", f"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.norm2.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.norm2.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((f"""backbone.stages.{i}.downsample.reduction.weight""", f"""backbone.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((f"""backbone.stages.{i}.downsample.norm.weight""", f"""backbone.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((f"""backbone.stages.{i}.downsample.norm.bias""", f"""backbone.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((f"""backbone.norm{i}.weight""", f"""backbone.hidden_states_norms.stage{i+1}.weight""") ) rename_keys.append((f"""backbone.norm{i}.bias""", f"""backbone.hidden_states_norms.stage{i+1}.bias""") ) # decode head rename_keys.extend( [ ('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''), ('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''), ('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''), ('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''), ] ) # fmt: on return rename_keys def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): __lowercase : Any = dct.pop(__UpperCamelCase ) __lowercase : Any = val def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): __lowercase : Optional[Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __lowercase : Optional[Any] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __lowercase : Dict = state_dict.pop(f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight""" ) __lowercase : int = state_dict.pop(f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __lowercase : List[Any] = in_proj_weight[:dim, :] __lowercase : Tuple = in_proj_bias[: dim] __lowercase : List[Any] = in_proj_weight[ dim : dim * 2, : ] __lowercase : int = in_proj_bias[ dim : dim * 2 ] __lowercase : str = in_proj_weight[ -dim :, : ] __lowercase : List[Any] = in_proj_bias[-dim :] # fmt: on def __UpperCAmelCase ( __UpperCamelCase ): __lowercase ,__lowercase : str = x.shape __lowercase : List[str] = x.reshape(__UpperCamelCase , 4 , in_channel // 4 ) __lowercase : Dict = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(__UpperCamelCase , __UpperCamelCase ) return x def __UpperCAmelCase ( __UpperCamelCase ): __lowercase ,__lowercase : Optional[int] = x.shape __lowercase : Union[str, Any] = x.reshape(__UpperCamelCase , in_channel // 4 , 4 ) __lowercase : int = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(__UpperCamelCase , __UpperCamelCase ) return x def __UpperCAmelCase ( __UpperCamelCase ): __lowercase : int = x.shape[0] __lowercase : List[str] = x.reshape(4 , in_channel // 4 ) __lowercase : Any = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(__UpperCamelCase ) return x def __UpperCAmelCase ( __UpperCamelCase ): __lowercase : Union[str, Any] = x.shape[0] __lowercase : List[str] = x.reshape(in_channel // 4 , 4 ) __lowercase : Union[str, Any] = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(__UpperCamelCase ) return x def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): __lowercase : List[Any] = { '''upernet-swin-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth''', '''upernet-swin-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth''', '''upernet-swin-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth''', '''upernet-swin-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth''', } __lowercase : Any = model_name_to_url[model_name] __lowercase : Any = torch.hub.load_state_dict_from_url(__UpperCamelCase , map_location='''cpu''' , file_name=__UpperCamelCase )[ '''state_dict''' ] for name, param in state_dict.items(): print(__UpperCamelCase , param.shape ) __lowercase : Tuple = get_upernet_config(__UpperCamelCase ) __lowercase : List[Any] = UperNetForSemanticSegmentation(__UpperCamelCase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): __lowercase : Optional[Any] = state_dict.pop(__UpperCamelCase ) if "bn" in key: __lowercase : List[Any] = key.replace('''bn''' , '''batch_norm''' ) __lowercase : Optional[Any] = val # rename keys __lowercase : Tuple = create_rename_keys(__UpperCamelCase ) for src, dest in rename_keys: rename_key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) read_in_q_k_v(__UpperCamelCase , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: __lowercase : Optional[Any] = reverse_correct_unfold_reduction_order(__UpperCamelCase ) if "norm" in key: __lowercase : Optional[Any] = reverse_correct_unfold_norm_order(__UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) # verify on image __lowercase : Any = '''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg''' __lowercase : str = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ).convert('''RGB''' ) __lowercase : Union[str, Any] = SegformerImageProcessor() __lowercase : int = processor(__UpperCamelCase , return_tensors='''pt''' ).pixel_values with torch.no_grad(): __lowercase : List[Any] = model(__UpperCamelCase ) __lowercase : Union[str, Any] = outputs.logits print(logits.shape ) print('''First values of logits:''' , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": __lowercase : Tuple = torch.tensor( [[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] ) elif model_name == "upernet-swin-small": __lowercase : Optional[Any] = torch.tensor( [[-7.1_921, -7.1_921, -6.9_532], [-7.1_921, -7.1_921, -6.9_532], [-7.0_908, -7.0_908, -6.8_534]] ) elif model_name == "upernet-swin-base": __lowercase : Optional[int] = torch.tensor( [[-6.5_851, -6.5_851, -6.4_330], [-6.5_851, -6.5_851, -6.4_330], [-6.4_763, -6.4_763, -6.3_254]] ) elif model_name == "upernet-swin-large": __lowercase : Any = torch.tensor( [[-7.5_297, -7.5_297, -7.3_802], [-7.5_297, -7.5_297, -7.3_802], [-7.4_044, -7.4_044, -7.2_586]] ) print('''Logits:''' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , __UpperCamelCase , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__UpperCamelCase ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(__UpperCamelCase ) if push_to_hub: print(f"""Pushing model and processor for {model_name} to hub""" ) model.push_to_hub(f"""openmmlab/{model_name}""" ) processor.push_to_hub(f"""openmmlab/{model_name}""" ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='upernet-swin-tiny', type=str, choices=[F"upernet-swin-{size}" for size in ['tiny', 'small', 'base', 'large']], help='Name of the Swin + UperNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) a_ = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
249
0
"""simple docstring""" from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging A = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class __lowercase ( _lowerCamelCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase = 101 ): __a : Optional[int] = length def __len__( self ): return self.length def __getitem__( self , _UpperCAmelCase ): return i class __lowercase : '''simple docstring''' def __call__( self , _UpperCAmelCase ): return {"input_ids": torch.tensor(lowercase_ ), "labels": torch.tensor(lowercase_ )} class __lowercase ( nn.Module ): '''simple docstring''' def __init__( self ): super().__init__() # Add some (unused) params otherwise DDP will complain. __a : int = nn.Linear(120 , 80 ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase=None ): if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class __lowercase ( _lowerCamelCase ): '''simple docstring''' @require_torch_neuroncore def _lowerCamelCase ( self ): __a : List[str] = f"""--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n """.split() __a : List[str] = self.get_auto_remove_tmp_dir() __a : Tuple = f"""--output_dir {output_dir}""".split() __a : Optional[Any] = ['''torchrun'''] + distributed_args + args execute_subprocess_async(lowercase_ , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class __lowercase ( _lowerCamelCase ): '''simple docstring''' @require_torch_multi_gpu def _lowerCamelCase ( self ): __a : int = f"""--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n """.split() __a : Any = self.get_auto_remove_tmp_dir() __a : List[str] = f"""--output_dir {output_dir}""".split() __a : Optional[int] = ['''torchrun'''] + distributed_args + args execute_subprocess_async(lowercase_ , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py A = HfArgumentParser((TrainingArguments,)) A = parser.parse_args_into_dataclasses()[0] logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, ' F'distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}' ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: A = DummyDataset(dataset_length) def __A ( a_ :List[Any]) -> Dict: __a : List[str] = list(range(len(__UpperCAmelCase))) __a : Optional[Any] = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( '''Predictions and/or labels do not match expected results:\n - predictions: ''' F"""{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}""") return {"success": success} A = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) A = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) A = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) A = 2 A = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) A = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) A = None
356
"""simple docstring""" import os import string import sys A = 1 << 8 A = { '''tab''': ord('''\t'''), '''newline''': ord('''\r'''), '''esc''': 27, '''up''': 65 + ARROW_KEY_FLAG, '''down''': 66 + ARROW_KEY_FLAG, '''right''': 67 + ARROW_KEY_FLAG, '''left''': 68 + ARROW_KEY_FLAG, '''mod_int''': 91, '''undefined''': sys.maxsize, '''interrupt''': 3, '''insert''': 50, '''delete''': 51, '''pg_up''': 53, '''pg_down''': 54, } A = KEYMAP['''up'''] A = KEYMAP['''left'''] if sys.platform == "win32": A = [] A = { B'''\xe0H''': KEYMAP['''up'''] - ARROW_KEY_FLAG, B'''\x00H''': KEYMAP['''up'''] - ARROW_KEY_FLAG, B'''\xe0P''': KEYMAP['''down'''] - ARROW_KEY_FLAG, B'''\x00P''': KEYMAP['''down'''] - ARROW_KEY_FLAG, B'''\xe0M''': KEYMAP['''right'''] - ARROW_KEY_FLAG, B'''\x00M''': KEYMAP['''right'''] - ARROW_KEY_FLAG, B'''\xe0K''': KEYMAP['''left'''] - ARROW_KEY_FLAG, B'''\x00K''': KEYMAP['''left'''] - ARROW_KEY_FLAG, } for i in range(10): A = ord(str(i)) def __A ( ) -> Dict: if os.name == "nt": import msvcrt __a : Optional[Any] = '''mbcs''' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(a_) == 0: # Read the keystroke __a : Optional[Any] = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): __a : Optional[Any] = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: __a : Union[str, Any] = chr(WIN_KEYMAP[cha]) WIN_CH_BUFFER.append(chr(KEYMAP['''mod_int'''])) WIN_CH_BUFFER.append(a_) if ord(a_) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(1_26)) __a : str = chr(KEYMAP['''esc''']) except KeyError: __a : str = cha[1] else: __a : Optional[Any] = ch.decode(a_) else: __a : Union[str, Any] = WIN_CH_BUFFER.pop(0) elif os.name == "posix": import termios import tty __a : Any = sys.stdin.fileno() __a : List[str] = termios.tcgetattr(a_) try: tty.setraw(a_) __a : int = sys.stdin.read(1) finally: termios.tcsetattr(a_ , termios.TCSADRAIN , a_) return ch def __A ( ) -> str: __a : Any = get_raw_chars() if ord(a_) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(a_) == KEYMAP["esc"]: __a : str = get_raw_chars() if ord(a_) == KEYMAP["mod_int"]: __a : List[str] = get_raw_chars() if ord(a_) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(a_) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(a_) + ARROW_KEY_FLAG) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
188
0
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class a__ ( unittest.TestCase ): lowerCamelCase : Optional[int] =MODEL_FOR_CAUSAL_LM_MAPPING lowerCamelCase : int =TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" __lowerCamelCase = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''pt''' ) # Using `do_sample=False` to force deterministic output __lowerCamelCase = text_generator('''This is a test''' , do_sample=a ) self.assertEqual( a , [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ] , ) __lowerCamelCase = text_generator(['''This is a test''', '''This is a second test'''] ) self.assertEqual( a , [ [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ], [ { '''generated_text''': ( '''This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy''' ''' oscope. oscope. FiliFili@@''' ) } ], ] , ) __lowerCamelCase = text_generator('''This is a test''' , do_sample=a , num_return_sequences=2 , return_tensors=a ) self.assertEqual( a , [ {'''generated_token_ids''': ANY(a )}, {'''generated_token_ids''': ANY(a )}, ] , ) __lowerCamelCase = text_generator.model.config.eos_token_id __lowerCamelCase = '''<pad>''' __lowerCamelCase = text_generator( ['''This is a test''', '''This is a second test'''] , do_sample=a , num_return_sequences=2 , batch_size=2 , return_tensors=a , ) self.assertEqual( a , [ [ {'''generated_token_ids''': ANY(a )}, {'''generated_token_ids''': ANY(a )}, ], [ {'''generated_token_ids''': ANY(a )}, {'''generated_token_ids''': ANY(a )}, ], ] , ) @require_tf def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" __lowerCamelCase = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''tf''' ) # Using `do_sample=False` to force deterministic output __lowerCamelCase = text_generator('''This is a test''' , do_sample=a ) self.assertEqual( a , [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ] , ) __lowerCamelCase = text_generator(['''This is a test''', '''This is a second test'''] , do_sample=a ) self.assertEqual( a , [ [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ], [ { '''generated_text''': ( '''This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes''' ''' Cannes 閲閲Cannes Cannes Cannes 攵 please,''' ) } ], ] , ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , a : Dict , a : int , a : Optional[Any] ): """simple docstring""" __lowerCamelCase = TextGenerationPipeline(model=a , tokenizer=a ) return text_generator, ["This is a test", "Another test"] def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" __lowerCamelCase = '''Hello I believe in''' __lowerCamelCase = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) __lowerCamelCase = text_generator(a ) self.assertEqual( a , [{'''generated_text''': '''Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'''}] , ) __lowerCamelCase = text_generator(a , stop_sequence=''' fe''' ) self.assertEqual(a , [{'''generated_text''': '''Hello I believe in fe'''}] ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , a : List[str] , a : Optional[int] ): """simple docstring""" __lowerCamelCase = text_generator.model __lowerCamelCase = text_generator.tokenizer __lowerCamelCase = text_generator('''This is a test''' ) self.assertEqual(a , [{'''generated_text''': ANY(a )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) __lowerCamelCase = text_generator('''This is a test''' , return_full_text=a ) self.assertEqual(a , [{'''generated_text''': ANY(a )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) __lowerCamelCase = pipeline(task='''text-generation''' , model=a , tokenizer=a , return_full_text=a ) __lowerCamelCase = text_generator('''This is a test''' ) self.assertEqual(a , [{'''generated_text''': ANY(a )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) __lowerCamelCase = text_generator('''This is a test''' , return_full_text=a ) self.assertEqual(a , [{'''generated_text''': ANY(a )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) __lowerCamelCase = text_generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=a ) self.assertEqual( a , [ [{'''generated_text''': ANY(a )}, {'''generated_text''': ANY(a )}], [{'''generated_text''': ANY(a )}, {'''generated_text''': ANY(a )}], ] , ) if text_generator.tokenizer.pad_token is not None: __lowerCamelCase = text_generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=a ) self.assertEqual( a , [ [{'''generated_text''': ANY(a )}, {'''generated_text''': ANY(a )}], [{'''generated_text''': ANY(a )}, {'''generated_text''': ANY(a )}], ] , ) with self.assertRaises(a ): __lowerCamelCase = text_generator('''test''' , return_full_text=a , return_text=a ) with self.assertRaises(a ): __lowerCamelCase = text_generator('''test''' , return_full_text=a , return_tensors=a ) with self.assertRaises(a ): __lowerCamelCase = text_generator('''test''' , return_text=a , return_tensors=a ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): __lowerCamelCase = text_generator('''''' ) self.assertEqual(a , [{'''generated_text''': ANY(a )}] ) else: with self.assertRaises((ValueError, AssertionError) ): __lowerCamelCase = text_generator('''''' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. __lowerCamelCase = ['''RwkvForCausalLM''', '''XGLMForCausalLM''', '''GPTNeoXForCausalLM'''] if ( tokenizer.model_max_length < 1_00_00 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('''This is a test''' * 5_00 , max_new_tokens=20 ) __lowerCamelCase = text_generator('''This is a test''' * 5_00 , handle_long_generation='''hole''' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(a ): text_generator( '''This is a test''' * 5_00 , handle_long_generation='''hole''' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" import torch # Classic `model_kwargs` __lowerCamelCase = pipeline( model='''hf-internal-testing/tiny-random-bloom''' , model_kwargs={'''device_map''': '''auto''', '''torch_dtype''': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) __lowerCamelCase = pipe('''This is a test''' ) self.assertEqual( a , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) __lowerCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) __lowerCamelCase = pipe('''This is a test''' ) self.assertEqual( a , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 __lowerCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) __lowerCamelCase = pipe('''This is a test''' ) self.assertEqual( a , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) @require_torch @require_torch_gpu def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" import torch __lowerCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device=0 , torch_dtype=torch.floataa ) pipe('''This is a test''' ) @require_torch @require_accelerate @require_torch_gpu def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" import torch __lowerCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.floataa ) pipe('''This is a test''' , do_sample=a , top_p=0.5 ) def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" __lowerCamelCase = '''Hello world''' __lowerCamelCase = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) if text_generator.model.framework == "tf": __lowerCamelCase = logging.get_logger('''transformers.generation.tf_utils''' ) else: __lowerCamelCase = logging.get_logger('''transformers.generation.utils''' ) __lowerCamelCase = '''Both `max_new_tokens`''' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(a ) as cl: __lowerCamelCase = text_generator(a , max_length=10 , max_new_tokens=1 ) self.assertIn(a , cl.out ) # The user only sets one -> no warning with CaptureLogger(a ) as cl: __lowerCamelCase = text_generator(a , max_new_tokens=1 ) self.assertNotIn(a , cl.out ) with CaptureLogger(a ) as cl: __lowerCamelCase = text_generator(a , max_length=10 ) self.assertNotIn(a , cl.out )
67
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase ={ "configuration_clap": [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapAudioConfig", "ClapConfig", "ClapTextConfig", ], "processing_clap": ["ClapProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase =[ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapModel", "ClapPreTrainedModel", "ClapTextModel", "ClapTextModelWithProjection", "ClapAudioModel", "ClapAudioModelWithProjection", ] __UpperCAmelCase =["ClapFeatureExtractor"] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys __UpperCAmelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
67
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class __A : a__ : str = LEDConfig a__ : Any = {} a__ : Any = """gelu""" def __init__(self : Tuple , __a : Union[str, Any] , __a : List[str]=13 , __a : Union[str, Any]=7 , __a : Optional[int]=True , __a : Dict=False , __a : Dict=99 , __a : List[str]=32 , __a : List[Any]=2 , __a : Any=4 , __a : Any=37 , __a : int=0.1 , __a : Tuple=0.1 , __a : Optional[int]=20 , __a : str=2 , __a : Union[str, Any]=1 , __a : Dict=0 , __a : Optional[int]=4 , ): UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = seq_length UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = eos_token_id UpperCAmelCase_ = pad_token_id UpperCAmelCase_ = bos_token_id UpperCAmelCase_ = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after UpperCAmelCase_ = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests UpperCAmelCase_ = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def _lowercase (self : Any ): UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) UpperCAmelCase_ = prepare_led_inputs_dict(__a , __a , __a ) UpperCAmelCase_ = tf.concat( [tf.zeros_like(__a )[:, :-1], tf.ones_like(__a )[:, -1:]] , axis=-1 , ) UpperCAmelCase_ = global_attention_mask return config, inputs_dict def _lowercase (self : List[str] , __a : str , __a : Optional[int] ): UpperCAmelCase_ = TFLEDModel(config=__a ).get_decoder() UpperCAmelCase_ = inputs_dict["input_ids"] UpperCAmelCase_ = input_ids[:1, :] UpperCAmelCase_ = inputs_dict["attention_mask"][:1, :] UpperCAmelCase_ = 1 # first forward pass UpperCAmelCase_ = model(__a , attention_mask=__a , use_cache=__a ) UpperCAmelCase_ , UpperCAmelCase_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase_ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCAmelCase_ = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCAmelCase_ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCAmelCase_ = model(__a , attention_mask=__a )[0] UpperCAmelCase_ = model(__a , attention_mask=__a , past_key_values=__a )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCAmelCase_ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCAmelCase_ = output_from_no_past[:, -3:, random_slice_idx] UpperCAmelCase_ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__a , __a , rtol=1E-3 ) def lowerCAmelCase_ ( snake_case_ : str , snake_case_ : Optional[int] , snake_case_ : Dict , snake_case_ : Union[str, Any]=None , snake_case_ : Dict=None , snake_case_ : List[str]=None , snake_case_ : Tuple=None , ) -> str: '''simple docstring''' if attention_mask is None: UpperCAmelCase_ = tf.cast(tf.math.not_equal(snake_case_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase_ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase_ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class __A ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): a__ : List[Any] = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () a__ : Any = (TFLEDForConditionalGeneration,) if is_tf_available() else () a__ : Dict = ( { """conversational""": TFLEDForConditionalGeneration, """feature-extraction""": TFLEDModel, """summarization""": TFLEDForConditionalGeneration, """text2text-generation""": TFLEDForConditionalGeneration, """translation""": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) a__ : Any = True a__ : str = False a__ : Optional[Any] = False a__ : int = False def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = TFLEDModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=__a ) def _lowercase (self : str ): self.config_tester.run_common_tests() def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__a ) def _lowercase (self : Optional[int] ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = tf.zeros_like(inputs_dict["attention_mask"] ) UpperCAmelCase_ = 2 UpperCAmelCase_ = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["global_attention_mask"] , ) UpperCAmelCase_ = True UpperCAmelCase_ = self.model_tester.seq_length UpperCAmelCase_ = self.model_tester.encoder_seq_length def check_decoder_attentions_output(__a : Optional[int] ): UpperCAmelCase_ = outputs.decoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(__a : Dict ): UpperCAmelCase_ = [t.numpy() for t in outputs.encoder_attentions] UpperCAmelCase_ = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: UpperCAmelCase_ = True UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = model_class(__a ) UpperCAmelCase_ = model(self._prepare_for_class(__a , __a ) ) UpperCAmelCase_ = len(__a ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) if self.is_encoder_decoder: UpperCAmelCase_ = model_class(__a ) UpperCAmelCase_ = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_decoder_attentions_output(__a ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] UpperCAmelCase_ = True UpperCAmelCase_ = model_class(__a ) UpperCAmelCase_ = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) # Check attention is always last and order is fine UpperCAmelCase_ = True UpperCAmelCase_ = True UpperCAmelCase_ = model_class(__a ) UpperCAmelCase_ = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) ) self.assertEqual(model.config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) @unittest.skip("LED keeps using potentially symbolic tensors in conditionals and breaks tracing." ) def _lowercase (self : str ): pass def _lowercase (self : Union[str, Any] ): # TODO: Head-masking not yet implement pass def lowerCAmelCase_ ( snake_case_ : Dict ) -> str: '''simple docstring''' return tf.constant(snake_case_ , dtype=tf.intaa ) SCREAMING_SNAKE_CASE_: Dict =1E-4 @slow @require_tf class __A ( unittest.TestCase ): def _lowercase (self : str ): UpperCAmelCase_ = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ).led # change to intended input here UpperCAmelCase_ = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase_ = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase_ = prepare_led_inputs_dict(model.config , __a , __a ) UpperCAmelCase_ = model(**__a )[0] UpperCAmelCase_ = (1, 1024, 768) self.assertEqual(output.shape , __a ) # change to expected output here UpperCAmelCase_ = tf.convert_to_tensor( [[2.30_50, 2.82_79, 0.65_31], [-1.84_57, -0.14_55, -3.56_61], [-1.01_86, 0.45_86, -2.20_43]] , ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1E-3 ) def _lowercase (self : Any ): UpperCAmelCase_ = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ) # change to intended input here UpperCAmelCase_ = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase_ = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase_ = prepare_led_inputs_dict(model.config , __a , __a ) UpperCAmelCase_ = model(**__a )[0] UpperCAmelCase_ = (1, 1024, model.config.vocab_size) self.assertEqual(output.shape , __a ) # change to expected output here UpperCAmelCase_ = tf.convert_to_tensor( [[33.65_07, 6.45_72, 16.80_89], [5.87_39, -2.42_38, 11.29_02], [-3.21_39, -4.31_49, 4.27_83]] , ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1E-3 , rtol=1E-3 )
106
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class __A ( unittest.TestCase ): @slow def _lowercase (self : Dict ): UpperCAmelCase_ = TFCamembertModel.from_pretrained("jplu/tf-camembert-base" ) UpperCAmelCase_ = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" UpperCAmelCase_ = model(__a )["last_hidden_state"] UpperCAmelCase_ = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , __a ) # compare the actual values for a slice. UpperCAmelCase_ = tf.convert_to_tensor( [[[-0.02_54, 0.02_35, 0.10_27], [0.06_06, -0.18_11, -0.04_18], [-0.15_61, -0.11_27, 0.26_87]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
106
1
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase__ : int = logging.get_logger(__name__) UpperCAmelCase__ : Union[str, Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} UpperCAmelCase__ : Any = { """tokenizer_file""": { """EleutherAI/gpt-neox-20b""": """https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json""", }, } UpperCAmelCase__ : int = { """gpt-neox-20b""": 2_048, } class a__ ( UpperCAmelCase ): """simple docstring""" UpperCAmelCase__ : List[str] =VOCAB_FILES_NAMES UpperCAmelCase__ : Union[str, Any] =PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Optional[Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : Any =["""input_ids""", """attention_mask"""] def __init__( self : List[str] , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : Any="<|endoftext|>" , UpperCAmelCase__ : Dict="<|endoftext|>" , UpperCAmelCase__ : Tuple="<|endoftext|>" , UpperCAmelCase__ : Optional[Any]=False , **UpperCAmelCase__ : Optional[int] , ) ->List[str]: """simple docstring""" super().__init__( UpperCAmelCase__ , UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , **UpperCAmelCase__ , ) SCREAMING_SNAKE_CASE : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , UpperCAmelCase__ ) != add_prefix_space: SCREAMING_SNAKE_CASE : Dict = getattr(UpperCAmelCase__ , pre_tok_state.pop("""type""" ) ) SCREAMING_SNAKE_CASE : List[Any] = add_prefix_space SCREAMING_SNAKE_CASE : int = pre_tok_class(**UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = add_prefix_space def _lowercase ( self : int , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ) ->Tuple[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self._tokenizer.model.save(UpperCAmelCase__ , name=UpperCAmelCase__ ) return tuple(UpperCAmelCase__ ) def _lowercase ( self : Dict , UpperCAmelCase__ : "Conversation" ) ->List[int]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) + [self.eos_token_id] ) if len(UpperCAmelCase__ ) > self.model_max_length: SCREAMING_SNAKE_CASE : Union[str, Any] = input_ids[-self.model_max_length :] return input_ids
245
import sys from collections import defaultdict class a__ : """simple docstring""" def __init__( self : Union[str, Any] ) ->List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = [] def _lowercase ( self : str , UpperCAmelCase__ : Optional[int] ) ->str: """simple docstring""" return self.node_position[vertex] def _lowercase ( self : Dict , UpperCAmelCase__ : str , UpperCAmelCase__ : Dict ) ->Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = pos def _lowercase ( self : Any , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Optional[int] ) ->int: """simple docstring""" if start > size // 2 - 1: return else: if 2 * start + 2 >= size: SCREAMING_SNAKE_CASE : str = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: SCREAMING_SNAKE_CASE : Tuple = 2 * start + 1 else: SCREAMING_SNAKE_CASE : str = 2 * start + 2 if heap[smallest_child] < heap[start]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = heap[smallest_child], positions[smallest_child] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = ( heap[start], positions[start], ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = temp, tempa SCREAMING_SNAKE_CASE : int = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , UpperCAmelCase__ ) self.top_to_bottom(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def _lowercase ( self : Tuple , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Tuple ) ->List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = position[index] while index != 0: SCREAMING_SNAKE_CASE : Optional[int] = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: SCREAMING_SNAKE_CASE : str = heap[parent] SCREAMING_SNAKE_CASE : Any = position[parent] self.set_position(position[parent] , UpperCAmelCase__ ) else: SCREAMING_SNAKE_CASE : Optional[Any] = val SCREAMING_SNAKE_CASE : Optional[Any] = temp self.set_position(UpperCAmelCase__ , UpperCAmelCase__ ) break SCREAMING_SNAKE_CASE : List[Any] = parent else: SCREAMING_SNAKE_CASE : List[Any] = val SCREAMING_SNAKE_CASE : List[Any] = temp self.set_position(UpperCAmelCase__ , 0 ) def _lowercase ( self : Any , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict ) ->List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : int = len(UpperCAmelCase__ ) // 2 - 1 for i in range(UpperCAmelCase__ , -1 , -1 ): self.top_to_bottom(UpperCAmelCase__ , UpperCAmelCase__ , len(UpperCAmelCase__ ) , UpperCAmelCase__ ) def _lowercase ( self : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[str] ) ->Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = positions[0] SCREAMING_SNAKE_CASE : Optional[int] = sys.maxsize self.top_to_bottom(UpperCAmelCase__ , 0 , len(UpperCAmelCase__ ) , UpperCAmelCase__ ) return temp def __lowercase ( _A ) -> Optional[int]: SCREAMING_SNAKE_CASE : Any = Heap() SCREAMING_SNAKE_CASE : List[Any] = [0] * len(_A ) SCREAMING_SNAKE_CASE : List[str] = [-1] * len(_A ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph SCREAMING_SNAKE_CASE : int = [] # Heap of Distance of vertices from their neighboring vertex SCREAMING_SNAKE_CASE : List[Any] = [] for vertex in range(len(_A ) ): distance_tv.append(sys.maxsize ) positions.append(_A ) heap.node_position.append(_A ) SCREAMING_SNAKE_CASE : Union[str, Any] = [] SCREAMING_SNAKE_CASE : List[Any] = 1 SCREAMING_SNAKE_CASE : Optional[Any] = sys.maxsize for neighbor, distance in adjacency_list[0]: SCREAMING_SNAKE_CASE : Optional[Any] = 0 SCREAMING_SNAKE_CASE : Dict = distance heap.heapify(_A , _A ) for _ in range(1 , len(_A ) ): SCREAMING_SNAKE_CASE : Optional[Any] = heap.delete_minimum(_A , _A ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) SCREAMING_SNAKE_CASE : int = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(_A )] ): SCREAMING_SNAKE_CASE : List[Any] = distance heap.bottom_to_top( _A , heap.get_position(_A ) , _A , _A ) SCREAMING_SNAKE_CASE : Dict = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > UpperCAmelCase__ : Union[str, Any] = int(input("""Enter number of edges: """).strip()) UpperCAmelCase__ : Union[str, Any] = defaultdict(list) for _ in range(edges_number): UpperCAmelCase__ : str = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
245
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCAmelCase : Tuple = { """configuration_roberta""": ["""ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaConfig""", """RobertaOnnxConfig"""], """tokenization_roberta""": ["""RobertaTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Any = ["""RobertaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Dict = [ """ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaForCausalLM""", """RobertaForMaskedLM""", """RobertaForMultipleChoice""", """RobertaForQuestionAnswering""", """RobertaForSequenceClassification""", """RobertaForTokenClassification""", """RobertaModel""", """RobertaPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Tuple = [ """TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaForCausalLM""", """TFRobertaForMaskedLM""", """TFRobertaForMultipleChoice""", """TFRobertaForQuestionAnswering""", """TFRobertaForSequenceClassification""", """TFRobertaForTokenClassification""", """TFRobertaMainLayer""", """TFRobertaModel""", """TFRobertaPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Tuple = [ """FlaxRobertaForCausalLM""", """FlaxRobertaForMaskedLM""", """FlaxRobertaForMultipleChoice""", """FlaxRobertaForQuestionAnswering""", """FlaxRobertaForSequenceClassification""", """FlaxRobertaForTokenClassification""", """FlaxRobertaModel""", """FlaxRobertaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys _UpperCAmelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
9
'''simple docstring''' from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __magic_name__( ): __lowerCAmelCase = [randint(-1_0_0_0, 1_0_0_0) for i in range(1_0)] __lowerCAmelCase = randint(-5_0_0_0, 5_0_0_0) return (arr, r) _UpperCAmelCase : Dict = make_dataset() def __magic_name__( lowerCamelCase, lowerCamelCase): for triplet in permutations(lowerCamelCase, 3): if sum(lowerCamelCase) == target: return tuple(sorted(lowerCamelCase)) return (0, 0, 0) def __magic_name__( lowerCamelCase, lowerCamelCase): arr.sort() __lowerCAmelCase = len(lowerCamelCase) for i in range(n - 1): __lowerCAmelCase , __lowerCAmelCase = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __magic_name__( ): __lowerCAmelCase = ''' from __main__ import dataset, triplet_sum1, triplet_sum2 ''' __lowerCAmelCase = ''' triplet_sum1(*dataset) ''' __lowerCAmelCase = ''' triplet_sum2(*dataset) ''' __lowerCAmelCase = repeat(setup=lowerCamelCase, stmt=lowerCamelCase, repeat=5, number=1_0_0_0_0) __lowerCAmelCase = repeat(setup=lowerCamelCase, stmt=lowerCamelCase, repeat=5, number=1_0_0_0_0) return (min(lowerCamelCase), min(lowerCamelCase)) if __name__ == "__main__": from doctest import testmod testmod() _UpperCAmelCase : Union[str, Any] = solution_times() print(f"""The time for naive implementation is {times[0]}.""") print(f"""The time for optimized implementation is {times[1]}.""")
9
1
import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class __magic_name__ ( enum.Enum ): '''simple docstring''' lowerCamelCase__ : int = 0 lowerCamelCase__ : Any = 1 lowerCamelCase__ : Optional[Any] = 2 @add_end_docstrings(lowerCamelCase__ ) class __magic_name__ ( lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = '\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n ' def __init__( self, *lowercase_, **lowercase_ ) -> int: """simple docstring""" super().__init__(*lowercase_, **lowercase_ ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. a__ =None if self.model.config.prefix is not None: a__ =self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. a__ =self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. a__, a__, a__ =self._sanitize_parameters(prefix=lowercase_, **self._forward_params ) a__ ={**self._preprocess_params, **preprocess_params} a__ ={**self._forward_params, **forward_params} def _UpperCAmelCase ( self, lowercase_=None, lowercase_=None, lowercase_=None, lowercase_=None, lowercase_=None, lowercase_=None, lowercase_=None, lowercase_=None, **lowercase_, ) -> List[Any]: """simple docstring""" a__ ={} if prefix is not None: a__ =prefix if prefix: a__ =self.tokenizer( lowercase_, padding=lowercase_, add_special_tokens=lowercase_, return_tensors=self.framework ) a__ =prefix_inputs['''input_ids'''].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F"""{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected""" ''' [None, \'hole\']''' ) a__ =handle_long_generation preprocess_params.update(lowercase_ ) a__ =generate_kwargs a__ ={} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_full_text`''' ) if return_tensors is not None: raise ValueError('''`return_full_text` is mutually exclusive with `return_tensors`''' ) a__ =ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_tensors`''' ) a__ =ReturnType.TENSORS if return_type is not None: a__ =return_type if clean_up_tokenization_spaces is not None: a__ =clean_up_tokenization_spaces if stop_sequence is not None: a__ =self.tokenizer.encode(lowercase_, add_special_tokens=lowercase_ ) if len(lowercase_ ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) a__ =stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def _UpperCAmelCase ( self, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'''add_space_before_punct_symbol''': True} ) return super()._parse_and_tokenize(*lowercase_, **lowercase_ ) def __call__( self, lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" return super().__call__(lowercase_, **lowercase_ ) def _UpperCAmelCase ( self, lowercase_, lowercase_="", lowercase_=None, **lowercase_ ) -> int: """simple docstring""" a__ =self.tokenizer( prefix + prompt_text, padding=lowercase_, add_special_tokens=lowercase_, return_tensors=self.framework ) a__ =prompt_text if handle_long_generation == "hole": a__ =inputs['''input_ids'''].shape[-1] if "max_new_tokens" in generate_kwargs: a__ =generate_kwargs['''max_new_tokens'''] else: a__ =generate_kwargs.get('''max_length''', self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('''We cannot infer how many new tokens are expected''' ) if cur_len + new_tokens > self.tokenizer.model_max_length: a__ =self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( '''We cannot use `hole` to handle this generation the number of desired tokens exceeds the''' ''' models max length''' ) a__ =inputs['''input_ids'''][:, -keep_length:] if "attention_mask" in inputs: a__ =inputs['''attention_mask'''][:, -keep_length:] return inputs def _UpperCAmelCase ( self, lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" a__ =model_inputs['''input_ids'''] a__ =model_inputs.get('''attention_mask''', lowercase_ ) # Allow empty prompts if input_ids.shape[1] == 0: a__ =None a__ =None a__ =1 else: a__ =input_ids.shape[0] a__ =model_inputs.pop('''prompt_text''' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. a__ =generate_kwargs.pop('''prefix_length''', 0 ) if prefix_length > 0: a__ ='''max_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].max_new_tokens is not None ) if not has_max_new_tokens: a__ =generate_kwargs.get('''max_length''' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length a__ ='''min_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL a__ =self.model.generate(input_ids=lowercase_, attention_mask=lowercase_, **lowercase_ ) a__ =generated_sequence.shape[0] if self.framework == "pt": a__ =generated_sequence.reshape(lowercase_, out_b // in_b, *generated_sequence.shape[1:] ) elif self.framework == "tf": a__ =tf.reshape(lowercase_, (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def _UpperCAmelCase ( self, lowercase_, lowercase_=ReturnType.FULL_TEXT, lowercase_=True ) -> Optional[int]: """simple docstring""" a__ =model_outputs['''generated_sequence'''][0] a__ =model_outputs['''input_ids'''] a__ =model_outputs['''prompt_text'''] a__ =generated_sequence.numpy().tolist() a__ =[] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: a__ ={'''generated_token_ids''': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text a__ =self.tokenizer.decode( lowercase_, skip_special_tokens=lowercase_, clean_up_tokenization_spaces=lowercase_, ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: a__ =0 else: a__ =len( self.tokenizer.decode( input_ids[0], skip_special_tokens=lowercase_, clean_up_tokenization_spaces=lowercase_, ) ) if return_type == ReturnType.FULL_TEXT: a__ =prompt_text + text[prompt_length:] else: a__ =text[prompt_length:] a__ ={'''generated_text''': all_text} records.append(lowercase_ ) return records
188
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class __magic_name__ ( lowerCamelCase__ ): '''simple docstring''' def __init__( self, lowercase_, lowercase_=13, lowercase_=7, lowercase_=True, lowercase_=True, lowercase_=True, lowercase_=True, lowercase_=True, lowercase_=False, lowercase_=False, lowercase_=False, lowercase_=2, lowercase_=99, lowercase_=0, lowercase_=32, lowercase_=5, lowercase_=4, lowercase_=0.1, lowercase_=0.1, lowercase_=512, lowercase_=12, lowercase_=2, lowercase_=0.02, lowercase_=3, lowercase_=4, lowercase_="last", lowercase_=None, lowercase_=None, ) -> List[Any]: """simple docstring""" a__ =parent a__ =batch_size a__ =seq_length a__ =is_training a__ =use_input_lengths a__ =use_token_type_ids a__ =use_labels a__ =gelu_activation a__ =sinusoidal_embeddings a__ =causal a__ =asm a__ =n_langs a__ =vocab_size a__ =n_special a__ =hidden_size a__ =num_hidden_layers a__ =num_attention_heads a__ =hidden_dropout_prob a__ =attention_probs_dropout_prob a__ =max_position_embeddings a__ =type_vocab_size a__ =type_sequence_label_size a__ =initializer_range a__ =num_labels a__ =num_choices a__ =summary_type a__ =use_proj a__ =scope def _UpperCAmelCase ( self ) -> Any: """simple docstring""" a__ =ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) a__ =random_attention_mask([self.batch_size, self.seq_length] ) a__ =None if self.use_input_lengths: a__ =( ids_tensor([self.batch_size], vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length a__ =None if self.use_token_type_ids: a__ =ids_tensor([self.batch_size, self.seq_length], self.n_langs ) a__ =None a__ =None a__ =None if self.use_labels: a__ =ids_tensor([self.batch_size], self.type_sequence_label_size ) a__ =ids_tensor([self.batch_size, self.seq_length], self.num_labels ) a__ =ids_tensor([self.batch_size], 2 ).float() a__ =ids_tensor([self.batch_size], self.num_choices ) a__ =self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _UpperCAmelCase ( self ) -> Any: """simple docstring""" return FlaubertConfig( vocab_size=self.vocab_size, n_special=self.n_special, emb_dim=self.hidden_size, n_layers=self.num_hidden_layers, n_heads=self.num_attention_heads, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, gelu_activation=self.gelu_activation, sinusoidal_embeddings=self.sinusoidal_embeddings, asm=self.asm, causal=self.causal, n_langs=self.n_langs, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, summary_type=self.summary_type, use_proj=self.use_proj, ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, ) -> Dict: """simple docstring""" a__ =FlaubertModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() a__ =model(lowercase_, lengths=lowercase_, langs=lowercase_ ) a__ =model(lowercase_, langs=lowercase_ ) a__ =model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, ) -> str: """simple docstring""" a__ =FlaubertWithLMHeadModel(lowercase_ ) model.to(lowercase_ ) model.eval() a__ =model(lowercase_, token_type_ids=lowercase_, labels=lowercase_ ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, ) -> Dict: """simple docstring""" a__ =FlaubertForQuestionAnsweringSimple(lowercase_ ) model.to(lowercase_ ) model.eval() a__ =model(lowercase_ ) a__ =model(lowercase_, start_positions=lowercase_, end_positions=lowercase_ ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, ) -> Optional[Any]: """simple docstring""" a__ =FlaubertForQuestionAnswering(lowercase_ ) model.to(lowercase_ ) model.eval() a__ =model(lowercase_ ) a__ =model( lowercase_, start_positions=lowercase_, end_positions=lowercase_, cls_index=lowercase_, is_impossible=lowercase_, p_mask=lowercase_, ) a__ =model( lowercase_, start_positions=lowercase_, end_positions=lowercase_, cls_index=lowercase_, is_impossible=lowercase_, ) ((a__), ) =result_with_labels.to_tuple() a__ =model(lowercase_, start_positions=lowercase_, end_positions=lowercase_ ) ((a__), ) =result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape, () ) self.parent.assertEqual(result.start_top_log_probs.shape, (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape, (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape, (self.batch_size,) ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, ) -> Optional[Any]: """simple docstring""" a__ =FlaubertForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() a__ =model(lowercase_ ) a__ =model(lowercase_, labels=lowercase_ ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, ) -> Optional[int]: """simple docstring""" a__ =self.num_labels a__ =FlaubertForTokenClassification(lowercase_ ) model.to(lowercase_ ) model.eval() a__ =model(lowercase_, attention_mask=lowercase_, labels=lowercase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, ) -> Dict: """simple docstring""" a__ =self.num_choices a__ =FlaubertForMultipleChoice(config=lowercase_ ) model.to(lowercase_ ) model.eval() a__ =input_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() a__ =token_type_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() a__ =input_mask.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() a__ =model( lowercase_, attention_mask=lowercase_, token_type_ids=lowercase_, labels=lowercase_, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def _UpperCAmelCase ( self ) -> Dict: """simple docstring""" a__ =self.prepare_config_and_inputs() ( ( a__ ), ( a__ ), ( a__ ), ( a__ ), ( a__ ), ( a__ ), ( a__ ), ( a__ ), ( a__ ), ) =config_and_inputs a__ ={ '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class __magic_name__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : str = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) lowerCamelCase__ : Dict = ( { 'feature-extraction': FlaubertModel, 'fill-mask': FlaubertWithLMHeadModel, 'question-answering': FlaubertForQuestionAnsweringSimple, 'text-classification': FlaubertForSequenceClassification, 'token-classification': FlaubertForTokenClassification, 'zero-shot': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_ ) -> str: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _UpperCAmelCase ( self, lowercase_, lowercase_, lowercase_=False ) -> str: """simple docstring""" a__ =super()._prepare_for_class(lowercase_, lowercase_, return_labels=lowercase_ ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": a__ =torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=lowercase_ ) a__ =torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=lowercase_ ) return inputs_dict def _UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" a__ =FlaubertModelTester(self ) a__ =ConfigTester(self, config_class=lowercase_, emb_dim=37 ) def _UpperCAmelCase ( self ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Any: """simple docstring""" a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*lowercase_ ) def _UpperCAmelCase ( self ) -> str: """simple docstring""" a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*lowercase_ ) def _UpperCAmelCase ( self ) -> Dict: """simple docstring""" a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*lowercase_ ) def _UpperCAmelCase ( self ) -> Dict: """simple docstring""" a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*lowercase_ ) def _UpperCAmelCase ( self ) -> Any: """simple docstring""" a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*lowercase_ ) def _UpperCAmelCase ( self ) -> Any: """simple docstring""" a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*lowercase_ ) def _UpperCAmelCase ( self ) -> Tuple: """simple docstring""" a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*lowercase_ ) @slow def _UpperCAmelCase ( self ) -> Tuple: """simple docstring""" for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ =FlaubertModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @slow @require_torch_gpu def _UpperCAmelCase ( self ) -> int: """simple docstring""" a__, a__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return a__ =True a__ =model_class(config=lowercase_ ) a__ =self._prepare_for_class(lowercase_, lowercase_ ) a__ =torch.jit.trace( lowercase_, (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowercase_, os.path.join(lowercase_, '''traced_model.pt''' ) ) a__ =torch.jit.load(os.path.join(lowercase_, '''traced_model.pt''' ), map_location=lowercase_ ) loaded(inputs_dict['''input_ids'''].to(lowercase_ ), inputs_dict['''attention_mask'''].to(lowercase_ ) ) @require_torch class __magic_name__ ( unittest.TestCase ): '''simple docstring''' @slow def _UpperCAmelCase ( self ) -> List[str]: """simple docstring""" a__ =FlaubertModel.from_pretrained('''flaubert/flaubert_base_cased''' ) a__ =torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): a__ =model(lowercase_ )[0] a__ =torch.Size((1, 11, 768) ) self.assertEqual(output.shape, lowercase_ ) a__ =torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], lowercase_, atol=1E-4 ) )
188
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __lowercase: Optional[Any] = { "configuration_longt5": ["LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP", "LongT5Config", "LongT5OnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase: List[str] = [ "LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST", "LongT5EncoderModel", "LongT5ForConditionalGeneration", "LongT5Model", "LongT5PreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase: Dict = [ "FlaxLongT5ForConditionalGeneration", "FlaxLongT5Model", "FlaxLongT5PreTrainedModel", ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys __lowercase: List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
369
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase: Dict = { "configuration_time_series_transformer": [ "TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimeSeriesTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase: Optional[int] = [ "TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimeSeriesTransformerForPrediction", "TimeSeriesTransformerModel", "TimeSeriesTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys __lowercase: Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
31
0
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case ( a_, a_, a_, unittest.TestCase ): SCREAMING_SNAKE_CASE_ : List[Any] = AltDiffusionPipeline SCREAMING_SNAKE_CASE_ : List[Any] = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE_ : Tuple = TEXT_TO_IMAGE_BATCH_PARAMS SCREAMING_SNAKE_CASE_ : List[str] = TEXT_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE_ : int = TEXT_TO_IMAGE_IMAGE_PARAMS def lowercase_ ( self : Tuple)-> Union[str, Any]: '''simple docstring''' torch.manual_seed(0) __lowerCAmelCase: str = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , ) __lowerCAmelCase: Optional[int] = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=_lowercase , set_alpha_to_one=_lowercase , ) torch.manual_seed(0) __lowerCAmelCase: Optional[int] = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0) __lowerCAmelCase: Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , projection_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_2 , ) __lowerCAmelCase: Optional[int] = CLIPTextModel(_lowercase) __lowerCAmelCase: Union[str, Any] = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta") __lowerCAmelCase: int = 7_7 __lowerCAmelCase: Union[str, Any] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowercase_ ( self : Optional[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int]=0)-> Any: '''simple docstring''' if str(_lowercase).startswith("mps"): __lowerCAmelCase: Tuple = torch.manual_seed(_lowercase) else: __lowerCAmelCase: Tuple = torch.Generator(device=_lowercase).manual_seed(_lowercase) __lowerCAmelCase: Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowercase_ ( self : Optional[int])-> List[str]: '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3e-3) def lowercase_ ( self : Union[str, Any])-> str: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3) def lowercase_ ( self : str)-> Optional[Any]: '''simple docstring''' __lowerCAmelCase: List[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase: int = self.get_dummy_components() torch.manual_seed(0) __lowerCAmelCase: List[Any] = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_0_0_2 , ) # TODO: remove after fixing the non-deterministic text encoder __lowerCAmelCase: Any = RobertaSeriesModelWithTransformation(_lowercase) __lowerCAmelCase: List[str] = text_encoder __lowerCAmelCase: Any = AltDiffusionPipeline(**_lowercase) __lowerCAmelCase: Optional[int] = alt_pipe.to(_lowercase) alt_pipe.set_progress_bar_config(disable=_lowercase) __lowerCAmelCase: int = self.get_dummy_inputs(_lowercase) __lowerCAmelCase: Optional[int] = """A photo of an astronaut""" __lowerCAmelCase: List[Any] = alt_pipe(**_lowercase) __lowerCAmelCase: List[str] = output.images __lowerCAmelCase: Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __lowerCAmelCase: Optional[int] = np.array( [0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def lowercase_ ( self : str)-> Any: '''simple docstring''' __lowerCAmelCase: Any = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase: Optional[Any] = self.get_dummy_components() __lowerCAmelCase: str = PNDMScheduler(skip_prk_steps=_lowercase) torch.manual_seed(0) __lowerCAmelCase: int = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_0_0_2 , ) # TODO: remove after fixing the non-deterministic text encoder __lowerCAmelCase: Dict = RobertaSeriesModelWithTransformation(_lowercase) __lowerCAmelCase: Tuple = text_encoder __lowerCAmelCase: Tuple = AltDiffusionPipeline(**_lowercase) __lowerCAmelCase: Dict = alt_pipe.to(_lowercase) alt_pipe.set_progress_bar_config(disable=_lowercase) __lowerCAmelCase: int = self.get_dummy_inputs(_lowercase) __lowerCAmelCase: List[str] = alt_pipe(**_lowercase) __lowerCAmelCase: List[str] = output.images __lowerCAmelCase: Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __lowerCAmelCase: Union[str, Any] = np.array( [0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 @slow @require_torch_gpu class snake_case ( unittest.TestCase ): def lowercase_ ( self : Dict)-> Union[str, Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self : Dict)-> Optional[Any]: '''simple docstring''' __lowerCAmelCase: Any = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion" , safety_checker=_lowercase) __lowerCAmelCase: Dict = alt_pipe.to(_lowercase) alt_pipe.set_progress_bar_config(disable=_lowercase) __lowerCAmelCase: List[Any] = """A painting of a squirrel eating a burger""" __lowerCAmelCase: str = torch.manual_seed(0) __lowerCAmelCase: int = alt_pipe([prompt] , generator=_lowercase , guidance_scale=6.0 , num_inference_steps=2_0 , output_type="np") __lowerCAmelCase: List[str] = output.images __lowerCAmelCase: Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowerCAmelCase: List[Any] = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def lowercase_ ( self : Any)-> str: '''simple docstring''' __lowerCAmelCase: Tuple = DDIMScheduler.from_pretrained("BAAI/AltDiffusion" , subfolder="scheduler") __lowerCAmelCase: str = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion" , scheduler=_lowercase , safety_checker=_lowercase) __lowerCAmelCase: Tuple = alt_pipe.to(_lowercase) alt_pipe.set_progress_bar_config(disable=_lowercase) __lowerCAmelCase: Optional[Any] = """A painting of a squirrel eating a burger""" __lowerCAmelCase: Union[str, Any] = torch.manual_seed(0) __lowerCAmelCase: Union[str, Any] = alt_pipe([prompt] , generator=_lowercase , num_inference_steps=2 , output_type="numpy") __lowerCAmelCase: Any = output.images __lowerCAmelCase: int = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowerCAmelCase: Union[str, Any] = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
217
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) __snake_case : Tuple = logging.getLogger() def _UpperCAmelCase ( ): '''simple docstring''' a_ : int = argparse.ArgumentParser() parser.add_argument("""-f""") a_ : Any = parser.parse_args() return args.f class A__(a_ ): """simple docstring""" def UpperCamelCase__ ( self ) -> None: a_ : List[str] = logging.StreamHandler(sys.stdout ) logger.addHandler(_lowercase ) def UpperCamelCase__ ( self , _lowercase ) -> Dict: a_ : List[str] = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , """run_glue_deebert.py""" ) with patch.object(_lowercase , """argv""" , _lowercase ): a_ : Optional[int] = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(_lowercase , 0.6_6_6 ) @slow @require_torch_non_multi_gpu def UpperCamelCase__ ( self ) -> List[str]: a_ : Tuple = """ --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage """.split() self.run_and_check(_lowercase ) a_ : Tuple = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(_lowercase ) a_ : Optional[Any] = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(_lowercase )
248
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) UpperCAmelCase_ = {'configuration_beit': ['BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BeitConfig', 'BeitOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['BeitFeatureExtractor'] UpperCAmelCase_ = ['BeitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'BEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BeitForImageClassification', 'BeitForMaskedImageModeling', 'BeitForSemanticSegmentation', 'BeitModel', 'BeitPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'FlaxBeitForImageClassification', 'FlaxBeitForMaskedImageModeling', 'FlaxBeitModel', 'FlaxBeitPreTrainedModel', ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
29
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING UpperCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(__lowerCamelCase) class lowerCamelCase__( __lowerCamelCase): def __init__( self: str , **UpperCamelCase_: int ): super().__init__(**UpperCamelCase_ ) if self.framework == "tf": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) requires_backends(self , """vision""" ) self.check_model_type(UpperCamelCase_ ) def __call__( self: Union[str, Any] , UpperCamelCase_: Union[str, "Image.Image", List[Dict[str, Any]]] , UpperCamelCase_: Union[str, List[str]] = None , **UpperCamelCase_: List[str] , ): if "text_queries" in kwargs: __lowerCamelCase = kwargs.pop("""text_queries""" ) if isinstance(UpperCamelCase_ , (str, Image.Image) ): __lowerCamelCase = {"""image""": image, """candidate_labels""": candidate_labels} else: __lowerCamelCase = image __lowerCamelCase = super().__call__(UpperCamelCase_ , **UpperCamelCase_ ) return results def lowerCAmelCase__ ( self: List[str] , **UpperCamelCase_: Dict ): __lowerCamelCase = {} if "threshold" in kwargs: __lowerCamelCase = kwargs["""threshold"""] if "top_k" in kwargs: __lowerCamelCase = kwargs["""top_k"""] return {}, {}, postprocess_params def lowerCAmelCase__ ( self: Any , UpperCamelCase_: Optional[Any] ): __lowerCamelCase = load_image(inputs["""image"""] ) __lowerCamelCase = inputs["""candidate_labels"""] if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = candidate_labels.split(""",""" ) __lowerCamelCase = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(UpperCamelCase_ ): __lowerCamelCase = self.tokenizer(UpperCamelCase_ , return_tensors=self.framework ) __lowerCamelCase = self.image_processor(UpperCamelCase_ , return_tensors=self.framework ) yield { "is_last": i == len(UpperCamelCase_ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Tuple ): __lowerCamelCase = model_inputs.pop("""target_size""" ) __lowerCamelCase = model_inputs.pop("""candidate_label""" ) __lowerCamelCase = model_inputs.pop("""is_last""" ) __lowerCamelCase = self.model(**UpperCamelCase_ ) __lowerCamelCase = {"""target_size""": target_size, """candidate_label""": candidate_label, """is_last""": is_last, **outputs} return model_outputs def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Any , UpperCamelCase_: Dict=0.1 , UpperCamelCase_: Union[str, Any]=None ): __lowerCamelCase = [] for model_output in model_outputs: __lowerCamelCase = model_output["""candidate_label"""] __lowerCamelCase = BaseModelOutput(UpperCamelCase_ ) __lowerCamelCase = self.image_processor.post_process_object_detection( outputs=UpperCamelCase_ , threshold=UpperCamelCase_ , target_sizes=model_output["""target_size"""] )[0] for index in outputs["scores"].nonzero(): __lowerCamelCase = outputs["""scores"""][index].item() __lowerCamelCase = self._get_bounding_box(outputs["""boxes"""][index][0] ) __lowerCamelCase = {"""score""": score, """label""": label, """box""": box} results.append(UpperCamelCase_ ) __lowerCamelCase = sorted(UpperCamelCase_ , key=lambda UpperCamelCase_ : x["score"] , reverse=UpperCamelCase_ ) if top_k: __lowerCamelCase = results[:top_k] return results def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: "torch.Tensor" ): if self.framework != "pt": raise ValueError("""The ZeroShotObjectDetectionPipeline is only available in PyTorch.""" ) __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = box.int().tolist() __lowerCamelCase = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
29
1
def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' UpperCAmelCase = [0] * len(UpperCamelCase__ ) UpperCAmelCase = [] UpperCAmelCase = [] UpperCAmelCase = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(UpperCamelCase__ ) ): if indegree[i] == 0: queue.append(UpperCamelCase__ ) while queue: UpperCAmelCase = queue.pop(0 ) cnt += 1 topo.append(UpperCamelCase__ ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(UpperCamelCase__ ) if cnt != len(UpperCamelCase__ ): print('''Cycle exists''' ) else: print(UpperCamelCase__ ) # Adjacency List of Graph __A : Dict = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
273
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase __A : Dict = logging.get_logger(__name__) __A : str = { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json", "allenai/longformer-large-4096": "https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json", "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json" ), } class A_ (a_ ): UpperCAmelCase__ = '''longformer''' def __init__( self , _A = 5_1_2 , _A = 2 , _A = 1 , _A = 0 , _A = 2 , _A = 3_0_5_2_2 , _A = 7_6_8 , _A = 1_2 , _A = 1_2 , _A = 3_0_7_2 , _A = "gelu" , _A = 0.1 , _A = 0.1 , _A = 5_1_2 , _A = 2 , _A = 0.02 , _A = 1E-12 , _A = False , **_A , ): '''simple docstring''' super().__init__(pad_token_id=_A , **_A ) UpperCAmelCase = attention_window UpperCAmelCase = sep_token_id UpperCAmelCase = bos_token_id UpperCAmelCase = eos_token_id UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = onnx_export class A_ (a_ ): def __init__( self , _A , _A = "default" , _A = None ): '''simple docstring''' super().__init__(_A , _A , _A ) UpperCAmelCase = True @property def _lowercase ( self ): '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCAmelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''global_attention_mask''', dynamic_axis), ] ) @property def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = super().outputs if self.task == "default": UpperCAmelCase = {0: '''batch'''} return outputs @property def _lowercase ( self ): '''simple docstring''' return 1E-4 @property def _lowercase ( self ): '''simple docstring''' return max(super().default_onnx_opset , 1_4 ) def _lowercase ( self , _A , _A = -1 , _A = -1 , _A = False , _A = None , ): '''simple docstring''' UpperCAmelCase = super().generate_dummy_inputs( preprocessor=_A , batch_size=_A , seq_length=_A , is_pair=_A , framework=_A ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly UpperCAmelCase = torch.zeros_like(inputs['''input_ids'''] ) # make every second token global UpperCAmelCase = 1 return inputs
273
1
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Dict ): '''simple docstring''' if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , _UpperCAmelCase : nn.Module , _UpperCAmelCase : int ): """simple docstring""" super().__init__() UpperCAmelCase__ = module UpperCAmelCase__ = nn.Sequential( nn.Linear(module.in_features , _UpperCAmelCase , bias=_UpperCAmelCase ) , nn.Linear(_UpperCAmelCase , module.out_features , bias=_UpperCAmelCase ) , ) UpperCAmelCase__ = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=_UpperCAmelCase ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : List[str] , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Optional[int] ): """simple docstring""" return self.module(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) + self.adapter(_UpperCAmelCase ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : List[str] = """bigscience/bloom-1b7""" # Constant values lowerCAmelCase_ : Optional[int] = 2.1_09_65_95_52_69_25_74 lowerCAmelCase_ : int = """Hello my name is""" lowerCAmelCase_ : Any = set() EXPECTED_OUTPUTS.add("""Hello my name is John and I am a professional photographer. I""" ) EXPECTED_OUTPUTS.add("""Hello my name is John.\nI am a friend of your father.\n""" ) EXPECTED_OUTPUTS.add("""Hello my name is John Doe, I am a student at the University""" ) lowerCAmelCase_ : int = 10 def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" UpperCAmelCase__ = AutoTokenizer.from_pretrained(self.model_name ) class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" super().setUp() # Models and tokenizer UpperCAmelCase__ = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map="""auto""" ) UpperCAmelCase__ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map="""auto""" ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = self.model_abit.config self.assertTrue(hasattr(_UpperCAmelCase , """quantization_config""" ) ) UpperCAmelCase__ = config.to_dict() UpperCAmelCase__ = config.to_diff_dict() UpperCAmelCase__ = config.to_json_string() def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" from bitsandbytes.nn import Paramsabit UpperCAmelCase__ = self.model_fpaa.get_memory_footprint() UpperCAmelCase__ = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) UpperCAmelCase__ = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(_UpperCAmelCase , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = self.tokenizer(self.input_text , return_tensors="""pt""" ) UpperCAmelCase__ = self.model_abit.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" UpperCAmelCase__ = BitsAndBytesConfig() UpperCAmelCase__ = True UpperCAmelCase__ = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_UpperCAmelCase , device_map="""auto""" ) UpperCAmelCase__ = self.tokenizer(self.input_text , return_tensors="""pt""" ) UpperCAmelCase__ = model_abit_from_config.generate( input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" with self.assertRaises(_UpperCAmelCase ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" UpperCAmelCase__ = BitsAndBytesConfig() with self.assertRaises(_UpperCAmelCase ): UpperCAmelCase__ = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_UpperCAmelCase , load_in_abit=_UpperCAmelCase , device_map="""auto""" , bnb_abit_quant_type="""nf4""" , ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" with self.assertRaises(_UpperCAmelCase ): # Tries with `str` self.model_abit.to("""cpu""" ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.to(torch.device("""cuda:0""" ) ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.float() with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything UpperCAmelCase__ = self.tokenizer(self.input_text , return_tensors="""pt""" ) UpperCAmelCase__ = self.model_fpaa.to(torch.floataa ) UpperCAmelCase__ = self.model_fpaa.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error UpperCAmelCase__ = self.model_fpaa.to("""cpu""" ) # Check this does not throw an error UpperCAmelCase__ = self.model_fpaa.half() # Check this does not throw an error UpperCAmelCase__ = self.model_fpaa.float() def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" UpperCAmelCase__ = AutoModelForSeqaSeqLM.from_pretrained("""t5-small""" , load_in_abit=_UpperCAmelCase , device_map="""auto""" ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = """t5-small""" UpperCAmelCase__ = """google/flan-t5-small""" # flan-t5 uses dense-act instead of dense-relu-dense UpperCAmelCase__ = AutoTokenizer.from_pretrained(cls.model_name ) UpperCAmelCase__ = """Translate in German: Hello, my dog is cute""" def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" from transformers import TaForConditionalGeneration UpperCAmelCase__ = TaForConditionalGeneration._keep_in_fpaa_modules UpperCAmelCase__ = None # test with `t5-small` UpperCAmelCase__ = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map="""auto""" ) UpperCAmelCase__ = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) UpperCAmelCase__ = model.generate(**_UpperCAmelCase ) # test with `flan-t5-small` UpperCAmelCase__ = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_UpperCAmelCase , device_map="""auto""" ) UpperCAmelCase__ = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) UpperCAmelCase__ = model.generate(**_UpperCAmelCase ) UpperCAmelCase__ = modules def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` UpperCAmelCase__ = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map="""auto""" ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) UpperCAmelCase__ = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) UpperCAmelCase__ = model.generate(**_UpperCAmelCase ) # test with `flan-t5-small` UpperCAmelCase__ = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_UpperCAmelCase , device_map="""auto""" ) UpperCAmelCase__ = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) UpperCAmelCase__ = model.generate(**_UpperCAmelCase ) class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" super().setUp() # model_name UpperCAmelCase__ = """bigscience/bloom-560m""" UpperCAmelCase__ = """t5-small""" # Different types of model UpperCAmelCase__ = AutoModel.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map="""auto""" ) # Sequence classification model UpperCAmelCase__ = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=_UpperCAmelCase , device_map="""auto""" ) # CausalLM model UpperCAmelCase__ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map="""auto""" ) # Seq2seq model UpperCAmelCase__ = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=_UpperCAmelCase , device_map="""auto""" ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" super().setUp() def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" del self.pipe gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" UpperCAmelCase__ = pipeline( """text-generation""" , model=self.model_name , model_kwargs={"""device_map""": """auto""", """load_in_4bit""": True, """torch_dtype""": torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass UpperCAmelCase__ = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]["""generated_text"""] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" super().setUp() def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" UpperCAmelCase__ = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=_UpperCAmelCase , device_map="""balanced""" ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model UpperCAmelCase__ = self.tokenizer(self.input_text , return_tensors="""pt""" ) # Second real batch UpperCAmelCase__ = model_parallel.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" UpperCAmelCase__ = """facebook/opt-350m""" super().setUp() def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" if version.parse(importlib.metadata.version("""bitsandbytes""" ) ) < version.parse("""0.37.0""" ): return # Step 1: freeze all parameters UpperCAmelCase__ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): UpperCAmelCase__ = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability UpperCAmelCase__ = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(_UpperCAmelCase ) ): UpperCAmelCase__ = LoRALayer(module.q_proj , rank=16 ) UpperCAmelCase__ = LoRALayer(module.k_proj , rank=16 ) UpperCAmelCase__ = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch UpperCAmelCase__ = self.tokenizer("""Test batch """ , return_tensors="""pt""" ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): UpperCAmelCase__ = model.forward(**_UpperCAmelCase ) out.logits.norm().backward() for module in model.modules(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(_UpperCAmelCase , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : Any = """gpt2-xl""" lowerCAmelCase_ : Optional[Any] = 3.31_91_85_48_54_15_21_87
