code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel UpperCamelCase = False UpperCamelCase = True UpperCamelCase = False if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--repo_path''', default=None, type=str, required=True, help='''The config json file corresponding to the architecture.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') UpperCamelCase = parser.parse_args() UpperCamelCase = { 'image_size': 'sample_size', 'num_res_blocks': 'layers_per_block', 'block_channels': 'block_out_channels', 'down_blocks': 'down_block_types', 'up_blocks': 'up_block_types', 'downscale_freq_shift': 'freq_shift', 'resnet_num_groups': 'norm_num_groups', 'resnet_act_fn': 'act_fn', 'resnet_eps': 'norm_eps', 'num_head_channels': 'attention_head_dim', } UpperCamelCase = { 'time_steps': 'time_proj', 'mid': 'mid_block', 'downsample_blocks': 'down_blocks', 'upsample_blocks': 'up_blocks', } UpperCamelCase = '' if has_file(args.repo_path, '''config.json''') else 'unet' with open(os.path.join(args.repo_path, subfolder, '''config.json'''), '''r''', encoding='''utf-8''') as reader: UpperCamelCase = reader.read() UpperCamelCase = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, '''config.json'''): UpperCamelCase = UNetaDModel(**config) else: UpperCamelCase = UNetaDConditionModel if 'ldm-text2im-large-256' in args.repo_path else UNetaDModel UpperCamelCase = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) UpperCamelCase = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: UpperCamelCase = config[key] del config[key] UpperCamelCase = [k.replace('''UNetRes''', '''''') for k in config['down_block_types']] UpperCamelCase = [k.replace('''UNetRes''', '''''') for k in config['up_block_types']] if do_only_weights: UpperCamelCase = torch.load(os.path.join(args.repo_path, subfolder, '''diffusion_pytorch_model.bin''')) UpperCamelCase = {} for param_key, param_value in state_dict.items(): if param_key.endswith('''.op.bias''') or param_key.endswith('''.op.weight'''): continue UpperCamelCase = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split('''.''')[0] == key: UpperCamelCase = param_value UpperCamelCase = True if not has_changed: UpperCamelCase = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
87
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES A_ : str = logging.get_logger(__name__) A_ : str = OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) A_ : Optional[int] = OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) A_ : Union[str, Any] = OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) A_ : Dict = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) A_ : Optional[int] = OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) A_ : Dict = OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) A_ : List[str] = OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) A_ : Tuple = OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) A_ : Optional[int] = OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) A_ : int = OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) A_ : Tuple = OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) A_ : Tuple = OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) A_ : int = OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) A_ : Tuple = OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) A_ : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) A_ : int = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) A_ : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) A_ : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) A_ : Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) A_ : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) A_ : Any = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) A_ : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) A_ : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) A_ : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) A_ : int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) A_ : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) A_ : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) A_ : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_MAPPING A_ : Tuple = auto_class_update(FlaxAutoModel) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_PRETRAINING_MAPPING A_ : str = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING A_ : Optional[Any] = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_MASKED_LM_MAPPING A_ : List[str] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING A_ : Union[str, Any] = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING A_ : Tuple = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING A_ : Any = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING A_ : Dict = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING A_ : Any = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING A_ : Tuple = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING A_ : int = auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING A_ : Tuple = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class A_ ( _BaseAutoModelClass ): '''simple docstring''' a__ = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING A_ : Optional[int] = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
333
0
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class a (unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Any = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __UpperCAmelCase : Optional[Any] = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def __snake_case ( self : List[str] , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any] ) -> Tuple: __snake_case : Dict = TextaTextGenerationPipeline(model=lowerCamelCase , tokenizer=lowerCamelCase ) return generator, ["Something to write", "Something else"] def __snake_case ( self : Union[str, Any] , lowerCamelCase : List[str] , lowerCamelCase : List[Any] ) -> str: __snake_case : List[str] = generator("Something there" ) self.assertEqual(lowerCamelCase , [{"generated_text": ANY(lowerCamelCase )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["generated_text"].startswith("Something there" ) ) __snake_case : Optional[int] = generator(["This is great !", "Something else"] , num_return_sequences=2 , do_sample=lowerCamelCase ) self.assertEqual( lowerCamelCase , [ [{"generated_text": ANY(lowerCamelCase )}, {"generated_text": ANY(lowerCamelCase )}], [{"generated_text": ANY(lowerCamelCase )}, {"generated_text": ANY(lowerCamelCase )}], ] , ) __snake_case : Dict = generator( ["This is great !", "Something else"] , num_return_sequences=2 , batch_size=2 , do_sample=lowerCamelCase ) self.assertEqual( lowerCamelCase , [ [{"generated_text": ANY(lowerCamelCase )}, {"generated_text": ANY(lowerCamelCase )}], [{"generated_text": ANY(lowerCamelCase )}, {"generated_text": ANY(lowerCamelCase )}], ] , ) with self.assertRaises(lowerCamelCase ): generator(4 ) @require_torch def __snake_case ( self : Dict ) -> Optional[int]: __snake_case : Dict = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="pt" ) # do_sample=False necessary for reproducibility __snake_case : Optional[Any] = generator("Something there" , do_sample=lowerCamelCase ) self.assertEqual(lowerCamelCase , [{"generated_text": ""}] ) __snake_case : Optional[Any] = 3 __snake_case : Optional[Any] = generator( "Something there" , num_return_sequences=lowerCamelCase , num_beams=lowerCamelCase , ) __snake_case : int = [ {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": ""}, ] self.assertEqual(lowerCamelCase , lowerCamelCase ) __snake_case : Optional[int] = generator("This is a test" , do_sample=lowerCamelCase , num_return_sequences=2 , return_tensors=lowerCamelCase ) self.assertEqual( lowerCamelCase , [ {"generated_token_ids": ANY(torch.Tensor )}, {"generated_token_ids": ANY(torch.Tensor )}, ] , ) __snake_case : Tuple = generator.model.config.eos_token_id __snake_case : List[str] = "<pad>" __snake_case : Union[str, Any] = generator( ["This is a test", "This is a second test"] , do_sample=lowerCamelCase , num_return_sequences=2 , batch_size=2 , return_tensors=lowerCamelCase , ) self.assertEqual( lowerCamelCase , [ [ {"generated_token_ids": ANY(torch.Tensor )}, {"generated_token_ids": ANY(torch.Tensor )}, ], [ {"generated_token_ids": ANY(torch.Tensor )}, {"generated_token_ids": ANY(torch.Tensor )}, ], ] , ) @require_tf def __snake_case ( self : str ) -> str: __snake_case : int = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="tf" ) # do_sample=False necessary for reproducibility __snake_case : Optional[Any] = generator("Something there" , do_sample=lowerCamelCase ) self.assertEqual(lowerCamelCase , [{"generated_text": ""}] )
134
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split _snake_case : Union[str, Any] = datasets.load_iris() _snake_case : Tuple = np.array(data["data"]) _snake_case : int = np.array(data["target"]) _snake_case : int = data["target_names"] _snake_case , _snake_case , _snake_case , _snake_case : Any = train_test_split(X, y) def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): return np.linalg.norm(np.array(__lowerCamelCase ) - np.array(__lowerCamelCase ) ) def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=5 ): __snake_case : Optional[Any] = zip(__lowerCamelCase , __lowerCamelCase ) # List of distances of all points from the point to be classified __snake_case : Optional[int] = [] for data_point in data: __snake_case : Union[str, Any] = euclidean_distance(data_point[0] , __lowerCamelCase ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. __snake_case : Dict = [i[1] for i in sorted(__lowerCamelCase )[:k]] # Most commonly occurring class among them # is the class into which the point is classified __snake_case : Any = Counter(__lowerCamelCase ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
134
1
"""simple docstring""" import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline A_ = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False) parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''') parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''') A_ = parser.parse_args() A_ = '''cpu''' A_ = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' A_ = '''path-to-your-trained-model''' A_ = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: A_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) A_ = pipe.to(device) # to channels last A_ = pipe.unet.to(memory_format=torch.channels_last) A_ = pipe.vae.to(memory_format=torch.channels_last) A_ = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: A_ = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex A_ = torch.randn(2, 4, 64, 64) A_ = torch.rand(1) * 9_99 A_ = torch.randn(2, 77, 7_68) A_ = (sample, timestep, encoder_hidden_status) try: A_ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: A_ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) A_ = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) A_ = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: A_ = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute A_ = 6_66 A_ = torch.Generator(device).manual_seed(seed) A_ = {'''generator''': generator} if args.steps is not None: A_ = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): A_ = pipe(prompt, **generate_kwargs).images[0] # save image image.save('''generated.png''')
64
"""simple docstring""" class _UpperCAmelCase: def __init__( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = {} def UpperCAmelCase ( self) -> None: '''simple docstring''' print(self.vertex) for i in self.vertex: print(__a , ''' -> ''' , ''' -> '''.join([str(__a) for j in self.vertex[i]])) def UpperCAmelCase ( self , __a , __a) -> None: '''simple docstring''' # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(__a) else: # else make a new vertex _UpperCamelCase = [to_vertex] def UpperCAmelCase ( self) -> None: '''simple docstring''' # visited array for storing already visited nodes _UpperCamelCase = [False] * len(self.vertex) # call the recursive helper function for i in range(len(self.vertex)): if not visited[i]: self.dfs_recursive(__a , __a) def UpperCAmelCase ( self , __a , __a) -> None: '''simple docstring''' # mark start vertex as visited _UpperCamelCase = True print(__a , end=''' ''') # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(__a , __a) if __name__ == "__main__": _a = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("""DFS:""") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
194
0
import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() __snake_case : Dict = [ """word_embeddings_layernorm.weight""", """word_embeddings_layernorm.bias""", """input_layernorm.weight""", """input_layernorm.bias""", """post_attention_layernorm.weight""", """post_attention_layernorm.bias""", """self_attention.dense.bias""", """mlp.dense_4h_to_h.bias""", """ln_f.weight""", """ln_f.bias""", ] __snake_case : str = [ """mlp.dense_4h_to_h.weight""", """self_attention.dense.weight""", ] def _UpperCamelCase ( UpperCamelCase_ : str , UpperCamelCase_ : Dict ) -> Any: """simple docstring""" lowerCAmelCase__ = { 'word_embeddings.weight': 'word_embeddings.weight', 'word_embeddings.norm.weight': 'word_embeddings_layernorm.weight', 'word_embeddings.norm.bias': 'word_embeddings_layernorm.bias', 'weight': 'ln_f.weight', 'bias': 'ln_f.bias', } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks lowerCAmelCase__ = int(re.match(r'.*layer_(\d*).*' , UpperCamelCase_ )[1] ) layer_number -= 3 return F"h.{layer_number}." + key def _UpperCamelCase ( UpperCamelCase_ : Union[str, Any] ) -> List[str]: """simple docstring""" if dtype == torch.bool: return 1 / 8 lowerCAmelCase__ = re.search(r'[^\d](\d+)$' , str(UpperCamelCase_ ) ) if bit_search is None: raise ValueError(F"`dtype` is not a valid dtype: {dtype}." ) lowerCAmelCase__ = int(bit_search.groups()[0] ) return bit_size // 8 def _UpperCamelCase ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Tuple , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any] ) -> List[Any]: """simple docstring""" if bloom_config_file == "": lowerCAmelCase__ = BloomConfig() else: lowerCAmelCase__ = BloomConfig.from_json_file(UpperCamelCase_ ) if shard_model: lowerCAmelCase__ = os.listdir(UpperCamelCase_ ) lowerCAmelCase__ = sorted(filter(lambda UpperCamelCase_ : s.startswith('layer' ) and "model_00" in s , UpperCamelCase_ ) ) lowerCAmelCase__ = {'weight_map': {}, 'metadata': {}} lowerCAmelCase__ = 0 lowerCAmelCase__ = None lowerCAmelCase__ = BloomConfig() for j, file in enumerate(UpperCamelCase_ ): print('Processing file: {}'.format(UpperCamelCase_ ) ) lowerCAmelCase__ = None for i in range(UpperCamelCase_ ): # load all TP files lowerCAmelCase__ = file.replace('model_00' , F"model_0{i}" ) lowerCAmelCase__ = torch.load(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , map_location='cpu' ) # Rename keys in the transformers names lowerCAmelCase__ = list(temp.keys() ) for key in keys: lowerCAmelCase__ = temp.pop(UpperCamelCase_ ) if tensors is None: lowerCAmelCase__ = temp else: for key in tensors.keys(): if any(key.endswith(UpperCamelCase_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel lowerCAmelCase__ = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks lowerCAmelCase__ = torch.cat([tensors[key], temp[key]] , dim=UpperCamelCase_ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(UpperCamelCase_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): lowerCAmelCase__ = tensors[key] / pretraining_tp torch.save( UpperCamelCase_ , os.path.join( UpperCamelCase_ , 'pytorch_model_{}-of-{}.bin'.format(str(j + 1 ).zfill(5 ) , str(len(UpperCamelCase_ ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): lowerCAmelCase__ = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: lowerCAmelCase__ = 'pytorch_model_{}-of-{}.bin'.format( str(j + 1 ).zfill(5 ) , str(len(UpperCamelCase_ ) ).zfill(5 ) ) lowerCAmelCase__ = BloomConfig() lowerCAmelCase__ = pytorch_dump_folder_path + '/' + CONFIG_NAME lowerCAmelCase__ = total_size with open(UpperCamelCase_ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) with open(os.path.join(UpperCamelCase_ , WEIGHTS_NAME + '.index.json' ) , 'w' , encoding='utf-8' ) as f: lowerCAmelCase__ = json.dumps(UpperCamelCase_ , indent=2 , sort_keys=UpperCamelCase_ ) + '\n' f.write(UpperCamelCase_ ) else: lowerCAmelCase__ = BloomModel(UpperCamelCase_ ) lowerCAmelCase__ = os.listdir(UpperCamelCase_ ) lowerCAmelCase__ = sorted(filter(lambda UpperCamelCase_ : s.startswith('layer' ) and "model_00" in s , UpperCamelCase_ ) ) lowerCAmelCase__ = None for i, file in enumerate(UpperCamelCase_ ): lowerCAmelCase__ = None for i in range(UpperCamelCase_ ): # load all TP files lowerCAmelCase__ = file.replace('model_00' , F"model_0{i}" ) lowerCAmelCase__ = torch.load(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , map_location='cpu' ) # Rename keys in the transformers names lowerCAmelCase__ = list(temp.keys() ) for key in keys: lowerCAmelCase__ = temp.pop(UpperCamelCase_ ) if tensors is None: lowerCAmelCase__ = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(UpperCamelCase_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel lowerCAmelCase__ = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks lowerCAmelCase__ = torch.cat([tensors[key], temp[key]] , dim=UpperCamelCase_ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(UpperCamelCase_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): lowerCAmelCase__ = tensors[key] / pretraining_tp lowerCAmelCase__ = model.load_state_dict(UpperCamelCase_ , strict=UpperCamelCase_ ) assert not other_keys.unexpected_keys, F"The keys {other_keys.unexpected_keys} are unexpected" if missing_keys is None: lowerCAmelCase__ = set(other_keys.missing_keys ) else: lowerCAmelCase__ = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, F"The keys {missing_keys} are missing" # Save pytorch-model os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ ) lowerCAmelCase__ = pytorch_dump_folder_path + '/' + WEIGHTS_NAME lowerCAmelCase__ = pytorch_dump_folder_path + '/' + CONFIG_NAME print(F"Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}" ) if config.torch_dtype is not None: lowerCAmelCase__ = model.to(config.torch_dtype ) torch.save(model.state_dict() , UpperCamelCase_ ) print(F"Save configuration file to {pytorch_config_dump_path}" ) with open(UpperCamelCase_ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __snake_case : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--bloom_checkpoint_path""", default=None, type=str, required=True, help="""Path to the Megatron-LM checkpoint path.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--bloom_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--shard_model""", action="""store_true""", help="""An optional setting to shard the output model \nThis enables sharding the converted checkpoint""", ) parser.add_argument( """--pretraining_tp""", default=4, type=int, help="""Pretraining TP rank that has been used when training the model in Megatron-LM \n""", ) __snake_case : str = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
365
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __SCREAMING_SNAKE_CASE : def __init__( self , _UpperCamelCase , _UpperCamelCase=3 , _UpperCamelCase=32 , _UpperCamelCase=3 , _UpperCamelCase=10 , _UpperCamelCase=[10, 20, 30, 40] , _UpperCamelCase=[1, 1, 2, 1] , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase="relu" , _UpperCamelCase=3 , _UpperCamelCase=None , ): """simple docstring""" lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = image_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = embeddings_size lowerCAmelCase__ = hidden_sizes lowerCAmelCase__ = depths lowerCAmelCase__ = is_training lowerCAmelCase__ = use_labels lowerCAmelCase__ = hidden_act lowerCAmelCase__ = num_labels lowerCAmelCase__ = scope lowerCAmelCase__ = len(_UpperCamelCase ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase__ = self.get_config() return config, pixel_values, labels def UpperCamelCase__ ( self ): """simple docstring""" return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = TFResNetModel(config=_UpperCamelCase ) lowerCAmelCase__ = model(_UpperCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = self.num_labels lowerCAmelCase__ = TFResNetForImageClassification(_UpperCamelCase ) lowerCAmelCase__ = model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = config_and_inputs lowerCAmelCase__ = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class __SCREAMING_SNAKE_CASE ( __lowercase , __lowercase , unittest.TestCase): _SCREAMING_SNAKE_CASE : Any = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () _SCREAMING_SNAKE_CASE : List[str] = ( {'''feature-extraction''': TFResNetModel, '''image-classification''': TFResNetForImageClassification} if is_tf_available() else {} ) _SCREAMING_SNAKE_CASE : Union[str, Any] = False _SCREAMING_SNAKE_CASE : int = False _SCREAMING_SNAKE_CASE : Optional[int] = False _SCREAMING_SNAKE_CASE : List[str] = False _SCREAMING_SNAKE_CASE : Optional[Any] = False def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = TFResNetModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=_UpperCamelCase , has_text_modality=_UpperCamelCase ) def UpperCamelCase__ ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase__ ( self ): """simple docstring""" return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def UpperCamelCase__ ( self ): """simple docstring""" pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(_UpperCamelCase ) lowerCAmelCase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ = [*signature.parameters.keys()] lowerCAmelCase__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCamelCase ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def UpperCamelCase__ ( self ): """simple docstring""" def check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): lowerCAmelCase__ = model_class(_UpperCamelCase ) lowerCAmelCase__ = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) lowerCAmelCase__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase__ = self.model_tester.num_stages self.assertEqual(len(_UpperCamelCase ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: lowerCAmelCase__ = layer_type lowerCAmelCase__ = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCamelCase ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = TFResNetModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def _UpperCamelCase ( ) -> List[str]: """simple docstring""" lowerCAmelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase): @cached_property def UpperCamelCase__ ( self ): """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=_UpperCamelCase , return_tensors='tf' ) # forward pass lowerCAmelCase__ = model(**_UpperCamelCase ) # verify the logits lowerCAmelCase__ = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , _UpperCamelCase ) lowerCAmelCase__ = tf.constant([-11.10_69, -9.78_77, -8.37_77] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _UpperCamelCase , atol=1E-4 ) )
122
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class SCREAMING_SNAKE_CASE__ : __lowerCAmelCase : Optional[Any] = LEDConfig __lowerCAmelCase : Any = {} __lowerCAmelCase : Optional[Any] = 'gelu' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=20 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=4 , ) -> List[Any]: '''simple docstring''' UpperCAmelCase : str = parent UpperCAmelCase : Tuple = batch_size UpperCAmelCase : Optional[Any] = seq_length UpperCAmelCase : List[str] = is_training UpperCAmelCase : Union[str, Any] = use_labels UpperCAmelCase : Union[str, Any] = vocab_size UpperCAmelCase : Any = hidden_size UpperCAmelCase : Dict = num_hidden_layers UpperCAmelCase : str = num_attention_heads UpperCAmelCase : Union[str, Any] = intermediate_size UpperCAmelCase : List[str] = hidden_dropout_prob UpperCAmelCase : List[str] = attention_probs_dropout_prob UpperCAmelCase : List[Any] = max_position_embeddings UpperCAmelCase : Optional[int] = eos_token_id UpperCAmelCase : str = pad_token_id UpperCAmelCase : Tuple = bos_token_id UpperCAmelCase : Optional[Any] = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after UpperCAmelCase : int = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests UpperCAmelCase : str = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase : Optional[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase : str = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Tuple = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) UpperCAmelCase : Optional[int] = prepare_led_inputs_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Any = tf.concat( [tf.zeros_like(_SCREAMING_SNAKE_CASE )[:, :-1], tf.ones_like(_SCREAMING_SNAKE_CASE )[:, -1:]] , axis=-1 , ) UpperCAmelCase : Union[str, Any] = global_attention_mask return config, inputs_dict def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' UpperCAmelCase : Tuple = TFLEDModel(config=_SCREAMING_SNAKE_CASE ).get_decoder() UpperCAmelCase : Optional[Any] = inputs_dict["""input_ids"""] UpperCAmelCase : Any = input_ids[:1, :] UpperCAmelCase : int = inputs_dict["""attention_mask"""][:1, :] UpperCAmelCase : Optional[Any] = 1 # first forward pass UpperCAmelCase : Optional[int] = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , use_cache=_SCREAMING_SNAKE_CASE ) UpperCAmelCase , UpperCAmelCase : List[Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase : List[str] = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase : Any = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCAmelCase : List[str] = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCAmelCase : int = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCAmelCase : List[Any] = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE )[0] UpperCAmelCase : Union[str, Any] = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , past_key_values=_SCREAMING_SNAKE_CASE )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCAmelCase : int = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCAmelCase : int = output_from_no_past[:, -3:, random_slice_idx] UpperCAmelCase : str = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , rtol=1E-3 ) def _snake_case ( UpperCamelCase : Any , UpperCamelCase : int , UpperCamelCase : Union[str, Any] , UpperCamelCase : List[str]=None , UpperCamelCase : str=None , UpperCamelCase : Dict=None , UpperCamelCase : List[Any]=None , ): if attention_mask is None: UpperCAmelCase : int = tf.cast(tf.math.not_equal(UpperCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase : Dict = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase : List[Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase : Union[str, Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): __lowerCAmelCase : Optional[Any] = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () __lowerCAmelCase : Dict = (TFLEDForConditionalGeneration,) if is_tf_available() else () __lowerCAmelCase : int = ( { 'conversational': TFLEDForConditionalGeneration, 'feature-extraction': TFLEDModel, 'summarization': TFLEDForConditionalGeneration, 'text2text-generation': TFLEDForConditionalGeneration, 'translation': TFLEDForConditionalGeneration, } if is_tf_available() else {} ) __lowerCAmelCase : Any = True __lowerCAmelCase : Tuple = False __lowerCAmelCase : Union[str, Any] = False __lowerCAmelCase : Dict = False def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' UpperCAmelCase : Optional[int] = TFLEDModelTester(self ) UpperCAmelCase : int = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Union[str, Any] = tf.zeros_like(inputs_dict["""attention_mask"""] ) UpperCAmelCase : Tuple = 2 UpperCAmelCase : Tuple = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["""global_attention_mask"""] , ) UpperCAmelCase : List[Any] = True UpperCAmelCase : int = self.model_tester.seq_length UpperCAmelCase : Optional[int] = self.model_tester.encoder_seq_length def check_decoder_attentions_output(_SCREAMING_SNAKE_CASE ): UpperCAmelCase : str = outputs.decoder_attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(_SCREAMING_SNAKE_CASE ): UpperCAmelCase : List[Any] = [t.numpy() for t in outputs.encoder_attentions] UpperCAmelCase : int = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: UpperCAmelCase : Optional[Any] = True UpperCAmelCase : List[str] = False UpperCAmelCase : str = False UpperCAmelCase : Any = model_class(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Union[str, Any] = model(self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) UpperCAmelCase : Tuple = len(_SCREAMING_SNAKE_CASE ) self.assertEqual(config.output_hidden_states , _SCREAMING_SNAKE_CASE ) check_encoder_attentions_output(_SCREAMING_SNAKE_CASE ) if self.is_encoder_decoder: UpperCAmelCase : Optional[int] = model_class(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[str] = model(self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) self.assertEqual(config.output_hidden_states , _SCREAMING_SNAKE_CASE ) check_decoder_attentions_output(_SCREAMING_SNAKE_CASE ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] UpperCAmelCase : List[str] = True UpperCAmelCase : int = model_class(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Union[str, Any] = model(self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) self.assertEqual(config.output_hidden_states , _SCREAMING_SNAKE_CASE ) check_encoder_attentions_output(_SCREAMING_SNAKE_CASE ) # Check attention is always last and order is fine UpperCAmelCase : Optional[Any] = True UpperCAmelCase : Dict = True UpperCAmelCase : List[str] = model_class(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : int = model(self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_SCREAMING_SNAKE_CASE ) ) self.assertEqual(model.config.output_hidden_states , _SCREAMING_SNAKE_CASE ) check_encoder_attentions_output(_SCREAMING_SNAKE_CASE ) @unittest.skip("""LED keeps using potentially symbolic tensors in conditionals and breaks tracing.""" ) def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' pass def _snake_case ( UpperCamelCase : Optional[Any] ): return tf.constant(UpperCamelCase , dtype=tf.intaa ) A: Tuple = 1E-4 @slow @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Optional[int] = TFLEDForConditionalGeneration.from_pretrained("""allenai/led-base-16384""" ).led # change to intended input here UpperCAmelCase : int = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase : List[Any] = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase : Union[str, Any] = prepare_led_inputs_dict(model.config , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : str = model(**_SCREAMING_SNAKE_CASE )[0] UpperCAmelCase : List[str] = (1, 1024, 768) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) # change to expected output here UpperCAmelCase : Dict = tf.convert_to_tensor( [[2.3050, 2.8279, 0.6531], [-1.8457, -0.1455, -3.5661], [-1.0186, 0.4586, -2.2043]] , ) tf.debugging.assert_near(output[:, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-3 ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Optional[Any] = TFLEDForConditionalGeneration.from_pretrained("""allenai/led-base-16384""" ) # change to intended input here UpperCAmelCase : Optional[Any] = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase : List[str] = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase : Optional[Any] = prepare_led_inputs_dict(model.config , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : int = model(**_SCREAMING_SNAKE_CASE )[0] UpperCAmelCase : List[Any] = (1, 1024, model.config.vocab_size) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) # change to expected output here UpperCAmelCase : Union[str, Any] = tf.convert_to_tensor( [[33.6507, 6.4572, 16.8089], [5.8739, -2.4238, 11.2902], [-3.2139, -4.3149, 4.2783]] , ) tf.debugging.assert_near(output[:, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-3 , rtol=1E-3 )
109
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=3 , _UpperCAmelCase=32 , _UpperCAmelCase=3 , _UpperCAmelCase=10 , _UpperCAmelCase=[10, 20, 30, 40] , _UpperCAmelCase=[1, 1, 2, 1] , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase="relu" , _UpperCAmelCase=3 , _UpperCAmelCase=None , ): lowercase__: Optional[Any] = parent lowercase__: Union[str, Any] = batch_size lowercase__: int = image_size lowercase__: Optional[Any] = num_channels lowercase__: Optional[int] = embeddings_size lowercase__: Dict = hidden_sizes lowercase__: Union[str, Any] = depths lowercase__: str = is_training lowercase__: Optional[int] = use_labels lowercase__: List[str] = hidden_act lowercase__: Dict = num_labels lowercase__: Any = scope lowercase__: Optional[Any] = len(_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__: List[Any] = None if self.use_labels: lowercase__: Any = ids_tensor([self.batch_size] , self.num_labels ) lowercase__: Optional[int] = self.get_config() return config, pixel_values, labels def _snake_case ( self ): return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Optional[Any] = TFResNetModel(config=_UpperCAmelCase ) lowercase__: Dict = model(_UpperCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: str = self.num_labels lowercase__: int = TFResNetForImageClassification(_UpperCAmelCase ) lowercase__: Optional[Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self ): lowercase__: int = self.prepare_config_and_inputs() lowercase__, lowercase__, lowercase__: Optional[Any] = config_and_inputs lowercase__: Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Any = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () _UpperCAmelCase :List[str] = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) _UpperCAmelCase :Any = False _UpperCAmelCase :List[str] = False _UpperCAmelCase :Optional[Any] = False _UpperCAmelCase :Tuple = False _UpperCAmelCase :List[Any] = False def _snake_case ( self ): lowercase__: Union[str, Any] = TFResNetModelTester(self ) lowercase__: Optional[int] = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def _snake_case ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _snake_case ( self ): return @unittest.skip(reason='''ResNet does not use inputs_embeds''' ) def _snake_case ( self ): pass @unittest.skip(reason='''ResNet does not support input and output embeddings''' ) def _snake_case ( self ): pass def _snake_case ( self ): lowercase__, lowercase__: int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__: Optional[Any] = model_class(_UpperCAmelCase ) lowercase__: str = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__: int = [*signature.parameters.keys()] lowercase__: Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def _snake_case ( self ): def check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Union[str, Any] = model_class(_UpperCAmelCase ) lowercase__: List[Any] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) lowercase__: Union[str, Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase__: Tuple = self.model_tester.num_stages self.assertEqual(len(_UpperCAmelCase ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowercase__, lowercase__: Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__: Union[str, Any] = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: lowercase__: Tuple = layer_type lowercase__: Any = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__: List[str] = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( self ): lowercase__: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @slow def _snake_case ( self ): for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__: Dict = TFResNetModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]: lowercase__: List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class UpperCAmelCase (unittest.TestCase ): """simple docstring""" @cached_property def _snake_case ( self ): return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _snake_case ( self ): lowercase__: Tuple = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowercase__: Any = self.default_image_processor lowercase__: List[Any] = prepare_img() lowercase__: List[Any] = image_processor(images=_UpperCAmelCase , return_tensors='''tf''' ) # forward pass lowercase__: Dict = model(**_UpperCAmelCase ) # verify the logits lowercase__: int = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) lowercase__: Dict = tf.constant([-11.1_069, -9.7_877, -8.3_777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _UpperCAmelCase , atol=1e-4 ) )
177
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase_ = { "configuration_resnet": ["RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "ResNetConfig", "ResNetOnnxConfig"] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "RESNET_PRETRAINED_MODEL_ARCHIVE_LIST", "ResNetForImageClassification", "ResNetModel", "ResNetPreTrainedModel", "ResNetBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFResNetForImageClassification", "TFResNetModel", "TFResNetPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "FlaxResNetForImageClassification", "FlaxResNetModel", "FlaxResNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
20
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowercase_ = { "text_branch": "text_model", "audio_branch": "audio_model.audio_encoder", "attn": "attention.self", "self.proj": "output.dense", "attention.self_mask": "attn_mask", "mlp.fc1": "intermediate.dense", "mlp.fc2": "output.dense", "norm1": "layernorm_before", "norm2": "layernorm_after", "bn0": "batch_norm", } lowercase_ = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused", truncation="rand_trunc") def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]=False ): '''simple docstring''' __snake_case , __snake_case : str = create_model( """HTSAT-tiny""" , """roberta""" , __SCREAMING_SNAKE_CASE , precision="""fp32""" , device="""cuda:0""" if torch.cuda.is_available() else """cpu""" , enable_fusion=__SCREAMING_SNAKE_CASE , fusion_type="""aff_2d""" if enable_fusion else None , ) return model, model_cfg def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' __snake_case : Union[str, Any] = {} __snake_case : List[Any] = R""".*sequential.(\d+).*""" __snake_case : Union[str, Any] = R""".*_projection.(\d+).*""" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: __snake_case : Optional[Any] = key.replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): # replace sequential layers with list __snake_case : Optional[Any] = re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).group(1 ) __snake_case : Dict = key.replace(F'''sequential.{sequential_layer}.''' , F'''layers.{int(__SCREAMING_SNAKE_CASE )//3}.linear.''' ) elif re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __snake_case : str = int(re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... __snake_case : List[Any] = 1 if projecton_layer == 0 else 2 __snake_case : Tuple = key.replace(F'''_projection.{projecton_layer}.''' , F'''_projection.linear{transformers_projection_layer}.''' ) if "audio" and "qkv" in key: # split qkv into query key and value __snake_case : Optional[int] = value __snake_case : Any = mixed_qkv.size(0 ) // 3 __snake_case : List[Any] = mixed_qkv[:qkv_dim] __snake_case : Tuple = mixed_qkv[qkv_dim : qkv_dim * 2] __snake_case : List[Any] = mixed_qkv[qkv_dim * 2 :] __snake_case : Any = query_layer __snake_case : Dict = key_layer __snake_case : Optional[Any] = value_layer else: __snake_case : List[str] = value return model_state_dict def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any]=False ): '''simple docstring''' __snake_case , __snake_case : List[str] = init_clap(__SCREAMING_SNAKE_CASE , enable_fusion=__SCREAMING_SNAKE_CASE ) clap_model.eval() __snake_case : Tuple = clap_model.state_dict() __snake_case : Union[str, Any] = rename_state_dict(__SCREAMING_SNAKE_CASE ) __snake_case : List[Any] = ClapConfig() __snake_case : Tuple = enable_fusion __snake_case : Any = ClapModel(__SCREAMING_SNAKE_CASE ) # ignore the spectrogram embedding layer model.load_state_dict(__SCREAMING_SNAKE_CASE , strict=__SCREAMING_SNAKE_CASE ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) transformers_config.save_pretrained(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument("--enable_fusion", action="store_true", help="Whether to enable fusion or not") lowercase_ = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
20
1
import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : Tuple , _snake_case : Any , _snake_case : Union[str, Any]=13 , _snake_case : Any=7 , _snake_case : Dict=True , _snake_case : Dict=True , _snake_case : Tuple=True , _snake_case : Tuple=True , _snake_case : Union[str, Any]=99 , _snake_case : Optional[int]=32 , _snake_case : str=5 , _snake_case : Optional[int]=4 , _snake_case : int=37 , _snake_case : List[str]="gelu" , _snake_case : int=0.1 , _snake_case : Optional[int]=0.1 , _snake_case : Any=512 , _snake_case : List[Any]=16 , _snake_case : Any=2 , _snake_case : str=0.02 , _snake_case : Optional[Any]=False , _snake_case : int=True , _snake_case : int="None" , _snake_case : str=3 , _snake_case : List[str]=4 , _snake_case : Optional[int]=None , ): __lowercase : str = parent __lowercase : List[str] = batch_size __lowercase : Dict = seq_length __lowercase : List[str] = is_training __lowercase : int = use_input_mask __lowercase : Tuple = use_token_type_ids __lowercase : List[Any] = use_labels __lowercase : Dict = vocab_size __lowercase : str = hidden_size __lowercase : Optional[int] = num_hidden_layers __lowercase : int = num_attention_heads __lowercase : Optional[Any] = intermediate_size __lowercase : Dict = hidden_act __lowercase : List[Any] = hidden_dropout_prob __lowercase : str = attention_probs_dropout_prob __lowercase : Optional[Any] = max_position_embeddings __lowercase : List[Any] = type_vocab_size __lowercase : Tuple = type_sequence_label_size __lowercase : Optional[int] = initializer_range __lowercase : str = num_labels __lowercase : List[str] = num_choices __lowercase : int = relative_attention __lowercase : Optional[int] = position_biased_input __lowercase : Optional[int] = pos_att_type __lowercase : Dict = scope def snake_case_ ( self : Dict ): __lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : Optional[Any] = None if self.use_input_mask: __lowercase : int = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __lowercase : List[str] = None if self.use_token_type_ids: __lowercase : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase : List[str] = None __lowercase : str = None __lowercase : List[str] = None if self.use_labels: __lowercase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) __lowercase : str = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case_ ( self : Union[str, Any] ): return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def snake_case_ ( self : List[Any] , _snake_case : Optional[Any] ): self.parent.assertListEqual(list(result.loss.size() ) , [] ) def snake_case_ ( self : List[Any] , _snake_case : Optional[int] , _snake_case : Dict , _snake_case : Optional[Any] , _snake_case : Optional[int] , _snake_case : str , _snake_case : Dict , _snake_case : Any ): __lowercase : Tuple = DebertaVaModel(config=_snake_case ) model.to(_snake_case ) model.eval() __lowercase : List[Any] = model(_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case )[0] __lowercase : List[str] = model(_snake_case , token_type_ids=_snake_case )[0] __lowercase : Tuple = model(_snake_case )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def snake_case_ ( self : Tuple , _snake_case : List[str] , _snake_case : List[str] , _snake_case : str , _snake_case : Union[str, Any] , _snake_case : str , _snake_case : Any , _snake_case : List[str] ): __lowercase : int = DebertaVaForMaskedLM(config=_snake_case ) model.to(_snake_case ) model.eval() __lowercase : str = model(_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case_ ( self : List[str] , _snake_case : List[Any] , _snake_case : Any , _snake_case : Optional[int] , _snake_case : Tuple , _snake_case : Tuple , _snake_case : Tuple , _snake_case : Union[str, Any] ): __lowercase : Optional[Any] = self.num_labels __lowercase : List[str] = DebertaVaForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() __lowercase : Dict = model(_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(_snake_case ) def snake_case_ ( self : str , _snake_case : str , _snake_case : str , _snake_case : Any , _snake_case : int , _snake_case : Optional[Any] , _snake_case : Optional[int] , _snake_case : Optional[Any] ): __lowercase : Optional[Any] = self.num_labels __lowercase : Union[str, Any] = DebertaVaForTokenClassification(config=_snake_case ) model.to(_snake_case ) model.eval() __lowercase : Tuple = model(_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case_ ( self : Tuple , _snake_case : Optional[int] , _snake_case : Optional[Any] , _snake_case : Any , _snake_case : str , _snake_case : Any , _snake_case : Union[str, Any] , _snake_case : Union[str, Any] ): __lowercase : str = DebertaVaForQuestionAnswering(config=_snake_case ) model.to(_snake_case ) model.eval() __lowercase : Dict = model( _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , start_positions=_snake_case , end_positions=_snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case_ ( self : Optional[int] , _snake_case : Optional[int] , _snake_case : str , _snake_case : Optional[Any] , _snake_case : List[str] , _snake_case : Any , _snake_case : Optional[Any] , _snake_case : Dict ): __lowercase : Union[str, Any] = DebertaVaForMultipleChoice(config=_snake_case ) model.to(_snake_case ) model.eval() __lowercase : Optional[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase : List[str] = model( _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case_ ( self : Dict ): __lowercase : List[str] = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) : Any = config_and_inputs __lowercase : Tuple = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" A__ : List[str] = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) A__ : List[Any] = ( { '''feature-extraction''': DebertaVaModel, '''fill-mask''': DebertaVaForMaskedLM, '''question-answering''': DebertaVaForQuestionAnswering, '''text-classification''': DebertaVaForSequenceClassification, '''token-classification''': DebertaVaForTokenClassification, '''zero-shot''': DebertaVaForSequenceClassification, } if is_torch_available() else {} ) A__ : str = True A__ : Tuple = False A__ : Optional[Any] = False A__ : Dict = False A__ : List[str] = False def snake_case_ ( self : Optional[int] ): __lowercase : int = DebertaVaModelTester(self ) __lowercase : Optional[int] = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def snake_case_ ( self : List[str] ): self.config_tester.run_common_tests() def snake_case_ ( self : List[Any] ): __lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*_snake_case ) def snake_case_ ( self : List[Any] ): __lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*_snake_case ) def snake_case_ ( self : str ): __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*_snake_case ) def snake_case_ ( self : Dict ): __lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*_snake_case ) def snake_case_ ( self : Optional[int] ): __lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*_snake_case ) def snake_case_ ( self : Dict ): __lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*_snake_case ) @slow def snake_case_ ( self : Optional[int] ): for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : int = DebertaVaModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @require_torch @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @unittest.skip(reason='''Model not available yet''' ) def snake_case_ ( self : Union[str, Any] ): pass @slow def snake_case_ ( self : Dict ): __lowercase : Dict = DebertaVaModel.from_pretrained('''microsoft/deberta-v2-xlarge''' ) __lowercase : int = torch.tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) __lowercase : Dict = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase : Dict = model(_snake_case , attention_mask=_snake_case )[0] # compare the actual values for a slice. __lowercase : Dict = torch.tensor( [[[0.23_56, 0.19_48, 0.03_69], [-0.10_63, 0.35_86, -0.51_52], [-0.63_99, -0.02_59, -0.25_25]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _snake_case , atol=1E-4 ) , F'{output[:, 1:4, 1:4]}' )
156
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" A__ : torch.FloatTensor A__ : Optional[torch.FloatTensor] = None def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase=0.999 , __lowerCAmelCase="cosine" , ) -> Union[str, Any]: if alpha_transform_type == "cosine": def alpha_bar_fn(__lowerCAmelCase ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__lowerCAmelCase ): return math.exp(t * -12.0 ) else: raise ValueError(F'Unsupported alpha_tranform_type: {alpha_transform_type}' ) __lowercase : Dict = [] for i in range(__lowerCAmelCase ): __lowercase : Optional[Any] = i / num_diffusion_timesteps __lowercase : Optional[int] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__lowerCAmelCase ) / alpha_bar_fn(__lowerCAmelCase ) , __lowerCAmelCase ) ) return torch.tensor(__lowerCAmelCase , dtype=torch.floataa ) class __lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" A__ : Tuple = 1 @register_to_config def __init__( self : str , _snake_case : int = 1000 , _snake_case : float = 0.00_01 , _snake_case : float = 0.02 , _snake_case : str = "linear" , _snake_case : Optional[Union[np.ndarray, List[float]]] = None , _snake_case : bool = True , _snake_case : bool = True , _snake_case : int = 0 , _snake_case : str = "epsilon" , _snake_case : float = 1.0 , **_snake_case : Tuple , ): if kwargs.get('''set_alpha_to_one''' , _snake_case ) is not None: __lowercase : str = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''' , '''1.0.0''' , _snake_case , standard_warn=_snake_case ) __lowercase : Dict = kwargs['''set_alpha_to_one'''] if trained_betas is not None: __lowercase : Optional[int] = torch.tensor(_snake_case , dtype=torch.floataa ) elif beta_schedule == "linear": __lowercase : Any = torch.linspace(_snake_case , _snake_case , _snake_case , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __lowercase : str = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _snake_case , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __lowercase : Optional[Any] = betas_for_alpha_bar(_snake_case ) else: raise NotImplementedError(F'{beta_schedule} does is not implemented for {self.__class__}' ) __lowercase : str = 1.0 - self.betas __lowercase : List[str] = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. __lowercase : str = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution __lowercase : Any = 1.0 # setable values __lowercase : Tuple = None __lowercase : Tuple = torch.from_numpy(np.arange(0 , _snake_case ).copy().astype(np.intaa ) ) def snake_case_ ( self : List[str] , _snake_case : torch.FloatTensor , _snake_case : Optional[int] = None ): return sample def snake_case_ ( self : int , _snake_case : int , _snake_case : Union[str, torch.device] = None ): if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F'`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:' F' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle' F' maximal {self.config.num_train_timesteps} timesteps.' ) __lowercase : Optional[Any] = num_inference_steps __lowercase : Union[str, Any] = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowercase : List[Any] = (np.arange(0 , _snake_case ) * step_ratio).round().copy().astype(np.intaa ) __lowercase : str = torch.from_numpy(_snake_case ).to(_snake_case ) self.timesteps += self.config.steps_offset def snake_case_ ( self : int , _snake_case : torch.FloatTensor , _snake_case : int , _snake_case : torch.FloatTensor , _snake_case : float = 0.0 , _snake_case : bool = False , _snake_case : Optional[torch.FloatTensor] = None , _snake_case : bool = True , ): # 1. get previous step value (=t+1) __lowercase : Union[str, Any] = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process __lowercase : Any = self.alphas_cumprod[timestep] __lowercase : Any = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) __lowercase : Dict = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": __lowercase : Optional[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 __lowercase : str = model_output elif self.config.prediction_type == "sample": __lowercase : Any = model_output __lowercase : Optional[int] = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": __lowercase : List[Any] = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output __lowercase : Tuple = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or' ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: __lowercase : Optional[int] = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __lowercase : Optional[int] = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __lowercase : Tuple = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=_snake_case , pred_original_sample=_snake_case ) def __len__( self : Any ): return self.config.num_train_timesteps
156
1
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class snake_case_ (lowerCamelCase_ , lowerCamelCase_ ): UpperCAmelCase__ : List[str] = 1 @register_to_config def __init__( self :List[Any] ,__snake_case :int = 10_00 ,__snake_case :Optional[Union[np.ndarray, List[float]]] = None ) -> Union[str, Any]: # set `betas`, `alphas`, `timesteps` self.set_timesteps(__snake_case ) # standard deviation of the initial noise distribution a__ = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. a__ = 4 # running values a__ = [] def lowerCamelCase__( self :Optional[Any] ,__snake_case :int ,__snake_case :Union[str, torch.device] = None ) -> List[Any]: a__ = num_inference_steps a__ = torch.linspace(1 ,0 ,num_inference_steps + 1 )[:-1] a__ = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: a__ = torch.tensor(self.config.trained_betas ,dtype=torch.floataa ) else: a__ = torch.sin(steps * math.pi / 2 ) ** 2 a__ = (1.0 - self.betas**2) ** 0.5 a__ = (torch.atana(self.betas ,self.alphas ) / math.pi * 2)[:-1] a__ = timesteps.to(__snake_case ) a__ = [] def lowerCamelCase__( self :List[str] ,__snake_case :torch.FloatTensor ,__snake_case :int ,__snake_case :torch.FloatTensor ,__snake_case :bool = True ,) -> Union[SchedulerOutput, Tuple]: if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) a__ = (self.timesteps == timestep).nonzero().item() a__ = timestep_index + 1 a__ = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(__snake_case ) if len(self.ets ) == 1: a__ = self.ets[-1] elif len(self.ets ) == 2: a__ = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: a__ = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: a__ = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) a__ = self._get_prev_sample(__snake_case ,__snake_case ,__snake_case ,__snake_case ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__snake_case ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :torch.FloatTensor ,*__snake_case :List[Any] ,**__snake_case :Optional[int] ) -> torch.FloatTensor: return sample def lowerCamelCase__( self :Union[str, Any] ,__snake_case :int ,__snake_case :Dict ,__snake_case :Any ,__snake_case :Optional[int] ) -> List[Any]: a__ = self.alphas[timestep_index] a__ = self.betas[timestep_index] a__ = self.alphas[prev_timestep_index] a__ = self.betas[prev_timestep_index] a__ = (sample - sigma * ets) / max(__snake_case ,1E-8 ) a__ = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self :Optional[Any] ) -> Tuple: return self.config.num_train_timesteps
351
import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() snake_case : str = logging.get_logger(__name__) snake_case : Optional[Any] = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn.grep_linear''': '''encoder.layers.*.attention.gru_rel_pos_linear''', '''self_attn.relative_attention_bias''': '''encoder.layers.*.attention.rel_attn_embed''', '''self_attn.grep_a''': '''encoder.layers.*.attention.gru_rel_pos_const''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } snake_case : Dict = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def __lowercase ( __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict ): for attribute in key.split('.' ): a__ = getattr(__lowerCAmelCase , __lowerCAmelCase ) if weight_type is not None: a__ = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape else: a__ = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": a__ = value elif weight_type == "weight_g": a__ = value elif weight_type == "weight_v": a__ = value elif weight_type == "bias": a__ = value else: a__ = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def __lowercase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : List[Any] ): a__ = [] a__ = fairseq_model.state_dict() a__ = hf_model.feature_extractor for name, value in fairseq_dict.items(): a__ = False if "conv_layers" in name: load_conv_layer( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == 'group' , ) a__ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: a__ = True if "*" in mapped_key: a__ = name.split(__lowerCAmelCase )[0].split('.' )[-2] a__ = mapped_key.replace('*' , __lowerCAmelCase ) if "weight_g" in name: a__ = 'weight_g' elif "weight_v" in name: a__ = 'weight_v' elif "bias" in name and "relative_attention_bias" not in name: a__ = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj a__ = 'weight' else: a__ = None set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) continue if not is_used: unused_weights.append(__lowerCAmelCase ) logger.warning(F'Unused weights: {unused_weights}' ) def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Dict , __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] ): a__ = full_name.split('conv_layers.' )[-1] a__ = name.split('.' ) a__ = int(items[0] ) a__ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) a__ = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) a__ = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) a__ = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) a__ = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__lowerCAmelCase ) @torch.no_grad() def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any]=None ): # load the pre-trained checkpoints a__ = torch.load(__lowerCAmelCase ) a__ = WavLMConfigOrig(checkpoint['cfg'] ) a__ = WavLMOrig(__lowerCAmelCase ) model.load_state_dict(checkpoint['model'] ) model.eval() if config_path is not None: a__ = WavLMConfig.from_pretrained(__lowerCAmelCase ) else: a__ = WavLMConfig() a__ = WavLMModel(__lowerCAmelCase ) recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase ) hf_wavlm.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": snake_case : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') snake_case : Union[str, Any] = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
109
0
'''simple docstring''' import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : int = AutoConfig.from_pretrained(UpperCAmelCase_ ) UpperCAmelCase : Optional[Any] = FlaxAutoModelForSeqaSeqLM.from_config(config=UpperCAmelCase_ ) UpperCAmelCase : List[str] = checkpoints.load_tax_checkpoint(UpperCAmelCase_ ) UpperCAmelCase : int = 'wi_0' in tax_model['target']['encoder']['layers_0']['mlp'] if config.model_type == "t5": UpperCAmelCase : Dict = 'SelfAttention' if config.model_type == "longt5" and config.encoder_attention_type == "local": UpperCAmelCase : str = 'LocalSelfAttention' elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": UpperCAmelCase : int = 'TransientGlobalSelfAttention' else: raise ValueError( 'Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`' ' attribute with a value from [\'local\', \'transient-global].' ) # Encoder for layer_index in range(config.num_layers ): UpperCAmelCase : Optional[int] = F"""layers_{str(UpperCAmelCase_ )}""" # Self-Attention UpperCAmelCase : int = tax_model['target']['encoder'][layer_name]['attention']['key']['kernel'] UpperCAmelCase : Dict = tax_model['target']['encoder'][layer_name]['attention']['out']['kernel'] UpperCAmelCase : int = tax_model['target']['encoder'][layer_name]['attention']['query']['kernel'] UpperCAmelCase : str = tax_model['target']['encoder'][layer_name]['attention']['value']['kernel'] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": UpperCAmelCase : int = tax_model['target']['encoder'][layer_name]['attention']['T5LayerNorm_0']['scale'] # Layer Normalization UpperCAmelCase : Any = tax_model['target']['encoder'][layer_name]['pre_attention_layer_norm']['scale'] if split_mlp_wi: UpperCAmelCase : Union[str, Any] = tax_model['target']['encoder'][layer_name]['mlp']['wi_0']['kernel'] UpperCAmelCase : Dict = tax_model['target']['encoder'][layer_name]['mlp']['wi_1']['kernel'] else: UpperCAmelCase : Tuple = tax_model['target']['encoder'][layer_name]['mlp']['wi']['kernel'] UpperCAmelCase : Optional[Any] = tax_model['target']['encoder'][layer_name]['mlp']['wo']['kernel'] # Layer Normalization UpperCAmelCase : Tuple = tax_model['target']['encoder'][layer_name]['pre_mlp_layer_norm']['scale'] # Assigning UpperCAmelCase : List[str] = flax_model.params['encoder']['block'][str(UpperCAmelCase_ )]['layer'] UpperCAmelCase : Optional[Any] = tax_attention_key UpperCAmelCase : Union[str, Any] = tax_attention_out UpperCAmelCase : Tuple = tax_attention_query UpperCAmelCase : Optional[Any] = tax_attention_value UpperCAmelCase : Tuple = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": UpperCAmelCase : Any = tax_global_layer_norm if split_mlp_wi: UpperCAmelCase : List[str] = tax_mlp_wi_a UpperCAmelCase : Optional[Any] = tax_mlp_wi_a else: UpperCAmelCase : str = tax_mlp_wi UpperCAmelCase : Any = tax_mlp_wo UpperCAmelCase : List[Any] = tax_mlp_layer_norm UpperCAmelCase : int = flax_model_encoder_layer_block # Only for layer 0: UpperCAmelCase : List[Any] = tax_model['target']['encoder']['relpos_bias']['rel_embedding'].T UpperCAmelCase : str = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": UpperCAmelCase : List[Any] = tax_model['target']['encoder']['side_relpos_bias']['rel_embedding'].T UpperCAmelCase : Tuple = tax_encoder_global_rel_embedding # Assigning UpperCAmelCase : Optional[Any] = tax_model['target']['encoder']['encoder_norm']['scale'] UpperCAmelCase : Any = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): UpperCAmelCase : Tuple = F"""layers_{str(UpperCAmelCase_ )}""" # Self-Attention UpperCAmelCase : Union[str, Any] = tax_model['target']['decoder'][layer_name]['self_attention']['key']['kernel'] UpperCAmelCase : str = tax_model['target']['decoder'][layer_name]['self_attention']['out']['kernel'] UpperCAmelCase : List[Any] = tax_model['target']['decoder'][layer_name]['self_attention']['query']['kernel'] UpperCAmelCase : Tuple = tax_model['target']['decoder'][layer_name]['self_attention']['value']['kernel'] # Layer Normalization UpperCAmelCase : Union[str, Any] = tax_model['target']['decoder'][layer_name]['pre_self_attention_layer_norm'][ 'scale' ] # Encoder-Decoder-Attention UpperCAmelCase : Any = tax_model['target']['decoder'][layer_name]['encoder_decoder_attention'] UpperCAmelCase : Dict = tax_enc_dec_attention_module['key']['kernel'] UpperCAmelCase : List[Any] = tax_enc_dec_attention_module['out']['kernel'] UpperCAmelCase : int = tax_enc_dec_attention_module['query']['kernel'] UpperCAmelCase : int = tax_enc_dec_attention_module['value']['kernel'] # Layer Normalization UpperCAmelCase : Any = tax_model['target']['decoder'][layer_name]['pre_cross_attention_layer_norm']['scale'] # MLP if split_mlp_wi: UpperCAmelCase : List[Any] = tax_model['target']['decoder'][layer_name]['mlp']['wi_0']['kernel'] UpperCAmelCase : Union[str, Any] = tax_model['target']['decoder'][layer_name]['mlp']['wi_1']['kernel'] else: UpperCAmelCase : Dict = tax_model['target']['decoder'][layer_name]['mlp']['wi']['kernel'] UpperCAmelCase : Optional[Any] = tax_model['target']['decoder'][layer_name]['mlp']['wo']['kernel'] # Layer Normalization UpperCAmelCase : str = tax_model['target']['decoder'][layer_name]['pre_mlp_layer_norm']['scale'] # Assigning UpperCAmelCase : Optional[int] = flax_model.params['decoder']['block'][str(UpperCAmelCase_ )]['layer'] UpperCAmelCase : int = tax_attention_key UpperCAmelCase : Optional[Any] = tax_attention_out UpperCAmelCase : Any = tax_attention_query UpperCAmelCase : Dict = tax_attention_value UpperCAmelCase : Optional[Any] = tax_pre_attention_layer_norm UpperCAmelCase : Tuple = tax_enc_dec_attention_key UpperCAmelCase : Dict = tax_enc_dec_attention_out UpperCAmelCase : Dict = tax_enc_dec_attention_query UpperCAmelCase : int = tax_enc_dec_attention_value UpperCAmelCase : Union[str, Any] = tax_cross_layer_norm if split_mlp_wi: UpperCAmelCase : Union[str, Any] = tax_mlp_wi_a UpperCAmelCase : Any = tax_mlp_wi_a else: UpperCAmelCase : Union[str, Any] = tax_mlp_wi UpperCAmelCase : Optional[int] = tax_mlp_wo UpperCAmelCase : int = txa_mlp_layer_norm UpperCAmelCase : Dict = flax_model_decoder_layer_block # Decoder Normalization UpperCAmelCase : Tuple = tax_model['target']['decoder']['decoder_norm']['scale'] UpperCAmelCase : Union[str, Any] = txa_decoder_norm # Only for layer 0: UpperCAmelCase : str = tax_model['target']['decoder']['relpos_bias']['rel_embedding'].T UpperCAmelCase : int = tax_decoder_rel_embedding # Token Embeddings UpperCAmelCase : Union[str, Any] = tax_model['target']['token_embedder']['embedding'] UpperCAmelCase : List[str] = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: UpperCAmelCase : Any = tax_model['target']['decoder']['logits_dense']['kernel'] flax_model.save_pretrained(UpperCAmelCase_ ) print('T5X Model was sucessfully converted!' ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--t5x_checkpoint_path", default=None, type=str, required=True, help="Path the T5X checkpoint." ) parser.add_argument("--config_name", default=None, type=str, required=True, help="Config name of LongT5/T5 model.") parser.add_argument( "--flax_dump_folder_path", default=None, type=str, required=True, help="Path to the output FLAX model." ) lowercase__ = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
151
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowercase__ = {"processing_layoutxlm": ["LayoutXLMProcessor"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["LayoutXLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["LayoutXLMTokenizerFast"] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys lowercase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
151
1
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer __A = logging.get_logger(__name__) __A = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __A = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } __A = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } __A = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } __A = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } __A = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } __A = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } __A = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } __A = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } __A = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class snake_case ( __snake_case ): SCREAMING_SNAKE_CASE_ : List[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : List[Any] = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Any = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : int = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE_ : Union[str, Any] = DPRContextEncoderTokenizer class snake_case ( __snake_case ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : List[str] = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Optional[Any] = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : Optional[int] = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE_ : Tuple = DPRQuestionEncoderTokenizer __A = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) __A = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) __A = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(__snake_case ) class snake_case : def __call__( self : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : Union[bool, str] = False , UpperCamelCase__ : Union[bool, str] = False , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , UpperCamelCase__ : Optional[bool] = None , **UpperCamelCase__ : Dict , )-> BatchEncoding: '''simple docstring''' if titles is None and texts is None: return super().__call__( UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , return_tensors=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , **UpperCamelCase__ , ) elif titles is None or texts is None: __lowerCAmelCase: Tuple = titles if texts is None else texts return super().__call__( UpperCamelCase__ , UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , return_tensors=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , **UpperCamelCase__ , ) __lowerCAmelCase: Dict = titles if not isinstance(UpperCamelCase__ , UpperCamelCase__) else [titles] __lowerCAmelCase: Optional[Any] = texts if not isinstance(UpperCamelCase__ , UpperCamelCase__) else [texts] __lowerCAmelCase: Union[str, Any] = len(UpperCamelCase__) __lowerCAmelCase: List[str] = questions if not isinstance(UpperCamelCase__ , UpperCamelCase__) else [questions] * n_passages assert len(UpperCamelCase__) == len( UpperCamelCase__), f"There should be as many titles than texts but got {len(UpperCamelCase__)} titles and {len(UpperCamelCase__)} texts." __lowerCAmelCase: Tuple = super().__call__(UpperCamelCase__ , UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__)["input_ids"] __lowerCAmelCase: Union[str, Any] = super().__call__(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__)["input_ids"] __lowerCAmelCase: Optional[int] = { "input_ids": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(UpperCamelCase__ , UpperCamelCase__) ] } if return_attention_mask is not False: __lowerCAmelCase: Tuple = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids]) __lowerCAmelCase: List[Any] = attention_mask return self.pad(UpperCamelCase__ , padding=UpperCamelCase__ , max_length=UpperCamelCase__ , return_tensors=UpperCamelCase__) def lowercase_ ( self : List[Any] , UpperCamelCase__ : BatchEncoding , UpperCamelCase__ : DPRReaderOutput , UpperCamelCase__ : int = 1_6 , UpperCamelCase__ : int = 6_4 , UpperCamelCase__ : int = 4 , )-> List[DPRSpanPrediction]: '''simple docstring''' __lowerCAmelCase: List[Any] = reader_input["input_ids"] __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase: List[Any] = reader_output[:3] __lowerCAmelCase: Optional[int] = len(UpperCamelCase__) __lowerCAmelCase: Union[str, Any] = sorted(range(UpperCamelCase__) , reverse=UpperCamelCase__ , key=relevance_logits.__getitem__) __lowerCAmelCase: List[DPRReaderOutput] = [] for doc_id in sorted_docs: __lowerCAmelCase: Any = list(input_ids[doc_id]) # assuming question & title information is at the beginning of the sequence __lowerCAmelCase: Dict = sequence_ids.index(self.sep_token_id , 2) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: __lowerCAmelCase: str = sequence_ids.index(self.pad_token_id) else: __lowerCAmelCase: Union[str, Any] = len(UpperCamelCase__) __lowerCAmelCase: Tuple = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=UpperCamelCase__ , top_spans=UpperCamelCase__ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=UpperCamelCase__ , start_index=UpperCamelCase__ , end_index=UpperCamelCase__ , text=self.decode(sequence_ids[start_index : end_index + 1]) , )) if len(UpperCamelCase__) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowercase_ ( self : int , UpperCamelCase__ : List[int] , UpperCamelCase__ : List[int] , UpperCamelCase__ : int , UpperCamelCase__ : int , )-> List[DPRSpanPrediction]: '''simple docstring''' __lowerCAmelCase: Tuple = [] for start_index, start_score in enumerate(UpperCamelCase__): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]): scores.append(((start_index, start_index + answer_length), start_score + end_score)) __lowerCAmelCase: Tuple = sorted(UpperCamelCase__ , key=lambda UpperCamelCase__: x[1] , reverse=UpperCamelCase__) __lowerCAmelCase: Tuple = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f"Wrong span indices: [{start_index}:{end_index}]" __lowerCAmelCase: Any = end_index - start_index + 1 assert length <= max_answer_length, f"Span is too long: {length} > {max_answer_length}" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals): continue chosen_span_intervals.append((start_index, end_index)) if len(UpperCamelCase__) == top_spans: break return chosen_span_intervals @add_end_docstrings(__snake_case ) class snake_case ( __snake_case, __snake_case ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : str = READER_PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : List[str] = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : int = READER_PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE_ : Optional[Any] = ["""input_ids""", """attention_mask"""] SCREAMING_SNAKE_CASE_ : Optional[int] = DPRReaderTokenizer
108
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) __A = { "configuration_speecht5": [ "SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP", "SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP", "SpeechT5Config", "SpeechT5HifiGanConfig", ], "feature_extraction_speecht5": ["SpeechT5FeatureExtractor"], "processing_speecht5": ["SpeechT5Processor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["SpeechT5Tokenizer"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST", "SpeechT5ForSpeechToText", "SpeechT5ForSpeechToSpeech", "SpeechT5ForTextToSpeech", "SpeechT5Model", "SpeechT5PreTrainedModel", "SpeechT5HifiGan", ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
108
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase_ ( metaclass=__lowercase ): lowerCamelCase : int = ['''onnx'''] def __init__( self : Dict , *UpperCAmelCase__ : str , **UpperCAmelCase__ : int ) -> Dict: requires_backends(self , ['onnx'] ) @classmethod def __UpperCAmelCase ( cls : Any , *UpperCAmelCase__ : List[str] , **UpperCAmelCase__ : Union[str, Any] ) -> Union[str, Any]: requires_backends(cls , ['onnx'] ) @classmethod def __UpperCAmelCase ( cls : Dict , *UpperCAmelCase__ : Optional[int] , **UpperCAmelCase__ : Optional[Any] ) -> Union[str, Any]: requires_backends(cls , ['onnx'] )
4
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() _a = logging.get_logger(__name__) _a = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } _a = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) -> Optional[Any]: '''simple docstring''' for attribute in key.split('''.''' ): lowerCamelCase__ = getattr(__snake_case ,__snake_case ) if weight_type is not None: lowerCamelCase__ = getattr(__snake_case ,__snake_case ).shape else: lowerCamelCase__ = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": lowerCamelCase__ = value elif weight_type == "weight_g": lowerCamelCase__ = value elif weight_type == "weight_v": lowerCamelCase__ = value elif weight_type == "bias": lowerCamelCase__ = value else: lowerCamelCase__ = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def lowerCAmelCase__(__snake_case ,__snake_case ) -> int: '''simple docstring''' lowerCamelCase__ = [] lowerCamelCase__ = fairseq_model.state_dict() lowerCamelCase__ = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight lowerCamelCase__ = None for name, value in fairseq_dict.items(): lowerCamelCase__ = False if "conv_layers" in name: load_conv_layer( __snake_case ,__snake_case ,__snake_case ,__snake_case ,hf_model.config.feat_extract_norm == '''group''' ,) lowerCamelCase__ = True elif name.split('''.''' )[0] == "proj": lowerCamelCase__ = fairseq_model.proj lowerCamelCase__ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: lowerCamelCase__ = True if "*" in mapped_key: lowerCamelCase__ = name.split(__snake_case )[0].split('''.''' )[-2] lowerCamelCase__ = mapped_key.replace('''*''' ,__snake_case ) if "weight_g" in name: lowerCamelCase__ = '''weight_g''' elif "weight_v" in name: lowerCamelCase__ = '''weight_v''' elif "bias" in name: lowerCamelCase__ = '''bias''' elif "weight" in name: lowerCamelCase__ = '''weight''' else: lowerCamelCase__ = None set_recursively(__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(F'Unused weights: {unused_weights}' ) return proj_weight def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) -> Optional[int]: '''simple docstring''' lowerCamelCase__ = full_name.split('''conv_layers.''' )[-1] lowerCamelCase__ = name.split('''.''' ) lowerCamelCase__ = int(items[0] ) lowerCamelCase__ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) lowerCamelCase__ = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) lowerCamelCase__ = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) lowerCamelCase__ = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) lowerCamelCase__ = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__snake_case ) def lowerCAmelCase__(__snake_case ) -> Any: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ = emb.weight.shape lowerCamelCase__ = nn.Linear(__snake_case ,__snake_case ,bias=__snake_case ) lowerCamelCase__ = emb.weight.data return lin_layer def lowerCAmelCase__(__snake_case ) -> Any: '''simple docstring''' with open(__snake_case ,'''r''' ,encoding='''utf-8''' ) as f: lowerCamelCase__ = f.readlines() lowerCamelCase__ = [line.split(''' ''' )[0] for line in lines] lowerCamelCase__ = len(__snake_case ) lowerCamelCase__ = { '''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3, } vocab_dict.update(dict(zip(__snake_case ,range(4 ,num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,) -> Optional[Any]: '''simple docstring''' lowerCamelCase__ = WavaVecaConfig.from_pretrained(__snake_case ) lowerCamelCase__ = SpeechaTextaConfig.from_pretrained( __snake_case ,vocab_size=__snake_case ,decoder_layers=__snake_case ,do_stable_layer_norm=__snake_case ) lowerCamelCase__ = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=16000 ,padding_value=0 ,do_normalize=__snake_case ,return_attention_mask=__snake_case ,) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) lowerCamelCase__ = model[0].eval() # set weights for wav2vec2 encoder lowerCamelCase__ = WavaVecaModel(__snake_case ) lowerCamelCase__ = recursively_load_weights_wavaveca(model.encoder ,__snake_case ) lowerCamelCase__ = SpeechaTextaForCausalLM(__snake_case ) lowerCamelCase__ , lowerCamelCase__ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() ,strict=__snake_case ) # set output linear layer unexpected_keys.remove('''embed_out''' ) lowerCamelCase__ = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F'The following keys are missing when loading the decoder weights: {missing_keys}' ) logger.warning(F'The following keys are unexpected when loading the decoder weights: {unexpected_keys}' ) lowerCamelCase__ = SpeechEncoderDecoderModel(encoder=__snake_case ,decoder=__snake_case ) lowerCamelCase__ = False # add projection layer lowerCamelCase__ = nn.Parameter(projection_layer.weight ) lowerCamelCase__ = nn.Parameter(projection_layer.bias ) lowerCamelCase__ = create_vocab_dict(__snake_case ) with open(os.path.join(__snake_case ,'''vocab.json''' ) ,'''w''' ) as fp: json.dump(__snake_case ,__snake_case ) lowerCamelCase__ = SpeechaTextaTokenizer(os.path.join(__snake_case ,'''vocab.json''' ) ) tokenizer.save_pretrained(__snake_case ) lowerCamelCase__ = hf_wavavec.config.to_dict() lowerCamelCase__ = tokenizer.pad_token_id lowerCamelCase__ = tokenizer.bos_token_id lowerCamelCase__ = tokenizer.eos_token_id lowerCamelCase__ = '''speech_to_text_2''' lowerCamelCase__ = '''wav2vec2''' lowerCamelCase__ = SpeechEncoderDecoderConfig.from_dict(__snake_case ) hf_wavavec.save_pretrained(__snake_case ) feature_extractor.save_pretrained(__snake_case ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-large-lv60", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/s2t-small-mustc-en-fr-st", type=str, help="Path to hf decoder s2t checkpoint config", ) parser.add_argument("--vocab_size", default=10_224, type=int, help="Vocab size of decoder") parser.add_argument("--num_decoder_layers", default=7, type=int, help="Number of decoder layers") _a = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
209
0
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch a_ = logging.get_logger(__name__) class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ["""pixel_values"""] def __init__( self , __lowerCamelCase = True , __lowerCamelCase = None , __lowerCamelCase = PILImageResampling.BILINEAR , __lowerCamelCase = True , __lowerCamelCase = None , __lowerCamelCase = True , __lowerCamelCase = 1 / 255 , __lowerCamelCase = True , __lowerCamelCase = None , __lowerCamelCase = None , **__lowerCamelCase , ): '''simple docstring''' super().__init__(**__lowerCamelCase ) __A : int = size if size is not None else {'''shortest_edge''': 256} __A : Any = get_size_dict(__lowerCamelCase , default_to_square=__lowerCamelCase ) __A : Tuple = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} __A : Any = get_size_dict(__lowerCamelCase , param_name='''crop_size''' ) __A : int = do_resize __A : Any = size __A : Union[str, Any] = resample __A : Any = do_center_crop __A : int = crop_size __A : Optional[Any] = do_rescale __A : List[str] = rescale_factor __A : str = do_normalize __A : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __A : Tuple = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = PILImageResampling.BICUBIC , __lowerCamelCase = None , **__lowerCamelCase , ): '''simple docstring''' __A : Any = get_size_dict(__lowerCamelCase , default_to_square=__lowerCamelCase ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) __A : str = get_resize_output_image_size(__lowerCamelCase , size=size['''shortest_edge'''] , default_to_square=__lowerCamelCase ) return resize(__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = None , **__lowerCamelCase , ): '''simple docstring''' __A : Any = get_size_dict(__lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(__lowerCamelCase , size=(size['''height'''], size['''width''']) , data_format=__lowerCamelCase , **__lowerCamelCase ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = None , **__lowerCamelCase ): '''simple docstring''' return rescale(__lowerCamelCase , scale=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = None , **__lowerCamelCase , ): '''simple docstring''' return normalize(__lowerCamelCase , mean=__lowerCamelCase , std=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = ChannelDimension.FIRST , **__lowerCamelCase , ): '''simple docstring''' __A : List[str] = do_resize if do_resize is not None else self.do_resize __A : str = size if size is not None else self.size __A : str = get_size_dict(__lowerCamelCase , default_to_square=__lowerCamelCase ) __A : List[Any] = resample if resample is not None else self.resample __A : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop __A : Optional[int] = crop_size if crop_size is not None else self.crop_size __A : Optional[Any] = get_size_dict(__lowerCamelCase , param_name='''crop_size''' ) __A : Any = do_rescale if do_rescale is not None else self.do_rescale __A : str = rescale_factor if rescale_factor is not None else self.rescale_factor __A : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize __A : List[str] = image_mean if image_mean is not None else self.image_mean __A : Union[str, Any] = image_std if image_std is not None else self.image_std __A : Optional[int] = make_list_of_images(__lowerCamelCase ) if not valid_images(__lowerCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. __A : str = [to_numpy_array(__lowerCamelCase ) for image in images] if do_resize: __A : Optional[int] = [self.resize(image=__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase ) for image in images] if do_center_crop: __A : Any = [self.center_crop(image=__lowerCamelCase , size=__lowerCamelCase ) for image in images] if do_rescale: __A : Optional[Any] = [self.rescale(image=__lowerCamelCase , scale=__lowerCamelCase ) for image in images] if do_normalize: __A : str = [self.normalize(image=__lowerCamelCase , mean=__lowerCamelCase , std=__lowerCamelCase ) for image in images] __A : Optional[int] = [to_channel_dimension_format(__lowerCamelCase , __lowerCamelCase ) for image in images] __A : int = {'''pixel_values''': images} return BatchFeature(data=__lowerCamelCase , tensor_type=__lowerCamelCase ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase = None ): '''simple docstring''' __A : Union[str, Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(__lowerCamelCase ): __A : Tuple = target_sizes.numpy() __A : str = [] for idx in range(len(__lowerCamelCase ) ): __A : Optional[int] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=__lowerCamelCase ) __A : List[str] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__lowerCamelCase ) else: __A : Optional[Any] = logits.argmax(dim=1 ) __A : int = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
291
"""simple docstring""" from math import factorial def __lowercase ( snake_case_ : int ,snake_case_ : int ) ->int: '''simple docstring''' if n < k or k < 0: raise ValueError('''Please enter positive integers for n and k where n >= k''' ) return factorial(snake_case_ ) // (factorial(snake_case_ ) * factorial(n - k )) if __name__ == "__main__": print( """The number of five-card hands possible from a standard""", f'''fifty-two card deck is: {combinations(52, 5)}\n''', ) print( """If a class of 40 students must be arranged into groups of""", f'''4 for group projects, there are {combinations(40, 4)} ways''', """to arrange them.\n""", ) print( """If 10 teams are competing in a Formula One race, there""", f'''are {combinations(10, 3)} ways that first, second and''', """third place can be awarded.""", )
291
1
'''simple docstring''' import sys def lowercase__( __UpperCamelCase: str ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = len(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = [[0 for x in range(UpperCAmelCase_ )] for x in range(UpperCAmelCase_ )] SCREAMING_SNAKE_CASE : List[str] = [[0 for x in range(UpperCAmelCase_ )] for x in range(UpperCAmelCase_ )] for chain_length in range(2 ,UpperCAmelCase_ ): for a in range(1 ,n - chain_length + 1 ): SCREAMING_SNAKE_CASE : int = a + chain_length - 1 SCREAMING_SNAKE_CASE : str = sys.maxsize for c in range(UpperCAmelCase_ ,UpperCAmelCase_ ): SCREAMING_SNAKE_CASE : Tuple = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: SCREAMING_SNAKE_CASE : Tuple = cost SCREAMING_SNAKE_CASE : Dict = c return matrix, sol def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: Union[str, Any] ,__UpperCamelCase: Any ): """simple docstring""" if i == j: print('A' + str(UpperCAmelCase_ ) ,end=' ' ) else: print('(' ,end=' ' ) print_optiomal_solution(UpperCAmelCase_ ,UpperCAmelCase_ ,optimal_solution[i][j] ) print_optiomal_solution(UpperCAmelCase_ ,optimal_solution[i][j] + 1 ,UpperCAmelCase_ ) print(')' ,end=' ' ) def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = [30, 35, 15, 5, 10, 20, 25] SCREAMING_SNAKE_CASE : str = len(UpperCAmelCase_ ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 SCREAMING_SNAKE_CASE : List[str] = matrix_chain_order(UpperCAmelCase_ ) print('No. of Operation required: ' + str(matrix[1][n - 1] ) ) print_optiomal_solution(UpperCAmelCase_ ,1 ,n - 1 ) if __name__ == "__main__": main()
251
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a : Optional[int]= logging.get_logger(__name__) _a : Dict= {"vocab_file": "spiece.model"} _a : int= { "vocab_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/spiece.model", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/spiece.model", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/spiece.model", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/spiece.model", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model", } } _a : int= { "albert-base-v1": 512, "albert-large-v1": 512, "albert-xlarge-v1": 512, "albert-xxlarge-v1": 512, "albert-base-v2": 512, "albert-large-v2": 512, "albert-xlarge-v2": 512, "albert-xxlarge-v2": 512, } _a : Optional[Any]= "▁" class UpperCamelCase ( lowercase ): UpperCAmelCase : Optional[Any] = VOCAB_FILES_NAMES UpperCAmelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__(self : Optional[Any] , _A : List[str] , _A : int=True , _A : Optional[int]=True , _A : Any=False , _A : str="[CLS]" , _A : Dict="[SEP]" , _A : Any="<unk>" , _A : List[Any]="[SEP]" , _A : Any="<pad>" , _A : List[str]="[CLS]" , _A : int="[MASK]" , _A : Optional[Dict[str, Any]] = None , **_A : List[str] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. __snake_case : Dict = ( AddedToken(_A , lstrip=_A , rstrip=_A , normalized=_A) if isinstance(_A , _A) else mask_token ) __snake_case : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_A , remove_space=_A , keep_accents=_A , bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , sp_model_kwargs=self.sp_model_kwargs , **_A , ) __snake_case : Optional[int] = do_lower_case __snake_case : Any = remove_space __snake_case : Any = keep_accents __snake_case : Dict = vocab_file __snake_case : int = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(_A) @property def _lowercase (self : str) -> Optional[Any]: return len(self.sp_model) def _lowercase (self : Dict) -> List[str]: __snake_case : int = {self.convert_ids_to_tokens(_A): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__(self : Optional[int]) -> int: __snake_case : List[Any] = self.__dict__.copy() __snake_case : Any = None return state def __setstate__(self : Union[str, Any] , _A : Optional[Any]) -> int: __snake_case : str = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): __snake_case : Optional[int] = {} __snake_case : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def _lowercase (self : Tuple , _A : int) -> int: if self.remove_space: __snake_case : int = ' '.join(inputs.strip().split()) else: __snake_case : str = inputs __snake_case : Optional[int] = outputs.replace('``' , '"').replace('\'\'' , '"') if not self.keep_accents: __snake_case : Tuple = unicodedata.normalize('NFKD' , _A) __snake_case : Optional[Any] = ''.join([c for c in outputs if not unicodedata.combining(_A)]) if self.do_lower_case: __snake_case : Union[str, Any] = outputs.lower() return outputs def _lowercase (self : Any , _A : str) -> List[str]: __snake_case : Union[str, Any] = self.preprocess_text(_A) __snake_case : Optional[Any] = self.sp_model.encode(_A , out_type=_A) __snake_case : Tuple = [] for piece in pieces: if len(_A) > 1 and piece[-1] == str(',') and piece[-2].isdigit(): __snake_case : Tuple = self.sp_model.EncodeAsPieces(piece[:-1].replace(_A , '')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: __snake_case : Any = cur_pieces[1:] else: __snake_case : Optional[int] = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(_A) else: new_pieces.append(_A) return new_pieces def _lowercase (self : Optional[Any] , _A : List[str]) -> int: return self.sp_model.PieceToId(_A) def _lowercase (self : Optional[int] , _A : Tuple) -> Union[str, Any]: return self.sp_model.IdToPiece(_A) def _lowercase (self : Union[str, Any] , _A : Union[str, Any]) -> Dict: __snake_case : Any = [] __snake_case : Dict = '' __snake_case : Optional[int] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_A) + token __snake_case : List[str] = True __snake_case : int = [] else: current_sub_tokens.append(_A) __snake_case : int = False out_string += self.sp_model.decode(_A) return out_string.strip() def _lowercase (self : List[Any] , _A : List[int] , _A : Optional[List[int]] = None) -> List[int]: __snake_case : Dict = [self.sep_token_id] __snake_case : int = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _lowercase (self : Tuple , _A : List[int] , _A : Optional[List[int]] = None , _A : bool = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A) if token_ids_a is not None: return [1] + ([0] * len(_A)) + [1] + ([0] * len(_A)) + [1] return [1] + ([0] * len(_A)) + [1] def _lowercase (self : str , _A : List[int] , _A : Optional[List[int]] = None) -> List[int]: __snake_case : int = [self.sep_token_id] __snake_case : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def _lowercase (self : Optional[Any] , _A : str , _A : Optional[str] = None) -> Tuple[str]: if not os.path.isdir(_A): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return __snake_case : Optional[Any] = os.path.join( _A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(_A) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , _A) elif not os.path.isfile(self.vocab_file): with open(_A , 'wb') as fi: __snake_case : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(_A) return (out_vocab_file,)
172
0
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) _UpperCAmelCase = pytest.mark.integration @pytest.mark.parametrize("path" , ["paws", "csv"] ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> Union[str, Any]: inspect_dataset(lowercase_ , lowercase_ ) UpperCamelCase_ = path + ".py" assert script_name in os.listdir(lowercase_ ) assert "__pycache__" not in os.listdir(lowercase_ ) @pytest.mark.filterwarnings("ignore:inspect_metric is deprecated:FutureWarning" ) @pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" ) @pytest.mark.parametrize("path" , ["accuracy"] ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> Tuple: inspect_metric(lowercase_ , lowercase_ ) UpperCamelCase_ = path + ".py" assert script_name in os.listdir(lowercase_ ) assert "__pycache__" not in os.listdir(lowercase_ ) @pytest.mark.parametrize( "path, config_name, expected_splits" , [ ("squad", "plain_text", ["train", "validation"]), ("dalle-mini/wit", "dalle-mini--wit", ["train"]), ("paws", "labeled_final", ["train", "test", "validation"]), ] , ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: UpperCamelCase_ = get_dataset_config_info(lowercase_ , config_name=lowercase_ ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( "path, config_name, expected_exception" , [ ("paws", None, ValueError), ] , ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[str]: with pytest.raises(lowercase_ ): get_dataset_config_info(lowercase_ , config_name=lowercase_ ) @pytest.mark.parametrize( "path, expected" , [ ("squad", "plain_text"), ("acronym_identification", "default"), ("lhoestq/squad", "plain_text"), ("lhoestq/test", "default"), ("lhoestq/demo1", "lhoestq--demo1"), ("dalle-mini/wit", "dalle-mini--wit"), ] , ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> int: UpperCamelCase_ = get_dataset_config_names(lowercase_ ) assert expected in config_names @pytest.mark.parametrize( "path, expected_configs, expected_splits_in_first_config" , [ ("squad", ["plain_text"], ["train", "validation"]), ("dalle-mini/wit", ["dalle-mini--wit"], ["train"]), ("paws", ["labeled_final", "labeled_swap", "unlabeled_final"], ["train", "test", "validation"]), ] , ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Any: UpperCamelCase_ = get_dataset_infos(lowercase_ ) assert list(infos.keys() ) == expected_configs UpperCamelCase_ = expected_configs[0] assert expected_config in infos UpperCamelCase_ = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( "path, expected_config, expected_splits" , [ ("squad", "plain_text", ["train", "validation"]), ("dalle-mini/wit", "dalle-mini--wit", ["train"]), ("paws", "labeled_final", ["train", "test", "validation"]), ] , ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: UpperCamelCase_ = get_dataset_infos(lowercase_ ) assert expected_config in infos UpperCamelCase_ = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( "path, config_name, expected_exception" , [ ("paws", None, ValueError), ] , ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> str: with pytest.raises(lowercase_ ): get_dataset_split_names(lowercase_ , config_name=lowercase_ )
357
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ): @register_to_config def __init__( self: Any , _SCREAMING_SNAKE_CASE: int = 768 , ) -> Tuple: """simple docstring""" super().__init__() UpperCamelCase_ = nn.Parameter(torch.zeros(1 , _SCREAMING_SNAKE_CASE ) ) UpperCamelCase_ = nn.Parameter(torch.ones(1 , _SCREAMING_SNAKE_CASE ) ) def lowercase ( self: List[Any] , _SCREAMING_SNAKE_CASE: Optional[Union[str, torch.device]] = None , _SCREAMING_SNAKE_CASE: Optional[torch.dtype] = None , ) -> List[Any]: """simple docstring""" UpperCamelCase_ = nn.Parameter(self.mean.to(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) ) UpperCamelCase_ = nn.Parameter(self.std.to(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) ) return self def lowercase ( self: str , _SCREAMING_SNAKE_CASE: Dict ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = (embeds - self.mean) * 1.0 / self.std return embeds def lowercase ( self: List[Any] , _SCREAMING_SNAKE_CASE: Union[str, Any] ) -> Dict: """simple docstring""" UpperCamelCase_ = (embeds * self.std) + self.mean return embeds
328
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer _UpperCAmelCase : List[str] =logging.get_logger(__name__) _UpperCAmelCase : str ={"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _UpperCAmelCase : str ={ """vocab_file""": { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json""" ), }, } _UpperCAmelCase : str ={ """yjernite/retribert-base-uncased""": 512, } _UpperCAmelCase : List[str] ={ """yjernite/retribert-base-uncased""": {"""do_lower_case""": True}, } class snake_case__( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : str = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE__ : str = RetriBertTokenizer SCREAMING_SNAKE_CASE__ : Any = ["""input_ids""", """attention_mask"""] def __init__( self , __lowercase=None , __lowercase=None , __lowercase=True , __lowercase="[UNK]" , __lowercase="[SEP]" , __lowercase="[PAD]" , __lowercase="[CLS]" , __lowercase="[MASK]" , __lowercase=True , __lowercase=None , **__lowercase , ) -> Union[str, Any]: super().__init__( __lowercase , tokenizer_file=__lowercase , do_lower_case=__lowercase , unk_token=__lowercase , sep_token=__lowercase , pad_token=__lowercase , cls_token=__lowercase , mask_token=__lowercase , tokenize_chinese_chars=__lowercase , strip_accents=__lowercase , **__lowercase , ) lowerCAmelCase_ : Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , __lowercase ) != do_lower_case or normalizer_state.get('''strip_accents''' , __lowercase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , __lowercase ) != tokenize_chinese_chars ): lowerCAmelCase_ : List[str] = getattr(__lowercase , normalizer_state.pop('''type''' ) ) lowerCAmelCase_ : str = do_lower_case lowerCAmelCase_ : Tuple = strip_accents lowerCAmelCase_ : Tuple = tokenize_chinese_chars lowerCAmelCase_ : Tuple = normalizer_class(**__lowercase ) lowerCAmelCase_ : int = do_lower_case def lowercase_ ( self , __lowercase , __lowercase=None ) -> Optional[int]: lowerCAmelCase_ : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase_ ( self , __lowercase , __lowercase = None ) -> List[int]: lowerCAmelCase_ : List[Any] = [self.sep_token_id] lowerCAmelCase_ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase_ ( self , __lowercase , __lowercase = None ) -> Tuple[str]: lowerCAmelCase_ : Any = self._tokenizer.model.save(__lowercase , name=__lowercase ) return tuple(__lowercase )
262
import inspect import unittest class snake_case__( unittest.TestCase ): '''simple docstring''' def lowercase_ ( self ) -> int: try: import diffusers # noqa: F401 except ImportError: assert False def lowercase_ ( self ) -> List[str]: import diffusers from diffusers.dependency_versions_table import deps lowerCAmelCase_ : Any = inspect.getmembers(__lowercase , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": lowerCAmelCase_ : Optional[int] = '''k-diffusion''' elif backend == "invisible_watermark": lowerCAmelCase_ : Dict = '''invisible-watermark''' assert backend in deps, f"""{backend} is not in the deps table!"""