61
'''simple docstring''' import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) UpperCAmelCase_ = logging.getLogger(__name__) UpperCAmelCase_ = 'Hello world! cécé herlolip' UpperCAmelCase_ = namedtuple( 'BertAbsConfig', [ 'temp_dir', 'large', 'use_bert_emb', 'finetune_bert', 'encoder', 'share_emb', 'max_pos', 'enc_layers', 'enc_hidden_size', 'enc_heads', 'enc_ff_size', 'enc_dropout', 'dec_layers', 'dec_hidden_size', 'dec_heads', 'dec_ff_size', 'dec_dropout', ], ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple ): '''simple docstring''' UpperCAmelCase__ = BertAbsConfig( temp_dir=""".""" , finetune_bert=SCREAMING_SNAKE_CASE__ , large=SCREAMING_SNAKE_CASE__ , share_emb=SCREAMING_SNAKE_CASE__ , use_bert_emb=SCREAMING_SNAKE_CASE__ , encoder="""bert""" , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) UpperCAmelCase__ = torch.load(SCREAMING_SNAKE_CASE__ , lambda SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : storage ) UpperCAmelCase__ = AbsSummarizer(SCREAMING_SNAKE_CASE__ , torch.device("""cpu""" ) , SCREAMING_SNAKE_CASE__ ) original.eval() UpperCAmelCase__ = BertAbsSummarizer(SCREAMING_SNAKE_CASE__ , torch.device("""cpu""" ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("""convert the model""" ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("""Make sure that the models' outputs are identical""" ) UpperCAmelCase__ = BertTokenizer.from_pretrained("""bert-base-uncased""" ) # prepare the model inputs UpperCAmelCase__ = tokenizer.encode("""This is sample éàalj'-.""" ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(SCREAMING_SNAKE_CASE__ )) ) UpperCAmelCase__ = torch.tensor(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) UpperCAmelCase__ = tokenizer.encode("""This is sample 3 éàalj'-.""" ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(SCREAMING_SNAKE_CASE__ )) ) UpperCAmelCase__ = torch.tensor(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass UpperCAmelCase__ = encoder_input_ids UpperCAmelCase__ = decoder_input_ids UpperCAmelCase__ = UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = UpperCAmelCase__ = None UpperCAmelCase__ = UpperCAmelCase__ = None UpperCAmelCase__ = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical UpperCAmelCase__ = original(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )[0] UpperCAmelCase__ = original.generator(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = new_model( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )[0] UpperCAmelCase__ = new_model.generator(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print("""Maximum absolute difference beween weights: {:.2f}""".format(SCREAMING_SNAKE_CASE__ ) ) UpperCAmelCase__ = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print("""Maximum absolute difference beween weights: {:.2f}""".format(SCREAMING_SNAKE_CASE__ ) ) UpperCAmelCase__ = torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) if are_identical: logging.info("""all weights are equal up to 1e-3""" ) else: raise ValueError("""the weights are different. The new model is likely different from the original one.""" ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("""saving the model's state dictionary""" ) torch.save( new_model.state_dict() , """./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin""" ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument( '--bertabs_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.', ) UpperCAmelCase_ = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
61
1
"""simple docstring""" import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__ : def __init__( self : int , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[Any]=13 , _lowerCamelCase : int=7 , _lowerCamelCase : List[str]=True , _lowerCamelCase : Union[str, Any]=True , _lowerCamelCase : int=True , _lowerCamelCase : List[Any]=True , _lowerCamelCase : List[str]=99 , _lowerCamelCase : Tuple=32 , _lowerCamelCase : Optional[Any]=5 , _lowerCamelCase : Tuple=4 , _lowerCamelCase : Dict=37 , _lowerCamelCase : Optional[int]="gelu" , _lowerCamelCase : int=0.1 , _lowerCamelCase : str=0.1 , _lowerCamelCase : List[Any]=128 , _lowerCamelCase : Any=32 , _lowerCamelCase : Any=16 , _lowerCamelCase : List[Any]=2 , _lowerCamelCase : Union[str, Any]=0.0_2 , _lowerCamelCase : Dict=3 , _lowerCamelCase : Tuple=4 , _lowerCamelCase : Tuple=None , ): _snake_case = parent _snake_case = batch_size _snake_case = seq_length _snake_case = is_training _snake_case = use_input_mask _snake_case = use_token_type_ids _snake_case = use_labels _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = num_labels _snake_case = num_choices _snake_case = scope def lowercase ( self : List[str] ): _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case = None if self.use_input_mask: _snake_case = random_attention_mask([self.batch_size, self.seq_length] ) _snake_case = None if self.use_token_type_ids: _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _snake_case = None _snake_case = None _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _snake_case = ids_tensor([self.batch_size] , self.num_choices ) _snake_case = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self : Dict ): return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , ) def lowercase ( self : Optional[int] ): ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) = self.prepare_config_and_inputs() _snake_case = True _snake_case = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _snake_case = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowercase ( self : str , _lowerCamelCase : Dict , _lowerCamelCase : Dict , _lowerCamelCase : List[Any] , _lowerCamelCase : Dict , _lowerCamelCase : Dict , _lowerCamelCase : List[str] , _lowerCamelCase : List[str] ): _snake_case = NezhaModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _snake_case = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase ) _snake_case = model(_lowerCamelCase , token_type_ids=_lowerCamelCase ) _snake_case = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase ( self : Optional[Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Any , _lowerCamelCase : List[Any] , _lowerCamelCase : str , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[Any] , _lowerCamelCase : List[str] , _lowerCamelCase : Union[str, Any] , ): _snake_case = True _snake_case = NezhaModel(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _snake_case = model( _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , encoder_attention_mask=_lowerCamelCase , ) _snake_case = model( _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , ) _snake_case = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase ( self : int , _lowerCamelCase : Any , _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[Any] , _lowerCamelCase : str , _lowerCamelCase : Optional[int] , _lowerCamelCase : Dict , _lowerCamelCase : Optional[int] ): _snake_case = NezhaForMaskedLM(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _snake_case = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self : Optional[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Dict , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : List[Any] ): _snake_case = NezhaForNextSentencePrediction(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _snake_case = model( _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowercase ( self : Union[str, Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : str , _lowerCamelCase : Any , _lowerCamelCase : List[str] , _lowerCamelCase : Dict , _lowerCamelCase : List[str] , _lowerCamelCase : Tuple ): _snake_case = NezhaForPreTraining(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _snake_case = model( _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase , next_sentence_label=_lowerCamelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowercase ( self : Optional[Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : int , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Dict , _lowerCamelCase : List[Any] , _lowerCamelCase : int ): _snake_case = NezhaForQuestionAnswering(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _snake_case = model( _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , start_positions=_lowerCamelCase , end_positions=_lowerCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self : List[str] , _lowerCamelCase : List[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : Any , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[Any] ): _snake_case = self.num_labels _snake_case = NezhaForSequenceClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _snake_case = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self : int , _lowerCamelCase : Any , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Any , _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[Any] ): _snake_case = self.num_labels _snake_case = NezhaForTokenClassification(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _snake_case = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self : str , _lowerCamelCase : List[Any] , _lowerCamelCase : Any , _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[Any] , _lowerCamelCase : int , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple ): _snake_case = self.num_choices _snake_case = NezhaForMultipleChoice(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _snake_case = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _snake_case = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _snake_case = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _snake_case = model( _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase ( self : Union[str, Any] ): _snake_case = self.prepare_config_and_inputs() ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) = config_and_inputs _snake_case = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( A_ , A_ , A_ , unittest.TestCase ): __a = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) __a = ( { """feature-extraction""": NezhaModel, """fill-mask""": NezhaForMaskedLM, """question-answering""": NezhaForQuestionAnswering, """text-classification""": NezhaForSequenceClassification, """token-classification""": NezhaForTokenClassification, """zero-shot""": NezhaForSequenceClassification, } if is_torch_available() else {} ) __a = True def lowercase ( self : List[Any] , _lowerCamelCase : Any , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any]=False ): _snake_case = super()._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) if return_labels: if model_class in get_values(_lowerCamelCase ): _snake_case = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_lowerCamelCase ) _snake_case = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowerCamelCase ) return inputs_dict def lowercase ( self : Dict ): _snake_case = NezhaModelTester(self ) _snake_case = ConfigTester(self , config_class=_lowerCamelCase , hidden_size=37 ) def lowercase ( self : Optional[int] ): self.config_tester.run_common_tests() def lowercase ( self : Union[str, Any] ): _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def lowercase ( self : List[str] ): _snake_case = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_lowerCamelCase ) def lowercase ( self : Tuple ): # This regression test was failing with PyTorch < 1.3 ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() _snake_case = None self.model_tester.create_and_check_model_as_decoder( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) def lowercase ( self : str ): _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCamelCase ) def lowercase ( self : Optional[int] ): _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowerCamelCase ) def lowercase ( self : Optional[int] ): _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*_lowerCamelCase ) def lowercase ( self : Any ): _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_lowerCamelCase ) def lowercase ( self : List[str] ): _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCamelCase ) def lowercase ( self : str ): _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCamelCase ) def lowercase ( self : int ): _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCamelCase ) @slow def lowercase ( self : int ): for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = NezhaModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) @slow @require_torch_gpu def lowercase ( self : int ): _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return _snake_case = True _snake_case = model_class(config=_lowerCamelCase ) _snake_case = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) _snake_case = torch.jit.trace( _lowerCamelCase , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_lowerCamelCase , os.path.join(_lowerCamelCase , '''bert.pt''' ) ) _snake_case = torch.jit.load(os.path.join(_lowerCamelCase , '''bert.pt''' ) , map_location=_lowerCamelCase ) loaded(inputs_dict['''input_ids'''].to(_lowerCamelCase ) , inputs_dict['''attention_mask'''].to(_lowerCamelCase ) ) @require_torch class lowerCAmelCase__ ( unittest.TestCase ): @slow def lowercase ( self : List[str] ): _snake_case = NezhaModel.from_pretrained('''sijunhe/nezha-cn-base''' ) _snake_case = torch.tensor([[0, 1, 2, 3, 4, 5]] ) _snake_case = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _snake_case = model(_lowerCamelCase , attention_mask=_lowerCamelCase )[0] _snake_case = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , _lowerCamelCase ) _snake_case = torch.tensor([[[0.0_6_8_5, 0.2_4_4_1, 0.1_1_0_2], [0.0_6_0_0, 0.1_9_0_6, 0.1_3_4_9], [0.0_2_2_1, 0.0_8_1_9, 0.0_5_8_6]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _lowerCamelCase , atol=1e-4 ) ) @slow def lowercase ( self : Tuple ): _snake_case = NezhaForMaskedLM.from_pretrained('''sijunhe/nezha-cn-base''' ) _snake_case = torch.tensor([[0, 1, 2, 3, 4, 5]] ) _snake_case = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _snake_case = model(_lowerCamelCase , attention_mask=_lowerCamelCase )[0] _snake_case = torch.Size((1, 6, 21128) ) self.assertEqual(output.shape , _lowerCamelCase ) _snake_case = torch.tensor( [[-2.7_9_3_9, -1.7_9_0_2, -2.2_1_8_9], [-2.8_5_8_5, -1.8_9_0_8, -2.3_7_2_3], [-2.6_4_9_9, -1.7_7_5_0, -2.2_5_5_8]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _lowerCamelCase , atol=1e-4 ) )
288
"""simple docstring""" import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename UpperCAmelCase__ = 'http://www.mocksite.com/file1.txt' UpperCAmelCase__ = '"text": ["foo", "foo"]' UpperCAmelCase__ = '6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8' class lowerCAmelCase__ : __a = 200 __a = {"""Content-Length""": """100"""} __a = {} def lowercase ( self : List[str] , **_lowerCamelCase : List[str] ): return [bytes(_lowerCamelCase , '''utf-8''' )] def _UpperCAmelCase ( *__lowerCamelCase : List[str] , **__lowerCamelCase : Dict ) -> Dict: return MockResponse() @pytest.mark.parametrize('''urls_type''' , [str, list, dict] ) def _UpperCAmelCase ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : str ) -> int: import requests monkeypatch.setattr(__lowerCamelCase , '''request''' , __lowerCamelCase ) _snake_case = URL if issubclass(__lowerCamelCase , __lowerCamelCase ): _snake_case = url elif issubclass(__lowerCamelCase , __lowerCamelCase ): _snake_case = [url] elif issubclass(__lowerCamelCase , __lowerCamelCase ): _snake_case = {'''train''': url} _snake_case = '''dummy''' _snake_case = '''downloads''' _snake_case = tmp_path _snake_case = DownloadConfig( cache_dir=os.path.join(__lowerCamelCase , __lowerCamelCase ) , use_etag=__lowerCamelCase , ) _snake_case = DownloadManager(dataset_name=__lowerCamelCase , download_config=__lowerCamelCase ) _snake_case = dl_manager.download(__lowerCamelCase ) _snake_case = urls for downloaded_paths in [downloaded_paths]: if isinstance(__lowerCamelCase , __lowerCamelCase ): _snake_case = [downloaded_paths] _snake_case = [urls] elif isinstance(__lowerCamelCase , __lowerCamelCase ): assert "train" in downloaded_paths.keys() _snake_case = downloaded_paths.values() _snake_case = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(__lowerCamelCase , __lowerCamelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] _snake_case = Path(__lowerCamelCase ) _snake_case = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() _snake_case = downloaded_path.read_text() assert content == CONTENT _snake_case = downloaded_path.with_suffix('''.json''' ) assert metadata_downloaded_path.exists() _snake_case = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('''paths_type''' , [str, list, dict] ) def _UpperCAmelCase ( __lowerCamelCase : int , __lowerCamelCase : str , __lowerCamelCase : Optional[int] ) -> int: _snake_case = str(__lowerCamelCase ) if issubclass(__lowerCamelCase , __lowerCamelCase ): _snake_case = filename elif issubclass(__lowerCamelCase , __lowerCamelCase ): _snake_case = [filename] elif issubclass(__lowerCamelCase , __lowerCamelCase ): _snake_case = {'''train''': filename} _snake_case = '''dummy''' _snake_case = xz_file.parent _snake_case = '''extracted''' _snake_case = DownloadConfig( cache_dir=__lowerCamelCase , use_etag=__lowerCamelCase , ) _snake_case = DownloadManager(dataset_name=__lowerCamelCase , download_config=__lowerCamelCase ) _snake_case = dl_manager.extract(__lowerCamelCase ) _snake_case = paths for extracted_paths in [extracted_paths]: if isinstance(__lowerCamelCase , __lowerCamelCase ): _snake_case = [extracted_paths] _snake_case = [paths] elif isinstance(__lowerCamelCase , __lowerCamelCase ): assert "train" in extracted_paths.keys() _snake_case = extracted_paths.values() _snake_case = paths.values() assert extracted_paths for extracted_path, input_path in zip(__lowerCamelCase , __lowerCamelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] _snake_case = Path(__lowerCamelCase ) _snake_case = extracted_path.parts assert parts[-1] == hash_url_to_filename(__lowerCamelCase , etag=__lowerCamelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() _snake_case = extracted_path.read_text() _snake_case = text_file.read_text() assert extracted_file_content == expected_file_content def _UpperCAmelCase ( __lowerCamelCase : Tuple , __lowerCamelCase : List[Any] ) -> Dict: assert path.endswith('''.jsonl''' ) for num_items, line in enumerate(__lowerCamelCase , start=1 ): _snake_case = json.loads(line.decode('''utf-8''' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('''archive_jsonl''' , ['''tar_jsonl_path''', '''zip_jsonl_path'''] ) def _UpperCAmelCase ( __lowerCamelCase : Dict , __lowerCamelCase : str ) -> Dict: _snake_case = request.getfixturevalue(__lowerCamelCase ) _snake_case = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(__lowerCamelCase ) , start=1 ): _test_jsonl(__lowerCamelCase , __lowerCamelCase ) assert num_jsonl == 2 @pytest.mark.parametrize('''archive_nested_jsonl''' , ['''tar_nested_jsonl_path''', '''zip_nested_jsonl_path'''] ) def _UpperCAmelCase ( __lowerCamelCase : str , __lowerCamelCase : List[Any] ) -> Tuple: _snake_case = request.getfixturevalue(__lowerCamelCase ) _snake_case = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(__lowerCamelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(__lowerCamelCase ) , start=1 ): _test_jsonl(__lowerCamelCase , __lowerCamelCase ) assert num_tar == 1 assert num_jsonl == 2 def _UpperCAmelCase ( __lowerCamelCase : Tuple ) -> List[Any]: _snake_case = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(__lowerCamelCase ) , start=1 ): assert os.path.basename(__lowerCamelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
288
1
'''simple docstring''' import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask _snake_case : List[Any] = logging.getLogger(__name__) class A ( _a ): def __init__( self : Dict , lowerCAmelCase_ : Optional[Any]=-1 ) -> List[Any]: """simple docstring""" _a = label_idx def __lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[Split, str] ) -> List[InputExample]: """simple docstring""" if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _a = mode.value _a = os.path.join(lowerCAmelCase_ , F'{mode}.txt' ) _a = 1 _a = [] with open(lowerCAmelCase_ , encoding='''utf-8''' ) as f: _a = [] _a = [] for line in f: if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=F'{mode}-{guid_index}' , words=lowerCAmelCase_ , labels=lowerCAmelCase_ ) ) guid_index += 1 _a = [] _a = [] else: _a = line.split(''' ''' ) words.append(splits[0] ) if len(lowerCAmelCase_ ) > 1: labels.append(splits[self.label_idx].replace('''\n''' , '''''' ) ) else: # Examples could have no label for mode = "test" labels.append('''O''' ) if words: examples.append(InputExample(guid=F'{mode}-{guid_index}' , words=lowerCAmelCase_ , labels=lowerCAmelCase_ ) ) return examples def __lowerCAmelCase ( self : int , lowerCAmelCase_ : TextIO , lowerCAmelCase_ : TextIO , lowerCAmelCase_ : List ) -> Dict: """simple docstring""" _a = 0 for line in test_input_reader: if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n": writer.write(lowerCAmelCase_ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: _a = line.split()[0] + ''' ''' + preds_list[example_id].pop(0 ) + '''\n''' writer.write(lowerCAmelCase_ ) else: logger.warning('''Maximum sequence length exceeded: No prediction for \'%s\'.''' , line.split()[0] ) def __lowerCAmelCase ( self : Optional[int] , lowerCAmelCase_ : str ) -> List[str]: """simple docstring""" if path: with open(lowerCAmelCase_ , '''r''' ) as f: _a = f.read().splitlines() if "O" not in labels: _a = ['''O'''] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class A ( _a ): def __init__( self : Tuple ) -> List[Any]: """simple docstring""" super().__init__(label_idx=-2 ) def __lowerCAmelCase ( self : int , lowerCAmelCase_ : str ) -> List[str]: """simple docstring""" if path: with open(lowerCAmelCase_ , '''r''' ) as f: _a = f.read().splitlines() if "O" not in labels: _a = ['''O'''] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class A ( _a ): def __lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[Split, str] ) -> List[InputExample]: """simple docstring""" if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _a = mode.value _a = os.path.join(lowerCAmelCase_ , F'{mode}.txt' ) _a = 1 _a = [] with open(lowerCAmelCase_ , encoding='''utf-8''' ) as f: for sentence in parse_incr(lowerCAmelCase_ ): _a = [] _a = [] for token in sentence: words.append(token['''form'''] ) labels.append(token['''upos'''] ) assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) if words: examples.append(InputExample(guid=F'{mode}-{guid_index}' , words=lowerCAmelCase_ , labels=lowerCAmelCase_ ) ) guid_index += 1 return examples def __lowerCAmelCase ( self : Dict , lowerCAmelCase_ : TextIO , lowerCAmelCase_ : TextIO , lowerCAmelCase_ : List ) -> Dict: """simple docstring""" _a = 0 for sentence in parse_incr(lowerCAmelCase_ ): _a = preds_list[example_id] _a = '''''' for token in sentence: out += F'{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) ' out += "\n" writer.write(lowerCAmelCase_ ) example_id += 1 def __lowerCAmelCase ( self : Any , lowerCAmelCase_ : str ) -> List[str]: """simple docstring""" if path: with open(lowerCAmelCase_ , '''r''' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
179
'''simple docstring''' from ..utils import DummyObject, requires_backends class A ( metaclass=_a ): lowercase_ = ['torch', 'scipy'] def __init__( self : Tuple , *lowerCAmelCase_ : str , **lowerCAmelCase_ : Any ) -> Tuple: """simple docstring""" requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def __lowerCAmelCase ( cls : Dict , *lowerCAmelCase_ : Dict , **lowerCAmelCase_ : str ) -> Tuple: """simple docstring""" requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def __lowerCAmelCase ( cls : Optional[int] , *lowerCAmelCase_ : str , **lowerCAmelCase_ : List[str] ) -> str: """simple docstring""" requires_backends(cls , ['''torch''', '''scipy'''] )
179
1
'''simple docstring''' import argparse import copy def lowerCamelCase ( __lowerCamelCase : int ) ->str: _SCREAMING_SNAKE_CASE = {} with open(__lowerCamelCase ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: _SCREAMING_SNAKE_CASE = [] _list.append([line.split()[1], line.split()[2]] ) _SCREAMING_SNAKE_CASE = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: _SCREAMING_SNAKE_CASE = [] _list.append([line.split()[0], line.split()[2]] ) _SCREAMING_SNAKE_CASE = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def lowerCamelCase ( __lowerCamelCase : List[Any] , __lowerCamelCase : str ) ->Union[str, Any]: with open(__lowerCamelCase ) as f: _SCREAMING_SNAKE_CASE = f.read(1 ) _SCREAMING_SNAKE_CASE = start_node _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = start_node _SCREAMING_SNAKE_CASE = 0 while visiting not in first_solution: _SCREAMING_SNAKE_CASE = 1_0000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(__lowerCamelCase ) and k[0] not in first_solution: _SCREAMING_SNAKE_CASE = k[1] _SCREAMING_SNAKE_CASE = k[0] first_solution.append(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = distance_of_first_solution + int(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = best_node first_solution.append(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 _SCREAMING_SNAKE_CASE = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_0000 ) return first_solution, distance_of_first_solution def lowerCamelCase ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] ) ->str: _SCREAMING_SNAKE_CASE = [] for n in solution[1:-1]: _SCREAMING_SNAKE_CASE = solution.index(__lowerCamelCase ) for kn in solution[1:-1]: _SCREAMING_SNAKE_CASE = solution.index(__lowerCamelCase ) if n == kn: continue _SCREAMING_SNAKE_CASE = copy.deepcopy(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = kn _SCREAMING_SNAKE_CASE = n _SCREAMING_SNAKE_CASE = 0 for k in _tmp[:-1]: _SCREAMING_SNAKE_CASE = _tmp[_tmp.index(__lowerCamelCase ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: _SCREAMING_SNAKE_CASE = distance + int(i[1] ) _tmp.append(__lowerCamelCase ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) _SCREAMING_SNAKE_CASE = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda __lowerCamelCase : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def lowerCamelCase ( __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int] ) ->str: _SCREAMING_SNAKE_CASE = 1 _SCREAMING_SNAKE_CASE = first_solution _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = distance_of_first_solution _SCREAMING_SNAKE_CASE = solution while count <= iters: _SCREAMING_SNAKE_CASE = find_neighborhood(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = neighborhood[index_of_best_solution] _SCREAMING_SNAKE_CASE = len(__lowerCamelCase ) - 1 _SCREAMING_SNAKE_CASE = False while not found: _SCREAMING_SNAKE_CASE = 0 while i < len(__lowerCamelCase ): if best_solution[i] != solution[i]: _SCREAMING_SNAKE_CASE = best_solution[i] _SCREAMING_SNAKE_CASE = solution[i] break _SCREAMING_SNAKE_CASE = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = best_solution[:-1] _SCREAMING_SNAKE_CASE = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: _SCREAMING_SNAKE_CASE = cost _SCREAMING_SNAKE_CASE = solution else: _SCREAMING_SNAKE_CASE = index_of_best_solution + 1 _SCREAMING_SNAKE_CASE = neighborhood[index_of_best_solution] if len(__lowerCamelCase ) >= size: tabu_list.pop(0 ) _SCREAMING_SNAKE_CASE = count + 1 return best_solution_ever, best_cost def lowerCamelCase ( __lowerCamelCase : List[str]=None ) ->Optional[Any]: _SCREAMING_SNAKE_CASE = generate_neighbours(args.File ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = generate_first_solution( args.File , __lowerCamelCase ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = tabu_search( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , args.Iterations , args.Size , ) print(F'Best solution: {best_sol}, with total distance: {best_cost}.' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser(description="""Tabu Search""") parser.add_argument( """-f""", """--File""", type=str, help="""Path to the file containing the data""", required=True, ) parser.add_argument( """-i""", """--Iterations""", type=int, help="""How many iterations the algorithm should perform""", required=True, ) parser.add_argument( """-s""", """--Size""", type=int, help="""Size of the tabu list""", required=True ) # Pass the arguments to main method main(parser.parse_args())
58
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase_ = {"""configuration_mbart""": ["""MBART_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MBartConfig""", """MBartOnnxConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["""MBartTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["""MBartTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """MBART_PRETRAINED_MODEL_ARCHIVE_LIST""", """MBartForCausalLM""", """MBartForConditionalGeneration""", """MBartForQuestionAnswering""", """MBartForSequenceClassification""", """MBartModel""", """MBartPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """TFMBartForConditionalGeneration""", """TFMBartModel""", """TFMBartPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """FlaxMBartForConditionalGeneration""", """FlaxMBartForQuestionAnswering""", """FlaxMBartForSequenceClassification""", """FlaxMBartModel""", """FlaxMBartPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
58
1
"""simple docstring""" import requests def _A ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ): """simple docstring""" a__ : Optional[int] ={"Content-Type": "application/json"} a__ : Optional[int] =requests.post(_lowercase , json={"text": message_body} , headers=_lowercase ) if response.status_code != 200: a__ : str =( "Request to slack returned an error " f'''{response.status_code}, the response is:\n{response.text}''' ) raise ValueError(_lowercase ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("""<YOUR MESSAGE BODY>""", """<SLACK CHANNEL URL>""")
363
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase : List[Any] = logging.get_logger(__name__) UpperCAmelCase : Tuple = { """Salesforce/instruct-blip-flan-t5""": """https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json""", } class __lowerCAmelCase ( UpperCamelCase__): _lowercase : Dict = """instructblip_vision_model""" def __init__( self , lowerCAmelCase__=1_4_0_8 , lowerCAmelCase__=6_1_4_4 , lowerCAmelCase__=3_9 , lowerCAmelCase__=1_6 , lowerCAmelCase__=2_2_4 , lowerCAmelCase__=1_4 , lowerCAmelCase__="gelu" , lowerCAmelCase__=1E-6 , lowerCAmelCase__=0.0 , lowerCAmelCase__=1E-10 , lowerCAmelCase__=True , **lowerCAmelCase__ , ) -> Optional[Any]: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) a__ : Tuple =hidden_size a__ : Any =intermediate_size a__ : Union[str, Any] =num_hidden_layers a__ : Optional[Any] =num_attention_heads a__ : List[str] =patch_size a__ : int =image_size a__ : Tuple =initializer_range a__ : Any =attention_dropout a__ : List[Any] =layer_norm_eps a__ : Optional[Any] =hidden_act a__ : Optional[Any] =qkv_bias @classmethod def _lowercase ( cls , lowerCAmelCase__ , **lowerCAmelCase__ ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(lowerCAmelCase__ ) a__ , a__ : Optional[Any] =cls.get_config_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": a__ : Any =config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) class __lowerCAmelCase ( UpperCamelCase__): _lowercase : Dict = """instructblip_qformer""" def __init__( self , lowerCAmelCase__=3_0_5_2_2 , lowerCAmelCase__=7_6_8 , lowerCAmelCase__=1_2 , lowerCAmelCase__=1_2 , lowerCAmelCase__=3_0_7_2 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=5_1_2 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-12 , lowerCAmelCase__=0 , lowerCAmelCase__="absolute" , lowerCAmelCase__=2 , lowerCAmelCase__=1_4_0_8 , **lowerCAmelCase__ , ) -> Dict: '''simple docstring''' super().__init__(pad_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) a__ : Optional[int] =vocab_size a__ : Optional[Any] =hidden_size a__ : str =num_hidden_layers a__ : Optional[int] =num_attention_heads a__ : Dict =hidden_act a__ : Optional[int] =intermediate_size a__ : Union[str, Any] =hidden_dropout_prob a__ : Optional[int] =attention_probs_dropout_prob a__ : List[Any] =max_position_embeddings a__ : Union[str, Any] =initializer_range a__ : Optional[int] =layer_norm_eps a__ : int =position_embedding_type a__ : int =cross_attention_frequency a__ : Tuple =encoder_hidden_size @classmethod def _lowercase ( cls , lowerCAmelCase__ , **lowerCAmelCase__ ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(lowerCAmelCase__ ) a__ , a__ : str =cls.get_config_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": a__ : Optional[int] =config_dict["qformer_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) class __lowerCAmelCase ( UpperCamelCase__): _lowercase : Dict = """instructblip""" _lowercase : List[Any] = True def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=3_2 , **lowerCAmelCase__ ) -> str: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) if vision_config is None: a__ : List[Any] ={} logger.info("vision_config is None. initializing the InstructBlipVisionConfig with default values." ) if qformer_config is None: a__ : Tuple ={} logger.info("qformer_config is None. Initializing the InstructBlipQFormerConfig with default values." ) if text_config is None: a__ : Dict ={} logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`)." ) a__ : Dict =InstructBlipVisionConfig(**lowerCAmelCase__ ) a__ : Union[str, Any] =InstructBlipQFormerConfig(**lowerCAmelCase__ ) a__ : Tuple =text_config["model_type"] if "model_type" in text_config else "opt" a__ : List[str] =CONFIG_MAPPING[text_model_type](**lowerCAmelCase__ ) a__ : Union[str, Any] =self.text_config.tie_word_embeddings a__ : Optional[Any] =self.text_config.is_encoder_decoder a__ : str =num_query_tokens a__ : List[Any] =self.vision_config.hidden_size a__ : str =self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES a__ : List[Any] =1.0 a__ : List[str] =0.02 @classmethod def _lowercase ( cls , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ , ) -> int: '''simple docstring''' return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **lowerCAmelCase__ , ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' a__ : int =copy.deepcopy(self.__dict__ ) a__ : int =self.vision_config.to_dict() a__ : str =self.qformer_config.to_dict() a__ : str =self.text_config.to_dict() a__ : List[str] =self.__class__.model_type return output
148
0
import functools def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: """simple docstring""" if not isinstance(lowercase_ , lowercase_ ) or not all(isinstance(lowercase_ , lowercase_ ) for day in days ): raise ValueError('''The parameter days should be a list of integers''' ) if len(lowercase_ ) != 3 or not all(isinstance(lowercase_ , lowercase_ ) for cost in costs ): raise ValueError('''The parameter costs should be a list of three integers''' ) if len(lowercase_ ) == 0: return 0 if min(lowercase_ ) <= 0: raise ValueError('''All days elements should be greater than 0''' ) if max(lowercase_ ) >= 366: raise ValueError('''All days elements should be less than 366''' ) A__ = set(lowercase_ ) @functools.cache def dynamic_programming(lowercase_ ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
14
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version UpperCamelCase_ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-classification/requirements.txt") UpperCamelCase_ = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) UpperCamelCase_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def lowercase__( __UpperCamelCase: str ): """simple docstring""" with open(__UpperCamelCase ,'rb' ) as f: SCREAMING_SNAKE_CASE : List[str] = Image.open(__UpperCamelCase ) return im.convert('RGB' ) @dataclass class _a : '''simple docstring''' A : Optional[str] = field( default=SCREAMING_SNAKE_CASE , metadata={ '''help''': '''Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).''' } , ) A : Optional[str] = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) A : Optional[str] = field(default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''A folder containing the training data.'''} ) A : Optional[str] = field(default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''A folder containing the validation data.'''} ) A : Optional[float] = field( default=0.15 , metadata={'''help''': '''Percent to split off of train for validation.'''} ) A : Optional[int] = field( default=SCREAMING_SNAKE_CASE , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) A : Optional[int] = field( default=SCREAMING_SNAKE_CASE , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def UpperCamelCase_ ( self ): '''simple docstring''' if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( 'You must specify either a dataset name from the hub or a train and/or validation directory.' ) @dataclass class _a : '''simple docstring''' A : str = field( default='''google/vit-base-patch16-224-in21k''' , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} , ) A : Optional[str] = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(SCREAMING_SNAKE_CASE )} , ) A : Optional[str] = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) A : Optional[str] = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from s3'''} ) A : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) A : str = field(default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Name or path of preprocessor config.'''} ) A : bool = field( default=SCREAMING_SNAKE_CASE , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) A : bool = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} , ) def lowercase__( __UpperCamelCase: Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = torch.stack([example['pixel_values'] for example in examples] ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([example['labels'] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_image_classification' ,__UpperCamelCase ,__UpperCamelCase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' ,datefmt='%m/%d/%Y %H:%M:%S' ,handlers=[logging.StreamHandler(sys.stdout )] ,) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() SCREAMING_SNAKE_CASE : str = training_args.get_process_log_level() logger.setLevel(__UpperCamelCase ) transformers.utils.logging.set_verbosity(__UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. SCREAMING_SNAKE_CASE : Optional[int] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: SCREAMING_SNAKE_CASE : Union[str, Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: SCREAMING_SNAKE_CASE : Any = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,cache_dir=model_args.cache_dir ,task='image-classification' ,use_auth_token=True if model_args.use_auth_token else None ,) else: SCREAMING_SNAKE_CASE : Union[str, Any] = {} if data_args.train_dir is not None: SCREAMING_SNAKE_CASE : Tuple = os.path.join(data_args.train_dir ,'**' ) if data_args.validation_dir is not None: SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(data_args.validation_dir ,'**' ) SCREAMING_SNAKE_CASE : str = load_dataset( 'imagefolder' ,data_files=__UpperCamelCase ,cache_dir=model_args.cache_dir ,task='image-classification' ,) # If we don't have a validation split, split off a percentage of train as validation. SCREAMING_SNAKE_CASE : Tuple = None if 'validation' in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split ,__UpperCamelCase ) and data_args.train_val_split > 0.0: SCREAMING_SNAKE_CASE : int = dataset['train'].train_test_split(data_args.train_val_split ) SCREAMING_SNAKE_CASE : Optional[int] = split['train'] SCREAMING_SNAKE_CASE : int = split['test'] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. SCREAMING_SNAKE_CASE : int = dataset['train'].features['labels'].names SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = {}, {} for i, label in enumerate(__UpperCamelCase ): SCREAMING_SNAKE_CASE : List[Any] = str(__UpperCamelCase ) SCREAMING_SNAKE_CASE : int = label # Load the accuracy metric from the datasets package SCREAMING_SNAKE_CASE : Any = evaluate.load('accuracy' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__UpperCamelCase: Dict ): return metric.compute(predictions=np.argmax(p.predictions ,axis=1 ) ,references=p.label_ids ) SCREAMING_SNAKE_CASE : Optional[int] = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path ,num_labels=len(__UpperCamelCase ) ,labelaid=__UpperCamelCase ,idalabel=__UpperCamelCase ,finetuning_task='image-classification' ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) SCREAMING_SNAKE_CASE : Union[str, Any] = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path ,from_tf=bool('.ckpt' in model_args.model_name_or_path ) ,config=__UpperCamelCase ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,ignore_mismatched_sizes=model_args.ignore_mismatched_sizes ,) SCREAMING_SNAKE_CASE : List[str] = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: SCREAMING_SNAKE_CASE : Optional[Any] = image_processor.size['shortest_edge'] else: SCREAMING_SNAKE_CASE : List[Any] = (image_processor.size['height'], image_processor.size['width']) SCREAMING_SNAKE_CASE : Dict = Normalize(mean=image_processor.image_mean ,std=image_processor.image_std ) SCREAMING_SNAKE_CASE : Dict = Compose( [ RandomResizedCrop(__UpperCamelCase ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) SCREAMING_SNAKE_CASE : List[Any] = Compose( [ Resize(__UpperCamelCase ), CenterCrop(__UpperCamelCase ), ToTensor(), normalize, ] ) def train_transforms(__UpperCamelCase: List[Any] ): SCREAMING_SNAKE_CASE : Optional[int] = [ _train_transforms(pil_img.convert('RGB' ) ) for pil_img in example_batch['image'] ] return example_batch def val_transforms(__UpperCamelCase: Dict ): SCREAMING_SNAKE_CASE : List[str] = [_val_transforms(pil_img.convert('RGB' ) ) for pil_img in example_batch['image']] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: SCREAMING_SNAKE_CASE : Tuple = ( dataset['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(__UpperCamelCase ) if training_args.do_eval: if "validation" not in dataset: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: SCREAMING_SNAKE_CASE : Optional[int] = ( dataset['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(__UpperCamelCase ) # Initalize our trainer SCREAMING_SNAKE_CASE : List[Any] = Trainer( model=__UpperCamelCase ,args=__UpperCamelCase ,train_dataset=dataset['train'] if training_args.do_train else None ,eval_dataset=dataset['validation'] if training_args.do_eval else None ,compute_metrics=__UpperCamelCase ,tokenizer=__UpperCamelCase ,data_collator=__UpperCamelCase ,) # Training if training_args.do_train: SCREAMING_SNAKE_CASE : Any = None if training_args.resume_from_checkpoint is not None: SCREAMING_SNAKE_CASE : Any = training_args.resume_from_checkpoint elif last_checkpoint is not None: SCREAMING_SNAKE_CASE : Optional[Any] = last_checkpoint SCREAMING_SNAKE_CASE : Union[str, Any] = trainer.train(resume_from_checkpoint=__UpperCamelCase ) trainer.save_model() trainer.log_metrics('train' ,train_result.metrics ) trainer.save_metrics('train' ,train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: SCREAMING_SNAKE_CASE : Union[str, Any] = trainer.evaluate() trainer.log_metrics('eval' ,__UpperCamelCase ) trainer.save_metrics('eval' ,__UpperCamelCase ) # Write model card and (optionally) push to hub SCREAMING_SNAKE_CASE : List[str] = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'image-classification', 'dataset': data_args.dataset_name, 'tags': ['image-classification', 'vision'], } if training_args.push_to_hub: trainer.push_to_hub(**__UpperCamelCase ) else: trainer.create_model_card(**__UpperCamelCase ) if __name__ == "__main__": main()
251
0
"""simple docstring""" import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def A ( snake_case :str , snake_case :Optional[Any] , snake_case :Union[str, Any] ) -> List[Any]: __UpperCamelCase = 1.5 __UpperCamelCase = int(factor * num_class_images ) __UpperCamelCase = ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=__lowerCAmelCase , aesthetic_weight=0.1 ) os.makedirs(f'{class_data_dir}/images' , exist_ok=__lowerCAmelCase ) if len(list(Path(f'{class_data_dir}/images' ).iterdir() ) ) >= num_class_images: return while True: __UpperCamelCase = client.query(text=__lowerCAmelCase ) if len(__lowerCAmelCase ) >= factor * num_class_images or num_images > 1e4: break else: __UpperCamelCase = int(factor * num_images ) __UpperCamelCase = ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=__lowerCAmelCase , aesthetic_weight=0.1 , ) __UpperCamelCase = 0 __UpperCamelCase = 0 __UpperCamelCase = tqdm(desc='downloading real regularization images' , total=__lowerCAmelCase ) with open(f'{class_data_dir}/caption.txt' , 'w' ) as fa, open(f'{class_data_dir}/urls.txt' , 'w' ) as fa, open( f'{class_data_dir}/images.txt' , 'w' ) as fa: while total < num_class_images: __UpperCamelCase = class_images[count] count += 1 try: __UpperCamelCase = requests.get(images['url'] ) if img.status_code == 2_0_0: __UpperCamelCase = Image.open(BytesIO(img.content ) ) with open(f'{class_data_dir}/images/{total}.jpg' , 'wb' ) as f: f.write(img.content ) fa.write(images['caption'] + '\n' ) fa.write(images['url'] + '\n' ) fa.write(f'{class_data_dir}/images/{total}.jpg' + '\n' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def A ( ) -> List[str]: __UpperCamelCase = argparse.ArgumentParser('' , add_help=__lowerCAmelCase ) parser.add_argument('--class_prompt' , help='text prompt to retrieve images' , required=__lowerCAmelCase , type=__lowerCAmelCase ) parser.add_argument('--class_data_dir' , help='path to save images' , required=__lowerCAmelCase , type=__lowerCAmelCase ) parser.add_argument('--num_class_images' , help='number of images to download' , default=2_0_0 , type=__lowerCAmelCase ) return parser.parse_args() if __name__ == "__main__": UpperCamelCase : int = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
353
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin UpperCamelCase : List[Any] = False @skip_mps class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = StableDiffusionAttendAndExcitePipeline lowercase = False lowercase = TEXT_TO_IMAGE_PARAMS lowercase = TEXT_TO_IMAGE_BATCH_PARAMS.union({"token_indices"} ) lowercase = TEXT_TO_IMAGE_IMAGE_PARAMS lowercase = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def UpperCAmelCase ( cls ): '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(__UpperCAmelCase ) @classmethod def UpperCAmelCase ( cls ): '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=__UpperCAmelCase , ) __UpperCamelCase = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , ) torch.manual_seed(0 ) __UpperCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=512 , ) __UpperCamelCase = CLIPTextModel(__UpperCAmelCase ) __UpperCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __UpperCamelCase = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0 ): '''simple docstring''' if str(__UpperCAmelCase ).startswith('mps' ): __UpperCamelCase = torch.manual_seed(__UpperCAmelCase ) else: __UpperCamelCase = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) __UpperCamelCase = __UpperCamelCase = { 'prompt': 'a cat and a frog', 'token_indices': [2, 5], 'generator': generator, 'num_inference_steps': 1, 'guidance_scale': 6.0, 'output_type': 'numpy', 'max_iter_to_alter': 2, 'thresholds': {0: 0.7}, } return inputs def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = 'cpu' __UpperCamelCase = self.get_dummy_components() __UpperCamelCase = self.pipeline_class(**__UpperCAmelCase ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __UpperCamelCase = self.get_dummy_inputs(__UpperCAmelCase ) __UpperCamelCase = pipe(**__UpperCAmelCase ).images __UpperCamelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 64, 64, 3) ) __UpperCamelCase = np.array( [0.6_3_9_0_5_3_6_4, 0.6_2_8_9_7_3_0_7, 0.4_8_5_9_9_0_1_7, 0.5_1_3_3_6_2_4, 0.5_5_5_0_0_4_8, 0.4_5_7_6_9_5_1_6, 0.5_0_3_2_6_9_7_3, 0.5_0_2_3_1_3_9, 0.4_5_3_8_4_4_9_6] ) __UpperCamelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__UpperCAmelCase , 1E-3 ) def UpperCAmelCase ( self ): '''simple docstring''' super().test_cpu_offload_forward_pass(expected_max_diff=5E-4 ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7E-4 ) def UpperCAmelCase ( self ): '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def UpperCAmelCase ( self ): '''simple docstring''' super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5E-4 ) def UpperCAmelCase ( self ): '''simple docstring''' super().test_save_load_local(expected_max_difference=5E-4 ) def UpperCAmelCase ( self ): '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=4E-4 ) @require_torch_gpu @slow class __lowerCAmelCase ( unittest.TestCase ): @classmethod def UpperCAmelCase ( cls ): '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(__UpperCAmelCase ) @classmethod def UpperCAmelCase ( cls ): '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = torch.manual_seed(51 ) __UpperCamelCase = StableDiffusionAttendAndExcitePipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , safety_checker=__UpperCAmelCase , torch_dtype=torch.floataa ) pipe.to('cuda' ) __UpperCamelCase = 'a painting of an elephant with glasses' __UpperCamelCase = [5, 7] __UpperCamelCase = pipe( prompt=__UpperCAmelCase , token_indices=__UpperCAmelCase , guidance_scale=7.5 , generator=__UpperCAmelCase , num_inference_steps=5 , max_iter_to_alter=5 , output_type='numpy' , ).images[0] __UpperCamelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy' ) assert np.abs((expected_image - image).max() ) < 5E-1
263
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase : Optional[int] ={ 'configuration_roberta': ['ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RobertaConfig', 'RobertaOnnxConfig'], 'tokenization_roberta': ['RobertaTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : int =['RobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : List[Any] =[ 'ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'RobertaForCausalLM', 'RobertaForMaskedLM', 'RobertaForMultipleChoice', 'RobertaForQuestionAnswering', 'RobertaForSequenceClassification', 'RobertaForTokenClassification', 'RobertaModel', 'RobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[int] =[ 'TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRobertaForCausalLM', 'TFRobertaForMaskedLM', 'TFRobertaForMultipleChoice', 'TFRobertaForQuestionAnswering', 'TFRobertaForSequenceClassification', 'TFRobertaForTokenClassification', 'TFRobertaMainLayer', 'TFRobertaModel', 'TFRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : List[str] =[ 'FlaxRobertaForCausalLM', 'FlaxRobertaForMaskedLM', 'FlaxRobertaForMultipleChoice', 'FlaxRobertaForQuestionAnswering', 'FlaxRobertaForSequenceClassification', 'FlaxRobertaForTokenClassification', 'FlaxRobertaModel', 'FlaxRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys __lowerCAmelCase : Optional[int] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
9
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class _lowercase : '''simple docstring''' def __init__( self :Optional[int] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :int=13 , lowerCAmelCase__ :List[str]=7 , lowerCAmelCase__ :Dict=True , lowerCAmelCase__ :List[str]=True , lowerCAmelCase__ :str=True , lowerCAmelCase__ :List[Any]=99 , lowerCAmelCase__ :List[str]=32 , lowerCAmelCase__ :Any=5 , lowerCAmelCase__ :List[str]=4 , lowerCAmelCase__ :int=37 , lowerCAmelCase__ :Optional[int]="gelu" , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :Optional[Any]=512 , lowerCAmelCase__ :Union[str, Any]=16 , lowerCAmelCase__ :Dict=2 , lowerCAmelCase__ :Tuple=0.02 , lowerCAmelCase__ :List[Any]=3 , lowerCAmelCase__ :Tuple=4 , lowerCAmelCase__ :int=None , ) -> int: __SCREAMING_SNAKE_CASE : Dict = parent __SCREAMING_SNAKE_CASE : Any = batch_size __SCREAMING_SNAKE_CASE : Union[str, Any] = seq_length __SCREAMING_SNAKE_CASE : Optional[Any] = is_training __SCREAMING_SNAKE_CASE : int = use_token_type_ids __SCREAMING_SNAKE_CASE : Any = use_labels __SCREAMING_SNAKE_CASE : Any = vocab_size __SCREAMING_SNAKE_CASE : List[Any] = hidden_size __SCREAMING_SNAKE_CASE : int = num_hidden_layers __SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads __SCREAMING_SNAKE_CASE : str = intermediate_size __SCREAMING_SNAKE_CASE : Tuple = hidden_act __SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob __SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Optional[Any] = max_position_embeddings __SCREAMING_SNAKE_CASE : List[Any] = type_vocab_size __SCREAMING_SNAKE_CASE : List[str] = type_sequence_label_size __SCREAMING_SNAKE_CASE : List[str] = initializer_range __SCREAMING_SNAKE_CASE : Tuple = num_labels __SCREAMING_SNAKE_CASE : Union[str, Any] = num_choices __SCREAMING_SNAKE_CASE : Union[str, Any] = scope __SCREAMING_SNAKE_CASE : Union[str, Any] = self.vocab_size - 1 def __magic_name__( self :Optional[Any] ) -> List[Any]: __SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __SCREAMING_SNAKE_CASE : Dict = None __SCREAMING_SNAKE_CASE : Optional[int] = None __SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_labels: __SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __SCREAMING_SNAKE_CASE : Optional[int] = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) __SCREAMING_SNAKE_CASE : Any = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def __magic_name__( self :Tuple , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Any , *lowerCAmelCase__ :Union[str, Any] ) -> Any: __SCREAMING_SNAKE_CASE : Any = OpenAIGPTModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : Dict = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , head_mask=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Any , lowerCAmelCase__ :Dict , *lowerCAmelCase__ :List[Any] ) -> Dict: __SCREAMING_SNAKE_CASE : Optional[Any] = OpenAIGPTLMHeadModel(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : Tuple = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__( self :Tuple , lowerCAmelCase__ :Dict , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :List[str] , *lowerCAmelCase__ :Optional[Any] ) -> Any: __SCREAMING_SNAKE_CASE : Any = OpenAIGPTDoubleHeadsModel(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : Any = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__( self :Dict , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :str , *lowerCAmelCase__ :Optional[int] ) -> Dict: __SCREAMING_SNAKE_CASE : Optional[Any] = self.num_labels __SCREAMING_SNAKE_CASE : List[Any] = OpenAIGPTForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE : Optional[Any] = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__( self :Optional[Any] ) -> str: __SCREAMING_SNAKE_CASE : str = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) : List[str] = config_and_inputs __SCREAMING_SNAKE_CASE : List[str] = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_torch class _lowercase ( A__ , A__ , A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ : str = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly SCREAMING_SNAKE_CASE__ : str = ( { '''feature-extraction''': OpenAIGPTModel, '''text-classification''': OpenAIGPTForSequenceClassification, '''text-generation''': OpenAIGPTLMHeadModel, '''zero-shot''': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def __magic_name__( self :Optional[int] , lowerCAmelCase__ :str , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any] ) -> Tuple: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def __magic_name__( self :List[str] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :int , lowerCAmelCase__ :int=False ) -> Dict: __SCREAMING_SNAKE_CASE : Tuple = super()._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": __SCREAMING_SNAKE_CASE : Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : Tuple = inputs_dict['''labels'''] __SCREAMING_SNAKE_CASE : Dict = inputs_dict['''labels'''] __SCREAMING_SNAKE_CASE : List[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__ ) return inputs_dict def __magic_name__( self :Optional[int] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : int = OpenAIGPTModelTester(self ) __SCREAMING_SNAKE_CASE : Optional[Any] = ConfigTester(self , config_class=lowerCAmelCase__ , n_embd=37 ) def __magic_name__( self :Any ) -> Optional[Any]: self.config_tester.run_common_tests() def __magic_name__( self :List[str] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*lowerCAmelCase__ ) def __magic_name__( self :int ) -> int: __SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowerCAmelCase__ ) def __magic_name__( self :List[str] ) -> Dict: __SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*lowerCAmelCase__ ) def __magic_name__( self :List[str] ) -> str: __SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*lowerCAmelCase__ ) @slow def __magic_name__( self :Any ) -> List[Any]: for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE : Dict = OpenAIGPTModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @require_torch class _lowercase ( unittest.TestCase ): '''simple docstring''' @slow def __magic_name__( self :Union[str, Any] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : List[str] = OpenAIGPTLMHeadModel.from_pretrained('''openai-gpt''' ) model.to(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([[481, 4_735, 544]] , dtype=torch.long , device=lowerCAmelCase__ ) # the president is __SCREAMING_SNAKE_CASE : Dict = [ 481, 4_735, 544, 246, 963, 870, 762, 239, 244, 40_477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the __SCREAMING_SNAKE_CASE : Dict = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ ) self.assertListEqual(output_ids[0].tolist() , lowerCAmelCase__ )
9
1
'''simple docstring''' from collections.abc import Sequence def _lowerCamelCase ( lowercase : Sequence[float] , lowercase : bool = False ) -> float: if not arr: return 0 _a = 0 if allow_empty_subarrays else float("-inf" ) _a = 0.0 for num in arr: _a = max(0 if allow_empty_subarrays else num , curr_sum + num ) _a = max(lowerCamelCase__ , lowerCamelCase__ ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() lowerCAmelCase_ : int = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(f"""{max_subarray_sum(nums) = }""")
354
'''simple docstring''' import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient lowerCAmelCase_ : Tuple = WebClient(token=os.environ['CI_SLACK_BOT_TOKEN']) def _lowerCamelCase ( lowercase : List[Any] ) -> Optional[int]: _a = test_results.split(" " ) _a = 0 _a = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. _a = expressions[-2] if "=" in expressions[-1] else expressions[-1] for i, expression in enumerate(lowercase ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def _lowerCamelCase ( lowercase : str ) -> Optional[Any]: _a = {} _a = None _a = False for line in failures_short_lines.split("\n" ): if re.search(r"_ \[doctest\]" , lowercase ): _a = True _a = line.split(" " )[2] elif in_error and not line.split(" " )[0].isdigit(): _a = line _a = False return failures class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Tuple , __a : str , __a : Dict ): _a = title _a = doc_test_results["time_spent"].split("," )[0] _a = doc_test_results["success"] _a = doc_test_results["failures"] _a = self.n_success + self.n_failures # Failures and success of the modeling tests _a = doc_test_results @property def UpperCamelCase__ ( self : int ): _a = [self._time_spent] _a = 0 for time in time_spent: _a = time.split(":" ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(__a ) == 1: _a = [0, 0, time_parts[0]] _a , _a , _a = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 36_00 + minutes * 60 + seconds _a , _a , _a = total_secs // 36_00, (total_secs % 36_00) // 60, total_secs % 60 return f'{int(__a )}h{int(__a )}m{int(__a )}s' @property def UpperCamelCase__ ( self : Optional[Any] ): return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def UpperCamelCase__ ( self : Optional[Any] ): return { "type": "section", "text": { "type": "plain_text", "text": f'🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def UpperCamelCase__ ( self : List[str] ): return { "type": "section", "text": { "type": "plain_text", "text": ( f'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in' f' {self.time}.' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def UpperCamelCase__ ( self : str ): _a = 40 _a = {k: v["failed"] for k, v in doc_test_results.items() if isinstance(__a , __a )} _a = "" for category, failures in category_failures.items(): if len(__a ) == 0: continue if report != "": report += "\n\n" report += f'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(__a ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": f'The following examples had failures:\n\n\n{report}\n', }, } @property def UpperCamelCase__ ( self : List[str] ): _a = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(__a ) @staticmethod def UpperCamelCase__ ( ): _a = [ { "type": "section", "text": { "type": "plain_text", "text": "There was an issue running the tests.", }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } ] print("Sending the following payload" ) print(json.dumps({"blocks": json.loads(__a )} ) ) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text="There was an issue running the tests." , blocks=__a , ) def UpperCamelCase__ ( self : Tuple ): print("Sending the following payload" ) print(json.dumps({"blocks": json.loads(self.payload )} ) ) _a = f'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else "All tests passed." _a = client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , blocks=self.payload , text=__a , ) def UpperCamelCase__ ( self : Dict , __a : List[str] , __a : List[Any] , __a : Tuple , __a : int ): _a = "" for key, value in failures.items(): _a = value[:2_00] + " [Truncated]" if len(__a ) > 2_50 else value failures_text += f'*{key}*\n_{value}_\n\n' _a = job_name _a = {"type": "section", "text": {"type": "mrkdwn", "text": text}} if job_link is not None: _a = { "type": "button", "text": {"type": "plain_text", "text": "GitHub Action job", "emoji": True}, "url": job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def UpperCamelCase__ ( self : str ): if self.thread_ts is None: raise ValueError("Can only post reply if a post has been made." ) _a = self.doc_test_results.pop("job_link" ) self.doc_test_results.pop("failures" ) self.doc_test_results.pop("success" ) self.doc_test_results.pop("time_spent" ) _a = sorted(self.doc_test_results.items() , key=lambda __a : t[0] ) for job, job_result in sorted_dict: if len(job_result["failures"] ): _a = f'*Num failures* :{len(job_result["failed"] )} \n' _a = job_result["failures"] _a = self.get_reply_blocks(__a , __a , __a , text=__a ) print("Sending the following reply" ) print(json.dumps({"blocks": blocks} ) ) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text=f'Results for {job}' , blocks=__a , thread_ts=self.thread_ts["ts"] , ) time.sleep(1 ) def _lowerCamelCase ( ) -> Any: _a = os.environ["GITHUB_RUN_ID"] _a = F'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100' _a = requests.get(lowercase ).json() _a = {} try: jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) _a = math.ceil((result["total_count"] - 100) / 100 ) for i in range(lowercase ): _a = requests.get(url + F'&page={i + 2}' ).json() jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) return jobs except Exception as e: print("Unknown error, could not fetch links." , lowercase ) return {} def _lowerCamelCase ( lowercase : str ) -> Dict: _a = {} if os.path.exists(lowercase ): _a = os.listdir(lowercase ) for file in files: try: with open(os.path.join(lowercase , lowercase ) , encoding="utf-8" ) as f: _a = f.read() except UnicodeDecodeError as e: raise ValueError(F'Could not open {os.path.join(lowercase , lowercase )}.' ) from e return _artifact def _lowerCamelCase ( ) -> str: class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Dict , __a : str ): _a = name _a = [] def __str__( self : List[str] ): return self.name def UpperCamelCase__ ( self : str , __a : str ): self.paths.append({"name": self.name, "path": path} ) _a = {} _a = filter(os.path.isdir , os.listdir() ) for directory in directories: _a = directory if artifact_name not in _available_artifacts: _a = Artifact(lowercase ) _available_artifacts[artifact_name].add_path(lowercase ) return _available_artifacts if __name__ == "__main__": lowerCAmelCase_ : List[Any] = get_job_links() lowerCAmelCase_ : Any = retrieve_available_artifacts() lowerCAmelCase_ : List[str] = collections.OrderedDict( [ ('*.py', 'API Examples'), ('*.md', 'MD Examples'), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' lowerCAmelCase_ : Optional[Any] = { v: { 'failed': [], 'failures': {}, } for v in docs.values() } # Link to the GitHub Action job lowerCAmelCase_ : int = github_actions_job_links.get('run_doctests') lowerCAmelCase_ : Union[str, Any] = available_artifacts['doc_tests_gpu_test_reports'].paths[0] lowerCAmelCase_ : List[str] = retrieve_artifact(artifact_path['name']) if "stats" in artifact: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = handle_test_results(artifact['stats']) lowerCAmelCase_ : List[str] = failed lowerCAmelCase_ : Optional[Any] = success lowerCAmelCase_ : Tuple = time_spent[1:-1] + ', ' lowerCAmelCase_ : List[Any] = extract_first_line_failure(artifact['failures_short']) for line in artifact["summary_short"].split('\n'): if re.search('FAILED', line): lowerCAmelCase_ : int = line.replace('FAILED ', '') lowerCAmelCase_ : Optional[int] = line.split()[0].replace('\n', '') if "::" in line: lowerCAmelCase_ , lowerCAmelCase_ : str = line.split('::') else: lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): lowerCAmelCase_ : Union[str, Any] = docs[file_regex] doc_test_results[category]["failed"].append(test) lowerCAmelCase_ : List[str] = all_failures[test] if test in all_failures else 'N/A' lowerCAmelCase_ : Optional[Any] = failure break lowerCAmelCase_ : Tuple = Message('🤗 Results of the doc tests.', doc_test_results) message.post() message.post_reply()
346
0
'''simple docstring''' import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def _lowerCamelCase ( lowercase : Any , lowercase : Tuple , lowercase : Optional[Any] ) -> Optional[Any]: # Initialise PyTorch model _a = TaConfig.from_json_file(lowercase ) print(F'Building PyTorch model from configuration: {config}' ) _a = TaForConditionalGeneration(lowercase ) # Load weights from tf checkpoint load_tf_weights_in_ta(lowercase , lowercase , lowercase ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(lowercase ) if __name__ == "__main__": lowerCAmelCase_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCAmelCase_ : str = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
63
'''simple docstring''' import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: Optional[int] = ["input_features", "is_longer"] def __init__( self : str , A : int=64 , A : Dict=48000 , A : str=480 , A : List[Any]=10 , A : Optional[Any]=1024 , A : Tuple=0.0 , A : List[Any]=False , A : float = 0 , A : float = 14000 , A : int = None , A : str = "fusion" , A : str = "repeatpad" , **A : Dict , ): super().__init__( feature_size=A , sampling_rate=A , padding_value=A , return_attention_mask=A , **A , ) _UpperCAmelCase : Optional[Any] = top_db _UpperCAmelCase : Dict = truncation _UpperCAmelCase : List[Any] = padding _UpperCAmelCase : Optional[Any] = fft_window_size _UpperCAmelCase : Dict = (fft_window_size >> 1) + 1 _UpperCAmelCase : Any = hop_length _UpperCAmelCase : Tuple = max_length_s _UpperCAmelCase : str = max_length_s * sampling_rate _UpperCAmelCase : Any = sampling_rate _UpperCAmelCase : Optional[int] = frequency_min _UpperCAmelCase : str = frequency_max _UpperCAmelCase : Union[str, Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=A , min_frequency=A , max_frequency=A , sampling_rate=A , norm=A , mel_scale="htk" , ) _UpperCAmelCase : Tuple = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=A , min_frequency=A , max_frequency=A , sampling_rate=A , norm="slaney" , mel_scale="slaney" , ) def _A ( self : List[str] ): _UpperCAmelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) _UpperCAmelCase : Dict = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def _A ( self : Optional[Any] , A : np.array , A : Optional[np.array] = None ): _UpperCAmelCase : Dict = spectrogram( A , window_function(self.fft_window_size , "hann" ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=A , log_mel="dB" , ) return log_mel_spectrogram.T def _A ( self : str , A : str , A : List[str] , A : List[Any] ): _UpperCAmelCase : List[str] = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk _UpperCAmelCase : Optional[Any] = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk _UpperCAmelCase : Tuple = [0] # randomly choose index for each part _UpperCAmelCase : Dict = np.random.choice(ranges[0] ) _UpperCAmelCase : str = np.random.choice(ranges[1] ) _UpperCAmelCase : Tuple = np.random.choice(ranges[2] ) _UpperCAmelCase : str = mel[idx_front : idx_front + chunk_frames, :] _UpperCAmelCase : str = mel[idx_middle : idx_middle + chunk_frames, :] _UpperCAmelCase : List[Any] = mel[idx_back : idx_back + chunk_frames, :] _UpperCAmelCase : Dict = torch.tensor(mel[None, None, :] ) _UpperCAmelCase : Optional[Any] = torch.nn.functional.interpolate( A , size=[chunk_frames, 64] , mode="bilinear" , align_corners=A ) _UpperCAmelCase : List[str] = mel_shrink[0][0].numpy() _UpperCAmelCase : str = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def _A ( self : List[Any] , A : np.array , A : List[str] , A : Any , A : Optional[int] ): if waveform.shape[0] > max_length: if truncation == "rand_trunc": _UpperCAmelCase : int = True # random crop to max_length (for compatibility) -> this should be handled by self.pad _UpperCAmelCase : str = len(A ) - max_length _UpperCAmelCase : str = np.random.randint(0 , overflow + 1 ) _UpperCAmelCase : int = waveform[idx : idx + max_length] _UpperCAmelCase : Any = self._np_extract_fbank_features(A , self.mel_filters_slaney )[None, :] elif truncation == "fusion": _UpperCAmelCase : Tuple = self._np_extract_fbank_features(A , self.mel_filters ) _UpperCAmelCase : List[str] = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed _UpperCAmelCase : Optional[Any] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. _UpperCAmelCase : Any = np.stack([mel, mel, mel, mel] , axis=0 ) _UpperCAmelCase : int = False else: _UpperCAmelCase : Tuple = self._random_mel_fusion(A , A , A ) _UpperCAmelCase : Any = True else: raise NotImplementedError(F"""data_truncating {truncation} not implemented""" ) else: _UpperCAmelCase : Optional[Any] = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": _UpperCAmelCase : str = int(max_length / len(A ) ) _UpperCAmelCase : Dict = np.stack(np.tile(A , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": _UpperCAmelCase : Dict = int(max_length / len(A ) ) _UpperCAmelCase : List[str] = np.stack(np.tile(A , A ) ) _UpperCAmelCase : Optional[Any] = np.pad(A , (0, max_length - waveform.shape[0]) , mode="constant" , constant_values=0 ) if truncation == "fusion": _UpperCAmelCase : str = self._np_extract_fbank_features(A , self.mel_filters ) _UpperCAmelCase : Optional[int] = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: _UpperCAmelCase : List[str] = self._np_extract_fbank_features(A , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : Union[str, Any] , A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , A : str = None , A : Optional[str] = None , A : Optional[int] = None , A : Optional[int] = None , A : Optional[Union[str, TensorType]] = None , **A : List[str] , ): _UpperCAmelCase : int = truncation if truncation is not None else self.truncation _UpperCAmelCase : Optional[int] = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" F""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" F""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) _UpperCAmelCase : Any = isinstance(A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) _UpperCAmelCase : Optional[Any] = is_batched_numpy or ( isinstance(A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _UpperCAmelCase : int = [np.asarray(A , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(A , np.ndarray ): _UpperCAmelCase : List[str] = np.asarray(A , dtype=np.floataa ) elif isinstance(A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _UpperCAmelCase : Any = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _UpperCAmelCase : List[str] = [np.asarray(A )] # convert to mel spectrogram, truncate and pad if needed. _UpperCAmelCase : Dict = [ self._get_input_mel(A , max_length if max_length else self.nb_max_samples , A , A ) for waveform in raw_speech ] _UpperCAmelCase : int = [] _UpperCAmelCase : Optional[Any] = [] for mel, longer in padded_inputs: input_mel.append(A ) is_longer.append(A ) if truncation == "fusion" and sum(A ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer _UpperCAmelCase : Union[str, Any] = np.random.randint(0 , len(A ) ) _UpperCAmelCase : Optional[Any] = True if isinstance(input_mel[0] , A ): _UpperCAmelCase : List[str] = [np.asarray(A , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool _UpperCAmelCase : Tuple = [[longer] for longer in is_longer] _UpperCAmelCase : Optional[Any] = {"input_features": input_mel, "is_longer": is_longer} _UpperCAmelCase : Tuple = BatchFeature(A ) if return_tensors is not None: _UpperCAmelCase : List[Any] = input_features.convert_to_tensors(A ) return input_features