262
1
import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def lowerCamelCase__ ( A : str ): '''simple docstring''' if ( (cp >= 0x4e00 and cp <= 0x9fff) or (cp >= 0x3400 and cp <= 0x4dbf) # or (cp >= 0x2_0000 and cp <= 0x2_a6df) # or (cp >= 0x2_a700 and cp <= 0x2_b73f) # or (cp >= 0x2_b740 and cp <= 0x2_b81f) # or (cp >= 0x2_b820 and cp <= 0x2_ceaf) # or (cp >= 0xf900 and cp <= 0xfaff) or (cp >= 0x2_f800 and cp <= 0x2_fa1f) # ): # return True return False def lowerCamelCase__ ( A : List[Any] ): '''simple docstring''' for char in word: UpperCAmelCase = ord(A ) if not _is_chinese_char(A ): return 0 return 1 def lowerCamelCase__ ( A : int ): '''simple docstring''' UpperCAmelCase = set() for token in tokens: UpperCAmelCase = len(A ) > 1 and is_chinese(A ) if chinese_word: word_set.add(A ) UpperCAmelCase = list(A ) return word_list def lowerCamelCase__ ( A : List[Any] , A : Optional[int] ): '''simple docstring''' if not chinese_word_set: return bert_tokens UpperCAmelCase = max([len(A ) for w in chinese_word_set] ) UpperCAmelCase = bert_tokens UpperCAmelCase = 0, len(A ) while start < end: UpperCAmelCase = True if is_chinese(bert_word[start] ): UpperCAmelCase = min(end - start , A ) for i in range(A , 1 , -1 ): UpperCAmelCase = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): UpperCAmelCase = '''##''' + bert_word[j] UpperCAmelCase = start + i UpperCAmelCase = False break if single_word: start += 1 return bert_word def lowerCamelCase__ ( A : Optional[Any] , A : List[str] , A : Optional[Any] ): '''simple docstring''' UpperCAmelCase = [] for i in range(0 , len(A ) , 1_00 ): UpperCAmelCase = ltp_tokenizer.pipeline(lines[i : i + 1_00] , tasks=['''cws'''] ).cws UpperCAmelCase = [get_chinese_word(A ) for r in res] ltp_res.extend(A ) assert len(A ) == len(A ) UpperCAmelCase = [] for i in range(0 , len(A ) , 1_00 ): UpperCAmelCase = bert_tokenizer(lines[i : i + 1_00] , add_special_tokens=A , truncation=A , max_length=5_12 ) bert_res.extend(res['''input_ids'''] ) assert len(A ) == len(A ) UpperCAmelCase = [] for input_ids, chinese_word in zip(A , A ): UpperCAmelCase = [] for id in input_ids: UpperCAmelCase = bert_tokenizer._convert_id_to_token(A ) input_tokens.append(A ) UpperCAmelCase = add_sub_symbol(A , A ) UpperCAmelCase = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(A ): if token[:2] == "##": UpperCAmelCase = token[2:] # save chinese tokens' pos if len(A ) == 1 and _is_chinese_char(ord(A ) ): ref_id.append(A ) ref_ids.append(A ) assert len(A ) == len(A ) return ref_ids def lowerCamelCase__ ( A : Optional[int] ): '''simple docstring''' with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f: UpperCAmelCase = f.readlines() UpperCAmelCase = [line.strip() for line in data if len(A ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' UpperCAmelCase = LTP(args.ltp ) # faster in GPU device UpperCAmelCase = BertTokenizer.from_pretrained(args.bert ) UpperCAmelCase = prepare_ref(A , A , A ) with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f: UpperCAmelCase = [json.dumps(A ) + '''\n''' for ref in ref_ids] f.writelines(A ) if __name__ == "__main__": _lowercase : Union[str, Any] = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", required=False, type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", required=False, type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""", ) parser.add_argument( """--bert""", required=False, type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""", ) parser.add_argument( """--save_path""", required=False, type=str, default="""./resources/ref.txt""", help="""path to save res""", ) _lowercase : Dict = parser.parse_args() main(args)
366
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : List[str] = { """configuration_time_series_transformer""": [ """TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TimeSeriesTransformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Dict = [ """TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TimeSeriesTransformerForPrediction""", """TimeSeriesTransformerModel""", """TimeSeriesTransformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys _lowercase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
91
0
"""simple docstring""" from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. A : Optional[Any] = 2_0_0 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. A : Any = 5_0 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. A : int = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1_0_0_0)) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = len([g for position, g in enumerate(_UpperCamelCase ) if g == main_target[position]] ) return (item, float(_UpperCamelCase )) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = random.randint(0 , len(_UpperCamelCase ) - 1 ) __lowerCAmelCase = parent_a[:random_slice] + parent_a[random_slice:] __lowerCAmelCase = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = list(_UpperCamelCase ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: __lowerCAmelCase = random.choice(_UpperCamelCase ) return "".join(_UpperCamelCase ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): '''simple docstring''' __lowerCAmelCase = [] # Generate more children proportionally to the fitness score. __lowerCAmelCase = int(parent_a[1] * 100 ) + 1 __lowerCAmelCase = 10 if child_n >= 10 else child_n for _ in range(_UpperCamelCase ): __lowerCAmelCase = population_score[random.randint(0 , _UpperCamelCase )][0] __lowerCAmelCase , __lowerCAmelCase = crossover(parent_a[0] , _UpperCamelCase ) # Append new string to the population list. pop.append(mutate(_UpperCamelCase , _UpperCamelCase ) ) pop.append(mutate(_UpperCamelCase , _UpperCamelCase ) ) return pop def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = True ): '''simple docstring''' if N_POPULATION < N_SELECTED: __lowerCAmelCase = f"{N_POPULATION} must be bigger than {N_SELECTED}" raise ValueError(_UpperCamelCase ) # Verify that the target contains no genes besides the ones inside genes variable. __lowerCAmelCase = sorted({c for c in target if c not in genes} ) if not_in_genes_list: __lowerCAmelCase = f"{not_in_genes_list} is not in genes list, evolution cannot converge" raise ValueError(_UpperCamelCase ) # Generate random starting population. __lowerCAmelCase = [] for _ in range(_UpperCamelCase ): population.append("".join([random.choice(_UpperCamelCase ) for i in range(len(_UpperCamelCase ) )] ) ) # Just some logs to know what the algorithms is doing. __lowerCAmelCase , __lowerCAmelCase = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(_UpperCamelCase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. __lowerCAmelCase = [evaluate(_UpperCamelCase , _UpperCamelCase ) for item in population] # Check if there is a matching evolution. __lowerCAmelCase = sorted(_UpperCamelCase , key=lambda _UpperCamelCase : x[1] , reverse=_UpperCamelCase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( f"\nGeneration: {generation}" f"\nTotal Population:{total_population}" f"\nBest score: {population_score[0][1]}" f"\nBest string: {population_score[0][0]}" ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. __lowerCAmelCase = population[: int(N_POPULATION / 3 )] population.clear() population.extend(_UpperCamelCase ) # Normalize population score to be between 0 and 1. __lowerCAmelCase = [ (item, score / len(_UpperCamelCase )) for item, score in population_score ] # This is selection for i in range(_UpperCamelCase ): population.extend(select(population_score[int(_UpperCamelCase )] , _UpperCamelCase , _UpperCamelCase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(_UpperCamelCase ) > N_POPULATION: break if __name__ == "__main__": A : Union[str, Any] = ( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) A : Tuple = list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) A , A , A : List[Any] = basic(target_str, genes_list) print( f'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}''' )
57
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py a : List[str] = "src/diffusers" a : str = "." # This is to make sure the diffusers module imported is the one in the repo. a : Tuple = importlib.util.spec_from_file_location( "diffusers", os.path.join(DIFFUSERS_PATH, "__init__.py"), submodule_search_locations=[DIFFUSERS_PATH], ) a : List[str] = spec.loader.load_module() def lowerCamelCase__ ( __lowerCamelCase : Dict , __lowerCamelCase : Tuple ): return line.startswith(__lowerCamelCase ) or len(__lowerCamelCase ) <= 1 or re.search(R"""^\s*\)(\s*->.*:|:)\s*$""" , __lowerCamelCase ) is not None def lowerCamelCase__ ( __lowerCamelCase : Any ): __UpperCAmelCase : Optional[int] = object_name.split(""".""" ) __UpperCAmelCase : List[Any] = 0 # First let's find the module where our object lives. __UpperCAmelCase : Optional[Any] = parts[i] while i < len(__lowerCamelCase ) and not os.path.isfile(os.path.join(__lowerCamelCase , f"""{module}.py""" ) ): i += 1 if i < len(__lowerCamelCase ): __UpperCAmelCase : List[str] = os.path.join(__lowerCamelCase , parts[i] ) if i >= len(__lowerCamelCase ): raise ValueError(f"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" ) with open(os.path.join(__lowerCamelCase , f"""{module}.py""" ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __UpperCAmelCase : Optional[Any] = f.readlines() # Now let's find the class / func in the code! __UpperCAmelCase : List[str] = """""" __UpperCAmelCase : int = 0 for name in parts[i + 1 :]: while ( line_index < len(__lowerCamelCase ) and re.search(Rf"""^{indent}(class|def)\s+{name}(\(|\:)""" , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(__lowerCamelCase ): raise ValueError(f""" {object_name} does not match any function or class in {module}.""" ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). __UpperCAmelCase : List[str] = line_index while line_index < len(__lowerCamelCase ) and _should_continue(lines[line_index] , __lowerCamelCase ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 __UpperCAmelCase : Dict = lines[start_index:line_index] return "".join(__lowerCamelCase ) a : Any = re.compile(r"^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)") a : Optional[int] = re.compile(r"^\s*(\S+)->(\S+)(\s+.*|$)") a : Dict = re.compile(r"<FILL\s+[^>]*>") def lowerCamelCase__ ( __lowerCamelCase : List[Any] ): __UpperCAmelCase : Optional[Any] = code.split("""\n""" ) __UpperCAmelCase : str = 0 while idx < len(__lowerCamelCase ) and len(lines[idx] ) == 0: idx += 1 if idx < len(__lowerCamelCase ): return re.search(R"""^(\s*)\S""" , lines[idx] ).groups()[0] return "" def lowerCamelCase__ ( __lowerCamelCase : List[str] ): __UpperCAmelCase : Tuple = len(get_indent(__lowerCamelCase ) ) > 0 if has_indent: __UpperCAmelCase : Optional[Any] = f"""class Bla:\n{code}""" __UpperCAmelCase : Dict = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=__lowerCamelCase ) __UpperCAmelCase : Dict = black.format_str(__lowerCamelCase , mode=__lowerCamelCase ) __UpperCAmelCase , __UpperCAmelCase : Any = style_docstrings_in_code(__lowerCamelCase ) return result[len("""class Bla:\n""" ) :] if has_indent else result def lowerCamelCase__ ( __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any]=False ): with open(__lowerCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __UpperCAmelCase : Optional[Any] = f.readlines() __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : str = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(__lowerCamelCase ): __UpperCAmelCase : Dict = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = search.groups() __UpperCAmelCase : Any = find_code_in_diffusers(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = get_indent(__lowerCamelCase ) __UpperCAmelCase : Tuple = line_index + 1 if indent == theoretical_indent else line_index + 2 __UpperCAmelCase : Any = theoretical_indent __UpperCAmelCase : Any = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. __UpperCAmelCase : int = True while line_index < len(__lowerCamelCase ) and should_continue: line_index += 1 if line_index >= len(__lowerCamelCase ): break __UpperCAmelCase : List[Any] = lines[line_index] __UpperCAmelCase : str = _should_continue(__lowerCamelCase , __lowerCamelCase ) and re.search(f"""^{indent}# End copy""" , __lowerCamelCase ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 __UpperCAmelCase : Optional[int] = lines[start_index:line_index] __UpperCAmelCase : int = """""".join(__lowerCamelCase ) # Remove any nested `Copied from` comments to avoid circular copies __UpperCAmelCase : Tuple = [line for line in theoretical_code.split("""\n""" ) if _re_copy_warning.search(__lowerCamelCase ) is None] __UpperCAmelCase : List[Any] = """\n""".join(__lowerCamelCase ) # Before comparing, use the `replace_pattern` on the original code. if len(__lowerCamelCase ) > 0: __UpperCAmelCase : List[str] = replace_pattern.replace("""with""" , """""" ).split(""",""" ) __UpperCAmelCase : Any = [_re_replace_pattern.search(__lowerCamelCase ) for p in patterns] for pattern in patterns: if pattern is None: continue __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = pattern.groups() __UpperCAmelCase : List[str] = re.sub(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if option.strip() == "all-casing": __UpperCAmelCase : List[Any] = re.sub(obja.lower() , obja.lower() , __lowerCamelCase ) __UpperCAmelCase : int = re.sub(obja.upper() , obja.upper() , __lowerCamelCase ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line __UpperCAmelCase : Union[str, Any] = blackify(lines[start_index - 1] + theoretical_code ) __UpperCAmelCase : Optional[Any] = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: __UpperCAmelCase : int = lines[:start_index] + [theoretical_code] + lines[line_index:] __UpperCAmelCase : Union[str, Any] = start_index + 1 if overwrite and len(__lowerCamelCase ) > 0: # Warn the user a file has been modified. print(f"""Detected changes, rewriting {filename}.""" ) with open(__lowerCamelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(__lowerCamelCase ) return diffs def lowerCamelCase__ ( __lowerCamelCase : bool = False ): __UpperCAmelCase : Tuple = glob.glob(os.path.join(__lowerCamelCase , """**/*.py""" ) , recursive=__lowerCamelCase ) __UpperCAmelCase : Optional[int] = [] for filename in all_files: __UpperCAmelCase : str = is_copy_consistent(__lowerCamelCase , __lowerCamelCase ) diffs += [f"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(__lowerCamelCase ) > 0: __UpperCAmelCase : Union[str, Any] = """\n""".join(__lowerCamelCase ) raise Exception( """Found the following copy inconsistencies:\n""" + diff + """\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.""" ) if __name__ == "__main__": a : Dict = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") a : Optional[int] = parser.parse_args() check_copies(args.fix_and_overwrite)
114
0
import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": A_ : List[str] = '%20'.join(argv[1:]) if len(argv) > 1 else quote(str(input('Search: '))) print('Googling.....') A_ : Optional[Any] = F'''https://www.google.com/search?q={query}&num=100''' A_ : Any = requests.get( url, headers={'User-Agent': str(UserAgent().random)}, ) try: A_ : Tuple = ( BeautifulSoup(res.text, 'html.parser') .find('div', attrs={'class': 'yuRUbf'}) .find('a') .get('href') ) except AttributeError: A_ : Optional[Any] = parse_qs( BeautifulSoup(res.text, 'html.parser') .find('div', attrs={'class': 'kCrYT'}) .find('a') .get('href') )['url'][0] webbrowser.open(link)
358
from abc import ABC, abstractmethod from argparse import ArgumentParser class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" @staticmethod @abstractmethod def _a ( _lowerCamelCase ): raise NotImplementedError() @abstractmethod def _a ( self ): raise NotImplementedError()
292
0
def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> float: if density <= 0: raise ValueError("""Impossible fluid density""" ) if bulk_modulus <= 0: raise ValueError("""Impossible bulk modulus""" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
20
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class __snake_case : def __init__( self ,snake_case ,): '''simple docstring''' lowercase : Any = parent lowercase : Tuple = 13 lowercase : str = 7 lowercase : Dict = True lowercase : Dict = True lowercase : str = True lowercase : List[str] = True lowercase : int = True lowercase : Union[str, Any] = False lowercase : Dict = False lowercase : List[Any] = False lowercase : List[Any] = 2 lowercase : Optional[Any] = 99 lowercase : int = 0 lowercase : Tuple = 32 lowercase : int = 2 lowercase : Tuple = 4 lowercase : List[Any] = 0.1 lowercase : Tuple = 0.1 lowercase : List[Any] = 512 lowercase : int = 16 lowercase : Dict = 2 lowercase : int = 0.02 lowercase : Union[str, Any] = 3 lowercase : Any = 4 lowercase : List[Any] = """last""" lowercase : Tuple = True lowercase : List[Any] = None lowercase : Any = 0 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ,dtype=tf.floataa ) lowercase : Tuple = None if self.use_input_lengths: lowercase : List[str] = ( ids_tensor([self.batch_size] ,vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowercase : Tuple = None if self.use_token_type_ids: lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.n_langs ) lowercase : List[str] = None lowercase : List[str] = None lowercase : Optional[Any] = None if self.use_labels: lowercase : List[str] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase : List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) lowercase : str = ids_tensor([self.batch_size] ,2 ,dtype=tf.floataa ) lowercase : Optional[Any] = ids_tensor([self.batch_size] ,self.num_choices ) lowercase : str = FlaubertConfig( vocab_size=self.vocab_size ,n_special=self.n_special ,emb_dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,gelu_activation=self.gelu_activation ,sinusoidal_embeddings=self.sinusoidal_embeddings ,asm=self.asm ,causal=self.causal ,n_langs=self.n_langs ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,summary_type=self.summary_type ,use_proj=self.use_proj ,bos_token_id=self.bos_token_id ,) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Tuple = TFFlaubertModel(config=snake_case ) lowercase : str = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} lowercase : Optional[Any] = model(snake_case ) lowercase : List[Any] = [input_ids, input_mask] lowercase : int = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : List[Any] = TFFlaubertWithLMHeadModel(snake_case ) lowercase : Optional[Any] = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} lowercase : int = model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Tuple = TFFlaubertForQuestionAnsweringSimple(snake_case ) lowercase : Union[str, Any] = {"""input_ids""": input_ids, """lengths""": input_lengths} lowercase : Tuple = model(snake_case ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Union[str, Any] = TFFlaubertForSequenceClassification(snake_case ) lowercase : str = {"""input_ids""": input_ids, """lengths""": input_lengths} lowercase : str = model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Any = self.num_labels lowercase : List[str] = TFFlaubertForTokenClassification(config=snake_case ) lowercase : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowercase : int = model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Any = self.num_choices lowercase : Dict = TFFlaubertForMultipleChoice(config=snake_case ) lowercase : Any = tf.tile(tf.expand_dims(snake_case ,1 ) ,(1, self.num_choices, 1) ) lowercase : Optional[Any] = tf.tile(tf.expand_dims(snake_case ,1 ) ,(1, self.num_choices, 1) ) lowercase : Dict = tf.tile(tf.expand_dims(snake_case ,1 ) ,(1, self.num_choices, 1) ) lowercase : Union[str, Any] = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } lowercase : int = model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Any = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : int = config_and_inputs lowercase : List[str] = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """langs""": token_type_ids, """lengths""": input_lengths, } return config, inputs_dict @require_tf class __snake_case ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): _a : Dict= ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) _a : Optional[Any]= ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _a : Any= ( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) _a : Tuple= False _a : int= False def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = TFFlaubertModelTester(self ) lowercase : List[Any] = ConfigTester(self ,config_class=snake_case ,emb_dim=37 ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*snake_case ) @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : Dict = TFFlaubertModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @require_tf @require_sentencepiece @require_tokenizers class __snake_case ( unittest.TestCase ): @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = TFFlaubertModel.from_pretrained("""jplu/tf-flaubert-small-cased""" ) lowercase : int = tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] ,dtype=tf.intaa ,) # "J'aime flaubert !" lowercase : Dict = model(snake_case )[0] lowercase : Union[str, Any] = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape ,snake_case ) # compare the actual values for a slice. lowercase : Tuple = tf.convert_to_tensor( [ [ [-1.8_768_773, -1.566_555, 0.27_072_418], [-1.6_920_038, -0.5_873_505, 1.9_329_599], [-2.9_563_985, -1.6_993_835, 1.7_972_052], ] ] ,dtype=tf.floataa ,) self.assertTrue(np.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1e-4 ) )
20
1
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def UpperCamelCase ( snake_case__ : int ) -> Any: UpperCamelCase : Optional[int] = SwinvaConfig() UpperCamelCase : str = swinva_name.split('_' ) UpperCamelCase : Any = name_split[1] if "to" in name_split[3]: UpperCamelCase : List[str] = int(name_split[3][-3:] ) else: UpperCamelCase : List[str] = int(name_split[3] ) if "to" in name_split[2]: UpperCamelCase : List[Any] = int(name_split[2][-2:] ) else: UpperCamelCase : str = int(name_split[2][6:] ) if model_size == "tiny": UpperCamelCase : Tuple = 96 UpperCamelCase : str = (2, 2, 6, 2) UpperCamelCase : List[str] = (3, 6, 12, 24) elif model_size == "small": UpperCamelCase : Optional[Any] = 96 UpperCamelCase : int = (2, 2, 18, 2) UpperCamelCase : str = (3, 6, 12, 24) elif model_size == "base": UpperCamelCase : int = 128 UpperCamelCase : Optional[int] = (2, 2, 18, 2) UpperCamelCase : int = (4, 8, 16, 32) else: UpperCamelCase : Dict = 192 UpperCamelCase : Any = (2, 2, 18, 2) UpperCamelCase : str = (6, 12, 24, 48) if "to" in swinva_name: UpperCamelCase : List[Any] = (12, 12, 12, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): UpperCamelCase : Union[str, Any] = 21841 UpperCamelCase : List[Any] = 'huggingface/label-files' UpperCamelCase : str = 'imagenet-22k-id2label.json' UpperCamelCase : Union[str, Any] = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='dataset' ) , 'r' ) ) UpperCamelCase : int = {int(snake_case__ ): v for k, v in idalabel.items()} UpperCamelCase : Dict = idalabel UpperCamelCase : Union[str, Any] = {v: k for k, v in idalabel.items()} else: UpperCamelCase : Dict = 1000 UpperCamelCase : str = 'huggingface/label-files' UpperCamelCase : Optional[Any] = 'imagenet-1k-id2label.json' UpperCamelCase : Any = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='dataset' ) , 'r' ) ) UpperCamelCase : str = {int(snake_case__ ): v for k, v in idalabel.items()} UpperCamelCase : Optional[Any] = idalabel UpperCamelCase : Optional[int] = {v: k for k, v in idalabel.items()} UpperCamelCase : Any = img_size UpperCamelCase : Any = num_classes UpperCamelCase : Optional[int] = embed_dim UpperCamelCase : Optional[Any] = depths UpperCamelCase : Optional[int] = num_heads UpperCamelCase : Optional[Any] = window_size return config def UpperCamelCase ( snake_case__ : List[str] ) -> str: if "patch_embed.proj" in name: UpperCamelCase : Tuple = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: UpperCamelCase : List[str] = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: UpperCamelCase : List[Any] = 'encoder.' + name if "attn.proj" in name: UpperCamelCase : Union[str, Any] = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: UpperCamelCase : str = name.replace('attn' , 'attention.self' ) if "norm1" in name: UpperCamelCase : List[Any] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: UpperCamelCase : Dict = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: UpperCamelCase : List[str] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: UpperCamelCase : str = name.replace('mlp.fc2' , 'output.dense' ) if "q_bias" in name: UpperCamelCase : int = name.replace('q_bias' , 'query.bias' ) if "k_bias" in name: UpperCamelCase : Tuple = name.replace('k_bias' , 'key.bias' ) if "v_bias" in name: UpperCamelCase : Optional[Any] = name.replace('v_bias' , 'value.bias' ) if "cpb_mlp" in name: UpperCamelCase : Optional[Any] = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' ) if name == "norm.weight": UpperCamelCase : Optional[int] = 'layernorm.weight' if name == "norm.bias": UpperCamelCase : List[str] = 'layernorm.bias' if "head" in name: UpperCamelCase : Optional[Any] = name.replace('head' , 'classifier' ) else: UpperCamelCase : Optional[int] = 'swinv2.' + name return name def UpperCamelCase ( snake_case__ : List[Any] , snake_case__ : List[Any] ) -> List[Any]: for key in orig_state_dict.copy().keys(): UpperCamelCase : Any = orig_state_dict.pop(snake_case__ ) if "mask" in key: continue elif "qkv" in key: UpperCamelCase : Tuple = key.split('.' ) UpperCamelCase : Tuple = int(key_split[1] ) UpperCamelCase : Any = int(key_split[3] ) UpperCamelCase : Any = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: UpperCamelCase : List[str] = val[:dim, :] UpperCamelCase : str = val[dim : dim * 2, :] UpperCamelCase : str = val[-dim:, :] else: UpperCamelCase : int = val[:dim] UpperCamelCase : Any = val[ dim : dim * 2 ] UpperCamelCase : Optional[int] = val[-dim:] else: UpperCamelCase : Union[str, Any] = val return orig_state_dict def UpperCamelCase ( snake_case__ : List[str] , snake_case__ : str ) -> List[Any]: UpperCamelCase : Dict = timm.create_model(snake_case__ , pretrained=snake_case__ ) timm_model.eval() UpperCamelCase : int = get_swinva_config(snake_case__ ) UpperCamelCase : List[str] = SwinvaForImageClassification(snake_case__ ) model.eval() UpperCamelCase : Any = convert_state_dict(timm_model.state_dict() , snake_case__ ) model.load_state_dict(snake_case__ ) UpperCamelCase : List[Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase : Dict = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swinva_name.replace('_' , '-' ) ) ) UpperCamelCase : Optional[Any] = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) UpperCamelCase : Tuple = image_processor(images=snake_case__ , return_tensors='pt' ) UpperCamelCase : Optional[Any] = timm_model(inputs['pixel_values'] ) UpperCamelCase : Union[str, Any] = model(**snake_case__ ).logits assert torch.allclose(snake_case__ , snake_case__ , atol=1E-3 ) print(F"""Saving model {swinva_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(snake_case__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(snake_case__ ) model.push_to_hub( repo_path_or_name=Path(snake_case__ , snake_case__ ) , organization='nandwalritik' , commit_message='Add model' , ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swinv2_name''', default='''swinv2_tiny_patch4_window8_256''', type=str, help='''Name of the Swinv2 timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __UpperCAmelCase = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
357
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def UpperCamelCase ( ) -> Tuple: UpperCamelCase : Any = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png' UpperCamelCase : List[str] = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert('RGB' ) return image def UpperCamelCase ( snake_case__ : int ) -> List[Any]: UpperCamelCase : Optional[int] = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.weight""", F"""vision_model.encoder.layers.{i}.layer_norm1.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.bias""", F"""vision_model.encoder.layers.{i}.layer_norm1.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.weight""", F"""vision_model.encoder.layers.{i}.layer_norm2.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.bias""", F"""vision_model.encoder.layers.{i}.layer_norm2.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.qkv.weight""", F"""vision_model.encoder.layers.{i}.self_attn.qkv.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.weight""", F"""vision_model.encoder.layers.{i}.self_attn.projection.weight""",) ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.bias""", F"""vision_model.encoder.layers.{i}.self_attn.projection.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc1.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc1.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc2.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc2.bias""") ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias') ) # fmt: on return rename_keys def UpperCamelCase ( snake_case__ : Optional[Any] , snake_case__ : Dict , snake_case__ : Optional[int] ) -> Optional[int]: UpperCamelCase : Dict = dct.pop(snake_case__ ) UpperCamelCase : str = val def UpperCamelCase ( snake_case__ : str , snake_case__ : Union[str, Any] ) -> Optional[int]: for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases UpperCamelCase : Optional[Any] = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.q_bias""" ) UpperCamelCase : int = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.v_bias""" ) # next, set bias in the state dict UpperCamelCase : int = torch.cat((q_bias, torch.zeros_like(snake_case__ , requires_grad=snake_case__ ), v_bias) ) UpperCamelCase : Tuple = qkv_bias def UpperCamelCase ( snake_case__ : Tuple , snake_case__ : Optional[Any] ) -> Dict: UpperCamelCase : str = 364 if 'coco' in model_name else 224 UpperCamelCase : Union[str, Any] = BlipaVisionConfig(image_size=snake_case__ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: UpperCamelCase : List[Any] = OPTConfig.from_pretrained('facebook/opt-2.7b' , eos_token_id=snake_case__ ).to_dict() elif "opt-6.7b" in model_name: UpperCamelCase : int = OPTConfig.from_pretrained('facebook/opt-6.7b' , eos_token_id=snake_case__ ).to_dict() elif "t5-xl" in model_name: UpperCamelCase : List[str] = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: UpperCamelCase : int = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() UpperCamelCase : Any = BlipaConfig(vision_config=snake_case__ , text_config=snake_case__ ) return config, image_size @torch.no_grad() def UpperCamelCase ( snake_case__ : int , snake_case__ : Dict=None , snake_case__ : int=False ) -> List[Any]: UpperCamelCase : str = ( AutoTokenizer.from_pretrained('facebook/opt-2.7b' ) if 'opt' in model_name else AutoTokenizer.from_pretrained('google/flan-t5-xl' ) ) UpperCamelCase : int = tokenizer('\n' , add_special_tokens=snake_case__ ).input_ids[0] UpperCamelCase , UpperCamelCase : Union[str, Any] = get_blipa_config(snake_case__ , eos_token_id=snake_case__ ) UpperCamelCase : Dict = BlipaForConditionalGeneration(snake_case__ ).eval() UpperCamelCase : Optional[Any] = { 'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'), 'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'), 'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'), 'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'), 'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'), 'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'), 'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'), } UpperCamelCase , UpperCamelCase : Optional[Any] = model_name_to_original[model_name] # load original model print('Loading original model...' ) UpperCamelCase : List[str] = 'cuda' if torch.cuda.is_available() else 'cpu' UpperCamelCase , UpperCamelCase , UpperCamelCase : Tuple = load_model_and_preprocess( name=snake_case__ , model_type=snake_case__ , is_eval=snake_case__ , device=snake_case__ ) original_model.eval() print('Done!' ) # update state dict keys UpperCamelCase : List[Any] = original_model.state_dict() UpperCamelCase : Tuple = create_rename_keys(snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__ , snake_case__ , snake_case__ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): UpperCamelCase : Optional[Any] = state_dict.pop(snake_case__ ) if key.startswith('Qformer.bert' ): UpperCamelCase : List[str] = key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: UpperCamelCase : Tuple = key.replace('self' , 'attention' ) if "opt_proj" in key: UpperCamelCase : Union[str, Any] = key.replace('opt_proj' , 'language_projection' ) if "t5_proj" in key: UpperCamelCase : Optional[Any] = key.replace('t5_proj' , 'language_projection' ) if key.startswith('opt' ): UpperCamelCase : Dict = key.replace('opt' , 'language' ) if key.startswith('t5' ): UpperCamelCase : Dict = key.replace('t5' , 'language' ) UpperCamelCase : Optional[int] = val # read in qv biases read_in_q_v_bias(snake_case__ , snake_case__ ) UpperCamelCase , UpperCamelCase : Any = hf_model.load_state_dict(snake_case__ , strict=snake_case__ ) assert len(snake_case__ ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] UpperCamelCase : List[str] = load_demo_image() UpperCamelCase : str = vis_processors['eval'](snake_case__ ).unsqueeze(0 ).to(snake_case__ ) UpperCamelCase : Any = tokenizer(['\n'] , return_tensors='pt' ).input_ids.to(snake_case__ ) # create processor UpperCamelCase : Optional[Any] = BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=snake_case__ , image_std=snake_case__ ) UpperCamelCase : Any = BlipaProcessor(image_processor=snake_case__ , tokenizer=snake_case__ ) UpperCamelCase : Optional[int] = processor(images=snake_case__ , return_tensors='pt' ).pixel_values.to(snake_case__ ) # make sure processor creates exact same pixel values assert torch.allclose(snake_case__ , snake_case__ ) original_model.to(snake_case__ ) hf_model.to(snake_case__ ) with torch.no_grad(): if "opt" in model_name: UpperCamelCase : Tuple = original_model({'image': original_pixel_values, 'text_input': ['']} ).logits UpperCamelCase : str = hf_model(snake_case__ , snake_case__ ).logits else: UpperCamelCase : Tuple = original_model( {'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']} ).logits UpperCamelCase : List[Any] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) UpperCamelCase : Optional[int] = hf_model(snake_case__ , snake_case__ , labels=snake_case__ ).logits assert original_logits.shape == logits.shape print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": UpperCamelCase : List[str] = torch.tensor( [[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] , device=snake_case__ ) assert torch.allclose(logits[0, :3, :3] , snake_case__ , atol=1E-4 ) elif model_name == "blip2-flan-t5-xl-coco": UpperCamelCase : Union[str, Any] = torch.tensor( [[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=snake_case__ ) else: # cast to same type UpperCamelCase : Optional[int] = logits.dtype assert torch.allclose(original_logits.to(snake_case__ ) , snake_case__ , atol=1E-2 ) print('Looks ok!' ) print('Generating a caption...' ) UpperCamelCase : Optional[int] = '' UpperCamelCase : Union[str, Any] = tokenizer(snake_case__ , return_tensors='pt' ).input_ids.to(snake_case__ ) UpperCamelCase : str = original_model.generate({'image': original_pixel_values} ) UpperCamelCase : str = hf_model.generate( snake_case__ , snake_case__ , do_sample=snake_case__ , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('Original generation:' , snake_case__ ) UpperCamelCase : Optional[int] = input_ids.shape[1] UpperCamelCase : Union[str, Any] = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=snake_case__ ) UpperCamelCase : Dict = [text.strip() for text in output_text] print('HF generation:' , snake_case__ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(snake_case__ ) hf_model.save_pretrained(snake_case__ ) if push_to_hub: processor.push_to_hub(F"""nielsr/{model_name}""" ) hf_model.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() __UpperCAmelCase = [ '''blip2-opt-2.7b''', '''blip2-opt-6.7b''', '''blip2-opt-2.7b-coco''', '''blip2-opt-6.7b-coco''', '''blip2-flan-t5-xl''', '''blip2-flan-t5-xl-coco''', '''blip2-flan-t5-xxl''', ] parser.add_argument( '''--model_name''', default='''blip2-opt-2.7b''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) __UpperCAmelCase = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
103
0
"""simple docstring""" import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'''vocab_file''': '''vocab.txt'''} lowerCAmelCase__ = { '''vocab_file''': { '''facebook/esm2_t6_8M_UR50D''': '''https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt''', '''facebook/esm2_t12_35M_UR50D''': '''https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt''', }, } lowerCAmelCase__ = { '''facebook/esm2_t6_8M_UR50D''': 1_024, '''facebook/esm2_t12_35M_UR50D''': 1_024, } def a__ ( SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE , "r" ) as f: lowerCAmelCase : str = f.read().splitlines() return [l.strip() for l in lines] class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Any =VOCAB_FILES_NAMES a : List[str] =PRETRAINED_VOCAB_FILES_MAP a : Any =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : List[str] =["input_ids", "attention_mask"] def __init__( self , snake_case__ , snake_case__="<unk>" , snake_case__="<cls>" , snake_case__="<pad>" , snake_case__="<mask>" , snake_case__="<eos>" , **snake_case__ , ): """simple docstring""" super().__init__(**snake_case__ ) lowerCAmelCase : List[Any] = load_vocab_file(snake_case__ ) lowerCAmelCase : Dict = dict(enumerate(self.all_tokens ) ) lowerCAmelCase : Union[str, Any] = {tok: ind for ind, tok in enumerate(self.all_tokens )} lowerCAmelCase : Union[str, Any] = unk_token lowerCAmelCase : int = cls_token lowerCAmelCase : Any = pad_token lowerCAmelCase : Union[str, Any] = mask_token lowerCAmelCase : List[str] = eos_token lowerCAmelCase : str = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def lowercase__ ( self , snake_case__ ): """simple docstring""" return self._id_to_token.get(snake_case__ , self.unk_token ) def lowercase__ ( self , snake_case__ ): """simple docstring""" return self._token_to_id.get(snake_case__ , self._token_to_id.get(self.unk_token ) ) def lowercase__ ( self , snake_case__ , **snake_case__ ): """simple docstring""" return text.split() def lowercase__ ( self , snake_case__=False ): """simple docstring""" return len(self._id_to_token ) def lowercase__ ( self ): """simple docstring""" return {token: i for i, token in enumerate(self.all_tokens )} def lowercase__ ( self , snake_case__ ): """simple docstring""" return self._token_to_id.get(snake_case__ , self._token_to_id.get(self.unk_token ) ) def lowercase__ ( self , snake_case__ ): """simple docstring""" return self._id_to_token.get(snake_case__ , self.unk_token ) def lowercase__ ( self , snake_case__ , snake_case__ = None ): """simple docstring""" lowerCAmelCase : Tuple = [self.cls_token_id] lowerCAmelCase : Dict = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError("Cannot tokenize multiple sequences when EOS token is not set!" ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def lowercase__ ( self , snake_case__ , snake_case__ = None , snake_case__ = False ): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] lowerCAmelCase : List[str] = [1] + ([0] * len(snake_case__ )) + [1] if token_ids_a is not None: mask += [0] * len(snake_case__ ) + [1] return mask def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Optional[int] = os.path.join(snake_case__ , (filename_prefix + "-" if filename_prefix else "") + "vocab.txt" ) with open(snake_case__ , "w" ) as f: f.write("\n".join(self.all_tokens ) ) return (vocab_file,) @property def lowercase__ ( self ): """simple docstring""" return self.get_vocab_size(with_added_tokens=snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ = False ): """simple docstring""" return super()._add_tokens(snake_case__ , special_tokens=snake_case__ )
108
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' if height >= 1: move_tower(height - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) move_disk(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) move_tower(height - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def a__ ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' print("moving disk from" , SCREAMING_SNAKE_CASE , "to" , SCREAMING_SNAKE_CASE ) def a__ ( ): '''simple docstring''' lowerCAmelCase : Optional[int] = int(input("Height of hanoi: " ).strip() ) move_tower(SCREAMING_SNAKE_CASE , "A" , "B" , "C" ) if __name__ == "__main__": main()
108
1
"""simple docstring""" import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) A: Optional[int] = logging.getLogger(__name__) A: str = {"facebook/bart-base": BartForConditionalGeneration} A: Any = {"facebook/bart-base": BartTokenizer} def _snake_case ( ): UpperCAmelCase : str = argparse.ArgumentParser(description="""Export Bart model + Beam Search to ONNX graph.""" ) parser.add_argument( """--validation_file""" , type=UpperCamelCase , default=UpperCamelCase , help="""A csv or a json file containing the validation data.""" ) parser.add_argument( """--max_length""" , type=UpperCamelCase , default=5 , help="""The maximum total input sequence length after tokenization.""" , ) parser.add_argument( """--num_beams""" , type=UpperCamelCase , default=UpperCamelCase , help=( """Number of beams to use for evaluation. This argument will be """ """passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.""" ) , ) parser.add_argument( """--model_name_or_path""" , type=UpperCamelCase , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=UpperCamelCase , ) parser.add_argument( """--config_name""" , type=UpperCamelCase , default=UpperCamelCase , help="""Pretrained config name or path if not the same as model_name""" , ) parser.add_argument( """--device""" , type=UpperCamelCase , default="""cpu""" , help="""Device where the model will be run""" , ) parser.add_argument("""--output_file_path""" , type=UpperCamelCase , default=UpperCamelCase , help="""Where to store the final ONNX file.""" ) UpperCAmelCase : Any = parser.parse_args() return args def _snake_case ( UpperCamelCase : Dict , UpperCamelCase : Dict="cpu" ): UpperCAmelCase : Dict = model_dict[model_name].from_pretrained(UpperCamelCase ).to(UpperCamelCase ) UpperCAmelCase : str = tokenizer_dict[model_name].from_pretrained(UpperCamelCase ) if model_name in ["facebook/bart-base"]: UpperCAmelCase : Any = 0 UpperCAmelCase : Optional[Any] = None UpperCAmelCase : Optional[Any] = 0 return huggingface_model, tokenizer def _snake_case ( UpperCamelCase : Tuple , UpperCamelCase : List[Any] , UpperCamelCase : List[str] , UpperCamelCase : Any , UpperCamelCase : Any ): model.eval() UpperCAmelCase : int = None UpperCAmelCase : Optional[int] = torch.jit.script(BARTBeamSearchGenerator(UpperCamelCase ) ) with torch.no_grad(): UpperCAmelCase : List[Any] = """My friends are cool but they eat too many carbs.""" UpperCAmelCase : str = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1024 , return_tensors="""pt""" ).to(model.device ) UpperCAmelCase : Dict = model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , num_beams=UpperCamelCase , max_length=UpperCamelCase , early_stopping=UpperCamelCase , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( UpperCamelCase , ( inputs["""input_ids"""], inputs["""attention_mask"""], num_beams, max_length, model.config.decoder_start_token_id, ) , UpperCamelCase , opset_version=14 , input_names=["""input_ids""", """attention_mask""", """num_beams""", """max_length""", """decoder_start_token_id"""] , output_names=["""output_ids"""] , dynamic_axes={ """input_ids""": {0: """batch""", 1: """seq"""}, """output_ids""": {0: """batch""", 1: """seq_out"""}, } , example_outputs=UpperCamelCase , ) logger.info("""Model exported to {}""".format(UpperCamelCase ) ) UpperCAmelCase : int = remove_dup_initializers(os.path.abspath(UpperCamelCase ) ) logger.info("""Deduplicated and optimized model written to {}""".format(UpperCamelCase ) ) UpperCAmelCase : Tuple = onnxruntime.InferenceSession(UpperCamelCase ) UpperCAmelCase : Optional[Any] = ort_sess.run( UpperCamelCase , { """input_ids""": inputs["""input_ids"""].cpu().numpy(), """attention_mask""": inputs["""attention_mask"""].cpu().numpy(), """num_beams""": np.array(UpperCamelCase ), """max_length""": np.array(UpperCamelCase ), """decoder_start_token_id""": np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1e-3 , atol=1e-3 ) logger.info("""Model outputs from torch and ONNX Runtime are similar.""" ) logger.info("""Success.""" ) def _snake_case ( ): UpperCAmelCase : Dict = parse_args() UpperCAmelCase : Optional[int] = 5 UpperCAmelCase : str = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() UpperCAmelCase : str = torch.device(args.device ) UpperCAmelCase , UpperCAmelCase : str = load_model_tokenizer(args.model_name_or_path , UpperCamelCase ) if model.config.decoder_start_token_id is None: raise ValueError("""Make sure that `config.decoder_start_token_id` is correctly defined""" ) model.to(UpperCamelCase ) if args.max_length: UpperCAmelCase : Tuple = args.max_length if args.num_beams: UpperCAmelCase : Optional[Any] = args.num_beams if args.output_file_path: UpperCAmelCase : List[str] = args.output_file_path else: UpperCAmelCase : Optional[Any] = """BART.onnx""" logger.info("""Exporting model to ONNX""" ) export_and_validate_model(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) if __name__ == "__main__": main()
76
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : List[str] = { """task_specific_params""": { """summarization""": {"""length_penalty""": 1.0, """max_length""": 128, """min_length""": 12, """num_beams""": 4}, """summarization_cnn""": {"""length_penalty""": 2.0, """max_length""": 142, """min_length""": 56, """num_beams""": 4}, """summarization_xsum""": {"""length_penalty""": 1.0, """max_length""": 62, """min_length""": 11, """num_beams""": 6}, } } UpperCAmelCase : Optional[Any] = { """task_specific_params.summarization.length_penalty""": 1.0, """task_specific_params.summarization.max_length""": 128, """task_specific_params.summarization.min_length""": 12, """task_specific_params.summarization.num_beams""": 4, """task_specific_params.summarization_cnn.length_penalty""": 2.0, """task_specific_params.summarization_cnn.max_length""": 142, """task_specific_params.summarization_cnn.min_length""": 56, """task_specific_params.summarization_cnn.num_beams""": 4, """task_specific_params.summarization_xsum.length_penalty""": 1.0, """task_specific_params.summarization_xsum.max_length""": 62, """task_specific_params.summarization_xsum.min_length""": 11, """task_specific_params.summarization_xsum.num_beams""": 6, } self.assertEqual(flatten_dict(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' UpperCAmelCase : str = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE ) , x.transpose() ) ) UpperCAmelCase : List[Any] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Optional[int] = np.random.randn(3 , 4 ) UpperCAmelCase : Tuple = torch.tensor(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE ) , transpose(_SCREAMING_SNAKE_CASE ).numpy() ) ) UpperCAmelCase : List[str] = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : List[str] = torch.tensor(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ) , transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ).numpy() ) ) @require_tf def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' UpperCAmelCase : Optional[int] = np.random.randn(3 , 4 ) UpperCAmelCase : Dict = tf.constant(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE ) , transpose(_SCREAMING_SNAKE_CASE ).numpy() ) ) UpperCAmelCase : List[Any] = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : List[Any] = tf.constant(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ) , transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ).numpy() ) ) @require_flax def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : List[Any] = np.random.randn(3 , 4 ) UpperCAmelCase : Union[str, Any] = jnp.array(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE ) , np.asarray(transpose(_SCREAMING_SNAKE_CASE ) ) ) ) UpperCAmelCase : Dict = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : int = jnp.array(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ) , np.asarray(transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ) ) ) ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : str = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (4, 3) ) , np.reshape(_SCREAMING_SNAKE_CASE , (4, 3) ) ) ) UpperCAmelCase : Any = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (12, 5) ) , np.reshape(_SCREAMING_SNAKE_CASE , (12, 5) ) ) ) @require_torch def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : int = np.random.randn(3 , 4 ) UpperCAmelCase : str = torch.tensor(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (4, 3) ) , reshape(_SCREAMING_SNAKE_CASE , (4, 3) ).numpy() ) ) UpperCAmelCase : Dict = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : Tuple = torch.tensor(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (12, 5) ) , reshape(_SCREAMING_SNAKE_CASE , (12, 5) ).numpy() ) ) @require_tf def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : int = np.random.randn(3 , 4 ) UpperCAmelCase : Union[str, Any] = tf.constant(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (4, 3) ) , reshape(_SCREAMING_SNAKE_CASE , (4, 3) ).numpy() ) ) UpperCAmelCase : Optional[Any] = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : List[Any] = tf.constant(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (12, 5) ) , reshape(_SCREAMING_SNAKE_CASE , (12, 5) ).numpy() ) ) @require_flax def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' UpperCAmelCase : Optional[Any] = np.random.randn(3 , 4 ) UpperCAmelCase : Union[str, Any] = jnp.array(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (4, 3) ) , np.asarray(reshape(_SCREAMING_SNAKE_CASE , (4, 3) ) ) ) ) UpperCAmelCase : List[str] = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : List[str] = jnp.array(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (12, 5) ) , np.asarray(reshape(_SCREAMING_SNAKE_CASE , (12, 5) ) ) ) ) def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' UpperCAmelCase : List[str] = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE ) , np.squeeze(_SCREAMING_SNAKE_CASE ) ) ) UpperCAmelCase : Union[str, Any] = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE , axis=2 ) , np.squeeze(_SCREAMING_SNAKE_CASE , axis=2 ) ) ) @require_torch def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' UpperCAmelCase : List[Any] = np.random.randn(1 , 3 , 4 ) UpperCAmelCase : List[str] = torch.tensor(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE ) , squeeze(_SCREAMING_SNAKE_CASE ).numpy() ) ) UpperCAmelCase : int = np.random.randn(1 , 4 , 1 , 5 ) UpperCAmelCase : Tuple = torch.tensor(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE , axis=2 ) , squeeze(_SCREAMING_SNAKE_CASE , axis=2 ).numpy() ) ) @require_tf def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' UpperCAmelCase : int = np.random.randn(1 , 3 , 4 ) UpperCAmelCase : Dict = tf.constant(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE ) , squeeze(_SCREAMING_SNAKE_CASE ).numpy() ) ) UpperCAmelCase : Dict = np.random.randn(1 , 4 , 1 , 5 ) UpperCAmelCase : List[str] = tf.constant(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE , axis=2 ) , squeeze(_SCREAMING_SNAKE_CASE , axis=2 ).numpy() ) ) @require_flax def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : int = np.random.randn(1 , 3 , 4 ) UpperCAmelCase : Optional[Any] = jnp.array(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE ) , np.asarray(squeeze(_SCREAMING_SNAKE_CASE ) ) ) ) UpperCAmelCase : Optional[Any] = np.random.randn(1 , 4 , 1 , 5 ) UpperCAmelCase : Optional[Any] = jnp.array(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE , axis=2 ) , np.asarray(squeeze(_SCREAMING_SNAKE_CASE , axis=2 ) ) ) ) def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : Dict = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ) , np.expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ) ) ) @require_torch def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' UpperCAmelCase : Tuple = np.random.randn(3 , 4 ) UpperCAmelCase : str = torch.tensor(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ) , expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ).numpy() ) ) @require_tf def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : int = np.random.randn(3 , 4 ) UpperCAmelCase : List[str] = tf.constant(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ) , expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ).numpy() ) ) @require_flax def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Optional[int] = np.random.randn(3 , 4 ) UpperCAmelCase : Optional[Any] = jnp.array(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ) , np.asarray(expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ) ) ) )
76
1
'''simple docstring''' import numpy class lowerCAmelCase__ : """simple docstring""" def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : numpy.ndarray , __SCREAMING_SNAKE_CASE : numpy.ndarray ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. __SCREAMING_SNAKE_CASE = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. __SCREAMING_SNAKE_CASE = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. __SCREAMING_SNAKE_CASE = numpy.random.rand(3 , 1 ) # Real output values provided. __SCREAMING_SNAKE_CASE = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. __SCREAMING_SNAKE_CASE = numpy.zeros(output_array.shape ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> numpy.ndarray: """simple docstring""" __SCREAMING_SNAKE_CASE = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. __SCREAMING_SNAKE_CASE = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. __SCREAMING_SNAKE_CASE = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def UpperCAmelCase__ ( self : int ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) __SCREAMING_SNAKE_CASE = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) __SCREAMING_SNAKE_CASE = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : numpy.ndarray , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : bool ) -> None: """simple docstring""" for iteration in range(1 , iterations + 1 ): __SCREAMING_SNAKE_CASE = self.feedforward() self.back_propagation() if give_loss: __SCREAMING_SNAKE_CASE = numpy.mean(numpy.square(output - self.feedforward() ) ) print(f'Iteration {iteration} Loss: {loss}' ) def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : numpy.ndarray ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = input_arr __SCREAMING_SNAKE_CASE = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) __SCREAMING_SNAKE_CASE = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) __SCREAMING_SNAKE_CASE = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def a__ ( a__ ): """simple docstring""" return 1 / (1 + numpy.exp(-value )) def a__ ( a__ ): """simple docstring""" return (value) * (1 - (value)) def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. __SCREAMING_SNAKE_CASE = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. __SCREAMING_SNAKE_CASE = TwoHiddenLayerNeuralNetwork( input_array=a__ , output_array=a__ ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=a__ , iterations=10 , give_loss=a__ ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
267
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging UpperCAmelCase : str = logging.get_logger(__name__) class lowerCAmelCase__ ( a ): """simple docstring""" lowerCAmelCase__ = "linear" lowerCAmelCase__ = "cosine" lowerCAmelCase__ = "cosine_with_restarts" lowerCAmelCase__ = "polynomial" lowerCAmelCase__ = "constant" lowerCAmelCase__ = "constant_with_warmup" lowerCAmelCase__ = "piecewise_constant" def a__ ( a__ , a__ = -1 ): """simple docstring""" return LambdaLR(a__ , lambda a__ : 1 , last_epoch=a__ ) def a__ ( a__ , a__ , a__ = -1 ): """simple docstring""" def lr_lambda(a__ ): if current_step < num_warmup_steps: return float(a__ ) / float(max(1.0 , a__ ) ) return 1.0 return LambdaLR(a__ , a__ , last_epoch=a__ ) def a__ ( a__ , a__ , a__ = -1 ): """simple docstring""" __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = step_rules.split(""",""" ) for rule_str in rule_list[:-1]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = rule_str.split(""":""" ) __SCREAMING_SNAKE_CASE = int(a__ ) __SCREAMING_SNAKE_CASE = float(a__ ) __SCREAMING_SNAKE_CASE = value __SCREAMING_SNAKE_CASE = float(rule_list[-1] ) def create_rules_function(a__ , a__ ): def rule_func(a__ ) -> float: __SCREAMING_SNAKE_CASE = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(a__ ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func __SCREAMING_SNAKE_CASE = create_rules_function(a__ , a__ ) return LambdaLR(a__ , a__ , last_epoch=a__ ) def a__ ( a__ , a__ , a__ , a__=-1 ): """simple docstring""" def lr_lambda(a__ ): if current_step < num_warmup_steps: return float(a__ ) / float(max(1 , a__ ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(a__ , a__ , a__ ) def a__ ( a__ , a__ , a__ , a__ = 0.5 , a__ = -1 ): """simple docstring""" def lr_lambda(a__ ): if current_step < num_warmup_steps: return float(a__ ) / float(max(1 , a__ ) ) __SCREAMING_SNAKE_CASE = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(a__ ) * 2.0 * progress )) ) return LambdaLR(a__ , a__ , a__ ) def a__ ( a__ , a__ , a__ , a__ = 1 , a__ = -1 ): """simple docstring""" def lr_lambda(a__ ): if current_step < num_warmup_steps: return float(a__ ) / float(max(1 , a__ ) ) __SCREAMING_SNAKE_CASE = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(a__ ) * progress) % 1.0) )) ) return LambdaLR(a__ , a__ , a__ ) def a__ ( a__ , a__ , a__ , a__=1E-7 , a__=1.0 , a__=-1 ): """simple docstring""" __SCREAMING_SNAKE_CASE = optimizer.defaults["""lr"""] if not (lr_init > lr_end): raise ValueError(F'lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})' ) def lr_lambda(a__ ): if current_step < num_warmup_steps: return float(a__ ) / float(max(1 , a__ ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: __SCREAMING_SNAKE_CASE = lr_init - lr_end __SCREAMING_SNAKE_CASE = num_training_steps - num_warmup_steps __SCREAMING_SNAKE_CASE = 1 - (current_step - num_warmup_steps) / decay_steps __SCREAMING_SNAKE_CASE = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(a__ , a__ , a__ ) UpperCAmelCase : Optional[Any] = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def a__ ( a__ , a__ , a__ = None , a__ = None , a__ = None , a__ = 1 , a__ = 1.0 , a__ = -1 , ): """simple docstring""" __SCREAMING_SNAKE_CASE = SchedulerType(a__ ) __SCREAMING_SNAKE_CASE = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(a__ , last_epoch=a__ ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(a__ , step_rules=a__ , last_epoch=a__ ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(F'{name} requires `num_warmup_steps`, please provide that argument.' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(a__ , num_warmup_steps=a__ , last_epoch=a__ ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(F'{name} requires `num_training_steps`, please provide that argument.' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( a__ , num_warmup_steps=a__ , num_training_steps=a__ , num_cycles=a__ , last_epoch=a__ , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( a__ , num_warmup_steps=a__ , num_training_steps=a__ , power=a__ , last_epoch=a__ , ) return schedule_func( a__ , num_warmup_steps=a__ , num_training_steps=a__ , last_epoch=a__ )
267
1
import math import os import sys def __lowercase ( __lowerCAmelCase : str ): a__ = '' try: with open(snake_case_ , 'rb' ) as binary_file: a__ = binary_file.read() for dat in data: a__ = F'{dat:08b}' result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def __lowercase ( __lowerCAmelCase : dict[str, str] , __lowerCAmelCase : str , __lowerCAmelCase : int , __lowerCAmelCase : str ): lexicon.pop(snake_case_ ) a__ = last_match_id if math.loga(snake_case_ ).is_integer(): for curr_key in lexicon: a__ = '0' + lexicon[curr_key] a__ = bin(snake_case_ )[2:] def __lowercase ( __lowerCAmelCase : str ): a__ = {'0': '0', '1': '1'} a__ , a__ = '', '' a__ = len(snake_case_ ) for i in range(len(snake_case_ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue a__ = lexicon[curr_string] result += last_match_id add_key_to_lexicon(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) index += 1 a__ = '' while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": a__ = lexicon[curr_string] result += last_match_id return result def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : str ): a__ = os.path.getsize(snake_case_ ) a__ = bin(snake_case_ )[2:] a__ = len(snake_case_ ) return "0" * (length_length - 1) + file_length_binary + compressed def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : str ): a__ = 8 try: with open(snake_case_ , 'wb' ) as opened_file: a__ = [ to_write[i : i + byte_length] for i in range(0 , len(snake_case_ ) , snake_case_ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(snake_case_ , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : str ): a__ = read_file_binary(snake_case_ ) a__ = compress_data(snake_case_ ) a__ = add_file_length(snake_case_ , snake_case_ ) write_file_binary(snake_case_ , snake_case_ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
370
def __lowercase ( __lowerCAmelCase : Optional[Any] ): return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def __lowercase ( __lowerCAmelCase : dict[int, list[int]] ): a__ = 0 a__ = len(__lowerCAmelCase ) # No of vertices in graph a__ = [0] * n a__ = [False] * n def dfs(__lowerCAmelCase : int , __lowerCAmelCase : Any , __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple ): a__ = True a__ = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , id_ ) a__ = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge a__ = min(low[at] , low[to] ) a__ = [] for i in range(__lowerCAmelCase ): if not visited[i]: dfs(__lowerCAmelCase , -1 , __lowerCAmelCase , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
109
0
'''simple docstring''' from __future__ import annotations def __UpperCamelCase ( lowercase__ : list[int] ): '''simple docstring''' if len(A_ ) == 0: return array __lowercase =min(A_ ), max(A_ ) # Compute the variables __lowercase =_max - _min + 1 __lowercase =[0] * holes_range, [0] * holes_range # Make the sorting. for i in array: __lowercase =i - _min __lowercase =i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. __lowercase =0 for i in range(A_ ): while holes_repeat[i] > 0: __lowercase =holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase = input('''Enter numbers separated by comma:\n''') UpperCAmelCase = [int(x) for x in user_input.split(''',''')] print(pigeon_sort(unsorted))
141
"""simple docstring""" def snake_case_ ( A_ : int = 2_00_00_00 ): '''simple docstring''' _lowerCamelCase : int = [0 for i in range(n + 1 )] _lowerCamelCase : List[str] = 1 _lowerCamelCase : Any = 1 for i in range(2, int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i, n + 1, A_ ): _lowerCamelCase : str = 1 _lowerCamelCase : Tuple = 0 for i in range(A_ ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(F"""{solution() = }""")
72
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { """microsoft/biogpt""": """https://huggingface.co/microsoft/biogpt/resolve/main/config.json""", # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class _lowerCAmelCase ( snake_case_ ): __UpperCAmelCase : Dict = '''biogpt''' def __init__( self , UpperCamelCase__=4_2384 , UpperCamelCase__=1024 , UpperCamelCase__=24 , UpperCamelCase__=16 , UpperCamelCase__=4096 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=1024 , UpperCamelCase__=0.02 , UpperCamelCase__=1e-12 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=1 , UpperCamelCase__=0 , UpperCamelCase__=2 , **UpperCamelCase__ , ) -> Optional[Any]: '''simple docstring''' snake_case : Any = vocab_size snake_case : int = max_position_embeddings snake_case : Optional[Any] = hidden_size snake_case : Union[str, Any] = num_hidden_layers snake_case : int = num_attention_heads snake_case : List[str] = intermediate_size snake_case : int = hidden_act snake_case : Optional[Any] = hidden_dropout_prob snake_case : str = attention_probs_dropout_prob snake_case : int = initializer_range snake_case : Any = layer_norm_eps snake_case : List[Any] = scale_embedding snake_case : List[str] = use_cache snake_case : Union[str, Any] = layerdrop snake_case : Optional[Any] = activation_dropout super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ )
112
"""simple docstring""" def __lowerCAmelCase ( lowercase : int ) -> int: """simple docstring""" if not isinstance(lowercase , lowercase ): raise ValueError("Input must be an integer" ) if input_num <= 0: raise ValueError("Input must be positive" ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
112
1
'''simple docstring''' import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def snake_case_ (_a : Any , _a : Optional[int] , _a : Union[str, Any] , _a : int=1_0_2_4 ): UpperCAmelCase = [], [] UpperCAmelCase = list(zip(_a , _a ) ) UpperCAmelCase = sorted_examples[0] def is_too_big(_a : Tuple ): return tok(_a , return_tensors='''pt''' ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): UpperCAmelCase = new_src + ' ' + src UpperCAmelCase = new_tgt + ' ' + tgt if is_too_big(_a ) or is_too_big(_a ): # cant fit, finalize example finished_src.append(_a ) finished_tgt.append(_a ) UpperCAmelCase = src, tgt else: # can fit, keep adding UpperCAmelCase = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(_a ) finished_tgt.append(_a ) return finished_src, finished_tgt def snake_case_ (_a : Optional[Any] , _a : Path , _a : Dict , _a : Optional[int] ): UpperCAmelCase = Path(_a ) save_path.mkdir(exist_ok=_a ) for split in ["train"]: UpperCAmelCase = data_dir / F"{split}.source", data_dir / F"{split}.target" UpperCAmelCase = [x.rstrip() for x in Path(_a ).open().readlines()] UpperCAmelCase = [x.rstrip() for x in Path(_a ).open().readlines()] UpperCAmelCase = pack_examples(_a , _a , _a , _a ) print(F"packed {split} split from {len(_a )} examples -> {len(_a )}." ) Path(save_path / F"{split}.source" ).open('''w''' ).write('''\n'''.join(_a ) ) Path(save_path / F"{split}.target" ).open('''w''' ).write('''\n'''.join(_a ) ) for split in ["val", "test"]: UpperCAmelCase = data_dir / F"{split}.source", data_dir / F"{split}.target" shutil.copyfile(_a , save_path / F"{split}.source" ) shutil.copyfile(_a , save_path / F"{split}.target" ) def snake_case_ (): UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--tok_name''' , type=_a , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''--max_seq_len''' , type=_a , default=1_2_8 ) parser.add_argument('''--data_dir''' , type=_a ) parser.add_argument('''--save_path''' , type=_a ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(_a , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
34
import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def _a ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[Any]=[] ) -> str: """simple docstring""" __lowerCAmelCase: Optional[int] = size[0] - overlap_pixels * 2 __lowerCAmelCase: str = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels __lowerCAmelCase: Any = np.ones((size_y, size_x) , dtype=np.uinta ) * 2_55 __lowerCAmelCase: int = np.pad(SCREAMING_SNAKE_CASE , mode='linear_ramp' , pad_width=SCREAMING_SNAKE_CASE , end_values=0 ) if "l" in remove_borders: __lowerCAmelCase: Dict = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: __lowerCAmelCase: Tuple = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: __lowerCAmelCase: List[Any] = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: __lowerCAmelCase: List[str] = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def _a ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[str] ) -> List[Any]: """simple docstring""" return max(SCREAMING_SNAKE_CASE , min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) def _a ( SCREAMING_SNAKE_CASE : [int] , SCREAMING_SNAKE_CASE : [int] , SCREAMING_SNAKE_CASE : [int] ) -> int: """simple docstring""" return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def _a ( SCREAMING_SNAKE_CASE : [int] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : [int] ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: Tuple = list(SCREAMING_SNAKE_CASE ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap __lowerCAmelCase: int = clamp_rect(SCREAMING_SNAKE_CASE , [0, 0] , [image_size[0], image_size[1]] ) return rect def _a ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Any] ) -> Any: """simple docstring""" __lowerCAmelCase: List[Any] = Image.new('RGB' , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(SCREAMING_SNAKE_CASE , (original_slice, 0) ) return result def _a ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Any ) -> str: """simple docstring""" __lowerCAmelCase: Union[str, Any] = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) __lowerCAmelCase: List[Any] = tile.crop(SCREAMING_SNAKE_CASE ) return tile def _a ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[int]: """simple docstring""" __lowerCAmelCase: List[str] = n % d return n - divisor class A_ ( snake_case__ ): def __init__( self : Optional[Any] , UpperCAmelCase : AutoencoderKL , UpperCAmelCase : CLIPTextModel , UpperCAmelCase : CLIPTokenizer , UpperCAmelCase : UNetaDConditionModel , UpperCAmelCase : DDPMScheduler , UpperCAmelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , UpperCAmelCase : int = 3_5_0 , ) -> Optional[Any]: super().__init__( vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , unet=UpperCAmelCase , low_res_scheduler=UpperCAmelCase , scheduler=UpperCAmelCase , max_noise_level=UpperCAmelCase , ) def UpperCAmelCase ( self : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : str , **UpperCAmelCase : List[Any] ) -> Optional[int]: torch.manual_seed(0 ) __lowerCAmelCase: Optional[int] = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) __lowerCAmelCase: Optional[Any] = add_overlap_rect(UpperCAmelCase , UpperCAmelCase , image.size ) __lowerCAmelCase: Any = image.crop(UpperCAmelCase ) __lowerCAmelCase: Any = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] __lowerCAmelCase: Tuple = translated_slice_x - (original_image_slice / 2) __lowerCAmelCase: Union[str, Any] = max(0 , UpperCAmelCase ) __lowerCAmelCase: Optional[int] = squeeze_tile(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Union[str, Any] = to_input.size __lowerCAmelCase: List[Any] = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) __lowerCAmelCase: int = super(UpperCAmelCase , self ).__call__(image=UpperCAmelCase , **UpperCAmelCase ).images[0] __lowerCAmelCase: Dict = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) __lowerCAmelCase: Union[str, Any] = unsqueeze_tile(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Optional[int] = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) __lowerCAmelCase: Optional[int] = [] if x == 0: remove_borders.append('l' ) elif crop_rect[2] == image.size[0]: remove_borders.append('r' ) if y == 0: remove_borders.append('t' ) elif crop_rect[3] == image.size[1]: remove_borders.append('b' ) __lowerCAmelCase: int = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=UpperCAmelCase ) , mode='L' , ) final_image.paste( UpperCAmelCase , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , UpperCAmelCase ) @torch.no_grad() def __call__( self : Optional[Any] , UpperCAmelCase : Union[str, List[str]] , UpperCAmelCase : Union[PIL.Image.Image, List[PIL.Image.Image]] , UpperCAmelCase : int = 7_5 , UpperCAmelCase : float = 9.0 , UpperCAmelCase : int = 5_0 , UpperCAmelCase : Optional[Union[str, List[str]]] = None , UpperCAmelCase : Optional[int] = 1 , UpperCAmelCase : float = 0.0 , UpperCAmelCase : Optional[torch.Generator] = None , UpperCAmelCase : Optional[torch.FloatTensor] = None , UpperCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCAmelCase : int = 1 , UpperCAmelCase : int = 1_2_8 , UpperCAmelCase : int = 3_2 , UpperCAmelCase : int = 3_2 , ) -> str: __lowerCAmelCase: List[Any] = Image.new('RGB' , (image.size[0] * 4, image.size[1] * 4) ) __lowerCAmelCase: str = math.ceil(image.size[0] / tile_size ) __lowerCAmelCase: List[Any] = math.ceil(image.size[1] / tile_size ) __lowerCAmelCase: Optional[Any] = tcx * tcy __lowerCAmelCase: Tuple = 0 for y in range(UpperCAmelCase ): for x in range(UpperCAmelCase ): self._process_tile( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , prompt=UpperCAmelCase , num_inference_steps=UpperCAmelCase , guidance_scale=UpperCAmelCase , noise_level=UpperCAmelCase , negative_prompt=UpperCAmelCase , num_images_per_prompt=UpperCAmelCase , eta=UpperCAmelCase , generator=UpperCAmelCase , latents=UpperCAmelCase , ) current_count += 1 if callback is not None: callback({'progress': current_count / total_tile_count, 'image': final_image} ) return final_image def _a ( ) -> int: """simple docstring""" __lowerCAmelCase: Any = 'stabilityai/stable-diffusion-x4-upscaler' __lowerCAmelCase: Dict = StableDiffusionTiledUpscalePipeline.from_pretrained(SCREAMING_SNAKE_CASE , revision='fp16' , torch_dtype=torch.floataa ) __lowerCAmelCase: Optional[Any] = pipe.to('cuda' ) __lowerCAmelCase: Tuple = Image.open('../../docs/source/imgs/diffusers_library.jpg' ) def callback(SCREAMING_SNAKE_CASE : Tuple ): print(f'''progress: {obj['progress']:.4f}''' ) obj["image"].save('diffusers_library_progress.jpg' ) __lowerCAmelCase: str = pipe(image=SCREAMING_SNAKE_CASE , prompt='Black font, white background, vector' , noise_level=40 , callback=SCREAMING_SNAKE_CASE ) final_image.save('diffusers_library.jpg' ) if __name__ == "__main__": main()
322
0
def a_ ( lowerCAmelCase_ : list, lowerCAmelCase_ : list, lowerCAmelCase_ : int ): if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ): raise ValueError('The length of profit and weight must be same.' ) if max_weight <= 0: raise ValueError('max_weight must greater than zero.' ) if any(p < 0 for p in profit ): raise ValueError('Profit can not be negative.' ) if any(w < 0 for w in weight ): raise ValueError('Weight can not be negative.' ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. __lowerCAmelCase = [p / w for p, w in zip(lowerCAmelCase_, lowerCAmelCase_ )] # Creating a copy of the list and sorting profit/weight in ascending order __lowerCAmelCase = sorted(lowerCAmelCase_ ) # declaring useful variables __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight __lowerCAmelCase = sorted_profit_by_weight[length - i - 1] __lowerCAmelCase = profit_by_weight.index(lowerCAmelCase_ ) __lowerCAmelCase = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( 'Input profits, weights, and then max_weight (all positive ints) separated by ' 'spaces.' ) _snake_case : Union[str, Any] = [int(x) for x in input('Input profits separated by spaces: ').split()] _snake_case : Optional[Any] = [int(x) for x in input('Input weights separated by spaces: ').split()] _snake_case : Dict = int(input('Max weight allowed: ')) # Function Call calc_profit(profit, weight, max_weight)
357
import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def a_ ( lowerCAmelCase_ : Optional[Any] ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4e00 and cp <= 0X9fff) or (cp >= 0X3400 and cp <= 0X4dbf) # or (cp >= 0X20000 and cp <= 0X2a6df) # or (cp >= 0X2a700 and cp <= 0X2b73f) # or (cp >= 0X2b740 and cp <= 0X2b81f) # or (cp >= 0X2b820 and cp <= 0X2ceaf) # or (cp >= 0Xf900 and cp <= 0Xfaff) or (cp >= 0X2f800 and cp <= 0X2fa1f) # ): # return True return False def a_ ( lowerCAmelCase_ : str ): # word like '180' or '身高' or '神' for char in word: __lowerCAmelCase = ord(lowerCAmelCase_ ) if not _is_chinese_char(lowerCAmelCase_ ): return 0 return 1 def a_ ( lowerCAmelCase_ : List[str] ): __lowerCAmelCase = set() for token in tokens: __lowerCAmelCase = len(lowerCAmelCase_ ) > 1 and is_chinese(lowerCAmelCase_ ) if chinese_word: word_set.add(lowerCAmelCase_ ) __lowerCAmelCase = list(lowerCAmelCase_ ) return word_list def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : set() ): if not chinese_word_set: return bert_tokens __lowerCAmelCase = max([len(lowerCAmelCase_ ) for w in chinese_word_set] ) __lowerCAmelCase = bert_tokens __lowerCAmelCase , __lowerCAmelCase = 0, len(lowerCAmelCase_ ) while start < end: __lowerCAmelCase = True if is_chinese(bert_word[start] ): __lowerCAmelCase = min(end - start, lowerCAmelCase_ ) for i in range(lowerCAmelCase_, 1, -1 ): __lowerCAmelCase = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1, start + i ): __lowerCAmelCase = '##' + bert_word[j] __lowerCAmelCase = start + i __lowerCAmelCase = False break if single_word: start += 1 return bert_word def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : LTP, lowerCAmelCase_ : BertTokenizer ): __lowerCAmelCase = [] for i in range(0, len(lowerCAmelCase_ ), 100 ): __lowerCAmelCase = ltp_tokenizer.pipeline(lines[i : i + 100], tasks=['cws'] ).cws __lowerCAmelCase = [get_chinese_word(lowerCAmelCase_ ) for r in res] ltp_res.extend(lowerCAmelCase_ ) assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) __lowerCAmelCase = [] for i in range(0, len(lowerCAmelCase_ ), 100 ): __lowerCAmelCase = bert_tokenizer(lines[i : i + 100], add_special_tokens=lowerCAmelCase_, truncation=lowerCAmelCase_, max_length=512 ) bert_res.extend(res['input_ids'] ) assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) __lowerCAmelCase = [] for input_ids, chinese_word in zip(lowerCAmelCase_, lowerCAmelCase_ ): __lowerCAmelCase = [] for id in input_ids: __lowerCAmelCase = bert_tokenizer._convert_id_to_token(lowerCAmelCase_ ) input_tokens.append(lowerCAmelCase_ ) __lowerCAmelCase = add_sub_symbol(lowerCAmelCase_, lowerCAmelCase_ ) __lowerCAmelCase = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(lowerCAmelCase_ ): if token[:2] == "##": __lowerCAmelCase = token[2:] # save chinese tokens' pos if len(lowerCAmelCase_ ) == 1 and _is_chinese_char(ord(lowerCAmelCase_ ) ): ref_id.append(lowerCAmelCase_ ) ref_ids.append(lowerCAmelCase_ ) assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) return ref_ids def a_ ( lowerCAmelCase_ : int ): # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name, 'r', encoding='utf-8' ) as f: __lowerCAmelCase = f.readlines() __lowerCAmelCase = [line.strip() for line in data if len(lowerCAmelCase_ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' __lowerCAmelCase = LTP(args.ltp ) # faster in GPU device __lowerCAmelCase = BertTokenizer.from_pretrained(args.bert ) __lowerCAmelCase = prepare_ref(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) with open(args.save_path, 'w', encoding='utf-8' ) as f: __lowerCAmelCase = [json.dumps(lowerCAmelCase_ ) + '\n' for ref in ref_ids] f.writelines(lowerCAmelCase_ ) if __name__ == "__main__": _snake_case : int = argparse.ArgumentParser(description='prepare_chinese_ref') parser.add_argument( '--file_name', required=False, type=str, default='./resources/chinese-demo.txt', help='file need process, same as training data in lm', ) parser.add_argument( '--ltp', required=False, type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path', ) parser.add_argument( '--bert', required=False, type=str, default='./resources/robert', help='resources for Bert tokenizer', ) parser.add_argument( '--save_path', required=False, type=str, default='./resources/ref.txt', help='path to save res', ) _snake_case : List[str] = parser.parse_args() main(args)
207
0
'''simple docstring''' import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig __lowerCAmelCase = logging.get_logger(__name__) class UpperCAmelCase__ : """simple docstring""" def __init__( self : Optional[int] ,_a : Tuple ,_a : str ): '''simple docstring''' _a : Dict = question_encoder _a : Any = generator _a : Optional[int] = self.question_encoder def __lowercase ( self : int ,_a : Optional[int] ): '''simple docstring''' if os.path.isfile(_a ): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(_a ,exist_ok=_a ) _a : Union[str, Any] = os.path.join(_a ,'question_encoder_tokenizer' ) _a : List[str] = os.path.join(_a ,'generator_tokenizer' ) self.question_encoder.save_pretrained(_a ) self.generator.save_pretrained(_a ) @classmethod def __lowercase ( cls : Optional[Any] ,_a : List[str] ,**_a : Optional[int] ): '''simple docstring''' from ..auto.tokenization_auto import AutoTokenizer _a : int = kwargs.pop('config' ,_a ) if config is None: _a : Dict = RagConfig.from_pretrained(_a ) _a : List[str] = AutoTokenizer.from_pretrained( _a ,config=config.question_encoder ,subfolder='question_encoder_tokenizer' ) _a : Optional[int] = AutoTokenizer.from_pretrained( _a ,config=config.generator ,subfolder='generator_tokenizer' ) return cls(question_encoder=_a ,generator=_a ) def __call__( self : int ,*_a : List[Any] ,**_a : List[str] ): '''simple docstring''' return self.current_tokenizer(*_a ,**_a ) def __lowercase ( self : int ,*_a : Optional[int] ,**_a : Union[str, Any] ): '''simple docstring''' return self.generator.batch_decode(*_a ,**_a ) def __lowercase ( self : Union[str, Any] ,*_a : int ,**_a : Optional[int] ): '''simple docstring''' return self.generator.decode(*_a ,**_a ) def __lowercase ( self : List[str] ): '''simple docstring''' _a : int = self.question_encoder def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Optional[int] = self.generator def __lowercase ( self : Any ,_a : List[str] ,_a : Optional[List[str]] = None ,_a : Optional[int] = None ,_a : Optional[int] = None ,_a : str = "longest" ,_a : str = None ,_a : bool = True ,**_a : Any ,): '''simple docstring''' warnings.warn( '`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ' 'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ' 'context manager to prepare your targets. See the documentation of your specific tokenizer for more ' 'details' ,_a ,) if max_length is None: _a : List[str] = self.current_tokenizer.model_max_length _a : Optional[Any] = self( _a ,add_special_tokens=_a ,return_tensors=_a ,max_length=_a ,padding=_a ,truncation=_a ,**_a ,) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: _a : Optional[int] = self.current_tokenizer.model_max_length _a : str = self( text_target=_a ,add_special_tokens=_a ,return_tensors=_a ,padding=_a ,max_length=_a ,truncation=_a ,**_a ,) _a : Dict = labels['input_ids'] return model_inputs
271
'''simple docstring''' import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home __lowerCAmelCase = HUGGINGFACE_HUB_CACHE __lowerCAmelCase = """config.json""" __lowerCAmelCase = """diffusion_pytorch_model.bin""" __lowerCAmelCase = """diffusion_flax_model.msgpack""" __lowerCAmelCase = """model.onnx""" __lowerCAmelCase = """diffusion_pytorch_model.safetensors""" __lowerCAmelCase = """weights.pb""" __lowerCAmelCase = """https://huggingface.co""" __lowerCAmelCase = default_cache_path __lowerCAmelCase = """diffusers_modules""" __lowerCAmelCase = os.getenv("""HF_MODULES_CACHE""", os.path.join(hf_cache_home, """modules""")) __lowerCAmelCase = ["""fp16""", """non-ema"""] __lowerCAmelCase = """.self_attn"""
271
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a : List[Any] = logging.get_logger(__name__) a : List[Any] = { 'microsoft/focalnet-tiny': 'https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json', } class _a ( lowercase__ , lowercase__ ): A = '''focalnet''' def __init__(self, SCREAMING_SNAKE_CASE_=224, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=96, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=[192, 384, 768, 768], SCREAMING_SNAKE_CASE_=[2, 2, 6, 2], SCREAMING_SNAKE_CASE_=[2, 2, 2, 2], SCREAMING_SNAKE_CASE_=[3, 3, 3, 3], SCREAMING_SNAKE_CASE_="gelu", SCREAMING_SNAKE_CASE_=4.0, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=1E-4, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=0.0_2, SCREAMING_SNAKE_CASE_=1E-5, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, **SCREAMING_SNAKE_CASE_, ) -> int: super().__init__(**_a ) UpperCAmelCase_: List[str] = image_size UpperCAmelCase_: Optional[Any] = patch_size UpperCAmelCase_: List[str] = num_channels UpperCAmelCase_: List[str] = embed_dim UpperCAmelCase_: Optional[int] = use_conv_embed UpperCAmelCase_: Optional[Any] = hidden_sizes UpperCAmelCase_: Dict = depths UpperCAmelCase_: int = focal_levels UpperCAmelCase_: Optional[int] = focal_windows UpperCAmelCase_: List[str] = hidden_act UpperCAmelCase_: List[Any] = mlp_ratio UpperCAmelCase_: Optional[int] = hidden_dropout_prob UpperCAmelCase_: Optional[int] = drop_path_rate UpperCAmelCase_: str = use_layerscale UpperCAmelCase_: Any = layerscale_value UpperCAmelCase_: Tuple = use_post_layernorm UpperCAmelCase_: List[str] = use_post_layernorm_in_modulation UpperCAmelCase_: Optional[int] = normalize_modulator UpperCAmelCase_: Optional[int] = initializer_range UpperCAmelCase_: Any = layer_norm_eps UpperCAmelCase_: Optional[int] = encoder_stride UpperCAmelCase_: List[Any] = ['stem'] + [f'stage{idx}' for idx in range(1, len(self.depths ) + 1 )] UpperCAmelCase_: Dict = get_aligned_output_features_output_indices( out_features=_a, out_indices=_a, stage_names=self.stage_names )
355