31
0
def _lowerCamelCase( lowercase__ , lowercase__ ) -> str: '''simple docstring''' __lowercase= int(__a ) # Initialize Result __lowercase= [] # Traverse through all denomination for denomination in reversed(__a ): # Find denominations while int(__a ) >= int(__a ): total_value -= int(__a ) answer.append(__a ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": lowerCAmelCase = [] lowerCAmelCase = '''0''' if ( input('''Do you want to enter your denominations ? (yY/n): ''').strip().lower() == "y" ): lowerCAmelCase = int(input('''Enter the number of denominations you want to add: ''').strip()) for i in range(0, n): denominations.append(int(input(F'Denomination {i}: ').strip())) lowerCAmelCase = input('''Enter the change you want to make in Indian Currency: ''').strip() else: # All denominations of Indian Currency if user does not enter lowerCAmelCase = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 5_0_0, 2_0_0_0] lowerCAmelCase = input('''Enter the change you want to make: ''').strip() if int(value) == 0 or int(value) < 0: print('''The total value cannot be zero or negative.''') else: print(F'Following is minimal change for {value}: ') lowerCAmelCase = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=''' ''')
350
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger lowerCAmelCase = '''<<<<<<< This should probably be modified because it mentions: ''' lowerCAmelCase = '''======= >>>>>>> ''' lowerCAmelCase = [ '''TextEncoderConfig''', '''ByteTextEncoder''', '''SubwordTextEncoder''', '''encoder_config''', '''maybe_build_from_corpus''', '''manual_dir''', ] lowerCAmelCase = [ # (pattern, replacement) # Order is important here for some replacements (R'''tfds\.core''', R'''datasets'''), (R'''tf\.io\.gfile\.GFile''', R'''open'''), (R'''tf\.([\w\d]+)''', R'''datasets.Value(\'\1\')'''), (R'''tfds\.features\.Text\(\)''', R'''datasets.Value(\'string\')'''), (R'''tfds\.features\.Text\(''', R'''datasets.Value(\'string\'),'''), (R'''features\s*=\s*tfds.features.FeaturesDict\(''', R'''features=datasets.Features('''), (R'''tfds\.features\.FeaturesDict\(''', R'''dict('''), (R'''The TensorFlow Datasets Authors''', R'''The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'''), (R'''tfds\.''', R'''datasets.'''), (R'''dl_manager\.manual_dir''', R'''self.config.data_dir'''), (R'''self\.builder_config''', R'''self.config'''), ] def _lowerCamelCase( lowercase__ ) -> Optional[int]: '''simple docstring''' return ConvertCommand(args.tfds_path , args.datasets_directory ) class A ( A_ ): @staticmethod def _A (lowerCAmelCase ): __lowercase= parser.add_parser( 'convert' , help='Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.' , ) train_parser.add_argument( '--tfds_path' , type=lowerCAmelCase , required=lowerCAmelCase , help='Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.' , ) train_parser.add_argument( '--datasets_directory' , type=lowerCAmelCase , required=lowerCAmelCase , help='Path to the HuggingFace Datasets folder.' ) train_parser.set_defaults(func=lowerCAmelCase ) def __init__(self , lowerCAmelCase , lowerCAmelCase , *lowerCAmelCase ): __lowercase= get_logger('datasets-cli/converting' ) __lowercase= tfds_path __lowercase= datasets_directory def _A (self ): if os.path.isdir(self._tfds_path ): __lowercase= os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): __lowercase= os.path.dirname(self._tfds_path ) else: raise ValueError('--tfds_path is neither a directory nor a file. Please check path.' ) __lowercase= os.path.abspath(self._datasets_directory ) self._logger.info(f'Converting datasets from {abs_tfds_path} to {abs_datasets_path}' ) __lowercase= [] __lowercase= [] __lowercase= {} if os.path.isdir(self._tfds_path ): __lowercase= os.listdir(lowerCAmelCase ) else: __lowercase= [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f'Looking at file {f_name}' ) __lowercase= os.path.join(lowerCAmelCase , lowerCAmelCase ) __lowercase= os.path.join(lowerCAmelCase , lowerCAmelCase ) if not os.path.isfile(lowerCAmelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('Skipping file' ) continue with open(lowerCAmelCase , encoding='utf-8' ) as f: __lowercase= f.readlines() __lowercase= [] __lowercase= False __lowercase= False __lowercase= [] for line in lines: __lowercase= line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: __lowercase= 'import datasets\n' elif "import tensorflow" in out_line: # order is important here __lowercase= '' continue elif "from absl import logging" in out_line: __lowercase= 'from datasets import logging\n' elif "getLogger" in out_line: __lowercase= out_line.replace('getLogger' , 'get_logger' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): __lowercase= True __lowercase= list(filter(lambda lowerCAmelCase : e in out_line , lowerCAmelCase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(lowerCAmelCase ) + '\n' ) out_lines.append(lowerCAmelCase ) out_lines.append(lowerCAmelCase ) continue else: for pattern, replacement in TO_CONVERT: __lowercase= re.sub(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: __lowercase= re.match(r'from\stensorflow_datasets.*import\s([^\.\r\n]+)' , lowerCAmelCase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(',' ) ) __lowercase= 'from . import ' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f'Error converting {out_line.strip()}' ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: __lowercase= True out_lines.append(lowerCAmelCase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset __lowercase= f_name.replace('.py' , '' ) __lowercase= os.path.join(lowerCAmelCase , lowerCAmelCase ) __lowercase= os.path.join(lowerCAmelCase , lowerCAmelCase ) os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase ) self._logger.info(f'Adding directory {output_dir}' ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(lowerCAmelCase ) if needs_manual_update: with_manual_update.append(lowerCAmelCase ) with open(lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.writelines(lowerCAmelCase ) self._logger.info(f'Converted in {output_file}' ) for utils_file in utils_files: try: __lowercase= os.path.basename(lowerCAmelCase ) __lowercase= imports_to_builder_map[f_name.replace('.py' , '' )] self._logger.info(f'Moving {dest_folder} to {utils_file}' ) shutil.copy(lowerCAmelCase , lowerCAmelCase ) except KeyError: self._logger.error(f'Cannot find destination folder for {utils_file}. Please copy manually.' ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f'You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.' )
304
0
from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class lowerCamelCase : '''simple docstring''' def __init__( self , _UpperCamelCase , _UpperCamelCase=1_3 , _UpperCamelCase=7 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=9_9 , _UpperCamelCase=3_2 , _UpperCamelCase=2 , _UpperCamelCase=4 , _UpperCamelCase=3_7 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=5_1_2 , _UpperCamelCase=1_6 , _UpperCamelCase=2 , _UpperCamelCase=0.02 , _UpperCamelCase=3 , _UpperCamelCase=4 , _UpperCamelCase=None , _UpperCamelCase=1_0_0_0 , ) -> Any: UpperCAmelCase_ : Union[str, Any] = parent UpperCAmelCase_ : Tuple = batch_size UpperCAmelCase_ : int = seq_length UpperCAmelCase_ : Dict = is_training UpperCAmelCase_ : str = use_input_mask UpperCAmelCase_ : List[Any] = use_token_type_ids UpperCAmelCase_ : Any = use_labels UpperCAmelCase_ : Optional[Any] = vocab_size UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : str = num_hidden_layers UpperCAmelCase_ : Optional[int] = num_attention_heads UpperCAmelCase_ : int = intermediate_size UpperCAmelCase_ : List[Any] = hidden_act UpperCAmelCase_ : Dict = hidden_dropout_prob UpperCAmelCase_ : str = attention_probs_dropout_prob UpperCAmelCase_ : Tuple = max_position_embeddings UpperCAmelCase_ : Optional[int] = type_vocab_size UpperCAmelCase_ : Optional[Any] = type_sequence_label_size UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : str = num_labels UpperCAmelCase_ : Tuple = num_choices UpperCAmelCase_ : List[Any] = scope UpperCAmelCase_ : Union[str, Any] = range_bbox def __UpperCAmelCase ( self ) -> Optional[int]: UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCAmelCase_ : Optional[int] = bbox[i, j, 3] UpperCAmelCase_ : Tuple = bbox[i, j, 1] UpperCAmelCase_ : Union[str, Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: UpperCAmelCase_ : List[str] = bbox[i, j, 2] UpperCAmelCase_ : Tuple = bbox[i, j, 0] UpperCAmelCase_ : Tuple = t UpperCAmelCase_ : Optional[Any] = tf.convert_to_tensor(_UpperCamelCase ) UpperCAmelCase_ : str = None if self.use_input_mask: UpperCAmelCase_ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Union[str, Any] = None if self.use_token_type_ids: UpperCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ : str = None UpperCAmelCase_ : Any = None UpperCAmelCase_ : Optional[Any] = None if self.use_labels: UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : Tuple = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Optional[int]: UpperCAmelCase_ : Any = TFLayoutLMModel(config=_UpperCamelCase ) UpperCAmelCase_ : List[Any] = model(_UpperCamelCase , _UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) UpperCAmelCase_ : Union[str, Any] = model(_UpperCamelCase , _UpperCamelCase , token_type_ids=_UpperCamelCase ) UpperCAmelCase_ : Tuple = model(_UpperCamelCase , _UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Optional[Any]: UpperCAmelCase_ : List[Any] = TFLayoutLMForMaskedLM(config=_UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = model(_UpperCamelCase , _UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> int: UpperCAmelCase_ : List[Any] = self.num_labels UpperCAmelCase_ : Union[str, Any] = TFLayoutLMForSequenceClassification(config=_UpperCamelCase ) UpperCAmelCase_ : Dict = model(_UpperCamelCase , _UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Optional[int]: UpperCAmelCase_ : List[Any] = self.num_labels UpperCAmelCase_ : int = TFLayoutLMForTokenClassification(config=_UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = model(_UpperCamelCase , _UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Any: UpperCAmelCase_ : List[str] = TFLayoutLMForQuestionAnswering(config=_UpperCamelCase ) UpperCAmelCase_ : Union[str, Any] = model(_UpperCamelCase , _UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCAmelCase ( self ) -> List[Any]: UpperCAmelCase_ : Dict = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Tuple = config_and_inputs UpperCAmelCase_ : List[Any] = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class lowerCamelCase (_snake_case , _snake_case , unittest.TestCase ): '''simple docstring''' _snake_case : int = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) _snake_case : List[Any] = ( { '''feature-extraction''': TFLayoutLMModel, '''fill-mask''': TFLayoutLMForMaskedLM, '''text-classification''': TFLayoutLMForSequenceClassification, '''token-classification''': TFLayoutLMForTokenClassification, '''zero-shot''': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) _snake_case : Optional[int] = False _snake_case : Dict = True _snake_case : Dict = 1_0 def __UpperCAmelCase ( self ) -> List[str]: UpperCAmelCase_ : Tuple = TFLayoutLMModelTester(self ) UpperCAmelCase_ : Any = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=3_7 ) def __UpperCAmelCase ( self ) -> List[Any]: self.config_tester.run_common_tests() def __UpperCAmelCase ( self ) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def __UpperCAmelCase ( self ) -> str: UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCamelCase ) def __UpperCAmelCase ( self ) -> Optional[int]: UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCamelCase ) def __UpperCAmelCase ( self ) -> Optional[Any]: UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCamelCase ) def __UpperCAmelCase ( self ) -> Union[str, Any]: UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCamelCase ) @slow def __UpperCAmelCase ( self ) -> List[str]: for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : List[Any] = TFLayoutLMModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) @unittest.skip('Onnx compliancy broke with TF 2.10' ) def __UpperCAmelCase ( self ) -> Tuple: pass def lowercase__ ( ): '''simple docstring''' UpperCAmelCase_ : Dict = tf.convert_to_tensor([[101,1_019,1_014,1_016,1_037,12_849,4_747,1_004,14_246,2_278,5_439,4_524,5_002,2_930,2_193,2_930,4_341,3_208,1_005,1_055,2_171,2_848,11_300,3_531,102],[101,4_070,4_034,7_020,1_024,3_058,1_015,1_013,2_861,1_013,6_070,19_274,2_772,6_205,27_814,16_147,16_147,4_343,2_047,10_283,10_969,14_389,1_012,2_338,102]] ) # noqa: E231 UpperCAmelCase_ : Any = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 UpperCAmelCase_ : str = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1_000,1_000,1_000,1_000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1_000,1_000,1_000,1_000]]] ) # noqa: E231 UpperCAmelCase_ : Any = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) UpperCAmelCase_ : int = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class lowerCamelCase (unittest.TestCase ): '''simple docstring''' @slow def __UpperCAmelCase ( self ) -> Tuple: UpperCAmelCase_ : List[Any] = TFLayoutLMModel.from_pretrained('microsoft/layoutlm-base-uncased' ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = prepare_layoutlm_batch_inputs() # forward pass UpperCAmelCase_ : Union[str, Any] = model(input_ids=_UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) # test the sequence output on [0, :3, :3] UpperCAmelCase_ : Any = tf.convert_to_tensor( [[0.17_85, -0.19_47, -0.04_25], [-0.32_54, -0.28_07, 0.25_53], [-0.53_91, -0.33_22, 0.33_64]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _UpperCamelCase , atol=1E-3 ) ) # test the pooled output on [1, :3] UpperCAmelCase_ : Tuple = tf.convert_to_tensor([-0.65_80, -0.02_14, 0.85_52] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , _UpperCamelCase , atol=1E-3 ) ) @slow def __UpperCAmelCase ( self ) -> str: # initialize model with randomly initialized sequence classification head UpperCAmelCase_ : Union[str, Any] = TFLayoutLMForSequenceClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=2 ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = prepare_layoutlm_batch_inputs() # forward pass UpperCAmelCase_ : str = model( input_ids=_UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar UpperCAmelCase_ : List[str] = outputs.loss UpperCAmelCase_ : Tuple = (2,) self.assertEqual(loss.shape , _UpperCamelCase ) # test the shape of the logits UpperCAmelCase_ : Dict = outputs.logits UpperCAmelCase_ : List[str] = (2, 2) self.assertEqual(logits.shape , _UpperCamelCase ) @slow def __UpperCAmelCase ( self ) -> List[Any]: # initialize model with randomly initialized token classification head UpperCAmelCase_ : int = TFLayoutLMForTokenClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=1_3 ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = prepare_layoutlm_batch_inputs() # forward pass UpperCAmelCase_ : str = model( input_ids=_UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) # test the shape of the logits UpperCAmelCase_ : int = outputs.logits UpperCAmelCase_ : str = tf.convert_to_tensor((2, 2_5, 1_3) ) self.assertEqual(logits.shape , _UpperCamelCase ) @slow def __UpperCAmelCase ( self ) -> List[str]: # initialize model with randomly initialized token classification head UpperCAmelCase_ : Tuple = TFLayoutLMForQuestionAnswering.from_pretrained('microsoft/layoutlm-base-uncased' ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = prepare_layoutlm_batch_inputs() # forward pass UpperCAmelCase_ : Tuple = model(input_ids=_UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) # test the shape of the logits UpperCAmelCase_ : Tuple = tf.convert_to_tensor((2, 2_5) ) self.assertEqual(outputs.start_logits.shape , _UpperCamelCase ) self.assertEqual(outputs.end_logits.shape , _UpperCamelCase )
29
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCamelCase (_snake_case , _snake_case , unittest.TestCase ): '''simple docstring''' _snake_case : Union[str, Any] = IFImgaImgSuperResolutionPipeline _snake_case : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''width''', '''height'''} _snake_case : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''original_image'''} ) _snake_case : List[str] = PipelineTesterMixin.required_optional_params - {'''latents'''} def __UpperCAmelCase ( self ) -> Optional[Any]: return self._get_superresolution_dummy_components() def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase=0 ) -> Any: if str(_UpperCamelCase ).startswith('mps' ): UpperCAmelCase_ : List[Any] = torch.manual_seed(_UpperCamelCase ) else: UpperCAmelCase_ : int = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) UpperCAmelCase_ : List[Any] = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) UpperCAmelCase_ : Dict = floats_tensor((1, 3, 1_6, 1_6) , rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) UpperCAmelCase_ : Tuple = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __UpperCAmelCase ( self ) -> Any: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def __UpperCAmelCase ( self ) -> Dict: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def __UpperCAmelCase ( self ) -> str: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def __UpperCAmelCase ( self ) -> List[Any]: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def __UpperCAmelCase ( self ) -> Union[str, Any]: self._test_save_load_local() def __UpperCAmelCase ( self ) -> Dict: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
29
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class __snake_case : def __init__( self , lowercase , ) -> Optional[Any]: '''simple docstring''' a__: str = parent a__: Optional[int] = 13 a__: List[str] = 7 a__: str = True a__: Optional[int] = True a__: str = False a__: List[Any] = True a__: List[Any] = 99 a__: str = 32 a__: List[str] = 2 a__: List[str] = 4 a__: Union[str, Any] = 37 a__: Optional[int] = 'gelu' a__: Dict = 0.1 a__: Optional[Any] = 0.1 a__: List[str] = 5_12 a__: List[str] = 16 a__: int = 2 a__: Tuple = 0.02 a__: Optional[Any] = 3 a__: Any = 4 a__: Optional[int] = None def lowerCamelCase_ ( self) -> int: '''simple docstring''' a__: Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a__: Tuple = None if self.use_input_mask: a__: Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length]) a__: str = None a__: str = None a__: List[Any] = None if self.use_labels: a__: List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size) a__: Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) a__: int = ids_tensor([self.batch_size] , self.num_choices) a__: str = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase) -> List[Any]: '''simple docstring''' a__: List[Any] = TFDistilBertModel(config=lowercase) a__: Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} a__: Tuple = model(lowercase) a__: Union[str, Any] = [input_ids, input_mask] a__: str = model(lowercase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def lowerCamelCase_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase) -> Optional[Any]: '''simple docstring''' a__: int = TFDistilBertForMaskedLM(config=lowercase) a__: Any = {'input_ids': input_ids, 'attention_mask': input_mask} a__: Union[str, Any] = model(lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def lowerCamelCase_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase) -> str: '''simple docstring''' a__: Tuple = TFDistilBertForQuestionAnswering(config=lowercase) a__: List[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, } a__: List[Any] = model(lowercase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def lowerCamelCase_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase) -> Dict: '''simple docstring''' a__: int = self.num_labels a__: Any = TFDistilBertForSequenceClassification(lowercase) a__: Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask} a__: List[Any] = model(lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def lowerCamelCase_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase) -> Union[str, Any]: '''simple docstring''' a__: Optional[Any] = self.num_choices a__: List[Any] = TFDistilBertForMultipleChoice(lowercase) a__: List[str] = tf.tile(tf.expand_dims(lowercase , 1) , (1, self.num_choices, 1)) a__: int = tf.tile(tf.expand_dims(lowercase , 1) , (1, self.num_choices, 1)) a__: Union[str, Any] = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, } a__: Optional[Any] = model(lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def lowerCamelCase_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase) -> Union[str, Any]: '''simple docstring''' a__: Dict = self.num_labels a__: Optional[Any] = TFDistilBertForTokenClassification(lowercase) a__: Dict = {'input_ids': input_ids, 'attention_mask': input_mask} a__: Tuple = model(lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def lowerCamelCase_ ( self) -> Tuple: '''simple docstring''' a__: Dict = self.prepare_config_and_inputs() ((a__) , (a__) , (a__) , (a__) , (a__) , (a__)): List[Any] = config_and_inputs a__: Union[str, Any] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __snake_case ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): a__ = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) a__ = ( { """feature-extraction""": TFDistilBertModel, """fill-mask""": TFDistilBertForMaskedLM, """question-answering""": TFDistilBertForQuestionAnswering, """text-classification""": TFDistilBertForSequenceClassification, """token-classification""": TFDistilBertForTokenClassification, """zero-shot""": TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) a__ = False a__ = False def lowerCamelCase_ ( self) -> Any: '''simple docstring''' a__: int = TFDistilBertModelTester(self) a__: Optional[Any] = ConfigTester(self , config_class=lowercase , dim=37) def lowerCamelCase_ ( self) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase_ ( self) -> str: '''simple docstring''' a__: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*lowercase) def lowerCamelCase_ ( self) -> Dict: '''simple docstring''' a__: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*lowercase) def lowerCamelCase_ ( self) -> List[str]: '''simple docstring''' a__: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*lowercase) def lowerCamelCase_ ( self) -> Any: '''simple docstring''' a__: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowercase) def lowerCamelCase_ ( self) -> Union[str, Any]: '''simple docstring''' a__: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowercase) def lowerCamelCase_ ( self) -> Union[str, Any]: '''simple docstring''' a__: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*lowercase) @slow def lowerCamelCase_ ( self) -> List[str]: '''simple docstring''' for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]): a__: str = TFDistilBertModel.from_pretrained(lowercase) self.assertIsNotNone(lowercase) @require_tf class __snake_case ( unittest.TestCase ): @slow def lowerCamelCase_ ( self) -> Tuple: '''simple docstring''' a__: List[Any] = TFDistilBertModel.from_pretrained('distilbert-base-uncased') a__: Any = tf.constant([[0, 1, 2, 3, 4, 5]]) a__: str = model(lowercase)[0] a__: Tuple = [1, 6, 7_68] self.assertEqual(output.shape , lowercase) a__: Tuple = tf.constant( [ [ [0.19261885, -0.13732955, 0.4119799], [0.22150156, -0.07422661, 0.39037204], [0.22756018, -0.0896414, 0.3701467], ] ]) tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1e-4)
203
"""simple docstring""" def __a ( _SCREAMING_SNAKE_CASE ) ->bool: return credit_card_number.startswith(('34', '35', '37', '4', '5', '6') ) def __a ( _SCREAMING_SNAKE_CASE ) ->bool: a__: Any = credit_card_number a__: Tuple = 0 a__: List[str] = len(_SCREAMING_SNAKE_CASE ) - 2 for i in range(_SCREAMING_SNAKE_CASE , -1 , -2 ): # double the value of every second digit a__: Tuple = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 a__: Optional[Any] = cc_number[:i] + str(_SCREAMING_SNAKE_CASE ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(_SCREAMING_SNAKE_CASE ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def __a ( _SCREAMING_SNAKE_CASE ) ->bool: a__: Optional[int] = F'{credit_card_number} is an invalid credit card number because' if not credit_card_number.isdigit(): print(F'{error_message} it has nonnumerical characters.' ) return False if not 13 <= len(_SCREAMING_SNAKE_CASE ) <= 16: print(F'{error_message} of its length.' ) return False if not validate_initial_digits(_SCREAMING_SNAKE_CASE ): print(F'{error_message} of its first two digits.' ) return False if not luhn_validation(_SCREAMING_SNAKE_CASE ): print(F'{error_message} it fails the Luhn check.' ) return False print(F'{credit_card_number} is a valid credit card number.' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number('4111111111111111') validate_credit_card_number('32323')
203
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : str = logging.get_logger(__name__) _lowerCAmelCase : List[Any] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class _UpperCamelCase ( lowerCAmelCase ): UpperCAmelCase_ = """megatron-bert""" def __init__( self :List[str] , lowerCamelCase :Any=2_9056 , lowerCamelCase :Optional[Any]=1024 , lowerCamelCase :List[str]=24 , lowerCamelCase :List[Any]=16 , lowerCamelCase :Any=4096 , lowerCamelCase :List[str]="gelu" , lowerCamelCase :Any=0.1 , lowerCamelCase :Any=0.1 , lowerCamelCase :Union[str, Any]=512 , lowerCamelCase :Dict=2 , lowerCamelCase :Any=0.02 , lowerCamelCase :Tuple=1e-12 , lowerCamelCase :Tuple=0 , lowerCamelCase :int="absolute" , lowerCamelCase :List[str]=True , **lowerCamelCase :Tuple , ) -> Optional[int]: super().__init__(pad_token_id=lowerCamelCase , **lowerCamelCase ) UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = hidden_act UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = position_embedding_type UpperCAmelCase__ = use_cache
169
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _UpperCamelCase ( lowerCAmelCase ): UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 def __init__( self :int , lowerCamelCase :UNetaDModel , lowerCamelCase :ScoreSdeVeScheduler ) -> Any: super().__init__() self.register_modules(unet=lowerCamelCase , scheduler=lowerCamelCase ) @torch.no_grad() def __call__( self :Optional[Any] , lowerCamelCase :int = 1 , lowerCamelCase :int = 2000 , lowerCamelCase :Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase :Optional[str] = "pil" , lowerCamelCase :bool = True , **lowerCamelCase :Any , ) -> Union[ImagePipelineOutput, Tuple]: UpperCAmelCase__ = self.unet.config.sample_size UpperCAmelCase__ = (batch_size, 3, img_size, img_size) UpperCAmelCase__ = self.unet UpperCAmelCase__ = randn_tensor(lowerCamelCase , generator=lowerCamelCase ) * self.scheduler.init_noise_sigma UpperCAmelCase__ = sample.to(self.device ) self.scheduler.set_timesteps(lowerCamelCase ) self.scheduler.set_sigmas(lowerCamelCase ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): UpperCAmelCase__ = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): UpperCAmelCase__ = self.unet(lowerCamelCase , lowerCamelCase ).sample UpperCAmelCase__ = self.scheduler.step_correct(lowerCamelCase , lowerCamelCase , generator=lowerCamelCase ).prev_sample # prediction step UpperCAmelCase__ = model(lowerCamelCase , lowerCamelCase ).sample UpperCAmelCase__ = self.scheduler.step_pred(lowerCamelCase , lowerCamelCase , lowerCamelCase , generator=lowerCamelCase ) UpperCAmelCase__ , UpperCAmelCase__ = output.prev_sample, output.prev_sample_mean UpperCAmelCase__ = sample_mean.clamp(0 , 1 ) UpperCAmelCase__ = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase__ = self.numpy_to_pil(lowerCamelCase ) if not return_dict: return (sample,) return ImagePipelineOutput(images=lowerCamelCase )
169
1
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = ['image_processor', 'tokenizer'] SCREAMING_SNAKE_CASE_ = 'Pix2StructImageProcessor' SCREAMING_SNAKE_CASE_ = ('T5Tokenizer', 'T5TokenizerFast') def __init__( self : Tuple ,__lowerCamelCase : Any ,__lowerCamelCase : Dict ): '''simple docstring''' a = False super().__init__(__lowerCamelCase ,__lowerCamelCase ) def __call__( self : Any ,__lowerCamelCase : str=None ,__lowerCamelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None ,__lowerCamelCase : bool = True ,__lowerCamelCase : Union[bool, str, PaddingStrategy] = False ,__lowerCamelCase : Union[bool, str, TruncationStrategy] = None ,__lowerCamelCase : Optional[int] = None ,__lowerCamelCase : Optional[int] = 20_48 ,__lowerCamelCase : int = 0 ,__lowerCamelCase : Optional[int] = None ,__lowerCamelCase : Optional[bool] = None ,__lowerCamelCase : bool = False ,__lowerCamelCase : bool = False ,__lowerCamelCase : bool = False ,__lowerCamelCase : bool = False ,__lowerCamelCase : bool = False ,__lowerCamelCase : bool = True ,__lowerCamelCase : Optional[Union[str, TensorType]] = None ,**__lowerCamelCase : Union[str, Any] ,): '''simple docstring''' if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None and not self.image_processor.is_vqa: a = self.tokenizer a = self.tokenizer( text=__lowerCamelCase ,add_special_tokens=__lowerCamelCase ,padding=__lowerCamelCase ,truncation=__lowerCamelCase ,max_length=__lowerCamelCase ,stride=__lowerCamelCase ,pad_to_multiple_of=__lowerCamelCase ,return_attention_mask=__lowerCamelCase ,return_overflowing_tokens=__lowerCamelCase ,return_special_tokens_mask=__lowerCamelCase ,return_offsets_mapping=__lowerCamelCase ,return_token_type_ids=__lowerCamelCase ,return_length=__lowerCamelCase ,verbose=__lowerCamelCase ,return_tensors=__lowerCamelCase ,**__lowerCamelCase ,) return text_encoding if not self.image_processor.is_vqa: # add pixel_values a = self.image_processor( __lowerCamelCase ,return_tensors=__lowerCamelCase ,max_patches=__lowerCamelCase ,**__lowerCamelCase ) else: # add pixel_values and bbox a = self.image_processor( __lowerCamelCase ,return_tensors=__lowerCamelCase ,max_patches=__lowerCamelCase ,header_text=__lowerCamelCase ,**__lowerCamelCase ) if text is not None and not self.image_processor.is_vqa: a = self.tokenizer( text=__lowerCamelCase ,add_special_tokens=__lowerCamelCase ,padding=__lowerCamelCase ,truncation=__lowerCamelCase ,max_length=__lowerCamelCase ,stride=__lowerCamelCase ,pad_to_multiple_of=__lowerCamelCase ,return_attention_mask=__lowerCamelCase ,return_overflowing_tokens=__lowerCamelCase ,return_special_tokens_mask=__lowerCamelCase ,return_offsets_mapping=__lowerCamelCase ,return_token_type_ids=__lowerCamelCase ,return_length=__lowerCamelCase ,verbose=__lowerCamelCase ,return_tensors=__lowerCamelCase ,**__lowerCamelCase ,) if "attention_mask" in text_encoding: a = text_encoding.pop('''attention_mask''' ) if "input_ids" in text_encoding: a = text_encoding.pop('''input_ids''' ) else: a = None if text_encoding is not None: encoding_image_processor.update(__lowerCamelCase ) return encoding_image_processor def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ,*__lowerCamelCase : List[str] ,**__lowerCamelCase : Tuple ): '''simple docstring''' return self.tokenizer.batch_decode(*__lowerCamelCase ,**__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,*__lowerCamelCase : List[Any] ,**__lowerCamelCase : Any ): '''simple docstring''' return self.tokenizer.decode(*__lowerCamelCase ,**__lowerCamelCase ) @property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' a = self.tokenizer.model_input_names a = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
330
from __future__ import annotations import os from collections.abc import Mapping UpperCamelCase__ : Any = tuple[int, int] class lowerCamelCase_ : def __init__( self : Optional[Any] ,__lowerCamelCase : set[int] ,__lowerCamelCase : Mapping[EdgeT, int] ): '''simple docstring''' a = vertices a = { (min(__lowerCamelCase ), max(__lowerCamelCase )): weight for edge, weight in edges.items() } def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : EdgeT ,__lowerCamelCase : int ): '''simple docstring''' self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) a = weight def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' a = Graph({min(self.vertices )} ,{} ) a = 42 a = 42 a = 42 a = 42 while len(subgraph.vertices ) < len(self.vertices ): a = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: a = edge a = weight subgraph.add_edge(__lowerCamelCase ,__lowerCamelCase ) return subgraph def SCREAMING_SNAKE_CASE__ ( snake_case_ = "p107_network.txt" ) -> int: """simple docstring""" a = os.path.abspath(os.path.dirname(snake_case_ ) ) a = os.path.join(snake_case_, snake_case_ ) a = {} a = 42 a = 42 a = 42 with open(snake_case_ ) as f: a = f.read().strip().split('''\n''' ) a = [line.split(''',''' ) for line in data] for edgea in range(1, len(snake_case_ ) ): for edgea in range(snake_case_ ): if adjaceny_matrix[edgea][edgea] != "-": a = int(adjaceny_matrix[edgea][edgea] ) a = Graph(set(range(len(snake_case_ ) ) ), snake_case_ ) a = graph.prims_algorithm() a = sum(graph.edges.values() ) a = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F"{solution() = }")
330
1
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( lowercase_ , unittest.TestCase ): lowercase = DiTPipeline lowercase = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS lowercase = PipelineTesterMixin.required_optional_params - { 'latents', 'num_images_per_prompt', 'callback', 'callback_steps', } lowercase = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS lowercase = False def _UpperCAmelCase ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) lowercase_ : Dict = TransformeraDModel( sample_size=16 ,num_layers=2 ,patch_size=4 ,attention_head_dim=8 ,num_attention_heads=2 ,in_channels=4 ,out_channels=8 ,attention_bias=__UpperCamelCase ,activation_fn='gelu-approximate' ,num_embeds_ada_norm=1000 ,norm_type='ada_norm_zero' ,norm_elementwise_affine=__UpperCamelCase ,) lowercase_ : int = AutoencoderKL() lowercase_ : Tuple = DDIMScheduler() lowercase_ : Dict = {'transformer': transformer.eval(), 'vae': vae.eval(), 'scheduler': scheduler} return components def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase=0 ) -> List[Any]: '''simple docstring''' if str(__UpperCamelCase ).startswith('mps' ): lowercase_ : Optional[Any] = torch.manual_seed(__UpperCamelCase ) else: lowercase_ : Union[str, Any] = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) lowercase_ : Dict = { 'class_labels': [1], 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : List[str] = 'cpu' lowercase_ : List[Any] = self.get_dummy_components() lowercase_ : List[str] = self.pipeline_class(**__UpperCamelCase ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) lowercase_ : Dict = self.get_dummy_inputs(__UpperCamelCase ) lowercase_ : Union[str, Any] = pipe(**__UpperCamelCase ).images lowercase_ : Optional[int] = image[0, -3:, -3:, -1] self.assertEqual(image.shape ,(1, 16, 16, 3) ) lowercase_ : Dict = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] ) lowercase_ : str = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__UpperCamelCase ,1e-3 ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' self._test_inference_batch_single_identical(relax_max_difference=__UpperCamelCase ,expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() ,reason='XFormers attention is only available with CUDA and `xformers` installed' ,) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : Union[str, Any] = torch.manual_seed(0 ) lowercase_ : Dict = DiTPipeline.from_pretrained('facebook/DiT-XL-2-256' ) pipe.to('cuda' ) lowercase_ : str = ['vase', 'umbrella', 'white shark', 'white wolf'] lowercase_ : List[str] = pipe.get_label_ids(__UpperCamelCase ) lowercase_ : List[str] = pipe(__UpperCamelCase ,generator=__UpperCamelCase ,num_inference_steps=40 ,output_type='np' ).images for word, image in zip(__UpperCamelCase ,__UpperCamelCase ): lowercase_ : List[str] = load_numpy( f'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-2 def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : int = DiTPipeline.from_pretrained('facebook/DiT-XL-2-512' ) lowercase_ : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('cuda' ) lowercase_ : Dict = ['vase', 'umbrella'] lowercase_ : Optional[Any] = pipe.get_label_ids(__UpperCamelCase ) lowercase_ : List[Any] = torch.manual_seed(0 ) lowercase_ : int = pipe(__UpperCamelCase ,generator=__UpperCamelCase ,num_inference_steps=25 ,output_type='np' ).images for word, image in zip(__UpperCamelCase ,__UpperCamelCase ): lowercase_ : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' f'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-1
213
"""simple docstring""" import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) class UpperCamelCase ( enum.Enum ): lowercase = 0 lowercase = 1 @add_end_docstrings(lowercase_ ) class UpperCamelCase ( lowercase_ ): lowercase = 'generated' def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Tuple: '''simple docstring''' super().__init__(*__UpperCamelCase ,**__UpperCamelCase ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == 'tf' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def _UpperCAmelCase ( self ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=None ,**__UpperCamelCase ,) -> Optional[Any]: '''simple docstring''' lowercase_ : List[Any] = {} if truncation is not None: lowercase_ : int = truncation lowercase_ : Dict = generate_kwargs lowercase_ : List[Any] = {} if return_tensors is not None and return_type is None: lowercase_ : Union[str, Any] = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: lowercase_ : str = return_type if clean_up_tokenization_spaces is not None: lowercase_ : Dict = clean_up_tokenization_spaces if stop_sequence is not None: lowercase_ : Union[str, Any] = self.tokenizer.encode(__UpperCamelCase ,add_special_tokens=__UpperCamelCase ) if len(__UpperCamelCase ) > 1: warnings.warn( 'Stopping on a multiple token sequence is not yet supported on transformers. The first token of' ' the stop sequence will be used as the stop sequence string in the interim.' ) lowercase_ : Optional[int] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' return True def _UpperCAmelCase ( self ,*__UpperCamelCase ,__UpperCamelCase ) -> Dict: '''simple docstring''' lowercase_ : Dict = self.model.config.prefix if self.model.config.prefix is not None else '' if isinstance(args[0] ,__UpperCamelCase ): if self.tokenizer.pad_token_id is None: raise ValueError('Please make sure that the tokenizer has a pad_token_id when using a batch input' ) lowercase_ : str = ([prefix + arg for arg in args[0]],) lowercase_ : Union[str, Any] = True elif isinstance(args[0] ,__UpperCamelCase ): lowercase_ : Union[str, Any] = (prefix + args[0],) lowercase_ : Union[str, Any] = False else: raise ValueError( f''' `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`''' ) lowercase_ : List[Any] = self.tokenizer(*__UpperCamelCase ,padding=__UpperCamelCase ,truncation=__UpperCamelCase ,return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Dict: '''simple docstring''' lowercase_ : Optional[int] = super().__call__(*__UpperCamelCase ,**__UpperCamelCase ) if ( isinstance(args[0] ,__UpperCamelCase ) and all(isinstance(__UpperCamelCase ,__UpperCamelCase ) for el in args[0] ) and all(len(__UpperCamelCase ) == 1 for res in result ) ): return [res[0] for res in result] return result def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase=TruncationStrategy.DO_NOT_TRUNCATE ,**__UpperCamelCase ) -> List[str]: '''simple docstring''' lowercase_ : Any = self._parse_and_tokenize(__UpperCamelCase ,truncation=__UpperCamelCase ,**__UpperCamelCase ) return inputs def _UpperCAmelCase ( self ,__UpperCamelCase ,**__UpperCamelCase ) -> Optional[int]: '''simple docstring''' if self.framework == "pt": lowercase_ , lowercase_ : Optional[int] = model_inputs['input_ids'].shape elif self.framework == "tf": lowercase_ , lowercase_ : Union[str, Any] = tf.shape(model_inputs['input_ids'] ).numpy() lowercase_ : str = generate_kwargs.get('min_length' ,self.model.config.min_length ) lowercase_ : List[Any] = generate_kwargs.get('max_length' ,self.model.config.max_length ) self.check_inputs(__UpperCamelCase ,generate_kwargs['min_length'] ,generate_kwargs['max_length'] ) lowercase_ : Tuple = self.model.generate(**__UpperCamelCase ,**__UpperCamelCase ) lowercase_ : str = output_ids.shape[0] if self.framework == "pt": lowercase_ : List[Any] = output_ids.reshape(__UpperCamelCase ,out_b // in_b ,*output_ids.shape[1:] ) elif self.framework == "tf": lowercase_ : List[Any] = tf.reshape(__UpperCamelCase ,(in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase=ReturnType.TEXT ,__UpperCamelCase=False ) -> Dict: '''simple docstring''' lowercase_ : Dict = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: lowercase_ : List[Any] = {f'''{self.return_name}_token_ids''': output_ids} elif return_type == ReturnType.TEXT: lowercase_ : str = { f'''{self.return_name}_text''': self.tokenizer.decode( __UpperCamelCase ,skip_special_tokens=__UpperCamelCase ,clean_up_tokenization_spaces=__UpperCamelCase ,) } records.append(__UpperCamelCase ) return records @add_end_docstrings(lowercase_ ) class UpperCamelCase ( lowercase_ ): lowercase = 'summary' def __call__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' return super().__call__(*__UpperCamelCase ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> bool: '''simple docstring''' if max_length < min_length: logger.warning(f'''Your min_length={min_length} must be inferior than your max_length={max_length}.''' ) if input_length < max_length: logger.warning( f'''Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is ''' 'a summarization task, where outputs shorter than the input are typically wanted, you might ' f'''consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})''' ) @add_end_docstrings(lowercase_ ) class UpperCamelCase ( lowercase_ ): lowercase = 'translation' def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Dict: '''simple docstring''' if input_length > 0.9 * max_length: logger.warning( f'''Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider ''' 'increasing your max_length manually, e.g. translator(\'...\', max_length=400)' ) return True def _UpperCAmelCase ( self ,*__UpperCamelCase ,__UpperCamelCase=TruncationStrategy.DO_NOT_TRUNCATE ,__UpperCamelCase=None ,__UpperCamelCase=None ) -> int: '''simple docstring''' if getattr(self.tokenizer ,'_build_translation_inputs' ,__UpperCamelCase ): return self.tokenizer._build_translation_inputs( *__UpperCamelCase ,return_tensors=self.framework ,truncation=__UpperCamelCase ,src_lang=__UpperCamelCase ,tgt_lang=__UpperCamelCase ) else: return super()._parse_and_tokenize(*__UpperCamelCase ,truncation=__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase=None ,__UpperCamelCase=None ,**__UpperCamelCase ) -> str: '''simple docstring''' lowercase_ , lowercase_ , lowercase_ : int = super()._sanitize_parameters(**__UpperCamelCase ) if src_lang is not None: lowercase_ : str = src_lang if tgt_lang is not None: lowercase_ : Optional[Any] = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. lowercase_ : Tuple = kwargs.get('task' ,self.task ) lowercase_ : List[str] = task.split('_' ) if task and len(__UpperCamelCase ) == 4: # translation, XX, to YY lowercase_ : Union[str, Any] = items[1] lowercase_ : Tuple = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Dict: '''simple docstring''' return super().__call__(*__UpperCamelCase ,**__UpperCamelCase )
213
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = '▁' lowerCamelCase = {'vocab_file': 'sentencepiece.bpe.model'} lowerCamelCase = { 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model' ), } } lowerCamelCase = { 'facebook/nllb-200-distilled-600M': 1_024, } # fmt: off lowerCamelCase = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class lowercase__ ( _lowerCamelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = ['''input_ids''', '''attention_mask'''] UpperCamelCase = [] UpperCamelCase = [] def __init__( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any]="<s>" , _UpperCAmelCase : Dict="</s>" , _UpperCAmelCase : Tuple="</s>" , _UpperCAmelCase : Optional[int]="<s>" , _UpperCAmelCase : Optional[int]="<unk>" , _UpperCAmelCase : List[str]="<pad>" , _UpperCAmelCase : List[str]="<mask>" , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : Optional[Dict[str, Any]] = None , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : int=False , **_UpperCAmelCase : List[Any] , ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token UpperCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs UpperCAmelCase_ = legacy_behaviour super().__init__( bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , tokenizer_file=_UpperCAmelCase , src_lang=_UpperCAmelCase , tgt_lang=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=_UpperCAmelCase , **_UpperCAmelCase , ) UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_UpperCAmelCase ) ) UpperCAmelCase_ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token UpperCAmelCase_ = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCAmelCase_ = 1 UpperCAmelCase_ = len(self.sp_model ) UpperCAmelCase_ = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_UpperCAmelCase ) } UpperCAmelCase_ = {v: k for k, v in self.lang_code_to_id.items()} UpperCAmelCase_ = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) UpperCAmelCase_ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} UpperCAmelCase_ = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) UpperCAmelCase_ = src_lang if src_lang is not None else "eng_Latn" UpperCAmelCase_ = self.lang_code_to_id[self._src_lang] UpperCAmelCase_ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : str ) -> str: '''simple docstring''' UpperCAmelCase_ = self.__dict__.copy() UpperCAmelCase_ = None UpperCAmelCase_ = self.sp_model.serialized_model_proto() return state def __setstate__( self : int , _UpperCAmelCase : Optional[int] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCAmelCase_ = {} UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def lowercase__ ( self : Any ) -> int: '''simple docstring''' return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def lowercase__ ( self : str ) -> Optional[Any]: '''simple docstring''' return self._src_lang @src_lang.setter def lowercase__ ( self : Any , _UpperCAmelCase : str ) -> str: '''simple docstring''' UpperCAmelCase_ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : bool = False ) -> Dict: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) UpperCAmelCase_ = [1] * len(self.prefix_tokens ) UpperCAmelCase_ = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_UpperCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(_UpperCAmelCase )) + ([0] * len(_UpperCAmelCase )) + suffix_ones def lowercase__ ( self : Optional[int] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[str]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowercase__ ( self : str , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase__ ( self : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] , _UpperCAmelCase : Optional[str] , **_UpperCAmelCase : Union[str, Any] ) -> int: '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) UpperCAmelCase_ = src_lang UpperCAmelCase_ = self(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) UpperCAmelCase_ = self.convert_tokens_to_ids(_UpperCAmelCase ) UpperCAmelCase_ = tgt_lang_id return inputs def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase__ ( self : int , _UpperCAmelCase : str ) -> Any: '''simple docstring''' return self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase ) def lowercase__ ( self : List[str] , _UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase_ = self.sp_model.PieceToId(_UpperCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowercase__ ( self : int , _UpperCAmelCase : Tuple ) -> List[str]: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowercase__ ( self : Dict , _UpperCAmelCase : Union[str, Any] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = "".join(_UpperCAmelCase ).replace(_UpperCAmelCase , " " ).strip() return out_string def lowercase__ ( self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Union[str, Any]: '''simple docstring''' if not os.path.isdir(_UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase_ = os.path.join( _UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCAmelCase , "wb" ) as fi: UpperCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(_UpperCAmelCase ) return (out_vocab_file,) def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str = "eng_Latn" , _UpperCAmelCase : Optional[List[str]] = None , _UpperCAmelCase : str = "fra_Latn" , **_UpperCAmelCase : Any , ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = src_lang UpperCAmelCase_ = tgt_lang return super().prepare_seqaseq_batch(_UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Tuple ) -> List[Any]: '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def lowercase__ ( self : Tuple ) -> List[Any]: '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowercase__ ( self : Any , _UpperCAmelCase : Union[str, Any] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = self.lang_code_to_id[src_lang] if self.legacy_behaviour: UpperCAmelCase_ = [] UpperCAmelCase_ = [self.eos_token_id, self.cur_lang_code] else: UpperCAmelCase_ = [self.cur_lang_code] UpperCAmelCase_ = [self.eos_token_id] def lowercase__ ( self : Dict , _UpperCAmelCase : str ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = self.lang_code_to_id[lang] if self.legacy_behaviour: UpperCAmelCase_ = [] UpperCAmelCase_ = [self.eos_token_id, self.cur_lang_code] else: UpperCAmelCase_ = [self.cur_lang_code] UpperCAmelCase_ = [self.eos_token_id]
353
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva lowerCamelCase = """""" lowerCamelCase = """""" lowerCamelCase = """""" lowerCamelCase = 1 # (0 is vertical, 1 is horizontal) def a__ ( ): UpperCAmelCase_ , UpperCAmelCase_ = get_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) print("Processing..." ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = update_image_and_anno(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) for index, image in enumerate(lowerCAmelCase__ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' UpperCAmelCase_ = random_chars(32 ) UpperCAmelCase_ = paths[index].split(os.sep )[-1].rsplit("." , 1 )[0] UpperCAmelCase_ = f"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(f"""/{file_root}.jpg""" , lowerCAmelCase__ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f"""Success {index+1}/{len(lowerCAmelCase__ )} with {file_name}""" ) UpperCAmelCase_ = [] for anno in new_annos[index]: UpperCAmelCase_ = f"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(lowerCAmelCase__ ) with open(f"""/{file_root}.txt""" , "w" ) as outfile: outfile.write("\n".join(line for line in annos_list ) ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = [] UpperCAmelCase_ = [] for label_file in glob.glob(os.path.join(lowerCAmelCase__ , "*.txt" ) ): UpperCAmelCase_ = label_file.split(os.sep )[-1].rsplit("." , 1 )[0] with open(lowerCAmelCase__ ) as in_file: UpperCAmelCase_ = in_file.readlines() UpperCAmelCase_ = os.path.join(lowerCAmelCase__ , f"""{label_name}.jpg""" ) UpperCAmelCase_ = [] for obj_list in obj_lists: UpperCAmelCase_ = obj_list.rstrip("\n" ).split(" " ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(lowerCAmelCase__ ) labels.append(lowerCAmelCase__ ) return img_paths, labels def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 1 ): UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = [] for idx in range(len(lowerCAmelCase__ ) ): UpperCAmelCase_ = [] UpperCAmelCase_ = img_list[idx] path_list.append(lowerCAmelCase__ ) UpperCAmelCase_ = anno_list[idx] UpperCAmelCase_ = cva.imread(lowerCAmelCase__ ) if flip_type == 1: UpperCAmelCase_ = cva.flip(lowerCAmelCase__ , lowerCAmelCase__ ) for bbox in img_annos: UpperCAmelCase_ = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: UpperCAmelCase_ = cva.flip(lowerCAmelCase__ , lowerCAmelCase__ ) for bbox in img_annos: UpperCAmelCase_ = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(lowerCAmelCase__ ) new_imgs_list.append(lowerCAmelCase__ ) return new_imgs_list, new_annos_lists, path_list def a__ ( lowerCAmelCase__ = 32 ): assert number_char > 1, "The number of character should greater than 1" UpperCAmelCase_ = ascii_lowercase + digits return "".join(random.choice(lowerCAmelCase__ ) for _ in range(lowerCAmelCase__ ) ) if __name__ == "__main__": main() print("""DONE ✅""")
241
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a = { '''configuration_instructblip''': [ '''INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InstructBlipConfig''', '''InstructBlipQFormerConfig''', '''InstructBlipVisionConfig''', ], '''processing_instructblip''': ['''InstructBlipProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ '''INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InstructBlipQFormerModel''', '''InstructBlipPreTrainedModel''', '''InstructBlipForConditionalGeneration''', '''InstructBlipVisionModel''', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
315
import string def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: str ) -> None: '''simple docstring''' for key in range(len(string.ascii_uppercase ) ): A__ = "" for symbol in message: if symbol in string.ascii_uppercase: A__ = string.ascii_uppercase.find(SCREAMING_SNAKE_CASE_ ) A__ = num - key if num < 0: A__ = num + len(string.ascii_uppercase ) A__ = translated + string.ascii_uppercase[num] else: A__ = translated + symbol print(F'Decryption using Key #{key}: {translated}' ) def lowerCAmelCase__ ( ) -> None: '''simple docstring''' A__ = input("Encrypted message: " ) A__ = message.upper() decrypt(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
68
0
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def __snake_case ( __UpperCamelCase : Union[str, Any] ): """simple docstring""" if is_torch_version("<" ,"2.0.0" ) or not hasattr(__UpperCamelCase ,"_dynamo" ): return False return isinstance(__UpperCamelCase ,torch._dynamo.eval_frame.OptimizedModule ) def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : bool = True ): """simple docstring""" A_ = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) A_ = is_compiled_module(__UpperCamelCase ) if is_compiled: A_ = model A_ = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = model.module if not keep_fpaa_wrapper: A_ = getattr(__UpperCamelCase ,"forward" ) A_ = model.__dict__.pop("_original_forward" ,__UpperCamelCase ) if original_forward is not None: while hasattr(__UpperCamelCase ,"__wrapped__" ): A_ = forward.__wrapped__ if forward == original_forward: break A_ = forward if getattr(__UpperCamelCase ,"_converted_to_transformer_engine" ,__UpperCamelCase ): convert_model(__UpperCamelCase ,to_transformer_engine=__UpperCamelCase ) if is_compiled: A_ = model A_ = compiled_model return model def __snake_case ( ): """simple docstring""" PartialState().wait_for_everyone() def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : Any ): """simple docstring""" if PartialState().distributed_type == DistributedType.TPU: xm.save(__UpperCamelCase ,__UpperCamelCase ) elif PartialState().local_process_index == 0: torch.save(__UpperCamelCase ,__UpperCamelCase ) @contextmanager def __snake_case ( **__UpperCamelCase : Any ): """simple docstring""" for key, value in kwargs.items(): A_ = str(__UpperCamelCase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def __snake_case ( __UpperCamelCase : Optional[Any] ): """simple docstring""" if not hasattr(__UpperCamelCase ,"__qualname__" ) and not hasattr(__UpperCamelCase ,"__name__" ): A_ = getattr(__UpperCamelCase ,"__class__" ,__UpperCamelCase ) if hasattr(__UpperCamelCase ,"__qualname__" ): return obj.__qualname__ if hasattr(__UpperCamelCase ,"__name__" ): return obj.__name__ return str(__UpperCamelCase ) def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Optional[Any] ): """simple docstring""" for key, value in source.items(): if isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = destination.setdefault(__UpperCamelCase ,{} ) merge_dicts(__UpperCamelCase ,__UpperCamelCase ) else: A_ = value return destination def __snake_case ( __UpperCamelCase : int = None ): """simple docstring""" if port is None: A_ = 2_9500 with socket.socket(socket.AF_INET ,socket.SOCK_STREAM ) as s: return s.connect_ex(("localhost", port) ) == 0
366
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class _a : """simple docstring""" def __init__( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : List[str]=13 , UpperCAmelCase : Tuple=7 , UpperCAmelCase : int=True , UpperCAmelCase : Dict=True , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : List[str]=True , UpperCAmelCase : Optional[Any]=99 , UpperCAmelCase : str=32 , UpperCAmelCase : Dict=2 , UpperCAmelCase : List[str]=4 , UpperCAmelCase : Optional[int]=37 , UpperCAmelCase : Optional[int]="gelu" , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : Any=512 , UpperCAmelCase : int=16 , UpperCAmelCase : Any=2 , UpperCAmelCase : Union[str, Any]=0.02 , UpperCAmelCase : Union[str, Any]=3 , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : List[Any]=None , ): A_ = parent A_ = 13 A_ = 7 A_ = True A_ = True A_ = True A_ = True A_ = 99 A_ = 384 A_ = 2 A_ = 4 A_ = 37 A_ = "gelu" A_ = 0.1 A_ = 0.1 A_ = 512 A_ = 16 A_ = 2 A_ = 0.02 A_ = 3 A_ = 4 A_ = 128 A_ = 2 A_ = 9 A_ = 1 A_ = None def __A ( self : Optional[int] ): A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ = None if self.use_input_mask: A_ = random_attention_mask([self.batch_size, self.seq_length] ) A_ = None if self.use_token_type_ids: A_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ = None A_ = None A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ = ids_tensor([self.batch_size] , self.num_choices ) A_ = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int ): A_ = TFConvBertModel(config=UpperCAmelCase ) A_ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} A_ = [input_ids, input_mask] A_ = model(UpperCAmelCase ) A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Tuple ): A_ = TFConvBertForMaskedLM(config=UpperCAmelCase ) A_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self : Dict , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : int ): A_ = self.num_labels A_ = TFConvBertForSequenceClassification(config=UpperCAmelCase ) A_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self : Any , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : str ): A_ = self.num_choices A_ = TFConvBertForMultipleChoice(config=UpperCAmelCase ) A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) A_ = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A ( self : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : str ): A_ = self.num_labels A_ = TFConvBertForTokenClassification(config=UpperCAmelCase ) A_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : str ): A_ = TFConvBertForQuestionAnswering(config=UpperCAmelCase ) A_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self : List[str] ): A_ = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) = config_and_inputs A_ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _a ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" _lowerCamelCase : Union[str, Any] = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) _lowerCamelCase : Any = ( { 'feature-extraction': TFConvBertModel, 'fill-mask': TFConvBertForMaskedLM, 'question-answering': TFConvBertForQuestionAnswering, 'text-classification': TFConvBertForSequenceClassification, 'token-classification': TFConvBertForTokenClassification, 'zero-shot': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) _lowerCamelCase : Dict = False _lowerCamelCase : Optional[int] = False _lowerCamelCase : Dict = False def __A ( self : List[str] ): A_ = TFConvBertModelTester(self ) A_ = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def __A ( self : Tuple ): self.config_tester.run_common_tests() def __A ( self : Tuple ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def __A ( self : Dict ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase ) def __A ( self : List[Any] ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase ) def __A ( self : Dict ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase ) def __A ( self : int ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase ) def __A ( self : List[Any] ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase ) @slow def __A ( self : str ): A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = True A_ = True if hasattr(UpperCAmelCase , "use_cache" ): A_ = True A_ = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase ) for model_class in self.all_model_classes: A_ = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) A_ = model_class(UpperCAmelCase ) A_ = len(model(UpperCAmelCase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCAmelCase , saved_model=UpperCAmelCase ) A_ = os.path.join(UpperCAmelCase , "saved_model" , "1" ) A_ = tf.keras.models.load_model(UpperCAmelCase ) A_ = model(UpperCAmelCase ) if self.is_encoder_decoder: A_ = outputs["encoder_hidden_states"] A_ = outputs["encoder_attentions"] else: A_ = outputs["hidden_states"] A_ = outputs["attentions"] self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) A_ = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def __A ( self : List[str] ): A_ = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(UpperCAmelCase ) def __A ( self : Any ): A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = True A_ = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length ) A_ = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase ) A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase ) def check_decoder_attentions_output(UpperCAmelCase : Optional[int] ): A_ = len(UpperCAmelCase ) self.assertEqual(out_len % 2 , 0 ) A_ = outputs.decoder_attentions self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(UpperCAmelCase : Optional[Any] ): A_ = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: A_ = True A_ = False A_ = model_class(UpperCAmelCase ) A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) A_ = len(UpperCAmelCase ) self.assertEqual(config.output_hidden_states , UpperCAmelCase ) check_encoder_attentions_output(UpperCAmelCase ) if self.is_encoder_decoder: A_ = model_class(UpperCAmelCase ) A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , UpperCAmelCase ) check_decoder_attentions_output(UpperCAmelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] A_ = True A_ = model_class(UpperCAmelCase ) A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , UpperCAmelCase ) check_encoder_attentions_output(UpperCAmelCase ) # Check attention is always last and order is fine A_ = True A_ = True A_ = model_class(UpperCAmelCase ) A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(UpperCAmelCase ) ) self.assertEqual(model.config.output_hidden_states , UpperCAmelCase ) check_encoder_attentions_output(UpperCAmelCase ) @require_tf class _a ( unittest.TestCase ): """simple docstring""" @slow def __A ( self : Dict ): A_ = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) A_ = tf.constant([[0, 1, 2, 3, 4, 5]] ) A_ = model(UpperCAmelCase )[0] A_ = [1, 6, 768] self.assertEqual(output.shape , UpperCAmelCase ) A_ = tf.constant( [ [ [-0.03_475_493, -0.4_686_034, -0.30_638_832], [0.22_637_248, -0.26_988_646, -0.7_423_424], [0.10_324_868, -0.45_013_508, -0.58_280_784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1E-4 )
329
0
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A_ (a_ ): UpperCAmelCase__ = ['''image_processor''', '''tokenizer'''] UpperCAmelCase__ = '''LayoutLMv2ImageProcessor''' UpperCAmelCase__ = ('''LayoutXLMTokenizer''', '''LayoutXLMTokenizerFast''') def __init__( self , _A=None , _A=None , **_A ): '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _A , ) UpperCAmelCase = kwargs.pop('''feature_extractor''' ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_A , _A ) def __call__( self , _A , _A = None , _A = None , _A = None , _A = None , _A = True , _A = False , _A = None , _A = None , _A = 0 , _A = None , _A = None , _A = None , _A = False , _A = False , _A = False , _A = False , _A = True , _A = None , **_A , ): '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor UpperCAmelCase = self.image_processor(images=_A , return_tensors=_A ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_A , _A ): UpperCAmelCase = [text] # add batch dimension (as the image processor always adds a batch dimension) UpperCAmelCase = features['''words'''] UpperCAmelCase = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=_A , add_special_tokens=_A , padding=_A , truncation=_A , max_length=_A , stride=_A , pad_to_multiple_of=_A , return_token_type_ids=_A , return_attention_mask=_A , return_overflowing_tokens=_A , return_special_tokens_mask=_A , return_offsets_mapping=_A , return_length=_A , verbose=_A , return_tensors=_A , **_A , ) # add pixel values UpperCAmelCase = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: UpperCAmelCase = self.get_overflowing_images(_A , encoded_inputs['''overflow_to_sample_mapping'''] ) UpperCAmelCase = images return encoded_inputs def _lowercase ( self , _A , _A ): '''simple docstring''' UpperCAmelCase = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(_A ) != len(_A ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' F""" {len(_A )} and {len(_A )}""" ) return images_with_overflow def _lowercase ( self , *_A , **_A ): '''simple docstring''' return self.tokenizer.batch_decode(*_A , **_A ) def _lowercase ( self , *_A , **_A ): '''simple docstring''' return self.tokenizer.decode(*_A , **_A ) @property def _lowercase ( self ): '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def _lowercase ( self ): '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _A , ) return self.image_processor_class @property def _lowercase ( self ): '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _A , ) return self.image_processor
273
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer __A : Dict = logging.get_logger(__name__) __A : Any = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __A : Tuple = { "vocab_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt" ), "squeezebert/squeezebert-mnli": "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt", "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt" ), }, "tokenizer_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli": ( "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json" ), }, } __A : List[Any] = { "squeezebert/squeezebert-uncased": 512, "squeezebert/squeezebert-mnli": 512, "squeezebert/squeezebert-mnli-headless": 512, } __A : List[Any] = { "squeezebert/squeezebert-uncased": {"do_lower_case": True}, "squeezebert/squeezebert-mnli": {"do_lower_case": True}, "squeezebert/squeezebert-mnli-headless": {"do_lower_case": True}, } class A_ (a_ ): UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = SqueezeBertTokenizer def __init__( self , _A=None , _A=None , _A=True , _A="[UNK]" , _A="[SEP]" , _A="[PAD]" , _A="[CLS]" , _A="[MASK]" , _A=True , _A=None , **_A , ): '''simple docstring''' super().__init__( _A , tokenizer_file=_A , do_lower_case=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , tokenize_chinese_chars=_A , strip_accents=_A , **_A , ) UpperCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _A ) != do_lower_case or normalizer_state.get('''strip_accents''' , _A ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _A ) != tokenize_chinese_chars ): UpperCAmelCase = getattr(_A , normalizer_state.pop('''type''' ) ) UpperCAmelCase = do_lower_case UpperCAmelCase = strip_accents UpperCAmelCase = tokenize_chinese_chars UpperCAmelCase = normalizer_class(**_A ) UpperCAmelCase = do_lower_case def _lowercase ( self , _A , _A=None ): '''simple docstring''' UpperCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowercase ( self , _A , _A = None ): '''simple docstring''' UpperCAmelCase = [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowercase ( self , _A , _A = None ): '''simple docstring''' UpperCAmelCase = self._tokenizer.model.save(_A , name=_A ) return tuple(_A )
273
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { "configuration_bigbird_pegasus": [ "BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP", "BigBirdPegasusConfig", "BigBirdPegasusOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST", "BigBirdPegasusForCausalLM", "BigBirdPegasusForConditionalGeneration", "BigBirdPegasusForQuestionAnswering", "BigBirdPegasusForSequenceClassification", "BigBirdPegasusModel", "BigBirdPegasusPreTrainedModel", ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
343