import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def lowerCAmelCase_ (lowerCAmelCase__: Optional[int] ): """simple docstring""" assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def lowerCAmelCase_ (): """simple docstring""" assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def lowerCAmelCase_ (): """simple docstring""" UpperCAmelCase_: List[Any] = """mock-s3-bucket""" UpperCAmelCase_: str = F's3://{mock_bucket}' UpperCAmelCase_: Any = extract_path_from_uri(lowerCAmelCase__ ) assert dataset_path.startswith("""s3://""" ) is False UpperCAmelCase_: Tuple = """./local/path""" UpperCAmelCase_: Any = extract_path_from_uri(lowerCAmelCase__ ) assert dataset_path == new_dataset_path def lowerCAmelCase_ (lowerCAmelCase__: Dict ): """simple docstring""" UpperCAmelCase_: int = is_remote_filesystem(lowerCAmelCase__ ) assert is_remote is True UpperCAmelCase_: Optional[Any] = fsspec.filesystem("""file""" ) UpperCAmelCase_: int = is_remote_filesystem(lowerCAmelCase__ ) assert is_remote is False @pytest.mark.parametrize("""compression_fs_class""" , lowerCAmelCase__ ) def lowerCAmelCase_ (lowerCAmelCase__: Tuple , lowerCAmelCase__: List[str] , lowerCAmelCase__: Dict , lowerCAmelCase__: List[Any] , lowerCAmelCase__: Optional[Any] , lowerCAmelCase__: List[Any] , lowerCAmelCase__: Tuple ): """simple docstring""" UpperCAmelCase_: int = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_file, """bz2""": bza_file, """lz4""": lza_file} UpperCAmelCase_: Dict = input_paths[compression_fs_class.protocol] if input_path is None: UpperCAmelCase_: str = F'for \'{compression_fs_class.protocol}\' compression protocol, ' if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(lowerCAmelCase__ ) UpperCAmelCase_: Optional[int] = fsspec.filesystem(compression_fs_class.protocol , fo=lowerCAmelCase__ ) assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_: Optional[Any] = os.path.basename(lowerCAmelCase__ ) UpperCAmelCase_: Optional[Any] = expected_filename[: expected_filename.rindex(""".""" )] assert fs.glob("""*""" ) == [expected_filename] with fs.open(lowerCAmelCase__ , """r""" , encoding="""utf-8""" ) as f, open(lowerCAmelCase__ , encoding="""utf-8""" ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize("""protocol""" , ["""zip""", """gzip"""] ) def lowerCAmelCase_ (lowerCAmelCase__: int , lowerCAmelCase__: Tuple , lowerCAmelCase__: Any ): """simple docstring""" UpperCAmelCase_: List[str] = {"""zip""": zip_jsonl_path, """gzip""": jsonl_gz_path} UpperCAmelCase_: Tuple = compressed_file_paths[protocol] UpperCAmelCase_: int = """dataset.jsonl""" UpperCAmelCase_: Any = F'{protocol}://{member_file_path}::{compressed_file_path}' UpperCAmelCase_ , *UpperCAmelCase_: Dict = fsspec.get_fs_token_paths(lowerCAmelCase__ ) assert fs.isfile(lowerCAmelCase__ ) assert not fs.isfile("""non_existing_""" + member_file_path ) @pytest.mark.integration def lowerCAmelCase_ (lowerCAmelCase__: Any , lowerCAmelCase__: List[Any] , lowerCAmelCase__: List[str] , lowerCAmelCase__: Optional[Any] ): """simple docstring""" UpperCAmelCase_: Tuple = hf_api.dataset_info(lowerCAmelCase__ , token=lowerCAmelCase__ ) UpperCAmelCase_: List[str] = HfFileSystem(repo_info=lowerCAmelCase__ , token=lowerCAmelCase__ ) assert sorted(hffs.glob("""*""" ) ) == [".gitattributes", "data"] assert hffs.isdir("""data""" ) assert hffs.isfile(""".gitattributes""" ) and hffs.isfile("""data/text_data.txt""" ) with open(lowerCAmelCase__ ) as f: assert hffs.open("""data/text_data.txt""" , """r""" ).read() == f.read() def lowerCAmelCase_ (): """simple docstring""" UpperCAmelCase_: List[str] = """bz2""" # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(lowerCAmelCase__ , lowerCAmelCase__ , clobber=lowerCAmelCase__ ) with pytest.warns(lowerCAmelCase__ ) as warning_info: importlib.reload(datasets.filesystems ) assert len(lowerCAmelCase__ ) == 1 assert ( str(warning_info[0].message ) == F'A filesystem protocol was already set for {protocol} and will be overwritten.' )
82
0
"""simple docstring""" def _snake_case ( snake_case__ : int = 10 , snake_case__ : int = 22 ): A = range(1 , snake_case__ ) A = range(1 , snake_case__ ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(F"""{solution(10, 22) = }""")
74
"""simple docstring""" import argparse lowerCAmelCase__ : List[str] = 'docs/source/_static/js/custom.js' def a_ ( lowerCamelCase ): with open(lowerCamelCase , encoding='utf-8' , newline='\n' ) as f: UpperCAmelCase__ = f.readlines() UpperCAmelCase__ = 0 # First let's put the right version while not lines[index].startswith('const stableVersion =' ): index += 1 UpperCAmelCase__ = f'''const stableVersion = "v{version}"\n''' # Then update the dictionary while not lines[index].startswith('const versionMapping = {' ): index += 1 # We go until the end while not lines[index].startswith('}' ): index += 1 # We add the new version at the end lines[index - 1] += f''' "v{version}": "v{version}",\n''' with open(lowerCamelCase , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lowerCamelCase ) if __name__ == "__main__": lowerCAmelCase__ : List[Any] = argparse.ArgumentParser() parser.add_argument('--version', help='Release version.') lowerCAmelCase__ : Optional[int] = parser.parse_args() update_custom_js(args.version)
98
0
import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class __lowerCamelCase ( __snake_case ): def lowerCAmelCase_ ( self ) -> int: snake_case_ = tempfile.mkdtemp() snake_case_ = 8 # DPR tok snake_case_ = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] snake_case_ = os.path.join(self.tmpdirname , """dpr_tokenizer""" ) os.makedirs(lowerCamelCase , exist_ok=lowerCamelCase ) snake_case_ = os.path.join(lowerCamelCase , DPR_VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) # BART tok snake_case_ = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] snake_case_ = dict(zip(lowerCamelCase , range(len(lowerCamelCase ) ) ) ) snake_case_ = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] snake_case_ = {"""unk_token""": """<unk>"""} snake_case_ = os.path.join(self.tmpdirname , """bart_tokenizer""" ) os.makedirs(lowerCamelCase , exist_ok=lowerCamelCase ) snake_case_ = os.path.join(lowerCamelCase , BART_VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case_ = os.path.join(lowerCamelCase , BART_VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCamelCase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowerCamelCase ) ) def lowerCAmelCase_ ( self ) -> DPRQuestionEncoderTokenizer: return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , """dpr_tokenizer""" ) ) def lowerCAmelCase_ ( self ) -> BartTokenizer: return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , """bart_tokenizer""" ) ) def lowerCAmelCase_ ( self ) -> Tuple: shutil.rmtree(self.tmpdirname ) @require_tokenizers def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case_ = os.path.join(self.tmpdirname , """rag_tokenizer""" ) snake_case_ = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) snake_case_ = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(lowerCamelCase ) rag_tokenizer.save_pretrained(lowerCamelCase ) snake_case_ = RagTokenizer.from_pretrained(lowerCamelCase , config=lowerCamelCase ) self.assertIsInstance(new_rag_tokenizer.question_encoder , lowerCamelCase ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , lowerCamelCase ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case_ = RagTokenizer.from_pretrained("""facebook/rag-token-nq""" ) snake_case_ = [ """who got the first nobel prize in physics""", """when is the next deadpool movie being released""", """which mode is used for short wave broadcast service""", """who is the owner of reading football club""", """when is the next scandal episode coming out""", """when is the last time the philadelphia won the superbowl""", """what is the most current adobe flash player version""", """how many episodes are there in dragon ball z""", """what is the first step in the evolution of the eye""", """where is gall bladder situated in human body""", """what is the main mineral in lithium batteries""", """who is the president of usa right now""", """where do the greasers live in the outsiders""", """panda is a national animal of which country""", """what is the name of manchester united stadium""", ] snake_case_ = tokenizer(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) @slow def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case_ = RagTokenizer.from_pretrained("""facebook/rag-sequence-nq""" ) snake_case_ = [ """who got the first nobel prize in physics""", """when is the next deadpool movie being released""", """which mode is used for short wave broadcast service""", """who is the owner of reading football club""", """when is the next scandal episode coming out""", """when is the last time the philadelphia won the superbowl""", """what is the most current adobe flash player version""", """how many episodes are there in dragon ball z""", """what is the first step in the evolution of the eye""", """where is gall bladder situated in human body""", """what is the main mineral in lithium batteries""", """who is the president of usa right now""", """where do the greasers live in the outsiders""", """panda is a national animal of which country""", """what is the name of manchester united stadium""", ] snake_case_ = tokenizer(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase )
34
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''facebook/levit-128S''': '''https://huggingface.co/facebook/levit-128S/resolve/main/config.json''', # See all LeViT models at https://huggingface.co/models?filter=levit } class __lowerCamelCase ( __snake_case ): lowerCamelCase_ : Tuple = 'levit' def __init__( self , lowerCamelCase=224 , lowerCamelCase=3 , lowerCamelCase=3 , lowerCamelCase=2 , lowerCamelCase=1 , lowerCamelCase=16 , lowerCamelCase=[128, 256, 384] , lowerCamelCase=[4, 8, 12] , lowerCamelCase=[4, 4, 4] , lowerCamelCase=[16, 16, 16] , lowerCamelCase=0 , lowerCamelCase=[2, 2, 2] , lowerCamelCase=[2, 2, 2] , lowerCamelCase=0.02 , **lowerCamelCase , ) -> Tuple: super().__init__(**lowerCamelCase ) snake_case_ = image_size snake_case_ = num_channels snake_case_ = kernel_size snake_case_ = stride snake_case_ = padding snake_case_ = hidden_sizes snake_case_ = num_attention_heads snake_case_ = depths snake_case_ = key_dim snake_case_ = drop_path_rate snake_case_ = patch_size snake_case_ = attention_ratio snake_case_ = mlp_ratio snake_case_ = initializer_range snake_case_ = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class __lowerCamelCase ( __snake_case ): lowerCamelCase_ : Any = version.parse('1.11' ) @property def lowerCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCAmelCase_ ( self ) -> float: return 1e-4
34
1
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy a =logging.get_logger(__name__) class A_ ( SCREAMING_SNAKE_CASE ): def __init__( self : int ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : float ,**SCREAMING_SNAKE_CASE__ : Dict): __lowerCamelCase : List[str] = feature_size __lowerCamelCase : Optional[int] = sampling_rate __lowerCamelCase : Dict = padding_value __lowerCamelCase : Any = kwargs.pop('padding_side' ,'right') __lowerCamelCase : int = kwargs.pop('return_attention_mask' ,SCREAMING_SNAKE_CASE__) super().__init__(**SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : int ,SCREAMING_SNAKE_CASE__ : Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] ,SCREAMING_SNAKE_CASE__ : Union[bool, str, PaddingStrategy] = True ,SCREAMING_SNAKE_CASE__ : Optional[int] = None ,SCREAMING_SNAKE_CASE__ : bool = False ,SCREAMING_SNAKE_CASE__ : Optional[int] = None ,SCREAMING_SNAKE_CASE__ : Optional[bool] = None ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, TensorType]] = None ,): # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(SCREAMING_SNAKE_CASE__ ,(list, tuple)) and isinstance(processed_features[0] ,(dict, BatchFeature)): __lowerCamelCase : Tuple = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( 'You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`' F" to this method that includes {self.model_input_names[0]}, but you provided" F" {list(processed_features.keys())}") __lowerCamelCase : str = processed_features[self.model_input_names[0]] __lowerCamelCase : Any = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(SCREAMING_SNAKE_CASE__) == 0: if return_attention_mask: __lowerCamelCase : List[str] = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch __lowerCamelCase : Optional[Any] = required_input[0] if isinstance(SCREAMING_SNAKE_CASE__ ,(list, tuple)): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. __lowerCamelCase : List[str] = 0 while len(required_input[index]) == 0: index += 1 if index < len(SCREAMING_SNAKE_CASE__): __lowerCamelCase : Tuple = required_input[index][0] if return_tensors is None: if is_tf_tensor(SCREAMING_SNAKE_CASE__): __lowerCamelCase : Any = 'tf' elif is_torch_tensor(SCREAMING_SNAKE_CASE__): __lowerCamelCase : Union[str, Any] = 'pt' elif isinstance(SCREAMING_SNAKE_CASE__ ,(int, float, list, tuple, np.ndarray)): __lowerCamelCase : Union[str, Any] = 'np' else: raise ValueError( F"type of {first_element} unknown: {type(SCREAMING_SNAKE_CASE__)}. " 'Should be one of a python, numpy, pytorch or tensorflow object.') for key, value in processed_features.items(): if isinstance(value[0] ,(int, float)): __lowerCamelCase : Union[str, Any] = to_numpy(SCREAMING_SNAKE_CASE__) else: __lowerCamelCase : Dict = [to_numpy(SCREAMING_SNAKE_CASE__) for v in value] # Convert padding_strategy in PaddingStrategy __lowerCamelCase : Tuple = self._get_padding_strategies(padding=SCREAMING_SNAKE_CASE__ ,max_length=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = processed_features[self.model_input_names[0]] __lowerCamelCase : Union[str, Any] = len(SCREAMING_SNAKE_CASE__) if not all(len(SCREAMING_SNAKE_CASE__) == batch_size for v in processed_features.values()): raise ValueError('Some items in the output dictionary have a different batch size than others.') __lowerCamelCase : Any = [] for i in range(SCREAMING_SNAKE_CASE__): __lowerCamelCase : int = {k: v[i] for k, v in processed_features.items()} # truncation __lowerCamelCase : Union[str, Any] = self._truncate( SCREAMING_SNAKE_CASE__ ,max_length=SCREAMING_SNAKE_CASE__ ,pad_to_multiple_of=SCREAMING_SNAKE_CASE__ ,truncation=SCREAMING_SNAKE_CASE__ ,) truncated_inputs.append(SCREAMING_SNAKE_CASE__) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length __lowerCamelCase : Any = max(len(input_slice[self.model_input_names[0]]) for input_slice in truncated_inputs) __lowerCamelCase : Optional[Any] = PaddingStrategy.MAX_LENGTH __lowerCamelCase : Optional[Any] = {} for i in range(SCREAMING_SNAKE_CASE__): # padding __lowerCamelCase : List[str] = self._pad( truncated_inputs[i] ,max_length=SCREAMING_SNAKE_CASE__ ,padding_strategy=SCREAMING_SNAKE_CASE__ ,pad_to_multiple_of=SCREAMING_SNAKE_CASE__ ,return_attention_mask=SCREAMING_SNAKE_CASE__ ,) for key, value in outputs.items(): if key not in batch_outputs: __lowerCamelCase : Union[str, Any] = [] if value.dtype is np.dtype(np.floataa): __lowerCamelCase : Any = value.astype(np.floataa) batch_outputs[key].append(SCREAMING_SNAKE_CASE__) return BatchFeature(SCREAMING_SNAKE_CASE__ ,tensor_type=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : Union[Dict[str, np.ndarray], BatchFeature] ,SCREAMING_SNAKE_CASE__ : Optional[int] = None ,SCREAMING_SNAKE_CASE__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD ,SCREAMING_SNAKE_CASE__ : Optional[int] = None ,SCREAMING_SNAKE_CASE__ : Optional[bool] = None ,): __lowerCamelCase : Optional[int] = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: __lowerCamelCase : int = len(SCREAMING_SNAKE_CASE__) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __lowerCamelCase : List[Any] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __lowerCamelCase : Dict = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(SCREAMING_SNAKE_CASE__) < max_length if return_attention_mask and "attention_mask" not in processed_features: __lowerCamelCase : int = np.ones(len(SCREAMING_SNAKE_CASE__) ,dtype=np.intaa) if needs_to_be_padded: __lowerCamelCase : List[Any] = max_length - len(SCREAMING_SNAKE_CASE__) if self.padding_side == "right": if return_attention_mask: __lowerCamelCase : Any = np.pad( processed_features['attention_mask'] ,(0, difference)) __lowerCamelCase : str = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) __lowerCamelCase : Tuple = np.pad( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,'constant' ,constant_values=self.padding_value) elif self.padding_side == "left": if return_attention_mask: __lowerCamelCase : List[Any] = np.pad( processed_features['attention_mask'] ,(difference, 0)) __lowerCamelCase : Any = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) __lowerCamelCase : Union[str, Any] = np.pad( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,'constant' ,constant_values=self.padding_value) else: raise ValueError('Invalid padding strategy:' + str(self.padding_side)) return processed_features def lowerCAmelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : Union[Dict[str, np.ndarray], BatchFeature] ,SCREAMING_SNAKE_CASE__ : Optional[int] = None ,SCREAMING_SNAKE_CASE__ : Optional[int] = None ,SCREAMING_SNAKE_CASE__ : Optional[bool] = None ,): if not truncation: return processed_features elif truncation and max_length is None: raise ValueError('When setting ``truncation=True``, make sure that ``max_length`` is defined.') __lowerCamelCase : Union[str, Any] = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __lowerCamelCase : Tuple = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __lowerCamelCase : Optional[int] = len(SCREAMING_SNAKE_CASE__) > max_length if needs_to_be_truncated: __lowerCamelCase : Dict = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: __lowerCamelCase : Optional[Any] = processed_features['attention_mask'][:max_length] return processed_features def lowerCAmelCase ( self : int ,SCREAMING_SNAKE_CASE__ : Any=False ,SCREAMING_SNAKE_CASE__ : List[Any]=None): # Get padding strategy if padding is not False: if padding is True: __lowerCamelCase : Any = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__): __lowerCamelCase : Optional[int] = PaddingStrategy(SCREAMING_SNAKE_CASE__) elif isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__): __lowerCamelCase : Optional[Any] = padding else: __lowerCamelCase : Union[str, Any] = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( F"When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined") # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( 'Asking to pad but the feature_extractor does not have a padding value. Please select a value to use' ' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.') return padding_strategy
73
import qiskit def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> qiskit.result.counts.Counts: __lowerCamelCase : Optional[int] = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register __lowerCamelCase : List[str] = qiskit.QuantumCircuit(lowerCamelCase__ , lowerCamelCase__ ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator __lowerCamelCase : List[Any] = qiskit.execute(lowerCamelCase__ , lowerCamelCase__ , shots=1_0_0_0 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(lowerCamelCase__ ) if __name__ == "__main__": print(F"""Total count for various states are: {single_qubit_measure(1, 1)}""")
73
1
from __future__ import annotations def _A ( __magic_name__ ): lowercase__ = str(__magic_name__ ) return n == n[::-1] def _A ( __magic_name__ = 100_0000 ): lowercase__ = 0 for i in range(1 , __magic_name__ ): if is_palindrome(__magic_name__ ) and is_palindrome(bin(__magic_name__ ).split("b" )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
201
from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class lowerCAmelCase ( lowercase_ ): def __init__( self :str , _lowercase :Optional[NestedDataStructureLike[PathLike]] = None , _lowercase :Optional[NamedSplit] = None , _lowercase :Optional[Features] = None , _lowercase :str = None , _lowercase :bool = False , _lowercase :bool = False , _lowercase :Optional[int] = None , **_lowercase :Tuple , ): '''simple docstring''' lowercase__ = path_or_paths lowercase__ = split if split or isinstance(_lowercase , _lowercase ) else "train" lowercase__ = features lowercase__ = cache_dir lowercase__ = keep_in_memory lowercase__ = streaming lowercase__ = num_proc lowercase__ = kwargs @abstractmethod def UpperCAmelCase ( self :Any ): '''simple docstring''' pass class lowerCAmelCase ( lowercase_ ): def __init__( self :List[Any] , _lowercase :Optional[Features] = None , _lowercase :str = None , _lowercase :bool = False , _lowercase :bool = False , _lowercase :Optional[int] = None , **_lowercase :Optional[int] , ): '''simple docstring''' lowercase__ = features lowercase__ = cache_dir lowercase__ = keep_in_memory lowercase__ = streaming lowercase__ = num_proc lowercase__ = kwargs @abstractmethod def UpperCAmelCase ( self :int ): '''simple docstring''' pass
201
1
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class __snake_case : '''simple docstring''' def __init__( self : Union[str, Any] , A : Optional[Any] , A : Dict=99 , A : Tuple=13 , A : str=16 , A : str=7 , A : int=True , A : Optional[int]=True , A : int=True , A : Tuple=False , A : str=True , A : List[str]=2 , A : List[Any]=32 , A : List[str]=4 , A : Any=4 , A : Any=30 , A : Optional[Any]=0 , A : List[Any]=1 , A : Tuple=2 , A : Optional[Any]=None , ): __snake_case: Any = parent __snake_case: Optional[Any] = batch_size __snake_case: Dict = decoder_seq_length # For common tests __snake_case: List[str] = self.decoder_seq_length __snake_case: List[Any] = is_training __snake_case: Dict = use_attention_mask __snake_case: str = use_labels __snake_case: List[Any] = vocab_size __snake_case: List[str] = d_model __snake_case: str = d_model __snake_case: str = decoder_layers __snake_case: List[Any] = decoder_layers __snake_case: str = decoder_ffn_dim __snake_case: Optional[Any] = decoder_attention_heads __snake_case: Dict = decoder_attention_heads __snake_case: Optional[Any] = eos_token_id __snake_case: int = bos_token_id __snake_case: List[str] = pad_token_id __snake_case: Optional[Any] = decoder_start_token_id __snake_case: Optional[Any] = use_cache __snake_case: List[Any] = max_position_embeddings __snake_case: Optional[Any] = None __snake_case: Dict = decoder_seq_length __snake_case: Any = 2 __snake_case: Any = 1 def UpperCAmelCase__ ( self : Optional[Any] ): __snake_case: Dict = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) __snake_case: Dict = None if self.use_attention_mask: __snake_case: Optional[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) __snake_case: Dict = None if self.use_labels: __snake_case: List[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) __snake_case: List[str] = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def UpperCAmelCase__ ( self : Union[str, Any] , A : Optional[Any] , A : Tuple , A : Any , A : List[str] , ): __snake_case: List[str] = True __snake_case: Any = TrOCRDecoder(config=A ).to(A ).eval() __snake_case: str = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass __snake_case: Optional[int] = model(A , use_cache=A ) __snake_case: List[str] = model(A ) __snake_case: Optional[Any] = model(A , use_cache=A ) self.parent.assertTrue(len(A ) == len(A ) ) self.parent.assertTrue(len(A ) == len(A ) + 1 ) __snake_case: Any = outputs["""past_key_values"""] # create hypothetical next token and extent to next_input_ids __snake_case: Any = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and __snake_case: Any = torch.cat([input_ids, next_tokens] , dim=-1 ) __snake_case: int = model(A )["""last_hidden_state"""] __snake_case: int = model(A , past_key_values=A )["""last_hidden_state"""] # select random slice __snake_case: Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item() __snake_case: List[str] = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() __snake_case: Optional[int] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(A , A , atol=1E-3 ) def UpperCAmelCase__ ( self : Tuple ): __snake_case: int = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case: List[str] = config_and_inputs __snake_case: int = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_torch class __snake_case ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowerCAmelCase__ = (TrOCRForCausalLM,) if is_torch_available() else () lowerCAmelCase__ = {"""text-generation""": TrOCRForCausalLM} if is_torch_available() else {} lowerCAmelCase__ = True lowerCAmelCase__ = False def UpperCAmelCase__ ( self : Union[str, Any] ): __snake_case: List[Any] = TrOCRStandaloneDecoderModelTester(self , is_training=A ) __snake_case: List[Any] = ConfigTester(self , config_class=A ) def UpperCAmelCase__ ( self : List[Any] ): pass def UpperCAmelCase__ ( self : Any ): pass def UpperCAmelCase__ ( self : Tuple ): pass def UpperCAmelCase__ ( self : Any ): self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : Optional[int] ): __snake_case: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*A ) def UpperCAmelCase__ ( self : List[str] ): return @unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :) def UpperCAmelCase__ ( self : Tuple ): pass
111
import pytest __UpperCAmelCase : Optional[Any] = "__dummy_dataset1__" __UpperCAmelCase : List[str] = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def A__ ( ) -> Optional[int]: return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def A__ ( ) -> Tuple: return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) -> Tuple: __snake_case: List[Any] = dataset_loading_script_name __snake_case: Any = tmp_path / """datasets""" / script_name script_dir.mkdir(parents=SCREAMING_SNAKE_CASE__) __snake_case: int = script_dir / F'''{script_name}.py''' with open(SCREAMING_SNAKE_CASE__ , """w""") as f: f.write(SCREAMING_SNAKE_CASE__) return str(SCREAMING_SNAKE_CASE__)
111
1
'''simple docstring''' import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class __A ( unittest.TestCase ): def __init__(self : Tuple , __a : Optional[int] , __a : Any=100 , __a : Optional[Any]=13 , __a : Optional[int]=30 , __a : Dict=2 , __a : Tuple=3 , __a : Any=True , __a : Any=True , __a : Any=32 , __a : str=5 , __a : Optional[int]=4 , __a : Dict=37 , __a : Union[str, Any]="gelu" , __a : str=0.1 , __a : Dict=0.1 , __a : Any=10 , __a : Tuple=0.02 , __a : Optional[int]=3 , ): UpperCAmelCase_ = parent UpperCAmelCase_ = vocab_size UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = type_sequence_label_size UpperCAmelCase_ = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ = (image_size // patch_size) ** 2 UpperCAmelCase_ = num_patches + 1 def _lowercase (self : int ): UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ = BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , ) return config, pixel_values, labels def _lowercase (self : Tuple , __a : List[Any] , __a : List[Any] , __a : int ): UpperCAmelCase_ = FlaxBeitModel(config=__a ) UpperCAmelCase_ = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase (self : Optional[int] , __a : List[Any] , __a : List[str] , __a : Tuple ): UpperCAmelCase_ = FlaxBeitForMaskedImageModeling(config=__a ) UpperCAmelCase_ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def _lowercase (self : int , __a : Any , __a : Tuple , __a : int ): UpperCAmelCase_ = self.type_sequence_label_size UpperCAmelCase_ = FlaxBeitForImageClassification(config=__a ) UpperCAmelCase_ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ = 1 UpperCAmelCase_ = FlaxBeitForImageClassification(__a ) UpperCAmelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ = model(__a ) def _lowercase (self : Tuple ): UpperCAmelCase_ = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) = config_and_inputs UpperCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class __A ( UpperCamelCase__ , unittest.TestCase ): a__ : Dict = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = FlaxBeitModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37 ) def _lowercase (self : List[Any] ): self.config_tester.run_common_tests() def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(__a ) UpperCAmelCase_ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , __a ) def _lowercase (self : Optional[int] ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase_ = self._prepare_for_class(__a , __a ) UpperCAmelCase_ = model_class(__a ) @jax.jit def model_jitted(__a : Union[str, Any] , **__a : Tuple ): return model(pixel_values=__a , **__a ) with self.subTest("JIT Enabled" ): UpperCAmelCase_ = model_jitted(**__a ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): UpperCAmelCase_ = model_jitted(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) ) for jitted_output, output in zip(__a , __a ): self.assertEqual(jitted_output.shape , output.shape ) def _lowercase (self : Any ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def _lowercase (self : Optional[int] ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def _lowercase (self : Dict ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) @slow def _lowercase (self : Dict ): for model_class_name in self.all_model_classes: UpperCAmelCase_ = model_class_name.from_pretrained("microsoft/beit-base-patch16-224" ) UpperCAmelCase_ = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(__a ) def lowerCAmelCase_ ( ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_vision @require_flax class __A ( unittest.TestCase ): @cached_property def _lowercase (self : List[Any] ): return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def _lowercase (self : Optional[int] ): UpperCAmelCase_ = FlaxBeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=__a , return_tensors="np" ).pixel_values # prepare bool_masked_pos UpperCAmelCase_ = np.ones((1, 196) , dtype=__a ) # forward pass UpperCAmelCase_ = model(pixel_values=__a , bool_masked_pos=__a ) UpperCAmelCase_ = outputs.logits # verify the logits UpperCAmelCase_ = (1, 196, 8192) self.assertEqual(logits.shape , __a ) UpperCAmelCase_ = np.array( [[-3.24_37, 0.50_72, -13.91_74], [-3.24_56, 0.49_48, -13.94_01], [-3.20_33, 0.51_21, -13.85_50]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , __a , atol=1E-2 ) ) @slow def _lowercase (self : List[str] ): UpperCAmelCase_ = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=__a , return_tensors="np" ) # forward pass UpperCAmelCase_ = model(**__a ) UpperCAmelCase_ = outputs.logits # verify the logits UpperCAmelCase_ = (1, 1000) self.assertEqual(logits.shape , __a ) UpperCAmelCase_ = np.array([-1.23_85, -1.09_87, -1.01_08] ) self.assertTrue(np.allclose(logits[0, :3] , __a , atol=1E-4 ) ) UpperCAmelCase_ = 281 self.assertEqual(logits.argmax(-1 ).item() , __a ) @slow def _lowercase (self : Any ): UpperCAmelCase_ = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=__a , return_tensors="np" ) # forward pass UpperCAmelCase_ = model(**__a ) UpperCAmelCase_ = outputs.logits # verify the logits UpperCAmelCase_ = (1, 21841) self.assertEqual(logits.shape , __a ) UpperCAmelCase_ = np.array([1.68_81, -0.27_87, 0.59_01] ) self.assertTrue(np.allclose(logits[0, :3] , __a , atol=1E-4 ) ) UpperCAmelCase_ = 2396 self.assertEqual(logits.argmax(-1 ).item() , __a )
106
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __A ( UpperCamelCase__ ): def __init__(self : Union[str, Any] , __a : VQModel , __a : UNetaDModel , __a : DDIMScheduler ): super().__init__() self.register_modules(vqvae=__a , unet=__a , scheduler=__a ) @torch.no_grad() def __call__(self : str , __a : int = 1 , __a : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __a : float = 0.0 , __a : int = 50 , __a : Optional[str] = "pil" , __a : bool = True , **__a : Optional[int] , ): UpperCAmelCase_ = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=__a , ) UpperCAmelCase_ = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCAmelCase_ = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(__a ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature UpperCAmelCase_ = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCAmelCase_ = {} if accepts_eta: UpperCAmelCase_ = eta for t in self.progress_bar(self.scheduler.timesteps ): UpperCAmelCase_ = self.scheduler.scale_model_input(__a , __a ) # predict the noise residual UpperCAmelCase_ = self.unet(__a , __a ).sample # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase_ = self.scheduler.step(__a , __a , __a , **__a ).prev_sample # decode the image latents with the VAE UpperCAmelCase_ = self.vqvae.decode(__a ).sample UpperCAmelCase_ = (image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase_ = self.numpy_to_pil(__a ) if not return_dict: return (image,) return ImagePipelineOutput(images=__a )
106
1
"""simple docstring""" from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase : def __init__( self : Optional[int] , _lowerCamelCase : List[str] , _lowerCamelCase : Union[str, Any]=3 , _lowerCamelCase : str=32 , _lowerCamelCase : Union[str, Any]=3 , _lowerCamelCase : str=10 , _lowerCamelCase : str=[10, 20, 30, 40] , _lowerCamelCase : Optional[int]=[1, 1, 2, 1] , _lowerCamelCase : Dict=True , _lowerCamelCase : int=True , _lowerCamelCase : Optional[Any]="relu" , _lowerCamelCase : Any=3 , _lowerCamelCase : Optional[Any]=None , ): """simple docstring""" A_ : Any = parent A_ : List[Any] = batch_size A_ : List[Any] = image_size A_ : Optional[int] = num_channels A_ : Tuple = embeddings_size A_ : str = hidden_sizes A_ : Optional[Any] = depths A_ : Any = is_training A_ : int = use_labels A_ : int = hidden_act A_ : Optional[Any] = num_labels A_ : str = scope A_ : Optional[int] = len(_lowerCamelCase ) def a_ ( self : str ): """simple docstring""" A_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Dict = None if self.use_labels: A_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) A_ : Union[str, Any] = self.get_config() return config, pixel_values, labels def a_ ( self : List[Any] ): """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def a_ ( self : List[Any] , _lowerCamelCase : Any , _lowerCamelCase : Any , _lowerCamelCase : Union[str, Any] ): """simple docstring""" A_ : Dict = TFRegNetModel(config=_lowerCamelCase ) A_ : Optional[int] = model(_lowerCamelCase , training=_lowerCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a_ ( self : List[Any] , _lowerCamelCase : List[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : int ): """simple docstring""" A_ : Optional[Any] = self.num_labels A_ : int = TFRegNetForImageClassification(_lowerCamelCase ) A_ : Tuple = model(_lowerCamelCase , labels=_lowerCamelCase , training=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a_ ( self : Dict ): """simple docstring""" A_ : Any = self.prepare_config_and_inputs() A_ : str = config_and_inputs A_ : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class lowercase ( __A , __A , unittest.TestCase): __lowerCAmelCase : Any = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () __lowerCAmelCase : str = ( {"""feature-extraction""": TFRegNetModel, """image-classification""": TFRegNetForImageClassification} if is_tf_available() else {} ) __lowerCAmelCase : List[Any] = False __lowerCAmelCase : Union[str, Any] = False __lowerCAmelCase : Dict = False __lowerCAmelCase : Any = False __lowerCAmelCase : Tuple = False def a_ ( self : str ): """simple docstring""" A_ : Dict = TFRegNetModelTester(self ) A_ : Optional[int] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase ) def a_ ( self : List[str] ): """simple docstring""" return @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def a_ ( self : Union[str, Any] ): """simple docstring""" pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , reason='''TF does not support backprop for grouped convolutions on CPU.''' , ) @slow def a_ ( self : Optional[Any] ): """simple docstring""" super().test_keras_fit() @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def a_ ( self : Union[str, Any] ): """simple docstring""" pass def a_ ( self : str ): """simple docstring""" A_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Optional[Any] = model_class(_lowerCamelCase ) A_ : Optional[int] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : int = [*signature.parameters.keys()] A_ : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def a_ ( self : int ): """simple docstring""" A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def a_ ( self : Dict ): """simple docstring""" def check_hidden_states_output(_lowerCamelCase : Dict , _lowerCamelCase : int , _lowerCamelCase : Optional[Any] ): A_ : Optional[int] = model_class(_lowerCamelCase ) A_ : List[Any] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) , training=_lowerCamelCase ) A_ : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A_ : Optional[int] = self.model_tester.num_stages self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) A_ : Any = self.model_tester.prepare_config_and_inputs_for_common() A_ : List[str] = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: A_ : Dict = layer_type A_ : List[Any] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A_ : str = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def a_ ( self : str ): """simple docstring""" A_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(_lowerCamelCase : Tuple , _lowerCamelCase : int , _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[Any]={} ): A_ : Dict = model(_lowerCamelCase , return_dict=_lowerCamelCase , **_lowerCamelCase ) A_ : Optional[Any] = model(_lowerCamelCase , return_dict=_lowerCamelCase , **_lowerCamelCase ).to_tuple() def recursive_check(_lowerCamelCase : Optional[Any] , _lowerCamelCase : str ): if isinstance(_lowerCamelCase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_lowerCamelCase , _lowerCamelCase ): recursive_check(_lowerCamelCase , _lowerCamelCase ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(_lowerCamelCase , _lowerCamelCase ) ) , msg=( '''Tuple and dict output are not equal. Difference:''' F""" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}""" ) , ) recursive_check(_lowerCamelCase , _lowerCamelCase ) for model_class in self.all_model_classes: A_ : Optional[Any] = model_class(_lowerCamelCase ) A_ : Optional[Any] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) A_ : Optional[int] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A_ : Any = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) A_ : Tuple = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A_ : Dict = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) A_ : int = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , {'''output_hidden_states''': True} ) A_ : Tuple = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) A_ : str = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , {'''output_hidden_states''': True} ) def a_ ( self : Optional[int] ): """simple docstring""" A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) @slow def a_ ( self : Union[str, Any] ): """simple docstring""" for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Dict = TFRegNetModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def lowercase_ ( ): """simple docstring""" A_ : Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class lowercase ( unittest.TestCase): @cached_property def a_ ( self : Any ): """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def a_ ( self : Union[str, Any] ): """simple docstring""" A_ : str = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) A_ : Tuple = self.default_image_processor A_ : Optional[int] = prepare_img() A_ : Any = image_processor(images=_lowerCamelCase , return_tensors='''tf''' ) # forward pass A_ : List[Any] = model(**_lowerCamelCase , training=_lowerCamelCase ) # verify the logits A_ : Optional[Any] = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) A_ : Optional[Any] = tf.constant([-0.4180, -1.5051, -3.4836] ) tf.debugging.assert_near(outputs.logits[0, :3] , _lowerCamelCase , atol=1E-4 )
167
'''simple docstring''' import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) UpperCamelCase__ : Any = '\\n Text data.\n Second line of data.' UpperCamelCase__ : List[Any] = 'file' @pytest.fixture(scope="""session""" ) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" A_ : int = tmp_path_factory.mktemp("""data""" ) / (FILE_PATH + """.zstd""") A_ : int = bytes(a_ , """utf-8""" ) with zstd.open(a_ , """wb""" ) as f: f.write(a_ ) return path @pytest.fixture def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" with open(os.path.join(tmpfs.local_root_dir , a_ ) , """w""" ) as f: f.write(a_ ) return FILE_PATH @pytest.mark.parametrize("""compression_format""" , ["""gzip""", """xz""", """zstd"""] ) def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ , a_ ) -> Optional[int]: """simple docstring""" A_ : List[str] = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_path} A_ : Any = input_paths[compression_format] A_ : Tuple = tmp_path / """cache""" A_ : Tuple = DownloadConfig(cache_dir=a_ , extract_compressed_file=a_ ) A_ : Dict = cached_path(a_ , download_config=a_ ) with open(a_ ) as f: A_ : Optional[Any] = f.read() with open(a_ ) as f: A_ : List[str] = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("""default_extracted""" , [True, False] ) @pytest.mark.parametrize("""default_cache_dir""" , [True, False] ) def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ ) -> str: """simple docstring""" A_ : Union[str, Any] = """custom_cache""" A_ : List[str] = """custom_extracted_dir""" A_ : Optional[Any] = tmp_path / """custom_extracted_path""" if default_extracted: A_ : Any = ("""downloads""" if default_cache_dir else custom_cache_dir, """extracted""") else: monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_DIR""" , a_ ) monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_PATH""" , str(a_ ) ) A_ : Union[str, Any] = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) A_ : List[Any] = xz_file A_ : Optional[int] = ( DownloadConfig(extract_compressed_file=a_ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=a_ ) ) A_ : Union[str, Any] = cached_path(a_ , download_config=a_ ) assert Path(a_ ).parent.parts[-2:] == expected def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" A_ : str = str(Path(a_ ).resolve() ) assert cached_path(a_ ) == text_file # relative path A_ : List[str] = str(Path(a_ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(a_ ) == text_file def UpperCAmelCase ( a_ ) -> int: """simple docstring""" A_ : Optional[Any] = str(tmp_path.resolve() / """__missing_file__.txt""" ) with pytest.raises(a_ ): cached_path(a_ ) # relative path A_ : Tuple = """./__missing_file__.txt""" with pytest.raises(a_ ): cached_path(a_ ) def UpperCAmelCase ( a_ ) -> Tuple: """simple docstring""" A_ : Any = get_from_cache(F"tmp://{tmpfs_file}" ) with open(a_ ) as f: A_ : List[str] = f.read() assert output_file_content == FILE_CONTENT @patch("""datasets.config.HF_DATASETS_OFFLINE""" , a_ ) def UpperCAmelCase ( ) -> List[str]: """simple docstring""" with pytest.raises(a_ ): cached_path("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , a_ ) def UpperCAmelCase ( a_ ) -> Union[str, Any]: """simple docstring""" A_ : List[str] = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(a_ ): http_get("""https://huggingface.co""" , temp_file=a_ ) with pytest.raises(a_ ): http_head("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , a_ ) def UpperCAmelCase ( a_ ) -> int: """simple docstring""" A_ : List[Any] = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(a_ ): ftp_get("""ftp://huggingface.co""" , temp_file=a_ ) with pytest.raises(a_ ): ftp_head("""ftp://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , a_ ) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" A_ : Optional[int] = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(a_ ): fsspec_get("""s3://huggingface.co""" , temp_file=a_ ) with pytest.raises(a_ ): fsspec_head("""s3://huggingface.co""" )
344
0