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : Any = None if token is not None: _A : int = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''} _A : Any = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' _A : Union[str, Any] = requests.get(snake_case_,headers=snake_case_ ).json() _A : str = {} try: job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) _A : int = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(snake_case_ ): _A : List[str] = requests.get(url + f'''&page={i + 2}''',headers=snake_case_ ).json() job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return job_links except Exception: print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : int = None if token is not None: _A : List[str] = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''} _A : str = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100''' _A : Optional[Any] = requests.get(snake_case_,headers=snake_case_ ).json() _A : Any = {} try: artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) _A : Tuple = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(snake_case_ ): _A : List[Any] = requests.get(url + f'''&page={i + 2}''',headers=snake_case_ ).json() artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) return artifacts except Exception: print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ): _A : Dict = None if token is not None: _A : int = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''} _A : Tuple = requests.get(snake_case_,headers=snake_case_,allow_redirects=snake_case_ ) _A : Tuple = result.headers["""Location"""] _A : Union[str, Any] = requests.get(snake_case_,allow_redirects=snake_case_ ) _A : Dict = os.path.join(snake_case_,f'''{artifact_name}.zip''' ) with open(snake_case_,"""wb""" ) as fp: fp.write(response.content ) def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : List[str] = [] _A : int = [] _A : Tuple = None with zipfile.ZipFile(snake_case_ ) as z: for filename in z.namelist(): if not os.path.isdir(snake_case_ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(snake_case_ ) as f: for line in f: _A : Any = line.decode("""UTF-8""" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs _A : Dict = line[: line.index(""": """ )] _A : Dict = line[line.index(""": """ ) + len(""": """ ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("""FAILED """ ): # `test` is the test method that failed _A : List[str] = line[len("""FAILED """ ) :] failed_tests.append(snake_case_ ) elif filename == "job_name.txt": _A : Optional[int] = line if len(snake_case_ ) != len(snake_case_ ): raise ValueError( f'''`errors` and `failed_tests` should have the same number of elements. Got {len(snake_case_ )} for `errors` ''' f'''and {len(snake_case_ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some''' """ problem.""" ) _A : Any = None if job_name and job_links: _A : Dict = job_links.get(snake_case_,snake_case_ ) # A list with elements of the form (line of error, error, failed test) _A : Optional[int] = [x + [y] + [job_link] for x, y in zip(snake_case_,snake_case_ )] return result def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : Dict = [] _A : Optional[int] = [os.path.join(snake_case_,snake_case_ ) for p in os.listdir(snake_case_ ) if p.endswith(""".zip""" )] for p in paths: errors.extend(get_errors_from_single_artifact(snake_case_,job_links=snake_case_ ) ) return errors def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : Dict = Counter() counter.update([x[1] for x in logs] ) _A : Tuple = counter.most_common() _A : Tuple = {} for error, count in counts: if error_filter is None or error not in error_filter: _A : str = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} _A : Union[str, Any] = dict(sorted(r.items(),key=lambda snake_case_ : item[1]["count"],reverse=snake_case_ ) ) return r def lowerCAmelCase_ ( snake_case_ ): _A : Union[str, Any] = test.split("""::""" )[0] if test.startswith("""tests/models/""" ): _A : Dict = test.split("""/""" )[2] else: _A : str = None return test def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : str = [(x[0], x[1], get_model(x[2] )) for x in logs] _A : Union[str, Any] = [x for x in logs if x[2] is not None] _A : Optional[Any] = {x[2] for x in logs} _A : List[Any] = {} for test in tests: _A : Any = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) _A : Union[str, Any] = counter.most_common() _A : Any = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} _A : str = sum(error_counts.values() ) if n_errors > 0: _A : Optional[int] = {"""count""": n_errors, """errors""": error_counts} _A : Union[str, Any] = dict(sorted(r.items(),key=lambda snake_case_ : item[1]["count"],reverse=snake_case_ ) ) return r def lowerCAmelCase_ ( snake_case_ ): _A : Optional[int] = """| no. | error | status |""" _A : List[Any] = """|-:|:-|:-|""" _A : List[Any] = [header, sep] for error in reduced_by_error: _A : List[str] = reduced_by_error[error]["""count"""] _A : List[Any] = f'''| {count} | {error[:100]} | |''' lines.append(snake_case_ ) return "\n".join(snake_case_ ) def lowerCAmelCase_ ( snake_case_ ): _A : List[Any] = """| model | no. of errors | major error | count |""" _A : Optional[Any] = """|-:|-:|-:|-:|""" _A : Union[str, Any] = [header, sep] for model in reduced_by_model: _A : Dict = reduced_by_model[model]["""count"""] _A , _A : str = list(reduced_by_model[model]["""errors"""].items() )[0] _A : Union[str, Any] = f'''| {model} | {count} | {error[:60]} | {_count} |''' lines.append(snake_case_ ) return "\n".join(snake_case_ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") _snake_case = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) _snake_case = get_job_links(args.workflow_run_id, token=args.token) _snake_case = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: _snake_case = k.find(" / ") _snake_case = k[index + len(" / ") :] _snake_case = v with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) _snake_case = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) _snake_case = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error _snake_case = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors _snake_case = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) _snake_case = reduce_by_error(errors) _snake_case = reduce_by_model(errors) _snake_case = make_github_table(reduced_by_error) _snake_case = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp: fp.write(sa) with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp: fp.write(sa)
343
1
'''simple docstring''' from __future__ import annotations import math def a_ ( lowerCamelCase : float , lowerCamelCase : int ): lowerCAmelCase = u for i in range(1 , lowerCamelCase ): lowerCAmelCase = temp * (u - i) return temp def a_ ( ): lowerCAmelCase = int(input('enter the numbers of values: ' ) ) lowerCAmelCase = [] for _ in range(lowerCamelCase ): y.append([] ) for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): y[i].append(lowerCamelCase ) lowerCAmelCase = 0 print('enter the values of parameters in a list: ' ) lowerCAmelCase = list(map(lowerCamelCase , input().split() ) ) print('enter the values of corresponding parameters: ' ) for i in range(lowerCamelCase ): lowerCAmelCase = float(input() ) lowerCAmelCase = int(input('enter the value to interpolate: ' ) ) lowerCAmelCase = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , lowerCamelCase ): for j in range(n - i ): lowerCAmelCase = y[j + 1][i - 1] - y[j][i - 1] lowerCAmelCase = y[0][0] for i in range(1 , lowerCamelCase ): summ += (ucal(lowerCamelCase , lowerCamelCase ) * y[0][i]) / math.factorial(lowerCamelCase ) print(f'''the value at {value} is {summ}''' ) if __name__ == "__main__": main()
4
'''simple docstring''' def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int = 1000000 ): '''simple docstring''' UpperCAmelCase__ = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , SCREAMING_SNAKE_CASE__ ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
346
0
'''simple docstring''' import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def a__ ( _SCREAMING_SNAKE_CASE : Tuple ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : List[str] = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def a__ ( _SCREAMING_SNAKE_CASE : Optional[int] ) -> str: """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Dict = emb.weight.shape UpperCAmelCase_ : Optional[Any] = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = emb.weight.data return lin_layer def a__ ( _SCREAMING_SNAKE_CASE : Optional[Any] ) -> Any: """simple docstring""" UpperCAmelCase_ : List[Any] = torch.load(_SCREAMING_SNAKE_CASE , map_location="cpu" ) UpperCAmelCase_ : Optional[Any] = mam_aaa["args"] or mam_aaa["cfg"]["model"] UpperCAmelCase_ : List[str] = mam_aaa["model"] remove_ignore_keys_(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = state_dict["encoder.embed_tokens.weight"].shape[0] UpperCAmelCase_ : List[Any] = MaMaaaConfig( vocab_size=_SCREAMING_SNAKE_CASE , max_position_embeddings=10_24 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="relu" , ) UpperCAmelCase_ : Optional[Any] = state_dict["decoder.embed_tokens.weight"] UpperCAmelCase_ : List[Any] = MaMaaaForConditionalGeneration(_SCREAMING_SNAKE_CASE ) model.model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("""fairseq_path""", type=str, help="""path to a model.pt on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") _lowerCamelCase = parser.parse_args() _lowerCamelCase = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
67
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class _snake_case : def __init__( self ,_snake_case ,_snake_case=12 ,_snake_case=7 ,_snake_case=True ,_snake_case=True ,_snake_case=True ,_snake_case=99 ,_snake_case=32 ,_snake_case=32 ,_snake_case=2 ,_snake_case=4 ,_snake_case=37 ,_snake_case=0.1 ,_snake_case=0.1 ,_snake_case=5_12 ,_snake_case=0.02 ,_snake_case=0 ,_snake_case=None ,): UpperCAmelCase_ : Any = parent UpperCAmelCase_ : int = batch_size UpperCAmelCase_ : Optional[int] = seq_length UpperCAmelCase_ : Union[str, Any] = is_training UpperCAmelCase_ : str = use_input_mask UpperCAmelCase_ : List[Any] = use_labels UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : List[Any] = hidden_size UpperCAmelCase_ : Any = projection_dim UpperCAmelCase_ : Optional[Any] = num_hidden_layers UpperCAmelCase_ : Union[str, Any] = num_attention_heads UpperCAmelCase_ : Optional[Any] = intermediate_size UpperCAmelCase_ : Any = dropout UpperCAmelCase_ : Dict = attention_dropout UpperCAmelCase_ : Optional[Any] = max_position_embeddings UpperCAmelCase_ : List[Any] = initializer_range UpperCAmelCase_ : Optional[int] = scope UpperCAmelCase_ : List[str] = bos_token_id def UpperCamelCase__ ( self ): UpperCAmelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase_ : List[Any] = None if self.use_input_mask: UpperCAmelCase_ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: UpperCAmelCase_ : Any = input_mask.numpy() UpperCAmelCase_ , UpperCAmelCase_ : str = input_mask.shape UpperCAmelCase_ : str = np.random.randint(1 ,seq_length - 1 ,size=(batch_size,) ) for batch_idx, start_index in enumerate(_snake_case ): UpperCAmelCase_ : Optional[int] = 1 UpperCAmelCase_ : Union[str, Any] = 0 UpperCAmelCase_ : int = self.get_config() return config, input_ids, tf.convert_to_tensor(_snake_case ) def UpperCamelCase__ ( self ): return BlipTextConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,projection_dim=self.projection_dim ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,dropout=self.dropout ,attention_dropout=self.attention_dropout ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,bos_token_id=self.bos_token_id ,) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ): UpperCAmelCase_ : Union[str, Any] = TFBlipTextModel(config=_snake_case ) UpperCAmelCase_ : Optional[int] = model(_snake_case ,attention_mask=_snake_case ,training=_snake_case ) UpperCAmelCase_ : Dict = model(_snake_case ,training=_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : Optional[int] = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = config_and_inputs UpperCAmelCase_ : str = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _snake_case (__SCREAMING_SNAKE_CASE , unittest.TestCase): __A : Tuple =(TFBlipTextModel,) if is_tf_available() else () __A : List[Any] =False __A : List[Any] =False __A : Any =False def UpperCamelCase__ ( self ): UpperCAmelCase_ : Any = BlipTextModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester(self ,config_class=_snake_case ,hidden_size=37 ) def UpperCamelCase__ ( self ): self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): pass def UpperCamelCase__ ( self ): pass @unittest.skip(reason="Blip does not use inputs_embeds" ) def UpperCamelCase__ ( self ): pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def UpperCamelCase__ ( self ): pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def UpperCamelCase__ ( self ): pass @slow def UpperCamelCase__ ( self ): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : int = TFBlipTextModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def UpperCamelCase__ ( self ,_snake_case=True ): super().test_pt_tf_model_equivalence(allow_missing_keys=_snake_case )
67
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class __snake_case : snake_case__ : Optional[int] = BlenderbotConfig snake_case__ : Optional[int] = {} snake_case__ : str = "gelu" def __init__( self : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any]=1_3 , __lowerCAmelCase : List[str]=7 , __lowerCAmelCase : Dict=True , __lowerCAmelCase : Union[str, Any]=False , __lowerCAmelCase : Optional[Any]=9_9 , __lowerCAmelCase : Any=3_2 , __lowerCAmelCase : List[str]=2 , __lowerCAmelCase : Tuple=4 , __lowerCAmelCase : Optional[int]=3_7 , __lowerCAmelCase : Dict=0.1 , __lowerCAmelCase : Union[str, Any]=0.1 , __lowerCAmelCase : int=2_0 , __lowerCAmelCase : Optional[Any]=2 , __lowerCAmelCase : List[str]=1 , __lowerCAmelCase : Dict=0 , ): """simple docstring""" _lowerCamelCase : Any = parent _lowerCamelCase : int = batch_size _lowerCamelCase : Union[str, Any] = seq_length _lowerCamelCase : Optional[int] = is_training _lowerCamelCase : Optional[Any] = use_labels _lowerCamelCase : int = vocab_size _lowerCamelCase : str = hidden_size _lowerCamelCase : Any = num_hidden_layers _lowerCamelCase : Optional[Any] = num_attention_heads _lowerCamelCase : str = intermediate_size _lowerCamelCase : Optional[int] = hidden_dropout_prob _lowerCamelCase : List[str] = attention_probs_dropout_prob _lowerCamelCase : int = max_position_embeddings _lowerCamelCase : Any = eos_token_id _lowerCamelCase : Any = pad_token_id _lowerCamelCase : List[Any] = bos_token_id def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : int = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _lowerCamelCase : Optional[int] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _lowerCamelCase : Tuple = tf.concat([input_ids, eos_tensor] , axis=1 ) _lowerCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCamelCase : Union[str, Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _lowerCamelCase : List[str] = prepare_blenderbot_inputs_dict(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return config, inputs_dict def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : Dict = TFBlenderbotModel(config=__lowerCAmelCase ).get_decoder() _lowerCamelCase : Union[str, Any] = inputs_dict['''input_ids'''] _lowerCamelCase : str = input_ids[:1, :] _lowerCamelCase : Union[str, Any] = inputs_dict['''attention_mask'''][:1, :] _lowerCamelCase : str = inputs_dict['''head_mask'''] _lowerCamelCase : str = 1 # first forward pass _lowerCamelCase : Any = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , head_mask=__lowerCAmelCase , use_cache=__lowerCAmelCase ) _lowerCamelCase , _lowerCamelCase : List[str] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _lowerCamelCase : Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowerCamelCase : Union[str, Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _lowerCamelCase : int = tf.concat([input_ids, next_tokens] , axis=-1 ) _lowerCamelCase : Optional[Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _lowerCamelCase : List[Any] = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase )[0] _lowerCamelCase : List[str] = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , past_key_values=__lowerCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _lowerCamelCase : Any = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _lowerCamelCase : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx] _lowerCamelCase : List[Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__lowerCAmelCase , __lowerCAmelCase , rtol=1E-3 ) def snake_case_ ( A_ : Dict, A_ : Optional[Any], A_ : List[Any], A_ : Optional[int]=None, A_ : List[str]=None, A_ : Dict=None, A_ : Any=None, A_ : Union[str, Any]=None, ): '''simple docstring''' if attention_mask is None: _lowerCamelCase : Any = tf.cast(tf.math.not_equal(A_, config.pad_token_id ), tf.inta ) if decoder_attention_mask is None: _lowerCamelCase : Optional[int] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ), tf.inta ), ], axis=-1, ) if head_mask is None: _lowerCamelCase : Tuple = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _lowerCamelCase : List[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _lowerCamelCase : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __snake_case ( _lowercase , _lowercase , unittest.TestCase): snake_case__ : Optional[int] = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () snake_case__ : Optional[int] = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () snake_case__ : Dict = ( { "conversational": TFBlenderbotForConditionalGeneration, "feature-extraction": TFBlenderbotModel, "summarization": TFBlenderbotForConditionalGeneration, "text2text-generation": TFBlenderbotForConditionalGeneration, "translation": TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) snake_case__ : Union[str, Any] = True snake_case__ : str = False snake_case__ : str = False def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : str = TFBlenderbotModelTester(self ) _lowerCamelCase : List[Any] = ConfigTester(self , config_class=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__lowerCAmelCase ) @require_tokenizers @require_tf class __snake_case ( unittest.TestCase): snake_case__ : str = ["My friends are cool but they eat too many carbs."] snake_case__ : int = "facebook/blenderbot-400M-distill" @cached_property def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : List[str] = self.tokenizer(self.src_text , return_tensors='''tf''' ) _lowerCamelCase : int = self.model.generate( model_inputs.input_ids , ) _lowerCamelCase : Dict = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__lowerCAmelCase )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
72
"""simple docstring""" from __future__ import annotations def snake_case_ ( A_ : str ): '''simple docstring''' return [ord(A_ ) - 96 for elem in plain] def snake_case_ ( A_ : list[int] ): '''simple docstring''' return "".join(chr(elem + 96 ) for elem in encoded ) def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : Dict = encode(input('''-> ''' ).strip().lower() ) print('''Encoded: ''', A_ ) print('''Decoded:''', decode(A_ ) ) if __name__ == "__main__": main()
72
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __magic_name__: List[str] = { "configuration_gpt_bigcode": ["GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTBigCodeConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__: Optional[Any] = [ "GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTBigCodeForSequenceClassification", "GPTBigCodeForTokenClassification", "GPTBigCodeForCausalLM", "GPTBigCodeModel", "GPTBigCodePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys __magic_name__: Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
138
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class snake_case__ ( _lowerCAmelCase ): lowercase__ : torch.FloatTensor lowercase__ : Optional[torch.FloatTensor] = None def UpperCamelCase ( _A, _A=0.999, _A="cosine", ): """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(_A ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_A ): return math.exp(t * -12.0 ) else: raise ValueError(f'Unsupported alpha_tranform_type: {alpha_transform_type}' ) __magic_name__ : Optional[Any] = [] for i in range(_A ): __magic_name__ : Dict = i / num_diffusion_timesteps __magic_name__ : Any = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_A ) / alpha_bar_fn(_A ), _A ) ) return torch.tensor(_A, dtype=torch.floataa ) class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase ): @register_to_config def __init__( self , lowerCAmelCase__ = 10_00 , lowerCAmelCase__ = "fixed_small_log" , lowerCAmelCase__ = True , lowerCAmelCase__ = 1.0 , lowerCAmelCase__ = "epsilon" , lowerCAmelCase__ = "squaredcos_cap_v2" , ) -> Union[str, Any]: if beta_schedule != "squaredcos_cap_v2": raise ValueError("""UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'""" ) __magic_name__ : Tuple = betas_for_alpha_bar(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = 1.0 - self.betas __magic_name__ : str = torch.cumprod(self.alphas , dim=0 ) __magic_name__ : Any = torch.tensor(1.0 ) # standard deviation of the initial noise distribution __magic_name__ : Tuple = 1.0 # setable values __magic_name__ : List[Any] = None __magic_name__ : int = torch.from_numpy(np.arange(0 , lowerCAmelCase__ )[::-1].copy() ) __magic_name__ : List[Any] = variance_type def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> torch.FloatTensor: return sample def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> str: __magic_name__ : List[Any] = num_inference_steps __magic_name__ : Union[str, Any] = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) __magic_name__ : List[Any] = (np.arange(0 , lowerCAmelCase__ ) * step_ratio).round()[::-1].copy().astype(np.intaa ) __magic_name__ : Dict = torch.from_numpy(lowerCAmelCase__ ).to(lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None ) -> Tuple: if prev_timestep is None: __magic_name__ : int = t - 1 __magic_name__ : Optional[Any] = self.alphas_cumprod[t] __magic_name__ : Any = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one __magic_name__ : Tuple = 1 - alpha_prod_t __magic_name__ : int = 1 - alpha_prod_t_prev if prev_timestep == t - 1: __magic_name__ : List[str] = self.betas[t] else: __magic_name__ : List[Any] = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample __magic_name__ : Dict = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: __magic_name__ : str = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": __magic_name__ : str = torch.log(torch.clamp(lowerCAmelCase__ , min=1e-2_0 ) ) __magic_name__ : Optional[Any] = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler __magic_name__ : List[str] = variance.log() __magic_name__ : Optional[int] = beta.log() __magic_name__ : Any = (predicted_variance + 1) / 2 __magic_name__ : Any = frac * max_log + (1 - frac) * min_log return variance def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__=None , lowerCAmelCase__ = True , ) -> Union[UnCLIPSchedulerOutput, Tuple]: __magic_name__ : List[Any] = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": __magic_name__ ,__magic_name__ : List[Any] = torch.split(lowerCAmelCase__ , sample.shape[1] , dim=1 ) else: __magic_name__ : List[str] = None # 1. compute alphas, betas if prev_timestep is None: __magic_name__ : Union[str, Any] = t - 1 __magic_name__ : List[str] = self.alphas_cumprod[t] __magic_name__ : Dict = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one __magic_name__ : Any = 1 - alpha_prod_t __magic_name__ : Dict = 1 - alpha_prod_t_prev if prev_timestep == t - 1: __magic_name__ : Union[str, Any] = self.betas[t] __magic_name__ : int = self.alphas[t] else: __magic_name__ : Tuple = 1 - alpha_prod_t / alpha_prod_t_prev __magic_name__ : Tuple = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": __magic_name__ : Optional[int] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": __magic_name__ : Tuple = model_output else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`' """ for the UnCLIPScheduler.""" ) # 3. Clip "predicted x_0" if self.config.clip_sample: __magic_name__ : Tuple = torch.clamp( lowerCAmelCase__ , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __magic_name__ : List[Any] = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t __magic_name__ : Dict = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __magic_name__ : str = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise __magic_name__ : Tuple = 0 if t > 0: __magic_name__ : Any = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=lowerCAmelCase__ , device=model_output.device ) __magic_name__ : Tuple = self._get_variance( lowerCAmelCase__ , predicted_variance=lowerCAmelCase__ , prev_timestep=lowerCAmelCase__ , ) if self.variance_type == "fixed_small_log": __magic_name__ : Tuple = variance elif self.variance_type == "learned_range": __magic_name__ : int = (0.5 * variance).exp() else: raise ValueError( F'variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`' """ for the UnCLIPScheduler.""" ) __magic_name__ : Tuple = variance * variance_noise __magic_name__ : List[str] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=lowerCAmelCase__ , pred_original_sample=lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> torch.FloatTensor: # Make sure alphas_cumprod and timestep have same device and dtype as original_samples __magic_name__ : List[str] = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) __magic_name__ : Any = timesteps.to(original_samples.device ) __magic_name__ : int = alphas_cumprod[timesteps] ** 0.5 __magic_name__ : Union[str, Any] = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): __magic_name__ : int = sqrt_alpha_prod.unsqueeze(-1 ) __magic_name__ : Any = (1 - alphas_cumprod[timesteps]) ** 0.5 __magic_name__ : str = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): __magic_name__ : Any = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) __magic_name__ : Any = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
138
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) class __lowerCAmelCase ( _a ): """simple docstring""" A__ : Union[str, Any] = ["pixel_values"] def __init__( self : Any , _snake_case : Any = True , _snake_case : Any = None , _snake_case : int = PILImageResampling.BILINEAR , _snake_case : List[Any] = True , _snake_case : List[Any] = None , _snake_case : Optional[Any] = True , _snake_case : Optional[Any] = 1 / 255 , _snake_case : List[Any] = True , _snake_case : Optional[Any] = None , _snake_case : int = None , **_snake_case : int , ): super().__init__(**_snake_case ) __lowercase : Dict = size if size is not None else {'shortest_edge': 256} __lowercase : Union[str, Any] = get_size_dict(_snake_case , default_to_square=_snake_case ) __lowercase : str = crop_size if crop_size is not None else {'height': 224, 'width': 224} __lowercase : Tuple = get_size_dict(_snake_case ) __lowercase : Union[str, Any] = do_resize __lowercase : List[Any] = size __lowercase : List[Any] = resample __lowercase : Any = do_center_crop __lowercase : Optional[Any] = crop_size __lowercase : int = do_rescale __lowercase : int = rescale_factor __lowercase : Dict = do_normalize __lowercase : Optional[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __lowercase : Tuple = image_std if image_std is not None else IMAGENET_STANDARD_STD def snake_case_ ( self : Tuple , _snake_case : Tuple , _snake_case : Tuple , _snake_case : int = PILImageResampling.BICUBIC , _snake_case : Dict = None , **_snake_case : Optional[int] , ): __lowercase : int = get_size_dict(_snake_case , default_to_square=_snake_case ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) __lowercase : Optional[int] = get_resize_output_image_size(_snake_case , size=size['''shortest_edge'''] , default_to_square=_snake_case ) return resize(_snake_case , size=_snake_case , resample=_snake_case , data_format=_snake_case , **_snake_case ) def snake_case_ ( self : Any , _snake_case : Optional[int] , _snake_case : List[str] , _snake_case : str = None , **_snake_case : List[Any] , ): __lowercase : List[str] = get_size_dict(_snake_case ) return center_crop(_snake_case , size=(size['''height'''], size['''width''']) , data_format=_snake_case , **_snake_case ) def snake_case_ ( self : Dict , _snake_case : List[str] , _snake_case : List[str] , _snake_case : Optional[Any] = None , **_snake_case : Tuple ): return rescale(_snake_case , scale=_snake_case , data_format=_snake_case , **_snake_case ) def snake_case_ ( self : int , _snake_case : List[Any] , _snake_case : Any , _snake_case : Any , _snake_case : List[str] = None , **_snake_case : List[str] , ): return normalize(_snake_case , mean=_snake_case , std=_snake_case , data_format=_snake_case , **_snake_case ) def snake_case_ ( self : Any , _snake_case : Tuple , _snake_case : Union[str, Any] = None , _snake_case : Union[str, Any] = None , _snake_case : Any = None , _snake_case : Any = None , _snake_case : Optional[Any] = None , _snake_case : Optional[int] = None , _snake_case : Union[str, Any] = None , _snake_case : Any = None , _snake_case : int = None , _snake_case : str = None , _snake_case : str = None , _snake_case : Dict = ChannelDimension.FIRST , **_snake_case : Any , ): __lowercase : Optional[Any] = do_resize if do_resize is not None else self.do_resize __lowercase : Tuple = size if size is not None else self.size __lowercase : Tuple = get_size_dict(_snake_case , default_to_square=_snake_case ) __lowercase : Optional[int] = resample if resample is not None else self.resample __lowercase : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop __lowercase : Union[str, Any] = crop_size if crop_size is not None else self.crop_size __lowercase : Union[str, Any] = get_size_dict(_snake_case ) __lowercase : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale __lowercase : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase : Dict = do_normalize if do_normalize is not None else self.do_normalize __lowercase : List[Any] = image_mean if image_mean is not None else self.image_mean __lowercase : Optional[Any] = image_std if image_std is not None else self.image_std __lowercase : Tuple = make_list_of_images(_snake_case ) if not valid_images(_snake_case ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. __lowercase : int = [to_numpy_array(_snake_case ) for image in images] if do_resize: __lowercase : List[Any] = [self.resize(image=_snake_case , size=_snake_case , resample=_snake_case ) for image in images] if do_center_crop: __lowercase : Any = [self.center_crop(image=_snake_case , size=_snake_case ) for image in images] if do_rescale: __lowercase : Any = [self.rescale(image=_snake_case , scale=_snake_case ) for image in images] if do_normalize: __lowercase : Any = [self.normalize(image=_snake_case , mean=_snake_case , std=_snake_case ) for image in images] __lowercase : str = [to_channel_dimension_format(_snake_case , _snake_case ) for image in images] __lowercase : int = {'pixel_values': images} return BatchFeature(data=_snake_case , tensor_type=_snake_case )
156
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCamelCase : Tuple = { "configuration_whisper": ["WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP", "WhisperConfig", "WhisperOnnxConfig"], "feature_extraction_whisper": ["WhisperFeatureExtractor"], "processing_whisper": ["WhisperProcessor"], "tokenization_whisper": ["WhisperTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Dict = ["WhisperTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : str = [ "WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST", "WhisperForConditionalGeneration", "WhisperModel", "WhisperPreTrainedModel", "WhisperForAudioClassification", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Any = [ "TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFWhisperForConditionalGeneration", "TFWhisperModel", "TFWhisperPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Tuple = [ "FlaxWhisperForConditionalGeneration", "FlaxWhisperModel", "FlaxWhisperPreTrainedModel", "FlaxWhisperForAudioClassification", ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys _UpperCamelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
77
0
"""simple docstring""" from manim import * class __A (__UpperCamelCase): '''simple docstring''' def lowerCAmelCase ( self : int ) ->List[Any]: """simple docstring""" snake_case_ = Rectangle(height=0.5 , width=0.5 ) snake_case_ = Rectangle(height=0.25 , width=0.25 ) snake_case_ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) snake_case_ = [mem.copy() for i in range(6 )] snake_case_ = [mem.copy() for i in range(6 )] snake_case_ = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) snake_case_ = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) snake_case_ = VGroup(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) snake_case_ = Text("""CPU""" , font_size=24 ) snake_case_ = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(UpperCAmelCase_ ) snake_case_ = [mem.copy() for i in range(4 )] snake_case_ = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) snake_case_ = Text("""GPU""" , font_size=24 ) snake_case_ = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) gpu.move_to([-1, -1, 0] ) self.add(UpperCAmelCase_ ) snake_case_ = [mem.copy() for i in range(6 )] snake_case_ = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) snake_case_ = Text("""Model""" , font_size=24 ) snake_case_ = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) model.move_to([3, -1.0, 0] ) self.add(UpperCAmelCase_ ) snake_case_ = [] snake_case_ = [] snake_case_ = [] for i, rect in enumerate(UpperCAmelCase_ ): rect.set_stroke(UpperCAmelCase_ ) snake_case_ = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(UpperCAmelCase_ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=UpperCAmelCase_ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=UpperCAmelCase_ , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=UpperCAmelCase_ , buff=0.0 ) self.add(UpperCAmelCase_ ) model_cpu_arr.append(UpperCAmelCase_ ) self.add(*UpperCAmelCase_ , *UpperCAmelCase_ , *UpperCAmelCase_ ) snake_case_ = [mem.copy() for i in range(6 )] snake_case_ = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) snake_case_ = Text("""Loaded Checkpoint""" , font_size=24 ) snake_case_ = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) checkpoint.move_to([3, 0.5, 0] ) self.add(UpperCAmelCase_ ) snake_case_ = [] snake_case_ = [] for i, rect in enumerate(UpperCAmelCase_ ): snake_case_ = fill.copy().set_fill(UpperCAmelCase_ , opacity=0.7 ) target.move_to(UpperCAmelCase_ ) ckpt_arr.append(UpperCAmelCase_ ) snake_case_ = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(UpperCAmelCase_ ) self.add(*UpperCAmelCase_ , *UpperCAmelCase_ ) snake_case_ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) snake_case_ = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(UpperCAmelCase_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(UpperCAmelCase_ ) snake_case_ = MarkupText( F"""Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) snake_case_ = [meta_mem.copy() for i in range(6 )] snake_case_ = [meta_mem.copy() for i in range(6 )] snake_case_ = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) snake_case_ = VGroup(*UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) snake_case_ = VGroup(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0 ) snake_case_ = Text("""Disk""" , font_size=24 ) snake_case_ = Group(UpperCAmelCase_ , UpperCAmelCase_ ).arrange(UpperCAmelCase_ , buff=0.5 , aligned_edge=UpperCAmelCase_ ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(UpperCAmelCase_ , run_time=3 ) , Write(UpperCAmelCase_ , run_time=1 ) , Create(UpperCAmelCase_ , run_time=1 ) ) snake_case_ = [] for i, rect in enumerate(UpperCAmelCase_ ): snake_case_ = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(UpperCAmelCase_ , run_time=1.5 ) ) self.play(*UpperCAmelCase_ ) self.play(FadeOut(UpperCAmelCase_ ) ) snake_case_ = MarkupText(F"""Then, the checkpoint is removed from memory\nthrough garbage collection.""" , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase_ , run_time=3 ) ) self.play( FadeOut(UpperCAmelCase_ , UpperCAmelCase_ , *UpperCAmelCase_ , *UpperCAmelCase_ ) , ) self.wait()
351
"""simple docstring""" def _a ( _SCREAMING_SNAKE_CASE ) -> list[int]: snake_case_ = len(_SCREAMING_SNAKE_CASE ) for i in range(_SCREAMING_SNAKE_CASE ): for j in range(i + 1 , _SCREAMING_SNAKE_CASE ): if numbers[j] < numbers[i]: snake_case_ , snake_case_ = numbers[j], numbers[i] return numbers if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Optional[int] = input('Enter numbers separated by a comma:\n').strip() __SCREAMING_SNAKE_CASE : List[str] = [int(item) for item in user_input.split(',')] print(exchange_sort(unsorted))
233
0
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCAmelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = ["""image_processor""", """tokenizer"""] lowerCAmelCase__ = """Pix2StructImageProcessor""" lowerCAmelCase__ = ("""T5Tokenizer""", """T5TokenizerFast""") def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = False super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 2048 , __UpperCAmelCase = 0 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = True , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None and not self.image_processor.is_vqa: __lowerCamelCase = self.tokenizer __lowerCamelCase = self.tokenizer( text=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , stride=__UpperCAmelCase , pad_to_multiple_of=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , return_overflowing_tokens=__UpperCAmelCase , return_special_tokens_mask=__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase , return_length=__UpperCAmelCase , verbose=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values __lowerCamelCase = self.image_processor( __UpperCAmelCase , return_tensors=__UpperCAmelCase , max_patches=__UpperCAmelCase , **__UpperCAmelCase ) else: # add pixel_values and bbox __lowerCamelCase = self.image_processor( __UpperCAmelCase , return_tensors=__UpperCAmelCase , max_patches=__UpperCAmelCase , header_text=__UpperCAmelCase , **__UpperCAmelCase ) if text is not None and not self.image_processor.is_vqa: __lowerCamelCase = self.tokenizer( text=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , stride=__UpperCAmelCase , pad_to_multiple_of=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , return_overflowing_tokens=__UpperCAmelCase , return_special_tokens_mask=__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase , return_length=__UpperCAmelCase , verbose=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase , ) if "attention_mask" in text_encoding: __lowerCamelCase = text_encoding.pop('''attention_mask''' ) if "input_ids" in text_encoding: __lowerCamelCase = text_encoding.pop('''input_ids''' ) else: __lowerCamelCase = None if text_encoding is not None: encoding_image_processor.update(__UpperCAmelCase ) return encoding_image_processor def lowerCamelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def lowerCamelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.tokenizer.model_input_names __lowerCamelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
330
import logging import os import threading import time try: import warnings except ImportError: a_ = None try: import msvcrt except ImportError: a_ = None try: import fcntl except ImportError: a_ = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: a_ = OSError # Data # ------------------------------------------------ a_ = [ """Timeout""", """BaseFileLock""", """WindowsFileLock""", """UnixFileLock""", """SoftFileLock""", """FileLock""", ] a_ = """3.0.12""" a_ = None def a__ ( ): global _logger __lowerCamelCase = _logger or logging.getLogger(__name__ ) return _logger class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = lock_file return None def __str__( self ): '''simple docstring''' __lowerCamelCase = F"""The file lock '{self.lock_file}' could not be acquired.""" return temp class __lowerCAmelCase : def __init__( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = lock return None def __enter__( self ): '''simple docstring''' return self.lock def __exit__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' self.lock.release() return None class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=-1 , __UpperCAmelCase=None ): '''simple docstring''' __lowerCamelCase = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long __lowerCamelCase = self.hash_filename_if_too_long(__UpperCAmelCase , __UpperCAmelCase ) # The path to the lock file. __lowerCamelCase = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __lowerCamelCase = None # The default timeout value. __lowerCamelCase = timeout # We use this lock primarily for the lock counter. __lowerCamelCase = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __lowerCamelCase = 0 return None @property def lowerCamelCase ( self ): '''simple docstring''' return self._lock_file @property def lowerCamelCase ( self ): '''simple docstring''' return self._timeout @timeout.setter def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = float(__UpperCAmelCase ) return None def lowerCamelCase ( self ): '''simple docstring''' raise NotImplementedError() def lowerCamelCase ( self ): '''simple docstring''' raise NotImplementedError() @property def lowerCamelCase ( self ): '''simple docstring''' return self._lock_file_fd is not None def lowerCamelCase ( self , __UpperCAmelCase=None , __UpperCAmelCase=0.05 ): '''simple docstring''' # Use the default timeout, if no timeout is provided. if timeout is None: __lowerCamelCase = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __lowerCamelCase = id(self ) __lowerCamelCase = self._lock_file __lowerCamelCase = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F"""Attempting to acquire lock {lock_id} on {lock_filename}""" ) self._acquire() if self.is_locked: logger().debug(F"""Lock {lock_id} acquired on {lock_filename}""" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F"""Timeout on acquiring lock {lock_id} on {lock_filename}""" ) raise Timeout(self._lock_file ) else: logger().debug( F"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" ) time.sleep(__UpperCAmelCase ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __lowerCamelCase = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def lowerCamelCase ( self , __UpperCAmelCase=False ): '''simple docstring''' with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __lowerCamelCase = id(self ) __lowerCamelCase = self._lock_file logger().debug(F"""Attempting to release lock {lock_id} on {lock_filename}""" ) self._release() __lowerCamelCase = 0 logger().debug(F"""Lock {lock_id} released on {lock_filename}""" ) return None def __enter__( self ): '''simple docstring''' self.acquire() return self def __exit__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' self.release() return None def __del__( self ): '''simple docstring''' self.release(force=__UpperCAmelCase ) return None def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = os.path.basename(__UpperCAmelCase ) if len(__UpperCAmelCase ) > max_length and max_length > 0: __lowerCamelCase = os.path.dirname(__UpperCAmelCase ) __lowerCamelCase = str(hash(__UpperCAmelCase ) ) __lowerCamelCase = filename[: max_length - len(__UpperCAmelCase ) - 8] + '''...''' + hashed_filename + '''.lock''' return os.path.join(__UpperCAmelCase , __UpperCAmelCase ) else: return path class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase=-1 , __UpperCAmelCase=None ): '''simple docstring''' from .file_utils import relative_to_absolute_path super().__init__(__UpperCAmelCase , timeout=__UpperCAmelCase , max_filename_length=__UpperCAmelCase ) __lowerCamelCase = '''\\\\?\\''' + relative_to_absolute_path(self.lock_file ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __lowerCamelCase = os.open(self._lock_file , __UpperCAmelCase ) except OSError: pass else: try: msvcrt.locking(__UpperCAmelCase , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(__UpperCAmelCase ) else: __lowerCamelCase = fd return None def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self._lock_file_fd __lowerCamelCase = None msvcrt.locking(__UpperCAmelCase , msvcrt.LK_UNLCK , 1 ) os.close(__UpperCAmelCase ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase=-1 , __UpperCAmelCase=None ): '''simple docstring''' __lowerCamelCase = os.statvfs(os.path.dirname(__UpperCAmelCase ) ).f_namemax super().__init__(__UpperCAmelCase , timeout=__UpperCAmelCase , max_filename_length=__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = os.O_RDWR | os.O_CREAT | os.O_TRUNC __lowerCamelCase = os.open(self._lock_file , __UpperCAmelCase ) try: fcntl.flock(__UpperCAmelCase , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(__UpperCAmelCase ) else: __lowerCamelCase = fd return None def lowerCamelCase ( self ): '''simple docstring''' # Do not remove the lockfile: # # https://github.com/benediktschmitt/py-filelock/issues/31 # https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition __lowerCamelCase = self._lock_file_fd __lowerCamelCase = None fcntl.flock(__UpperCAmelCase , fcntl.LOCK_UN ) os.close(__UpperCAmelCase ) return None class __lowerCAmelCase ( lowerCAmelCase__ ): def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __lowerCamelCase = os.open(self._lock_file , __UpperCAmelCase ) except OSError: pass else: __lowerCamelCase = fd return None def lowerCamelCase ( self ): '''simple docstring''' os.close(self._lock_file_fd ) __lowerCamelCase = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None a_ = None if msvcrt: a_ = WindowsFileLock elif fcntl: a_ = UnixFileLock else: a_ = SoftFileLock if warnings is not None: warnings.warn("""only soft file lock is available""")
330
1
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): if len(__UpperCAmelCase ) != len(__UpperCAmelCase ): raise ValueError("""String lengths must match!""" ) _lowercase : int = 0 for chara, chara in zip(__UpperCAmelCase , __UpperCAmelCase ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
336
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
336
1
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = { "configuration_informer": [ "INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "InformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "InformerForPrediction", "InformerModel", "InformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
45
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() a_ : int = logging.get_logger(__name__) def __snake_case ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple=False ): lowerCamelCase_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCamelCase_ = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def __snake_case ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict=False ): for i in range(config.num_hidden_layers ): if base_model: lowerCamelCase_ = "" else: lowerCamelCase_ = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase_ = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) lowerCamelCase_ = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase_ = in_proj_weight[ : config.hidden_size, : ] lowerCamelCase_ = in_proj_bias[: config.hidden_size] lowerCamelCase_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase_ = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase_ = in_proj_bias[-config.hidden_size :] def __snake_case ( UpperCAmelCase_ : int ): lowerCamelCase_ = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(UpperCAmelCase_ , UpperCAmelCase_ ) def __snake_case ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int ): lowerCamelCase_ = dct.pop(UpperCAmelCase_ ) lowerCamelCase_ = val def __snake_case ( ): lowerCamelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCamelCase_ = Image.open(requests.get(UpperCAmelCase_ , stream=UpperCAmelCase_ ).raw ) return im @torch.no_grad() def __snake_case ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int] ): lowerCamelCase_ = ViTConfig() lowerCamelCase_ = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": lowerCamelCase_ = True lowerCamelCase_ = int(vit_name[-12:-10] ) lowerCamelCase_ = int(vit_name[-9:-6] ) else: lowerCamelCase_ = 1000 lowerCamelCase_ = "huggingface/label-files" lowerCamelCase_ = "imagenet-1k-id2label.json" lowerCamelCase_ = json.load(open(hf_hub_download(UpperCAmelCase_ , UpperCAmelCase_ , repo_type="dataset" ) , "r" ) ) lowerCamelCase_ = {int(UpperCAmelCase_ ): v for k, v in idalabel.items()} lowerCamelCase_ = idalabel lowerCamelCase_ = {v: k for k, v in idalabel.items()} lowerCamelCase_ = int(vit_name[-6:-4] ) lowerCamelCase_ = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("tiny" ): lowerCamelCase_ = 192 lowerCamelCase_ = 768 lowerCamelCase_ = 12 lowerCamelCase_ = 3 elif vit_name[9:].startswith("small" ): lowerCamelCase_ = 384 lowerCamelCase_ = 1536 lowerCamelCase_ = 12 lowerCamelCase_ = 6 else: pass else: if vit_name[4:].startswith("small" ): lowerCamelCase_ = 768 lowerCamelCase_ = 2304 lowerCamelCase_ = 8 lowerCamelCase_ = 8 elif vit_name[4:].startswith("base" ): pass elif vit_name[4:].startswith("large" ): lowerCamelCase_ = 1024 lowerCamelCase_ = 4096 lowerCamelCase_ = 24 lowerCamelCase_ = 16 elif vit_name[4:].startswith("huge" ): lowerCamelCase_ = 1280 lowerCamelCase_ = 5120 lowerCamelCase_ = 32 lowerCamelCase_ = 16 # load original model from timm lowerCamelCase_ = timm.create_model(UpperCAmelCase_ , pretrained=UpperCAmelCase_ ) timm_model.eval() # load state_dict of original model, remove and rename some keys lowerCamelCase_ = timm_model.state_dict() if base_model: remove_classification_head_(UpperCAmelCase_ ) lowerCamelCase_ = create_rename_keys(UpperCAmelCase_ , UpperCAmelCase_ ) for src, dest in rename_keys: rename_key(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) read_in_q_k_v(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # load HuggingFace model if vit_name[-5:] == "in21k": lowerCamelCase_ = ViTModel(UpperCAmelCase_ ).eval() else: lowerCamelCase_ = ViTForImageClassification(UpperCAmelCase_ ).eval() model.load_state_dict(UpperCAmelCase_ ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: lowerCamelCase_ = DeiTImageProcessor(size=config.image_size ) else: lowerCamelCase_ = ViTImageProcessor(size=config.image_size ) lowerCamelCase_ = image_processor(images=prepare_img() , return_tensors="pt" ) lowerCamelCase_ = encoding["pixel_values"] lowerCamelCase_ = model(UpperCAmelCase_ ) if base_model: lowerCamelCase_ = timm_model.forward_features(UpperCAmelCase_ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(UpperCAmelCase_ , outputs.pooler_output , atol=1E-3 ) else: lowerCamelCase_ = timm_model(UpperCAmelCase_ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(UpperCAmelCase_ , outputs.logits , atol=1E-3 ) Path(UpperCAmelCase_ ).mkdir(exist_ok=UpperCAmelCase_ ) print(F'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCAmelCase_ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": a_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_patch16_224""", type=str, help="""Name of the ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) a_ : List[str] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
55
0
import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def _a ( UpperCAmelCase ) -> int: """simple docstring""" if "cls_token" in name: lowerCamelCase__ : Any = name.replace('''cls_token''' , '''vit.embeddings.cls_token''' ) if "mask_token" in name: lowerCamelCase__ : Dict = name.replace('''mask_token''' , '''decoder.mask_token''' ) if "decoder_pos_embed" in name: lowerCamelCase__ : Any = name.replace('''decoder_pos_embed''' , '''decoder.decoder_pos_embed''' ) if "pos_embed" in name and "decoder" not in name: lowerCamelCase__ : int = name.replace('''pos_embed''' , '''vit.embeddings.position_embeddings''' ) if "patch_embed.proj" in name: lowerCamelCase__ : Optional[Any] = name.replace('''patch_embed.proj''' , '''vit.embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowerCamelCase__ : Optional[Any] = name.replace('''patch_embed.norm''' , '''vit.embeddings.norm''' ) if "decoder_blocks" in name: lowerCamelCase__ : Dict = name.replace('''decoder_blocks''' , '''decoder.decoder_layers''' ) if "blocks" in name: lowerCamelCase__ : List[str] = name.replace('''blocks''' , '''vit.encoder.layer''' ) if "attn.proj" in name: lowerCamelCase__ : List[Any] = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: lowerCamelCase__ : List[str] = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: lowerCamelCase__ : Optional[Any] = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: lowerCamelCase__ : Tuple = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: lowerCamelCase__ : Union[str, Any] = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: lowerCamelCase__ : Tuple = name.replace('''mlp.fc2''' , '''output.dense''' ) if "decoder_embed" in name: lowerCamelCase__ : Any = name.replace('''decoder_embed''' , '''decoder.decoder_embed''' ) if "decoder_norm" in name: lowerCamelCase__ : int = name.replace('''decoder_norm''' , '''decoder.decoder_norm''' ) if "decoder_pred" in name: lowerCamelCase__ : Optional[Any] = name.replace('''decoder_pred''' , '''decoder.decoder_pred''' ) if "norm.weight" in name and "decoder" not in name: lowerCamelCase__ : List[str] = name.replace('''norm.weight''' , '''vit.layernorm.weight''' ) if "norm.bias" in name and "decoder" not in name: lowerCamelCase__ : Optional[Any] = name.replace('''norm.bias''' , '''vit.layernorm.bias''' ) return name def _a ( UpperCAmelCase , UpperCAmelCase ) -> List[str]: """simple docstring""" for key in orig_state_dict.copy().keys(): lowerCamelCase__ : Tuple = orig_state_dict.pop(UpperCAmelCase ) if "qkv" in key: lowerCamelCase__ : Optional[int] = key.split('''.''' ) lowerCamelCase__ : Any = int(key_split[1] ) if "decoder_blocks" in key: lowerCamelCase__ : Optional[int] = config.decoder_hidden_size lowerCamelCase__ : str = '''decoder.decoder_layers.''' if "weight" in key: lowerCamelCase__ : int = val[:dim, :] lowerCamelCase__ : str = val[dim : dim * 2, :] lowerCamelCase__ : Tuple = val[-dim:, :] elif "bias" in key: lowerCamelCase__ : Tuple = val[:dim] lowerCamelCase__ : Any = val[dim : dim * 2] lowerCamelCase__ : Optional[Any] = val[-dim:] else: lowerCamelCase__ : str = config.hidden_size lowerCamelCase__ : Dict = '''vit.encoder.layer.''' if "weight" in key: lowerCamelCase__ : int = val[:dim, :] lowerCamelCase__ : Any = val[dim : dim * 2, :] lowerCamelCase__ : Any = val[-dim:, :] elif "bias" in key: lowerCamelCase__ : Any = val[:dim] lowerCamelCase__ : List[str] = val[dim : dim * 2] lowerCamelCase__ : List[str] = val[-dim:] else: lowerCamelCase__ : Dict = val return orig_state_dict def _a ( UpperCAmelCase , UpperCAmelCase ) -> Tuple: """simple docstring""" lowerCamelCase__ : Dict = ViTMAEConfig() if "large" in checkpoint_url: lowerCamelCase__ : Dict = 1024 lowerCamelCase__ : int = 4096 lowerCamelCase__ : Optional[Any] = 24 lowerCamelCase__ : Dict = 16 elif "huge" in checkpoint_url: lowerCamelCase__ : Optional[Any] = 14 lowerCamelCase__ : Optional[int] = 1280 lowerCamelCase__ : Any = 5120 lowerCamelCase__ : Optional[Any] = 32 lowerCamelCase__ : Any = 16 lowerCamelCase__ : List[Any] = ViTMAEForPreTraining(UpperCAmelCase ) lowerCamelCase__ : int = torch.hub.load_state_dict_from_url(UpperCAmelCase , map_location='''cpu''' )['''model'''] lowerCamelCase__ : List[str] = ViTMAEImageProcessor(size=config.image_size ) lowerCamelCase__ : Optional[int] = convert_state_dict(UpperCAmelCase , UpperCAmelCase ) model.load_state_dict(UpperCAmelCase ) model.eval() lowerCamelCase__ : int = '''https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg''' lowerCamelCase__ : Any = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) lowerCamelCase__ : int = ViTMAEImageProcessor(size=config.image_size ) lowerCamelCase__ : Optional[int] = image_processor(images=UpperCAmelCase , return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) lowerCamelCase__ : str = model(**UpperCAmelCase ) lowerCamelCase__ : Tuple = outputs.logits if "large" in checkpoint_url: lowerCamelCase__ : Union[str, Any] = torch.tensor( [[-0.73_09, -0.71_28, -1.01_69], [-1.01_61, -0.90_58, -1.18_78], [-1.04_78, -0.94_11, -1.19_11]] ) elif "huge" in checkpoint_url: lowerCamelCase__ : List[str] = torch.tensor( [[-1.15_99, -0.91_99, -1.22_21], [-1.19_52, -0.92_69, -1.23_07], [-1.21_43, -0.93_37, -1.22_62]] ) else: lowerCamelCase__ : Union[str, Any] = torch.tensor( [[-0.91_92, -0.84_81, -1.12_59], [-1.13_49, -1.00_34, -1.25_99], [-1.17_57, -1.04_29, -1.27_26]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , UpperCAmelCase , atol=1E-4 ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(UpperCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(UpperCAmelCase ) if __name__ == "__main__": _A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _A : Dict = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
265
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self : Optional[int] , A : Union[str, Any] , A : Any=7 , A : Optional[int]=3 , A : Tuple=3_0 , A : List[Any]=4_0_0 , A : str=True , A : Optional[int]=None , A : Tuple=True , A : Union[str, Any]=1 / 2_5_5 , A : Any=True , A : Optional[int]=[0.5, 0.5, 0.5] , A : Optional[int]=[0.5, 0.5, 0.5] , A : str=True , ) ->List[Any]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowerCamelCase__ : Union[str, Any] = size if size is not None else {'''shortest_edge''': 1_8, '''longest_edge''': 1_3_3_3} lowerCamelCase__ : List[str] = parent lowerCamelCase__ : Union[str, Any] = batch_size lowerCamelCase__ : int = num_channels lowerCamelCase__ : Optional[Any] = min_resolution lowerCamelCase__ : List[Any] = max_resolution lowerCamelCase__ : int = do_resize lowerCamelCase__ : List[str] = size lowerCamelCase__ : Union[str, Any] = do_rescale lowerCamelCase__ : Optional[int] = rescale_factor lowerCamelCase__ : List[str] = do_normalize lowerCamelCase__ : Tuple = image_mean lowerCamelCase__ : str = image_std lowerCamelCase__ : List[Any] = do_pad def __lowerCamelCase ( self : List[str] ) ->Dict: return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def __lowerCamelCase ( self : Tuple , A : int , A : List[str]=False ) ->int: if not batched: lowerCamelCase__ : Union[str, Any] = image_inputs[0] if isinstance(A , Image.Image ): lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = image.size else: lowerCamelCase__ , lowerCamelCase__ : Optional[int] = image.shape[1], image.shape[2] if w < h: lowerCamelCase__ : List[Any] = int(self.size['''shortest_edge'''] * h / w ) lowerCamelCase__ : List[Any] = self.size['''shortest_edge'''] elif w > h: lowerCamelCase__ : List[Any] = self.size['''shortest_edge'''] lowerCamelCase__ : Dict = int(self.size['''shortest_edge'''] * w / h ) else: lowerCamelCase__ : List[Any] = self.size['''shortest_edge'''] lowerCamelCase__ : Any = self.size['''shortest_edge'''] else: lowerCamelCase__ : Optional[Any] = [] for image in image_inputs: lowerCamelCase__ , lowerCamelCase__ : Any = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCamelCase__ : Dict = max(A , key=lambda A : item[0] )[0] lowerCamelCase__ : Dict = max(A , key=lambda A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ,unittest.TestCase ): _UpperCAmelCase : Optional[Any] = DetrImageProcessor if is_vision_available() else None def __lowerCamelCase ( self : Optional[int] ) ->Dict: lowerCamelCase__ : Optional[int] = DetrImageProcessingTester(self ) @property def __lowerCamelCase ( self : Dict ) ->Any: return self.image_processor_tester.prepare_image_processor_dict() def __lowerCamelCase ( self : int ) ->Union[str, Any]: lowerCamelCase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A , '''image_mean''' ) ) self.assertTrue(hasattr(A , '''image_std''' ) ) self.assertTrue(hasattr(A , '''do_normalize''' ) ) self.assertTrue(hasattr(A , '''do_rescale''' ) ) self.assertTrue(hasattr(A , '''rescale_factor''' ) ) self.assertTrue(hasattr(A , '''do_resize''' ) ) self.assertTrue(hasattr(A , '''size''' ) ) self.assertTrue(hasattr(A , '''do_pad''' ) ) def __lowerCamelCase ( self : int ) ->Union[str, Any]: lowerCamelCase__ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 1_8, '''longest_edge''': 1_3_3_3} ) self.assertEqual(image_processor.do_pad , A ) lowerCamelCase__ : str = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=A ) self.assertEqual(image_processor.size , {'''shortest_edge''': 4_2, '''longest_edge''': 8_4} ) self.assertEqual(image_processor.do_pad , A ) def __lowerCamelCase ( self : Union[str, Any] ) ->Optional[Any]: pass def __lowerCamelCase ( self : str ) ->Optional[Any]: # Initialize image_processing lowerCamelCase__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A , Image.Image ) # Test not batched input lowerCamelCase__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowerCamelCase__ , lowerCamelCase__ : str = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase__ , lowerCamelCase__ : int = self.image_processor_tester.get_expected_values(A , batched=A ) lowerCamelCase__ : Any = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __lowerCamelCase ( self : List[str] ) ->List[str]: # Initialize image_processing lowerCamelCase__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase__ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , numpify=A ) for image in image_inputs: self.assertIsInstance(A , np.ndarray ) # Test not batched input lowerCamelCase__ : List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowerCamelCase__ , lowerCamelCase__ : str = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase__ : List[Any] = image_processing(A , return_tensors='''pt''' ).pixel_values lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = self.image_processor_tester.get_expected_values(A , batched=A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __lowerCamelCase ( self : Any ) ->Any: # Initialize image_processing lowerCamelCase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A ) for image in image_inputs: self.assertIsInstance(A , torch.Tensor ) # Test not batched input lowerCamelCase__ : str = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowerCamelCase__ , lowerCamelCase__ : str = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase__ : str = image_processing(A , return_tensors='''pt''' ).pixel_values lowerCamelCase__ , lowerCamelCase__ : str = self.image_processor_tester.get_expected_values(A , batched=A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __lowerCamelCase ( self : Tuple ) ->List[Any]: # prepare image and target lowerCamelCase__ : Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: lowerCamelCase__ : Union[str, Any] = json.loads(f.read() ) lowerCamelCase__ : List[str] = {'''image_id''': 3_9_7_6_9, '''annotations''': target} # encode them lowerCamelCase__ : Optional[int] = DetrImageProcessor.from_pretrained('''facebook/detr-resnet-50''' ) lowerCamelCase__ : List[Any] = image_processing(images=A , annotations=A , return_tensors='''pt''' ) # verify pixel values lowerCamelCase__ : Optional[int] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['''pixel_values'''].shape , A ) lowerCamelCase__ : Any = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , A , atol=1e-4 ) ) # verify area lowerCamelCase__ : Dict = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , A ) ) # verify boxes lowerCamelCase__ : Any = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , A ) lowerCamelCase__ : str = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , A , atol=1e-3 ) ) # verify image_id lowerCamelCase__ : str = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , A ) ) # verify is_crowd lowerCamelCase__ : List[str] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , A ) ) # verify class_labels lowerCamelCase__ : List[Any] = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , A ) ) # verify orig_size lowerCamelCase__ : str = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , A ) ) # verify size lowerCamelCase__ : str = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , A ) ) @slow def __lowerCamelCase ( self : Optional[Any] ) ->List[str]: # prepare image, target and masks_path lowerCamelCase__ : Any = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: lowerCamelCase__ : Optional[Any] = json.loads(f.read() ) lowerCamelCase__ : Union[str, Any] = {'''file_name''': '''000000039769.png''', '''image_id''': 3_9_7_6_9, '''segments_info''': target} lowerCamelCase__ : List[Any] = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them lowerCamelCase__ : Any = DetrImageProcessor.from_pretrained('''facebook/detr-resnet-50-panoptic''' ) lowerCamelCase__ : Tuple = image_processing(images=A , annotations=A , masks_path=A , return_tensors='''pt''' ) # verify pixel values lowerCamelCase__ : Optional[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['''pixel_values'''].shape , A ) lowerCamelCase__ : str = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , A , atol=1e-4 ) ) # verify area lowerCamelCase__ : int = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , A ) ) # verify boxes lowerCamelCase__ : Optional[Any] = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , A ) lowerCamelCase__ : Optional[Any] = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , A , atol=1e-3 ) ) # verify image_id lowerCamelCase__ : int = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , A ) ) # verify is_crowd lowerCamelCase__ : Dict = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , A ) ) # verify class_labels lowerCamelCase__ : int = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , A ) ) # verify masks lowerCamelCase__ : Union[str, Any] = 8_2_2_8_7_3 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , A ) # verify orig_size lowerCamelCase__ : List[Any] = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , A ) ) # verify size lowerCamelCase__ : Tuple = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , A ) )
265
1
"""simple docstring""" import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def A ( snake_case :Optional[Any]=None , snake_case :Union[str, Any]=None ) -> Dict: return field(default_factory=lambda: default , metadata=snake_case ) @dataclass class __lowerCAmelCase : lowercase = field( metadata={"help": "The csv file to plot."} , ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to plot along batch size or sequence length. Defaults to sequence length."} , ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether the csv file has time results or memory results. Defaults to memory results."} , ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Disable logarithmic scale when plotting"} , ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": "Whether the csv file has training results or inference results. Defaults to inference results." } , ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Filename under which the plot will be saved. If unused no plot is saved."} , ) lowercase = list_field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "List of model names that are used instead of the ones in the csv file."} ) def A ( snake_case :Tuple ) -> List[Any]: try: int(snake_case ) return True except ValueError: return False def A ( snake_case :str ) -> List[Any]: try: float(snake_case ) return True except ValueError: return False class __lowerCAmelCase : def __init__( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = args __UpperCamelCase = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline='' ) as csv_file: __UpperCamelCase = csv.DictReader(__UpperCAmelCase ) for row in reader: __UpperCamelCase = row['model'] self.result_dict[model_name]["bsz"].append(int(row['batch_size'] ) ) self.result_dict[model_name]["seq_len"].append(int(row['sequence_length'] ) ) if can_convert_to_int(row['result'] ): # value is not None __UpperCamelCase = int(row['result'] ) elif can_convert_to_float(row['result'] ): # value is not None __UpperCamelCase = float(row['result'] ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = plt.subplots() __UpperCamelCase = 'Time usage' if self.args.is_time else 'Memory usage' __UpperCamelCase = title_str + ' for training' if self.args.is_train else title_str + ' for inference' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('log' ) ax.set_yscale('log' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): __UpperCamelCase = sorted(set(self.result_dict[model_name]['bsz'] ) ) __UpperCamelCase = sorted(set(self.result_dict[model_name]['seq_len'] ) ) __UpperCamelCase = self.result_dict[model_name]['result'] ((__UpperCamelCase) , (__UpperCamelCase)) = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) __UpperCamelCase = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: __UpperCamelCase = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=__UpperCAmelCase , ) else: __UpperCamelCase = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((__UpperCamelCase) , (__UpperCamelCase)) = ( ('batch_size', 'len') if self.args.plot_along_batch else ('in #tokens', 'bsz') ) __UpperCamelCase = np.asarray(__UpperCAmelCase , __UpperCAmelCase )[: len(__UpperCAmelCase )] plt.scatter( __UpperCAmelCase , __UpperCAmelCase , label=F'{label_model_name} - {inner_loop_label}: {inner_loop_value}' ) plt.plot(__UpperCAmelCase , __UpperCAmelCase , '--' ) title_str += F' {label_model_name} vs.' __UpperCamelCase = title_str[:-4] __UpperCamelCase = 'Time in s' if self.args.is_time else 'Memory in MB' # plot plt.title(__UpperCAmelCase ) plt.xlabel(__UpperCAmelCase ) plt.ylabel(__UpperCAmelCase ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def A ( ) -> Tuple: __UpperCamelCase = HfArgumentParser(snake_case ) __UpperCamelCase = parser.parse_args_into_dataclasses()[0] __UpperCamelCase = Plot(args=snake_case ) plot.plot() if __name__ == "__main__": main()
316
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings UpperCamelCase : str = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to use SortishSampler or not."} ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = super().to_dict() for k, v in d.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): __UpperCamelCase = v.to_dict() return d
316
1
from __future__ import annotations def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' if len(_lowercase ) <= 1 or n <= 1: return insert_next(_lowercase , n - 1 ) rec_insertion_sort(_lowercase , n - 1 ) def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' if index >= len(_lowercase ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order UpperCAmelCase_ : List[Any] = ( collection[index], collection[index - 1], ) insert_next(_lowercase , index + 1 ) if __name__ == "__main__": __a = input('Enter integers separated by spaces: ') __a = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
360
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class __a( unittest.TestCase ): """simple docstring""" def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : Optional[int] = tempfile.mkdtemp() UpperCAmelCase_ : str = BlipImageProcessor() UpperCAmelCase_ : Dict = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''' ) UpperCAmelCase_ : Optional[Any] = BlipaProcessor(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) processor.save_pretrained(self.tmpdirname ) def a__ ( self ,**_SCREAMING_SNAKE_CASE ) -> Optional[int]: return AutoProcessor.from_pretrained(self.tmpdirname ,**_SCREAMING_SNAKE_CASE ).tokenizer def a__ ( self ,**_SCREAMING_SNAKE_CASE ) -> Dict: return AutoProcessor.from_pretrained(self.tmpdirname ,**_SCREAMING_SNAKE_CASE ).image_processor def a__ ( self ) -> List[Any]: shutil.rmtree(self.tmpdirname ) def a__ ( self ) -> Tuple: UpperCAmelCase_ : Tuple = [np.random.randint(255 ,size=(3, 30, 400) ,dtype=np.uinta )] UpperCAmelCase_ : Optional[Any] = [Image.fromarray(np.moveaxis(_SCREAMING_SNAKE_CASE ,0 ,-1 ) ) for x in image_inputs] return image_inputs def a__ ( self ) -> List[str]: UpperCAmelCase_ : Dict = BlipaProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_ : str = self.get_tokenizer(bos_token='''(BOS)''' ,eos_token='''(EOS)''' ) UpperCAmelCase_ : int = self.get_image_processor(do_normalize=_SCREAMING_SNAKE_CASE ,padding_value=1.0 ) UpperCAmelCase_ : Union[str, Any] = BlipaProcessor.from_pretrained( self.tmpdirname ,bos_token='''(BOS)''' ,eos_token='''(EOS)''' ,do_normalize=_SCREAMING_SNAKE_CASE ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,_SCREAMING_SNAKE_CASE ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Any: UpperCAmelCase_ : Dict = self.get_image_processor() UpperCAmelCase_ : Any = self.get_tokenizer() UpperCAmelCase_ : str = BlipaProcessor(tokenizer=_SCREAMING_SNAKE_CASE ,image_processor=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = self.prepare_image_inputs() UpperCAmelCase_ : Optional[Any] = image_processor(_SCREAMING_SNAKE_CASE ,return_tensors='''np''' ) UpperCAmelCase_ : int = processor(images=_SCREAMING_SNAKE_CASE ,return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1e-2 ) def a__ ( self ) -> int: UpperCAmelCase_ : str = self.get_image_processor() UpperCAmelCase_ : List[Any] = self.get_tokenizer() UpperCAmelCase_ : Any = BlipaProcessor(tokenizer=_SCREAMING_SNAKE_CASE ,image_processor=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = '''lower newer''' UpperCAmelCase_ : Optional[int] = processor(text=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = tokenizer(_SCREAMING_SNAKE_CASE ,return_token_type_ids=_SCREAMING_SNAKE_CASE ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : str = self.get_image_processor() UpperCAmelCase_ : List[Any] = self.get_tokenizer() UpperCAmelCase_ : Tuple = BlipaProcessor(tokenizer=_SCREAMING_SNAKE_CASE ,image_processor=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = '''lower newer''' UpperCAmelCase_ : int = self.prepare_image_inputs() UpperCAmelCase_ : List[str] = processor(text=_SCREAMING_SNAKE_CASE ,images=_SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) ,['''pixel_values''', '''input_ids''', '''attention_mask'''] ) # test if it raises when no input is passed with pytest.raises(_SCREAMING_SNAKE_CASE ): processor() def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : Tuple = self.get_image_processor() UpperCAmelCase_ : Dict = self.get_tokenizer() UpperCAmelCase_ : List[str] = BlipaProcessor(tokenizer=_SCREAMING_SNAKE_CASE ,image_processor=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase_ : List[str] = processor.batch_decode(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> str: UpperCAmelCase_ : Union[str, Any] = self.get_image_processor() UpperCAmelCase_ : int = self.get_tokenizer() UpperCAmelCase_ : Any = BlipaProcessor(tokenizer=_SCREAMING_SNAKE_CASE ,image_processor=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = '''lower newer''' UpperCAmelCase_ : Union[str, Any] = self.prepare_image_inputs() UpperCAmelCase_ : Any = processor(text=_SCREAMING_SNAKE_CASE ,images=_SCREAMING_SNAKE_CASE ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) ,['''pixel_values''', '''input_ids''', '''attention_mask'''] )
235
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { """configuration_bigbird_pegasus""": [ """BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BigBirdPegasusConfig""", """BigBirdPegasusOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST""", """BigBirdPegasusForCausalLM""", """BigBirdPegasusForConditionalGeneration""", """BigBirdPegasusForQuestionAnswering""", """BigBirdPegasusForSequenceClassification""", """BigBirdPegasusModel""", """BigBirdPegasusPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
343
from __future__ import annotations from typing import Any class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): pass class SCREAMING_SNAKE_CASE_ : def __init__( self : List[Any] , lowerCamelCase_ : Any ): """simple docstring""" UpperCamelCase = data UpperCamelCase = None def __iter__( self : Optional[int] ): """simple docstring""" UpperCamelCase = self UpperCamelCase = [] while node: if node in visited: raise ContainsLoopError visited.append(lowerCamelCase_ ) yield node.data UpperCamelCase = node.next_node @property def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": _SCREAMING_SNAKE_CASE = Node(1) _SCREAMING_SNAKE_CASE = Node(2) _SCREAMING_SNAKE_CASE = Node(3) _SCREAMING_SNAKE_CASE = Node(4) print(root_node.has_loop) # False _SCREAMING_SNAKE_CASE = root_node.next_node print(root_node.has_loop) # True _SCREAMING_SNAKE_CASE = Node(5) _SCREAMING_SNAKE_CASE = Node(6) _SCREAMING_SNAKE_CASE = Node(5) _SCREAMING_SNAKE_CASE = Node(6) print(root_node.has_loop) # False _SCREAMING_SNAKE_CASE = Node(1) print(root_node.has_loop) # False
343
1
def lowerCamelCase_ ( lowerCamelCase__ = 1_0_0_0 ): lowerCamelCase_ , lowerCamelCase_ = 1, 1 lowerCamelCase_ = [] for i in range(1 , n + 1 ): lowerCamelCase_ = prev_numerator + 2 * prev_denominator lowerCamelCase_ = prev_numerator + prev_denominator if len(str(lowerCamelCase__ ) ) > len(str(lowerCamelCase__ ) ): result.append(lowerCamelCase__ ) lowerCamelCase_ = numerator lowerCamelCase_ = denominator return len(lowerCamelCase__ ) if __name__ == "__main__": print(F"""{solution() = }""")
361
from __future__ import annotations def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = get_failure_array(lowerCamelCase__ ) # 2) Step through text searching for pattern lowerCamelCase_ , lowerCamelCase_ = 0, 0 # index into text, pattern while i < len(lowerCamelCase__ ): if pattern[j] == text[i]: if j == (len(lowerCamelCase__ ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: lowerCamelCase_ = failure[j - 1] continue i += 1 return False def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = [0] lowerCamelCase_ = 0 lowerCamelCase_ = 1 while j < len(lowerCamelCase__ ): if pattern[i] == pattern[j]: i += 1 elif i > 0: lowerCamelCase_ = failure[i - 1] continue j += 1 failure.append(lowerCamelCase__ ) return failure if __name__ == "__main__": # Test 1) __A ='''abc1abc12''' __A ='''alskfjaldsabc1abc1abc12k23adsfabcabc''' __A ='''alskfjaldsk23adsfabcabc''' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) __A ='''ABABX''' __A ='''ABABZABABYABABX''' assert kmp(pattern, text) # Test 3) __A ='''AAAB''' __A ='''ABAAAAAB''' assert kmp(pattern, text) # Test 4) __A ='''abcdabcy''' __A ='''abcxabcdabxabcdabcdabcy''' assert kmp(pattern, text) # Test 5) __A ='''aabaabaaa''' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
47
0
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch __UpperCAmelCase =logging.get_logger(__name__) class a__ ( UpperCAmelCase__ ): lowerCamelCase : Tuple =["pixel_values"] def __init__( self : Any , a : bool = True , a : Optional[Dict[str, int]] = None , a : PILImageResampling = PILImageResampling.BILINEAR , a : bool = True , a : Dict[str, int] = None , a : bool = True , a : Union[int, float] = 1 / 2_55 , a : bool = True , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[float, List[float]]] = None , **a : Dict , ): """simple docstring""" super().__init__(**a ) __lowerCamelCase = size if size is not None else {'''shortest_edge''': 2_56} __lowerCamelCase = get_size_dict(a , default_to_square=a ) __lowerCamelCase = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} __lowerCamelCase = get_size_dict(a , param_name='''crop_size''' ) __lowerCamelCase = do_resize __lowerCamelCase = size __lowerCamelCase = resample __lowerCamelCase = do_center_crop __lowerCamelCase = crop_size __lowerCamelCase = do_rescale __lowerCamelCase = rescale_factor __lowerCamelCase = do_normalize __lowerCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __lowerCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def SCREAMING_SNAKE_CASE__ ( self : Tuple , a : np.ndarray , a : Dict[str, int] , a : PILImageResampling = PILImageResampling.BICUBIC , a : Optional[Union[str, ChannelDimension]] = None , **a : Dict , ): """simple docstring""" __lowerCamelCase = get_size_dict(a , default_to_square=a ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) __lowerCamelCase = get_resize_output_image_size(a , size=size['''shortest_edge'''] , default_to_square=a ) return resize(a , size=a , resample=a , data_format=a , **a ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , a : np.ndarray , a : Dict[str, int] , a : Optional[Union[str, ChannelDimension]] = None , **a : Dict , ): """simple docstring""" __lowerCamelCase = get_size_dict(a ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(a , size=(size['''height'''], size['''width''']) , data_format=a , **a ) def SCREAMING_SNAKE_CASE__ ( self : Any , a : np.ndarray , a : float , a : Optional[Union[str, ChannelDimension]] = None , **a : Optional[int] ): """simple docstring""" return rescale(a , scale=a , data_format=a , **a ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , a : np.ndarray , a : Union[float, List[float]] , a : Union[float, List[float]] , a : Optional[Union[str, ChannelDimension]] = None , **a : Optional[Any] , ): """simple docstring""" return normalize(a , mean=a , std=a , data_format=a , **a ) def SCREAMING_SNAKE_CASE__ ( self : Any , a : ImageInput , a : Optional[bool] = None , a : Dict[str, int] = None , a : PILImageResampling = None , a : bool = None , a : Dict[str, int] = None , a : Optional[bool] = None , a : Optional[float] = None , a : Optional[bool] = None , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[str, TensorType]] = None , a : Union[str, ChannelDimension] = ChannelDimension.FIRST , **a : List[Any] , ): """simple docstring""" __lowerCamelCase = do_resize if do_resize is not None else self.do_resize __lowerCamelCase = size if size is not None else self.size __lowerCamelCase = get_size_dict(a , default_to_square=a ) __lowerCamelCase = resample if resample is not None else self.resample __lowerCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCamelCase = crop_size if crop_size is not None else self.crop_size __lowerCamelCase = get_size_dict(a , param_name='''crop_size''' ) __lowerCamelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCamelCase = do_normalize if do_normalize is not None else self.do_normalize __lowerCamelCase = image_mean if image_mean is not None else self.image_mean __lowerCamelCase = image_std if image_std is not None else self.image_std __lowerCamelCase = make_list_of_images(a ) if not valid_images(a ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. __lowerCamelCase = [to_numpy_array(a ) for image in images] if do_resize: __lowerCamelCase = [self.resize(image=a , size=a , resample=a ) for image in images] if do_center_crop: __lowerCamelCase = [self.center_crop(image=a , size=a ) for image in images] if do_rescale: __lowerCamelCase = [self.rescale(image=a , scale=a ) for image in images] if do_normalize: __lowerCamelCase = [self.normalize(image=a , mean=a , std=a ) for image in images] __lowerCamelCase = [to_channel_dimension_format(a , a ) for image in images] __lowerCamelCase = {'''pixel_values''': images} return BatchFeature(data=a , tensor_type=a ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , a : Tuple , a : List[Tuple] = None ): """simple docstring""" __lowerCamelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(a ) != len(a ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(a ): __lowerCamelCase = target_sizes.numpy() __lowerCamelCase = [] for idx in range(len(a ) ): __lowerCamelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=a ) __lowerCamelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(a ) else: __lowerCamelCase = logits.argmax(dim=1 ) __lowerCamelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
67
'''simple docstring''' def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> int: while second != 0: __lowerCamelCase = first & second first ^= second __lowerCamelCase = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase =int(input("Enter the first number: ").strip()) __UpperCAmelCase =int(input("Enter the second number: ").strip()) print(f'{add(first, second) = }')
67
1
'''simple docstring''' from itertools import product def UpperCamelCase_( snake_case : int , snake_case : int ): '''simple docstring''' snake_case_ = sides_number snake_case_ = max_face_number * dice_number snake_case_ = [0] * (max_total + 1) snake_case_ = 1 snake_case_ = range(snake_case , max_face_number + 1 ) for dice_numbers in product(snake_case , repeat=snake_case ): snake_case_ = sum(snake_case ) totals_frequencies[total] += 1 return totals_frequencies def UpperCamelCase_( ): '''simple docstring''' snake_case_ = total_frequency_distribution( sides_number=4 , dice_number=9 ) snake_case_ = total_frequency_distribution( sides_number=6 , dice_number=6 ) snake_case_ = 0 snake_case_ = 9 snake_case_ = 4 * 9 snake_case_ = 6 for peter_total in range(snake_case , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) snake_case_ = (4**9) * (6**6) snake_case_ = peter_wins_count / total_games_number snake_case_ = round(snake_case , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F"{solution() = }")
356
'''simple docstring''' from __future__ import annotations import numpy as np def UpperCamelCase_( snake_case : np.ndarray ): '''simple docstring''' snake_case_ , snake_case_ = np.shape(snake_case ) if rows != columns: snake_case_ = ( "'table' has to be of square shaped array but got a " f'{rows}x{columns} array:\n{table}' ) raise ValueError(snake_case ) snake_case_ = np.zeros((rows, columns) ) snake_case_ = np.zeros((rows, columns) ) for i in range(snake_case ): for j in range(snake_case ): snake_case_ = sum(lower[i][k] * upper[k][j] for k in range(snake_case ) ) if upper[j][j] == 0: raise ArithmeticError("No LU decomposition exists" ) snake_case_ = (table[i][j] - total) / upper[j][j] snake_case_ = 1 for j in range(snake_case , snake_case ): snake_case_ = sum(lower[i][k] * upper[k][j] for k in range(snake_case ) ) snake_case_ = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
92
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer a = logging.get_logger(__name__) a = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} a = { '''vocab_file''': {'''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'''}, '''tokenizer_file''': { '''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json''' }, } a = {'''mobilebert-uncased''': 512} a = {} class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : List[Any] = VOCAB_FILES_NAMES UpperCAmelCase : str = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase : str = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase : Dict = MobileBertTokenizer def __init__( self : Tuple , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Union[str, Any]="[UNK]" , _UpperCAmelCase : Union[str, Any]="[SEP]" , _UpperCAmelCase : Any="[PAD]" , _UpperCAmelCase : Optional[Any]="[CLS]" , _UpperCAmelCase : List[Any]="[MASK]" , _UpperCAmelCase : int=True , _UpperCAmelCase : Optional[Any]=None , **_UpperCAmelCase : List[Any] , ): super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , do_lower_case=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , tokenize_chinese_chars=_UpperCAmelCase , strip_accents=_UpperCAmelCase , **_UpperCAmelCase , ) _A = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _UpperCAmelCase ) != do_lower_case or normalizer_state.get('strip_accents' , _UpperCAmelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _UpperCAmelCase ) != tokenize_chinese_chars ): _A = getattr(_UpperCAmelCase , normalizer_state.pop('type' ) ) _A = do_lower_case _A = strip_accents _A = tokenize_chinese_chars _A = normalizer_class(**_UpperCAmelCase ) _A = do_lower_case def lowerCAmelCase_ ( self : int , _UpperCAmelCase : str , _UpperCAmelCase : Any=None ): _A = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ): _A = [self.sep_token_id] _A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ): _A = self._tokenizer.model.save(_UpperCAmelCase , name=_UpperCAmelCase ) return tuple(_UpperCAmelCase )
315
"""simple docstring""" import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging a = logging.get_logger(__name__) class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Any = ['''input_values''', '''attention_mask'''] def __init__( self : Dict , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = 16_000 , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : bool = False , _UpperCAmelCase : int = 80 , _UpperCAmelCase : int = 16 , _UpperCAmelCase : int = 64 , _UpperCAmelCase : str = "hann_window" , _UpperCAmelCase : float = 1.0 , _UpperCAmelCase : float = 80 , _UpperCAmelCase : float = 7_600 , _UpperCAmelCase : float = 1E-1_0 , _UpperCAmelCase : int = 2 , _UpperCAmelCase : bool = True , **_UpperCAmelCase : List[Any] , ): super().__init__(feature_size=_UpperCAmelCase , sampling_rate=_UpperCAmelCase , padding_value=_UpperCAmelCase , **_UpperCAmelCase ) _A = do_normalize _A = return_attention_mask _A = num_mel_bins _A = hop_length _A = win_length _A = win_function _A = frame_signal_scale _A = fmin _A = fmax _A = mel_floor _A = reduction_factor _A = win_length * sampling_rate // 1_000 _A = hop_length * sampling_rate // 1_000 _A = optimal_fft_length(self.sample_size ) _A = (self.n_fft // 2) + 1 _A = window_function(window_length=self.sample_size , name=self.win_function , periodic=_UpperCAmelCase ) _A = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='slaney' , mel_scale='slaney' , ) if frame_signal_scale != 1.0: warnings.warn( 'The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers' , _UpperCAmelCase , ) if reduction_factor != 2.0: warnings.warn( 'The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers' , _UpperCAmelCase , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def lowerCAmelCase_ ( _UpperCAmelCase : List[np.ndarray] , _UpperCAmelCase : List[np.ndarray] , _UpperCAmelCase : float = 0.0 ): if attention_mask is not None: _A = np.array(_UpperCAmelCase , np.intaa ) _A = [] for vector, length in zip(_UpperCAmelCase , attention_mask.sum(-1 ) ): _A = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: _A = padding_value normed_input_values.append(_UpperCAmelCase ) else: _A = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : np.ndarray , ): _A = spectrogram( _UpperCAmelCase , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='log10' , ) return log_mel_spec.T def __call__( self : int , _UpperCAmelCase : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _UpperCAmelCase : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : Optional[int] = None , **_UpperCAmelCase : Optional[int] , ): if audio is None and audio_target is None: raise ValueError('You must provide either `audio` or `audio_target` values.' ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the ``sampling_rate`` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) if audio is not None: _A = self._process_audio( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , ) else: _A = None if audio_target is not None: _A = self._process_audio( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , ) if inputs is None: return inputs_target else: _A = inputs_target['input_values'] _A = inputs_target.get('attention_mask' ) if decoder_attention_mask is not None: _A = decoder_attention_mask return inputs def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _UpperCAmelCase : bool = False , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , **_UpperCAmelCase : List[Any] , ): _A = isinstance(_UpperCAmelCase , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) _A = is_batched_numpy or ( isinstance(_UpperCAmelCase , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _A = [np.asarray(_UpperCAmelCase , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(_UpperCAmelCase , np.ndarray ): _A = np.asarray(_UpperCAmelCase , dtype=np.floataa ) elif isinstance(_UpperCAmelCase , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): _A = speech.astype(np.floataa ) # always return batch if not is_batched: _A = [speech] # needed to make pad() work on spectrogram inputs _A = self.feature_size # convert into correct format for padding if is_target: _A = [self._extract_mel_features(_UpperCAmelCase ) for waveform in speech] _A = BatchFeature({'input_values': features} ) _A = self.num_mel_bins else: _A = BatchFeature({'input_values': speech} ) _A = self.pad( _UpperCAmelCase , padding=_UpperCAmelCase , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , ) _A = feature_size_hack # convert input values to correct format _A = padded_inputs['input_values'] if not isinstance(input_values[0] , np.ndarray ): _A = [np.asarray(_UpperCAmelCase , dtype=np.floataa ) for array in input_values] elif ( not isinstance(_UpperCAmelCase , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): _A = [array.astype(np.floataa ) for array in input_values] elif isinstance(_UpperCAmelCase , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): _A = input_values.astype(np.floataa ) # convert attention_mask to correct format _A = padded_inputs.get('attention_mask' ) if attention_mask is not None: _A = [np.asarray(_UpperCAmelCase , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: _A = ( attention_mask if self._get_padding_strategies(_UpperCAmelCase , max_length=_UpperCAmelCase ) is not PaddingStrategy.DO_NOT_PAD else None ) _A = self.zero_mean_unit_var_norm( padded_inputs['input_values'] , attention_mask=_UpperCAmelCase , padding_value=self.padding_value ) if return_tensors is not None: _A = padded_inputs.convert_to_tensors(_UpperCAmelCase ) return padded_inputs def lowerCAmelCase_ ( self : Any ): _A = super().to_dict() # Don't serialize these as they are derived from the other properties. _A = ['window', 'mel_filters', 'sample_size', 'sample_stride', 'n_fft', 'n_freqs'] for name in names: if name in output: del output[name] return output
315
1
"""simple docstring""" # flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter A : Optional[int] = logging.get_logger(__name__) A : Dict[Optional[str], Type[Formatter]] = {} A : Dict[Optional[str], str] = {} A : Dict[Optional[str], Exception] = {} def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , ): '''simple docstring''' __lowerCAmelCase = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f"Overwriting format type '{format_type}' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})" ) __lowerCAmelCase = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f"Overwriting format type alias '{alias}' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})" ) __lowerCAmelCase = format_type def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None ): '''simple docstring''' __lowerCAmelCase = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): __lowerCAmelCase = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=["python"]) _register_formatter(ArrowFormatter, "arrow", aliases=["pa", "pyarrow"]) _register_formatter(NumpyFormatter, "numpy", aliases=["np"]) _register_formatter(PandasFormatter, "pandas", aliases=["pd"]) _register_formatter(CustomFormatter, "custom") if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, "torch", aliases=["pt", "pytorch"]) else: A : Optional[Any] = ValueError("PyTorch needs to be installed to be able to return PyTorch tensors.") _register_unavailable_formatter(_torch_error, "torch", aliases=["pt", "pytorch"]) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, "tensorflow", aliases=["tf"]) else: A : Tuple = ValueError("Tensorflow needs to be installed to be able to return Tensorflow tensors.") _register_unavailable_formatter(_tf_error, "tensorflow", aliases=["tf"]) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, "jax", aliases=[]) else: A : Any = ValueError("JAX needs to be installed to be able to return JAX arrays.") _register_unavailable_formatter(_jax_error, "jax", aliases=[]) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def _lowerCamelCase ( _UpperCamelCase , **_UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = get_format_type_from_alias(_UpperCamelCase ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**_UpperCamelCase ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f"Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got '{format_type}'" )
259
"""simple docstring""" import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' if is_torch_version("<" , "2.0.0" ) or not hasattr(_UpperCamelCase , "_dynamo" ): return False return isinstance(_UpperCamelCase , torch._dynamo.eval_frame.OptimizedModule ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase = True ): '''simple docstring''' __lowerCAmelCase = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) __lowerCAmelCase = is_compiled_module(_UpperCamelCase ) if is_compiled: __lowerCAmelCase = model __lowerCAmelCase = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase = model.module if not keep_fpaa_wrapper: __lowerCAmelCase = getattr(_UpperCamelCase , "forward" ) __lowerCAmelCase = model.__dict__.pop("_original_forward" , _UpperCamelCase ) if original_forward is not None: while hasattr(_UpperCamelCase , "__wrapped__" ): __lowerCAmelCase = forward.__wrapped__ if forward == original_forward: break __lowerCAmelCase = forward if getattr(_UpperCamelCase , "_converted_to_transformer_engine" , _UpperCamelCase ): convert_model(_UpperCamelCase , to_transformer_engine=_UpperCamelCase ) if is_compiled: __lowerCAmelCase = model __lowerCAmelCase = compiled_model return model def _lowerCamelCase ( ): '''simple docstring''' PartialState().wait_for_everyone() def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' if PartialState().distributed_type == DistributedType.TPU: xm.save(_UpperCamelCase , _UpperCamelCase ) elif PartialState().local_process_index == 0: torch.save(_UpperCamelCase , _UpperCamelCase ) @contextmanager def _lowerCamelCase ( **_UpperCamelCase ): '''simple docstring''' for key, value in kwargs.items(): __lowerCAmelCase = str(_UpperCamelCase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' if not hasattr(_UpperCamelCase , "__qualname__" ) and not hasattr(_UpperCamelCase , "__name__" ): __lowerCAmelCase = getattr(_UpperCamelCase , "__class__" , _UpperCamelCase ) if hasattr(_UpperCamelCase , "__qualname__" ): return obj.__qualname__ if hasattr(_UpperCamelCase , "__name__" ): return obj.__name__ return str(_UpperCamelCase ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' for key, value in source.items(): if isinstance(_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase = destination.setdefault(_UpperCamelCase , {} ) merge_dicts(_UpperCamelCase , _UpperCamelCase ) else: __lowerCAmelCase = value return destination def _lowerCamelCase ( _UpperCamelCase = None ): '''simple docstring''' if port is None: __lowerCAmelCase = 2_9500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(("localhost", port) ) == 0
259
1
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class snake_case : """simple docstring""" snake_case__ = 42 snake_case__ = None snake_case__ = None def a_ ( ): UpperCAmelCase__ = Node(1 ) UpperCAmelCase__ = Node(2 ) UpperCAmelCase__ = Node(3 ) UpperCAmelCase__ = Node(4 ) UpperCAmelCase__ = Node(5 ) return tree def a_ ( lowerCamelCase ): return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def a_ ( lowerCamelCase ): return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def a_ ( lowerCamelCase ): return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def a_ ( lowerCamelCase ): return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def a_ ( lowerCamelCase ): UpperCAmelCase__ = [] if root is None: return output UpperCAmelCase__ = deque([root] ) while process_queue: UpperCAmelCase__ = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def a_ ( lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = [] def populate_output(lowerCamelCase , lowerCamelCase ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(lowerCamelCase , lowerCamelCase ) return output def a_ ( lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = [] def populate_output(lowerCamelCase , lowerCamelCase ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(lowerCamelCase , lowerCamelCase ) return output def a_ ( lowerCamelCase ): if root is None: return [] UpperCAmelCase__ = [] UpperCAmelCase__ = 0 UpperCAmelCase__ = height(lowerCamelCase ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(lowerCamelCase , lowerCamelCase ) ) UpperCAmelCase__ = 1 else: output.append(get_nodes_from_right_to_left(lowerCamelCase , lowerCamelCase ) ) UpperCAmelCase__ = 0 return output def a_ ( ): # Main function for testing. UpperCAmelCase__ = make_tree() print(f'''In-order Traversal: {inorder(lowerCamelCase )}''' ) print(f'''Pre-order Traversal: {preorder(lowerCamelCase )}''' ) print(f'''Post-order Traversal: {postorder(lowerCamelCase )}''' , '\n' ) print(f'''Height of Tree: {height(lowerCamelCase )}''' , '\n' ) print('Complete Level Order Traversal: ' ) print(level_order(lowerCamelCase ) , '\n' ) print('Level-wise order Traversal: ' ) for level in range(1 , height(lowerCamelCase ) + 1 ): print(f'''Level {level}:''' , get_nodes_from_left_to_right(lowerCamelCase , level=lowerCamelCase ) ) print('\nZigZag order Traversal: ' ) print(zigzag(lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
98
import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def __lowercase ( _A ) -> List[Tuple[int, ...]]: SCREAMING_SNAKE_CASE : Optional[int] = [] if isinstance(_A , _A ): for v in tree.values(): shapes.extend(_fetch_dims(_A ) ) elif isinstance(_A , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(_A ) ) elif isinstance(_A , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError("""Not supported""" ) return shapes @torch.jit.ignore def __lowercase ( _A , _A ) -> Tuple[int, ...]: SCREAMING_SNAKE_CASE : List[Any] = [] for d in reversed(_A ): idx.append(flat_idx % d ) SCREAMING_SNAKE_CASE : Tuple = flat_idx // d return tuple(reversed(_A ) ) @torch.jit.ignore def __lowercase ( _A , _A , _A , _A = None , _A = None , ) -> List[Tuple[slice, ...]]: # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(_A ) -> None: SCREAMING_SNAKE_CASE : int = True for i in range(len(_A ) ): SCREAMING_SNAKE_CASE : Dict = -1 * (i + 1) l[reversed_idx] &= tally SCREAMING_SNAKE_CASE : Any = l[reversed_idx] if start_edges is None: SCREAMING_SNAKE_CASE : Tuple = [s == 0 for s in start] reduce_edge_list(_A ) if end_edges is None: SCREAMING_SNAKE_CASE : Tuple = [e == (d - 1) for e, d in zip(_A , _A )] reduce_edge_list(_A ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(_A ) == 0: return [()] elif len(_A ) == 1: return [(slice(start[0] , end[0] + 1 ),)] SCREAMING_SNAKE_CASE : List[Tuple[slice, ...]] = [] SCREAMING_SNAKE_CASE : List[slice] = [] # Dimensions common to start and end can be selected directly for s, e in zip(_A , _A ): if s == e: path_list.append(slice(_A , s + 1 ) ) else: break SCREAMING_SNAKE_CASE : Tuple[slice, ...] = tuple(_A ) SCREAMING_SNAKE_CASE : List[str] = len(_A ) # start == end, and we're done if divergence_idx == len(_A ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None SCREAMING_SNAKE_CASE : List[str] = start[divergence_idx] return tuple( path + (slice(_A , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None SCREAMING_SNAKE_CASE : Tuple = end[divergence_idx] return tuple( path + (slice(_A , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) SCREAMING_SNAKE_CASE : int = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def __lowercase ( _A , _A , _A , _A ) -> torch.Tensor: SCREAMING_SNAKE_CASE : Tuple = t.shape[:no_batch_dims] SCREAMING_SNAKE_CASE : Union[str, Any] = list(_flat_idx_to_idx(_A , _A ) ) # _get_minimal_slice_set is inclusive SCREAMING_SNAKE_CASE : Any = list(_flat_idx_to_idx(flat_end - 1 , _A ) ) # Get an ordered list of slices to perform SCREAMING_SNAKE_CASE : List[Any] = _get_minimal_slice_set( _A , _A , _A , ) SCREAMING_SNAKE_CASE : List[Any] = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def __lowercase ( _A , _A , _A , _A , _A = False , _A = None , _A = False , ) -> Any: if not (len(_A ) > 0): raise ValueError("""Must provide at least one input""" ) SCREAMING_SNAKE_CASE : Tuple = [shape[:no_batch_dims] for shape in _fetch_dims(_A )] SCREAMING_SNAKE_CASE : str = tuple([max(_A ) for s in zip(*_A )] ) def _prep_inputs(_A ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: SCREAMING_SNAKE_CASE : List[Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) SCREAMING_SNAKE_CASE : Union[str, Any] = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: SCREAMING_SNAKE_CASE : Optional[Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t SCREAMING_SNAKE_CASE : Dict[str, Any] = tensor_tree_map(_prep_inputs , _A ) SCREAMING_SNAKE_CASE : Optional[int] = None if _out is not None: SCREAMING_SNAKE_CASE : Optional[int] = tensor_tree_map(lambda _A : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) SCREAMING_SNAKE_CASE : Optional[int] = 1 for d in orig_batch_dims: flat_batch_dim *= d SCREAMING_SNAKE_CASE : Tuple = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(_A ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t SCREAMING_SNAKE_CASE : Union[str, Any] = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = prepped_outputs for _ in range(_A ): # Chunk the input if not low_mem: SCREAMING_SNAKE_CASE : int = _select_chunk else: SCREAMING_SNAKE_CASE : Optional[int] = partial( _chunk_slice , flat_start=_A , flat_end=min(_A , i + chunk_size ) , no_batch_dims=len(_A ) , ) SCREAMING_SNAKE_CASE : Dict[str, Any] = tensor_tree_map(_A , _A ) # Run the layer on the chunk SCREAMING_SNAKE_CASE : Tuple = layer(**_A ) # Allocate space for the output if out is None: SCREAMING_SNAKE_CASE : List[str] = tensor_tree_map(lambda _A : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , _A ) # Put the chunk in its pre-allocated space if isinstance(_A , _A ): def assign(_A , _A ) -> None: for k, v in da.items(): if isinstance(_A , _A ): assign(_A , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: SCREAMING_SNAKE_CASE : Optional[Any] = da[k] assign(_A , _A ) elif isinstance(_A , _A ): for xa, xa in zip(_A , _A ): if _add_into_out: xa[i : i + chunk_size] += xa else: SCREAMING_SNAKE_CASE : str = xa elif isinstance(_A , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: SCREAMING_SNAKE_CASE : List[Any] = output_chunk else: raise ValueError("""Not supported""" ) i += chunk_size SCREAMING_SNAKE_CASE : Any = tensor_tree_map(lambda _A : t.view(orig_batch_dims + t.shape[1:] ) , _A ) return out class a__ : """simple docstring""" def __init__( self : Optional[Any] , UpperCAmelCase__ : int = 5_1_2 , ) ->int: """simple docstring""" SCREAMING_SNAKE_CASE : str = max_chunk_size SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Optional[tuple] = None def _lowercase ( self : List[Any] , UpperCAmelCase__ : Callable , UpperCAmelCase__ : tuple , UpperCAmelCase__ : int ) ->int: """simple docstring""" logging.info("""Tuning chunk size...""" ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size SCREAMING_SNAKE_CASE : List[int] = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] SCREAMING_SNAKE_CASE : Dict = [c for c in candidates if c > min_chunk_size] SCREAMING_SNAKE_CASE : List[str] = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(UpperCAmelCase__ : int ) -> bool: try: with torch.no_grad(): fn(*UpperCAmelCase__ , chunk_size=UpperCAmelCase__ ) return True except RuntimeError: return False SCREAMING_SNAKE_CASE : List[str] = 0 SCREAMING_SNAKE_CASE : List[str] = len(UpperCAmelCase__ ) - 1 while i > min_viable_chunk_size_index: SCREAMING_SNAKE_CASE : int = test_chunk_size(candidates[i] ) if not viable: SCREAMING_SNAKE_CASE : Tuple = (min_viable_chunk_size_index + i) // 2 else: SCREAMING_SNAKE_CASE : List[str] = i SCREAMING_SNAKE_CASE : List[str] = (i + len(UpperCAmelCase__ ) - 1) // 2 return candidates[min_viable_chunk_size_index] def _lowercase ( self : List[Any] , UpperCAmelCase__ : Iterable , UpperCAmelCase__ : Iterable ) ->bool: """simple docstring""" SCREAMING_SNAKE_CASE : str = True for aa, aa in zip(UpperCAmelCase__ , UpperCAmelCase__ ): assert type(UpperCAmelCase__ ) == type(UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , (list, tuple) ): consistent &= self._compare_arg_caches(UpperCAmelCase__ , UpperCAmelCase__ ) elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): SCREAMING_SNAKE_CASE : Optional[Any] = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase__ : x[0] )] SCREAMING_SNAKE_CASE : List[str] = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase__ : x[0] )] consistent &= self._compare_arg_caches(UpperCAmelCase__ , UpperCAmelCase__ ) else: consistent &= aa == aa return consistent def _lowercase ( self : List[str] , UpperCAmelCase__ : Callable , UpperCAmelCase__ : tuple , UpperCAmelCase__ : int , ) ->int: """simple docstring""" SCREAMING_SNAKE_CASE : int = True SCREAMING_SNAKE_CASE : tuple = tree_map(lambda UpperCAmelCase__ : a.shape if isinstance(UpperCAmelCase__ , torch.Tensor ) else a , UpperCAmelCase__ , UpperCAmelCase__ ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = self._compare_arg_caches(self.cached_arg_data , UpperCAmelCase__ ) else: # Otherwise, we can reuse the precomputed value SCREAMING_SNAKE_CASE : List[Any] = False if not consistent: SCREAMING_SNAKE_CASE : List[Any] = self._determine_favorable_chunk_size( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ) SCREAMING_SNAKE_CASE : Union[str, Any] = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
245
0
def lowerCAmelCase__ ( a__: str ) -> List[str]: '''simple docstring''' _UpperCAmelCase = len(a__ ) while cur > 1: # Find the maximum number in arr _UpperCAmelCase = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi _UpperCAmelCase = arr[mi::-1] + arr[mi + 1 : len(a__ )] # Reverse whole list _UpperCAmelCase = arr[cur - 1 :: -1] + arr[cur : len(a__ )] cur -= 1 return arr if __name__ == "__main__": lowerCAmelCase__ :int = input('''Enter numbers separated by a comma:\n''').strip() lowerCAmelCase__ :List[str] = [int(item) for item in user_input.split(''',''')] print(pancake_sort(unsorted))
185
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class __a ( pl.LightningModule ): def __init__( self , _SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" super().__init__() _UpperCAmelCase = model _UpperCAmelCase = 2 _UpperCAmelCase = nn.Linear(self.model.config.hidden_size , self.num_labels ) def UpperCAmelCase__ ( self ) -> str: """simple docstring""" pass def lowerCAmelCase__ ( a__: str , a__: str , a__: str ) -> Tuple: '''simple docstring''' _UpperCAmelCase = LongformerModel.from_pretrained(a__ ) _UpperCAmelCase = LightningModel(a__ ) _UpperCAmelCase = torch.load(a__ , map_location=torch.device('cpu' ) ) lightning_model.load_state_dict(ckpt['state_dict'] ) # init longformer question answering model _UpperCAmelCase = LongformerForQuestionAnswering.from_pretrained(a__ ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(a__ ) print(F'''Conversion successful. Model saved under {pytorch_dump_folder_path}''' ) if __name__ == "__main__": lowerCAmelCase__ :Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--longformer_model''', default=None, type=str, required=True, help='''model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.''', ) parser.add_argument( '''--longformer_question_answering_ckpt_path''', default=None, type=str, required=True, help='''Path the official PyTorch Lightning Checkpoint.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCAmelCase__ :Dict = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
185
1
import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = old_name if "patch_embed" in old_name: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = old_name.split('''.''' ) if layer == "0": SCREAMING_SNAKE_CASE__ = old_name.replace('''0''' , '''convolution1''' ) elif layer == "1": SCREAMING_SNAKE_CASE__ = old_name.replace('''1''' , '''batchnorm_before''' ) elif layer == "3": SCREAMING_SNAKE_CASE__ = old_name.replace('''3''' , '''convolution2''' ) else: SCREAMING_SNAKE_CASE__ = old_name.replace('''4''' , '''batchnorm_after''' ) if "network" in old_name and re.search(R'''\d\.\d''' , _A ): SCREAMING_SNAKE_CASE__ = R'''\b\d{2}\b''' if bool(re.search(_A , _A ) ): SCREAMING_SNAKE_CASE__ = re.search(R'''\d\.\d\d.''' , _A ).group() else: SCREAMING_SNAKE_CASE__ = re.search(R'''\d\.\d.''' , _A ).group() if int(match[0] ) < 6: SCREAMING_SNAKE_CASE__ = old_name.replace(_A , '''''' ) SCREAMING_SNAKE_CASE__ = trimmed_name.replace('''network''' , match[0] + '''.meta4D_layers.blocks.''' + match[2:-1] ) SCREAMING_SNAKE_CASE__ = '''intermediate_stages.''' + trimmed_name else: SCREAMING_SNAKE_CASE__ = old_name.replace(_A , '''''' ) if int(match[2] ) < num_meta4D_last_stage: SCREAMING_SNAKE_CASE__ = trimmed_name.replace('''network''' , '''meta4D_layers.blocks.''' + match[2] ) else: SCREAMING_SNAKE_CASE__ = str(int(match[2] ) - num_meta4D_last_stage ) SCREAMING_SNAKE_CASE__ = trimmed_name.replace('''network''' , '''meta3D_layers.blocks.''' + layer_index ) if "norm1" in old_name: SCREAMING_SNAKE_CASE__ = trimmed_name.replace('''norm1''' , '''layernorm1''' ) elif "norm2" in old_name: SCREAMING_SNAKE_CASE__ = trimmed_name.replace('''norm2''' , '''layernorm2''' ) elif "fc1" in old_name: SCREAMING_SNAKE_CASE__ = trimmed_name.replace('''fc1''' , '''linear_in''' ) elif "fc2" in old_name: SCREAMING_SNAKE_CASE__ = trimmed_name.replace('''fc2''' , '''linear_out''' ) SCREAMING_SNAKE_CASE__ = '''last_stage.''' + trimmed_name elif "network" in old_name and re.search(R'''.\d.''' , _A ): SCREAMING_SNAKE_CASE__ = old_name.replace('''network''' , '''intermediate_stages''' ) if "fc" in new_name: SCREAMING_SNAKE_CASE__ = new_name.replace('''fc''' , '''convolution''' ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): SCREAMING_SNAKE_CASE__ = new_name.replace('''norm1''' , '''batchnorm_before''' ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): SCREAMING_SNAKE_CASE__ = new_name.replace('''norm2''' , '''batchnorm_after''' ) if "proj" in new_name: SCREAMING_SNAKE_CASE__ = new_name.replace('''proj''' , '''projection''' ) if "dist_head" in new_name: SCREAMING_SNAKE_CASE__ = new_name.replace('''dist_head''' , '''distillation_classifier''' ) elif "head" in new_name: SCREAMING_SNAKE_CASE__ = new_name.replace('''head''' , '''classifier''' ) elif "patch_embed" in new_name: SCREAMING_SNAKE_CASE__ = '''efficientformer.''' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": SCREAMING_SNAKE_CASE__ = new_name.replace('''norm''' , '''layernorm''' ) SCREAMING_SNAKE_CASE__ = '''efficientformer.''' + new_name else: SCREAMING_SNAKE_CASE__ = '''efficientformer.encoder.''' + new_name return new_name def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' for key in checkpoint.copy().keys(): SCREAMING_SNAKE_CASE__ = checkpoint.pop(_A ) SCREAMING_SNAKE_CASE__ = val return checkpoint def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' SCREAMING_SNAKE_CASE__ = Image.open(requests.get(_A , stream=_A ).raw ) return image def UpperCAmelCase_ ( _A , _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = torch.load(_A , map_location='''cpu''' )['''model'''] SCREAMING_SNAKE_CASE__ = EfficientFormerConfig.from_json_file(_A ) SCREAMING_SNAKE_CASE__ = EfficientFormerForImageClassificationWithTeacher(_A ) SCREAMING_SNAKE_CASE__ = '''_'''.join(checkpoint_path.split('''/''' )[-1].split('''.''' )[0].split('''_''' )[:-1] ) SCREAMING_SNAKE_CASE__ = config.depths[-1] - config.num_metaad_blocks + 1 SCREAMING_SNAKE_CASE__ = convert_torch_checkpoint(_A , _A ) model.load_state_dict(_A ) model.eval() SCREAMING_SNAKE_CASE__ = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } # prepare image SCREAMING_SNAKE_CASE__ = prepare_img() SCREAMING_SNAKE_CASE__ = 2_56 SCREAMING_SNAKE_CASE__ = 2_24 SCREAMING_SNAKE_CASE__ = EfficientFormerImageProcessor( size={'''shortest_edge''': image_size} , crop_size={'''height''': crop_size, '''width''': crop_size} , resample=pillow_resamplings['''bicubic'''] , ) SCREAMING_SNAKE_CASE__ = processor(images=_A , return_tensors='''pt''' ).pixel_values # original processing pipeline SCREAMING_SNAKE_CASE__ = Compose( [ Resize(_A , interpolation=pillow_resamplings['''bicubic'''] ), CenterCrop(_A ), ToTensor(), Normalize(_A , _A ), ] ) SCREAMING_SNAKE_CASE__ = image_transforms(_A ).unsqueeze(0 ) assert torch.allclose(_A , _A ) SCREAMING_SNAKE_CASE__ = model(_A ) SCREAMING_SNAKE_CASE__ = outputs.logits SCREAMING_SNAKE_CASE__ = (1, 10_00) if "l1" in model_name: SCREAMING_SNAKE_CASE__ = torch.Tensor( [-0.1_3_1_2, 0.4_3_5_3, -1.0_4_9_9, -0.5_1_2_4, 0.4_1_8_3, -0.6_7_9_3, -1.3_7_7_7, -0.0_8_9_3, -0.7_3_5_8, -2.4_3_2_8] ) assert torch.allclose(logits[0, :10] , _A , atol=1e-3 ) assert logits.shape == expected_shape elif "l3" in model_name: SCREAMING_SNAKE_CASE__ = torch.Tensor( [-1.3_1_5_0, -1.5_4_5_6, -1.2_5_5_6, -0.8_4_9_6, -0.7_1_2_7, -0.7_8_9_7, -0.9_7_2_8, -0.3_0_5_2, 0.3_7_5_1, -0.3_1_2_7] ) assert torch.allclose(logits[0, :10] , _A , atol=1e-3 ) assert logits.shape == expected_shape elif "l7" in model_name: SCREAMING_SNAKE_CASE__ = torch.Tensor( [-1.0_2_8_3, -1.4_1_3_1, -0.5_6_4_4, -1.3_1_1_5, -0.5_7_8_5, -1.2_0_4_9, -0.7_5_2_8, 0.1_9_9_2, -0.3_8_2_2, -0.0_8_7_8] ) assert logits.shape == expected_shape else: raise ValueError( F'''Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7''' ) # Save Checkpoints Path(_A ).mkdir(exist_ok=_A ) model.save_pretrained(_A ) print(F'''Checkpoint successfuly converted. Model saved at {pytorch_dump_path}''' ) processor.save_pretrained(_A ) print(F'''Processor successfuly saved at {pytorch_dump_path}''' ) if push_to_hub: print('''Pushing model to the hub...''' ) model.push_to_hub( repo_id=F'''Bearnardd/{pytorch_dump_path}''' , commit_message='''Add model''' , use_temp_dir=_A , ) processor.push_to_hub( repo_id=F'''Bearnardd/{pytorch_dump_path}''' , commit_message='''Add image processor''' , use_temp_dir=_A , ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--pytorch_model_path''', default=None, type=str, required=True, help='''Path to EfficientFormer pytorch checkpoint.''', ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The json file for EfficientFormer model config.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') parser.add_argument( '''--no-push_to_hub''', dest='''push_to_hub''', action='''store_false''', help='''Do not push model and image processor to the hub''', ) parser.set_defaults(push_to_hub=True) _SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
314
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any]=7 , __lowerCamelCase : Any=3 , __lowerCamelCase : Any=30 , __lowerCamelCase : str=400 , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Dict=None , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Optional[int]=[0.5, 0.5, 0.5] , __lowerCamelCase : Tuple=[0.5, 0.5, 0.5] , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : List[Any]=1 / 255 , __lowerCamelCase : Dict=True , ) -> List[Any]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p SCREAMING_SNAKE_CASE__ = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = min_resolution SCREAMING_SNAKE_CASE__ = max_resolution SCREAMING_SNAKE_CASE__ = do_resize SCREAMING_SNAKE_CASE__ = size SCREAMING_SNAKE_CASE__ = do_normalize SCREAMING_SNAKE_CASE__ = image_mean SCREAMING_SNAKE_CASE__ = image_std SCREAMING_SNAKE_CASE__ = do_rescale SCREAMING_SNAKE_CASE__ = rescale_factor SCREAMING_SNAKE_CASE__ = do_pad def lowercase_ ( self : Tuple ) -> Tuple: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowercase_ ( self : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int=False ) -> Optional[int]: if not batched: SCREAMING_SNAKE_CASE__ = image_inputs[0] if isinstance(__lowerCamelCase , Image.Image ): SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = image.size else: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = image.shape[1], image.shape[2] if w < h: SCREAMING_SNAKE_CASE__ = int(self.size['''shortest_edge'''] * h / w ) SCREAMING_SNAKE_CASE__ = self.size['''shortest_edge'''] elif w > h: SCREAMING_SNAKE_CASE__ = self.size['''shortest_edge'''] SCREAMING_SNAKE_CASE__ = int(self.size['''shortest_edge'''] * w / h ) else: SCREAMING_SNAKE_CASE__ = self.size['''shortest_edge'''] SCREAMING_SNAKE_CASE__ = self.size['''shortest_edge'''] else: SCREAMING_SNAKE_CASE__ = [] for image in image_inputs: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) SCREAMING_SNAKE_CASE__ = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[0] )[0] SCREAMING_SNAKE_CASE__ = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCAmelCase__ ( A__ , unittest.TestCase ): """simple docstring""" a = YolosImageProcessor if is_vision_available() else None def lowercase_ ( self : Any ) -> int: SCREAMING_SNAKE_CASE__ = YolosImageProcessingTester(self ) @property def lowercase_ ( self : Tuple ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self : List[str] ) -> str: SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase , '''image_mean''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''image_std''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''size''' ) ) def lowercase_ ( self : Optional[Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__lowerCamelCase ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , __lowerCamelCase ) def lowercase_ ( self : Tuple ) -> Optional[int]: pass def lowercase_ ( self : int ) -> Dict: # Initialize image_processing SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : Tuple ) -> str: # Initialize image_processing SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : Dict ) -> Dict: # Initialize image_processing SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : List[str] ) -> Optional[Any]: # Initialize image_processings SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) SCREAMING_SNAKE_CASE__ = self.image_processing_class(do_resize=__lowerCamelCase , do_normalize=__lowerCamelCase , do_rescale=__lowerCamelCase ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors SCREAMING_SNAKE_CASE__ = image_processing_a.pad(__lowerCamelCase , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE__ = image_processing_a(__lowerCamelCase , return_tensors='''pt''' ) self.assertTrue( torch.allclose(encoded_images_with_method['''pixel_values'''] , encoded_images['''pixel_values'''] , atol=1e-4 ) ) @slow def lowercase_ ( self : Union[str, Any] ) -> Optional[int]: # prepare image and target SCREAMING_SNAKE_CASE__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: SCREAMING_SNAKE_CASE__ = json.loads(f.read() ) SCREAMING_SNAKE_CASE__ = {'''image_id''': 3_9769, '''annotations''': target} # encode them SCREAMING_SNAKE_CASE__ = YolosImageProcessor.from_pretrained('''hustvl/yolos-small''' ) SCREAMING_SNAKE_CASE__ = image_processing(images=__lowerCamelCase , annotations=__lowerCamelCase , return_tensors='''pt''' ) # verify pixel values SCREAMING_SNAKE_CASE__ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __lowerCamelCase , atol=1e-4 ) ) # verify area SCREAMING_SNAKE_CASE__ = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __lowerCamelCase ) ) # verify boxes SCREAMING_SNAKE_CASE__ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __lowerCamelCase , atol=1e-3 ) ) # verify image_id SCREAMING_SNAKE_CASE__ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __lowerCamelCase ) ) # verify is_crowd SCREAMING_SNAKE_CASE__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __lowerCamelCase ) ) # verify class_labels SCREAMING_SNAKE_CASE__ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __lowerCamelCase ) ) # verify orig_size SCREAMING_SNAKE_CASE__ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __lowerCamelCase ) ) # verify size SCREAMING_SNAKE_CASE__ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __lowerCamelCase ) ) @slow def lowercase_ ( self : Optional[Any] ) -> Optional[Any]: # prepare image, target and masks_path SCREAMING_SNAKE_CASE__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: SCREAMING_SNAKE_CASE__ = json.loads(f.read() ) SCREAMING_SNAKE_CASE__ = {'''file_name''': '''000000039769.png''', '''image_id''': 3_9769, '''segments_info''': target} SCREAMING_SNAKE_CASE__ = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them SCREAMING_SNAKE_CASE__ = YolosImageProcessor(format='''coco_panoptic''' ) SCREAMING_SNAKE_CASE__ = image_processing(images=__lowerCamelCase , annotations=__lowerCamelCase , masks_path=__lowerCamelCase , return_tensors='''pt''' ) # verify pixel values SCREAMING_SNAKE_CASE__ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __lowerCamelCase , atol=1e-4 ) ) # verify area SCREAMING_SNAKE_CASE__ = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __lowerCamelCase ) ) # verify boxes SCREAMING_SNAKE_CASE__ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __lowerCamelCase , atol=1e-3 ) ) # verify image_id SCREAMING_SNAKE_CASE__ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __lowerCamelCase ) ) # verify is_crowd SCREAMING_SNAKE_CASE__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __lowerCamelCase ) ) # verify class_labels SCREAMING_SNAKE_CASE__ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __lowerCamelCase ) ) # verify masks SCREAMING_SNAKE_CASE__ = 82_2873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , __lowerCamelCase ) # verify orig_size SCREAMING_SNAKE_CASE__ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __lowerCamelCase ) ) # verify size SCREAMING_SNAKE_CASE__ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __lowerCamelCase ) )
314
1
"""simple docstring""" import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput A_ : Dict =logging.get_logger(__name__) # pylint: disable=invalid-name def SCREAMING_SNAKE_CASE_ ( snake_case : Union[List, PIL.Image.Image, torch.Tensor] )-> List[Any]: warnings.warn( 'The preprocess method is deprecated and will be removed in a future version. Please' ' use VaeImageProcessor.preprocess instead' , snake_case , ) if isinstance(snake_case , torch.Tensor ): return image elif isinstance(snake_case , PIL.Image.Image ): _lowerCamelCase = [image] if isinstance(image[0] , PIL.Image.Image ): _lowerCamelCase , _lowerCamelCase = image[0].size _lowerCamelCase , _lowerCamelCase = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 _lowerCamelCase = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] _lowerCamelCase = np.concatenate(snake_case , axis=0 ) _lowerCamelCase = np.array(snake_case ).astype(np.floataa ) / 2_5_5.0 _lowerCamelCase = image.transpose(0 , 3 , 1 , 2 ) _lowerCamelCase = 2.0 * image - 1.0 _lowerCamelCase = torch.from_numpy(snake_case ) elif isinstance(image[0] , torch.Tensor ): _lowerCamelCase = torch.cat(snake_case , dim=0 ) return image def SCREAMING_SNAKE_CASE_ ( snake_case : Union[List, PIL.Image.Image, torch.Tensor] )-> List[Any]: if isinstance(snake_case , torch.Tensor ): return mask elif isinstance(snake_case , PIL.Image.Image ): _lowerCamelCase = [mask] if isinstance(mask[0] , PIL.Image.Image ): _lowerCamelCase , _lowerCamelCase = mask[0].size _lowerCamelCase , _lowerCamelCase = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 _lowerCamelCase = [np.array(m.convert('L' ).resize((w, h) , resample=PIL_INTERPOLATION['nearest'] ) )[None, :] for m in mask] _lowerCamelCase = np.concatenate(snake_case , axis=0 ) _lowerCamelCase = mask.astype(np.floataa ) / 2_5_5.0 _lowerCamelCase = 0 _lowerCamelCase = 1 _lowerCamelCase = torch.from_numpy(snake_case ) elif isinstance(mask[0] , torch.Tensor ): _lowerCamelCase = torch.cat(snake_case , dim=0 ) return mask class __a ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : UNetaDModel SCREAMING_SNAKE_CASE__ : RePaintScheduler def __init__( self , a__ , a__ ): super().__init__() self.register_modules(unet=a__ , scheduler=a__ ) @torch.no_grad() def __call__( self , a__ , a__ , a__ = 2_50 , a__ = 0.0 , a__ = 10 , a__ = 10 , a__ = None , a__ = "pil" , a__ = True , ): _lowerCamelCase = image _lowerCamelCase = _preprocess_image(a__ ) _lowerCamelCase = original_image.to(device=self.device , dtype=self.unet.dtype ) _lowerCamelCase = _preprocess_mask(a__ ) _lowerCamelCase = mask_image.to(device=self.device , dtype=self.unet.dtype ) _lowerCamelCase = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(a__ , a__ ) and len(a__ ) != batch_size: raise ValueError( F'You have passed a list of generators of length {len(a__ )}, but requested an effective batch' F' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) _lowerCamelCase = original_image.shape _lowerCamelCase = randn_tensor(a__ , generator=a__ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(a__ , a__ , a__ , self.device ) _lowerCamelCase = eta _lowerCamelCase = self.scheduler.timesteps[0] + 1 _lowerCamelCase = generator[0] if isinstance(a__ , a__ ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual _lowerCamelCase = self.unet(a__ , a__ ).sample # compute previous image: x_t -> x_t-1 _lowerCamelCase = self.scheduler.step(a__ , a__ , a__ , a__ , a__ , a__ ).prev_sample else: # compute the reverse: x_t-1 -> x_t _lowerCamelCase = self.scheduler.undo_step(a__ , a__ , a__ ) _lowerCamelCase = t _lowerCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowerCamelCase = self.numpy_to_pil(a__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=a__ )
80
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def SCREAMING_SNAKE_CASE_ ( )-> List[Any]: _lowerCamelCase = ArgumentParser('Accelerate CLI tool' , usage='accelerate <command> [<args>]' , allow_abbrev=snake_case ) _lowerCamelCase = parser.add_subparsers(help='accelerate command helpers' ) # Register commands get_config_parser(subparsers=snake_case ) env_command_parser(subparsers=snake_case ) launch_command_parser(subparsers=snake_case ) tpu_command_parser(subparsers=snake_case ) test_command_parser(subparsers=snake_case ) # Let's go _lowerCamelCase = parser.parse_args() if not hasattr(snake_case , 'func' ): parser.print_help() exit(1 ) # Run args.func(snake_case ) if __name__ == "__main__": main()
80
1
'''simple docstring''' def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> int: return abs(UpperCamelCase ) if a == 0 else greatest_common_divisor(b % a , UpperCamelCase ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> int: while y: # --> when y=0 then loop will terminate and return x as final GCD. lowerCamelCase__ , lowerCamelCase__ : Tuple = y, x % y return abs(UpperCamelCase ) def SCREAMING_SNAKE_CASE_ () -> Tuple: try: lowerCamelCase__ : Dict = input("""Enter two integers separated by comma (,): """ ).split(""",""" ) lowerCamelCase__ : Any = int(nums[0] ) lowerCamelCase__ : Optional[Any] = int(nums[1] ) print( f'''greatest_common_divisor({num_a}, {num_a}) = ''' f'''{greatest_common_divisor(UpperCamelCase , UpperCamelCase )}''' ) print(f'''By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(UpperCamelCase , UpperCamelCase )}''' ) except (IndexError, UnboundLocalError, ValueError): print("""Wrong input""" ) if __name__ == "__main__": main()
41
"""simple docstring""" import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def lowercase__ ( snake_case_ :ndarray ): return np.dot(snake_case_ , snake_case_ ) class _UpperCAmelCase : def __init__( self : Union[str, Any] , *, _lowercase : float = np.inf , _lowercase : str = "linear" , _lowercase : float = 0.0 , ): __UpperCAmelCase = regularization __UpperCAmelCase = gamma if kernel == "linear": __UpperCAmelCase = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('''rbf kernel requires gamma''' ) if not isinstance(self.gamma , (float, int) ): raise ValueError('''gamma must be float or int''' ) if not self.gamma > 0: raise ValueError('''gamma must be > 0''' ) __UpperCAmelCase = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: __UpperCAmelCase = F'''Unknown kernel: {kernel}''' raise ValueError(_lowercase ) def a ( self : Dict , _lowercase : ndarray , _lowercase : ndarray ): return np.dot(_lowercase , _lowercase ) def a ( self : Any , _lowercase : ndarray , _lowercase : ndarray ): return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def a ( self : Union[str, Any] , _lowercase : list[ndarray] , _lowercase : ndarray ): __UpperCAmelCase = observations __UpperCAmelCase = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((__UpperCAmelCase) , ) = np.shape(_lowercase ) def to_minimize(_lowercase : ndarray ) -> float: __UpperCAmelCase = 0 ((__UpperCAmelCase) , ) = np.shape(_lowercase ) for i in range(_lowercase ): for j in range(_lowercase ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(_lowercase ) __UpperCAmelCase = LinearConstraint(_lowercase , 0 , 0 ) __UpperCAmelCase = Bounds(0 , self.regularization ) __UpperCAmelCase = minimize( _lowercase , np.ones(_lowercase ) , bounds=_lowercase , constraints=[ly_contraint] ).x __UpperCAmelCase = l_star # calculating mean offset of separation plane to points __UpperCAmelCase = 0 for i in range(_lowercase ): for j in range(_lowercase ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) __UpperCAmelCase = s / n def a ( self : List[Any] , _lowercase : ndarray ): __UpperCAmelCase = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , _lowercase ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
332
0
'''simple docstring''' from __future__ import annotations import requests __a: Optional[Any] = set( """approved_at_utc approved_by author_flair_background_color author_flair_css_class author_flair_richtext author_flair_template_id author_fullname author_premium can_mod_post category clicked content_categories created_utc downs edited gilded gildings hidden hide_score is_created_from_ads_ui is_meta is_original_content is_reddit_media_domain is_video link_flair_css_class link_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title name permalink pwls quarantine saved score secure_media secure_media_embed selftext subreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type total_awards_received ups upvote_ratio url user_reports""".split() ) def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase = 1 , UpperCAmelCase = "new" , UpperCAmelCase = None ): lowercase__ : List[Any] = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(UpperCAmelCase ) - valid_terms ) ): lowercase__ : Union[str, Any] = F"""Invalid search term: {invalid_search_terms}""" raise ValueError(UpperCAmelCase ) lowercase__ : Any = requests.get( F"""https://reddit.com/r/{subreddit}/{age}.json?limit={limit}""" , headers={'''User-agent''': '''A random string'''} , ) if response.status_code == 429: raise requests.HTTPError lowercase__ : Any = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(UpperCAmelCase )} lowercase__ : Any = {} for id_ in range(UpperCAmelCase ): lowercase__ : Tuple = { item: data['''data''']['''children'''][id_]['''data'''][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data("""learnpython""", wanted_data=["""title""", """url""", """selftext"""]))
214
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax __a: Optional[Any] = logging.get_logger(__name__) @add_end_docstrings(a__ ) class UpperCAmelCase ( a__ ): '''simple docstring''' def __init__( self , **__lowerCAmelCase ) -> int: super().__init__(**__lowerCAmelCase ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self , __lowerCAmelCase , **__lowerCAmelCase ) -> List[str]: return super().__call__(__lowerCAmelCase , **__lowerCAmelCase ) def _lowerCAmelCase( self , **__lowerCAmelCase ) -> Optional[Any]: lowercase__ : str = {} if "candidate_labels" in kwargs: lowercase__ : str = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: lowercase__ : str = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase="This is a photo of {}." ) -> Any: lowercase__ : Union[str, Any] = load_image(__lowerCAmelCase ) lowercase__ : List[str] = self.image_processor(images=[image] , return_tensors=self.framework ) lowercase__ : Union[str, Any] = candidate_labels lowercase__ : int = [hypothesis_template.format(__lowerCAmelCase ) for x in candidate_labels] lowercase__ : Any = self.tokenizer(__lowerCAmelCase , return_tensors=self.framework , padding=__lowerCAmelCase ) lowercase__ : Any = [text_inputs] return inputs def _lowerCAmelCase( self , __lowerCAmelCase ) -> Optional[Any]: lowercase__ : Any = model_inputs.pop('''candidate_labels''' ) lowercase__ : int = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] , __lowerCAmelCase ): lowercase__ : Union[str, Any] = text_inputs[0] else: # Batching case. lowercase__ : Optional[Any] = text_inputs[0][0] lowercase__ : Any = self.model(**__lowerCAmelCase , **__lowerCAmelCase ) lowercase__ : Any = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def _lowerCAmelCase( self , __lowerCAmelCase ) -> List[str]: lowercase__ : Union[str, Any] = model_outputs.pop('''candidate_labels''' ) lowercase__ : Optional[int] = model_outputs['''logits'''][0] if self.framework == "pt": lowercase__ : Optional[int] = logits.softmax(dim=-1 ).squeeze(-1 ) lowercase__ : Any = probs.tolist() if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowercase__ : Dict = [scores] elif self.framework == "tf": lowercase__ : List[Any] = stable_softmax(__lowerCAmelCase , axis=-1 ) lowercase__ : str = probs.numpy().tolist() else: raise ValueError(F"""Unsupported framework: {self.framework}""" ) lowercase__ : Optional[int] = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(__lowerCAmelCase , __lowerCAmelCase ) , key=lambda __lowerCAmelCase : -x[0] ) ] return result
214
1
def __lowerCamelCase ( snake_case__ ) -> None: """simple docstring""" _SCREAMING_SNAKE_CASE = generate_pascal_triangle(snake_case__ ) for row_idx in range(snake_case__ ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=""" """ ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] ,end=""" """ ) else: print(triangle[row_idx][col_idx] ,end="""""" ) print() def __lowerCamelCase ( snake_case__ ) -> list[list[int]]: """simple docstring""" if not isinstance(snake_case__ ,snake_case__ ): raise TypeError("""The input value of 'num_rows' should be 'int'""" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( """The input value of 'num_rows' should be greater than or equal to 0""" ) _SCREAMING_SNAKE_CASE = [] for current_row_idx in range(snake_case__ ): _SCREAMING_SNAKE_CASE = populate_current_row(snake_case__ ,snake_case__ ) triangle.append(snake_case__ ) return triangle def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> list[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 1, 1 for current_col_idx in range(1 ,snake_case__ ): calculate_current_element( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) return current_row def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,) -> None: """simple docstring""" _SCREAMING_SNAKE_CASE = triangle[current_row_idx - 1][current_col_idx - 1] _SCREAMING_SNAKE_CASE = triangle[current_row_idx - 1][current_col_idx] _SCREAMING_SNAKE_CASE = above_to_left_elt + above_to_right_elt def __lowerCamelCase ( snake_case__ ) -> list[list[int]]: """simple docstring""" if not isinstance(snake_case__ ,snake_case__ ): raise TypeError("""The input value of 'num_rows' should be 'int'""" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( """The input value of 'num_rows' should be greater than or equal to 0""" ) _SCREAMING_SNAKE_CASE = [[1]] for row_index in range(1 ,snake_case__ ): _SCREAMING_SNAKE_CASE = [0] + result[-1] + [0] _SCREAMING_SNAKE_CASE = row_index + 1 # Calculate the number of distinct elements in a row _SCREAMING_SNAKE_CASE = sum(divmod(snake_case__ ,2 ) ) _SCREAMING_SNAKE_CASE = [ temp_row[i - 1] + temp_row[i] for i in range(1 ,distinct_elements + 1 ) ] _SCREAMING_SNAKE_CASE = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() _SCREAMING_SNAKE_CASE = row_first_half + row_second_half result.append(snake_case__ ) return result def __lowerCamelCase ( ) -> None: """simple docstring""" from collections.abc import Callable from timeit import timeit def benchmark_a_function(snake_case__ ,snake_case__ ) -> None: _SCREAMING_SNAKE_CASE = F'{func.__name__}({value})' _SCREAMING_SNAKE_CASE = timeit(F'__main__.{call}' ,setup="""import __main__""" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F'{call:38} -- {timing:.4f} seconds' ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(snake_case__ ,snake_case__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
306
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase = { '''configuration_altclip''': [ '''ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AltCLIPConfig''', '''AltCLIPTextConfig''', '''AltCLIPVisionConfig''', ], '''processing_altclip''': ['''AltCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AltCLIPPreTrainedModel''', '''AltCLIPModel''', '''AltCLIPTextModel''', '''AltCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
306
1
'''simple docstring''' import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(snake_case_ ) , '''Tatoeba directory does not exist.''' ) class UpperCAmelCase ( unittest.TestCase ): @cached_property def lowercase__ ( self : int ) -> Any: _lowerCAmelCase = tempfile.mkdtemp() return TatoebaConverter(save_dir=__snake_case ) @slow def lowercase__ ( self : Dict ) -> int: self.resolver.convert_models(["""heb-eng"""] ) @slow def lowercase__ ( self : Optional[int] ) -> Tuple: _lowerCAmelCase , _lowerCAmelCase = self.resolver.write_model_card("""opus-mt-he-en""" , dry_run=__snake_case ) assert mmeta["long_pair"] == "heb-eng"
220
'''simple docstring''' def UpperCamelCase__ ( lowerCAmelCase = 4_00_00_00 ): """simple docstring""" _lowerCAmelCase = [] _lowerCAmelCase , _lowerCAmelCase = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(lowerCAmelCase ) _lowerCAmelCase , _lowerCAmelCase = b, a + b return sum(lowerCAmelCase ) if __name__ == "__main__": print(F"""{solution() = }""")
220
1
from ..utils import DummyObject, requires_backends class UpperCamelCase__ (metaclass=lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ : Tuple = ["""onnx"""] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Tuple: requires_backends(self , ["onnx"] ) @classmethod def _lowercase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Union[str, Any]: requires_backends(cls , ["onnx"] ) @classmethod def _lowercase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Dict: requires_backends(cls , ["onnx"] )
48
def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Any: # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) lowerCamelCase : str = (boundary[1] - boundary[0]) / steps lowerCamelCase : List[str] = boundary[0] lowerCamelCase : Union[str, Any] = boundary[1] lowerCamelCase : int = make_points(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) lowerCamelCase : List[str] = 0.0 y += (h / 2.0) * f(_SCREAMING_SNAKE_CASE ) for i in x_i: # print(i) y += h * f(_SCREAMING_SNAKE_CASE ) y += (h / 2.0) * f(_SCREAMING_SNAKE_CASE ) return y def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> int: lowerCamelCase : int = a + h while x < (b - h): yield x lowerCamelCase : List[str] = x + h def A ( _SCREAMING_SNAKE_CASE ) -> Optional[Any]: # enter your function here lowerCamelCase : str = (x - 0) * (x - 0) return y def A ( ) -> int: lowerCamelCase : int = 0.0 # Lower bound of integration lowerCamelCase : int = 1.0 # Upper bound of integration lowerCamelCase : Dict = 10.0 # define number of steps or resolution lowerCamelCase : int = [a, b] # define boundary of integration lowerCamelCase : str = method_a(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) print(f'''y = {y}''' ) if __name__ == "__main__": main()
48
1
'''simple docstring''' from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING A : Any = logging.get_logger(__name__) @add_end_docstrings(a_ ) class __lowerCamelCase ( a_ ): """simple docstring""" def __init__( self : Any , **SCREAMING_SNAKE_CASE : str): super().__init__(**SCREAMING_SNAKE_CASE) requires_backends(self , 'vision') requires_backends(self , 'torch') if self.framework != "pt": raise ValueError(F'The {self.__class__} is only available in PyTorch.') self.check_model_type(SCREAMING_SNAKE_CASE) def A ( self : int , **SCREAMING_SNAKE_CASE : Optional[int]): _A : List[str] = {} _A : Optional[int] = {} _A : List[Any] = {} # preprocess args if "points_per_batch" in kwargs: _A : Any = kwargs['points_per_batch'] if "points_per_crop" in kwargs: _A : List[str] = kwargs['points_per_crop'] if "crops_n_layers" in kwargs: _A : Union[str, Any] = kwargs['crops_n_layers'] if "crop_overlap_ratio" in kwargs: _A : Dict = kwargs['crop_overlap_ratio'] if "crop_n_points_downscale_factor" in kwargs: _A : Tuple = kwargs['crop_n_points_downscale_factor'] # postprocess args if "pred_iou_thresh" in kwargs: _A : Optional[int] = kwargs['pred_iou_thresh'] if "stability_score_offset" in kwargs: _A : Any = kwargs['stability_score_offset'] if "mask_threshold" in kwargs: _A : Optional[int] = kwargs['mask_threshold'] if "stability_score_thresh" in kwargs: _A : List[Any] = kwargs['stability_score_thresh'] if "crops_nms_thresh" in kwargs: _A : Optional[int] = kwargs['crops_nms_thresh'] if "output_rle_mask" in kwargs: _A : Any = kwargs['output_rle_mask'] if "output_bboxes_mask" in kwargs: _A : List[str] = kwargs['output_bboxes_mask'] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self : Optional[int] , SCREAMING_SNAKE_CASE : Any , *SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Union[str, Any]=None , SCREAMING_SNAKE_CASE : List[str]=None , **SCREAMING_SNAKE_CASE : Union[str, Any]): return super().__call__(SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , num_workers=SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) def A ( self : int , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Any=64 , SCREAMING_SNAKE_CASE : int = 0 , SCREAMING_SNAKE_CASE : float = 512 / 1500 , SCREAMING_SNAKE_CASE : Optional[int] = 32 , SCREAMING_SNAKE_CASE : Optional[int] = 1 , ): _A : Any = load_image(SCREAMING_SNAKE_CASE) _A : Optional[Any] = self.image_processor.size['longest_edge'] _A , _A , _A , _A : Optional[int] = self.image_processor.generate_crop_boxes( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) _A : Union[str, Any] = self.image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='pt') with self.device_placement(): if self.framework == "pt": _A : Optional[Any] = self.get_inference_context() with inference_context(): _A : List[str] = self._ensure_tensor_on_device(SCREAMING_SNAKE_CASE , device=self.device) _A : int = self.model.get_image_embeddings(model_inputs.pop('pixel_values')) _A : List[Any] = image_embeddings _A : List[str] = grid_points.shape[1] _A : Union[str, Any] = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( 'Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. ' 'To return all points at once, set points_per_batch to None') for i in range(0 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE): _A : Optional[Any] = grid_points[:, i : i + points_per_batch, :, :] _A : Tuple = input_labels[:, i : i + points_per_batch] _A : Optional[Any] = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def A ( self : List[str] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any]=0.88 , SCREAMING_SNAKE_CASE : Any=0.95 , SCREAMING_SNAKE_CASE : Tuple=0 , SCREAMING_SNAKE_CASE : Any=1 , ): _A : Optional[Any] = model_inputs.pop('input_boxes') _A : Tuple = model_inputs.pop('is_last') _A : List[Any] = model_inputs.pop('original_sizes').tolist() _A : int = model_inputs.pop('reshaped_input_sizes').tolist() _A : Dict = self.model(**SCREAMING_SNAKE_CASE) # post processing happens here in order to avoid CPU GPU copies of ALL the masks _A : Optional[Any] = model_outputs['pred_masks'] _A : Union[str, Any] = self.image_processor.post_process_masks( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , binarize=SCREAMING_SNAKE_CASE) _A : Tuple = model_outputs['iou_scores'] _A , _A , _A : List[str] = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def A ( self : Any , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int]=False , SCREAMING_SNAKE_CASE : Tuple=False , SCREAMING_SNAKE_CASE : List[str]=0.7 , ): _A : str = [] _A : Dict = [] _A : Tuple = [] for model_output in model_outputs: all_scores.append(model_output.pop('iou_scores')) all_masks.extend(model_output.pop('masks')) all_boxes.append(model_output.pop('boxes')) _A : int = torch.cat(SCREAMING_SNAKE_CASE) _A : Tuple = torch.cat(SCREAMING_SNAKE_CASE) _A , _A , _A , _A : List[Any] = self.image_processor.post_process_for_mask_generation( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) _A : Tuple = defaultdict(SCREAMING_SNAKE_CASE) for output in model_outputs: for k, v in output.items(): extra[k].append(SCREAMING_SNAKE_CASE) _A : Union[str, Any] = {} if output_rle_mask: _A : str = rle_mask if output_bboxes_mask: _A : List[Any] = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