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : Any = 'blenderbot-small' A_ : Optional[Any] = ['past_key_values'] A_ : Tuple = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__(self : Tuple , a__ : List[Any]=5_0265 , a__ : Any=512 , a__ : Optional[int]=8 , a__ : Dict=2048 , a__ : Dict=16 , a__ : Optional[Any]=8 , a__ : int=2048 , a__ : Any=16 , a__ : List[Any]=0.0 , a__ : str=0.0 , a__ : Optional[Any]=True , a__ : List[Any]=True , a__ : List[Any]="gelu" , a__ : List[str]=512 , a__ : List[str]=0.1 , a__ : Union[str, Any]=0.0 , a__ : List[str]=0.0 , a__ : Union[str, Any]=0.0_2 , a__ : Any=1 , a__ : Any=False , a__ : Any=0 , a__ : Union[str, Any]=1 , a__ : Dict=2 , a__ : Union[str, Any]=2 , **a__ : Optional[Any] , ): """simple docstring""" __snake_case = vocab_size __snake_case = max_position_embeddings __snake_case = d_model __snake_case = encoder_ffn_dim __snake_case = encoder_layers __snake_case = encoder_attention_heads __snake_case = decoder_ffn_dim __snake_case = decoder_layers __snake_case = decoder_attention_heads __snake_case = dropout __snake_case = attention_dropout __snake_case = activation_dropout __snake_case = activation_function __snake_case = init_std __snake_case = encoder_layerdrop __snake_case = decoder_layerdrop __snake_case = use_cache __snake_case = encoder_layers __snake_case = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , is_encoder_decoder=a__ , decoder_start_token_id=a__ , forced_eos_token_id=a__ , **a__ , ) class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): @property def a (self : Any ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __snake_case = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __snake_case = {0: '''batch'''} __snake_case = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: __snake_case = {0: '''batch''', 1: '''decoder_sequence'''} __snake_case = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(a__ , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. __snake_case = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __snake_case , __snake_case = self.num_layers for i in range(a__ ): __snake_case = {0: '''batch''', 2: '''past_sequence + sequence'''} __snake_case = {0: '''batch''', 2: '''past_sequence + sequence'''} else: __snake_case = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def a (self : Any ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __snake_case = super().outputs else: __snake_case = super(a__ , self ).outputs if self.use_past: __snake_case , __snake_case = self.num_layers for i in range(a__ ): __snake_case = {0: '''batch''', 2: '''past_sequence + sequence'''} __snake_case = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def a (self : Any , a__ : PreTrainedTokenizer , a__ : int = -1 , a__ : int = -1 , a__ : bool = False , a__ : Optional[TensorType] = None , ): """simple docstring""" __snake_case = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( a__ , a__ , a__ , a__ , a__ ) # Generate decoder inputs __snake_case = seq_length if not self.use_past else 1 __snake_case = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( a__ , a__ , a__ , a__ , a__ ) __snake_case = {f"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} __snake_case = dict(**a__ , **a__ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __snake_case , __snake_case = common_inputs['''input_ids'''].shape __snake_case = common_inputs['''decoder_input_ids'''].shape[1] __snake_case , __snake_case = self.num_attention_heads __snake_case = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __snake_case = decoder_seq_length + 3 __snake_case = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __snake_case = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(a__ , a__ )] , dim=1 ) __snake_case = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __snake_case , __snake_case = self.num_layers __snake_case = min(a__ , a__ ) __snake_case = max(a__ , a__ ) - min_num_layers __snake_case = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(a__ ): common_inputs["past_key_values"].append( ( torch.zeros(a__ ), torch.zeros(a__ ), torch.zeros(a__ ), torch.zeros(a__ ), ) ) # TODO: test this. __snake_case = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(a__ , a__ ): common_inputs["past_key_values"].append((torch.zeros(a__ ), torch.zeros(a__ )) ) return common_inputs def a (self : Union[str, Any] , a__ : PreTrainedTokenizer , a__ : int = -1 , a__ : int = -1 , a__ : bool = False , a__ : Optional[TensorType] = None , ): """simple docstring""" __snake_case = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( a__ , a__ , a__ , a__ , a__ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __snake_case , __snake_case = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __snake_case = seqlen + 2 __snake_case , __snake_case = self.num_layers __snake_case , __snake_case = self.num_attention_heads __snake_case = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __snake_case = common_inputs['''attention_mask'''].dtype __snake_case = torch.cat( [common_inputs['''attention_mask'''], torch.ones(a__ , a__ , dtype=a__ )] , dim=1 ) __snake_case = [ (torch.zeros(a__ ), torch.zeros(a__ )) for _ in range(a__ ) ] return common_inputs def a (self : Optional[Any] , a__ : PreTrainedTokenizer , a__ : int = -1 , a__ : int = -1 , a__ : bool = False , a__ : Optional[TensorType] = None , ): """simple docstring""" __snake_case = compute_effective_axis_dimension( a__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __snake_case = tokenizer.num_special_tokens_to_add(a__ ) __snake_case = compute_effective_axis_dimension( a__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=a__ ) # Generate dummy inputs according to compute batch and sequence __snake_case = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size __snake_case = dict(tokenizer(a__ , return_tensors=a__ ) ) return common_inputs def a (self : Optional[Any] , a__ : PreTrainedTokenizer , a__ : int = -1 , a__ : int = -1 , a__ : bool = False , a__ : Optional[TensorType] = None , ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __snake_case = self._generate_dummy_inputs_for_default_and_seqaseq_lm( a__ , batch_size=a__ , seq_length=a__ , is_pair=a__ , framework=a__ ) elif self.task == "causal-lm": __snake_case = self._generate_dummy_inputs_for_causal_lm( a__ , batch_size=a__ , seq_length=a__ , is_pair=a__ , framework=a__ ) else: __snake_case = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( a__ , batch_size=a__ , seq_length=a__ , is_pair=a__ , framework=a__ ) return common_inputs def a (self : int , a__ : Any , a__ : Any , a__ : Dict , a__ : Tuple ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __snake_case = super()._flatten_past_key_values_(a__ , a__ , a__ , a__ ) else: __snake_case = super(a__ , self )._flatten_past_key_values_( a__ , a__ , a__ , a__ )
238
import math def lowerCamelCase__ ( snake_case_ : int ) -> list[int]: __snake_case = [] __snake_case = 2 __snake_case = int(math.sqrt(snake_case_ ) ) # Size of every segment __snake_case = [True] * (end + 1) __snake_case = [] while start <= end: if temp[start] is True: in_prime.append(snake_case_ ) for i in range(start * start , end + 1 , snake_case_ ): __snake_case = False start += 1 prime += in_prime __snake_case = end + 1 __snake_case = min(2 * end , snake_case_ ) while low <= n: __snake_case = [True] * (high - low + 1) for each in in_prime: __snake_case = math.floor(low / each ) * each if t < low: t += each for j in range(snake_case_ , high + 1 , snake_case_ ): __snake_case = False for j in range(len(snake_case_ ) ): if temp[j] is True: prime.append(j + low ) __snake_case = high + 1 __snake_case = min(high + end , snake_case_ ) return prime print(sieve(10**6))
238
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available lowercase_ = {"""tokenization_herbert""": ["""HerbertTokenizer"""]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["""HerbertTokenizerFast"""] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
58
'''simple docstring''' from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowercase_ = logging.get_logger(__name__) # pylint: disable=invalid-name lowercase_ = """ Examples: ```py >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-prior\") >>> pipe_prior.to(\"cuda\") >>> prompt = \"red cat, 4k photo\" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> zero_image_emb = out.negative_image_embeds >>> pipe = KandinskyV22Pipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-decoder\") >>> pipe.to(\"cuda\") >>> image = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=50, ... ).images >>> image[0].save(\"cat.png\") ``` """ def lowerCamelCase ( __lowerCamelCase : str , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any]=8 ) ->Tuple: _SCREAMING_SNAKE_CASE = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _SCREAMING_SNAKE_CASE = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class a_ ( snake_case_ ): '''simple docstring''' def __init__( self , A , A , A , ) -> Union[str, Any]: super().__init__() self.register_modules( unet=A , scheduler=A , movq=A , ) _SCREAMING_SNAKE_CASE = 2 ** (len(self.movq.config.block_out_channels ) - 1) def snake_case_( self , A , A , A , A , A , A ) -> Union[str, Any]: if latents is None: _SCREAMING_SNAKE_CASE = randn_tensor(A , generator=A , device=A , dtype=A ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) _SCREAMING_SNAKE_CASE = latents.to(A ) _SCREAMING_SNAKE_CASE = latents * scheduler.init_noise_sigma return latents def snake_case_( self , A=0 ) -> Dict: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) _SCREAMING_SNAKE_CASE = torch.device(f'cuda:{gpu_id}' ) _SCREAMING_SNAKE_CASE = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(A , A ) def snake_case_( self , A=0 ) -> str: if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) _SCREAMING_SNAKE_CASE = torch.device(f'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=A ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _SCREAMING_SNAKE_CASE = None for cpu_offloaded_model in [self.unet, self.movq]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = cpu_offload_with_hook(A , A , prev_module_hook=A ) # We'll offload the last model manually. _SCREAMING_SNAKE_CASE = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def snake_case_( self ) -> Tuple: if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(A , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(A ) def __call__( self , A , A , A = 512 , A = 512 , A = 100 , A = 4.0 , A = 1 , A = None , A = None , A = "pil" , A = True , ) -> List[str]: _SCREAMING_SNAKE_CASE = self._execution_device _SCREAMING_SNAKE_CASE = guidance_scale > 1.0 if isinstance(A , A ): _SCREAMING_SNAKE_CASE = torch.cat(A , dim=0 ) _SCREAMING_SNAKE_CASE = image_embeds.shape[0] * num_images_per_prompt if isinstance(A , A ): _SCREAMING_SNAKE_CASE = torch.cat(A , dim=0 ) if do_classifier_free_guidance: _SCREAMING_SNAKE_CASE = image_embeds.repeat_interleave(A , dim=0 ) _SCREAMING_SNAKE_CASE = negative_image_embeds.repeat_interleave(A , dim=0 ) _SCREAMING_SNAKE_CASE = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=A ) self.scheduler.set_timesteps(A , device=A ) _SCREAMING_SNAKE_CASE = self.scheduler.timesteps _SCREAMING_SNAKE_CASE = self.unet.config.in_channels _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = downscale_height_and_width(A , A , self.movq_scale_factor ) # create initial latent _SCREAMING_SNAKE_CASE = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , A , A , A , self.scheduler , ) for i, t in enumerate(self.progress_bar(A ) ): # expand the latents if we are doing classifier free guidance _SCREAMING_SNAKE_CASE = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _SCREAMING_SNAKE_CASE = {"""image_embeds""": image_embeds} _SCREAMING_SNAKE_CASE = self.unet( sample=A , timestep=A , encoder_hidden_states=A , added_cond_kwargs=A , return_dict=A , )[0] if do_classifier_free_guidance: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = noise_pred.split(latents.shape[1] , dim=1 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = noise_pred.chunk(2 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = variance_pred.chunk(2 ) _SCREAMING_SNAKE_CASE = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _SCREAMING_SNAKE_CASE = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _SCREAMING_SNAKE_CASE = self.scheduler.step( A , A , A , generator=A , )[0] # post-processing _SCREAMING_SNAKE_CASE = self.movq.decode(A , force_not_quantize=A )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: _SCREAMING_SNAKE_CASE = image * 0.5 + 0.5 _SCREAMING_SNAKE_CASE = image.clamp(0 , 1 ) _SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _SCREAMING_SNAKE_CASE = self.numpy_to_pil(A ) if not return_dict: return (image,) return ImagePipelineOutput(images=A )
58
1
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __UpperCAmelCase = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class a__ ( a__ , unittest.TestCase ): '''simple docstring''' lowercase__ : Optional[Any] = XLNetTokenizer lowercase__ : List[str] = XLNetTokenizerFast lowercase__ : Optional[Any] = True lowercase__ : int = True def __SCREAMING_SNAKE_CASE ( self ) -> str: super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase__ = XLNetTokenizer(lowerCamelCase_ , keep_accents=lowerCamelCase_ ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def __SCREAMING_SNAKE_CASE ( self ) -> int: lowerCAmelCase__ = '''<s>''' lowerCAmelCase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase_ ) , lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> int: lowerCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''<eod>''' ) self.assertEqual(len(lowerCamelCase_ ) , 10_06 ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 10_00 ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: lowerCAmelCase__ = XLNetTokenizer(lowerCamelCase_ , keep_accents=lowerCamelCase_ ) lowerCAmelCase__ = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowerCamelCase_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [2_85, 46, 10, 1_70, 3_82] ) lowerCAmelCase__ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowerCamelCase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) lowerCAmelCase__ = tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) lowerCAmelCase__ = tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: lowerCAmelCase__ = XLNetTokenizer(lowerCamelCase_ , do_lower_case=lowerCamelCase_ ) lowerCAmelCase__ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowerCamelCase_ , [ SPIECE_UNDERLINE + '''''', '''i''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''se''', '''.''', ] , ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''▁he''', '''ll''', '''o'''] ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: lowerCAmelCase__ = XLNetTokenizer(lowerCamelCase_ , do_lower_case=lowerCamelCase_ ) lowerCAmelCase__ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowerCamelCase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''se''', '''.''', ] , ) @slow def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: lowerCAmelCase__ = XLNetTokenizer.from_pretrained('''xlnet-base-cased''' ) lowerCAmelCase__ = tokenizer.encode('''sequence builders''' , add_special_tokens=lowerCamelCase_ ) lowerCAmelCase__ = tokenizer.encode('''multi-sequence build''' , add_special_tokens=lowerCamelCase_ ) lowerCAmelCase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ ) lowerCAmelCase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ , lowerCamelCase_ ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: # fmt: off lowerCAmelCase__ = {'''input_ids''': [[17, 2_14_42, 2_70, 17, 10, 1_46_45, 3_18, 34, 17, 45_46, 31_45, 7_87, 13, 77_52, 2_20_18, 23, 21, 17, 45_46, 31_45, 7_87, 13, 33_52, 1_44_31, 13, 55_00, 11, 11_76, 5_80, 13, 1_68_19, 47_97, 23, 17, 10, 1_71_35, 6_58, 19, 4_57, 79_32, 13, 1_84, 19, 31_54, 1_71_35, 64_68, 19, 14_04, 1_22_69, 19, 42_29, 53_56, 1_62_64, 46, 19, 17, 2_05_45, 1_03_95, 9, 9, 9, 11, 28, 64_21, 95_31, 2_07_29, 17, 10, 3_53, 1_70_22, 11, 21, 64_21, 95_31, 1_69_49, 17, 10, 1_15_09, 7_53, 11, 33, 95, 24_21, 73_85, 9_56, 1_44_31, 26_26, 25, 8_42, 73_85, 48_36, 21, 14_29, 22_72, 98_55, 31_20, 1_61, 2_47_38, 19, 1_32_03, 6_58, 2_18, 7_87, 21, 4_30, 1_84_82, 8_47, 26_37, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_22, 2_21_78, 27, 10_64, 22, 9_56, 13, 1_11_01, 14_29, 58_54, 2_43_13, 1_89_53, 40, 4_22, 2_43_66, 68, 17_58, 37, 1_04_83, 1_42_57, 31, 2_07, 2_63, 21, 2_03, 37_73, 25, 71, 97_35, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 20_49, 34_42, 17, 1_38_94, 33_80, 23, 95, 18, 1_76_34, 22_88, 9, 4, 3]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase_ , model_name='''xlnet-base-cased''' , revision='''c841166438c31ec7ca9a106dee7bb312b73ae511''' , )
228
'''simple docstring''' import argparse import json import subprocess def _snake_case ( A , A ) -> Tuple: lowerCAmelCase__ = [] lowerCAmelCase__ = ( F"""curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\"""" ''' https://api.github.com/repos/huggingface/transformers/actions/runners''' ) lowerCAmelCase__ = subprocess.run(A , shell=A , stdout=subprocess.PIPE ) lowerCAmelCase__ = output.stdout.decode('''utf-8''' ) lowerCAmelCase__ = json.loads(A ) lowerCAmelCase__ = status['''runners'''] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(A ) # save the result so we can report them on Slack with open('''offline_runners.txt''' , '''w''' ) as fp: fp.write(json.dumps(A ) ) if len(A ) > 0: lowerCAmelCase__ = '''\n'''.join([x['''name'''] for x in offline_runners] ) raise ValueError(F"""The following runners are offline:\n{failed}""" ) if __name__ == "__main__": def _snake_case ( A ) -> Optional[Any]: return values.split(''',''' ) __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--target_runners''', default=None, type=list_str, required=True, help='''Comma-separated list of runners to check status.''', ) parser.add_argument( '''--token''', default=None, type=str, required=True, help='''A token that has actions:read permission.''' ) __UpperCAmelCase = parser.parse_args() get_runner_status(args.target_runners, args.token)
228
1
'''simple docstring''' import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def UpperCAmelCase ( a_ ) -> Any: """simple docstring""" assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def UpperCAmelCase ( ) -> int: """simple docstring""" A_ : Optional[int] = '''mock-s3-bucket''' A_ : List[str] = F"s3://{mock_bucket}" A_ : List[str] = extract_path_from_uri(_UpperCAmelCase ) assert dataset_path.startswith("""s3://""" ) is False A_ : Union[str, Any] = '''./local/path''' A_ : Tuple = extract_path_from_uri(_UpperCAmelCase ) assert dataset_path == new_dataset_path def UpperCAmelCase ( a_ ) -> Tuple: """simple docstring""" A_ : Dict = is_remote_filesystem(_UpperCAmelCase ) assert is_remote is True A_ : Tuple = fsspec.filesystem("""file""" ) A_ : Optional[Any] = is_remote_filesystem(_UpperCAmelCase ) assert is_remote is False @pytest.mark.parametrize("""compression_fs_class""" , _UpperCAmelCase ) def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ , a_ , a_ ) -> Union[str, Any]: """simple docstring""" A_ : Tuple = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_file, '''bz2''': bza_file, '''lz4''': lza_file} A_ : Union[str, Any] = input_paths[compression_fs_class.protocol] if input_path is None: A_ : Optional[Any] = F"for \'{compression_fs_class.protocol}\' compression protocol, " if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(_UpperCAmelCase ) A_ : str = fsspec.filesystem(compression_fs_class.protocol , fo=_UpperCAmelCase ) assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) A_ : Optional[int] = os.path.basename(_UpperCAmelCase ) A_ : List[Any] = expected_filename[: expected_filename.rindex(""".""" )] assert fs.glob("""*""" ) == [expected_filename] with fs.open(_UpperCAmelCase , """r""" , encoding="""utf-8""" ) as f, open(_UpperCAmelCase , encoding="""utf-8""" ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize("""protocol""" , ["""zip""", """gzip"""] ) def UpperCAmelCase ( a_ , a_ , a_ ) -> Dict: """simple docstring""" A_ : str = {'''zip''': zip_jsonl_path, '''gzip''': jsonl_gz_path} A_ : Optional[int] = compressed_file_paths[protocol] A_ : Optional[int] = '''dataset.jsonl''' A_ : Any = F"{protocol}://{member_file_path}::{compressed_file_path}" A_ : int = fsspec.get_fs_token_paths(_UpperCAmelCase ) assert fs.isfile(_UpperCAmelCase ) assert not fs.isfile("""non_existing_""" + member_file_path ) @pytest.mark.integration def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> List[str]: """simple docstring""" A_ : Any = hf_api.dataset_info(_UpperCAmelCase , token=_UpperCAmelCase ) A_ : Optional[int] = HfFileSystem(repo_info=_UpperCAmelCase , token=_UpperCAmelCase ) assert sorted(hffs.glob("""*""" ) ) == [".gitattributes", "data"] assert hffs.isdir("""data""" ) assert hffs.isfile(""".gitattributes""" ) and hffs.isfile("""data/text_data.txt""" ) with open(_UpperCAmelCase ) as f: assert hffs.open("""data/text_data.txt""" , """r""" ).read() == f.read() def UpperCAmelCase ( ) -> Dict: """simple docstring""" A_ : str = '''bz2''' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(_UpperCAmelCase , _UpperCAmelCase , clobber=_UpperCAmelCase ) with pytest.warns(_UpperCAmelCase ) as warning_info: importlib.reload(datasets.filesystems ) assert len(_UpperCAmelCase ) == 1 assert ( str(warning_info[0].message ) == F"A filesystem protocol was already set for {protocol} and will be overwritten." )
344
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def a ( _UpperCAmelCase : Any , _UpperCAmelCase : Any=None ): '''simple docstring''' __UpperCAmelCase : Optional[int] = None if token is not None: __UpperCAmelCase : Optional[Any] = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': f'Bearer {token}'} __UpperCAmelCase : List[str] = f'https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100' __UpperCAmelCase : Union[str, Any] = requests.get(_UpperCAmelCase , headers=_UpperCAmelCase ).json() __UpperCAmelCase : Union[str, Any] = {} try: job_links.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) __UpperCAmelCase : List[Any] = math.ceil((result['''total_count'''] - 1_00) / 1_00 ) for i in range(_UpperCAmelCase ): __UpperCAmelCase : Optional[Any] = requests.get(url + f'&page={i + 2}' , headers=_UpperCAmelCase ).json() job_links.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return job_links except Exception: print(f'Unknown error, could not fetch links:\n{traceback.format_exc()}' ) return {} def a ( _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str]=None ): '''simple docstring''' __UpperCAmelCase : List[Any] = None if token is not None: __UpperCAmelCase : Tuple = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': f'Bearer {token}'} __UpperCAmelCase : int = f'https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100' __UpperCAmelCase : str = requests.get(_UpperCAmelCase , headers=_UpperCAmelCase ).json() __UpperCAmelCase : List[Any] = {} try: artifacts.update({artifact['''name''']: artifact['''archive_download_url'''] for artifact in result['''artifacts''']} ) __UpperCAmelCase : str = math.ceil((result['''total_count'''] - 1_00) / 1_00 ) for i in range(_UpperCAmelCase ): __UpperCAmelCase : Dict = requests.get(url + f'&page={i + 2}' , headers=_UpperCAmelCase ).json() artifacts.update({artifact['''name''']: artifact['''archive_download_url'''] for artifact in result['''artifacts''']} ) return artifacts except Exception: print(f'Unknown error, could not fetch links:\n{traceback.format_exc()}' ) return {} def a ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int ): '''simple docstring''' __UpperCAmelCase : str = None if token is not None: __UpperCAmelCase : str = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': f'Bearer {token}'} __UpperCAmelCase : int = requests.get(_UpperCAmelCase , headers=_UpperCAmelCase , allow_redirects=_UpperCAmelCase ) __UpperCAmelCase : Optional[int] = result.headers['''Location'''] __UpperCAmelCase : Optional[int] = requests.get(_UpperCAmelCase , allow_redirects=_UpperCAmelCase ) __UpperCAmelCase : int = os.path.join(_UpperCAmelCase , f'{artifact_name}.zip' ) with open(_UpperCAmelCase , '''wb''' ) as fp: fp.write(response.content ) def a ( _UpperCAmelCase : Dict , _UpperCAmelCase : List[str]=None ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = [] __UpperCAmelCase : int = [] __UpperCAmelCase : List[Any] = None with zipfile.ZipFile(_UpperCAmelCase ) as z: for filename in z.namelist(): if not os.path.isdir(_UpperCAmelCase ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(_UpperCAmelCase ) as f: for line in f: __UpperCAmelCase : Tuple = line.decode('''UTF-8''' ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs __UpperCAmelCase : int = line[: line.index(''': ''' )] __UpperCAmelCase : Any = line[line.index(''': ''' ) + len(''': ''' ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith('''FAILED ''' ): # `test` is the test method that failed __UpperCAmelCase : str = line[len('''FAILED ''' ) :] failed_tests.append(_UpperCAmelCase ) elif filename == "job_name.txt": __UpperCAmelCase : Tuple = line if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError( f'`errors` and `failed_tests` should have the same number of elements. Got {len(_UpperCAmelCase )} for `errors` ' f'and {len(_UpperCAmelCase )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some' ''' problem.''' ) __UpperCAmelCase : str = None if job_name and job_links: __UpperCAmelCase : Any = job_links.get(_UpperCAmelCase , _UpperCAmelCase ) # A list with elements of the form (line of error, error, failed test) __UpperCAmelCase : Dict = [x + [y] + [job_link] for x, y in zip(_UpperCAmelCase , _UpperCAmelCase )] return result def a ( _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple=None ): '''simple docstring''' __UpperCAmelCase : str = [] __UpperCAmelCase : str = [os.path.join(_UpperCAmelCase , _UpperCAmelCase ) for p in os.listdir(_UpperCAmelCase ) if p.endswith('''.zip''' )] for p in paths: errors.extend(get_errors_from_single_artifact(_UpperCAmelCase , job_links=_UpperCAmelCase ) ) return errors def a ( _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any]=None ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = Counter() counter.update([x[1] for x in logs] ) __UpperCAmelCase : Dict = counter.most_common() __UpperCAmelCase : int = {} for error, count in counts: if error_filter is None or error not in error_filter: __UpperCAmelCase : Tuple = {'''count''': count, '''failed_tests''': [(x[2], x[0]) for x in logs if x[1] == error]} __UpperCAmelCase : Union[str, Any] = dict(sorted(r.items() , key=lambda _UpperCAmelCase : item[1]["count"] , reverse=_UpperCAmelCase ) ) return r def a ( _UpperCAmelCase : Dict ): '''simple docstring''' __UpperCAmelCase : List[str] = test.split('''::''' )[0] if test.startswith('''tests/models/''' ): __UpperCAmelCase : Optional[int] = test.split('''/''' )[2] else: __UpperCAmelCase : Optional[Any] = None return test def a ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int=None ): '''simple docstring''' __UpperCAmelCase : Dict = [(x[0], x[1], get_model(x[2] )) for x in logs] __UpperCAmelCase : int = [x for x in logs if x[2] is not None] __UpperCAmelCase : Tuple = {x[2] for x in logs} __UpperCAmelCase : List[str] = {} for test in tests: __UpperCAmelCase : List[str] = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) __UpperCAmelCase : Tuple = counter.most_common() __UpperCAmelCase : Any = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} __UpperCAmelCase : List[Any] = sum(error_counts.values() ) if n_errors > 0: __UpperCAmelCase : Tuple = {'''count''': n_errors, '''errors''': error_counts} __UpperCAmelCase : Optional[int] = dict(sorted(r.items() , key=lambda _UpperCAmelCase : item[1]["count"] , reverse=_UpperCAmelCase ) ) return r def a ( _UpperCAmelCase : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Any = '''| no. | error | status |''' __UpperCAmelCase : List[str] = '''|-:|:-|:-|''' __UpperCAmelCase : Union[str, Any] = [header, sep] for error in reduced_by_error: __UpperCAmelCase : Tuple = reduced_by_error[error]['''count'''] __UpperCAmelCase : int = f'| {count} | {error[:1_00]} | |' lines.append(_UpperCAmelCase ) return "\n".join(_UpperCAmelCase ) def a ( _UpperCAmelCase : Dict ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = '''| model | no. of errors | major error | count |''' __UpperCAmelCase : List[Any] = '''|-:|-:|-:|-:|''' __UpperCAmelCase : Tuple = [header, sep] for model in reduced_by_model: __UpperCAmelCase : List[Any] = reduced_by_model[model]['''count'''] __UpperCAmelCase , __UpperCAmelCase : int = list(reduced_by_model[model]['''errors'''].items() )[0] __UpperCAmelCase : Dict = f'| {model} | {count} | {error[:60]} | {_count} |' lines.append(_UpperCAmelCase ) return "\n".join(_UpperCAmelCase ) if __name__ == "__main__": __A =argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") __A =parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) __A =get_job_links(args.workflow_run_id, token=args.token) __A ={} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: __A =k.find(" / ") __A =k[index + len(" / ") :] __A =v with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) __A =get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) __A =get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error __A =Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors __A =counter.most_common(3_0) for item in most_common: print(item) with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) __A =reduce_by_error(errors) __A =reduce_by_model(errors) __A =make_github_table(reduced_by_error) __A =make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp: fp.write(sa) with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp: fp.write(sa)
226
0
"""simple docstring""" from __future__ import annotations def lowercase ( A_ , A_ )-> Union[str, Any]: '''simple docstring''' print(F'''Vertex\tShortest Distance from vertex {src}''' ) for i, d in enumerate(A_ ): print(F'''{i}\t\t{d}''' ) def lowercase ( A_ , A_ , A_ )-> int: '''simple docstring''' for j in range(A_ ): a , a , a : List[Any] = (graph[j][k] for k in ["src", "dst", "weight"]) if distance[u] != float("inf" ) and distance[u] + w < distance[v]: return True return False def lowercase ( A_ , A_ , A_ , A_ )-> list[float]: '''simple docstring''' a : str = [float("inf" )] * vertex_count a : Optional[int] = 0.0 for _ in range(vertex_count - 1 ): for j in range(A_ ): a , a , a : Any = (graph[j][k] for k in ["src", "dst", "weight"]) if distance[u] != float("inf" ) and distance[u] + w < distance[v]: a : List[Any] = distance[u] + w a : Optional[int] = check_negative_cycle(A_ , A_ , A_ ) if negative_cycle_exists: raise Exception("Negative cycle found" ) return distance if __name__ == "__main__": import doctest doctest.testmod() __lowercase = int(input("""Enter number of vertices: """).strip()) __lowercase = int(input("""Enter number of edges: """).strip()) __lowercase = [{} for _ in range(E)] for i in range(E): print("""Edge """, i + 1) __lowercase , __lowercase , __lowercase = ( int(x) for x in input("""Enter source, destination, weight: """).strip().split(""" """) ) __lowercase = {"""src""": src, """dst""": dest, """weight""": weight} __lowercase = int(input("""\nEnter shortest path source:""").strip()) __lowercase = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
226
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __lowercase = logging.get_logger(__name__) def lowercase ( A_ , A_=False )-> int: '''simple docstring''' a : List[str] = [] # fmt: off # stem: rename_keys.append(("cls_token", "vit.embeddings.cls_token") ) rename_keys.append(("pos_embed", "vit.embeddings.position_embeddings") ) rename_keys.append(("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias") ) # backbone rename_keys.append(("patch_embed.backbone.stem.conv.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight") ) rename_keys.append(("patch_embed.backbone.stem.norm.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight") ) rename_keys.append(("patch_embed.backbone.stem.norm.bias", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias") ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias''') ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" a : Tuple = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) # fmt: on return rename_keys def lowercase ( A_ , A_ , A_=False )-> Optional[Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: a : Tuple = "" else: a : Dict = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) a : str = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) a : List[Any] = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict a : Optional[int] = in_proj_weight[ : config.hidden_size, : ] a : Tuple = in_proj_bias[: config.hidden_size] a : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] a : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] a : int = in_proj_weight[ -config.hidden_size :, : ] a : int = in_proj_bias[-config.hidden_size :] def lowercase ( A_ )-> Dict: '''simple docstring''' a : Dict = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(A_ , A_ ) def lowercase ( A_ , A_ , A_ )-> List[Any]: '''simple docstring''' a : List[Any] = dct.pop(A_ ) a : str = val def lowercase ( )-> List[Any]: '''simple docstring''' a : Any = "http://images.cocodataset.org/val2017/000000039769.jpg" a : Tuple = Image.open(requests.get(A_ , stream=A_ ).raw ) return im @torch.no_grad() def lowercase ( A_ , A_ , A_=False )-> Union[str, Any]: '''simple docstring''' a : Optional[Any] = BitConfig( global_padding="same" , layer_type="bottleneck" , depths=(3, 4, 9) , out_features=["stage3"] , embedding_dynamic_padding=A_ , ) a : Union[str, Any] = ViTHybridConfig(backbone_config=A_ , image_size=384 , num_labels=1_000 ) a : Optional[Any] = False # load original model from timm a : Any = timm.create_model(A_ , pretrained=A_ ) timm_model.eval() # load state_dict of original model, remove and rename some keys a : Optional[Any] = timm_model.state_dict() if base_model: remove_classification_head_(A_ ) a : int = create_rename_keys(A_ , A_ ) for src, dest in rename_keys: rename_key(A_ , A_ , A_ ) read_in_q_k_v(A_ , A_ , A_ ) a : Union[str, Any] = "huggingface/label-files" a : Optional[int] = "imagenet-1k-id2label.json" a : str = json.load(open(hf_hub_download(A_ , A_ , repo_type="dataset" ) , "r" ) ) a : Optional[Any] = {int(A_ ): v for k, v in idalabel.items()} a : str = idalabel a : Any = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": a : List[Any] = ViTHybridModel(A_ ).eval() else: a : Optional[int] = ViTHybridForImageClassification(A_ ).eval() model.load_state_dict(A_ ) # create image processor a : Tuple = create_transform(**resolve_data_config({} , model=A_ ) ) a : List[Any] = transform.transforms a : int = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } a : str = ViTHybridImageProcessor( do_resize=A_ , size={"shortest_edge": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=A_ , crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]} , do_normalize=A_ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) a : List[Any] = prepare_img() a : Optional[Any] = transform(A_ ).unsqueeze(0 ) a : str = processor(A_ , return_tensors="pt" ).pixel_values # verify pixel values assert torch.allclose(A_ , A_ ) # verify logits with torch.no_grad(): a : Dict = model(A_ ) a : Tuple = outputs.logits print("Predicted class:" , logits.argmax(-1 ).item() ) if base_model: a : str = timm_model.forward_features(A_ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(A_ , outputs.pooler_output , atol=1e-3 ) else: a : int = timm_model(A_ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(A_ , outputs.logits , atol=1e-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(A_ ).mkdir(exist_ok=A_ ) print(F'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(A_ ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(A_ ) if push_to_hub: print(F'''Pushing model and processor to the hub {vit_name}''' ) model.push_to_hub(F'''ybelkada/{vit_name}''' ) processor.push_to_hub(F'''ybelkada/{vit_name}''' ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_r50_s16_384""", type=str, help="""Name of the hybrid ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) __lowercase = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
226
1
'''simple docstring''' import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) A_ = logging.getLogger(__name__) def A_ ( ): SCREAMING_SNAKE_CASE:Union[str, Any] = argparse.ArgumentParser( description="Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids)." ) parser.add_argument("--file_path" , type=snake_case , default="data/dump.txt" , help="The path to the data." ) parser.add_argument("--tokenizer_type" , type=snake_case , default="bert" , choices=["bert", "roberta", "gpt2"] ) parser.add_argument("--tokenizer_name" , type=snake_case , default="bert-base-uncased" , help="The tokenizer to use." ) parser.add_argument("--dump_file" , type=snake_case , default="data/dump" , help="The dump file prefix." ) SCREAMING_SNAKE_CASE:Any = parser.parse_args() logger.info(F'''Loading Tokenizer ({args.tokenizer_name})''' ) if args.tokenizer_type == "bert": SCREAMING_SNAKE_CASE:Optional[Any] = BertTokenizer.from_pretrained(args.tokenizer_name ) SCREAMING_SNAKE_CASE:List[Any] = tokenizer.special_tokens_map["cls_token"] # `[CLS]` SCREAMING_SNAKE_CASE:Union[str, Any] = tokenizer.special_tokens_map["sep_token"] # `[SEP]` elif args.tokenizer_type == "roberta": SCREAMING_SNAKE_CASE:Union[str, Any] = RobertaTokenizer.from_pretrained(args.tokenizer_name ) SCREAMING_SNAKE_CASE:Dict = tokenizer.special_tokens_map["cls_token"] # `<s>` SCREAMING_SNAKE_CASE:int = tokenizer.special_tokens_map["sep_token"] # `</s>` elif args.tokenizer_type == "gpt2": SCREAMING_SNAKE_CASE:Union[str, Any] = GPTaTokenizer.from_pretrained(args.tokenizer_name ) SCREAMING_SNAKE_CASE:Union[str, Any] = tokenizer.special_tokens_map["bos_token"] # `<|endoftext|>` SCREAMING_SNAKE_CASE:str = tokenizer.special_tokens_map["eos_token"] # `<|endoftext|>` logger.info(F'''Loading text from {args.file_path}''' ) with open(args.file_path , "r" , encoding="utf8" ) as fp: SCREAMING_SNAKE_CASE:Dict = fp.readlines() logger.info("Start encoding" ) logger.info(F'''{len(snake_case )} examples to process.''' ) SCREAMING_SNAKE_CASE:List[str] = [] SCREAMING_SNAKE_CASE:List[Any] = 0 SCREAMING_SNAKE_CASE:Optional[Any] = 10000 SCREAMING_SNAKE_CASE:Optional[Any] = time.time() for text in data: SCREAMING_SNAKE_CASE:Tuple = F'''{bos} {text.strip()} {sep}''' SCREAMING_SNAKE_CASE:Dict = tokenizer.encode(snake_case , add_special_tokens=snake_case ) rslt.append(snake_case ) iter += 1 if iter % interval == 0: SCREAMING_SNAKE_CASE:List[str] = time.time() logger.info(F'''{iter} examples processed. - {(end-start):.2f}s/{interval}expl''' ) SCREAMING_SNAKE_CASE:List[str] = time.time() logger.info("Finished binarization" ) logger.info(F'''{len(snake_case )} examples processed.''' ) SCREAMING_SNAKE_CASE:str = F'''{args.dump_file}.{args.tokenizer_name}.pickle''' SCREAMING_SNAKE_CASE:Any = tokenizer.vocab_size if vocab_size < (1 << 16): SCREAMING_SNAKE_CASE:Optional[Any] = [np.uintaa(snake_case ) for d in rslt] else: SCREAMING_SNAKE_CASE:Optional[int] = [np.intaa(snake_case ) for d in rslt] random.shuffle(rslt_ ) logger.info(F'''Dump to {dp_file}''' ) with open(snake_case , "wb" ) as handle: pickle.dump(rslt_ , snake_case , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
139
_lowercase: Dict = [ (1000, "M"), (900, "CM"), (500, "D"), (400, "CD"), (100, "C"), (90, "XC"), (50, "L"), (40, "XL"), (10, "X"), (9, "IX"), (5, "V"), (4, "IV"), (1, "I"), ] def a( A : str ) -> int: """simple docstring""" a = {"I": 1, "V": 5, "X": 10, "L": 50, "C": 100, "D": 500, "M": 1000} a = 0 a = 0 while place < len(A ): if (place + 1 < len(A )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def a( A : int ) -> str: """simple docstring""" a = [] for arabic, roman in ROMAN: ((a) , (a)) = divmod(A , A ) result.append(roman * factor ) if number == 0: break return "".join(A ) if __name__ == "__main__": import doctest doctest.testmod()
227
0
"""simple docstring""" from __future__ import annotations from statistics import mean def _SCREAMING_SNAKE_CASE ( _lowercase : list[int] , _lowercase : list[int] , _lowercase : int ) ->list[int]: '''simple docstring''' a : Optional[Any] = [0] * no_of_processes a : Union[str, Any] = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(_lowercase ): a : Any = burst_time[i] a : list[int] = [] a : str = 0 a : Tuple = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: a : List[str] = [] a : Dict = -1 for i in range(_lowercase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(_lowercase ) if len(_lowercase ) > 0: a : Optional[Any] = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: a : Optional[int] = i total_time += burst_time[target_process] completed += 1 a : Optional[int] = 0 a : Tuple = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def _SCREAMING_SNAKE_CASE ( _lowercase : list[int] , _lowercase : int , _lowercase : list[int] ) ->list[int]: '''simple docstring''' a : Union[str, Any] = [0] * no_of_processes for i in range(_lowercase ): a : Union[str, Any] = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print('''[TEST CASE 01]''') a : Optional[int] = 4 a : Union[str, Any] = [2, 5, 3, 7] a : Optional[int] = [0, 0, 0, 0] a : List[str] = calculate_waitingtime(arrival_time, burst_time, no_of_processes) a : List[Any] = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print('''PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time''') for i, process_id in enumerate(list(range(1, 5))): print( F'''{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t''' F'''{waiting_time[i]}\t\t\t\t{turn_around_time[i]}''' ) print(F'''\nAverage waiting time = {mean(waiting_time):.5f}''') print(F'''Average turnaround time = {mean(turn_around_time):.5f}''')
371
"""simple docstring""" from itertools import product def _SCREAMING_SNAKE_CASE ( _lowercase : int , _lowercase : int ) ->list[int]: '''simple docstring''' a : Dict = sides_number a : List[str] = max_face_number * dice_number a : Optional[int] = [0] * (max_total + 1) a : Dict = 1 a : Optional[Any] = range(_lowercase , max_face_number + 1 ) for dice_numbers in product(_lowercase , repeat=_lowercase ): a : Union[str, Any] = sum(_lowercase ) totals_frequencies[total] += 1 return totals_frequencies def _SCREAMING_SNAKE_CASE ( ) ->float: '''simple docstring''' a : str = total_frequency_distribution( sides_number=4 , dice_number=9 ) a : List[Any] = total_frequency_distribution( sides_number=6 , dice_number=6 ) a : Optional[Any] = 0 a : Tuple = 9 a : Union[str, Any] = 4 * 9 a : Any = 6 for peter_total in range(_lowercase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) a : List[str] = (4**9) * (6**6) a : List[Any] = peter_wins_count / total_games_number a : Any = round(_lowercase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F'''{solution() = }''')
79
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class _a : def __init__( self : Dict , lowercase : Optional[Any] , lowercase : Tuple=13 , lowercase : Optional[Any]=7 , lowercase : Any=True , lowercase : Union[str, Any]=True , lowercase : Optional[Any]=True , lowercase : str=True , lowercase : Optional[Any]=99 , lowercase : Dict=32 , lowercase : Tuple=2 , lowercase : Optional[int]=4 , lowercase : Optional[Any]=37 , lowercase : Optional[int]="gelu" , lowercase : Tuple=0.1 , lowercase : Union[str, Any]=0.1 , lowercase : List[Any]=512 , lowercase : Any=16 , lowercase : Optional[Any]=2 , lowercase : List[str]=0.02 , lowercase : Dict=3 , lowercase : List[Any]=4 , lowercase : str=None , ): '''simple docstring''' UpperCAmelCase = parent UpperCAmelCase = 13 UpperCAmelCase = 7 UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = 99 UpperCAmelCase = 32 UpperCAmelCase = 2 UpperCAmelCase = 4 UpperCAmelCase = 37 UpperCAmelCase = '''gelu''' UpperCAmelCase = 0.1 UpperCAmelCase = 0.1 UpperCAmelCase = 512 UpperCAmelCase = 16 UpperCAmelCase = 2 UpperCAmelCase = 0.02 UpperCAmelCase = 3 UpperCAmelCase = 4 UpperCAmelCase = None def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = None if self.use_input_mask: UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase = None if self.use_token_type_ids: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=lowercase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : Dict , lowercase : Optional[Any] , lowercase : List[Any] , lowercase : int , lowercase : Optional[Any] , lowercase : List[str] , lowercase : str , lowercase : Optional[int] ): '''simple docstring''' UpperCAmelCase = TFRoFormerModel(config=lowercase ) UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} UpperCAmelCase = [input_ids, input_mask] UpperCAmelCase = model(lowercase ) UpperCAmelCase = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : str , lowercase : Any , lowercase : List[str] , lowercase : Union[str, Any] , lowercase : int , lowercase : List[Any] , lowercase : Optional[int] , lowercase : List[Any] ): '''simple docstring''' UpperCAmelCase = True UpperCAmelCase = TFRoFormerForCausalLM(config=lowercase ) UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCAmelCase = model(lowercase )['''logits'''] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def A ( self : List[Any] , lowercase : Optional[int] , lowercase : List[str] , lowercase : List[Any] , lowercase : Optional[int] , lowercase : Any , lowercase : str , lowercase : List[Any] ): '''simple docstring''' UpperCAmelCase = TFRoFormerForMaskedLM(config=lowercase ) UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCAmelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : List[Any] , lowercase : Dict , lowercase : List[Any] , lowercase : Optional[int] , lowercase : Optional[int] , lowercase : Any , lowercase : Tuple , lowercase : int ): '''simple docstring''' UpperCAmelCase = self.num_labels UpperCAmelCase = TFRoFormerForSequenceClassification(config=lowercase ) UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCAmelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : List[Any] , lowercase : Tuple , lowercase : List[str] , lowercase : Union[str, Any] , lowercase : Optional[Any] , lowercase : Tuple , lowercase : Optional[Any] , lowercase : str ): '''simple docstring''' UpperCAmelCase = self.num_choices UpperCAmelCase = TFRoFormerForMultipleChoice(config=lowercase ) UpperCAmelCase = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } UpperCAmelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A ( self : str , lowercase : List[str] , lowercase : Dict , lowercase : Dict , lowercase : Optional[int] , lowercase : Any , lowercase : Optional[int] , lowercase : Tuple ): '''simple docstring''' UpperCAmelCase = self.num_labels UpperCAmelCase = TFRoFormerForTokenClassification(config=lowercase ) UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCAmelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : Dict , lowercase : int , lowercase : Union[str, Any] , lowercase : Any , lowercase : List[str] , lowercase : Optional[int] , lowercase : Optional[int] , lowercase : str ): '''simple docstring''' UpperCAmelCase = TFRoFormerForQuestionAnswering(config=lowercase ) UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCAmelCase = model(lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : Dict ): '''simple docstring''' UpperCAmelCase = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) = config_and_inputs UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class _a ( __a , __a , unittest.TestCase ): __a : Any = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) __a : Tuple = ( { """feature-extraction""": TFRoFormerModel, """fill-mask""": TFRoFormerForMaskedLM, """question-answering""": TFRoFormerForQuestionAnswering, """text-classification""": TFRoFormerForSequenceClassification, """text-generation""": TFRoFormerForCausalLM, """token-classification""": TFRoFormerForTokenClassification, """zero-shot""": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) __a : List[Any] = False __a : Dict = False def A ( self : Union[str, Any] , lowercase : Any , lowercase : Tuple , lowercase : Tuple , lowercase : Optional[int] , lowercase : Dict ): '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase = TFRoFormerModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowercase , hidden_size=37 ) def A ( self : Any ): '''simple docstring''' self.config_tester.run_common_tests() def A ( self : List[str] ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def A ( self : int ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase ) def A ( self : str ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*lowercase ) def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase ) def A ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase ) def A ( self : Dict ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase ) def A ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase ) @slow def A ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase = TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' ) self.assertIsNotNone(lowercase ) @require_tf class _a ( unittest.TestCase ): @slow def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase = model(lowercase )[0] # TODO Replace vocab size UpperCAmelCase = 50_000 UpperCAmelCase = [1, 6, vocab_size] self.assertEqual(output.shape , lowercase ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. UpperCAmelCase = tf.constant( [ [ [-0.1205_3341, -1.026_4901, 0.2922_1946], [-1.513_3783, 0.19_7433, 0.1519_0607], [-5.013_5403, -3.90_0256, -0.8403_8764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1E-4 ) @require_tf class _a ( unittest.TestCase ): __a : List[Any] = 1e-4 def A ( self : str ): '''simple docstring''' UpperCAmelCase = tf.constant([[4, 10]] ) UpperCAmelCase = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) UpperCAmelCase = emba(input_ids.shape ) UpperCAmelCase = tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(lowercase , lowercase , atol=self.tolerance ) def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) UpperCAmelCase = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) UpperCAmelCase = emba.weight[:3, :5] tf.debugging.assert_near(lowercase , lowercase , atol=self.tolerance ) @require_tf class _a ( unittest.TestCase ): __a : Dict = 1e-4 def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 UpperCAmelCase = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 UpperCAmelCase = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) UpperCAmelCase = embed_positions([2, 16, 768] )[None, None, :, :] UpperCAmelCase , UpperCAmelCase = TFRoFormerSelfAttention.apply_rotary_position_embeddings( lowercase , lowercase , lowercase ) UpperCAmelCase = tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) UpperCAmelCase = tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , lowercase , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , lowercase , atol=self.tolerance )
34
'''simple docstring''' import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) A =logging.getLogger(__name__) A ='Hello world! cécé herlolip' A =namedtuple( 'BertAbsConfig', [ 'temp_dir', 'large', 'use_bert_emb', 'finetune_bert', 'encoder', 'share_emb', 'max_pos', 'enc_layers', 'enc_hidden_size', 'enc_heads', 'enc_ff_size', 'enc_dropout', 'dec_layers', 'dec_hidden_size', 'dec_heads', 'dec_ff_size', 'dec_dropout', ], ) def snake_case_ (_a : List[Any] , _a : Any ): UpperCAmelCase = BertAbsConfig( temp_dir='''.''' , finetune_bert=_a , large=_a , share_emb=_a , use_bert_emb=_a , encoder='''bert''' , max_pos=5_1_2 , enc_layers=6 , enc_hidden_size=5_1_2 , enc_heads=8 , enc_ff_size=5_1_2 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=7_6_8 , dec_heads=8 , dec_ff_size=2_0_4_8 , dec_dropout=0.2 , ) UpperCAmelCase = torch.load(_a , lambda _a , _a : storage ) UpperCAmelCase = AbsSummarizer(_a , torch.device('''cpu''' ) , _a ) original.eval() UpperCAmelCase = BertAbsSummarizer(_a , torch.device('''cpu''' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('''convert the model''' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('''Make sure that the models\' outputs are identical''' ) UpperCAmelCase = BertTokenizer.from_pretrained('''bert-base-uncased''' ) # prepare the model inputs UpperCAmelCase = tokenizer.encode('''This is sample éàalj\'-.''' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(_a )) ) UpperCAmelCase = torch.tensor(_a ).unsqueeze(0 ) UpperCAmelCase = tokenizer.encode('''This is sample 3 éàalj\'-.''' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(_a )) ) UpperCAmelCase = torch.tensor(_a ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass UpperCAmelCase = encoder_input_ids UpperCAmelCase = decoder_input_ids UpperCAmelCase = UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = UpperCAmelCase = None UpperCAmelCase = UpperCAmelCase = None UpperCAmelCase = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical UpperCAmelCase = original(_a , _a , _a , _a , _a , _a , _a )[0] UpperCAmelCase = original.generator(_a ) UpperCAmelCase = new_model( _a , _a , _a , _a , _a )[0] UpperCAmelCase = new_model.generator(_a ) UpperCAmelCase = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(_a ) ) UpperCAmelCase = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(_a ) ) UpperCAmelCase = torch.allclose(_a , _a , atol=1E-3 ) if are_identical: logging.info('''all weights are equal up to 1e-3''' ) else: raise ValueError('''the weights are different. The new model is likely different from the original one.''' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('''saving the model\'s state dictionary''' ) torch.save( new_model.state_dict() , '''./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin''' ) if __name__ == "__main__": A =argparse.ArgumentParser() parser.add_argument( '--bertabs_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.', ) A =parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
34
1
'''simple docstring''' import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class UpperCAmelCase : '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase=13 , __lowerCAmelCase=7 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=False , __lowerCAmelCase=True , __lowerCAmelCase=99 , __lowerCAmelCase=32 , __lowerCAmelCase=5 , __lowerCAmelCase=4 , __lowerCAmelCase=37 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=512 , __lowerCAmelCase=16 , __lowerCAmelCase=2 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=3 , __lowerCAmelCase=4 , __lowerCAmelCase=None , ) -> Any: lowercase__ : Optional[int] = parent lowercase__ : Tuple = batch_size lowercase__ : Optional[Any] = seq_length lowercase__ : Tuple = is_training lowercase__ : str = use_input_mask lowercase__ : int = use_token_type_ids lowercase__ : Any = use_labels lowercase__ : int = vocab_size lowercase__ : Optional[int] = hidden_size lowercase__ : Union[str, Any] = num_hidden_layers lowercase__ : str = num_attention_heads lowercase__ : str = intermediate_size lowercase__ : Dict = hidden_act lowercase__ : Optional[Any] = hidden_dropout_prob lowercase__ : List[str] = attention_probs_dropout_prob lowercase__ : Union[str, Any] = max_position_embeddings lowercase__ : Optional[int] = type_vocab_size lowercase__ : Tuple = type_sequence_label_size lowercase__ : Dict = initializer_range lowercase__ : str = num_labels lowercase__ : Tuple = num_choices lowercase__ : Tuple = scope def _lowerCAmelCase( self ) -> Dict: lowercase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ : str = None if self.use_input_mask: lowercase__ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : str = None if self.use_token_type_ids: lowercase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ : List[Any] = None lowercase__ : int = None lowercase__ : Union[str, Any] = None if self.use_labels: lowercase__ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) lowercase__ : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCAmelCase( self ) -> List[Any]: return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: lowercase__ : int = LlamaModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase__ : Optional[Any] = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase ) lowercase__ : Optional[Any] = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) -> Optional[int]: lowercase__ : Tuple = True lowercase__ : Optional[Any] = LlamaModel(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase__ : Any = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase , encoder_attention_mask=__lowerCAmelCase , ) lowercase__ : Any = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase , ) lowercase__ : Tuple = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) -> List[str]: lowercase__ : Optional[int] = LlamaForCausalLM(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase__ : Union[str, Any] = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) -> str: lowercase__ : str = True lowercase__ : Tuple = True lowercase__ : Optional[Any] = LlamaForCausalLM(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() # first forward pass lowercase__ : Optional[Any] = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase , encoder_attention_mask=__lowerCAmelCase , use_cache=__lowerCAmelCase , ) lowercase__ : int = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowercase__ : Dict = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowercase__ : List[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowercase__ : int = torch.cat([input_ids, next_tokens] , dim=-1 ) lowercase__ : Any = torch.cat([input_mask, next_mask] , dim=-1 ) lowercase__ : Any = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase , encoder_attention_mask=__lowerCAmelCase , output_hidden_states=__lowerCAmelCase , )['''hidden_states'''][0] lowercase__ : Dict = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase , encoder_attention_mask=__lowerCAmelCase , past_key_values=__lowerCAmelCase , output_hidden_states=__lowerCAmelCase , )['''hidden_states'''][0] # select random slice lowercase__ : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowercase__ : str = output_from_no_past[:, -3:, random_slice_idx].detach() lowercase__ : int = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-3 ) ) def _lowerCAmelCase( self ) -> Dict: lowercase__ : Tuple = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) : Union[str, Any] = config_and_inputs lowercase__ : Dict = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( a__ , a__ , a__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () SCREAMING_SNAKE_CASE = (LlamaForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def _lowerCAmelCase( self ) -> Union[str, Any]: lowercase__ : str = LlamaModelTester(self ) lowercase__ : Optional[int] = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=37 ) def _lowerCAmelCase( self ) -> int: self.config_tester.run_common_tests() def _lowerCAmelCase( self ) -> int: lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def _lowerCAmelCase( self ) -> List[Any]: lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase__ : List[str] = type self.model_tester.create_and_check_model(*__lowerCAmelCase ) def _lowerCAmelCase( self ) -> Optional[int]: lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Dict = 3 lowercase__ : Tuple = input_dict['''input_ids'''] lowercase__ : List[Any] = input_ids.ne(1 ).to(__lowerCAmelCase ) lowercase__ : List[str] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowercase__ : Optional[Any] = LlamaForSequenceClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase__ : Optional[Any] = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , labels=__lowerCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowerCAmelCase( self ) -> Union[str, Any]: lowercase__ , lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Optional[int] = 3 lowercase__ : str = '''single_label_classification''' lowercase__ : List[str] = input_dict['''input_ids'''] lowercase__ : Optional[int] = input_ids.ne(1 ).to(__lowerCAmelCase ) lowercase__ : Optional[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowercase__ : Any = LlamaForSequenceClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase__ : str = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , labels=__lowerCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowerCAmelCase( self ) -> List[str]: lowercase__ , lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Dict = 3 lowercase__ : int = '''multi_label_classification''' lowercase__ : List[str] = input_dict['''input_ids'''] lowercase__ : Optional[int] = input_ids.ne(1 ).to(__lowerCAmelCase ) lowercase__ : Dict = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowercase__ : int = LlamaForSequenceClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase__ : Any = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , labels=__lowerCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''LLaMA buffers include complex numbers, which breaks this test''' ) def _lowerCAmelCase( self ) -> Any: pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def _lowerCAmelCase( self , __lowerCAmelCase ) -> Any: lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : int = ids_tensor([1, 10] , config.vocab_size ) lowercase__ : List[Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase__ : Optional[Any] = LlamaModel(__lowerCAmelCase ) original_model.to(__lowerCAmelCase ) original_model.eval() lowercase__ : Union[str, Any] = original_model(__lowerCAmelCase ).last_hidden_state lowercase__ : List[str] = original_model(__lowerCAmelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase__ : int = {'''type''': scaling_type, '''factor''': 1_0.0} lowercase__ : Optional[int] = LlamaModel(__lowerCAmelCase ) scaled_model.to(__lowerCAmelCase ) scaled_model.eval() lowercase__ : List[str] = scaled_model(__lowerCAmelCase ).last_hidden_state lowercase__ : Union[str, Any] = scaled_model(__lowerCAmelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-5 ) ) @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def _lowerCAmelCase( self ) -> Union[str, Any]: lowercase__ : Any = [1, 306, 4658, 278, 6593, 310, 2834, 338] lowercase__ : List[Any] = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-7b-hf''' , device_map='''auto''' ) lowercase__ : Optional[Any] = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 lowercase__ : Tuple = torch.tensor([[-6.6_5_5_0, -4.1_2_2_7, -4.9_8_5_9, -3.2_4_0_6, 0.8_2_6_2, -3.0_0_3_3, 1.2_9_6_4, -3.3_6_9_9]] ) torch.testing.assert_close(out.mean(-1 ) , __lowerCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowercase__ : Optional[Any] = torch.tensor([-1_2.8_2_8_1, -7.4_4_5_3, -0.4_6_3_9, -8.0_6_2_5, -7.2_5_0_0, -8.0_0_0_0, -6.4_8_8_3, -7.7_6_9_5, -7.8_4_3_8, -7.0_3_1_2, -6.2_1_8_8, -7.1_3_2_8, -1.8_4_9_6, 1.9_9_6_1, -8.6_2_5_0, -6.7_2_2_7, -1_2.8_2_8_1, -6.9_4_9_2, -7.0_7_4_2, -7.7_8_5_2, -7.5_8_2_0, -7.9_0_6_2, -6.9_3_7_5, -7.9_8_0_5, -8.3_4_3_8, -8.1_5_6_2, -8.0_4_6_9, -7.6_2_5_0, -7.7_4_2_2, -7.3_3_9_8,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __lowerCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def _lowerCAmelCase( self ) -> Tuple: lowercase__ : Optional[Any] = [1, 306, 4658, 278, 6593, 310, 2834, 338] lowercase__ : Tuple = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-hf''' , device_map='''auto''' ) lowercase__ : Dict = model(torch.tensor(__lowerCAmelCase ) ) # Expected mean on dim = -1 lowercase__ : Dict = torch.tensor([[-2.0_6_2_2, -1.2_7_9_4, -1.1_6_3_8, -0.9_7_8_8, -1.4_6_0_3, -1.0_2_3_8, -1.7_8_9_3, -1.4_4_1_1]] ) torch.testing.assert_close(out.mean(-1 ) , __lowerCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowercase__ : Dict = torch.tensor([-8.1_4_0_6, -8.0_5_4_7, 2.7_4_6_1, -1.2_3_4_4, -0.1_4_4_8, -1.8_2_6_2, -1.0_0_2_0, -1.8_1_5_4, -1.6_8_9_5, -1.8_5_1_6, -2.3_5_7_4, -0.9_2_7_7, 3.7_5_9_8, 6.5_7_4_2, -1.2_9_9_8, -0.1_1_7_7, -8.1_4_0_6, -2.9_6_8_8, -2.9_1_9_9, -3.1_6_9_9, -3.5_2_5_4, -2.3_5_5_5, -2.7_9_8_8, -3.4_1_4_1, -2.8_2_6_2, -4.5_1_9_5, -3.3_3_7_9, -3.3_1_6_4, -2.7_8_3_2, -3.0_2_7_3] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __lowerCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def _lowerCAmelCase( self ) -> Any: lowercase__ : Any = [1, 306, 4658, 278, 6593, 310, 2834, 338] lowercase__ : List[Any] = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' , device_map='''auto''' ) lowercase__ : Dict = model(torch.tensor(__lowerCAmelCase ) ) # Expected mean on dim = -1 lowercase__ : Optional[Any] = torch.tensor([[-0.8_5_6_2, -1.8_5_2_0, -0.7_5_5_1, -0.4_1_6_2, -1.5_1_6_1, -1.2_0_3_8, -2.4_8_2_3, -2.3_2_5_4]] ) torch.testing.assert_close(out.mean(-1 ) , __lowerCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowercase__ : Any = torch.tensor([-2.2_2_2_7, 4.8_8_2_8, 0.9_0_2_3, -0.4_5_7_8, -0.7_8_7_1, -0.1_0_3_3, -0.6_2_2_1, -0.5_7_8_6, -0.7_8_0_3, -1.0_6_7_4, -1.2_9_2_0, -0.1_5_7_0, 0.8_0_0_8, 2.0_7_2_3, -0.9_4_9_7, 0.2_7_7_1, -2.2_2_2_7, -0.7_6_1_2, -1.4_3_4_6, -1.2_0_6_1, -1.6_4_2_6, -0.3_0_0_0, -0.7_1_3_9, -1.1_9_3_4, -1.8_6_9_1, -1.6_9_7_3, -1.5_9_4_7, -1.2_7_0_5, -0.3_5_2_3, -0.5_5_1_3] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , __lowerCAmelCase , atol=1E-2 , rtol=1E-2 ) @unittest.skip( '''Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test''' ) @slow def _lowerCAmelCase( self ) -> List[Any]: lowercase__ : Any = [1, 306, 4658, 278, 6593, 310, 2834, 338] lowercase__ : Optional[int] = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-70b-hf''' , device_map='''auto''' ) lowercase__ : Dict = model(torch.tensor(__lowerCAmelCase ) ) lowercase__ : Optional[Any] = torch.tensor( [[-4.2_3_2_7, -3.3_3_6_0, -4.6_6_6_5, -4.7_6_3_1, -1.8_1_8_0, -3.4_1_7_0, -1.4_2_1_1, -3.1_8_1_0]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , __lowerCAmelCase , atol=1E-2 , rtol=1E-2 ) # fmt: off lowercase__ : Any = torch.tensor([-9.4_9_2_2, -3.9_5_5_1, 1.7_9_9_8, -5.6_7_5_8, -5.1_0_5_5, -5.8_9_8_4, -4.8_3_2_0, -6.8_0_8_6, -6.5_3_9_1, -5.6_1_7_2, -5.5_8_2_0, -5.5_3_5_2, 1.7_8_8_1, 3.6_2_8_9, -6.5_1_1_7, -3.4_7_8_5, -9.5_0_0_0, -6.0_3_5_2, -6.8_1_2_5, -6.0_1_9_5, -6.6_8_3_6, -5.4_7_2_7, -6.2_8_1_2, -6.0_3_9_1, -7.3_3_9_8, -7.4_2_9_7, -7.4_8_4_4, -6.5_8_2_0, -5.8_7_8_9, -5.5_3_1_2] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __lowerCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip('''Model is curently gated''' ) @slow def _lowerCAmelCase( self ) -> Tuple: lowercase__ : Optional[int] = '''Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi''' lowercase__ : Dict = '''Simply put, the theory of relativity states that ''' lowercase__ : List[str] = LlamaTokenizer.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' ) lowercase__ : str = tokenizer.encode(__lowerCAmelCase , return_tensors='''pt''' ) lowercase__ : str = LlamaForCausalLM.from_pretrained( '''meta-llama/Llama-2-13b-chat-hf''' , device_map='''sequential''' , use_safetensors=__lowerCAmelCase ) # greedy generation outputs lowercase__ : Dict = model.generate(__lowerCAmelCase , max_new_tokens=64 , top_p=__lowerCAmelCase , temperature=1 , do_sample=__lowerCAmelCase ) lowercase__ : List[Any] = tokenizer.decode(generated_ids[0] , skip_special_tokens=__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase )
214
'''simple docstring''' import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCAmelCase ( a__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = DDIMPipeline SCREAMING_SNAKE_CASE = UNCONDITIONAL_IMAGE_GENERATION_PARAMS SCREAMING_SNAKE_CASE = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "latents", "callback", "callback_steps", } SCREAMING_SNAKE_CASE = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS SCREAMING_SNAKE_CASE = False def _lowerCAmelCase( self ) -> Union[str, Any]: torch.manual_seed(0 ) lowercase__ : Optional[int] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) lowercase__ : Any = DDIMScheduler() lowercase__ : Union[str, Any] = {'''unet''': unet, '''scheduler''': scheduler} return components def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase=0 ) -> int: if str(__lowerCAmelCase ).startswith('''mps''' ): lowercase__ : Optional[Any] = torch.manual_seed(__lowerCAmelCase ) else: lowercase__ : int = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) lowercase__ : List[Any] = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def _lowerCAmelCase( self ) -> Optional[Any]: lowercase__ : int = '''cpu''' lowercase__ : Optional[Any] = self.get_dummy_components() lowercase__ : str = self.pipeline_class(**__lowerCAmelCase ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase__ : str = self.get_dummy_inputs(__lowerCAmelCase ) lowercase__ : str = pipe(**__lowerCAmelCase ).images lowercase__ : List[str] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) lowercase__ : Optional[int] = np.array( [1.000E00, 5.717E-01, 4.717E-01, 1.000E00, 0.000E00, 1.000E00, 3.000E-04, 0.000E00, 9.000E-04] ) lowercase__ : Optional[Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__lowerCAmelCase , 1E-3 ) def _lowerCAmelCase( self ) -> str: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def _lowerCAmelCase( self ) -> List[str]: super().test_save_load_local(expected_max_difference=3E-3 ) def _lowerCAmelCase( self ) -> Tuple: super().test_save_load_optional_components(expected_max_difference=3E-3 ) def _lowerCAmelCase( self ) -> int: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase( self ) -> List[Any]: lowercase__ : List[str] = '''google/ddpm-cifar10-32''' lowercase__ : List[Any] = UNetaDModel.from_pretrained(__lowerCAmelCase ) lowercase__ : str = DDIMScheduler() lowercase__ : List[Any] = DDIMPipeline(unet=__lowerCAmelCase , scheduler=__lowerCAmelCase ) ddim.to(__lowerCAmelCase ) ddim.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase__ : Dict = torch.manual_seed(0 ) lowercase__ : Optional[int] = ddim(generator=__lowerCAmelCase , eta=0.0 , output_type='''numpy''' ).images lowercase__ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase__ : Optional[int] = np.array([0.1_7_2_3, 0.1_6_1_7, 0.1_6_0_0, 0.1_6_2_6, 0.1_4_9_7, 0.1_5_1_3, 0.1_5_0_5, 0.1_4_4_2, 0.1_4_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCAmelCase( self ) -> Union[str, Any]: lowercase__ : Optional[Any] = '''google/ddpm-ema-bedroom-256''' lowercase__ : Tuple = UNetaDModel.from_pretrained(__lowerCAmelCase ) lowercase__ : Union[str, Any] = DDIMScheduler.from_pretrained(__lowerCAmelCase ) lowercase__ : List[Any] = DDIMPipeline(unet=__lowerCAmelCase , scheduler=__lowerCAmelCase ) ddpm.to(__lowerCAmelCase ) ddpm.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase__ : Union[str, Any] = torch.manual_seed(0 ) lowercase__ : Optional[Any] = ddpm(generator=__lowerCAmelCase , output_type='''numpy''' ).images lowercase__ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) lowercase__ : Union[str, Any] = np.array([0.0_0_6_0, 0.0_2_0_1, 0.0_3_4_4, 0.0_0_2_4, 0.0_0_1_8, 0.0_0_0_2, 0.0_0_2_2, 0.0_0_0_0, 0.0_0_6_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
214
1
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ =['vqvae'] def __init__( self : Dict , a : AutoencoderKL , a : UNetaDConditionModel , a : Mel , a : Union[DDIMScheduler, DDPMScheduler] , ) -> str: """simple docstring""" super().__init__() self.register_modules(unet=a , scheduler=a , mel=a , vqvae=a ) def __UpperCamelCase ( self : str ) -> int: """simple docstring""" return 50 if isinstance(self.scheduler , a ) else 1000 @torch.no_grad() def __call__( self : str , a : int = 1 , a : str = None , a : np.ndarray = None , a : int = 0 , a : int = 0 , a : int = None , a : torch.Generator = None , a : float = 0 , a : float = 0 , a : torch.Generator = None , a : float = 0 , a : torch.Tensor = None , a : torch.Tensor = None , a : Dict=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = steps or self.get_default_steps() self.scheduler.set_timesteps(a ) SCREAMING_SNAKE_CASE : str = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: SCREAMING_SNAKE_CASE : Union[str, Any] = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: SCREAMING_SNAKE_CASE : Dict = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=a , device=self.device , ) SCREAMING_SNAKE_CASE : List[Any] = noise SCREAMING_SNAKE_CASE : Optional[int] = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(a , a ) SCREAMING_SNAKE_CASE : Dict = self.mel.audio_slice_to_image(a ) SCREAMING_SNAKE_CASE : Optional[Any] = np.frombuffer(input_image.tobytes() , dtype="uint8" ).reshape( (input_image.height, input_image.width) ) SCREAMING_SNAKE_CASE : Union[str, Any] = (input_image / 255) * 2 - 1 SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: SCREAMING_SNAKE_CASE : Dict = self.vqvae.encode(torch.unsqueeze(a , 0 ) ).latent_dist.sample( generator=a )[0] SCREAMING_SNAKE_CASE : Tuple = self.vqvae.config.scaling_factor * input_images if start_step > 0: SCREAMING_SNAKE_CASE : Optional[int] = self.scheduler.add_noise(a , a , self.scheduler.timesteps[start_step - 1] ) SCREAMING_SNAKE_CASE : int = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) SCREAMING_SNAKE_CASE : int = int(mask_start_secs * pixels_per_second ) SCREAMING_SNAKE_CASE : int = int(mask_end_secs * pixels_per_second ) SCREAMING_SNAKE_CASE : Optional[Any] = self.scheduler.add_noise(a , a , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , a ): SCREAMING_SNAKE_CASE : Union[str, Any] = self.unet(a , a , a )["sample"] else: SCREAMING_SNAKE_CASE : List[Any] = self.unet(a , a )["sample"] if isinstance(self.scheduler , a ): SCREAMING_SNAKE_CASE : Optional[Any] = self.scheduler.step( model_output=a , timestep=a , sample=a , eta=a , generator=a , )["prev_sample"] else: SCREAMING_SNAKE_CASE : Dict = self.scheduler.step( model_output=a , timestep=a , sample=a , generator=a , )["prev_sample"] if mask is not None: if mask_start > 0: SCREAMING_SNAKE_CASE : Optional[int] = mask[:, step, :, :mask_start] if mask_end > 0: SCREAMING_SNAKE_CASE : Union[str, Any] = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance SCREAMING_SNAKE_CASE : int = 1 / self.vqvae.config.scaling_factor * images SCREAMING_SNAKE_CASE : List[str] = self.vqvae.decode(a )["sample"] SCREAMING_SNAKE_CASE : Tuple = (images / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE : Optional[Any] = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() SCREAMING_SNAKE_CASE : Optional[Any] = (images * 255).round().astype("uint8" ) SCREAMING_SNAKE_CASE : Union[str, Any] = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(a , mode="RGB" ).convert("L" ) for _ in images) ) SCREAMING_SNAKE_CASE : int = [self.mel.image_to_audio(a ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(a )[:, np.newaxis, :] ) , **ImagePipelineOutput(a ) ) @torch.no_grad() def __UpperCamelCase ( self : List[str] , a : List[Image.Image] , a : int = 50 ) -> np.ndarray: """simple docstring""" assert isinstance(self.scheduler , a ) self.scheduler.set_timesteps(a ) SCREAMING_SNAKE_CASE : str = np.array( [np.frombuffer(image.tobytes() , dtype="uint8" ).reshape((1, image.height, image.width) ) for image in images] ) SCREAMING_SNAKE_CASE : Optional[Any] = (sample / 255) * 2 - 1 SCREAMING_SNAKE_CASE : Dict = torch.Tensor(a ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): SCREAMING_SNAKE_CASE : Optional[Any] = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps SCREAMING_SNAKE_CASE : int = self.scheduler.alphas_cumprod[t] SCREAMING_SNAKE_CASE : Any = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) SCREAMING_SNAKE_CASE : Optional[int] = 1 - alpha_prod_t SCREAMING_SNAKE_CASE : Dict = self.unet(a , a )["sample"] SCREAMING_SNAKE_CASE : Dict = (1 - alpha_prod_t_prev) ** 0.5 * model_output SCREAMING_SNAKE_CASE : List[str] = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) SCREAMING_SNAKE_CASE : Optional[int] = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def __UpperCamelCase ( a : torch.Tensor , a : torch.Tensor , a : float ) -> torch.Tensor: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = acos(torch.dot(torch.flatten(a ) , torch.flatten(a ) ) / torch.norm(a ) / torch.norm(a ) ) return sin((1 - alpha) * theta ) * xa / sin(a ) + sin(alpha * theta ) * xa / sin(a )
76
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer a_ = logging.get_logger(__name__) a_ = {'vocab_file': 'vocab.txt'} a_ = { 'vocab_file': { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt', } } a_ = { 'YituTech/conv-bert-base': 512, 'YituTech/conv-bert-medium-small': 512, 'YituTech/conv-bert-small': 512, } a_ = { 'YituTech/conv-bert-base': {'do_lower_case': True}, 'YituTech/conv-bert-medium-small': {'do_lower_case': True}, 'YituTech/conv-bert-small': {'do_lower_case': True}, } class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ =VOCAB_FILES_NAMES lowerCamelCase__ =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ =PRETRAINED_INIT_CONFIGURATION lowerCamelCase__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ =ConvBertTokenizer def __init__( self : List[str] , a : Union[str, Any]=None , a : Optional[int]=None , a : int=True , a : Tuple="[UNK]" , a : Dict="[SEP]" , a : Dict="[PAD]" , a : List[Any]="[CLS]" , a : Tuple="[MASK]" , a : Dict=True , a : Optional[Any]=None , **a : str , ) -> Dict: """simple docstring""" super().__init__( a , tokenizer_file=a , do_lower_case=a , unk_token=a , sep_token=a , pad_token=a , cls_token=a , mask_token=a , tokenize_chinese_chars=a , strip_accents=a , **a , ) SCREAMING_SNAKE_CASE : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , a ) != do_lower_case or normalizer_state.get("strip_accents" , a ) != strip_accents or normalizer_state.get("handle_chinese_chars" , a ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE : List[str] = getattr(a , normalizer_state.pop("type" ) ) SCREAMING_SNAKE_CASE : Optional[Any] = do_lower_case SCREAMING_SNAKE_CASE : Any = strip_accents SCREAMING_SNAKE_CASE : Optional[int] = tokenize_chinese_chars SCREAMING_SNAKE_CASE : List[str] = normalizer_class(**a ) SCREAMING_SNAKE_CASE : str = do_lower_case def __UpperCamelCase ( self : Union[str, Any] , a : List[Any] , a : int=None ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __UpperCamelCase ( self : Dict , a : List[int] , a : Optional[List[int]] = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = [self.sep_token_id] SCREAMING_SNAKE_CASE : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCamelCase ( self : Tuple , a : str , a : Optional[str] = None ) -> Tuple[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self._tokenizer.model.save(a , name=a ) return tuple(a )
76
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase: List[Any] = logging.get_logger(__name__) __lowercase: Optional[Any] = { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json", } class UpperCAmelCase ( _SCREAMING_SNAKE_CASE): _lowerCamelCase : int = "gpt_neox_japanese" def __init__( self : Union[str, Any], a_ : List[str]=3_2000, a_ : Any=2560, a_ : int=32, a_ : List[str]=32, a_ : Tuple=4, a_ : List[Any]="gelu", a_ : Optional[Any]=1.00, a_ : Optional[int]=1_0000, a_ : Optional[int]=2048, a_ : Dict=0.02, a_ : Optional[int]=1e-5, a_ : str=True, a_ : Optional[Any]=3_1996, a_ : Optional[Any]=3_1999, a_ : List[Any]=0.1, a_ : Union[str, Any]=0.0, **a_ : str, ): """simple docstring""" super().__init__(bos_token_id=A_, eos_token_id=A_, **A_ ) UpperCamelCase__ = vocab_size UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_multiple_size UpperCamelCase__ = hidden_act UpperCamelCase__ = rotary_pct UpperCamelCase__ = rotary_emb_base UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = use_cache UpperCamelCase__ = attention_dropout UpperCamelCase__ = hidden_dropout
371
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__): _lowerCamelCase : str = ['torch', 'scipy'] def __init__( self : List[str], *a_ : Optional[int], **a_ : int ): """simple docstring""" requires_backends(self, ["torch", "scipy"] ) @classmethod def lowercase_ ( cls : Dict, *a_ : Tuple, **a_ : Dict ): """simple docstring""" requires_backends(cls, ["torch", "scipy"] ) @classmethod def lowercase_ ( cls : Optional[Any], *a_ : List[Any], **a_ : Any ): """simple docstring""" requires_backends(cls, ["torch", "scipy"] )
31
0
"""simple docstring""" import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCAmelCase__ : Union[str, Any] = 'platform' import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def lowercase_ ( _snake_case ,_snake_case ,_snake_case=None ,_snake_case=None ,_snake_case=None ,_snake_case=None ,_snake_case=None ,_snake_case=None ,): if attention_mask is None: SCREAMING_SNAKE_CASE__ : str = np.where(input_ids != config.pad_token_id ,1 ,0 ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE__ : List[str] = np.where(decoder_input_ids != config.pad_token_id ,1 ,0 ) if head_mask is None: SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: SCREAMING_SNAKE_CASE__ : Tuple = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: SCREAMING_SNAKE_CASE__ : Any = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class lowerCAmelCase_ : """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=13 , SCREAMING_SNAKE_CASE__=7 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=99 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=32 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=0 , SCREAMING_SNAKE_CASE__=0.02 , ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = parent SCREAMING_SNAKE_CASE__ : Tuple = batch_size SCREAMING_SNAKE_CASE__ : Dict = seq_length SCREAMING_SNAKE_CASE__ : List[str] = is_training SCREAMING_SNAKE_CASE__ : List[str] = use_labels SCREAMING_SNAKE_CASE__ : Any = vocab_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE__ : Any = num_hidden_layers SCREAMING_SNAKE_CASE__ : int = num_attention_heads SCREAMING_SNAKE_CASE__ : List[str] = intermediate_size SCREAMING_SNAKE_CASE__ : str = hidden_act SCREAMING_SNAKE_CASE__ : List[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[int] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Tuple = max_position_embeddings SCREAMING_SNAKE_CASE__ : List[Any] = eos_token_id SCREAMING_SNAKE_CASE__ : Optional[Any] = pad_token_id SCREAMING_SNAKE_CASE__ : Optional[Any] = bos_token_id SCREAMING_SNAKE_CASE__ : Any = initializer_range def __magic_name__ (self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) SCREAMING_SNAKE_CASE__ : Dict = shift_tokens_right(SCREAMING_SNAKE_CASE__ , 1 , 2 ) SCREAMING_SNAKE_CASE__ : Optional[int] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=SCREAMING_SNAKE_CASE__ , ) SCREAMING_SNAKE_CASE__ : Dict = prepare_blenderbot_inputs_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return config, inputs_dict def __magic_name__ (self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = self.prepare_config_and_inputs() return config, inputs_dict def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = 20 SCREAMING_SNAKE_CASE__ : int = model_class_name(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = model.encode(inputs_dict["""input_ids"""] ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) SCREAMING_SNAKE_CASE__ : Tuple = model.init_cache(decoder_input_ids.shape[0] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) SCREAMING_SNAKE_CASE__ : Dict = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) SCREAMING_SNAKE_CASE__ : Optional[int] = model.decode( decoder_input_ids[:, :-1] , SCREAMING_SNAKE_CASE__ , decoder_attention_mask=SCREAMING_SNAKE_CASE__ , past_key_values=SCREAMING_SNAKE_CASE__ , decoder_position_ids=SCREAMING_SNAKE_CASE__ , ) SCREAMING_SNAKE_CASE__ : Tuple = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) SCREAMING_SNAKE_CASE__ : str = model.decode( decoder_input_ids[:, -1:] , SCREAMING_SNAKE_CASE__ , decoder_attention_mask=SCREAMING_SNAKE_CASE__ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=SCREAMING_SNAKE_CASE__ , ) SCREAMING_SNAKE_CASE__ : Optional[int] = model.decode(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = 20 SCREAMING_SNAKE_CASE__ : Optional[Any] = model_class_name(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model.encode(inputs_dict["""input_ids"""] ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) SCREAMING_SNAKE_CASE__ : Tuple = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) SCREAMING_SNAKE_CASE__ : Optional[int] = model.init_cache(decoder_input_ids.shape[0] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model.decode( decoder_input_ids[:, :-1] , SCREAMING_SNAKE_CASE__ , decoder_attention_mask=SCREAMING_SNAKE_CASE__ , past_key_values=SCREAMING_SNAKE_CASE__ , decoder_position_ids=SCREAMING_SNAKE_CASE__ , ) SCREAMING_SNAKE_CASE__ : Optional[int] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) SCREAMING_SNAKE_CASE__ : List[str] = model.decode( decoder_input_ids[:, -1:] , SCREAMING_SNAKE_CASE__ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=SCREAMING_SNAKE_CASE__ , decoder_position_ids=SCREAMING_SNAKE_CASE__ , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model.decode(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , decoder_attention_mask=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[str] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) @require_flax class lowerCAmelCase_ (unittest.TestCase ): """simple docstring""" __UpperCamelCase : Dict = 99 def __magic_name__ (self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = input_ids.shape[0] SCREAMING_SNAKE_CASE__ : List[Any] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def __magic_name__ (self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = self._get_config_and_data() SCREAMING_SNAKE_CASE__ : str = FlaxBlenderbotForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = lm_model(input_ids=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Dict = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["""logits"""].shape , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) SCREAMING_SNAKE_CASE__ : Dict = FlaxBlenderbotForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) SCREAMING_SNAKE_CASE__ : Optional[int] = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) SCREAMING_SNAKE_CASE__ : int = lm_model(input_ids=SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = (*summary.shape, config.vocab_size) self.assertEqual(outputs["""logits"""].shape , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) SCREAMING_SNAKE_CASE__ : List[Any] = shift_tokens_right(SCREAMING_SNAKE_CASE__ , 1 , 2 ) SCREAMING_SNAKE_CASE__ : List[Any] = np.equal(SCREAMING_SNAKE_CASE__ , 1 ).astype(np.floataa ).sum() SCREAMING_SNAKE_CASE__ : Optional[Any] = np.equal(SCREAMING_SNAKE_CASE__ , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(SCREAMING_SNAKE_CASE__ , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class lowerCAmelCase_ (a__ , unittest.TestCase , a__ ): """simple docstring""" __UpperCamelCase : Any = True __UpperCamelCase : Union[str, Any] = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) __UpperCamelCase : Union[str, Any] = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def __magic_name__ (self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = FlaxBlenderbotModelTester(self ) def __magic_name__ (self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE__ : str = self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE__ ) @jax.jit def encode_jitted(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , **SCREAMING_SNAKE_CASE__ ): return model.encode(input_ids=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ ) with self.subTest("""JIT Enabled""" ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = encode_jitted(**SCREAMING_SNAKE_CASE__ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): SCREAMING_SNAKE_CASE__ : Any = encode_jitted(**SCREAMING_SNAKE_CASE__ ).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) ) for jitted_output, output in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): self.assertEqual(jitted_output.shape , output.shape ) def __magic_name__ (self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE__ : Optional[Any] = model_class(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Dict = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] ) SCREAMING_SNAKE_CASE__ : Any = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return model.decode( decoder_input_ids=SCREAMING_SNAKE_CASE__ , decoder_attention_mask=SCREAMING_SNAKE_CASE__ , encoder_outputs=SCREAMING_SNAKE_CASE__ , ) with self.subTest("""JIT Enabled""" ): SCREAMING_SNAKE_CASE__ : List[Any] = decode_jitted(**SCREAMING_SNAKE_CASE__ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): SCREAMING_SNAKE_CASE__ : Optional[int] = decode_jitted(**SCREAMING_SNAKE_CASE__ ).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) ) for jitted_output, output in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def __magic_name__ (self ) -> Optional[int]: """simple docstring""" for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Union[str, Any] = model_class_name.from_pretrained("""facebook/blenderbot-400M-distill""" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids SCREAMING_SNAKE_CASE__ : Any = np.ones((1, 1) ) * model.config.eos_token_id SCREAMING_SNAKE_CASE__ : List[str] = model(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) @unittest.skipUnless(jax_device != """cpu""" , """3B test too slow on CPU.""" ) @slow def __magic_name__ (self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = {"""num_beams""": 1, """early_stopping""": True, """min_length""": 15, """max_length""": 25} SCREAMING_SNAKE_CASE__ : Any = {"""skip_special_tokens""": True, """clean_up_tokenization_spaces""": True} SCREAMING_SNAKE_CASE__ : Optional[int] = FlaxBlenderbotForConditionalGeneration.from_pretrained("""facebook/blenderbot-3B""" , from_pt=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[Any] = BlenderbotTokenizer.from_pretrained("""facebook/blenderbot-3B""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = ["""Sam"""] SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors="""jax""" ) SCREAMING_SNAKE_CASE__ : Dict = model.generate(**SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = """Sam is a great name. It means \"sun\" in Gaelic.""" SCREAMING_SNAKE_CASE__ : List[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) assert generated_txt[0].strip() == tgt_text