227
'''simple docstring''' import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() A : int = 2 class __lowerCamelCase : """simple docstring""" def __init__( self : List[str] , *, # begin keyword-only arguments SCREAMING_SNAKE_CASE : Optional[Any]="<s>" , SCREAMING_SNAKE_CASE : int="<pad>" , SCREAMING_SNAKE_CASE : Optional[Any]="</s>" , SCREAMING_SNAKE_CASE : Tuple="<unk>" , SCREAMING_SNAKE_CASE : List[Any]=None , ): _A , _A , _A , _A : Any = bos, unk, pad, eos _A : Optional[Any] = [] _A : Optional[Any] = [] _A : Optional[int] = {} _A : Dict = self.add_symbol(SCREAMING_SNAKE_CASE) _A : List[str] = self.add_symbol(SCREAMING_SNAKE_CASE) _A : str = self.add_symbol(SCREAMING_SNAKE_CASE) _A : Any = self.add_symbol(SCREAMING_SNAKE_CASE) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(SCREAMING_SNAKE_CASE) _A : List[str] = len(self.symbols) def __eq__( self : int , SCREAMING_SNAKE_CASE : Optional[Any]): return self.indices == other.indices def __getitem__( self : List[Any] , SCREAMING_SNAKE_CASE : Tuple): if idx < len(self.symbols): return self.symbols[idx] return self.unk_word def __len__( self : Union[str, Any]): return len(self.symbols) def __contains__( self : Optional[Any] , SCREAMING_SNAKE_CASE : List[str]): return sym in self.indices @classmethod def A ( cls : Dict , SCREAMING_SNAKE_CASE : Optional[Any]): _A : Any = cls() d.add_from_file(SCREAMING_SNAKE_CASE) return d def A ( self : Dict , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[int]=1 , SCREAMING_SNAKE_CASE : int=False): if word in self.indices and not overwrite: _A : str = self.indices[word] _A : List[str] = self.count[idx] + n return idx else: _A : Optional[Any] = len(self.symbols) _A : Union[str, Any] = idx self.symbols.append(SCREAMING_SNAKE_CASE) self.count.append(SCREAMING_SNAKE_CASE) return idx def A ( self : Dict , SCREAMING_SNAKE_CASE : Optional[int]): return 0 def A ( self : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any]): if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE): try: with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8') as fd: self.add_from_file(SCREAMING_SNAKE_CASE) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('Incorrect encoding detected in {}, please rebuild the dataset'.format(SCREAMING_SNAKE_CASE)) return _A : Union[str, Any] = f.readlines() _A : Any = self._load_meta(SCREAMING_SNAKE_CASE) for line in lines[indices_start_line:]: try: _A , _A : List[str] = line.rstrip().rsplit(' ' , 1) if field == "#fairseq:overwrite": _A : int = True _A , _A : List[str] = line.rsplit(' ' , 1) else: _A : Union[str, Any] = False _A : List[str] = int(SCREAMING_SNAKE_CASE) _A : Optional[Any] = line if word in self and not overwrite: raise RuntimeError( 'Duplicate word found when loading Dictionary: \'{}\'. ' 'Duplicate words can overwrite earlier ones by adding the ' '#fairseq:overwrite flag at the end of the corresponding row ' 'in the dictionary file. If using the Camembert model, please ' 'download an updated copy of the model file.'.format(SCREAMING_SNAKE_CASE)) self.add_symbol(SCREAMING_SNAKE_CASE , n=SCREAMING_SNAKE_CASE , overwrite=SCREAMING_SNAKE_CASE) except ValueError: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt> [flags]\'') def lowerCAmelCase__ ( lowerCamelCase : Optional[int] ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} _A : Union[str, Any] = dict((re.sub(R'@@$' ,'' ,lowerCamelCase ), v) if k.endswith('@@' ) else (re.sub(R'$' ,'</w>' ,lowerCamelCase ), v) for k, v in d.items() ) _A : Optional[Any] = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[F'{k}</w>'] _A : str = d[k] # restore return da def lowerCAmelCase__ ( lowerCamelCase : List[str] ,lowerCamelCase : List[str] ): # prep if not os.path.exists(lowerCamelCase ): raise ValueError(F'path {biogpt_checkpoint_path} does not exist!' ) os.makedirs(lowerCamelCase ,exist_ok=lowerCamelCase ) print(F'Writing results to {pytorch_dump_folder_path}' ) # handle various types of models _A : Dict = os.path.join(lowerCamelCase ,'checkpoint.pt' ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {checkpoint_file} does not exist!' ) _A : int = torch.load(lowerCamelCase ,map_location='cpu' ) _A : Dict = chkpt['cfg']['model'] # dicts _A : Any = os.path.join(lowerCamelCase ,'dict.txt' ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {dict_file} does not exist!' ) _A : Any = Dictionary.load(lowerCamelCase ) _A : Optional[int] = rewrite_dict_keys(src_dict.indices ) _A : List[Any] = len(lowerCamelCase ) _A : str = os.path.join(lowerCamelCase ,VOCAB_FILES_NAMES['vocab_file'] ) print(F'Generating {src_vocab_file} of {src_vocab_size} records' ) with open(lowerCamelCase ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(lowerCamelCase ,ensure_ascii=lowerCamelCase ,indent=lowerCamelCase ) ) # merges_file (bpecodes) _A : Optional[int] = os.path.join(lowerCamelCase ,'bpecodes' ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {bpecodes_file} does not exist!' ) _A : Dict = os.path.join(lowerCamelCase ,VOCAB_FILES_NAMES['merges_file'] ) shutil.copyfile(lowerCamelCase ,lowerCamelCase ) # model config _A : str = os.path.join(lowerCamelCase ,'config.json' ) _A : int = { 'activation_dropout': args['activation_dropout'], 'architectures': ['BioGptForCausalLM'], 'attention_probs_dropout_prob': args['attention_dropout'], 'bos_token_id': 0, 'eos_token_id': 2, 'hidden_act': args['activation_fn'], 'hidden_dropout_prob': args['dropout'], 'hidden_size': args['decoder_embed_dim'], 'initializer_range': 0.02, 'intermediate_size': args['decoder_ffn_embed_dim'], 'layer_norm_eps': 1E-12, 'layerdrop': args['decoder_layerdrop'], 'max_position_embeddings': args['max_target_positions'], 'model_type': 'biogpt', 'num_attention_heads': args['decoder_attention_heads'], 'num_hidden_layers': args['decoder_layers'], 'pad_token_id': 1, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_decoder_input_output_embed'], 'vocab_size': src_vocab_size, } # good hparam defaults to start with print(F'Generating {biogpt_model_config_file}' ) with open(lowerCamelCase ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(lowerCamelCase ,ensure_ascii=lowerCamelCase ,indent=lowerCamelCase ) ) # tokenizer config _A : Union[str, Any] = os.path.join(lowerCamelCase ,lowerCamelCase ) _A : Any = { 'bos_token': '<s>', 'eos_token': '</s>', 'model_max_length': 1024, 'pad_token': '<pad>', 'special_tokens_map_file': None, 'tokenizer_class': 'BioGptTokenizer', 'unk_token': '<unk>', } print(F'Generating {biogpt_tokenizer_config_file}' ) with open(lowerCamelCase ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(lowerCamelCase ,ensure_ascii=lowerCamelCase ,indent=lowerCamelCase ) ) # model _A : List[Any] = chkpt['model'] # remove unneeded keys _A : int = [ 'decoder.version', ] for k in ignore_keys: model_state_dict.pop(lowerCamelCase ,lowerCamelCase ) _A : Any = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('output_projection.weight' ): _A : str = model_state_dict.pop(lowerCamelCase ) else: _A : Dict = model_state_dict.pop(lowerCamelCase ) _A : Any = BioGptConfig.from_pretrained(lowerCamelCase ) _A : Union[str, Any] = BioGptForCausalLM(lowerCamelCase ) # check that it loads ok model_new.load_state_dict(lowerCamelCase ) # save _A : Union[str, Any] = os.path.join(lowerCamelCase ,lowerCamelCase ) print(F'Generating {pytorch_weights_dump_path}' ) torch.save(lowerCamelCase ,lowerCamelCase ) print('Conversion is done!' ) if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--biogpt_checkpoint_path''', default=None, type=str, required=True, help=( '''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,''' ''' bpecodes, etc.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) A : int = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
227
1
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": _lowerCamelCase : Tuple = pd.read_csv('sample_data.csv', header=None) _lowerCamelCase : Optional[Any] = df.shape[:1][0] # If you're using some other dataset input the target column _lowerCamelCase : Optional[int] = df.iloc[:, 1:2] _lowerCamelCase : Any = actual_data.values.reshape(len_data, 1) _lowerCamelCase : str = MinMaxScaler().fit_transform(actual_data) _lowerCamelCase : Any = 10 _lowerCamelCase : Dict = 5 _lowerCamelCase : List[str] = 20 _lowerCamelCase : Optional[Any] = len_data - periods * look_back _lowerCamelCase : Dict = actual_data[:division] _lowerCamelCase : Optional[Any] = actual_data[division - look_back :] _lowerCamelCase , _lowerCamelCase : str = [], [] _lowerCamelCase , _lowerCamelCase : Optional[Any] = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) _lowerCamelCase : List[Any] = np.array(train_x) _lowerCamelCase : Dict = np.array(test_x) _lowerCamelCase : Any = np.array([list(i.ravel()) for i in train_y]) _lowerCamelCase : Union[str, Any] = np.array([list(i.ravel()) for i in test_y]) _lowerCamelCase : Tuple = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss='mean_squared_error', optimizer='adam') _lowerCamelCase : Dict = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) _lowerCamelCase : Union[str, Any] = model.predict(x_test)
258
'''simple docstring''' from __future__ import annotations def __a ( UpperCAmelCase , UpperCAmelCase ) ->Tuple: """simple docstring""" if len(UpperCAmelCase ) <= 1 or n <= 1: return insert_next(UpperCAmelCase , n - 1 ) rec_insertion_sort(UpperCAmelCase , n - 1 ) def __a ( UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" if index >= len(UpperCAmelCase ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order A , A = ( collection[index], collection[index - 1], ) insert_next(UpperCAmelCase , index + 1 ) if __name__ == "__main__": _lowerCamelCase : List[Any] = input('Enter integers separated by spaces: ') _lowerCamelCase : list[int] = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
258
1
import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCAmelCase_ : def __init__( self, __a, __a=13, __a=30, __a=2, __a=3, __a=True, __a=True, __a=32, __a=5, __a=4, __a=37, __a="gelu", __a=0.1, __a=0.1, __a=10, __a=0.02, __a=None, ): '''simple docstring''' _lowerCAmelCase : Tuple = parent _lowerCAmelCase : List[str] = batch_size _lowerCAmelCase : Optional[Any] = image_size _lowerCAmelCase : str = patch_size _lowerCAmelCase : int = num_channels _lowerCAmelCase : Any = is_training _lowerCAmelCase : Tuple = use_labels _lowerCAmelCase : str = hidden_size _lowerCAmelCase : Optional[Any] = num_hidden_layers _lowerCAmelCase : List[Any] = num_attention_heads _lowerCAmelCase : Any = intermediate_size _lowerCAmelCase : Union[str, Any] = hidden_act _lowerCAmelCase : Tuple = hidden_dropout_prob _lowerCAmelCase : Tuple = attention_probs_dropout_prob _lowerCAmelCase : Optional[int] = type_sequence_label_size _lowerCAmelCase : List[str] = initializer_range _lowerCAmelCase : Any = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _lowerCAmelCase : Optional[Any] = (image_size // patch_size) ** 2 _lowerCAmelCase : List[str] = num_patches + 1 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _lowerCAmelCase : Any = None if self.use_labels: _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowerCAmelCase : List[Any] = self.get_config() return config, pixel_values, labels def snake_case__ ( self): '''simple docstring''' return ViTMSNConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, initializer_range=self.initializer_range, ) def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = ViTMSNModel(config=__a) model.to(__a) model.eval() _lowerCAmelCase : Optional[int] = model(__a) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : List[str] = self.type_sequence_label_size _lowerCAmelCase : Optional[int] = ViTMSNForImageClassification(__a) model.to(__a) model.eval() _lowerCAmelCase : List[str] = model(__a, labels=__a) print("Pixel and labels shape: {pixel_values.shape}, {labels.shape}") print("Labels: {labels}") self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) # test greyscale images _lowerCAmelCase : Dict = 1 _lowerCAmelCase : Tuple = ViTMSNForImageClassification(__a) model.to(__a) model.eval() _lowerCAmelCase : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) _lowerCAmelCase : Optional[int] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Tuple = config_and_inputs _lowerCAmelCase : str = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( a , a , unittest.TestCase): lowerCamelCase__ = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () lowerCamelCase__ = ( {'feature-extraction': ViTMSNModel, 'image-classification': ViTMSNForImageClassification} if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = ViTMSNModelTester(self) _lowerCAmelCase : Optional[int] = ConfigTester(self, config_class=__a, has_text_modality=__a, hidden_size=37) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViTMSN does not use inputs_embeds") def snake_case__ ( self): '''simple docstring''' pass def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Optional[int] = model_class(__a) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) _lowerCAmelCase : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a, nn.Linear)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Optional[int] = model_class(__a) _lowerCAmelCase : List[str] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Tuple = [*signature.parameters.keys()] _lowerCAmelCase : Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1], __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a) @slow def snake_case__ ( self): '''simple docstring''' for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Any = ViTMSNModel.from_pretrained(__a) self.assertIsNotNone(__a) def A ( ): '''simple docstring''' _lowerCAmelCase : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase): @cached_property def snake_case__ ( self): '''simple docstring''' return ViTImageProcessor.from_pretrained("facebook/vit-msn-small") if is_vision_available() else None @slow def snake_case__ ( self): '''simple docstring''' torch.manual_seed(2) _lowerCAmelCase : Any = ViTMSNForImageClassification.from_pretrained("facebook/vit-msn-small").to(__a) _lowerCAmelCase : Tuple = self.default_image_processor _lowerCAmelCase : int = prepare_img() _lowerCAmelCase : Dict = image_processor(images=__a, return_tensors="pt").to(__a) # forward pass with torch.no_grad(): _lowerCAmelCase : int = model(**__a) # verify the logits _lowerCAmelCase : Dict = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape, __a) _lowerCAmelCase : str = torch.tensor([-0.0_803, -0.4_454, -0.2_375]).to(__a) self.assertTrue(torch.allclose(outputs.logits[0, :3], __a, atol=1E-4))
300
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = tempfile.mkdtemp() # fmt: off _lowerCAmelCase : Optional[Any] = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on _lowerCAmelCase : Optional[Any] = dict(zip(__a, range(len(__a)))) _lowerCAmelCase : int = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] _lowerCAmelCase : Optional[Any] = {"unk_token": "<unk>"} _lowerCAmelCase : Any = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) _lowerCAmelCase : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(__a) + "\n") with open(self.merges_file, "w", encoding="utf-8") as fp: fp.write("\n".join(__a)) _lowerCAmelCase : List[str] = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48_145_466, 0.4_578_275, 0.40_821_073], "image_std": [0.26_862_954, 0.26_130_258, 0.27_577_711], } _lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname, __a) with open(self.image_processor_file, "w", encoding="utf-8") as fp: json.dump(__a, __a) def snake_case__ ( self, **__a): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self, **__a): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self, **__a): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self): '''simple docstring''' shutil.rmtree(self.tmpdirname) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta)] _lowerCAmelCase : Optional[int] = [Image.fromarray(np.moveaxis(__a, 0, -1)) for x in image_inputs] return image_inputs def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.get_tokenizer() _lowerCAmelCase : Optional[int] = self.get_rust_tokenizer() _lowerCAmelCase : Dict = self.get_image_processor() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) processor_slow.save_pretrained(self.tmpdirname) _lowerCAmelCase : Tuple = CLIPSegProcessor.from_pretrained(self.tmpdirname, use_fast=__a) _lowerCAmelCase : str = CLIPSegProcessor(tokenizer=__a, image_processor=__a) processor_fast.save_pretrained(self.tmpdirname) _lowerCAmelCase : Any = CLIPSegProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer, __a) self.assertIsInstance(processor_fast.tokenizer, __a) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor, __a) self.assertIsInstance(processor_fast.image_processor, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = CLIPSegProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) _lowerCAmelCase : Any = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") _lowerCAmelCase : Tuple = self.get_image_processor(do_normalize=__a, padding_value=1.0) _lowerCAmelCase : Union[str, Any] = CLIPSegProcessor.from_pretrained( self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=__a, padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, __a) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.get_image_processor() _lowerCAmelCase : Dict = self.get_tokenizer() _lowerCAmelCase : Union[str, Any] = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : List[str] = self.prepare_image_inputs() _lowerCAmelCase : List[str] = image_processor(__a, return_tensors="np") _lowerCAmelCase : Optional[Any] = processor(images=__a, return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1E-2) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.get_image_processor() _lowerCAmelCase : Tuple = self.get_tokenizer() _lowerCAmelCase : Dict = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Union[str, Any] = "lower newer" _lowerCAmelCase : List[str] = processor(text=__a) _lowerCAmelCase : List[Any] = tokenizer(__a) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.get_image_processor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : Dict = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : int = "lower newer" _lowerCAmelCase : List[Any] = self.prepare_image_inputs() _lowerCAmelCase : Any = processor(text=__a, images=__a) self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask", "pixel_values"]) # test if it raises when no input is passed with pytest.raises(__a): processor() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.get_image_processor() _lowerCAmelCase : int = self.get_tokenizer() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Dict = self.prepare_image_inputs() _lowerCAmelCase : Optional[Any] = self.prepare_image_inputs() _lowerCAmelCase : Any = processor(images=__a, visual_prompt=__a) self.assertListEqual(list(inputs.keys()), ["pixel_values", "conditional_pixel_values"]) # test if it raises when no input is passed with pytest.raises(__a): processor() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.get_image_processor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase : List[str] = processor.batch_decode(__a) _lowerCAmelCase : List[Any] = tokenizer.batch_decode(__a) self.assertListEqual(__a, __a)
300
1
import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed __snake_case = { """distilbert""": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), """roberta""": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), """bert""": (BertConfig, BertForMaskedLM, BertTokenizer), """gpt2""": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def _A ( SCREAMING_SNAKE_CASE__ : int ): assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def _A ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): if args.student_type == "roberta": UpperCamelCase :Optional[Any] = False elif args.student_type == "gpt2": UpperCamelCase :List[str] = False def _A ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] ): if args.student_type == "roberta": UpperCamelCase :List[str] = False def _A ( ): UpperCamelCase :List[str] = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''' , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''' , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=SCREAMING_SNAKE_CASE__ , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=SCREAMING_SNAKE_CASE__ , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''' , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=SCREAMING_SNAKE_CASE__ , help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''' , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help='''The teacher model.''' ) parser.add_argument('''--temperature''' , default=2.0 , type=SCREAMING_SNAKE_CASE__ , help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''' , default=0.5 , type=SCREAMING_SNAKE_CASE__ , help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=SCREAMING_SNAKE_CASE__ , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=SCREAMING_SNAKE_CASE__ , help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''' , default=0.0 , type=SCREAMING_SNAKE_CASE__ , help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''' , default=0.0 , type=SCREAMING_SNAKE_CASE__ , help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''' , default=0.15 , type=SCREAMING_SNAKE_CASE__ , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=SCREAMING_SNAKE_CASE__ , help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''' , default=0.1 , type=SCREAMING_SNAKE_CASE__ , help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''' , default=0.1 , type=SCREAMING_SNAKE_CASE__ , help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=SCREAMING_SNAKE_CASE__ , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=SCREAMING_SNAKE_CASE__ , help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=SCREAMING_SNAKE_CASE__ , default=3 , help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''' , type=SCREAMING_SNAKE_CASE__ , default=5 , help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=SCREAMING_SNAKE_CASE__ , default=50 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.05 , type=SCREAMING_SNAKE_CASE__ , help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''' , default=0.0 , type=SCREAMING_SNAKE_CASE__ , help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''' , default=5e-4 , type=SCREAMING_SNAKE_CASE__ , help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''' , default=1e-6 , type=SCREAMING_SNAKE_CASE__ , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , default=5.0 , type=SCREAMING_SNAKE_CASE__ , help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''' , default=0.02 , type=SCREAMING_SNAKE_CASE__ , help='''Random initialization range.''' ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=SCREAMING_SNAKE_CASE__ , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=SCREAMING_SNAKE_CASE__ , default=1 , help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''' , type=SCREAMING_SNAKE_CASE__ , default=-1 , help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''' , type=SCREAMING_SNAKE_CASE__ , default=56 , help='''Random seed''' ) parser.add_argument('''--log_interval''' , type=SCREAMING_SNAKE_CASE__ , default=500 , help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''' , type=SCREAMING_SNAKE_CASE__ , default=4000 , help='''Checkpoint interval.''' ) UpperCamelCase :int = parser.parse_args() sanity_checks(SCREAMING_SNAKE_CASE__ ) # ARGS # init_gpu_params(SCREAMING_SNAKE_CASE__ ) set_seed(SCREAMING_SNAKE_CASE__ ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite''' ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F'''Experiment will be dumped and logged in {args.dump_path}''' ) # SAVE PARAMS # logger.info(F'''Param: {args}''' ) with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f: json.dump(vars(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ , indent=4 ) git_log(args.dump_path ) UpperCamelCase , UpperCamelCase , UpperCamelCase :List[Any] = MODEL_CLASSES[args.student_type] UpperCamelCase , UpperCamelCase , UpperCamelCase :Dict = MODEL_CLASSES[args.teacher_type] # TOKENIZER # UpperCamelCase :List[str] = teacher_tokenizer_class.from_pretrained(args.teacher_name ) UpperCamelCase :Dict = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): UpperCamelCase :Tuple = tokenizer.all_special_tokens.index(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Union[str, Any] = tokenizer.all_special_ids[idx] logger.info(F'''Special tokens {special_tok_ids}''' ) UpperCamelCase :Tuple = special_tok_ids UpperCamelCase :List[Any] = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F'''Loading data from {args.data_file}''' ) with open(args.data_file , '''rb''' ) as fp: UpperCamelCase :Tuple = pickle.load(SCREAMING_SNAKE_CASE__ ) if args.mlm: logger.info(F'''Loading token counts from {args.token_counts} (already pre-computed)''' ) with open(args.token_counts , '''rb''' ) as fp: UpperCamelCase :Optional[Any] = pickle.load(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :str = np.maximum(SCREAMING_SNAKE_CASE__ , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): UpperCamelCase :Optional[Any] = 0.0 # do not predict special tokens UpperCamelCase :Optional[int] = torch.from_numpy(SCREAMING_SNAKE_CASE__ ) else: UpperCamelCase :int = None UpperCamelCase :Dict = LmSeqsDataset(params=SCREAMING_SNAKE_CASE__ , data=SCREAMING_SNAKE_CASE__ ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(F'''Loading student config from {args.student_config}''' ) UpperCamelCase :List[str] = student_config_class.from_pretrained(args.student_config ) UpperCamelCase :Union[str, Any] = True if args.student_pretrained_weights is not None: logger.info(F'''Loading pretrained weights from {args.student_pretrained_weights}''' ) UpperCamelCase :Optional[Any] = student_model_class.from_pretrained(args.student_pretrained_weights , config=SCREAMING_SNAKE_CASE__ ) else: UpperCamelCase :Any = student_model_class(SCREAMING_SNAKE_CASE__ ) if args.n_gpu > 0: student.to(F'''cuda:{args.local_rank}''' ) logger.info('''Student loaded.''' ) # TEACHER # UpperCamelCase :Dict = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=SCREAMING_SNAKE_CASE__ ) if args.n_gpu > 0: teacher.to(F'''cuda:{args.local_rank}''' ) logger.info(F'''Teacher loaded from {args.teacher_name}.''' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if args.freeze_token_type_embds: freeze_token_type_embeddings(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() UpperCamelCase :Optional[Any] = Distiller( params=SCREAMING_SNAKE_CASE__ , dataset=SCREAMING_SNAKE_CASE__ , token_probs=SCREAMING_SNAKE_CASE__ , student=SCREAMING_SNAKE_CASE__ , teacher=SCREAMING_SNAKE_CASE__ ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
259
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def _A ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str]=() , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : List[Any]="no" , SCREAMING_SNAKE_CASE__ : Dict="29500" ): UpperCamelCase :List[Any] = False UpperCamelCase :Tuple = False if any(key.startswith('''KAGGLE''' ) for key in os.environ.keys() ): UpperCamelCase :Dict = True elif "IPython" in sys.modules: UpperCamelCase :int = '''google.colab''' in str(sys.modules['''IPython'''].get_ipython() ) try: UpperCamelCase :Any = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F'''Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.''' ) if (in_colab or in_kaggle) and (os.environ.get('''TPU_NAME''' , SCREAMING_SNAKE_CASE__ ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ''' '''your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if num_processes is None: UpperCamelCase :Tuple = 8 UpperCamelCase :Optional[int] = PrepareForLaunch(SCREAMING_SNAKE_CASE__ , distributed_type='''TPU''' ) print(F'''Launching a training on {num_processes} TPU cores.''' ) xmp.spawn(SCREAMING_SNAKE_CASE__ , args=SCREAMING_SNAKE_CASE__ , nprocs=SCREAMING_SNAKE_CASE__ , start_method='''fork''' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on one CPU.''' ) function(*SCREAMING_SNAKE_CASE__ ) else: if num_processes is None: raise ValueError( '''You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.''' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ''' '''inside your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if torch.cuda.is_initialized(): raise ValueError( '''To launch a multi-GPU training from your notebook, you need to avoid running any instruction ''' '''using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ''' '''function.''' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=SCREAMING_SNAKE_CASE__ , master_addr='''127.0.01''' , master_port=SCREAMING_SNAKE_CASE__ , mixed_precision=SCREAMING_SNAKE_CASE__ ): UpperCamelCase :Optional[Any] = PrepareForLaunch(SCREAMING_SNAKE_CASE__ , distributed_type='''MULTI_GPU''' ) print(F'''Launching training on {num_processes} GPUs.''' ) try: start_processes(SCREAMING_SNAKE_CASE__ , args=SCREAMING_SNAKE_CASE__ , nprocs=SCREAMING_SNAKE_CASE__ , start_method='''fork''' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( '''CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ''' '''This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ''' '''Please review your imports and test them when running the `notebook_launcher()` to identify ''' '''which one is problematic.''' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): UpperCamelCase :Any = '''1''' print('''Launching training on MPS.''' ) elif torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on CPU.''' ) function(*SCREAMING_SNAKE_CASE__ ) def _A ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Tuple=() , SCREAMING_SNAKE_CASE__ : int=2 ): from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=SCREAMING_SNAKE_CASE__ , master_addr='''127.0.01''' , master_port='''29500''' , accelerate_mixed_precision='''no''' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='''yes''' , ): UpperCamelCase :Optional[int] = PrepareForLaunch(SCREAMING_SNAKE_CASE__ , debug=SCREAMING_SNAKE_CASE__ ) start_processes(SCREAMING_SNAKE_CASE__ , args=SCREAMING_SNAKE_CASE__ , nprocs=SCREAMING_SNAKE_CASE__ , start_method='''fork''' )
259
1
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
365
"""simple docstring""" import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class UpperCamelCase_ ( a_ ): def __init__( self , *snake_case__ , snake_case__=None , snake_case__=None , **snake_case__ ) -> Optional[Any]: """simple docstring""" super().__init__(*snake_case__ , **snake_case__ ) UpperCAmelCase = eval_examples UpperCAmelCase = post_process_function def UpperCamelCase_ ( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__ = "eval" ) -> List[Any]: """simple docstring""" UpperCAmelCase = self.eval_dataset if eval_dataset is None else eval_dataset UpperCAmelCase = self.get_eval_dataloader(snake_case__ ) UpperCAmelCase = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase = self.compute_metrics UpperCAmelCase = None UpperCAmelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop UpperCAmelCase = time.time() try: UpperCAmelCase = eval_loop( snake_case__ , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=snake_case__ , metric_key_prefix=snake_case__ , ) finally: UpperCAmelCase = compute_metrics UpperCAmelCase = self.args.eval_batch_size * self.args.world_size if f'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[f'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( snake_case__ , snake_case__ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default UpperCAmelCase = self.post_process_function(snake_case__ , snake_case__ , output.predictions ) UpperCAmelCase = self.compute_metrics(snake_case__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'''{metric_key_prefix}_''' ): UpperCAmelCase = metrics.pop(snake_case__ ) metrics.update(output.metrics ) else: UpperCAmelCase = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(snake_case__ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) UpperCAmelCase = self.callback_handler.on_evaluate(self.args , self.state , self.control , snake_case__ ) return metrics def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__=None , snake_case__ = "test" ) -> Dict: """simple docstring""" UpperCAmelCase = self.get_test_dataloader(snake_case__ ) # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase = self.compute_metrics UpperCAmelCase = None UpperCAmelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop UpperCAmelCase = time.time() try: UpperCAmelCase = eval_loop( snake_case__ , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=snake_case__ , metric_key_prefix=snake_case__ , ) finally: UpperCAmelCase = compute_metrics UpperCAmelCase = self.args.eval_batch_size * self.args.world_size if f'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[f'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( snake_case__ , snake_case__ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output UpperCAmelCase = self.post_process_function(snake_case__ , snake_case__ , output.predictions , """predict""" ) UpperCAmelCase = self.compute_metrics(snake_case__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'''{metric_key_prefix}_''' ): UpperCAmelCase = metrics.pop(snake_case__ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=snake_case__ )
248
0
"""simple docstring""" import argparse import math import traceback import dateutil.parser as date_parser import requests def lowercase (snake_case__ : Optional[Any] ) -> Dict: '''simple docstring''' lowerCAmelCase = {} lowerCAmelCase = job["""started_at"""] lowerCAmelCase = job["""completed_at"""] lowerCAmelCase = date_parser.parse(snake_case__ ) lowerCAmelCase = date_parser.parse(snake_case__ ) lowerCAmelCase = round((end_datetime - start_datetime).total_seconds() / 60.0 ) lowerCAmelCase = start lowerCAmelCase = end lowerCAmelCase = duration_in_min return job_info def lowercase (snake_case__ : str , snake_case__ : Dict=None ) -> List[Any]: '''simple docstring''' lowerCAmelCase = None if token is not None: lowerCAmelCase = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''} lowerCAmelCase = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' lowerCAmelCase = requests.get(snake_case__ , headers=snake_case__ ).json() lowerCAmelCase = {} try: job_time.update({job["""name"""]: extract_time_from_single_job(snake_case__ ) for job in result["""jobs"""]} ) lowerCAmelCase = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(snake_case__ ): lowerCAmelCase = requests.get(url + f'''&page={i + 2}''' , headers=snake_case__ ).json() job_time.update({job["""name"""]: extract_time_from_single_job(snake_case__ ) for job in result["""jobs"""]} ) return job_time except Exception: print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') a = parser.parse_args() a = get_job_time(args.workflow_run_id) a = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(f"""{k}: {v["duration"]}""")
155
"""simple docstring""" from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging a = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( _a ): _a = ['audio_values', 'audio_mask'] def __init__( self : Optional[int] , lowerCAmelCase : List[str]=2048 , lowerCAmelCase : List[Any]=1 , lowerCAmelCase : Optional[Any]=[16, 16] , lowerCAmelCase : Optional[Any]=128 , lowerCAmelCase : Union[str, Any]=4_4100 , lowerCAmelCase : Any=86 , lowerCAmelCase : List[Any]=2048 , lowerCAmelCase : List[str]=0.0 , **lowerCAmelCase : Any , ): super().__init__( feature_size=lowerCAmelCase , sampling_rate=lowerCAmelCase , padding_value=lowerCAmelCase , **lowerCAmelCase , ) lowerCAmelCase = spectrogram_length lowerCAmelCase = num_channels lowerCAmelCase = patch_size lowerCAmelCase = feature_size // self.patch_size[1] lowerCAmelCase = n_fft lowerCAmelCase = sampling_rate // hop_length_to_sampling_rate lowerCAmelCase = sampling_rate lowerCAmelCase = padding_value lowerCAmelCase = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=lowerCAmelCase , min_frequency=0.0 , max_frequency=2_2050.0 , sampling_rate=lowerCAmelCase , norm="""slaney""" , mel_scale="""slaney""" , ).T def __lowercase ( self : int , lowerCAmelCase : np.array ): lowerCAmelCase = spectrogram( lowerCAmelCase , window_function(self.n_fft , """hann""" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel="""dB""" , db_range=80.0 , ) lowerCAmelCase = log_spec[:, :-1] lowerCAmelCase = log_spec - 20.0 lowerCAmelCase = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self : Dict , lowerCAmelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowerCAmelCase : Optional[Union[str, TensorType]] = None , lowerCAmelCase : Optional[bool] = True , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , **lowerCAmelCase : Dict , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( """This feature extractor is set to support sampling rate""" f''' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled''' f''' with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) lowerCAmelCase = isinstance(lowerCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) lowerCAmelCase = is_batched_numpy or ( isinstance(lowerCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCAmelCase = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase , np.ndarray ): lowerCAmelCase = np.asarray(lowerCAmelCase , dtype=np.floataa ) elif isinstance(lowerCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCAmelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCAmelCase = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis lowerCAmelCase = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , lowerCAmelCase ): lowerCAmelCase = [np.asarray(lowerCAmelCase , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask lowerCAmelCase = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: lowerCAmelCase = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] lowerCAmelCase = np.array(lowerCAmelCase ).astype(np.floataa ) # convert into correct format for padding lowerCAmelCase = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch lowerCAmelCase = np.ones([len(lowerCAmelCase ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) lowerCAmelCase = padded_audio_features * self.padding_value for i in range(len(lowerCAmelCase ) ): lowerCAmelCase = audio_features[i] lowerCAmelCase = feature # return as BatchFeature if return_attention_mask: lowerCAmelCase = {"""audio_values""": padded_audio_features, """audio_mask""": audio_mask} else: lowerCAmelCase = {"""audio_values""": padded_audio_features} lowerCAmelCase = BatchFeature(data=lowerCAmelCase , tensor_type=lowerCAmelCase ) return encoded_inputs
155
1
"""simple docstring""" import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Dict = DownBlockaD # noqa F405 lowerCAmelCase : int = "down" def UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ : Dict = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904] super().test_output(_snake_case ) class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Optional[int] = ResnetDownsampleBlockaD # noqa F405 lowerCAmelCase : str = "down" def UpperCAmelCase ( self : Tuple ) -> int: """simple docstring""" lowercase__ : Tuple = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948] super().test_output(_snake_case ) class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Tuple = AttnDownBlockaD # noqa F405 lowerCAmelCase : str = "down" def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" lowercase__ : Tuple = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957] super().test_output(_snake_case ) class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : List[str] = CrossAttnDownBlockaD # noqa F405 lowerCAmelCase : Optional[Any] = "down" def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowercase__ , lowercase__ : Tuple = super().prepare_init_args_and_inputs_for_common() lowercase__ : Optional[Any] = 32 return init_dict, inputs_dict def UpperCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" lowercase__ : Any = [0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983] super().test_output(_snake_case ) class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Optional[Any] = SimpleCrossAttnDownBlockaD # noqa F405 lowerCAmelCase : Tuple = "down" @property def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" return super().get_dummy_input(include_encoder_hidden_states=_snake_case ) def UpperCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ : List[str] = super().prepare_init_args_and_inputs_for_common() lowercase__ : Dict = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == '''mps''' ,'''MPS result is not consistent''' ) def UpperCAmelCase ( self : List[str] ) -> str: """simple docstring""" lowercase__ : Union[str, Any] = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338] super().test_output(_snake_case ) class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Optional[int] = SkipDownBlockaD # noqa F405 lowerCAmelCase : Optional[int] = "down" @property def UpperCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" return super().get_dummy_input(include_skip_sample=_snake_case ) def UpperCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase__ : List[Any] = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069] super().test_output(_snake_case ) class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Optional[int] = AttnSkipDownBlockaD # noqa F405 lowerCAmelCase : Optional[int] = "down" @property def UpperCAmelCase ( self : Any ) -> List[str]: """simple docstring""" return super().get_dummy_input(include_skip_sample=_snake_case ) def UpperCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[Any] = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642] super().test_output(_snake_case ) class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Tuple = DownEncoderBlockaD # noqa F405 lowerCAmelCase : Optional[int] = "down" @property def UpperCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" return super().get_dummy_input(include_temb=_snake_case ) def UpperCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" lowercase__ : Any = { '''in_channels''': 32, '''out_channels''': 32, } lowercase__ : List[str] = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase ( self : str ) -> Tuple: """simple docstring""" lowercase__ : Any = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626] super().test_output(_snake_case ) class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Tuple = AttnDownEncoderBlockaD # noqa F405 lowerCAmelCase : Union[str, Any] = "down" @property def UpperCAmelCase ( self : str ) -> List[Any]: """simple docstring""" return super().get_dummy_input(include_temb=_snake_case ) def UpperCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ : Tuple = { '''in_channels''': 32, '''out_channels''': 32, } lowercase__ : int = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase ( self : Any ) -> int: """simple docstring""" lowercase__ : str = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538] super().test_output(_snake_case ) class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : List[Any] = UNetMidBlockaD # noqa F405 lowerCAmelCase : Optional[int] = "mid" def UpperCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" lowercase__ : List[str] = { '''in_channels''': 32, '''temb_channels''': 128, } lowercase__ : Union[str, Any] = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" lowercase__ : int = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028] super().test_output(_snake_case ) class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : List[Any] = UNetMidBlockaDCrossAttn # noqa F405 lowerCAmelCase : Optional[Any] = "mid" def UpperCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" lowercase__ , lowercase__ : Dict = super().prepare_init_args_and_inputs_for_common() lowercase__ : Tuple = 32 return init_dict, inputs_dict def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" lowercase__ : Dict = [0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335] super().test_output(_snake_case ) class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Dict = UNetMidBlockaDSimpleCrossAttn # noqa F405 lowerCAmelCase : List[Any] = "mid" @property def UpperCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" return super().get_dummy_input(include_encoder_hidden_states=_snake_case ) def UpperCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" lowercase__ , lowercase__ : Dict = super().prepare_init_args_and_inputs_for_common() lowercase__ : Any = 32 return init_dict, inputs_dict def UpperCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ : Tuple = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880] super().test_output(_snake_case ) class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Any = UpBlockaD # noqa F405 lowerCAmelCase : Union[str, Any] = "up" @property def UpperCAmelCase ( self : List[Any] ) -> int: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=_snake_case ) def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowercase__ : Dict = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523] super().test_output(_snake_case ) class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Optional[int] = ResnetUpsampleBlockaD # noqa F405 lowerCAmelCase : Any = "up" @property def UpperCAmelCase ( self : int ) -> Dict: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=_snake_case ) def UpperCAmelCase ( self : int ) -> List[Any]: """simple docstring""" lowercase__ : int = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244] super().test_output(_snake_case ) class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Tuple = CrossAttnUpBlockaD # noqa F405 lowerCAmelCase : Tuple = "up" @property def UpperCAmelCase ( self : int ) -> str: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=_snake_case ) def UpperCAmelCase ( self : Dict ) -> str: """simple docstring""" lowercase__ , lowercase__ : Any = super().prepare_init_args_and_inputs_for_common() lowercase__ : Optional[int] = 32 return init_dict, inputs_dict def UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ : List[Any] = [-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582] super().test_output(_snake_case ) class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : str = SimpleCrossAttnUpBlockaD # noqa F405 lowerCAmelCase : str = "up" @property def UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=_snake_case ,include_encoder_hidden_states=_snake_case ) def UpperCAmelCase ( self : int ) -> Tuple: """simple docstring""" lowercase__ , lowercase__ : Union[str, Any] = super().prepare_init_args_and_inputs_for_common() lowercase__ : List[Any] = 32 return init_dict, inputs_dict def UpperCAmelCase ( self : str ) -> int: """simple docstring""" lowercase__ : int = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402] super().test_output(_snake_case ) class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : List[str] = AttnUpBlockaD # noqa F405 lowerCAmelCase : List[Any] = "up" @property def UpperCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=_snake_case ) @unittest.skipIf(torch_device == '''mps''' ,'''MPS result is not consistent''' ) def UpperCAmelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ : str = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033] super().test_output(_snake_case ) class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Optional[int] = SkipUpBlockaD # noqa F405 lowerCAmelCase : int = "up" @property def UpperCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=_snake_case ) def UpperCAmelCase ( self : str ) -> Any: """simple docstring""" lowercase__ : int = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362] super().test_output(_snake_case ) class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Any = AttnSkipUpBlockaD # noqa F405 lowerCAmelCase : Optional[int] = "up" @property def UpperCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=_snake_case ) def UpperCAmelCase ( self : Dict ) -> str: """simple docstring""" lowercase__ : str = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015] super().test_output(_snake_case ) class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : str = UpDecoderBlockaD # noqa F405 lowerCAmelCase : Any = "up" @property def UpperCAmelCase ( self : int ) -> List[Any]: """simple docstring""" return super().get_dummy_input(include_temb=_snake_case ) def UpperCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" lowercase__ : Union[str, Any] = {'''in_channels''': 32, '''out_channels''': 32} lowercase__ : Union[str, Any] = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase ( self : str ) -> List[str]: """simple docstring""" lowercase__ : Union[str, Any] = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137] super().test_output(_snake_case ) class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Optional[int] = AttnUpDecoderBlockaD # noqa F405 lowerCAmelCase : Union[str, Any] = "up" @property def UpperCAmelCase ( self : str ) -> Tuple: """simple docstring""" return super().get_dummy_input(include_temb=_snake_case ) def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ : Union[str, Any] = {'''in_channels''': 32, '''out_channels''': 32} lowercase__ : Any = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ : List[Any] = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568] super().test_output(_snake_case )
302
"""simple docstring""" import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : int ) -> str: """simple docstring""" lowercase__ : List[Any] = '''hf-internal-testing/tiny-random-t5''' lowercase__ : List[Any] = AutoTokenizer.from_pretrained(_snake_case ) lowercase__ : int = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ) lowercase__ : str = tokenizer('''This is me''' ,return_tensors='''pt''' ) lowercase__ : Tuple = model.to_bettertransformer() self.assertTrue(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) lowercase__ : Optional[int] = model.generate(**_snake_case ) lowercase__ : List[Any] = model.reverse_bettertransformer() self.assertFalse(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_snake_case ) lowercase__ : Tuple = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ) self.assertFalse( any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) lowercase__ : int = model_reloaded.generate(**_snake_case ) self.assertTrue(torch.allclose(_snake_case ,_snake_case ) ) def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ : List[str] = '''hf-internal-testing/tiny-random-t5''' lowercase__ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ) lowercase__ : Union[str, Any] = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(_snake_case ): model.save_pretrained(_snake_case ) lowercase__ : int = model.reverse_bettertransformer() model.save_pretrained(_snake_case )
302
1
'''simple docstring''' from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class a_ : __lowerCAmelCase : List[str] = 4_2 __lowerCAmelCase : Dict = None # Automatically constructed __lowerCAmelCase : Optional[int] = """dict""" __lowerCAmelCase : str = None __lowerCAmelCase : List[Any] = field(default="""Translation""" , init=_UpperCAmelCase , repr=_UpperCAmelCase ) def __call__( self ): return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def __UpperCamelCase ( self ): from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class a_ : __lowerCAmelCase : Optional[int] = None __lowerCAmelCase : str = None __lowerCAmelCase : List[Any] = None # Automatically constructed __lowerCAmelCase : int = """dict""" __lowerCAmelCase : Optional[Any] = None __lowerCAmelCase : int = field(default="""TranslationVariableLanguages""" , init=_UpperCAmelCase , repr=_UpperCAmelCase ) def __UpperCamelCase ( self ): _lowerCAmelCase : Optional[int] = sorted(set(self.languages ) ) if self.languages else None _lowerCAmelCase : Optional[Any] = len(self.languages ) if self.languages else None def __call__( self ): return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Dict = set(self.languages ) if self.languages and set(A_ ) - lang_set: raise ValueError( f'Some languages in example ({", ".join(sorted(set(A_ ) - lang_set ) )}) are not in valid set ({", ".join(A_ )}).' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. _lowerCAmelCase : Optional[int] = [] for lang, text in translation_dict.items(): if isinstance(A_ , A_ ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. _lowerCAmelCase : Any = zip(*sorted(A_ ) ) return {"language": languages, "translation": translations} def __UpperCamelCase ( self ): from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
309
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { "microsoft/table-transformer-detection": ( "https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json" ), } class __lowercase (_UpperCAmelCase ): _UpperCamelCase = """table-transformer""" _UpperCamelCase = ["""past_key_values"""] _UpperCamelCase = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , A_=True , A_=None , A_=3 , A_=100 , A_=6 , A_=2048 , A_=8 , A_=6 , A_=2048 , A_=8 , A_=0.0 , A_=0.0 , A_=True , A_="relu" , A_=256 , A_=0.1 , A_=0.0 , A_=0.0 , A_=0.02 , A_=1.0 , A_=False , A_="sine" , A_="resnet50" , A_=True , A_=False , A_=1 , A_=5 , A_=2 , A_=1 , A_=1 , A_=5 , A_=2 , A_=0.1 , **A_ , ) ->Any: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) __lowerCAmelCase : Optional[Any] = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(A_ , A_ ): __lowerCAmelCase : int = backbone_config.get('''model_type''' ) __lowerCAmelCase : List[str] = CONFIG_MAPPING[backbone_model_type] __lowerCAmelCase : Any = config_class.from_dict(A_ ) # set timm attributes to None __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase : List[str] = None, None, None __lowerCAmelCase : Tuple = use_timm_backbone __lowerCAmelCase : Optional[Any] = backbone_config __lowerCAmelCase : List[str] = num_channels __lowerCAmelCase : Tuple = num_queries __lowerCAmelCase : int = d_model __lowerCAmelCase : List[Any] = encoder_ffn_dim __lowerCAmelCase : Optional[int] = encoder_layers __lowerCAmelCase : List[str] = encoder_attention_heads __lowerCAmelCase : str = decoder_ffn_dim __lowerCAmelCase : Union[str, Any] = decoder_layers __lowerCAmelCase : Any = decoder_attention_heads __lowerCAmelCase : Optional[int] = dropout __lowerCAmelCase : Any = attention_dropout __lowerCAmelCase : Tuple = activation_dropout __lowerCAmelCase : Optional[Any] = activation_function __lowerCAmelCase : List[str] = init_std __lowerCAmelCase : Tuple = init_xavier_std __lowerCAmelCase : Any = encoder_layerdrop __lowerCAmelCase : List[Any] = decoder_layerdrop __lowerCAmelCase : Optional[Any] = encoder_layers __lowerCAmelCase : Optional[Any] = auxiliary_loss __lowerCAmelCase : Optional[Any] = position_embedding_type __lowerCAmelCase : Tuple = backbone __lowerCAmelCase : Any = use_pretrained_backbone __lowerCAmelCase : int = dilation # Hungarian matcher __lowerCAmelCase : Dict = class_cost __lowerCAmelCase : List[str] = bbox_cost __lowerCAmelCase : int = giou_cost # Loss coefficients __lowerCAmelCase : Optional[Any] = mask_loss_coefficient __lowerCAmelCase : Tuple = dice_loss_coefficient __lowerCAmelCase : int = bbox_loss_coefficient __lowerCAmelCase : List[Any] = giou_loss_coefficient __lowerCAmelCase : int = eos_coefficient super().__init__(is_encoder_decoder=A_ , **A_ ) @property def UpperCamelCase__ ( self ) ->int: '''simple docstring''' return self.encoder_attention_heads @property def UpperCamelCase__ ( self ) ->int: '''simple docstring''' return self.d_model class __lowercase (_UpperCAmelCase ): _UpperCamelCase = version.parse("""1.11""" ) @property def UpperCamelCase__ ( self ) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def UpperCamelCase__ ( self ) ->float: '''simple docstring''' return 1e-5 @property def UpperCamelCase__ ( self ) ->int: '''simple docstring''' return 12
275
0
import argparse A : int = 'docs/source/_static/js/custom.js' def UpperCamelCase ( __magic_name__ : Optional[int] ) -> Optional[Any]: """simple docstring""" with open(__magic_name__ , encoding="""utf-8""" , newline="""\n""" ) as f: lowercase__ = f.readlines() lowercase__ = 0 # First let's put the right version while not lines[index].startswith("""const stableVersion =""" ): index += 1 lowercase__ = f'''const stableVersion = "v{version}"\n''' # Then update the dictionary while not lines[index].startswith("""const versionMapping = {""" ): index += 1 # We go until the end while not lines[index].startswith("""}""" ): index += 1 # We add the new version at the end lines[index - 1] += f''' "v{version}": "v{version}",\n''' with open(__magic_name__ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(__magic_name__ ) if __name__ == "__main__": A : int = argparse.ArgumentParser() parser.add_argument('--version', help='Release version.') A : Optional[int] = parser.parse_args() update_custom_js(args.version)
146
from functools import lru_cache def UpperCamelCase ( __magic_name__ : int ) -> set: """simple docstring""" lowercase__ = 2 lowercase__ = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(__magic_name__ ) if n > 1: factors.add(__magic_name__ ) return factors @lru_cache def UpperCamelCase ( __magic_name__ : int ) -> int: """simple docstring""" return len(unique_prime_factors(__magic_name__ ) ) def UpperCamelCase ( __magic_name__ : list ) -> bool: """simple docstring""" return len(set(__magic_name__ ) ) in (0, 1) def UpperCamelCase ( __magic_name__ : int ) -> list: """simple docstring""" lowercase__ = 2 while True: # Increment each value of a generated range lowercase__ = [base + i for i in range(__magic_name__ )] # Run elements through out unique_prime_factors function # Append our target number to the end. lowercase__ = [upf_len(__magic_name__ ) for x in group] checker.append(__magic_name__ ) # If all numbers in the list are equal, return the group variable. if equality(__magic_name__ ): return group # Increment our base variable by 1 base += 1 def UpperCamelCase ( __magic_name__ : int = 4 ) -> int: """simple docstring""" lowercase__ = run(__magic_name__ ) return results[0] if len(__magic_name__ ) else None if __name__ == "__main__": print(solution())
146
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class SCREAMING_SNAKE_CASE__ (unittest.TestCase ): def __init__( self , a , a=7 , a=3 , a=18 , a=30 , a=400 , a=True , a=None , a=True , a=None , ): lowercase__ : Union[str, Any] = size if size is not None else {'shortest_edge': 20} lowercase__ : int = crop_size if crop_size is not None else {'height': 18, 'width': 18} lowercase__ : Optional[int] = parent lowercase__ : Union[str, Any] = batch_size lowercase__ : int = num_channels lowercase__ : Union[str, Any] = image_size lowercase__ : Any = min_resolution lowercase__ : Dict = max_resolution lowercase__ : Optional[Any] = do_resize lowercase__ : Optional[Any] = size lowercase__ : List[Any] = do_center_crop lowercase__ : Dict = crop_size def snake_case_ ( self): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class SCREAMING_SNAKE_CASE__ (__snake_case , unittest.TestCase ): __lowerCamelCase : str = MobileNetVaImageProcessor if is_vision_available() else None def snake_case_ ( self): lowercase__ : List[str] = MobileNetVaImageProcessingTester(self) @property def snake_case_ ( self): return self.image_processor_tester.prepare_image_processor_dict() def snake_case_ ( self): lowercase__ : Any = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(a , 'do_resize')) self.assertTrue(hasattr(a , 'size')) self.assertTrue(hasattr(a , 'do_center_crop')) self.assertTrue(hasattr(a , 'crop_size')) def snake_case_ ( self): lowercase__ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'shortest_edge': 20}) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18}) lowercase__ : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84) self.assertEqual(image_processor.size , {'shortest_edge': 42}) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84}) def snake_case_ ( self): pass def snake_case_ ( self): # Initialize image_processing lowercase__ : int = self.image_processing_class(**self.image_processor_dict) # create random PIL images lowercase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a) for image in image_inputs: self.assertIsInstance(a , Image.Image) # Test not batched input lowercase__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowercase__ : int = image_processing(a , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def snake_case_ ( self): # Initialize image_processing lowercase__ : Any = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors lowercase__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , numpify=a) for image in image_inputs: self.assertIsInstance(a , np.ndarray) # Test not batched input lowercase__ : List[Any] = image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowercase__ : Optional[int] = image_processing(a , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def snake_case_ ( self): # Initialize image_processing lowercase__ : int = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors lowercase__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , torchify=a) for image in image_inputs: self.assertIsInstance(a , torch.Tensor) # Test not batched input lowercase__ : str = image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowercase__ : Any = image_processing(a , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
214
import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values snake_case_ = argparse.ArgumentParser() parser.add_argument('''--user''', type=str, default='''ubuntu''') parser.add_argument('''--host''', type=str, default='''localhost''') parser.add_argument('''--key_path''', type=str, default=None) parser.add_argument('''--instance''', type=str, default='''V100:1''') parser.add_argument('''--provider''', type=str, default='''cheapest''') parser.add_argument('''--use_spot''', type=bool, default=False) parser.add_argument('''--example''', type=str, default='''pytorch/text-generation/run_generation.py''') snake_case_ , snake_case_ = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError('''Cannot specify both BYO and on-demand cluster args''') snake_case_ = rh.cluster( name='''rh-cluster''', ips=[args.host], ssh_creds={'''ssh_user''': args.user, '''ssh_private_key''': args.key_path} ) else: snake_case_ = rh.cluster( name='''rh-cluster''', instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) snake_case_ = args.example.rsplit('''/''', 1)[0] # Set up remote environment cluster.install_packages(['''pip:./''']) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([F'''pip install -r transformers/examples/{example_dir}/requirements.txt''']) cluster.run(['''pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117''']) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([F'''python transformers/examples/{args.example} {' '.join(shlex.quote(arg) for arg in unknown)}''']) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
214
1
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class _A : UpperCamelCase__ : int UpperCamelCase__ : TreeNode | None = None UpperCamelCase__ : TreeNode | None = None __snake_case :Optional[Any] = namedtuple('''CoinsDistribResult''', '''moves excess''') def __snake_case ( _UpperCAmelCase ): if root is None: return 0 # Validation def count_nodes(_UpperCAmelCase ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(_UpperCAmelCase ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_UpperCAmelCase ) != count_coins(_UpperCAmelCase ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(_UpperCAmelCase ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) __a , __a = get_distrib(node.left ) __a , __a = get_distrib(node.right ) __a = 1 - left_distrib_excess __a = 1 - right_distrib_excess __a = ( left_distrib_moves + right_distrib_moves + abs(_UpperCAmelCase ) + abs(_UpperCAmelCase ) ) __a = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_UpperCAmelCase , _UpperCAmelCase ) return get_distrib(_UpperCAmelCase )[0] if __name__ == "__main__": import doctest doctest.testmod()
350
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() __snake_case :Dict = logging.get_logger() @dataclass class _A : UpperCamelCase__ : nn.Module UpperCamelCase__ : List[nn.Module] = field(default_factory=__UpperCAmelCase ) UpperCamelCase__ : list = field(default_factory=__UpperCAmelCase ) def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Tensor , __SCREAMING_SNAKE_CASE : Tensor): '''simple docstring''' __a = len(list(m.modules())) == 1 or isinstance(__SCREAMING_SNAKE_CASE , nn.Convad) or isinstance(__SCREAMING_SNAKE_CASE , nn.BatchNormad) if has_not_submodules: self.traced.append(__SCREAMING_SNAKE_CASE) def __call__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Tensor): '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook)) self.module(__SCREAMING_SNAKE_CASE) [x.remove() for x in self.handles] return self @property def _lowerCamelCase ( self : List[Any]): '''simple docstring''' return list(filter(lambda __SCREAMING_SNAKE_CASE: len(list(x.state_dict().keys())) > 0 , self.traced)) @dataclass class _A : UpperCamelCase__ : nn.Module UpperCamelCase__ : nn.Module UpperCamelCase__ : int = 1 UpperCamelCase__ : List = field(default_factory=__UpperCAmelCase ) UpperCamelCase__ : List = field(default_factory=__UpperCAmelCase ) UpperCamelCase__ : bool = True def __call__( self : Any , __SCREAMING_SNAKE_CASE : Tensor): '''simple docstring''' __a = Tracker(self.dest)(__SCREAMING_SNAKE_CASE).parametrized __a = Tracker(self.src)(__SCREAMING_SNAKE_CASE).parametrized __a = list(filter(lambda __SCREAMING_SNAKE_CASE: type(__SCREAMING_SNAKE_CASE) not in self.src_skip , __SCREAMING_SNAKE_CASE)) __a = list(filter(lambda __SCREAMING_SNAKE_CASE: type(__SCREAMING_SNAKE_CASE) not in self.dest_skip , __SCREAMING_SNAKE_CASE)) if len(__SCREAMING_SNAKE_CASE) != len(__SCREAMING_SNAKE_CASE) and self.raise_if_mismatch: raise Exception( F'Numbers of operations are different. Source module has {len(__SCREAMING_SNAKE_CASE)} operations while' F' destination module has {len(__SCREAMING_SNAKE_CASE)}.') for dest_m, src_m in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): dest_m.load_state_dict(src_m.state_dict()) if self.verbose == 1: print(F'Transfered from={src_m} to={dest_m}') class _A ( nn.Module ): def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : nn.Module): '''simple docstring''' super().__init__() __a = [] # - get the stem feature_blocks.append(('''conv1''', model.stem)) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith('''block'''), F'Unexpected layer name {k}' __a = len(__SCREAMING_SNAKE_CASE) + 1 feature_blocks.append((F'res{block_index}', v)) __a = nn.ModuleDict(__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Tensor): '''simple docstring''' return get_trunk_forward_outputs( __SCREAMING_SNAKE_CASE , out_feat_keys=__SCREAMING_SNAKE_CASE , feature_blocks=self._feature_blocks , ) class _A ( __UpperCAmelCase ): def _lowerCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : str): '''simple docstring''' __a = x.split('''-''') return x_split[0] + x_split[1] + "_" + "".join(x_split[2:]) def __getitem__( self : List[Any] , __SCREAMING_SNAKE_CASE : str): '''simple docstring''' if x not in self: __a = self.convert_name_to_timm(__SCREAMING_SNAKE_CASE) __a = partial(lambda: (timm.create_model(__SCREAMING_SNAKE_CASE , pretrained=__SCREAMING_SNAKE_CASE).eval(), None)) else: __a = super().__getitem__(__SCREAMING_SNAKE_CASE) return val class _A ( __UpperCAmelCase ): def __getitem__( self : Tuple , __SCREAMING_SNAKE_CASE : str): '''simple docstring''' if "seer" in x and "in1k" not in x: __a = RegNetModel else: __a = RegNetForImageClassification return val def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): for from_key, to_key in keys: __a = from_state_dict[from_key].clone() print(f'Copied key={from_key} to={to_key}' ) return to_state_dict def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = True , ): print(f'Converting {name}...' ) with torch.no_grad(): __a , __a = from_model_func() __a = our_model_func(_UpperCAmelCase ).eval() __a = ModuleTransfer(src=_UpperCAmelCase , dest=_UpperCAmelCase , raise_if_mismatch=_UpperCAmelCase ) __a = torch.randn((1, 3, 224, 224) ) module_transfer(_UpperCAmelCase ) if from_state_dict is not None: __a = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: __a = [('''0.clf.0.weight''', '''classifier.1.weight'''), ('''0.clf.0.bias''', '''classifier.1.bias''')] __a = manually_copy_vissl_head(_UpperCAmelCase , our_model.state_dict() , _UpperCAmelCase ) our_model.load_state_dict(_UpperCAmelCase ) __a = our_model(_UpperCAmelCase , output_hidden_states=_UpperCAmelCase ) __a = ( our_outputs.logits if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else our_outputs.last_hidden_state ) __a = from_model(_UpperCAmelCase ) __a = from_output[-1] if type(_UpperCAmelCase ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: __a = our_outputs.hidden_states[-1] assert torch.allclose(_UpperCAmelCase , _UpperCAmelCase ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message='''Add model''' , use_temp_dir=_UpperCAmelCase , ) __a = 224 if '''seer''' not in name else 384 # we can use the convnext one __a = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' , size=_UpperCAmelCase ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message='''Add image processor''' , use_temp_dir=_UpperCAmelCase , ) print(f'Pushed {name}' ) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = True ): __a = '''imagenet-1k-id2label.json''' __a = 1000 __a = (1, num_labels) __a = '''huggingface/label-files''' __a = num_labels __a = json.load(open(cached_download(hf_hub_url(_UpperCAmelCase , _UpperCAmelCase , repo_type='''dataset''' ) ) , '''r''' ) ) __a = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} __a = idalabel __a = {v: k for k, v in idalabel.items()} __a = partial(_UpperCAmelCase , num_labels=_UpperCAmelCase , idalabel=_UpperCAmelCase , labelaid=_UpperCAmelCase ) __a = { '''regnet-x-002''': ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 , layer_type='''x''' ), '''regnet-x-004''': ImageNetPreTrainedConfig( depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 160, 384] , groups_width=16 , layer_type='''x''' ), '''regnet-x-006''': ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 240, 528] , groups_width=24 , layer_type='''x''' ), '''regnet-x-008''': ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[64, 128, 288, 672] , groups_width=16 , layer_type='''x''' ), '''regnet-x-016''': ImageNetPreTrainedConfig( depths=[2, 4, 10, 2] , hidden_sizes=[72, 168, 408, 912] , groups_width=24 , layer_type='''x''' ), '''regnet-x-032''': ImageNetPreTrainedConfig( depths=[2, 6, 15, 2] , hidden_sizes=[96, 192, 432, 1008] , groups_width=48 , layer_type='''x''' ), '''regnet-x-040''': ImageNetPreTrainedConfig( depths=[2, 5, 14, 2] , hidden_sizes=[80, 240, 560, 1360] , groups_width=40 , layer_type='''x''' ), '''regnet-x-064''': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 392, 784, 1624] , groups_width=56 , layer_type='''x''' ), '''regnet-x-080''': ImageNetPreTrainedConfig( depths=[2, 5, 15, 1] , hidden_sizes=[80, 240, 720, 1920] , groups_width=120 , layer_type='''x''' ), '''regnet-x-120''': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 , layer_type='''x''' ), '''regnet-x-160''': ImageNetPreTrainedConfig( depths=[2, 6, 13, 1] , hidden_sizes=[256, 512, 896, 2048] , groups_width=128 , layer_type='''x''' ), '''regnet-x-320''': ImageNetPreTrainedConfig( depths=[2, 7, 13, 1] , hidden_sizes=[336, 672, 1344, 2520] , groups_width=168 , layer_type='''x''' ), # y variant '''regnet-y-002''': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 ), '''regnet-y-004''': ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[48, 104, 208, 440] , groups_width=8 ), '''regnet-y-006''': ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[48, 112, 256, 608] , groups_width=16 ), '''regnet-y-008''': ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[64, 128, 320, 768] , groups_width=16 ), '''regnet-y-016''': ImageNetPreTrainedConfig( depths=[2, 6, 17, 2] , hidden_sizes=[48, 120, 336, 888] , groups_width=24 ), '''regnet-y-032''': ImageNetPreTrainedConfig( depths=[2, 5, 13, 1] , hidden_sizes=[72, 216, 576, 1512] , groups_width=24 ), '''regnet-y-040''': ImageNetPreTrainedConfig( depths=[2, 6, 12, 2] , hidden_sizes=[128, 192, 512, 1088] , groups_width=64 ), '''regnet-y-064''': ImageNetPreTrainedConfig( depths=[2, 7, 14, 2] , hidden_sizes=[144, 288, 576, 1296] , groups_width=72 ), '''regnet-y-080''': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 448, 896, 2016] , groups_width=56 ), '''regnet-y-120''': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 ), '''regnet-y-160''': ImageNetPreTrainedConfig( depths=[2, 4, 11, 1] , hidden_sizes=[224, 448, 1232, 3024] , groups_width=112 ), '''regnet-y-320''': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 '''regnet-y-320-seer''': RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), '''regnet-y-640-seer''': RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), '''regnet-y-1280-seer''': RegNetConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), '''regnet-y-2560-seer''': RegNetConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), '''regnet-y-10b-seer''': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 11110, 28280] , groups_width=1010 ), # finetuned on imagenet '''regnet-y-320-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), '''regnet-y-640-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), '''regnet-y-1280-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), '''regnet-y-2560-seer-in1k''': ImageNetPreTrainedConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), '''regnet-y-10b-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 11110, 28280] , groups_width=1010 ), } __a = NameToOurModelFuncMap() __a = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(_UpperCAmelCase , _UpperCAmelCase ) -> Tuple[nn.Module, Dict]: __a = torch.hub.load_state_dict_from_url(_UpperCAmelCase , model_dir=str(_UpperCAmelCase ) , map_location='''cpu''' ) __a = model_func() # check if we have a head, if yes add it __a = files['''classy_state_dict''']['''base_model''']['''model'''] __a = model_state_dict['''trunk'''] model.load_state_dict(_UpperCAmelCase ) return model.eval(), model_state_dict["heads"] # pretrained __a = partial( _UpperCAmelCase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __a = partial( _UpperCAmelCase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __a = partial( _UpperCAmelCase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) __a = partial( _UpperCAmelCase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch''' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=6_20.83 , w_m=2.52 ) ) ) , ) # IN1K finetuned __a = partial( _UpperCAmelCase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __a = partial( _UpperCAmelCase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __a = partial( _UpperCAmelCase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) __a = partial( _UpperCAmelCase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch''' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=6_20.83 , w_m=2.52 ) ) ) , ) if model_name: convert_weight_and_push( _UpperCAmelCase , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , _UpperCAmelCase , _UpperCAmelCase , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( _UpperCAmelCase , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) return config, expected_shape if __name__ == "__main__": __snake_case :Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported regnet* architecture,''' ''' currently: regnetx-*, regnety-*. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) __snake_case :Tuple = parser.parse_args() __snake_case :Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
131
0
import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase (_snake_case , unittest.TestCase ): '''simple docstring''' _snake_case : int = RobertaTokenizer _snake_case : Any = RobertaTokenizerFast _snake_case : Optional[int] = True _snake_case : List[Any] = {'''cls_token''': '''<s>'''} def __UpperCAmelCase ( self ) -> int: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase_ : List[Any] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] UpperCAmelCase_ : Union[str, Any] = dict(zip(_UpperCamelCase , range(len(_UpperCamelCase ) ) ) ) UpperCAmelCase_ : Tuple = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] UpperCAmelCase_ : Union[str, Any] = {'unk_token': '<unk>'} UpperCAmelCase_ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) UpperCAmelCase_ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_UpperCamelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_UpperCamelCase ) ) def __UpperCAmelCase ( self , **_UpperCamelCase ) -> str: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_UpperCamelCase ) def __UpperCAmelCase ( self , **_UpperCamelCase ) -> Optional[int]: kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase ) -> Any: UpperCAmelCase_ : List[Any] = 'lower newer' UpperCAmelCase_ : Optional[int] = 'lower newer' return input_text, output_text def __UpperCAmelCase ( self ) -> int: UpperCAmelCase_ : Dict = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCAmelCase_ : Optional[Any] = 'lower newer' UpperCAmelCase_ : Optional[Any] = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] UpperCAmelCase_ : Optional[int] = tokenizer.tokenize(_UpperCamelCase ) # , add_prefix_space=True) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : Tuple = tokens + [tokenizer.unk_token] UpperCAmelCase_ : Optional[Any] = [0, 1, 2, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCamelCase ) , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> List[str]: UpperCAmelCase_ : Dict = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!' , add_special_tokens=_UpperCamelCase ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418' , add_special_tokens=_UpperCamelCase ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2] , ) @slow def __UpperCAmelCase ( self ) -> Any: UpperCAmelCase_ : List[Any] = self.tokenizer_class.from_pretrained('roberta-base' ) UpperCAmelCase_ : str = tokenizer.encode('sequence builders' , add_special_tokens=_UpperCamelCase ) UpperCAmelCase_ : Optional[int] = tokenizer.encode('multi-sequence build' , add_special_tokens=_UpperCamelCase ) UpperCAmelCase_ : Optional[int] = tokenizer.encode( 'sequence builders' , add_special_tokens=_UpperCamelCase , add_prefix_space=_UpperCamelCase ) UpperCAmelCase_ : Tuple = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=_UpperCamelCase , add_prefix_space=_UpperCamelCase ) UpperCAmelCase_ : int = tokenizer.build_inputs_with_special_tokens(_UpperCamelCase ) UpperCAmelCase_ : Dict = tokenizer.build_inputs_with_special_tokens(_UpperCamelCase , _UpperCamelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def __UpperCAmelCase ( self ) -> Optional[Any]: UpperCAmelCase_ : Optional[Any] = self.get_tokenizer() UpperCAmelCase_ : Any = 'Encode this sequence.' UpperCAmelCase_ : int = tokenizer.byte_encoder[' '.encode('utf-8' )[0]] # Testing encoder arguments UpperCAmelCase_ : Optional[Any] = tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase , add_prefix_space=_UpperCamelCase ) UpperCAmelCase_ : int = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : str = tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase , add_prefix_space=_UpperCamelCase ) UpperCAmelCase_ : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(_UpperCamelCase , _UpperCamelCase ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) UpperCAmelCase_ : List[Any] = tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) UpperCAmelCase_ : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(_UpperCamelCase , _UpperCamelCase ) # Testing spaces after special tokens UpperCAmelCase_ : Any = '<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase )} ) # mask token has a left space UpperCAmelCase_ : Union[str, Any] = tokenizer.convert_tokens_to_ids(_UpperCamelCase ) UpperCAmelCase_ : Union[str, Any] = 'Encode <mask> sequence' UpperCAmelCase_ : Union[str, Any] = 'Encode <mask>sequence' UpperCAmelCase_ : int = tokenizer.encode(_UpperCamelCase ) UpperCAmelCase_ : Any = encoded.index(_UpperCamelCase ) UpperCAmelCase_ : str = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : Dict = tokenizer.encode(_UpperCamelCase ) UpperCAmelCase_ : List[Any] = encoded.index(_UpperCamelCase ) UpperCAmelCase_ : Dict = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(_UpperCamelCase , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> int: pass def __UpperCAmelCase ( self ) -> str: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCAmelCase_ : int = self.rust_tokenizer_class.from_pretrained(_UpperCamelCase , **_UpperCamelCase ) UpperCAmelCase_ : List[Any] = self.tokenizer_class.from_pretrained(_UpperCamelCase , **_UpperCamelCase ) UpperCAmelCase_ : Any = 'A, <mask> AllenNLP sentence.' UpperCAmelCase_ : Optional[int] = tokenizer_r.encode_plus(_UpperCamelCase , add_special_tokens=_UpperCamelCase , return_token_type_ids=_UpperCamelCase ) UpperCAmelCase_ : Optional[int] = tokenizer_p.encode_plus(_UpperCamelCase , add_special_tokens=_UpperCamelCase , return_token_type_ids=_UpperCamelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) UpperCAmelCase_ : List[str] = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) UpperCAmelCase_ : Optional[int] = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual( _UpperCamelCase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( _UpperCamelCase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def __UpperCAmelCase ( self ) -> Union[str, Any]: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): UpperCAmelCase_ : Optional[Any] = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) UpperCAmelCase_ : str = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'] , _UpperCamelCase ) self.assertEqual(post_processor_state['add_prefix_space'] , _UpperCamelCase ) self.assertEqual(post_processor_state['trim_offsets'] , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> List[str]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCAmelCase_ : Optional[int] = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` UpperCAmelCase_ : Any = f"{text_of_1_token} {text_of_1_token}" UpperCAmelCase_ : Dict = self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase ) UpperCAmelCase_ : int = tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCamelCase ) + 1, len(_UpperCamelCase ) + 1 + len(_UpperCamelCase )) , ) UpperCAmelCase_ : List[Any] = self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase ) UpperCAmelCase_ : Any = tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCamelCase ) + 1, len(_UpperCamelCase ) + 1 + len(_UpperCamelCase )) , ) UpperCAmelCase_ : Tuple = self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase ) UpperCAmelCase_ : str = tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCamelCase ), len(_UpperCamelCase ) + 1 + len(_UpperCamelCase )) , ) UpperCAmelCase_ : int = self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase ) UpperCAmelCase_ : Optional[int] = tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCamelCase ), len(_UpperCamelCase ) + 1 + len(_UpperCamelCase )) , ) UpperCAmelCase_ : List[Any] = f" {text}" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) UpperCAmelCase_ : Optional[Any] = self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_UpperCamelCase ) + 1, 1 + len(_UpperCamelCase ) + 1 + len(_UpperCamelCase )) , ) UpperCAmelCase_ : Tuple = self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase ) UpperCAmelCase_ : Dict = tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_UpperCamelCase ), 1 + len(_UpperCamelCase ) + 1 + len(_UpperCamelCase )) , ) UpperCAmelCase_ : Any = self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase ) UpperCAmelCase_ : Dict = tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_UpperCamelCase ), 1 + len(_UpperCamelCase ) + 1 + len(_UpperCamelCase )) , )
29
"""simple docstring""" def __lowerCAmelCase ( lowercase : Union[str, Any] ) -> List[str]: """simple docstring""" snake_case : List[str] = len(lowercase ) for i in range(length - 1 ): snake_case : List[str] = i for k in range(i + 1 , lowercase ): if collection[k] < collection[least]: snake_case : List[str] = k if least != i: snake_case ,snake_case : Union[str, Any] = (collection[i], collection[least]) return collection if __name__ == "__main__": __snake_case = input("""Enter numbers separated by a comma:\n""").strip() __snake_case = [int(item) for item in user_input.split(""",""")] print(selection_sort(unsorted))
203
0
import math import unittest def __magic_name__ ( __lowerCAmelCase : int ) -> bool: assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class lowerCAmelCase__ ( unittest.TestCase ): def __A ( self : Optional[int] ) -> Tuple: self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def __A ( self : List[str] ) -> Dict: with self.assertRaises(SCREAMING_SNAKE_CASE__ ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , '''Zero doesn\'t have any positive factors, primes must have exactly two.''' , ) self.assertFalse( is_prime(1 ) , '''One only has 1 positive factor, primes must have exactly two.''' , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
353
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : str = { "facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json", "facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json", "facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json", "facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json", "facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json", "facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json", "facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json", "facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json", "facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json", } class lowerCAmelCase__ ( __lowercase ): a__ : Dict = """xmod""" def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=3_05_22 , SCREAMING_SNAKE_CASE__ : str=7_68 , SCREAMING_SNAKE_CASE__ : int=12 , SCREAMING_SNAKE_CASE__ : Dict=12 , SCREAMING_SNAKE_CASE__ : List[str]=30_72 , SCREAMING_SNAKE_CASE__ : List[Any]="gelu" , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : int=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=5_12 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE__ : List[Any]=0.02 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1e-12 , SCREAMING_SNAKE_CASE__ : List[str]=1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0 , SCREAMING_SNAKE_CASE__ : int=2 , SCREAMING_SNAKE_CASE__ : Any="absolute" , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Tuple=2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Dict=("en_XX",) , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , **SCREAMING_SNAKE_CASE__ : int , ) -> str: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_act __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = position_embedding_type __lowerCamelCase = use_cache __lowerCamelCase = classifier_dropout __lowerCamelCase = pre_norm __lowerCamelCase = adapter_reduction_factor __lowerCamelCase = adapter_layer_norm __lowerCamelCase = adapter_reuse_layer_norm __lowerCamelCase = ln_before_adapter __lowerCamelCase = list(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = default_language class lowerCAmelCase__ ( __lowercase ): @property def __A ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __lowerCamelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __lowerCamelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
339
0
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
227
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class _lowercase ( unittest.TestCase ): """simple docstring""" def UpperCamelCase_ (self ): """simple docstring""" a = tempfile.mkdtemp() a = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "的", "价", "格", "是", "15", "便", "alex", "##andra", ",", "。", "-", "t", "shirt", ] a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) a = { "do_resize": True, "size": {"height": 224, "width": 224}, "do_center_crop": True, "crop_size": {"height": 18, "width": 18}, "do_normalize": True, "image_mean": [0.4814_5466, 0.457_8275, 0.4082_1073], "image_std": [0.2686_2954, 0.2613_0258, 0.2757_7711], "do_convert_rgb": True, } a = os.path.join(self.tmpdirname , lowerCamelCase_ ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(lowerCamelCase_ , lowerCamelCase_ ) def UpperCamelCase_ (self , **lowerCamelCase_ ): """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) def UpperCamelCase_ (self , **lowerCamelCase_ ): """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) def UpperCamelCase_ (self , **lowerCamelCase_ ): """simple docstring""" return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ (self ): """simple docstring""" a = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] a = [Image.fromarray(np.moveaxis(lowerCamelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase_ (self ): """simple docstring""" a = self.get_tokenizer() a = self.get_rust_tokenizer() a = self.get_image_processor() a = ChineseCLIPProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) a = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=lowerCamelCase_ ) a = ChineseCLIPProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) a = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowerCamelCase_ ) self.assertIsInstance(processor_fast.tokenizer , lowerCamelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowerCamelCase_ ) self.assertIsInstance(processor_fast.image_processor , lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" a = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) a = self.get_tokenizer(cls_token="(CLS)" , sep_token="(SEP)" ) a = self.get_image_processor(do_normalize=lowerCamelCase_ ) a = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token="(CLS)" , sep_token="(SEP)" , do_normalize=lowerCamelCase_ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCamelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = ChineseCLIPProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) a = self.prepare_image_inputs() a = image_processor(lowerCamelCase_ , return_tensors="np" ) a = processor(images=lowerCamelCase_ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCamelCase_ (self ): """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = ChineseCLIPProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) a = "Alexandra,T-shirt的价格是15便士。" a = processor(text=lowerCamelCase_ ) a = tokenizer(lowerCamelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCamelCase_ (self ): """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = ChineseCLIPProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) a = "Alexandra,T-shirt的价格是15便士。" a = self.prepare_image_inputs() a = processor(text=lowerCamelCase_ , images=lowerCamelCase_ ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase_ ): processor() def UpperCamelCase_ (self ): """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = ChineseCLIPProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] a = processor.batch_decode(lowerCamelCase_ ) a = tokenizer.batch_decode(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" a = self.get_image_processor() a = self.get_tokenizer() a = ChineseCLIPProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) a = "Alexandra,T-shirt的价格是15便士。" a = self.prepare_image_inputs() a = processor(text=lowerCamelCase_ , images=lowerCamelCase_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
227
1
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable lowerCamelCase_ = {'configuration_dpt': ['DPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DPTConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ['DPTFeatureExtractor'] lowerCamelCase_ = ['DPTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ 'DPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DPTForDepthEstimation', 'DPTForSemanticSegmentation', 'DPTModel', 'DPTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
362
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING lowerCamelCase_ = logging.get_logger(__name__) @add_end_docstrings(a_ ) class a_ ( a_ ): '''simple docstring''' def __init__( self , *lowercase_ , **lowercase_ ) -> Any: '''simple docstring''' super().__init__(*lowercase_ , **lowercase_ ) self.check_model_type(lowercase_ ) def _lowercase ( self , lowercase_=None , lowercase_=None , lowercase_=None , **lowercase_ ) -> Dict: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ = {}, {} if padding is not None: lowerCAmelCase_ = padding if truncation is not None: lowerCAmelCase_ = truncation if top_k is not None: lowerCAmelCase_ = top_k return preprocess_params, {}, postprocess_params def __call__( self , lowercase_ , lowercase_ = None , **lowercase_ ) -> int: '''simple docstring''' if isinstance(lowercase_ , (Image.Image, str) ) and isinstance(lowercase_ , lowercase_ ): lowerCAmelCase_ = {'image': image, 'question': question} else: lowerCAmelCase_ = image lowerCAmelCase_ = super().__call__(lowercase_ , **lowercase_ ) return results def _lowercase ( self , lowercase_ , lowercase_=False , lowercase_=False ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = load_image(inputs['image'] ) lowerCAmelCase_ = self.tokenizer( inputs['question'] , return_tensors=self.framework , padding=lowercase_ , truncation=lowercase_ ) lowerCAmelCase_ = self.image_processor(images=lowercase_ , return_tensors=self.framework ) model_inputs.update(lowercase_ ) return model_inputs def _lowercase ( self , lowercase_ ) -> Dict: '''simple docstring''' lowerCAmelCase_ = self.model(**lowercase_ ) return model_outputs def _lowercase ( self , lowercase_ , lowercase_=5 ) -> Any: '''simple docstring''' if top_k > self.model.config.num_labels: lowerCAmelCase_ = self.model.config.num_labels if self.framework == "pt": lowerCAmelCase_ = model_outputs.logits.sigmoid()[0] lowerCAmelCase_ , lowerCAmelCase_ = probs.topk(lowercase_ ) else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) lowerCAmelCase_ = scores.tolist() lowerCAmelCase_ = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(lowercase_ , lowercase_ )]
14
0
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() a : Optional[Any] = logging.get_logger(__name__) a : int = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } def _SCREAMING_SNAKE_CASE ( _lowercase : int , _lowercase : int , _lowercase : List[str] , _lowercase : List[str] , _lowercase : Dict ) ->Optional[Any]: '''simple docstring''' for attribute in key.split("." ): a : Dict = getattr(_lowercase , _lowercase ) if weight_type is not None: a : Optional[Any] = getattr(_lowercase , _lowercase ).shape else: a : Tuple = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": a : List[str] = value elif weight_type == "weight_g": a : int = value elif weight_type == "weight_v": a : int = value elif weight_type == "bias": a : Tuple = value else: a : Union[str, Any] = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def _SCREAMING_SNAKE_CASE ( _lowercase : Any , _lowercase : List[str] , _lowercase : int ) ->Any: '''simple docstring''' a : Dict = [] a : int = fairseq_model.state_dict() a : Tuple = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): a : int = False if "conv_layers" in name: load_conv_layer( _lowercase , _lowercase , _lowercase , _lowercase , hf_model.config.feat_extract_norm == "group" , ) a : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): a : Optional[Any] = "hubert." + mapped_key if (is_finetuned and mapped_key != "lm_head") else mapped_key if key in name or (key.split("w2v_model." )[-1] == name.split("." )[0] and not is_finetuned): a : List[str] = True if "*" in mapped_key: a : Union[str, Any] = name.split(_lowercase )[0].split("." )[-2] a : str = mapped_key.replace("*" , _lowercase ) if "weight_g" in name: a : Optional[int] = "weight_g" elif "weight_v" in name: a : Optional[Any] = "weight_v" elif "weight" in name: a : Tuple = "weight" elif "bias" in name: a : Tuple = "bias" else: a : Union[str, Any] = None set_recursively(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) continue if not is_used: unused_weights.append(_lowercase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def _SCREAMING_SNAKE_CASE ( _lowercase : Optional[int] , _lowercase : Optional[Any] , _lowercase : Optional[Any] , _lowercase : str , _lowercase : Optional[Any] ) ->List[Any]: '''simple docstring''' a : List[Any] = full_name.split("conv_layers." )[-1] a : Any = name.split("." ) a : List[str] = int(items[0] ) a : Any = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) a : Tuple = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) a : str = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) a : str = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) a : str = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_lowercase ) @torch.no_grad() def _SCREAMING_SNAKE_CASE ( _lowercase : Any , _lowercase : Tuple , _lowercase : List[str]=None , _lowercase : Dict=None , _lowercase : int=True ) ->List[Any]: '''simple docstring''' if config_path is not None: a : Tuple = HubertConfig.from_pretrained(_lowercase ) else: a : Any = HubertConfig() if is_finetuned: if dict_path: a : str = Dictionary.load(_lowercase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq a : int = target_dict.pad_index a : Optional[int] = target_dict.bos_index a : Dict = target_dict.eos_index a : Optional[int] = len(target_dict.symbols ) a : List[str] = os.path.join(_lowercase , "vocab.json" ) if not os.path.isdir(_lowercase ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(_lowercase ) ) return os.makedirs(_lowercase , exist_ok=_lowercase ) with open(_lowercase , "w" , encoding="utf-8" ) as vocab_handle: json.dump(target_dict.indices , _lowercase ) a : Optional[int] = WavaVecaCTCTokenizer( _lowercase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=_lowercase , ) a : int = True if config.feat_extract_norm == "layer" else False a : Any = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_lowercase , return_attention_mask=_lowercase , ) a : str = WavaVecaProcessor(feature_extractor=_lowercase , tokenizer=_lowercase ) processor.save_pretrained(_lowercase ) a : int = HubertForCTC(_lowercase ) else: a : str = HubertModel(_lowercase ) if is_finetuned: a, a, a : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: a, a, a : int = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) a : Optional[int] = model[0].eval() recursively_load_weights(_lowercase , _lowercase , _lowercase ) hf_wavavec.save_pretrained(_lowercase ) if __name__ == "__main__": a : Tuple = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) a : Optional[Any] = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
105
"""simple docstring""" from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("socket.socket" ) @patch("builtins.open" ) def _SCREAMING_SNAKE_CASE ( _lowercase : List[Any] , _lowercase : int ) ->str: '''simple docstring''' a : Optional[Any] = Mock() a : Dict = conn, Mock() a : Union[str, Any] = iter([1, None] ) a : Optional[int] = lambda _lowercase : next(_lowercase ) # ===== invoke ===== send_file(filename="mytext.txt" , testing=_lowercase ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
105
1
"""simple docstring""" import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger __lowerCamelCase = get_logger(__name__) __lowerCamelCase = R"\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n" class UpperCamelCase__: @add_start_docstrings(_lowerCamelCase ) def __call__( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> Optional[int]: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class UpperCamelCase__: @add_start_docstrings(_lowerCamelCase ) def __call__( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> List[str]: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class UpperCamelCase__( a__ ): @add_start_docstrings(_lowerCamelCase ) def __call__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]: for processor in self: A__ = inspect.signature(processor.__call__ ).parameters if len(_lowerCamelCase ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( f'''Make sure that all the required parameters: {list(function_args.keys() )} for ''' f'''{processor.__class__} are passed to the logits processor.''' ) A__ = processor(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,**_lowerCamelCase ) else: A__ = processor(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) return scores class UpperCamelCase__( a__ ): def __init__( self ,__UpperCAmelCase ) -> int: if not isinstance(_lowerCamelCase ,_lowerCamelCase ) or not (temperature > 0): raise ValueError(f'''`temperature` has to be a strictly positive float, but is {temperature}''' ) A__ = temperature def __call__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> int: A__ = scores / self.temperature return scores class UpperCamelCase__( a__ ): def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase = -float('Inf' ) ,__UpperCAmelCase = 1 ) -> List[Any]: if not isinstance(_lowerCamelCase ,_lowerCamelCase ) or (top_p < 0 or top_p > 1.0): raise ValueError(f'''`top_p` has to be a float > 0 and < 1, but is {top_p}''' ) if not isinstance(_lowerCamelCase ,_lowerCamelCase ) or (min_tokens_to_keep < 1): raise ValueError(f'''`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}''' ) A__ = top_p A__ = filter_value A__ = min_tokens_to_keep def __call__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Tuple: A__ = lax.top_k(_lowerCamelCase ,scores.shape[-1] ) A__ = jnp.full_like(_lowerCamelCase ,self.filter_value ) A__ = jax.nn.softmax(_lowerCamelCase ,axis=-1 ).cumsum(axis=-1 ) A__ = cumulative_probs < self.top_p # include the token that is higher than top_p as well A__ = jnp.roll(_lowerCamelCase ,1 ) score_mask |= score_mask.at[:, 0].set(_lowerCamelCase ) # min tokens to keep A__ = score_mask.at[:, : self.min_tokens_to_keep].set(_lowerCamelCase ) A__ = jnp.where(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) A__ = jax.lax.sort_key_val(_lowerCamelCase ,_lowerCamelCase )[-1] return next_scores class UpperCamelCase__( a__ ): def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase = -float('Inf' ) ,__UpperCAmelCase = 1 ) -> List[str]: if not isinstance(_lowerCamelCase ,_lowerCamelCase ) or top_k <= 0: raise ValueError(f'''`top_k` has to be a strictly positive integer, but is {top_k}''' ) A__ = max(_lowerCamelCase ,_lowerCamelCase ) A__ = filter_value def __call__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Optional[Any]: A__ = scores.shape A__ = jnp.full(batch_size * vocab_size ,self.filter_value ) A__ = min(self.top_k ,scores.shape[-1] ) # Safety check A__ = lax.top_k(_lowerCamelCase ,_lowerCamelCase ) A__ = jnp.broadcast_to((jnp.arange(_lowerCamelCase ) * vocab_size)[:, None] ,(batch_size, topk) ).flatten() A__ = topk_scores.flatten() A__ = topk_indices.flatten() + shift A__ = next_scores_flat.at[topk_indices_flat].set(_lowerCamelCase ) A__ = next_scores_flat.reshape(_lowerCamelCase ,_lowerCamelCase ) return next_scores class UpperCamelCase__( a__ ): def __init__( self ,__UpperCAmelCase ) -> Any: A__ = bos_token_id def __call__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> str: A__ = jnp.full(scores.shape ,-float('inf' ) ) A__ = 1 - jnp.bool_(cur_len - 1 ) A__ = jnp.where(_lowerCamelCase ,new_scores.at[:, self.bos_token_id].set(0 ) ,_lowerCamelCase ) return scores class UpperCamelCase__( a__ ): def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> Dict: A__ = max_length A__ = eos_token_id def __call__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> str: A__ = jnp.full(scores.shape ,-float('inf' ) ) A__ = 1 - jnp.bool_(cur_len - self.max_length + 1 ) A__ = jnp.where(_lowerCamelCase ,new_scores.at[:, self.eos_token_id].set(0 ) ,_lowerCamelCase ) return scores class UpperCamelCase__( a__ ): def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> List[str]: if not isinstance(_lowerCamelCase ,_lowerCamelCase ) or min_length < 0: raise ValueError(f'''`min_length` has to be a positive integer, but is {min_length}''' ) if not isinstance(_lowerCamelCase ,_lowerCamelCase ) or eos_token_id < 0: raise ValueError(f'''`eos_token_id` has to be a positive integer, but is {eos_token_id}''' ) A__ = min_length A__ = eos_token_id def __call__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> List[Any]: A__ = 1 - jnp.clip(cur_len - self.min_length ,0 ,1 ) A__ = jnp.where(_lowerCamelCase ,scores.at[:, self.eos_token_id].set(-float('inf' ) ) ,_lowerCamelCase ) return scores class UpperCamelCase__( a__ ): def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> List[Any]: A__ = list(_lowerCamelCase ) A__ = begin_index def __call__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Dict: A__ = 1 - jnp.bool_(cur_len - self.begin_index ) A__ = jnp.where(_lowerCamelCase ,scores.at[:, self.begin_suppress_tokens].set(-float('inf' ) ) ,_lowerCamelCase ) return scores class UpperCamelCase__( a__ ): def __init__( self ,__UpperCAmelCase ) -> Optional[int]: A__ = list(_lowerCamelCase ) def __call__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> List[str]: A__ = scores.at[..., self.suppress_tokens].set(-float('inf' ) ) return scores class UpperCamelCase__( a__ ): def __init__( self ,__UpperCAmelCase ) -> Dict: A__ = dict(_lowerCamelCase ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. A__ = jnp.ones((max(force_token_map.keys() ) + 1) ,dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: A__ = force_token_array.at[index].set(_lowerCamelCase ) A__ = jnp.intaa(_lowerCamelCase ) def __call__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> List[Any]: def _force_token(__UpperCAmelCase ): A__ = scores.shape[0] A__ = self.force_token_array[generation_idx] A__ = jnp.ones_like(_lowerCamelCase ,dtype=scores.dtype ) * -float('inf' ) A__ = jnp.zeros((batch_size, 1) ,dtype=scores.dtype ) A__ = lax.dynamic_update_slice(_lowerCamelCase ,_lowerCamelCase ,(0, current_token) ) return new_scores A__ = lax.cond( cur_len >= self.force_token_array.shape[0] ,lambda: scores ,lambda: lax.cond( self.force_token_array[cur_len] >= 0 ,lambda: _force_token(_lowerCamelCase ) ,lambda: scores ,) ,) return scores class UpperCamelCase__( a__ ): def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Any: A__ = generate_config.eos_token_id A__ = generate_config.no_timestamps_token_id A__ = generate_config.no_timestamps_token_id + 1 A__ = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(_lowerCamelCase ,'max_initial_timestamp_index' ): A__ = generate_config.max_initial_timestamp_index else: A__ = model_config.vocab_size if self.max_initial_timestamp_index is None: A__ = model_config.vocab_size def __call__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> List[Any]: A__ = scores.at[:, self.no_timestamps_token_id].set(-float('inf' ) ) def handle_pairs(__UpperCAmelCase ,__UpperCAmelCase ): A__ = jnp.where((cur_len - self.begin_index) >= 1 ,_lowerCamelCase ,_lowerCamelCase ) A__ = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin ,True and last_was_timestamp ,_lowerCamelCase ,) A__ = jnp.where((cur_len - self.begin_index) < 2 ,_lowerCamelCase ,_lowerCamelCase ) A__ = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin ,_lowerCamelCase ,_lowerCamelCase ,) return jnp.where( _lowerCamelCase ,jnp.where( penultimate_was_timestamp > 0 ,scores_k.at[self.timestamp_begin :].set(-float('inf' ) ) ,scores_k.at[: self.eos_token_id].set(-float('inf' ) ) ,) ,_lowerCamelCase ,) A__ = jax.vmap(_lowerCamelCase )(_lowerCamelCase ,_lowerCamelCase ) A__ = jnp.where(cur_len == self.begin_index ,_lowerCamelCase ,_lowerCamelCase ) A__ = jnp.where( self.max_initial_timestamp_index is not None ,True and apply_max_initial_timestamp ,_lowerCamelCase ,) A__ = self.timestamp_begin + self.max_initial_timestamp_index A__ = jnp.where( _lowerCamelCase ,scores.at[:, last_allowed + 1 :].set(-float('inf' ) ) ,_lowerCamelCase ,) # if sum of probability over timestamps is above any other token, sample timestamp A__ = jax.nn.log_softmax(_lowerCamelCase ,axis=-1 ) def handle_cumulative_probs(__UpperCAmelCase ,__UpperCAmelCase ): A__ = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] ,axis=-1 ) A__ = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob ,scores_k.at[: self.timestamp_begin].set(-float('inf' ) ) ,_lowerCamelCase ,) A__ = jax.vmap(_lowerCamelCase )(_lowerCamelCase ,_lowerCamelCase ) return scores
354
"""simple docstring""" import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" A__ = fname.split(os.path.sep )[-1] return re.search(r'^(.*)_\d+\.jpg$' , UpperCamelCase__ ).groups()[0] class UpperCamelCase__( __A ): def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase=None ,__UpperCAmelCase=None ) -> List[str]: A__ = file_names A__ = image_transform A__ = label_to_id def __len__( self ) -> Dict: return len(self.file_names ) def __getitem__( self ,__UpperCAmelCase ) -> Union[str, Any]: A__ = self.file_names[idx] A__ = PIL.Image.open(__UpperCAmelCase ) A__ = raw_image.convert('RGB' ) if self.image_transform is not None: A__ = self.image_transform(__UpperCAmelCase ) A__ = extract_label(__UpperCAmelCase ) if self.label_to_id is not None: A__ = self.label_to_id[label] return {"image": image, "label": label} def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" if args.with_tracking: A__ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='all' , project_dir=args.project_dir ) else: A__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A__ = config['lr'] A__ = int(config['num_epochs'] ) A__ = int(config['seed'] ) A__ = int(config['batch_size'] ) A__ = config['image_size'] if not isinstance(UpperCamelCase__ , (list, tuple) ): A__ = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , 'isdigit' ): if args.checkpointing_steps == "epoch": A__ = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): A__ = int(args.checkpointing_steps ) else: raise ValueError( F'''Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.''' ) else: A__ = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: A__ = os.path.split(UpperCamelCase__ )[-1].split('.' )[0] accelerator.init_trackers(UpperCamelCase__ , UpperCamelCase__ ) # Grab all the image filenames A__ = [os.path.join(args.data_dir , UpperCamelCase__ ) for fname in os.listdir(args.data_dir ) if fname.endswith('.jpg' )] # Build the label correspondences A__ = [extract_label(UpperCamelCase__ ) for fname in file_names] A__ = list(set(UpperCamelCase__ ) ) id_to_label.sort() A__ = {lbl: i for i, lbl in enumerate(UpperCamelCase__ )} # Set the seed before splitting the data. np.random.seed(UpperCamelCase__ ) torch.manual_seed(UpperCamelCase__ ) torch.cuda.manual_seed_all(UpperCamelCase__ ) # Split our filenames between train and validation A__ = np.random.permutation(len(UpperCamelCase__ ) ) A__ = int(0.8 * len(UpperCamelCase__ ) ) A__ = random_perm[:cut] A__ = random_perm[cut:] # For training we use a simple RandomResizedCrop A__ = Compose([RandomResizedCrop(UpperCamelCase__ , scale=(0.5, 1.0) ), ToTensor()] ) A__ = PetsDataset( [file_names[i] for i in train_split] , image_transform=UpperCamelCase__ , label_to_id=UpperCamelCase__ ) # For evaluation, we use a deterministic Resize A__ = Compose([Resize(UpperCamelCase__ ), ToTensor()] ) A__ = PetsDataset([file_names[i] for i in eval_split] , image_transform=UpperCamelCase__ , label_to_id=UpperCamelCase__ ) # Instantiate dataloaders. A__ = DataLoader(UpperCamelCase__ , shuffle=UpperCamelCase__ , batch_size=UpperCamelCase__ , num_workers=4 ) A__ = DataLoader(UpperCamelCase__ , shuffle=UpperCamelCase__ , batch_size=UpperCamelCase__ , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A__ = create_model('resnet50d' , pretrained=UpperCamelCase__ , num_classes=len(UpperCamelCase__ ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A__ = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): A__ = False for param in model.get_classifier().parameters(): A__ = True # We normalize the batches of images to be a bit faster. A__ = torch.tensor(model.default_cfg['mean'] )[None, :, None, None].to(accelerator.device ) A__ = torch.tensor(model.default_cfg['std'] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer A__ = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler A__ = OneCycleLR(optimizer=UpperCamelCase__ , max_lr=UpperCamelCase__ , epochs=UpperCamelCase__ , steps_per_epoch=len(UpperCamelCase__ ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A__ , A__ , A__ , A__ , A__ = accelerator.prepare( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # We need to keep track of how many total steps we have iterated over A__ = 0 # We also need to keep track of the starting epoch so files are named properly A__ = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(F'''Resumed from checkpoint: {args.resume_from_checkpoint}''' ) accelerator.load_state(args.resume_from_checkpoint ) A__ = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint A__ = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) A__ = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` A__ = os.path.splitext(UpperCamelCase__ )[0] if "epoch" in training_difference: A__ = int(training_difference.replace('epoch_' , '' ) ) + 1 A__ = None else: A__ = int(training_difference.replace('step_' , '' ) ) A__ = resume_step // len(UpperCamelCase__ ) resume_step -= starting_epoch * len(UpperCamelCase__ ) # Now we train the model for epoch in range(UpperCamelCase__ , UpperCamelCase__ ): model.train() if args.with_tracking: A__ = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step A__ = accelerator.skip_first_batches(UpperCamelCase__ , UpperCamelCase__ ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader A__ = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. A__ = {k: v.to(accelerator.device ) for k, v in batch.items()} A__ = (batch['image'] - mean) / std A__ = model(UpperCamelCase__ ) A__ = torch.nn.functional.cross_entropy(UpperCamelCase__ , batch['label'] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(UpperCamelCase__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ = F'''step_{overall_step}''' if overall_step % checkpointing_steps == 0: if args.output_dir is not None: A__ = os.path.join(args.output_dir , UpperCamelCase__ ) accelerator.save_state(UpperCamelCase__ ) model.eval() A__ = 0 A__ = 0 for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. A__ = {k: v.to(accelerator.device ) for k, v in batch.items()} A__ = (batch['image'] - mean) / std with torch.no_grad(): A__ = model(UpperCamelCase__ ) A__ = outputs.argmax(dim=-1 ) A__ , A__ = accelerator.gather_for_metrics((predictions, batch['label']) ) A__ = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() A__ = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}: {100 * eval_metric:.2f}''' ) if args.with_tracking: accelerator.log( { 'accuracy': 100 * eval_metric, 'train_loss': total_loss.item() / len(UpperCamelCase__ ), 'epoch': epoch, } , step=UpperCamelCase__ , ) if checkpointing_steps == "epoch": A__ = F'''epoch_{epoch}''' if args.output_dir is not None: A__ = os.path.join(args.output_dir , UpperCamelCase__ ) accelerator.save_state(UpperCamelCase__ ) if args.with_tracking: accelerator.end_training() def UpperCAmelCase ( ): """simple docstring""" A__ = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument('--data_dir' , required=UpperCamelCase__ , help='The data folder on disk.' ) parser.add_argument('--fp16' , action='store_true' , help='If passed, will use FP16 training.' ) parser.add_argument( '--mixed_precision' , type=UpperCamelCase__ , default=UpperCamelCase__ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) parser.add_argument( '--checkpointing_steps' , type=UpperCamelCase__ , default=UpperCamelCase__ , help='Whether the various states should be saved at the end of every n steps, or \'epoch\' for each epoch.' , ) parser.add_argument( '--output_dir' , type=UpperCamelCase__ , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--resume_from_checkpoint' , type=UpperCamelCase__ , default=UpperCamelCase__ , help='If the training should continue from a checkpoint folder.' , ) parser.add_argument( '--with_tracking' , action='store_true' , help='Whether to load in all available experiment trackers from the environment and use them for logging.' , ) parser.add_argument( '--project_dir' , type=UpperCamelCase__ , default='logs' , help='Location on where to store experiment tracking logs` and relevent project information' , ) A__ = parser.parse_args() A__ = {'lr': 3E-2, 'num_epochs': 3, 'seed': 42, 'batch_size': 64, 'image_size': 224} training_function(UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": main()
154
0
"""simple docstring""" from __future__ import annotations import math def a_ ( lowerCamelCase , lowerCamelCase ): if len(lowerCamelCase ) != 2 or len(a[0] ) != 2 or len(lowerCamelCase ) != 2 or len(b[0] ) != 2: raise Exception('Matrices are not 2x2' ) UpperCAmelCase__ = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def a_ ( lowerCamelCase , lowerCamelCase ): return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(lowerCamelCase ) ) ] def a_ ( lowerCamelCase , lowerCamelCase ): return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(lowerCamelCase ) ) ] def a_ ( lowerCamelCase ): if len(lowerCamelCase ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception('Odd matrices are not supported!' ) UpperCAmelCase__ = len(lowerCamelCase ) UpperCAmelCase__ = matrix_length // 2 UpperCAmelCase__ = [[a[i][j] for j in range(lowerCamelCase , lowerCamelCase )] for i in range(lowerCamelCase )] UpperCAmelCase__ = [ [a[i][j] for j in range(lowerCamelCase , lowerCamelCase )] for i in range(lowerCamelCase , lowerCamelCase ) ] UpperCAmelCase__ = [[a[i][j] for j in range(lowerCamelCase )] for i in range(lowerCamelCase )] UpperCAmelCase__ = [[a[i][j] for j in range(lowerCamelCase )] for i in range(lowerCamelCase , lowerCamelCase )] return top_left, top_right, bot_left, bot_right def a_ ( lowerCamelCase ): return len(lowerCamelCase ), len(matrix[0] ) def a_ ( lowerCamelCase ): print('\n'.join(str(lowerCamelCase ) for line in matrix ) ) def a_ ( lowerCamelCase , lowerCamelCase ): if matrix_dimensions(lowerCamelCase ) == (2, 2): return default_matrix_multiplication(lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = split_matrix(lowerCamelCase ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = split_matrix(lowerCamelCase ) UpperCAmelCase__ = actual_strassen(lowerCamelCase , matrix_subtraction(lowerCamelCase , lowerCamelCase ) ) UpperCAmelCase__ = actual_strassen(matrix_addition(lowerCamelCase , lowerCamelCase ) , lowerCamelCase ) UpperCAmelCase__ = actual_strassen(matrix_addition(lowerCamelCase , lowerCamelCase ) , lowerCamelCase ) UpperCAmelCase__ = actual_strassen(lowerCamelCase , matrix_subtraction(lowerCamelCase , lowerCamelCase ) ) UpperCAmelCase__ = actual_strassen(matrix_addition(lowerCamelCase , lowerCamelCase ) , matrix_addition(lowerCamelCase , lowerCamelCase ) ) UpperCAmelCase__ = actual_strassen(matrix_subtraction(lowerCamelCase , lowerCamelCase ) , matrix_addition(lowerCamelCase , lowerCamelCase ) ) UpperCAmelCase__ = actual_strassen(matrix_subtraction(lowerCamelCase , lowerCamelCase ) , matrix_addition(lowerCamelCase , lowerCamelCase ) ) UpperCAmelCase__ = matrix_addition(matrix_subtraction(matrix_addition(lowerCamelCase , lowerCamelCase ) , lowerCamelCase ) , lowerCamelCase ) UpperCAmelCase__ = matrix_addition(lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = matrix_addition(lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = matrix_subtraction(matrix_subtraction(matrix_addition(lowerCamelCase , lowerCamelCase ) , lowerCamelCase ) , lowerCamelCase ) # construct the new matrix from our 4 quadrants UpperCAmelCase__ = [] for i in range(len(lowerCamelCase ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(lowerCamelCase ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def a_ ( lowerCamelCase , lowerCamelCase ): if matrix_dimensions(lowerCamelCase )[1] != matrix_dimensions(lowerCamelCase )[0]: UpperCAmelCase__ = ( 'Unable to multiply these matrices, please check the dimensions.\n' f'''Matrix A: {matrixa}\n''' f'''Matrix B: {matrixa}''' ) raise Exception(lowerCamelCase ) UpperCAmelCase__ = matrix_dimensions(lowerCamelCase ) UpperCAmelCase__ = matrix_dimensions(lowerCamelCase ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] UpperCAmelCase__ = max(*lowerCamelCase , *lowerCamelCase ) UpperCAmelCase__ = int(math.pow(2 , math.ceil(math.loga(lowerCamelCase ) ) ) ) UpperCAmelCase__ = matrixa UpperCAmelCase__ = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , lowerCamelCase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , lowerCamelCase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , lowerCamelCase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) UpperCAmelCase__ = actual_strassen(lowerCamelCase , lowerCamelCase ) # Removing the additional zeros for i in range(0 , lowerCamelCase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , lowerCamelCase ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": lowerCAmelCase__ : List[Any] = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] lowerCAmelCase__ : List[str] = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
98
"""simple docstring""" import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class snake_case ( __UpperCAmelCase ): """simple docstring""" snake_case__ = (PNDMScheduler,) snake_case__ = (("num_inference_steps", 50),) def __lowerCAmelCase ( self : List[str] ,**lowerCamelCase__ : str ): UpperCAmelCase__ = { 'num_train_timesteps': 1_000, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', } config.update(**lowerCamelCase__ ) return config def __lowerCAmelCase ( self : str ,lowerCamelCase__ : Optional[Any]=0 ,**lowerCamelCase__ : List[str] ): UpperCAmelCase__ = dict(self.forward_default_kwargs ) UpperCAmelCase__ = kwargs.pop('num_inference_steps' ,lowerCamelCase__ ) UpperCAmelCase__ = self.dummy_sample UpperCAmelCase__ = 0.1 * sample UpperCAmelCase__ = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: UpperCAmelCase__ = self.get_scheduler_config(**lowerCamelCase__ ) UpperCAmelCase__ = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(lowerCamelCase__ ) # copy over dummy past residuals UpperCAmelCase__ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase__ ) UpperCAmelCase__ = scheduler_class.from_pretrained(lowerCamelCase__ ) new_scheduler.set_timesteps(lowerCamelCase__ ) # copy over dummy past residuals UpperCAmelCase__ = dummy_past_residuals[:] UpperCAmelCase__ = scheduler.step_prk(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,**lowerCamelCase__ ).prev_sample UpperCAmelCase__ = new_scheduler.step_prk(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,**lowerCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" UpperCAmelCase__ = scheduler.step_plms(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,**lowerCamelCase__ ).prev_sample UpperCAmelCase__ = new_scheduler.step_plms(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,**lowerCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __lowerCAmelCase ( self : Tuple ): pass def __lowerCAmelCase ( self : Dict ,lowerCamelCase__ : List[str]=0 ,**lowerCamelCase__ : Tuple ): UpperCAmelCase__ = dict(self.forward_default_kwargs ) UpperCAmelCase__ = kwargs.pop('num_inference_steps' ,lowerCamelCase__ ) UpperCAmelCase__ = self.dummy_sample UpperCAmelCase__ = 0.1 * sample UpperCAmelCase__ = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: UpperCAmelCase__ = self.get_scheduler_config() UpperCAmelCase__ = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(lowerCamelCase__ ) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase__ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase__ ) UpperCAmelCase__ = scheduler_class.from_pretrained(lowerCamelCase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCamelCase__ ) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase__ = dummy_past_residuals[:] UpperCAmelCase__ = scheduler.step_prk(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,**lowerCamelCase__ ).prev_sample UpperCAmelCase__ = new_scheduler.step_prk(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,**lowerCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" UpperCAmelCase__ = scheduler.step_plms(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,**lowerCamelCase__ ).prev_sample UpperCAmelCase__ = new_scheduler.step_plms(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,**lowerCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __lowerCAmelCase ( self : List[Any] ,**lowerCamelCase__ : int ): UpperCAmelCase__ = self.scheduler_classes[0] UpperCAmelCase__ = self.get_scheduler_config(**lowerCamelCase__ ) UpperCAmelCase__ = scheduler_class(**lowerCamelCase__ ) UpperCAmelCase__ = 10 UpperCAmelCase__ = self.dummy_model() UpperCAmelCase__ = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase__ ) for i, t in enumerate(scheduler.prk_timesteps ): UpperCAmelCase__ = model(lowerCamelCase__ ,lowerCamelCase__ ) UpperCAmelCase__ = scheduler.step_prk(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): UpperCAmelCase__ = model(lowerCamelCase__ ,lowerCamelCase__ ) UpperCAmelCase__ = scheduler.step_plms(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ).prev_sample return sample def __lowerCAmelCase ( self : int ): UpperCAmelCase__ = dict(self.forward_default_kwargs ) UpperCAmelCase__ = kwargs.pop('num_inference_steps' ,lowerCamelCase__ ) for scheduler_class in self.scheduler_classes: UpperCAmelCase__ = self.get_scheduler_config() UpperCAmelCase__ = scheduler_class(**lowerCamelCase__ ) UpperCAmelCase__ = self.dummy_sample UpperCAmelCase__ = 0.1 * sample if num_inference_steps is not None and hasattr(lowerCamelCase__ ,'set_timesteps' ): scheduler.set_timesteps(lowerCamelCase__ ) elif num_inference_steps is not None and not hasattr(lowerCamelCase__ ,'set_timesteps' ): UpperCAmelCase__ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCAmelCase__ = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] UpperCAmelCase__ = dummy_past_residuals[:] UpperCAmelCase__ = scheduler.step_prk(lowerCamelCase__ ,0 ,lowerCamelCase__ ,**lowerCamelCase__ ).prev_sample UpperCAmelCase__ = scheduler.step_prk(lowerCamelCase__ ,1 ,lowerCamelCase__ ,**lowerCamelCase__ ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) UpperCAmelCase__ = scheduler.step_plms(lowerCamelCase__ ,0 ,lowerCamelCase__ ,**lowerCamelCase__ ).prev_sample UpperCAmelCase__ = scheduler.step_plms(lowerCamelCase__ ,1 ,lowerCamelCase__ ,**lowerCamelCase__ ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) def __lowerCAmelCase ( self : List[Any] ): for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=lowerCamelCase__ ) def __lowerCAmelCase ( self : Optional[int] ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowerCamelCase__ ) UpperCAmelCase__ = self.scheduler_classes[0] UpperCAmelCase__ = self.get_scheduler_config(steps_offset=1 ) UpperCAmelCase__ = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps ,torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) ,) def __lowerCAmelCase ( self : Dict ): for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1] ,[0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=lowerCamelCase__ ,beta_end=lowerCamelCase__ ) def __lowerCAmelCase ( self : Union[str, Any] ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCamelCase__ ) def __lowerCAmelCase ( self : List[Any] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase__ ) def __lowerCAmelCase ( self : Optional[Any] ): for t in [1, 5, 10]: self.check_over_forward(time_step=lowerCamelCase__ ) def __lowerCAmelCase ( self : List[Any] ): for t, num_inference_steps in zip([1, 5, 10] ,[10, 50, 100] ): self.check_over_forward(num_inference_steps=lowerCamelCase__ ) def __lowerCAmelCase ( self : int ): # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 UpperCAmelCase__ = 27 for scheduler_class in self.scheduler_classes: UpperCAmelCase__ = self.dummy_sample UpperCAmelCase__ = 0.1 * sample UpperCAmelCase__ = self.get_scheduler_config() UpperCAmelCase__ = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(lowerCamelCase__ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): UpperCAmelCase__ = scheduler.step_prk(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ).prev_sample def __lowerCAmelCase ( self : int ): with self.assertRaises(lowerCamelCase__ ): UpperCAmelCase__ = self.scheduler_classes[0] UpperCAmelCase__ = self.get_scheduler_config() UpperCAmelCase__ = scheduler_class(**lowerCamelCase__ ) scheduler.step_plms(self.dummy_sample ,1 ,self.dummy_sample ).prev_sample def __lowerCAmelCase ( self : Tuple ): UpperCAmelCase__ = self.full_loop() UpperCAmelCase__ = torch.sum(torch.abs(lowerCamelCase__ ) ) UpperCAmelCase__ = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_sum.item() - 1_9_8.1_3_1_8 ) < 1e-2 assert abs(result_mean.item() - 0.2_5_8_0 ) < 1e-3 def __lowerCAmelCase ( self : Tuple ): UpperCAmelCase__ = self.full_loop(prediction_type='v_prediction' ) UpperCAmelCase__ = torch.sum(torch.abs(lowerCamelCase__ ) ) UpperCAmelCase__ = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_sum.item() - 6_7.3_9_8_6 ) < 1e-2 assert abs(result_mean.item() - 0.0_8_7_8 ) < 1e-3 def __lowerCAmelCase ( self : Union[str, Any] ): # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase__ = self.full_loop(set_alpha_to_one=lowerCamelCase__ ,beta_start=0.0_1 ) UpperCAmelCase__ = torch.sum(torch.abs(lowerCamelCase__ ) ) UpperCAmelCase__ = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_sum.item() - 2_3_0.0_3_9_9 ) < 1e-2 assert abs(result_mean.item() - 0.2_9_9_5 ) < 1e-3 def __lowerCAmelCase ( self : Tuple ): # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase__ = self.full_loop(set_alpha_to_one=lowerCamelCase__ ,beta_start=0.0_1 ) UpperCAmelCase__ = torch.sum(torch.abs(lowerCamelCase__ ) ) UpperCAmelCase__ = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_sum.item() - 1_8_6.9_4_8_2 ) < 1e-2 assert abs(result_mean.item() - 0.2_4_3_4 ) < 1e-3
98
1
'''simple docstring''' import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def a__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str ) -> str: """simple docstring""" UpperCAmelCase_ : int = FunnelConfig.from_json_file(_SCREAMING_SNAKE_CASE ) print(F'''Building PyTorch model from configuration: {config}''' ) UpperCAmelCase_ : Optional[int] = FunnelBaseModel(_SCREAMING_SNAKE_CASE ) if base_model else FunnelModel(_SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tf_weights_in_funnel(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--base_model""", action="""store_true""", help="""Whether you want just the base model (no decoder) or not.""" ) _lowerCamelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
67
'''simple docstring''' import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def a__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : int ) -> Any: """simple docstring""" if gpta_config_file == "": UpperCAmelCase_ : List[str] = GPTaConfig() else: UpperCAmelCase_ : int = GPTaConfig.from_json_file(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = GPTaModel(_SCREAMING_SNAKE_CASE ) # Load weights from numpy load_tf_weights_in_gpta(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Save pytorch-model UpperCAmelCase_ : Dict = pytorch_dump_folder_path + "/" + WEIGHTS_NAME UpperCAmelCase_ : int = pytorch_dump_folder_path + "/" + CONFIG_NAME print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(model.state_dict() , _SCREAMING_SNAKE_CASE ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(_SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--gpt2_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--gpt2_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained OpenAI model. \n""" """This specifies the model architecture.""" ), ) _lowerCamelCase = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
67
1
"""simple docstring""" import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def lowercase_ ( _UpperCAmelCase ): """simple docstring""" A_ : Optional[Any] = os.path.join(args.tf_model_dir , '''parameters.json''' ) A_ : Union[str, Any] = json.loads(open(_UpperCAmelCase ).read() ) if not params: raise ValueError( f"""It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.""" ) if not args.output.endswith('''.pt''' ): A_ : Optional[Any] = args.output + '''.pt''' A_ : Tuple = OrderedDict() with tf.device('''/CPU:0''' ): A_ : List[str] = tf.train.load_checkpoint(args.tf_model_dir ) A_ : Dict = reader.get_variable_to_shape_map() for key_name in shapes.keys(): A_ : int = reader.get_tensor(_UpperCAmelCase ).astype(np.floataa ) if key_name.endswith('''/adam_m''' ) or key_name.endswith('''/adam_v''' ): continue if key_name.startswith('''pasts/''' ): if key_name.startswith('''pasts/mlp''' ): A_ : int = int(key_name[9] ) elif key_name.startswith('''pasts/out''' ): A_ : int = 8 A_ : Optional[int] = '''model.sqout.%d.weight''' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time A_ : List[str] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix A_ : Any = torch.tensor(_UpperCAmelCase ) elif key_name.startswith('''model/moe''' ): A_ : int = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/switch_gating/kernel''' ): A_ : str = '''model.blocks.%d.feed_forward.mlp.router.classifier.weight''' % player A_ : Dict = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix A_ : List[str] = torch.tensor(_UpperCAmelCase ) elif key_name.endswith('''/softmlp/kernel''' ): A_ : Any = '''model.blocks.%d.feed_forward.soft_bypass_mlp.weight''' % player A_ : Optional[Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix A_ : Dict = torch.tensor(_UpperCAmelCase ) elif key_name.endswith('''/wo/kernel''' ) or key_name.endswith('''/wi/kernel''' ): A_ : Any = key_name[-9:-7] for i in range(16 ): A_ : Optional[Any] = '''model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight''' % (player, i, nlayer) A_ : List[Any] = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided A_ : Tuple = torch.tensor(_UpperCAmelCase ) elif key_name.startswith('''model/mlp''' ): A_ : Optional[int] = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/p1/kernel''' ): A_ : Dict = '''model.blocks.%d.feed_forward.mlp.wi.weight''' % player A_ : int = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix A_ : Optional[int] = torch.tensor(_UpperCAmelCase ) elif key_name.endswith('''/p1/bias''' ): A_ : Optional[int] = '''model.blocks.%d.feed_forward.mlp.wi.bias''' % player A_ : int = vnp.copy() # same because it is one dimensional A_ : List[str] = torch.tensor(_UpperCAmelCase ) elif key_name.endswith('''/p2/kernel''' ): A_ : Union[str, Any] = '''model.blocks.%d.feed_forward.mlp.wo.weight''' % player A_ : Optional[Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix A_ : Optional[Any] = torch.tensor(_UpperCAmelCase ) elif key_name.endswith('''/p2/bias''' ): A_ : Dict = '''model.blocks.%d.feed_forward.mlp.wo.bias''' % player A_ : Any = vnp.copy() # same because it is one dimensional A_ : Dict = torch.tensor(_UpperCAmelCase ) elif key_name.startswith('''model/ln''' ): A_ : Optional[Any] = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): A_ : Any = '''model.blocks.%d.feed_forward.norm.bias''' % player A_ : Union[str, Any] = vnp.copy() # same because it is one dimensional A_ : Any = torch.tensor(_UpperCAmelCase ) elif key_name.endswith('''/g''' ): A_ : Optional[int] = '''model.blocks.%d.feed_forward.norm.weight''' % player A_ : List[Any] = vnp.copy() # same because it is one dimensional A_ : Tuple = torch.tensor(_UpperCAmelCase ) elif key_name.startswith('''model/att''' ): A_ : Optional[Any] = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/qkv/kernel''' ): A_ : Union[str, Any] = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum A_ : Tuple = state[:, 0, :, :] A_ : Optional[int] = state[:, 1, :, :] A_ : str = state[:, 2, :, :] A_ : Optional[int] = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix A_ : List[str] = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix A_ : List[str] = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix A_ : str = '''model.blocks.%d.self_attn.self_attn.q_proj.weight''' % player A_ : Any = torch.tensor(_UpperCAmelCase ) A_ : str = '''model.blocks.%d.self_attn.self_attn.k_proj.weight''' % player A_ : str = torch.tensor(_UpperCAmelCase ) A_ : Optional[int] = '''model.blocks.%d.self_attn.self_attn.v_proj.weight''' % player A_ : Optional[int] = torch.tensor(_UpperCAmelCase ) elif key_name.endswith('''/o/kernel''' ): A_ : Optional[int] = '''model.blocks.%d.self_attn.self_attn.out_proj.weight''' % player A_ : List[str] = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix A_ : Any = torch.tensor(_UpperCAmelCase ) elif key_name.startswith('''model/an''' ): A_ : List[str] = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): A_ : Any = '''model.blocks.%d.self_attn.norm.bias''' % player A_ : str = vnp.copy() # same because it is one dimensional A_ : Optional[int] = torch.tensor(_UpperCAmelCase ) elif key_name.endswith('''/g''' ): A_ : Tuple = '''model.blocks.%d.self_attn.norm.weight''' % player A_ : Dict = vnp.copy() # same because it is one dimensional A_ : Optional[int] = torch.tensor(_UpperCAmelCase ) elif ( key_name.startswith('''model/wte''' ) or key_name.startswith('''model/wpe''' ) or key_name.startswith('''model/ete''' ) ): A_ : Optional[int] = {'''wte''': '''embed_tokens''', '''wpe''': '''position_embeddings''', '''ete''': '''extra_position_embeddings'''}[ key_name[-3:] ] A_ : Tuple = '''model.%s.weight''' % nlayer A_ : Any = vnp.copy() # same in embedded A_ : Dict = torch.tensor(_UpperCAmelCase ) if key_name.startswith('''model/wte''' ): A_ : int = '''lm_head.weight''' A_ : int = vnp.copy() # same in embedded A_ : int = torch.tensor(_UpperCAmelCase ) elif key_name.startswith('''model/wob''' ): A_ : Tuple = '''final_logits_bias''' A_ : Tuple = vnp.copy() # same in embedded A_ : str = state.reshape((1, -1) ) A_ : List[str] = torch.tensor(_UpperCAmelCase ) elif key_name == "model/dense/kernel": A_ : List[Any] = '''model.last_project.weight''' A_ : Dict = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix A_ : Tuple = torch.tensor(_UpperCAmelCase ) elif key_name == "model/dense_1/bias": A_ : Tuple = '''model.last_project.bias''' A_ : List[Any] = vnp.copy() # same because it is one dimensional A_ : Any = torch.tensor(_UpperCAmelCase ) torch.save(_UpperCAmelCase , args.output ) if __name__ == "__main__": _lowerCamelCase : Optional[Any] = argparse.ArgumentParser( description='model converter.', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('--tf_model_dir', metavar='PATH', type=str, required=True, help='import model') parser.add_argument('--output', metavar='PATH', type=str, required=True, help='output model') _lowerCamelCase : Any = parser.parse_args() convert_tf_gptsan_to_pt(args)
167
"""simple docstring""" from __future__ import annotations import csv import requests from bsa import BeautifulSoup def lowercase_ ( _UpperCAmelCase = "" ): """simple docstring""" A_ : Optional[int] = url or '''https://www.imdb.com/chart/top/?ref_=nv_mv_250''' A_ : str = BeautifulSoup(requests.get(_UpperCAmelCase ).text , '''html.parser''' ) A_ : List[Any] = soup.find_all('''td''' , attrs='''titleColumn''' ) A_ : List[str] = soup.find_all('''td''' , class_='''ratingColumn imdbRating''' ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(_UpperCAmelCase , _UpperCAmelCase ) } def lowercase_ ( _UpperCAmelCase = "IMDb_Top_250_Movies.csv" ): """simple docstring""" A_ : Any = get_imdb_top_aaa_movies() with open(_UpperCAmelCase , '''w''' , newline='''''' ) as out_file: A_ : List[Any] = csv.writer(_UpperCAmelCase ) writer.writerow(['''Movie title''', '''IMDb rating'''] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
167
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase ( self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _UpperCAmelCase ( self ) -> Any: _a = 1 _a = 3 _a = (32, 32) _a = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__UpperCAmelCase ) return image @property def _UpperCAmelCase ( self ) -> Union[str, Any]: torch.manual_seed(0 ) _a = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=__UpperCAmelCase , only_cross_attention=(True, True, False) , num_class_embeds=100 , ) return model @property def _UpperCAmelCase ( self ) -> Optional[int]: torch.manual_seed(0 ) _a = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def _UpperCAmelCase ( self ) -> Any: torch.manual_seed(0 ) _a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=512 , ) return CLIPTextModel(__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Any: _a = '''cpu''' # ensure determinism for the device-dependent torch.Generator _a = self.dummy_cond_unet_upscale _a = DDPMScheduler() _a = DDIMScheduler(prediction_type='''v_prediction''' ) _a = self.dummy_vae _a = self.dummy_text_encoder _a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _a = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _a = Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert('''RGB''' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk _a = StableDiffusionUpscalePipeline( unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , max_noise_level=350 , ) _a = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _a = '''A painting of a squirrel eating a burger''' _a = torch.Generator(device=__UpperCAmelCase ).manual_seed(0 ) _a = sd_pipe( [prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) _a = output.images _a = torch.Generator(device=__UpperCAmelCase ).manual_seed(0 ) _a = sd_pipe( [prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , return_dict=__UpperCAmelCase , )[0] _a = image[0, -3:, -3:, -1] _a = image_from_tuple[0, -3:, -3:, -1] _a = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) _a = np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _UpperCAmelCase ( self ) -> Optional[Any]: _a = '''cpu''' # ensure determinism for the device-dependent torch.Generator _a = self.dummy_cond_unet_upscale _a = DDPMScheduler() _a = DDIMScheduler(prediction_type='''v_prediction''' ) _a = self.dummy_vae _a = self.dummy_text_encoder _a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _a = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _a = Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert('''RGB''' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk _a = StableDiffusionUpscalePipeline( unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , max_noise_level=350 , ) _a = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _a = '''A painting of a squirrel eating a burger''' _a = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) _a = output.images assert image.shape[0] == 2 _a = torch.Generator(device=__UpperCAmelCase ).manual_seed(0 ) _a = sd_pipe( [prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) _a = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def _UpperCAmelCase ( self ) -> Tuple: _a = self.dummy_cond_unet_upscale _a = DDPMScheduler() _a = DDIMScheduler(prediction_type='''v_prediction''' ) _a = self.dummy_vae _a = self.dummy_text_encoder _a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _a = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _a = Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert('''RGB''' ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 _a = unet.half() _a = text_encoder.half() # make sure here that pndm scheduler skips prk _a = StableDiffusionUpscalePipeline( unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , max_noise_level=350 , ) _a = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _a = '''A painting of a squirrel eating a burger''' _a = torch.manual_seed(0 ) _a = sd_pipe( [prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=2 , output_type='''np''' , ).images _a = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase ( self ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self ) -> Dict: _a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) _a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale''' '''/upsampled_cat.npy''' ) _a = '''stabilityai/stable-diffusion-x4-upscaler''' _a = StableDiffusionUpscalePipeline.from_pretrained(__UpperCAmelCase ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) pipe.enable_attention_slicing() _a = '''a cat sitting on a park bench''' _a = torch.manual_seed(0 ) _a = pipe( prompt=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , output_type='''np''' , ) _a = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1e-3 def _UpperCAmelCase ( self ) -> Dict: _a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) _a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale''' '''/upsampled_cat_fp16.npy''' ) _a = '''stabilityai/stable-diffusion-x4-upscaler''' _a = StableDiffusionUpscalePipeline.from_pretrained( __UpperCAmelCase , torch_dtype=torch.floataa , ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) pipe.enable_attention_slicing() _a = '''a cat sitting on a park bench''' _a = torch.manual_seed(0 ) _a = pipe( prompt=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , output_type='''np''' , ) _a = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5e-1 def _UpperCAmelCase ( self ) -> List[str]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) _a = '''stabilityai/stable-diffusion-x4-upscaler''' _a = StableDiffusionUpscalePipeline.from_pretrained( __UpperCAmelCase , torch_dtype=torch.floataa , ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _a = '''a cat sitting on a park bench''' _a = torch.manual_seed(0 ) _a = pipe( prompt=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=5 , output_type='''np''' , ) _a = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
363
"""simple docstring""" import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def A_ ( _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Tuple, _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Optional[int] ): """simple docstring""" _a = StableDiffusionPipeline.from_pretrained(_lowerCAmelCase, torch_dtype=torch.floataa ) # load LoRA weight from .safetensors _a = load_file(_lowerCAmelCase ) _a = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: _a = key.split('''.''' )[0].split(LORA_PREFIX_TEXT_ENCODER + '''_''' )[-1].split('''_''' ) _a = pipeline.text_encoder else: _a = key.split('''.''' )[0].split(LORA_PREFIX_UNET + '''_''' )[-1].split('''_''' ) _a = pipeline.unet # find the target layer _a = layer_infos.pop(0 ) while len(_lowerCAmelCase ) > -1: try: _a = curr_layer.__getattr__(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: _a = layer_infos.pop(0 ) elif len(_lowerCAmelCase ) == 0: break except Exception: if len(_lowerCAmelCase ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: _a = layer_infos.pop(0 ) _a = [] if "lora_down" in key: pair_keys.append(key.replace('''lora_down''', '''lora_up''' ) ) pair_keys.append(_lowerCAmelCase ) else: pair_keys.append(_lowerCAmelCase ) pair_keys.append(key.replace('''lora_up''', '''lora_down''' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: _a = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) _a = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(_lowerCAmelCase, _lowerCAmelCase ).unsqueeze(2 ).unsqueeze(3 ) else: _a = state_dict[pair_keys[0]].to(torch.floataa ) _a = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(_lowerCAmelCase, _lowerCAmelCase ) # update visited list for item in pair_keys: visited.append(_lowerCAmelCase ) return pipeline if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument( '''--base_model_path''', default=None, type=str, required=True, help='''Path to the base model in diffusers format.''' ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--lora_prefix_unet''', default='''lora_unet''', type=str, help='''The prefix of UNet weight in safetensors''' ) parser.add_argument( '''--lora_prefix_text_encoder''', default='''lora_te''', type=str, help='''The prefix of text encoder weight in safetensors''', ) parser.add_argument('''--alpha''', default=0.75, type=float, help='''The merging ratio in W = W0 + alpha * deltaW''') parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''' ) parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') __snake_case = parser.parse_args() __snake_case = args.base_model_path __snake_case = args.checkpoint_path __snake_case = args.dump_path __snake_case = args.lora_prefix_unet __snake_case = args.lora_prefix_text_encoder __snake_case = args.alpha __snake_case = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) __snake_case = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
153
0
import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class _UpperCamelCase : def __init__( self :List[str] , lowerCamelCase :int , lowerCamelCase :Union[str, Any]=13 , lowerCamelCase :Union[str, Any]=7 , lowerCamelCase :Dict=6 , lowerCamelCase :Union[str, Any]=17 , lowerCamelCase :str=23 , lowerCamelCase :List[Any]=11 , lowerCamelCase :List[str]=True , ) -> Optional[Any]: UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = seq_length UpperCAmelCase__ = act_dim UpperCAmelCase__ = state_dim UpperCAmelCase__ = hidden_size UpperCAmelCase__ = max_length UpperCAmelCase__ = is_training def UpperCAmelCase_ ( self :Tuple ) -> Tuple: UpperCAmelCase__ = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) UpperCAmelCase__ = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) UpperCAmelCase__ = floats_tensor((self.batch_size, self.seq_length, 1) ) UpperCAmelCase__ = floats_tensor((self.batch_size, self.seq_length, 1) ) UpperCAmelCase__ = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1000 ) UpperCAmelCase__ = random_attention_mask((self.batch_size, self.seq_length) ) UpperCAmelCase__ = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def UpperCAmelCase_ ( self :Optional[int] ) -> Any: return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def UpperCAmelCase_ ( self :List[Any] , lowerCamelCase :int , lowerCamelCase :List[str] , lowerCamelCase :Optional[int] , lowerCamelCase :List[str] , lowerCamelCase :List[Any] , lowerCamelCase :Union[str, Any] , lowerCamelCase :Dict , ) -> List[Any]: UpperCAmelCase__ = DecisionTransformerModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() UpperCAmelCase__ = model(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def UpperCAmelCase_ ( self :List[Any] ) -> Dict: UpperCAmelCase__ = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) = config_and_inputs UpperCAmelCase__ = { "states": states, "actions": actions, "rewards": rewards, "returns_to_go": returns_to_go, "timesteps": timesteps, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class _UpperCamelCase ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): UpperCAmelCase_ = (DecisionTransformerModel,) if is_torch_available() else () UpperCAmelCase_ = () UpperCAmelCase_ = {"""feature-extraction""": DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids UpperCAmelCase_ = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False def UpperCAmelCase_ ( self :Optional[Any] ) -> int: UpperCAmelCase__ = DecisionTransformerModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=lowerCamelCase , hidden_size=37 ) def UpperCAmelCase_ ( self :Tuple ) -> Tuple: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self :Tuple ) -> int: UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) @slow def UpperCAmelCase_ ( self :Optional[int] ) -> List[Any]: for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ = DecisionTransformerModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def UpperCAmelCase_ ( self :Optional[Any] ) -> Optional[int]: UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(lowerCamelCase ) UpperCAmelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ = [*signature.parameters.keys()] UpperCAmelCase__ = [ "states", "actions", "rewards", "returns_to_go", "timesteps", "attention_mask", ] self.assertListEqual(arg_names[: len(lowerCamelCase )] , lowerCamelCase ) @require_torch class _UpperCamelCase ( unittest.TestCase ): @slow def UpperCAmelCase_ ( self :Any ) -> List[str]: UpperCAmelCase__ = 2 # number of steps of autoregressive prediction we will perform UpperCAmelCase__ = 10 # defined by the RL environment, may be normalized UpperCAmelCase__ = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-expert" ) UpperCAmelCase__ = model.to(lowerCamelCase ) UpperCAmelCase__ = model.config torch.manual_seed(0 ) UpperCAmelCase__ = torch.randn(1 , 1 , config.state_dim ).to(device=lowerCamelCase , dtype=torch.floataa ) # env.reset() UpperCAmelCase__ = torch.tensor( [[0.24_27_93, -0.28_69_30_74, 0.8_74_26_13], [0.67_81_52_74, -0.08_10_10_85, -0.12_95_21_47]] , device=lowerCamelCase ) UpperCAmelCase__ = torch.tensor(lowerCamelCase , device=lowerCamelCase , dtype=torch.floataa ).reshape(1 , 1 , 1 ) UpperCAmelCase__ = state UpperCAmelCase__ = torch.zeros(1 , 0 , config.act_dim , device=lowerCamelCase , dtype=torch.floataa ) UpperCAmelCase__ = torch.zeros(1 , 0 , device=lowerCamelCase , dtype=torch.floataa ) UpperCAmelCase__ = torch.tensor(0 , device=lowerCamelCase , dtype=torch.long ).reshape(1 , 1 ) for step in range(lowerCamelCase ): UpperCAmelCase__ = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=lowerCamelCase )] , dim=1 ) UpperCAmelCase__ = torch.cat([rewards, torch.zeros(1 , 1 , device=lowerCamelCase )] , dim=1 ) UpperCAmelCase__ = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = model( states=lowerCamelCase , actions=lowerCamelCase , rewards=lowerCamelCase , returns_to_go=lowerCamelCase , timesteps=lowerCamelCase , attention_mask=lowerCamelCase , return_dict=lowerCamelCase , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=lowerCamelCase , dtype=torch.floataa ), 1.0, False, {}, ) UpperCAmelCase__ = action_pred[0, -1] UpperCAmelCase__ = torch.cat([states, state] , dim=1 ) UpperCAmelCase__ = returns_to_go[0, -1] - reward UpperCAmelCase__ = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) UpperCAmelCase__ = torch.cat( [timesteps, torch.ones((1, 1) , device=lowerCamelCase , dtype=torch.long ) * (step + 1)] , dim=1 )
169
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowerCAmelCase : List[str] = 1_6 _lowerCAmelCase : List[Any] = 3_2 def lowerCAmelCase ( _lowerCAmelCase : Accelerator , _lowerCAmelCase : int = 16 ): """simple docstring""" UpperCAmelCase__ = AutoTokenizer.from_pretrained("bert-base-cased" ) UpperCAmelCase__ = load_dataset("glue" , "mrpc" ) def tokenize_function(_lowerCAmelCase : List[Any] ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase__ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase__ = datasets.map( _lowerCAmelCase , batched=_lowerCAmelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase__ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_lowerCAmelCase : str ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase__ = 16 elif accelerator.mixed_precision != "no": UpperCAmelCase__ = 8 else: UpperCAmelCase__ = None return tokenizer.pad( _lowerCAmelCase , padding="longest" , max_length=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_tensors="pt" , ) # Instantiate dataloaders. UpperCAmelCase__ = DataLoader( tokenized_datasets["train"] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) UpperCAmelCase__ = DataLoader( tokenized_datasets["validation"] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _lowerCAmelCase : int = mocked_dataloaders # noqa: F811 def lowerCAmelCase ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] ): """simple docstring""" if os.environ.get("TESTING_MOCKED_DATALOADERS" , _lowerCAmelCase ) == "1": UpperCAmelCase__ = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: UpperCAmelCase__ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir ) else: UpperCAmelCase__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase__ = config["lr"] UpperCAmelCase__ = int(config["num_epochs"] ) UpperCAmelCase__ = int(config["seed"] ) UpperCAmelCase__ = int(config["batch_size"] ) set_seed(_lowerCAmelCase ) UpperCAmelCase__ , UpperCAmelCase__ = get_dataloaders(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase__ = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation UpperCAmelCase__ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCAmelCase__ = batch_size // MAX_GPU_BATCH_SIZE UpperCAmelCase__ = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase__ = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=_lowerCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase__ = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase__ = AdamW(params=model.parameters() , lr=_lowerCAmelCase ) # Instantiate scheduler UpperCAmelCase__ = get_linear_schedule_with_warmup( optimizer=_lowerCAmelCase , num_warmup_steps=100 , num_training_steps=(len(_lowerCAmelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: UpperCAmelCase__ = os.path.split(_lowerCAmelCase )[-1].split("." )[0] accelerator.init_trackers(_lowerCAmelCase , _lowerCAmelCase ) # Now we train the model for epoch in range(_lowerCAmelCase ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: UpperCAmelCase__ = 0 for step, batch in enumerate(_lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCAmelCase__ = model(**_lowerCAmelCase ) UpperCAmelCase__ = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() UpperCAmelCase__ = loss / gradient_accumulation_steps accelerator.backward(_lowerCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase__ = model(**_lowerCAmelCase ) UpperCAmelCase__ = outputs.logits.argmax(dim=-1 ) UpperCAmelCase__ , UpperCAmelCase__ = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=_lowerCAmelCase , references=_lowerCAmelCase , ) UpperCAmelCase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , _lowerCAmelCase ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { "accuracy": eval_metric["accuracy"], "f1": eval_metric["f1"], "train_loss": total_loss.item() / len(_lowerCAmelCase ), "epoch": epoch, } , step=_lowerCAmelCase , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def lowerCAmelCase ( ): """simple docstring""" UpperCAmelCase__ = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=_lowerCAmelCase , default=_lowerCAmelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) parser.add_argument( "--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , ) parser.add_argument( "--project_dir" , type=_lowerCAmelCase , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , ) UpperCAmelCase__ = parser.parse_args() UpperCAmelCase__ = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": main()
169
1
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() lowercase__ : List[Any] = logging.get_logger(__name__) def a__ ( lowercase : Tuple ) -> Tuple: """simple docstring""" _UpperCamelCase = torch.load(__SCREAMING_SNAKE_CASE, map_location='''cpu''' ) if "model" in sd.keys(): _UpperCamelCase = torch.load(__SCREAMING_SNAKE_CASE, map_location='''cpu''' )["model"] # pop unnecessary weights _UpperCamelCase = [ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(__SCREAMING_SNAKE_CASE ) _UpperCamelCase = { "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: _UpperCamelCase = sd.pop(__SCREAMING_SNAKE_CASE ) _UpperCamelCase = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: _UpperCamelCase = sd[key] # We split QKV in separate Q,K,V _UpperCamelCase = key.replace('''.qkv_proj.''', '''.q_proj.''' ) _UpperCamelCase = key.replace('''.qkv_proj.''', '''.k_proj.''' ) _UpperCamelCase = key.replace('''.qkv_proj.''', '''.v_proj.''' ) _UpperCamelCase = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 _UpperCamelCase = torch.split(__SCREAMING_SNAKE_CASE, depth // 3, dim=0 ) _UpperCamelCase = q _UpperCamelCase = k _UpperCamelCase = v del sd[key] return sd @torch.no_grad() def a__ ( lowercase : Optional[Any], lowercase : List[str], lowercase : Tuple=None ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = load_checkpoint(__SCREAMING_SNAKE_CASE ) if config is not None: _UpperCamelCase = OPTConfig.from_pretrained(__SCREAMING_SNAKE_CASE ) else: _UpperCamelCase = OPTConfig() _UpperCamelCase = OPTModel(__SCREAMING_SNAKE_CASE ).half().eval() model.load_state_dict(__SCREAMING_SNAKE_CASE ) # Check results Path(__SCREAMING_SNAKE_CASE ).mkdir(exist_ok=__SCREAMING_SNAKE_CASE ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase__ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--fairseq_path', type=str, help=( 'path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:' ' https://huggingface.co/models?other=opt_metasq' ), ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--hf_config', default=None, type=str, help='Define HF config.') lowercase__ : str = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
370
'''simple docstring''' import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : Tuple ) -> int: '''simple docstring''' _UpperCamelCase = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase__ ) ) def snake_case__ ( self : int ) -> Tuple: '''simple docstring''' _UpperCamelCase = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase__ ) ) def snake_case__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' _UpperCamelCase = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowerCAmelCase__ ) ) def snake_case__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' _UpperCamelCase = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase__ ) ) def snake_case__ ( self : Dict ) -> Dict: '''simple docstring''' _UpperCamelCase = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', # Removed: 'text_encoder/model.safetensors', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertFalse(is_safetensors_compatible(lowerCAmelCase__ ) ) def snake_case__ ( self : Any ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] _UpperCamelCase = '''fp16''' self.assertTrue(is_safetensors_compatible(lowerCAmelCase__ , variant=lowerCAmelCase__ ) ) def snake_case__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' _UpperCamelCase = [ '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] _UpperCamelCase = '''fp16''' self.assertTrue(is_safetensors_compatible(lowerCAmelCase__ , variant=lowerCAmelCase__ ) ) def snake_case__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] _UpperCamelCase = '''fp16''' self.assertTrue(is_safetensors_compatible(lowerCAmelCase__ , variant=lowerCAmelCase__ ) ) def snake_case__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] _UpperCamelCase = '''fp16''' self.assertFalse(is_safetensors_compatible(lowerCAmelCase__ , variant=lowerCAmelCase__ ) ) def snake_case__ ( self : Optional[int] ) -> Dict: '''simple docstring''' _UpperCamelCase = [ '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', ] _UpperCamelCase = '''fp16''' self.assertTrue(is_safetensors_compatible(lowerCAmelCase__ , variant=lowerCAmelCase__ ) ) def snake_case__ ( self : Optional[Any] ) -> str: '''simple docstring''' _UpperCamelCase = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] _UpperCamelCase = '''fp16''' self.assertTrue(is_safetensors_compatible(lowerCAmelCase__ , variant=lowerCAmelCase__ ) ) def snake_case__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', # 'text_encoder/model.fp16.safetensors', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] _UpperCamelCase = '''fp16''' self.assertFalse(is_safetensors_compatible(lowerCAmelCase__ , variant=lowerCAmelCase__ ) )
287
0
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { """tensor(bool)""": np.bool_, """tensor(int8)""": np.inta, """tensor(uint8)""": np.uinta, """tensor(int16)""": np.intaa, """tensor(uint16)""": np.uintaa, """tensor(int32)""": np.intaa, """tensor(uint32)""": np.uintaa, """tensor(int64)""": np.intaa, """tensor(uint64)""": np.uintaa, """tensor(float16)""": np.floataa, """tensor(float)""": np.floataa, """tensor(double)""": np.floataa, } class UpperCAmelCase : def __init__(self : Optional[Any] , snake_case__ : Optional[Any]=None , **snake_case__ : Optional[Any] ) -> List[str]: '''simple docstring''' logger.info("`diffusers.OnnxRuntimeModel` is experimental and might change in the future." ) snake_case : Optional[Any] = model snake_case : Dict = kwargs.get("model_save_dir" , snake_case__ ) snake_case : int = kwargs.get("latest_model_name" , snake_case__ ) def __call__(self : Tuple , **snake_case__ : str ) -> List[str]: '''simple docstring''' snake_case : Union[str, Any] = {k: np.array(snake_case__ ) for k, v in kwargs.items()} return self.model.run(snake_case__ , snake_case__ ) @staticmethod def _SCREAMING_SNAKE_CASE (snake_case__ : Union[str, Path] , snake_case__ : Optional[int]=None , snake_case__ : Optional[int]=None ) -> Any: '''simple docstring''' if provider is None: logger.info("No onnxruntime provider specified, using CPUExecutionProvider" ) snake_case : Optional[int] = "CPUExecutionProvider" return ort.InferenceSession(snake_case__ , providers=[provider] , sess_options=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : Union[str, Path] , snake_case__ : Optional[str] = None , **snake_case__ : Any ) -> List[Any]: '''simple docstring''' snake_case : Tuple = file_name if file_name is not None else ONNX_WEIGHTS_NAME snake_case : Any = self.model_save_dir.joinpath(self.latest_model_name ) snake_case : str = Path(snake_case__ ).joinpath(snake_case__ ) try: shutil.copyfile(snake_case__ , snake_case__ ) except shutil.SameFileError: pass # copy external weights (for models >2GB) snake_case : List[str] = self.model_save_dir.joinpath(snake_case__ ) if src_path.exists(): snake_case : Tuple = Path(snake_case__ ).joinpath(snake_case__ ) try: shutil.copyfile(snake_case__ , snake_case__ ) except shutil.SameFileError: pass def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : Union[str, os.PathLike] , **snake_case__ : Optional[int] , ) -> str: '''simple docstring''' if os.path.isfile(snake_case__ ): logger.error(f"""Provided path ({save_directory}) should be a directory, not a file""" ) return os.makedirs(snake_case__ , exist_ok=snake_case__ ) # saving model weights/files self._save_pretrained(snake_case__ , **snake_case__ ) @classmethod def _SCREAMING_SNAKE_CASE (cls : Tuple , snake_case__ : Union[str, Path] , snake_case__ : Optional[Union[bool, str, None]] = None , snake_case__ : Optional[Union[str, None]] = None , snake_case__ : bool = False , snake_case__ : Optional[str] = None , snake_case__ : Optional[str] = None , snake_case__ : Optional[str] = None , snake_case__ : Optional["ort.SessionOptions"] = None , **snake_case__ : Tuple , ) -> Tuple: '''simple docstring''' snake_case : List[str] = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(snake_case__ ): snake_case : Any = OnnxRuntimeModel.load_model( os.path.join(snake_case__ , snake_case__ ) , provider=snake_case__ , sess_options=snake_case__ ) snake_case : Union[str, Any] = Path(snake_case__ ) # load model from hub else: # download model snake_case : Dict = hf_hub_download( repo_id=snake_case__ , filename=snake_case__ , use_auth_token=snake_case__ , revision=snake_case__ , cache_dir=snake_case__ , force_download=snake_case__ , ) snake_case : List[Any] = Path(snake_case__ ).parent snake_case : Union[str, Any] = Path(snake_case__ ).name snake_case : Dict = OnnxRuntimeModel.load_model(snake_case__ , provider=snake_case__ , sess_options=snake_case__ ) return cls(model=snake_case__ , **snake_case__ ) @classmethod def _SCREAMING_SNAKE_CASE (cls : Optional[Any] , snake_case__ : Union[str, Path] , snake_case__ : bool = True , snake_case__ : Optional[str] = None , snake_case__ : Optional[str] = None , **snake_case__ : Dict , ) -> Union[str, Any]: '''simple docstring''' snake_case : Dict = None if len(str(snake_case__ ).split("@" ) ) == 2: snake_case , snake_case : int = model_id.split("@" ) return cls._from_pretrained( model_id=snake_case__ , revision=snake_case__ , cache_dir=snake_case__ , force_download=snake_case__ , use_auth_token=snake_case__ , **snake_case__ , )
59
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy __lowerCamelCase = logging.getLogger(__name__) __lowerCamelCase = """pytorch_model.bin""" @dataclasses.dataclass class UpperCAmelCase : A__ : str = dataclasses.field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."} ) A__ : Optional[str] = dataclasses.field( default=A_ ,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co."} ,) @dataclasses.dataclass class UpperCAmelCase : A__ : str = dataclasses.field(metadata={"help": "A csv or a json file containing the training data."} ) A__ : str = dataclasses.field(metadata={"help": "A csv or a json file containing the data to predict on."} ) A__ : Optional[str] = dataclasses.field( default=A_ ,metadata={"help": "A csv or a json file containing the validation data."} ) A__ : Optional[str] = dataclasses.field( default=A_ ,metadata={"help": "The name of the task to train on."} ,) A__ : Optional[List[str]] = dataclasses.field( default=A_ ,metadata={"help": "The list of labels for the task."} ) @dataclasses.dataclass class UpperCAmelCase : A__ : str = dataclasses.field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."} ) A__ : Optional[str] = dataclasses.field( default="accuracy" ,metadata={"help": "The evaluation metric used for the task."} ) A__ : Optional[str] = dataclasses.field( default="no" ,metadata={ "help": "The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]" } ,) A__ : Optional[int] = dataclasses.field( default=10 ,metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} ,) A__ : Optional[float] = dataclasses.field( default=0.0 ,metadata={ "help": "How much the specified evaluation metric must improve to satisfy early stopping conditions." } ,) A__ : Optional[bool] = dataclasses.field( default=A_ ,metadata={"help": "Whether to filter the pseudo-labeled data based on the confidence score."} ,) A__ : Optional[bool] = dataclasses.field( default=A_ ,metadata={"help": "Whether to filter the pseudo-labeled data based on the validation performance."} ,) A__ : Optional[bool] = dataclasses.field( default=A_ ,metadata={"help": "Whether to fine-tune on labeled data after pseudo training."} ,) A__ : Optional[float] = dataclasses.field( default=0.0 ,metadata={"help": "Confidence threshold for pseudo-labeled data filtering."} ,) A__ : Optional[int] = dataclasses.field( default=1_00 ,metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} ,) A__ : Optional[int] = dataclasses.field( default=A_ ,metadata={"help": "Random seed for initialization."} ,) def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] ): snake_case : Tuple = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: snake_case : Optional[int] = dataset.filter(lambda __lowerCamelCase : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 snake_case : int = int(eval_result * len(__lowerCamelCase ) ) print(__lowerCamelCase ) snake_case : List[str] = dataset.sort("probability" , reverse=__lowerCamelCase ) snake_case : Tuple = dataset.select(range(__lowerCamelCase ) ) snake_case : List[Any] = dataset.remove_columns(["label", "probability"] ) snake_case : Any = dataset.rename_column("prediction" , "label" ) snake_case : str = dataset.map(lambda __lowerCamelCase : {"label": idalabel[example["label"]]} ) snake_case : List[str] = dataset.shuffle(seed=args.seed ) snake_case : int = os.path.join(__lowerCamelCase , f"""train_pseudo.{args.data_file_extension}""" ) if args.data_file_extension == "csv": dataset.to_csv(__lowerCamelCase , index=__lowerCamelCase ) else: dataset.to_json(__lowerCamelCase ) def UpperCamelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple , **__lowerCamelCase : List[Any] ): snake_case : int = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() snake_case : Dict = STModelArguments(model_name_or_path=__lowerCamelCase ) snake_case : Tuple = STDataArguments(train_file=__lowerCamelCase , infer_file=__lowerCamelCase ) snake_case : str = STTrainingArguments(output_dir=__lowerCamelCase ) snake_case : int = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(__lowerCamelCase ).items(): setattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for key, value in kwargs.items(): if hasattr(__lowerCamelCase , __lowerCamelCase ): setattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Sanity checks snake_case : List[str] = {} snake_case : Optional[int] = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None snake_case : str = args.train_file snake_case : Tuple = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None snake_case : Tuple = args.eval_file for key in data_files: snake_case : List[Any] = data_files[key].split("." )[-1] assert extension in ["csv", "json"], f"""`{key}_file` should be a csv or a json file.""" if args.data_file_extension is None: snake_case : Union[str, Any] = extension else: assert extension == args.data_file_extension, f"""`{key}_file` should be a {args.data_file_extension} file`.""" assert ( args.eval_metric in datasets.list_metrics() ), f"""{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.""" # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info("Creating the initial data directory for self-training..." ) snake_case : List[Any] = f"""{args.output_dir}/self-train_iter-{{}}""".format snake_case : Optional[int] = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=__lowerCamelCase ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) accelerator.wait_for_everyone() snake_case : Dict = None snake_case : Union[str, Any] = None snake_case : Tuple = 0 snake_case : List[Any] = False # Show the progress bar snake_case : List[Any] = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): snake_case : str = data_dir_format(__lowerCamelCase ) assert os.path.exists(__lowerCamelCase ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 snake_case : Dict = os.path.join(__lowerCamelCase , "stage-1" ) snake_case : Optional[Any] = { "accelerator": accelerator, "model_name_or_path": args.model_name_or_path, "cache_dir": args.cache_dir, "do_train": True, "train_file": data_files["train"] if iteration == 0 else data_files["train_pseudo"], "do_eval": True if args.eval_file is not None else False, "eval_file": data_files["eval"], "do_predict": True, "infer_file": data_files["infer"], "task_name": args.task_name, "label_list": args.label_list, "output_dir": current_output_dir, "eval_metric": args.eval_metric, "evaluation_strategy": args.evaluation_strategy, "early_stopping_patience": args.early_stopping_patience, "early_stopping_threshold": args.early_stopping_threshold, "seed": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(__lowerCamelCase , __lowerCamelCase ): arguments_dict.update({key: value} ) snake_case : int = os.path.join(__lowerCamelCase , "best-checkpoint" , __lowerCamelCase ) if os.path.exists(__lowerCamelCase ): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1." , __lowerCamelCase , __lowerCamelCase , ) else: logger.info("***** Running self-training: iteration: %d, stage: 1 *****" , __lowerCamelCase ) finetune(**__lowerCamelCase ) accelerator.wait_for_everyone() assert os.path.exists(__lowerCamelCase ) logger.info("Self-training job completed: iteration: %d, stage: 1." , __lowerCamelCase ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data snake_case : str = os.path.join(__lowerCamelCase , "best-checkpoint" ) snake_case : Dict = os.path.join(__lowerCamelCase , "stage-2" ) # Update arguments_dict snake_case : List[str] = model_path snake_case : Optional[Any] = data_files["train"] snake_case : Optional[Any] = current_output_dir snake_case : Union[str, Any] = os.path.join(__lowerCamelCase , "best-checkpoint" , __lowerCamelCase ) if os.path.exists(__lowerCamelCase ): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2." , __lowerCamelCase , __lowerCamelCase , ) else: logger.info("***** Running self-training: iteration: %d, stage: 2 *****" , __lowerCamelCase ) finetune(**__lowerCamelCase ) accelerator.wait_for_everyone() assert os.path.exists(__lowerCamelCase ) logger.info("Self-training job completed: iteration: %d, stage: 2." , __lowerCamelCase ) snake_case : int = iteration snake_case : Tuple = data_dir_format(iteration + 1 ) snake_case : Tuple = AutoConfig.from_pretrained(os.path.join(__lowerCamelCase , "best-checkpoint" ) ) snake_case : Optional[int] = config.idalabel snake_case : List[Any] = os.path.join(__lowerCamelCase , "eval_results_best-checkpoint.json" ) snake_case : Union[str, Any] = os.path.join(__lowerCamelCase , "test_results_best-checkpoint.json" ) assert os.path.exists(__lowerCamelCase ) with open(__lowerCamelCase , "r" ) as f: snake_case : Dict = float(json.load(__lowerCamelCase )[args.eval_metric] ) snake_case : Optional[int] = os.path.join(__lowerCamelCase , "infer_output_best-checkpoint.csv" ) assert os.path.exists(__lowerCamelCase ) # Loading the dataset from local csv or json files. snake_case : Optional[Any] = load_dataset(args.data_file_extension , data_files={"data": data_files["infer"]} )["data"] snake_case : Dict = load_dataset("csv" , data_files={"data": infer_output_file} )["data"] if accelerator.is_main_process: os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) shutil.copy(__lowerCamelCase , os.path.join(__lowerCamelCase , f"""eval_results_iter-{iteration}.json""" ) ) if os.path.exists(__lowerCamelCase ): shutil.copy(__lowerCamelCase , os.path.join(__lowerCamelCase , f"""test_results_iter-{iteration}.json""" ) ) create_pseudo_labeled_data(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) accelerator.wait_for_everyone() snake_case : str = os.path.join(__lowerCamelCase , f"""train_pseudo.{args.data_file_extension}""" ) if args.evaluation_strategy != IntervalStrategy.NO.value: snake_case : List[Any] = eval_result if best_iteration is None: snake_case : List[Any] = new_iteration snake_case : int = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: snake_case : int = new_iteration snake_case : Union[str, Any] = new_eval_result snake_case : str = 0 else: if new_eval_result == best_eval_result: snake_case : Any = new_iteration snake_case : Union[str, Any] = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: snake_case : Tuple = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("Best iteration: %d" , __lowerCamelCase ) logger.info("Best evaluation result: %s = %f" , args.eval_metric , __lowerCamelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(__lowerCamelCase , f"""eval_results_iter-{iteration}.json""" ) , os.path.join(__lowerCamelCase , "eval_results_best-iteration.json" ) , ) else: # Assume that the last iteration is the best logger.info("Best iteration: %d" , args.max_selftrain_iterations - 1 ) logger.info("Best evaluation result: %s = %f" , args.eval_metric , __lowerCamelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(__lowerCamelCase , f"""eval_results_iter-{args.max_selftrain_iterations - 1}.json""" ) , os.path.join(__lowerCamelCase , "eval_results_best-iteration.json" ) , )
59
1
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) _UpperCAmelCase = logging.getLogger(__name__) class snake_case_ ( __lowercase ): def UpperCAmelCase__ ( self : List[str] , _snake_case : Union[str, Any] , _snake_case : Any , _snake_case : Union[str, Any]=None , _snake_case : Union[str, Any]=None )->Tuple: '''simple docstring''' __lowerCAmelCase : List[Any] = self.layer[current_layer](_snake_case , _snake_case , head_mask[current_layer] ) __lowerCAmelCase : List[Any] = layer_outputs[0] return hidden_states @add_start_docstrings( 'The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.' ,__lowercase ,) class snake_case_ ( __lowercase ): def __init__( self : List[Any] , _snake_case : str )->Dict: '''simple docstring''' super().__init__(_snake_case ) __lowerCAmelCase : str = BertEncoderWithPabee(_snake_case ) self.init_weights() __lowerCAmelCase : str = 0 __lowerCAmelCase : Dict = 0 __lowerCAmelCase : Union[str, Any] = 0 __lowerCAmelCase : int = 0 def UpperCAmelCase__ ( self : Optional[int] , _snake_case : str )->Dict: '''simple docstring''' __lowerCAmelCase : str = threshold def UpperCAmelCase__ ( self : Union[str, Any] , _snake_case : List[str] )->Optional[int]: '''simple docstring''' __lowerCAmelCase : int = patience def UpperCAmelCase__ ( self : str )->Dict: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = 0 __lowerCAmelCase : str = 0 def UpperCAmelCase__ ( self : List[str] )->List[str]: '''simple docstring''' __lowerCAmelCase : int = self.inference_layers_num / self.inference_instances_num __lowerCAmelCase : str = ( F'''*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =''' F''' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***''' ) print(_snake_case ) @add_start_docstrings_to_model_forward(_snake_case ) def UpperCAmelCase__ ( self : Union[str, Any] , _snake_case : Tuple=None , _snake_case : Tuple=None , _snake_case : Union[str, Any]=None , _snake_case : Optional[int]=None , _snake_case : Optional[Any]=None , _snake_case : Dict=None , _snake_case : int=None , _snake_case : Optional[int]=None , _snake_case : Dict=None , _snake_case : Any=None , _snake_case : Tuple=False , )->int: '''simple docstring''' if input_ids is not None and inputs_embeds is not None: raise ValueError("""You cannot specify both input_ids and inputs_embeds at the same time""" ) elif input_ids is not None: __lowerCAmelCase : Any = input_ids.size() elif inputs_embeds is not None: __lowerCAmelCase : Optional[Any] = inputs_embeds.size()[:-1] else: raise ValueError("""You have to specify either input_ids or inputs_embeds""" ) __lowerCAmelCase : Dict = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __lowerCAmelCase : Dict = torch.ones(_snake_case , device=_snake_case ) if token_type_ids is None: __lowerCAmelCase : List[Any] = torch.zeros(_snake_case , dtype=torch.long , device=_snake_case ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __lowerCAmelCase : torch.Tensor = self.get_extended_attention_mask(_snake_case , _snake_case , _snake_case ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Union[str, Any] = encoder_hidden_states.size() __lowerCAmelCase : List[str] = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: __lowerCAmelCase : str = torch.ones(_snake_case , device=_snake_case ) __lowerCAmelCase : List[Any] = self.invert_attention_mask(_snake_case ) else: __lowerCAmelCase : Tuple = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __lowerCAmelCase : Dict = self.get_head_mask(_snake_case , self.config.num_hidden_layers ) __lowerCAmelCase : List[Any] = self.embeddings( input_ids=_snake_case , position_ids=_snake_case , token_type_ids=_snake_case , inputs_embeds=_snake_case ) __lowerCAmelCase : Any = embedding_output if self.training: __lowerCAmelCase : int = [] for i in range(self.config.num_hidden_layers ): __lowerCAmelCase : List[Any] = self.encoder.adaptive_forward( _snake_case , current_layer=_snake_case , attention_mask=_snake_case , head_mask=_snake_case ) __lowerCAmelCase : Optional[int] = self.pooler(_snake_case ) __lowerCAmelCase : Union[str, Any] = output_layers[i](output_dropout(_snake_case ) ) res.append(_snake_case ) elif self.patience == 0: # Use all layers for inference __lowerCAmelCase : Optional[int] = self.encoder( _snake_case , attention_mask=_snake_case , head_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , ) __lowerCAmelCase : Dict = self.pooler(encoder_outputs[0] ) __lowerCAmelCase : Optional[Any] = [output_layers[self.config.num_hidden_layers - 1](_snake_case )] else: __lowerCAmelCase : Optional[int] = 0 __lowerCAmelCase : Any = None __lowerCAmelCase : Tuple = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 __lowerCAmelCase : Union[str, Any] = self.encoder.adaptive_forward( _snake_case , current_layer=_snake_case , attention_mask=_snake_case , head_mask=_snake_case ) __lowerCAmelCase : List[Any] = self.pooler(_snake_case ) __lowerCAmelCase : Tuple = output_layers[i](_snake_case ) if regression: __lowerCAmelCase : Union[str, Any] = logits.detach() if patient_result is not None: __lowerCAmelCase : Any = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: __lowerCAmelCase : int = 0 else: __lowerCAmelCase : Optional[Any] = logits.detach().argmax(dim=1 ) if patient_result is not None: __lowerCAmelCase : Optional[int] = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(_snake_case ) ): patient_counter += 1 else: __lowerCAmelCase : Optional[Any] = 0 __lowerCAmelCase : int = logits if patient_counter == self.patience: break __lowerCAmelCase : Any = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( 'Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. ' ,__lowercase ,) class snake_case_ ( __lowercase ): def __init__( self : Dict , _snake_case : Tuple )->Union[str, Any]: '''simple docstring''' super().__init__(_snake_case ) __lowerCAmelCase : Any = config.num_labels __lowerCAmelCase : Optional[Any] = BertModelWithPabee(_snake_case ) __lowerCAmelCase : Union[str, Any] = nn.Dropout(config.hidden_dropout_prob ) __lowerCAmelCase : Dict = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(_snake_case ) def UpperCAmelCase__ ( self : Dict , _snake_case : int=None , _snake_case : List[str]=None , _snake_case : str=None , _snake_case : str=None , _snake_case : List[str]=None , _snake_case : Tuple=None , _snake_case : Dict=None , )->Optional[int]: '''simple docstring''' __lowerCAmelCase : Tuple = self.bert( input_ids=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , position_ids=_snake_case , head_mask=_snake_case , inputs_embeds=_snake_case , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) __lowerCAmelCase : List[str] = (logits[-1],) if labels is not None: __lowerCAmelCase : Optional[Any] = None __lowerCAmelCase : List[str] = 0 for ix, logits_item in enumerate(_snake_case ): if self.num_labels == 1: # We are doing regression __lowerCAmelCase : Union[str, Any] = MSELoss() __lowerCAmelCase : str = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: __lowerCAmelCase : Dict = CrossEntropyLoss() __lowerCAmelCase : Optional[int] = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: __lowerCAmelCase : Optional[Any] = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 __lowerCAmelCase : List[str] = (total_loss / total_weights,) + outputs return outputs
232
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = {'vocab_file': 'vocab.txt', 'emoji_file': 'emoji.json'} _UpperCAmelCase = { 'vocab_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt', }, 'emoji_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json', }, } _UpperCAmelCase = { 'abeja/gpt-neox-japanese-2.7b': 2048, } def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :Optional[int] ) -> Optional[Any]: with open(SCREAMING_SNAKE_CASE , """r""" , encoding="""utf-8""" ) as f: __lowerCAmelCase : int = json.loads(f.read() ) __lowerCAmelCase : Dict = collections.OrderedDict() __lowerCAmelCase : str = collections.OrderedDict() __lowerCAmelCase : Union[str, Any] = collections.OrderedDict() with open(SCREAMING_SNAKE_CASE , """r""" , encoding="""utf-8""" ) as f: __lowerCAmelCase : Tuple = f.readlines() __lowerCAmelCase : Tuple = [[t.rstrip("""\n""" )] if (t == """,""" or """,""" not in t) else t.rstrip("""\n""" ).split(""",""" ) for t in token] for idx, b in enumerate(SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Dict = b __lowerCAmelCase : Dict = idx for wd in b: __lowerCAmelCase : List[str] = idx return vocab, raw_vocab, ids_to_tokens, emoji class snake_case_ ( __lowercase ): A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = ['input_ids', 'attention_mask'] def __init__( self : str , _snake_case : Union[str, Any] , _snake_case : Optional[Any] , _snake_case : Any="<|endoftext|>" , _snake_case : str="<|endoftext|>" , _snake_case : str="<|startoftext|>" , _snake_case : List[Any]="<|endoftext|>" , _snake_case : str=False , **_snake_case : List[Any] , )->Union[str, Any]: '''simple docstring''' super().__init__( unk_token=_snake_case , pad_token=_snake_case , bos_token=_snake_case , eos_token=_snake_case , do_clean_text=_snake_case , **_snake_case , ) if not os.path.isfile(_snake_case ): raise ValueError( F'''Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained''' """ model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`""" ) if not os.path.isfile(_snake_case ): raise ValueError( F'''Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google''' """ pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`""" ) __lowerCAmelCase : Any = do_clean_text __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Union[str, Any] = load_vocab_and_emoji(_snake_case , _snake_case ) __lowerCAmelCase : int = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def UpperCAmelCase__ ( self : int )->str: '''simple docstring''' return len(self.raw_vocab ) def UpperCAmelCase__ ( self : Tuple )->Any: '''simple docstring''' return dict(self.raw_vocab , **self.added_tokens_encoder ) def UpperCAmelCase__ ( self : Any , _snake_case : str )->Optional[int]: '''simple docstring''' return self.subword_tokenizer.tokenize(_snake_case , clean=self.do_clean_text ) def UpperCAmelCase__ ( self : Optional[Any] , _snake_case : Optional[Any] )->Any: '''simple docstring''' return self.vocab.get(_snake_case , self.vocab.get(self.unk_token ) ) def UpperCAmelCase__ ( self : int , _snake_case : Any )->int: '''simple docstring''' return self.subword_tokenizer.convert_id_to_token(_snake_case ) def UpperCAmelCase__ ( self : Optional[int] , _snake_case : int )->List[Any]: '''simple docstring''' __lowerCAmelCase : str = """""".join(_snake_case ).strip() return out_string def UpperCAmelCase__ ( self : List[str] , _snake_case : "Conversation" )->List[int]: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_snake_case , add_special_tokens=_snake_case ) + [self.eos_token_id] ) if len(_snake_case ) > self.model_max_length: __lowerCAmelCase : List[str] = input_ids[-self.model_max_length :] return input_ids def UpperCAmelCase__ ( self : Optional[Any] , _snake_case : str , _snake_case : Optional[str] = None )->Tuple[str]: '''simple docstring''' __lowerCAmelCase : Optional[Any] = 0 if os.path.isdir(_snake_case ): __lowerCAmelCase : Dict = os.path.join( _snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __lowerCAmelCase : List[Any] = os.path.join( _snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""emoji_file"""] ) else: __lowerCAmelCase : Union[str, Any] = ( (filename_prefix + """-""" if filename_prefix else """""") + save_directory + VOCAB_FILES_NAMES["""vocab_file"""] ) __lowerCAmelCase : Dict = ( (filename_prefix + """-""" if filename_prefix else """""") + save_directory + VOCAB_FILES_NAMES["""emoji_file"""] ) with open(_snake_case , """w""" , encoding="""utf-8""" ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' """ Please check that the vocabulary is not corrupted!""" ) __lowerCAmelCase : List[str] = token_index writer.write(""",""".join(_snake_case ) + """\n""" ) index += 1 with open(_snake_case , """w""" , encoding="""utf-8""" ) as writer: json.dump(self.emoji , _snake_case ) return vocab_file, emoji_file class snake_case_ ( __lowercase ): def __init__( self : Optional[Any] , _snake_case : str , _snake_case : Union[str, Any] , _snake_case : Optional[int] )->List[Any]: '''simple docstring''' __lowerCAmelCase : Optional[Any] = vocab # same as swe __lowerCAmelCase : str = ids_to_tokens # same as bpe __lowerCAmelCase : Dict = emoji __lowerCAmelCase : int = np.max([len(_snake_case ) for w in self.vocab.keys()] ) __lowerCAmelCase : str = re.compile(R"""(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)""" ) __lowerCAmelCase : Optional[Any] = re.compile(R"""[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*""" ) __lowerCAmelCase : Tuple = re.compile(R"""[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}""" ) __lowerCAmelCase : Optional[Any] = re.compile( R"""([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*""" ) __lowerCAmelCase : Union[str, Any] = re.compile( R"""(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*""" ) __lowerCAmelCase : str = re.compile( R"""((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*""" ) __lowerCAmelCase : List[Any] = """─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿""" __lowerCAmelCase : Union[str, Any] = """▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟""" __lowerCAmelCase : str = str.maketrans({k: """<BLOCK>""" for k in keisen + blocks} ) def __len__( self : int )->int: '''simple docstring''' return len(self.ids_to_tokens ) def UpperCAmelCase__ ( self : List[str] , _snake_case : Any )->str: '''simple docstring''' __lowerCAmelCase : List[str] = self.content_repattera.sub("""<URL>""" , _snake_case ) __lowerCAmelCase : Tuple = self.content_repattera.sub("""<EMAIL>""" , _snake_case ) __lowerCAmelCase : Optional[Any] = self.content_repattera.sub("""<TEL>""" , _snake_case ) __lowerCAmelCase : str = self.content_repattera.sub("""<DATE>""" , _snake_case ) __lowerCAmelCase : Tuple = self.content_repattera.sub("""<DATE>""" , _snake_case ) __lowerCAmelCase : Tuple = self.content_repattera.sub("""<PRICE>""" , _snake_case ) __lowerCAmelCase : List[Any] = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: __lowerCAmelCase : str = content.replace("""<BLOCK><BLOCK>""" , """<BLOCK>""" ) return content def UpperCAmelCase__ ( self : str , _snake_case : List[Any] , _snake_case : Optional[int]=False )->int: '''simple docstring''' __lowerCAmelCase : Optional[int] = text.replace(""" """ , """<SP>""" ) __lowerCAmelCase : Optional[int] = text.replace(""" """ , """<SP>""" ) __lowerCAmelCase : Union[str, Any] = text.replace("""\r\n""" , """<BR>""" ) __lowerCAmelCase : Tuple = text.replace("""\n""" , """<BR>""" ) __lowerCAmelCase : List[str] = text.replace("""\r""" , """<BR>""" ) __lowerCAmelCase : Dict = text.replace("""\t""" , """<TAB>""" ) __lowerCAmelCase : Dict = text.replace("""—""" , """ー""" ) __lowerCAmelCase : Tuple = text.replace("""−""" , """ー""" ) for k, v in self.emoji["emoji"].items(): if k in text: __lowerCAmelCase : Optional[Any] = text.replace(_snake_case , _snake_case ) if clean: __lowerCAmelCase : List[Any] = self.clean_text(_snake_case ) def check_simbol(_snake_case : List[str] ): __lowerCAmelCase : Optional[int] = x.encode() if len(_snake_case ) == 1 and len(_snake_case ) == 2: __lowerCAmelCase : Optional[Any] = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0xc2a1 and c <= 0xc2bf) or (c >= 0xc780 and c <= 0xc783) or (c >= 0xcab9 and c <= 0xcbbf) or (c >= 0xcc80 and c <= 0xcda2) ): return True return False def checkuae(_snake_case : Union[str, Any] ): __lowerCAmelCase : Dict = x.encode() if len(_snake_case ) == 1 and len(_snake_case ) == 3: __lowerCAmelCase : List[str] = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0xe2_8080 and c <= 0xe2_b07f: return True return False __lowerCAmelCase : Dict = 0 __lowerCAmelCase : Dict = [] while pos < len(_snake_case ): __lowerCAmelCase : str = min(len(_snake_case ) , pos + self.maxlen + 1 ) if text[pos] == """<""" else pos + 3 __lowerCAmelCase : Tuple = [] # (token_id, token, pos) for e in range(_snake_case , _snake_case , -1 ): __lowerCAmelCase : Optional[int] = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(_snake_case ) > 2: __lowerCAmelCase : Tuple = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(_snake_case ) > 0: # the smallest token_id is adopted __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : int = sorted(_snake_case , key=lambda _snake_case : x[0] )[0] result.append(_snake_case ) __lowerCAmelCase : int = e else: __lowerCAmelCase : Dict = pos + 1 __lowerCAmelCase : Dict = text[pos:end] if check_simbol(_snake_case ): result.append("""<KIGOU>""" ) elif checkuae(_snake_case ): result.append("""<U2000U2BFF>""" ) else: for i in wd.encode("""utf-8""" ): result.append("""<|byte%d|>""" % i ) __lowerCAmelCase : int = end return result def UpperCAmelCase__ ( self : List[str] , _snake_case : Optional[int] , _snake_case : List[Any]="\n" )->List[Any]: '''simple docstring''' __lowerCAmelCase : List[str] = [] __lowerCAmelCase : Union[str, Any] = [] __lowerCAmelCase : Optional[Any] = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(_snake_case ) > 0: words.append(bytearray(_snake_case ).decode("""utf-8""" , errors="""replace""" ) ) __lowerCAmelCase : Optional[Any] = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["""emoji_inv"""][word] ) elif word == "<SP>": words.append(""" """ ) elif word == "<BR>": words.append(_snake_case ) elif word == "<TAB>": words.append("""\t""" ) elif word == "<BLOCK>": words.append("""▀""" ) elif word == "<KIGOU>": words.append("""ǀ""" ) elif word == "<U2000U2BFF>": words.append("""‖""" ) else: words.append(_snake_case ) if len(_snake_case ) > 0: words.append(bytearray(_snake_case ).decode("""utf-8""" , errors="""replace""" ) ) __lowerCAmelCase : Dict = """""".join(_snake_case ) return text
232
1
from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class __snake_case : '''simple docstring''' lowerCAmelCase__ = BlenderbotConfig lowerCAmelCase__ = {} lowerCAmelCase__ = """gelu""" def __init__( self : Tuple , A : str , A : Any=13 , A : Dict=7 , A : Optional[int]=True , A : List[Any]=False , A : Tuple=99 , A : Any=32 , A : Dict=2 , A : Optional[int]=4 , A : Union[str, Any]=37 , A : Dict=0.1 , A : List[str]=0.1 , A : Dict=20 , A : Union[str, Any]=2 , A : List[Any]=1 , A : str=0 , ): __snake_case: Optional[Any] = parent __snake_case: Optional[Any] = batch_size __snake_case: Optional[int] = seq_length __snake_case: Any = is_training __snake_case: Optional[Any] = use_labels __snake_case: Dict = vocab_size __snake_case: Optional[int] = hidden_size __snake_case: Optional[Any] = num_hidden_layers __snake_case: Any = num_attention_heads __snake_case: Any = intermediate_size __snake_case: Any = hidden_dropout_prob __snake_case: Dict = attention_probs_dropout_prob __snake_case: List[str] = max_position_embeddings __snake_case: Tuple = eos_token_id __snake_case: Optional[int] = pad_token_id __snake_case: Optional[Any] = bos_token_id def UpperCAmelCase__ ( self : Tuple ): __snake_case: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __snake_case: Optional[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __snake_case: str = tf.concat([input_ids, eos_tensor] , axis=1 ) __snake_case: int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case: List[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __snake_case: int = prepare_blenderbot_inputs_dict(A , A , A ) return config, inputs_dict def UpperCAmelCase__ ( self : Optional[Any] , A : List[str] , A : str ): __snake_case: Optional[int] = TFBlenderbotModel(config=A ).get_decoder() __snake_case: Any = inputs_dict["""input_ids"""] __snake_case: Tuple = input_ids[:1, :] __snake_case: List[Any] = inputs_dict["""attention_mask"""][:1, :] __snake_case: Optional[int] = inputs_dict["""head_mask"""] __snake_case: Dict = 1 # first forward pass __snake_case: List[str] = model(A , attention_mask=A , head_mask=A , use_cache=A ) __snake_case , __snake_case: List[str] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __snake_case: str = ids_tensor((self.batch_size, 3) , config.vocab_size ) __snake_case: int = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __snake_case: Optional[Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) __snake_case: Union[str, Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __snake_case: Union[str, Any] = model(A , attention_mask=A )[0] __snake_case: List[Any] = model(A , attention_mask=A , past_key_values=A )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __snake_case: Dict = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __snake_case: str = output_from_no_past[:, -3:, random_slice_idx] __snake_case: str = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(A , A , rtol=1E-3 ) def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , ) -> Tuple: if attention_mask is None: __snake_case: List[str] = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE__ , config.pad_token_id) , tf.inta) if decoder_attention_mask is None: __snake_case: Optional[int] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id) , tf.inta), ] , axis=-1 , ) if head_mask is None: __snake_case: int = tf.ones((config.encoder_layers, config.encoder_attention_heads)) if decoder_head_mask is None: __snake_case: Any = tf.ones((config.decoder_layers, config.decoder_attention_heads)) if cross_attn_head_mask is None: __snake_case: Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads)) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __snake_case ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () lowerCAmelCase__ = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () lowerCAmelCase__ = ( { """conversational""": TFBlenderbotForConditionalGeneration, """feature-extraction""": TFBlenderbotModel, """summarization""": TFBlenderbotForConditionalGeneration, """text2text-generation""": TFBlenderbotForConditionalGeneration, """translation""": TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = False def UpperCAmelCase__ ( self : Any ): __snake_case: str = TFBlenderbotModelTester(self ) __snake_case: Dict = ConfigTester(self , config_class=A ) def UpperCAmelCase__ ( self : Tuple ): self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : Union[str, Any] ): __snake_case: int = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*A ) @require_tokenizers @require_tf class __snake_case ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = ["""My friends are cool but they eat too many carbs."""] lowerCAmelCase__ = """facebook/blenderbot-400M-distill""" @cached_property def UpperCAmelCase__ ( self : Union[str, Any] ): return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCAmelCase__ ( self : Optional[Any] ): __snake_case: Union[str, Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def UpperCAmelCase__ ( self : str ): __snake_case: Optional[Any] = self.tokenizer(self.src_text , return_tensors="""tf""" ) __snake_case: str = self.model.generate( model_inputs.input_ids , ) __snake_case: List[Any] = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=A )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
111
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate __UpperCAmelCase : Optional[int] = trt.Logger(trt.Logger.WARNING) __UpperCAmelCase : Tuple = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) __UpperCAmelCase : Optional[Any] = logging.getLogger(__name__) __UpperCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--onnx_model_path", default=None, type=str, required=True, help="Path to ONNX model: ", ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="The output directory where the model checkpoints and predictions will be written.", ) # Other parameters parser.add_argument( "--tokenizer_name", default="", type=str, required=True, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--version_2_with_negative", action="store_true", help="If true, the SQuAD examples contain some that do not have an answer.", ) parser.add_argument( "--null_score_diff_threshold", type=float, default=0.0, help="If null_score - best_non_null is greater than the threshold predict null.", ) parser.add_argument( "--max_seq_length", default=384, type=int, help=( "The maximum total input sequence length after WordPiece tokenization. Sequences " "longer than this will be truncated, and sequences shorter than this will be padded." ), ) parser.add_argument( "--doc_stride", default=128, type=int, help="When splitting up a long document into chunks, how much stride to take between chunks.", ) parser.add_argument("--per_device_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation.") parser.add_argument( "--n_best_size", default=20, type=int, help="The total number of n-best predictions to generate in the nbest_predictions.json output file.", ) parser.add_argument( "--max_answer_length", default=30, type=int, help=( "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another." ), ) parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") parser.add_argument( "--dataset_name", type=str, default=None, required=True, help="The name of the dataset to use (via the datasets library).", ) parser.add_argument( "--dataset_config_name", type=str, default=None, help="The configuration name of the dataset to use (via the datasets library).", ) parser.add_argument( "--preprocessing_num_workers", type=int, default=4, help="A csv or a json file containing the training data." ) parser.add_argument("--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets") parser.add_argument( "--fp16", action="store_true", help="Whether to use 16-bit (mixed) precision instead of 32-bit", ) parser.add_argument( "--int8", action="store_true", help="Whether to use INT8", ) __UpperCAmelCase : Tuple = parser.parse_args() if args.tokenizer_name: __UpperCAmelCase : Tuple = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script." "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) logger.info("Training/evaluation parameters %s", args) __UpperCAmelCase : Optional[Any] = args.per_device_eval_batch_size __UpperCAmelCase : Dict = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : str = "temp_engine/bert-fp32.engine" if args.fpaa: __UpperCAmelCase : Tuple = "temp_engine/bert-fp16.engine" if args.inta: __UpperCAmelCase : List[Any] = "temp_engine/bert-int8.engine" # import ONNX file if not os.path.exists("temp_engine"): os.makedirs("temp_engine") __UpperCAmelCase : Optional[int] = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, "rb") as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network __UpperCAmelCase : int = [network.get_input(i) for i in range(network.num_inputs)] __UpperCAmelCase : List[Any] = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: __UpperCAmelCase : Optional[Any] = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) __UpperCAmelCase : Any = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) __UpperCAmelCase : Union[str, Any] = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, "wb") as f: f.write(engine.serialize()) def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) -> str: __snake_case: Tuple = np.asarray(inputs["""input_ids"""] , dtype=np.intaa) __snake_case: Union[str, Any] = np.asarray(inputs["""attention_mask"""] , dtype=np.intaa) __snake_case: List[str] = np.asarray(inputs["""token_type_ids"""] , dtype=np.intaa) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , SCREAMING_SNAKE_CASE__) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , SCREAMING_SNAKE_CASE__) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , SCREAMING_SNAKE_CASE__) # start time __snake_case: int = time.time() # Run inference context.execute_async( bindings=[int(SCREAMING_SNAKE_CASE__) for d_inp in d_inputs] + [int(SCREAMING_SNAKE_CASE__), int(SCREAMING_SNAKE_CASE__)] , stream_handle=stream.handle) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) cuda.memcpy_dtoh_async(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) # Synchronize the stream and take time stream.synchronize() # end time __snake_case: Optional[Any] = time.time() __snake_case: Dict = end_time - start_time __snake_case: Any = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. __UpperCAmelCase : Union[str, Any] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. __UpperCAmelCase : Union[str, Any] = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError("Evaluation requires a dataset name") # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. __UpperCAmelCase : str = raw_datasets["validation"].column_names __UpperCAmelCase : Dict = "question" if "question" in column_names else column_names[0] __UpperCAmelCase : List[Any] = "context" if "context" in column_names else column_names[1] __UpperCAmelCase : List[str] = "answers" if "answers" in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). __UpperCAmelCase : List[str] = tokenizer.padding_side == "right" if args.max_seq_length > tokenizer.model_max_length: logger.warning( f'The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the' f'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) __UpperCAmelCase : Union[str, Any] = min(args.max_seq_length, tokenizer.model_max_length) def A__ ( SCREAMING_SNAKE_CASE__) -> Optional[int]: # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace __snake_case: Optional[int] = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. __snake_case: List[str] = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="""only_second""" if pad_on_right else """only_first""" , max_length=SCREAMING_SNAKE_CASE__ , stride=args.doc_stride , return_overflowing_tokens=SCREAMING_SNAKE_CASE__ , return_offsets_mapping=SCREAMING_SNAKE_CASE__ , padding="""max_length""" , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. __snake_case: Optional[Any] = tokenized_examples.pop("""overflow_to_sample_mapping""") # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. __snake_case: int = [] for i in range(len(tokenized_examples["""input_ids"""])): # Grab the sequence corresponding to that example (to know what is the context and what is the question). __snake_case: int = tokenized_examples.sequence_ids(SCREAMING_SNAKE_CASE__) __snake_case: List[Any] = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. __snake_case: Any = sample_mapping[i] tokenized_examples["example_id"].append(examples["""id"""][sample_index]) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. __snake_case: Dict = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["""offset_mapping"""][i]) ] return tokenized_examples __UpperCAmelCase : int = raw_datasets["validation"] # Validation Feature Creation __UpperCAmelCase : Dict = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc="Running tokenizer on validation dataset", ) __UpperCAmelCase : Dict = default_data_collator __UpperCAmelCase : List[Any] = eval_dataset.remove_columns(["example_id", "offset_mapping"]) __UpperCAmelCase : str = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__="eval") -> Optional[int]: # Post-processing: we match the start logits and end logits to answers in the original context. __snake_case: Optional[Any] = postprocess_qa_predictions( examples=SCREAMING_SNAKE_CASE__ , features=SCREAMING_SNAKE_CASE__ , predictions=SCREAMING_SNAKE_CASE__ , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=SCREAMING_SNAKE_CASE__ , ) # Format the result to the format the metric expects. if args.version_2_with_negative: __snake_case: Tuple = [ {"""id""": k, """prediction_text""": v, """no_answer_probability""": 0.0} for k, v in predictions.items() ] else: __snake_case: str = [{"""id""": k, """prediction_text""": v} for k, v in predictions.items()] __snake_case: Optional[Any] = [{"""id""": ex["""id"""], """answers""": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=SCREAMING_SNAKE_CASE__ , label_ids=SCREAMING_SNAKE_CASE__) __UpperCAmelCase : List[str] = load_metric("squad_v2" if args.version_2_with_negative else "squad") # Evaluation! logger.info("Loading ONNX model %s for evaluation", args.onnx_model_path) with open(engine_name, "rb") as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def A__ ( SCREAMING_SNAKE_CASE__) -> Union[str, Any]: return trt.volume(engine.get_binding_shape(SCREAMING_SNAKE_CASE__)) * engine.get_binding_dtype(SCREAMING_SNAKE_CASE__).itemsize # Allocate device memory for inputs and outputs. __UpperCAmelCase : int = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer __UpperCAmelCase : Optional[int] = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) __UpperCAmelCase : Any = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) __UpperCAmelCase : Union[str, Any] = cuda.mem_alloc(h_outputa.nbytes) __UpperCAmelCase : Optional[Any] = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. __UpperCAmelCase : Optional[int] = cuda.Stream() # Evaluation logger.info("***** Running Evaluation *****") logger.info(f' Num examples = {len(eval_dataset)}') logger.info(f' Batch size = {args.per_device_eval_batch_size}') __UpperCAmelCase : Optional[Any] = 0.0 __UpperCAmelCase : Optional[int] = 0 __UpperCAmelCase : Any = timeit.default_timer() __UpperCAmelCase : Union[str, Any] = None for step, batch in enumerate(eval_dataloader): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 __UpperCAmelCase , __UpperCAmelCase : str = outputs __UpperCAmelCase : Any = torch.tensor(start_logits) __UpperCAmelCase : Tuple = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered __UpperCAmelCase : Optional[Any] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) __UpperCAmelCase : int = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) __UpperCAmelCase : List[str] = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) __UpperCAmelCase : List[str] = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: __UpperCAmelCase : Union[str, Any] = nested_truncate(all_preds, len(eval_dataset)) __UpperCAmelCase : List[str] = timeit.default_timer() - start_time logger.info(" Evaluation done in total %f secs (%f sec per example)", evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info("Average Inference Time = {:.3f} ms".format(total_time * 1_000 / niter)) logger.info("Total Inference Time = {:.3f} ms".format(total_time * 1_000)) logger.info("Total Number of Inference = %d", niter) __UpperCAmelCase : List[Any] = post_processing_function(eval_examples, eval_dataset, all_preds) __UpperCAmelCase : Optional[int] = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f'Evaluation metrics: {eval_metric}')
111
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { '''microsoft/markuplm-base''': '''https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json''', '''microsoft/markuplm-large''': '''https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json''', } class __SCREAMING_SNAKE_CASE ( A__ ): A : int = 'markuplm' def __init__( self , SCREAMING_SNAKE_CASE__=30522 , SCREAMING_SNAKE_CASE__=768 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=3072 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=512 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1E-12 , SCREAMING_SNAKE_CASE__=0 , SCREAMING_SNAKE_CASE__=0 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=256 , SCREAMING_SNAKE_CASE__=1024 , SCREAMING_SNAKE_CASE__=216 , SCREAMING_SNAKE_CASE__=1001 , SCREAMING_SNAKE_CASE__=32 , SCREAMING_SNAKE_CASE__=50 , SCREAMING_SNAKE_CASE__="absolute" , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=None , **SCREAMING_SNAKE_CASE__ , ): super().__init__( pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) lowercase : Optional[int] = vocab_size lowercase : Optional[int] = hidden_size lowercase : str = num_hidden_layers lowercase : Optional[Any] = num_attention_heads lowercase : List[Any] = hidden_act lowercase : str = intermediate_size lowercase : int = hidden_dropout_prob lowercase : Tuple = attention_probs_dropout_prob lowercase : Any = max_position_embeddings lowercase : Tuple = type_vocab_size lowercase : int = initializer_range lowercase : Any = layer_norm_eps lowercase : int = position_embedding_type lowercase : Any = use_cache lowercase : int = classifier_dropout # additional properties lowercase : str = max_depth lowercase : Tuple = max_xpath_tag_unit_embeddings lowercase : Union[str, Any] = max_xpath_subs_unit_embeddings lowercase : int = tag_pad_id lowercase : Any = subs_pad_id lowercase : int = xpath_unit_hidden_size
173
def __lowercase ( _UpperCamelCase = 50 ) ->int: """simple docstring""" lowercase : str = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2, 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F'''{solution() = }''')
173
1