25
def __snake_case ( _lowerCAmelCase : List[str] , _lowerCAmelCase : int ) -> str: return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def __snake_case ( _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any]=0 ) -> Any: return sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : x[column] ) def __snake_case ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Any , _lowerCAmelCase : Any=float("inf" ) ) -> int: for i in range(points_counts - 1 ): for j in range(i + 1 , _lowerCAmelCase ): A_ : Tuple = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: A_ : Union[str, Any] = current_dis return min_dis def __snake_case ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str]=float("inf" ) ) -> Dict: for i in range(min(6 , points_counts - 1 ) , _lowerCAmelCase ): for j in range(max(0 , i - 6 ) , _lowerCAmelCase ): A_ : List[Any] = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: A_ : Union[str, Any] = current_dis return min_dis def __snake_case ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Dict ) -> List[str]: # base case if points_counts <= 3: return dis_between_closest_pair(_lowerCAmelCase , _lowerCAmelCase ) # recursion A_ : Optional[int] = points_counts // 2 A_ : List[Any] = closest_pair_of_points_sqr( _lowerCAmelCase , points_sorted_on_y[:mid] , _lowerCAmelCase ) A_ : List[Any] = closest_pair_of_points_sqr( _lowerCAmelCase , points_sorted_on_y[mid:] , points_counts - mid ) A_ : Tuple = min(_lowerCAmelCase , _lowerCAmelCase ) A_ : Dict = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(_lowerCAmelCase ) A_ : Tuple = dis_between_closest_in_strip( _lowerCAmelCase , len(_lowerCAmelCase ) , _lowerCAmelCase ) return min(_lowerCAmelCase , _lowerCAmelCase ) def __snake_case ( _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] ) -> Any: A_ : Optional[Any] = column_based_sort(_lowerCAmelCase , column=0 ) A_ : Optional[int] = column_based_sort(_lowerCAmelCase , column=1 ) return ( closest_pair_of_points_sqr( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) ) ** 0.5 if __name__ == "__main__": _lowerCAmelCase : List[Any] = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print('''Distance:''', closest_pair_of_points(points, len(points)))
300
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class lowerCAmelCase__ ( __lowercase ): a__ : str = """philschmid/bart-large-cnn-samsum""" a__ : Union[str, Any] = ( """This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, """ """and returns a summary of the text.""" ) a__ : List[str] = """summarizer""" a__ : Union[str, Any] = AutoTokenizer a__ : Tuple = AutoModelForSeqaSeqLM a__ : int = ["""text"""] a__ : List[Any] = ["""text"""] def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : Any ) -> Union[str, Any]: return self.pre_processor(SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' , truncation=SCREAMING_SNAKE_CASE__ ) def __A ( self : str , SCREAMING_SNAKE_CASE__ : Tuple ) -> Any: return self.model.generate(**SCREAMING_SNAKE_CASE__ )[0] def __A ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ) -> Optional[Any]: return self.pre_processor.decode(SCREAMING_SNAKE_CASE__ , skip_special_tokens=SCREAMING_SNAKE_CASE__ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ )
339
def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> str: if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) __lowerCamelCase = str(bin(__lowerCAmelCase ) )[2:] # remove the leading "0b" __lowerCamelCase = str(bin(__lowerCAmelCase ) )[2:] # remove the leading "0b" __lowerCamelCase = max(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) return "0b" + "".join( str(int(char_a == '''1''' and char_b == '''1''' ) ) for char_a, char_b in zip(a_binary.zfill(__lowerCAmelCase ) , b_binary.zfill(__lowerCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
339
1
"""simple docstring""" from __future__ import annotations def lowercase__ ( snake_case_ :list[int | str] ): create_state_space_tree(snake_case_ , [] , 0 , [0 for i in range(len(snake_case_ ) )] ) def lowercase__ ( snake_case_ :list[int | str] , snake_case_ :list[int | str] , snake_case_ :int , snake_case_ :list[int] , ): if index == len(snake_case_ ): print(snake_case_ ) return for i in range(len(snake_case_ ) ): if not index_used[i]: current_sequence.append(sequence[i] ) __UpperCAmelCase = True create_state_space_tree(snake_case_ , snake_case_ , index + 1 , snake_case_ ) current_sequence.pop() __UpperCAmelCase = False _lowercase : list[int | str] = [3, 1, 2, 4] generate_all_permutations(sequence) _lowercase : list[int | str] = ["A", "B", "C"] generate_all_permutations(sequence_a)
332
"""simple docstring""" import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def lowercase__ ( ): raise RuntimeError('''CUDA out of memory.''' ) class _UpperCAmelCase ( nn.Module ): def __init__( self : Optional[Any] ): super().__init__() __UpperCAmelCase = nn.Linear(3 , 4 ) __UpperCAmelCase = nn.BatchNormad(4 ) __UpperCAmelCase = nn.Linear(4 , 5 ) def a ( self : Optional[int] , _lowercase : Optional[Any] ): return self.lineara(self.batchnorm(self.lineara(_lowercase ) ) ) class _UpperCAmelCase ( unittest.TestCase ): def a ( self : List[str] ): __UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(_lowercase : Optional[int] ): nonlocal batch_sizes batch_sizes.append(_lowercase ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(_lowercase , [1_28, 64, 32, 16, 8] ) def a ( self : Optional[int] ): __UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(_lowercase : str , _lowercase : List[str] ): nonlocal batch_sizes batch_sizes.append(_lowercase ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga __UpperCAmelCase , __UpperCAmelCase = mock_training_loop_function('''hello''' ) self.assertListEqual(_lowercase , [1_28, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, '''hello'''] ) def a ( self : Tuple ): @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(_lowercase : Optional[int] ): pass with self.assertRaises(_lowercase ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def a ( self : List[Any] ): @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(_lowercase : List[Any] ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(_lowercase ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def a ( self : Union[str, Any] ): @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(_lowercase : Optional[Any] , _lowercase : List[str] , _lowercase : str ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(_lowercase ) as cm: mock_training_loop_function(1_28 , '''hello''' , '''world''' ) self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] ) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] ) def a ( self : Dict ): @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(_lowercase : int ): raise ValueError('''Oops, we had an error!''' ) with self.assertRaises(_lowercase ) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] ) @require_cuda def a ( self : str ): __UpperCAmelCase = torch.cuda.memory_allocated() __UpperCAmelCase = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , _lowercase ) __UpperCAmelCase = release_memory(_lowercase ) self.assertEqual(torch.cuda.memory_allocated() , _lowercase )
332
1
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class _SCREAMING_SNAKE_CASE ( snake_case_ ): def __init__( self , lowercase , lowercase , lowercase = None , lowercase = None , lowercase = False , **lowercase , ) -> List[str]: super().__init__(features=lowercase , cache_dir=lowercase , keep_in_memory=lowercase , **lowercase ) lowerCamelCase_ = Sql( cache_dir=lowercase , features=lowercase , sql=lowercase , con=lowercase , **lowercase , ) def SCREAMING_SNAKE_CASE_( self ) -> List[str]: lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None self.builder.download_and_prepare( download_config=lowercase , download_mode=lowercase , verification_mode=lowercase , base_path=lowercase , ) # Build dataset for splits lowerCamelCase_ = self.builder.as_dataset( split="train" , verification_mode=lowercase , in_memory=self.keep_in_memory ) return dataset class _SCREAMING_SNAKE_CASE : def __init__( self , lowercase , lowercase , lowercase , lowercase = None , lowercase = None , **lowercase , ) -> Optional[Any]: if num_proc is not None and num_proc <= 0: raise ValueError(f'num_proc {num_proc} must be an integer > 0.' ) lowerCamelCase_ = dataset lowerCamelCase_ = name lowerCamelCase_ = con lowerCamelCase_ = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE lowerCamelCase_ = num_proc lowerCamelCase_ = to_sql_kwargs def SCREAMING_SNAKE_CASE_( self ) -> int: lowerCamelCase_ = self.to_sql_kwargs.pop("sql" , lowercase ) lowerCamelCase_ = self.to_sql_kwargs.pop("con" , lowercase ) lowerCamelCase_ = self.to_sql_kwargs.pop("index" , lowercase ) lowerCamelCase_ = self._write(index=lowercase , **self.to_sql_kwargs ) return written def SCREAMING_SNAKE_CASE_( self , lowercase ) -> List[str]: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = args lowerCamelCase_ = {**to_sql_kwargs, "if_exists": "append"} if offset > 0 else to_sql_kwargs lowerCamelCase_ = query_table( table=self.dataset.data , key=slice(lowercase , offset + self.batch_size ) , indices=self.dataset._indices , ) lowerCamelCase_ = batch.to_pandas() lowerCamelCase_ = df.to_sql(self.name , self.con , index=lowercase , **lowercase ) return num_rows or len(lowercase ) def SCREAMING_SNAKE_CASE_( self , lowercase , **lowercase ) -> int: lowerCamelCase_ = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating SQL from Arrow format" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: lowerCamelCase_ , lowerCamelCase_ = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , lowercase , lowercase )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating SQL from Arrow format" , ): written += num_rows return written
47
from __future__ import annotations import math def lowerCamelCase_ ( lowerCamelCase__ ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCamelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = str(lowerCamelCase__ ) lowerCamelCase_ = [n] for i in range(1 , len(lowerCamelCase__ ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def lowerCamelCase_ ( lowerCamelCase__ ): if len(str(lowerCamelCase__ ) ) > 3: if not is_prime(int(str(lowerCamelCase__ )[-3:] ) ) or not is_prime(int(str(lowerCamelCase__ )[:3] ) ): return False return True def lowerCamelCase_ ( lowerCamelCase__ = 1_1 ): lowerCamelCase_ = [] lowerCamelCase_ = 1_3 while len(lowerCamelCase__ ) != count: if validate(lowerCamelCase__ ): lowerCamelCase_ = list_truncated_nums(lowerCamelCase__ ) if all(is_prime(lowerCamelCase__ ) for i in list_nums ): list_truncated_primes.append(lowerCamelCase__ ) num += 2 return list_truncated_primes def lowerCamelCase_ ( ): return sum(compute_truncated_primes(1_1 ) ) if __name__ == "__main__": print(F"""{sum(compute_truncated_primes(1_1)) = }""")
47
1
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( "stable diffusion controlnet", "0.22.0", "Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.", standard_warn=False, stacklevel=3, )
228
__UpperCamelCase : Optional[int] = { "Pillow": "Pillow", "accelerate": "accelerate>=0.11.0", "compel": "compel==0.1.8", "black": "black~=23.1", "datasets": "datasets", "filelock": "filelock", "flax": "flax>=0.4.1", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.13.2", "requests-mock": "requests-mock==1.10.0", "importlib_metadata": "importlib_metadata", "invisible-watermark": "invisible-watermark", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2", "jaxlib": "jaxlib>=0.1.65", "Jinja2": "Jinja2", "k-diffusion": "k-diffusion>=0.0.12", "torchsde": "torchsde", "note_seq": "note_seq", "librosa": "librosa", "numpy": "numpy", "omegaconf": "omegaconf", "parameterized": "parameterized", "protobuf": "protobuf>=3.20.3,<4", "pytest": "pytest", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "ruff": "ruff>=0.0.241", "safetensors": "safetensors", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "scipy": "scipy", "onnx": "onnx", "regex": "regex!=2019.12.17", "requests": "requests", "tensorboard": "tensorboard", "torch": "torch>=1.4", "torchvision": "torchvision", "transformers": "transformers>=4.25.1", "urllib3": "urllib3<=2.0.0", }
228
1
from __future__ import annotations from typing import Any def lowerCamelCase ( UpperCAmelCase__ : list ) -> int: if not postfix_notation: return 0 lowercase_ : Any = {"""+""", """-""", """*""", """/"""} lowercase_ : list[Any] = [] for token in postfix_notation: if token in operations: lowercase_ : Dict = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(UpperCAmelCase__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
371
'''simple docstring''' import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class __magic_name__ ( unittest.TestCase): @parameterized.expand([(None,), ("""foo.json""",)] ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : str ): lowercase_ : Union[str, Any] = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowercase_ , config_name=lowercase_ ) lowercase_ : Optional[int] = GenerationConfig.from_pretrained(lowercase_ , config_name=lowercase_ ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , lowercase_ ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : int = AutoConfig.from_pretrained("""gpt2""" ) lowercase_ : List[Any] = GenerationConfig.from_model_config(lowercase_ ) lowercase_ : Optional[int] = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(lowercase_ , lowercase_ ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Optional[int] = GenerationConfig() lowercase_ : int = { """max_new_tokens""": 1024, """foo""": """bar""", } lowercase_ : List[str] = copy.deepcopy(lowercase_ ) lowercase_ : Tuple = generation_config.update(**lowercase_ ) # update_kwargs was not modified (no side effects) self.assertEqual(lowercase_ , lowercase_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(lowercase_ , {"""foo""": """bar"""} ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): lowercase_ : Dict = GenerationConfig() lowercase_ : int = """bar""" with tempfile.TemporaryDirectory("""test-generation-config""" ) as tmp_dir: generation_config.save_pretrained(lowercase_ ) lowercase_ : Optional[int] = GenerationConfig.from_pretrained(lowercase_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , """bar""" ) lowercase_ : List[str] = GenerationConfig.from_model_config(lowercase_ ) assert not hasattr(lowercase_ , """foo""" ) # no new kwargs should be initialized if from config def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : Optional[int] = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , lowercase_ ) self.assertEqual(default_config.num_beams , 1 ) lowercase_ : Dict = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , lowercase_ ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowercase_ ) lowercase_ : Tuple = GenerationConfig.from_pretrained(lowercase_ , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , lowercase_ ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class __magic_name__ ( unittest.TestCase): @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Any ): lowercase_ : int = TOKEN HfFolder.save_token(lowercase_ ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[Any] ): try: delete_repo(token=cls._token , repo_id="""test-generation-config""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-generation-config-org""" ) except HTTPError: pass def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : Tuple = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""test-generation-config""" , use_auth_token=self._token ) lowercase_ : List[Any] = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-generation-config""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowercase_ , repo_id="""test-generation-config""" , push_to_hub=lowercase_ , use_auth_token=self._token ) lowercase_ : int = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : List[Any] = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""valid_org/test-generation-config-org""" , use_auth_token=self._token ) lowercase_ : Optional[Any] = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-generation-config-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowercase_ , repo_id="""valid_org/test-generation-config-org""" , push_to_hub=lowercase_ , use_auth_token=self._token ) lowercase_ : int = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) )
21
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class lowercase__ ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase): UpperCamelCase_ = StableDiffusionPanoramaPipeline UpperCamelCase_ = TEXT_TO_IMAGE_PARAMS UpperCamelCase_ = TEXT_TO_IMAGE_BATCH_PARAMS UpperCamelCase_ = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCamelCase_ = TEXT_TO_IMAGE_IMAGE_PARAMS def __A ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) SCREAMING_SNAKE_CASE : str = DDIMScheduler() torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) SCREAMING_SNAKE_CASE : Any = CLIPTextModel(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) SCREAMING_SNAKE_CASE : Tuple = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __A ( self : List[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : int=0 ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : str = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, # Setting height and width to None to prevent OOMs on CPU. '''height''': None, '''width''': None, '''num_inference_steps''': 1, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def __A ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Union[str, Any] = StableDiffusionPanoramaPipeline(**UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Any = sd_pipe.to(UpperCamelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : str = self.get_dummy_inputs(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Dict = sd_pipe(**UpperCamelCase__ ).images SCREAMING_SNAKE_CASE : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE : Optional[Any] = np.array([0.6186, 0.5374, 0.4915, 0.4135, 0.4114, 0.4563, 0.5128, 0.4977, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __A ( self : Dict ): '''simple docstring''' super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def __A ( self : Union[str, Any] ): '''simple docstring''' super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25E-3 ) def __A ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Dict = StableDiffusionPanoramaPipeline(**UpperCamelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = sd_pipe.to(UpperCamelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inputs(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = '''french fries''' SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe(**UpperCamelCase__ , negative_prompt=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Any = output.images SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE : Union[str, Any] = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __A ( self : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : str = self.get_dummy_components() SCREAMING_SNAKE_CASE : str = StableDiffusionPanoramaPipeline(**UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = sd_pipe.to(UpperCamelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Dict = self.get_dummy_inputs(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = sd_pipe(**UpperCamelCase__ , view_batch_size=2 ) SCREAMING_SNAKE_CASE : Union[str, Any] = output.images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE : str = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __A ( self : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : str = self.get_dummy_components() SCREAMING_SNAKE_CASE : Optional[Any] = EulerAncestralDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' ) SCREAMING_SNAKE_CASE : Dict = StableDiffusionPanoramaPipeline(**UpperCamelCase__ ) SCREAMING_SNAKE_CASE : int = sd_pipe.to(UpperCamelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Any = sd_pipe(**UpperCamelCase__ ).images SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.4024, 0.6510, 0.4901, 0.5378, 0.5813, 0.5622, 0.4795, 0.4467, 0.4952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __A ( self : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Tuple = PNDMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , skip_prk_steps=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionPanoramaPipeline(**UpperCamelCase__ ) SCREAMING_SNAKE_CASE : int = sd_pipe.to(UpperCamelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_inputs(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : str = sd_pipe(**UpperCamelCase__ ).images SCREAMING_SNAKE_CASE : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE : List[Any] = np.array([0.6391, 0.6291, 0.4861, 0.5134, 0.5552, 0.4578, 0.5032, 0.5023, 0.4539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class lowercase__ ( unittest.TestCase): def __A ( self : Dict ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self : Dict , UpperCamelCase__ : Optional[Any]=0 ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Tuple = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def __A ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = '''stabilityai/stable-diffusion-2-base''' SCREAMING_SNAKE_CASE : Any = DDIMScheduler.from_pretrained(UpperCamelCase__ , subfolder='''scheduler''' ) SCREAMING_SNAKE_CASE : Dict = StableDiffusionPanoramaPipeline.from_pretrained(UpperCamelCase__ , scheduler=UpperCamelCase__ , safety_checker=UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_inputs() SCREAMING_SNAKE_CASE : Tuple = pipe(**UpperCamelCase__ ).images SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) SCREAMING_SNAKE_CASE : str = np.array( [ 0.3696_8392, 0.2702_5372, 0.3244_6766, 0.2837_9387, 0.3636_3274, 0.3073_3347, 0.2710_0027, 0.2705_4125, 0.2553_6096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-2 def __A ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = StableDiffusionPanoramaPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-base''' , safety_checker=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE : Dict = self.get_inputs() SCREAMING_SNAKE_CASE : Any = pipe(**UpperCamelCase__ ).images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) SCREAMING_SNAKE_CASE : List[str] = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __A ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = 0 def callback_fn(UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : torch.FloatTensor ) -> None: SCREAMING_SNAKE_CASE : Dict = True nonlocal number_of_steps number_of_steps += 1 if step == 1: SCREAMING_SNAKE_CASE : Optional[int] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) SCREAMING_SNAKE_CASE : Union[str, Any] = latents[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Dict = np.array( [ 0.1868_1869, 0.3390_7816, 0.536_1276, 0.1443_2865, -0.0285_6611, -0.7394_1123, 0.2339_7987, 0.4732_2682, -0.3782_3164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: SCREAMING_SNAKE_CASE : Dict = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) SCREAMING_SNAKE_CASE : Optional[Any] = latents[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : int = np.array( [ 0.1853_9645, 0.3398_7248, 0.537_8559, 0.1443_7142, -0.0245_5261, -0.733_8317, 0.2399_0755, 0.4735_6272, -0.378_6505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 SCREAMING_SNAKE_CASE : Optional[Any] = False SCREAMING_SNAKE_CASE : Any = '''stabilityai/stable-diffusion-2-base''' SCREAMING_SNAKE_CASE : int = DDIMScheduler.from_pretrained(UpperCamelCase__ , subfolder='''scheduler''' ) SCREAMING_SNAKE_CASE : str = StableDiffusionPanoramaPipeline.from_pretrained(UpperCamelCase__ , scheduler=UpperCamelCase__ , safety_checker=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Tuple = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE : Optional[Any] = self.get_inputs() pipe(**UpperCamelCase__ , callback=UpperCamelCase__ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def __A ( self : Optional[Any] ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() SCREAMING_SNAKE_CASE : Union[str, Any] = '''stabilityai/stable-diffusion-2-base''' SCREAMING_SNAKE_CASE : List[str] = DDIMScheduler.from_pretrained(UpperCamelCase__ , subfolder='''scheduler''' ) SCREAMING_SNAKE_CASE : Any = StableDiffusionPanoramaPipeline.from_pretrained(UpperCamelCase__ , scheduler=UpperCamelCase__ , safety_checker=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE : Optional[int] = self.get_inputs() SCREAMING_SNAKE_CASE : Union[str, Any] = pipe(**UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
182
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase : List[Any] = {'configuration_glpn': ['GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GLPNConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = ['GLPNFeatureExtractor'] __UpperCamelCase : List[str] = ['GLPNImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : str = [ 'GLPN_PRETRAINED_MODEL_ARCHIVE_LIST', 'GLPNForDepthEstimation', 'GLPNLayer', 'GLPNModel', 'GLPNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys __UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
182
1
import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __init__( self , __UpperCamelCase , __UpperCamelCase=7 , __UpperCamelCase=3 , __UpperCamelCase=18 , __UpperCamelCase=30 , __UpperCamelCase=4_00 , __UpperCamelCase=True , __UpperCamelCase=None , __UpperCamelCase=True , __UpperCamelCase=[0.5, 0.5, 0.5] , __UpperCamelCase=[0.5, 0.5, 0.5] , ) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase : int = size if size is not None else {"height": 18, "width": 18} __UpperCamelCase : int = parent __UpperCamelCase : str = batch_size __UpperCamelCase : Dict = num_channels __UpperCamelCase : Any = image_size __UpperCamelCase : List[str] = min_resolution __UpperCamelCase : Dict = max_resolution __UpperCamelCase : Any = do_resize __UpperCamelCase : int = size __UpperCamelCase : Optional[int] = do_normalize __UpperCamelCase : Union[str, Any] = image_mean __UpperCamelCase : Optional[Any] = image_std def __lowerCamelCase ( self ) -> str: '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , unittest.TestCase ): """simple docstring""" lowercase : Optional[int] = DPTImageProcessor if is_vision_available() else None def __lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' __UpperCamelCase : Union[str, Any] = DPTImageProcessingTester(self ) @property def __lowerCamelCase ( self ) -> int: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' __UpperCamelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCamelCase , "image_mean" ) ) self.assertTrue(hasattr(__UpperCamelCase , "image_std" ) ) self.assertTrue(hasattr(__UpperCamelCase , "do_normalize" ) ) self.assertTrue(hasattr(__UpperCamelCase , "do_resize" ) ) self.assertTrue(hasattr(__UpperCamelCase , "size" ) ) def __lowerCamelCase ( self ) -> int: '''simple docstring''' __UpperCamelCase : Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 18} ) __UpperCamelCase : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) def __lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' __UpperCamelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCamelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , Image.Image ) # Test not batched input __UpperCamelCase : List[str] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched __UpperCamelCase : Optional[Any] = image_processing(__UpperCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def __lowerCamelCase ( self ) -> int: '''simple docstring''' __UpperCamelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCamelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , numpify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , np.ndarray ) # Test not batched input __UpperCamelCase : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched __UpperCamelCase : Optional[int] = image_processing(__UpperCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def __lowerCamelCase ( self ) -> List[str]: '''simple docstring''' __UpperCamelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCamelCase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , torchify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , torch.Tensor ) # Test not batched input __UpperCamelCase : Any = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched __UpperCamelCase : List[Any] = image_processing(__UpperCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , )
171
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : Dict = logging.get_logger(__name__) lowercase : Union[str, Any] = { "google/canine-s": "https://huggingface.co/google/canine-s/resolve/main/config.json", # See all CANINE models at https://huggingface.co/models?filter=canine } class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ): """simple docstring""" lowercase : Optional[Any] = 'canine' def __init__( self , __UpperCamelCase=7_68 , __UpperCamelCase=12 , __UpperCamelCase=12 , __UpperCamelCase=30_72 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=1_63_84 , __UpperCamelCase=16 , __UpperCamelCase=0.02 , __UpperCamelCase=1E-12 , __UpperCamelCase=0 , __UpperCamelCase=0Xe000 , __UpperCamelCase=0Xe001 , __UpperCamelCase=4 , __UpperCamelCase=4 , __UpperCamelCase=8 , __UpperCamelCase=1_63_84 , __UpperCamelCase=1_28 , **__UpperCamelCase , ) -> Tuple: '''simple docstring''' super().__init__(pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase ) __UpperCamelCase : List[str] = max_position_embeddings __UpperCamelCase : int = hidden_size __UpperCamelCase : Tuple = num_hidden_layers __UpperCamelCase : str = num_attention_heads __UpperCamelCase : Optional[int] = intermediate_size __UpperCamelCase : int = hidden_act __UpperCamelCase : Dict = hidden_dropout_prob __UpperCamelCase : List[str] = attention_probs_dropout_prob __UpperCamelCase : Optional[Any] = initializer_range __UpperCamelCase : List[str] = type_vocab_size __UpperCamelCase : str = layer_norm_eps # Character config: __UpperCamelCase : str = downsampling_rate __UpperCamelCase : Tuple = upsampling_kernel_size __UpperCamelCase : Union[str, Any] = num_hash_functions __UpperCamelCase : List[str] = num_hash_buckets __UpperCamelCase : List[Any] = local_transformer_stride
171
1
def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' _validate_point(SCREAMING_SNAKE_CASE ) _validate_point(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) != len(SCREAMING_SNAKE_CASE ): raise ValueError('''Both points must be in the same n-dimensional space''' ) return float(sum(abs(a - b ) for a, b in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) ) def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if point: if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): for item in point: if not isinstance(SCREAMING_SNAKE_CASE , (int, float) ): __UpperCamelCase :Optional[int] = ( '''Expected a list of numbers as input, found ''' f"""{type(SCREAMING_SNAKE_CASE ).__name__}""" ) raise TypeError(SCREAMING_SNAKE_CASE ) else: __UpperCamelCase :List[str] = f"""Expected a list of numbers as input, found {type(SCREAMING_SNAKE_CASE ).__name__}""" raise TypeError(SCREAMING_SNAKE_CASE ) else: raise ValueError('''Missing an input''' ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' _validate_point(SCREAMING_SNAKE_CASE ) _validate_point(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) != len(SCREAMING_SNAKE_CASE ): raise ValueError('''Both points must be in the same n-dimensional space''' ) return float(sum(abs(x - y ) for x, y in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
43
from abc import ABC, abstractmethod from argparse import ArgumentParser class lowercase ( lowercase_ ): @staticmethod @abstractmethod def a ( snake_case ): raise NotImplementedError() @abstractmethod def a ( self ): raise NotImplementedError()
285
0
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : List[Any] ,A : Dict[str, int] ,A : List[str] ,A : int = None ,A : int = None ): super().__init__() __A = pad_token_id __A = max_length __A = vocab __A = merges __A = BytePairTokenizer(A ,A ,sequence_length=A ) @classmethod def UpperCamelCase_ ( cls : Optional[Any] ,A : GPTaTokenizer ,*A : Any ,**A : Union[str, Any] ): __A = [" ".join(A ) for m in tokenizer.bpe_ranks.keys()] __A = tokenizer.get_vocab() return cls(A ,A ,*A ,**A ) @classmethod def UpperCamelCase_ ( cls : List[str] ,A : Union[str, os.PathLike] ,*A : Tuple ,**A : Optional[Any] ): __A = GPTaTokenizer.from_pretrained(A ,*A ,**A ) return cls.from_tokenizer(A ,*A ,**A ) @classmethod def UpperCamelCase_ ( cls : List[Any] ,A : Optional[Any] ): return cls(**A ) def UpperCamelCase_ ( self : Any ): return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def UpperCamelCase_ ( self : str ,A : Optional[Any] ,A : int = None ): __A = self.tf_tokenizer(A ) __A = tf.ones_like(A ) if self.pad_token_id is not None: # pad the tokens up to max length __A = max_length if max_length is not None else self.max_length if max_length is not None: __A , __A = pad_model_inputs( A ,max_seq_length=A ,pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
124
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) SCREAMING_SNAKE_CASE :Tuple = 'pytorch_model.bin' SCREAMING_SNAKE_CASE :str = 'pytorch_model.bin.index.json' SCREAMING_SNAKE_CASE :int = 'adapter_config.json' SCREAMING_SNAKE_CASE :List[str] = 'adapter_model.bin' SCREAMING_SNAKE_CASE :Any = 'adapter_model.safetensors' SCREAMING_SNAKE_CASE :int = 'tf_model.h5' SCREAMING_SNAKE_CASE :Tuple = 'tf_model.h5.index.json' SCREAMING_SNAKE_CASE :List[Any] = 'model.ckpt' SCREAMING_SNAKE_CASE :Optional[int] = 'flax_model.msgpack' SCREAMING_SNAKE_CASE :List[Any] = 'flax_model.msgpack.index.json' SCREAMING_SNAKE_CASE :List[Any] = 'model.safetensors' SCREAMING_SNAKE_CASE :Any = 'model.safetensors.index.json' SCREAMING_SNAKE_CASE :int = 'config.json' SCREAMING_SNAKE_CASE :List[str] = 'preprocessor_config.json' SCREAMING_SNAKE_CASE :Optional[int] = FEATURE_EXTRACTOR_NAME SCREAMING_SNAKE_CASE :Optional[Any] = 'generation_config.json' SCREAMING_SNAKE_CASE :Dict = 'modelcard.json' SCREAMING_SNAKE_CASE :Optional[Any] = '▁' SCREAMING_SNAKE_CASE :Any = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility SCREAMING_SNAKE_CASE :Tuple = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. SCREAMING_SNAKE_CASE :Union[str, Any] = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] SCREAMING_SNAKE_CASE :Tuple = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def UpperCAmelCase ( a_ ) -> List[str]: """simple docstring""" if version.parse(a_ ) < version.parse(a_ ): if "dev" in min_version: __A = ( "This example requires a source install from HuggingFace Transformers (see " "`https://huggingface.co/docs/transformers/installation#install-from-source`)," ) else: __A = F'''This example requires a minimum version of {min_version},''' error_message += F''' but the version found is {__version__}.\n''' raise ImportError( error_message + "Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other " "versions of HuggingFace Transformers." )
124
1
import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase_ = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_sentencepiece_available(): import sentencepiece as sp lowerCamelCase_ = 5 lowerCamelCase_ = 10 @require_sentencepiece @require_tokenizers class __A( __lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = SpeechaTextTokenizer SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = True def UpperCAmelCase_ (self ): super().setUp() UpperCamelCase__ = sp.SentencePieceProcessor() spm_model.Load(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = ["""<s>""", """<pad>""", """</s>""", """<unk>"""] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(SCREAMING_SNAKE_CASE_ ) )] UpperCamelCase__ = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) UpperCamelCase__ = Path(self.tmpdirname ) save_json(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES["""vocab_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES["""spm_file"""] ) UpperCamelCase__ = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase_ (self ): UpperCamelCase__ = """<pad>""" UpperCamelCase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 10_01 ) def UpperCAmelCase_ (self ): self.assertEqual(self.get_tokenizer().vocab_size , 10_01 ) def UpperCAmelCase_ (self ): UpperCamelCase__ = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) UpperCamelCase__ = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , [2_89, 50, 14, 1_74, 3_86] , ) UpperCamelCase__ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """."""] , ) UpperCamelCase__ = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , [12, 25, 88, 59, 28, 23, 11, 4, 6_06, 3_51, 3_51, 3_51, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """."""] , ) @slow def UpperCAmelCase_ (self ): # fmt: off UpperCamelCase__ = {"""input_ids""": [[37_91, 7_97, 31, 11, 64, 7_97, 31, 24_29, 4_33, 12, 11_76, 12, 20, 7_86, 9_15, 1_42, 24_13, 2_40, 37, 32_38, 7_97, 31, 11, 35, 93, 9_15, 1_42, 24_13, 2_40, 37, 55_40, 5_67, 12_76, 93, 37, 6_10, 40, 62, 4_55, 6_57, 10_42, 1_23, 7_80, 1_77, 37, 3_09, 2_41, 12_98, 5_14, 20, 2_92, 27_37, 1_14, 24_69, 2_41, 85, 64, 3_02, 5_48, 5_28, 4_23, 4, 5_09, 4_06, 4_23, 37, 6_01, 4, 7_77, 3_02, 5_48, 5_28, 4_23, 2_84, 4, 33_88, 5_11, 4_59, 4, 35_55, 40, 3_21, 3_02, 7_05, 4, 33_88, 5_11, 5_83, 3_26, 5, 5, 5, 62, 33_10, 5_60, 1_77, 26_80, 2_17, 15_08, 32, 31, 8_53, 4_18, 64, 5_83, 5_11, 16_05, 62, 35, 93, 5_60, 1_77, 26_80, 2_17, 15_08, 15_21, 64, 5_83, 5_11, 5_19, 62, 20, 15_15, 7_64, 20, 1_49, 2_61, 56_25, 79_72, 20, 55_40, 5_67, 12_76, 93, 39_25, 16_75, 11, 15, 8_02, 79_72, 5_76, 2_17, 15_08, 11, 35, 93, 12_53, 24_41, 15, 2_89, 6_52, 31, 4_16, 3_21, 38_42, 1_15, 40, 9_11, 8, 4_76, 6_19, 4, 3_80, 1_42, 4_23, 3_35, 2_40, 35, 93, 2_64, 8, 11, 3_35, 5_69, 4_20, 1_63, 5, 2], [2_60, 5_48, 5_28, 4_23, 20, 4_51, 20, 26_81, 11_53, 34_34, 20, 55_40, 37, 5_67, 1_26, 12_53, 24_41, 33_76, 4_49, 2_10, 4_31, 15_63, 1_77, 7_67, 55_40, 11, 12_03, 4_72, 11, 29_53, 6_85, 2_85, 3_64, 7_06, 11_53, 20, 67_99, 20, 28_69, 20, 44_64, 1_26, 40, 24_29, 20, 10_40, 8_66, 26_64, 4_18, 20, 3_18, 20, 17_26, 1_86, 20, 2_65, 5_22, 35, 93, 21_91, 46_34, 20, 10_40, 12, 67_99, 15, 2_28, 23_56, 1_42, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_75, 26_66, 6_84, 15_82, 11_76, 12, 6_27, 1_49, 6_19, 20, 49_02, 5_63, 11, 20, 1_49, 2_61, 34_20, 23_56, 1_74, 1_42, 47_14, 1_31, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE_ , model_name="""facebook/s2t-small-mustc-en-de-st""" , revision="""a14f04cf0776c02f62a8cb800cf7909e15ea23ad""" , ) @require_sentencepiece class __A( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = """valhalla/s2t_mustc_multilinguial_medium""" SCREAMING_SNAKE_CASE__ = """C'est trop cool""" SCREAMING_SNAKE_CASE__ = """Esto es genial""" @classmethod def UpperCAmelCase_ (cls ): UpperCamelCase__ = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def UpperCAmelCase_ (self ): self.assertEqual(self.tokenizer.lang_code_to_id["""pt"""] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id["""ru"""] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id["""it"""] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id["""de"""] , 11 ) def UpperCAmelCase_ (self ): self.assertEqual(self.tokenizer.vocab_size , 1_00_00 ) def UpperCAmelCase_ (self ): self.assertIn(SCREAMING_SNAKE_CASE_ , self.tokenizer.all_special_ids ) UpperCamelCase__ = [ES_CODE, 4, 16_01, 47, 76_47, 2] UpperCamelCase__ = self.tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertNotIn(self.tokenizer.eos_token , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = """fr""" UpperCamelCase__ = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , SCREAMING_SNAKE_CASE_ ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def UpperCAmelCase_ (self ): UpperCamelCase__ = """fr""" self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) UpperCamelCase__ = """es""" self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
244
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __A: """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=None , ): UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = image_size UpperCamelCase__ = patch_size UpperCamelCase__ = num_channels UpperCamelCase__ = is_training UpperCamelCase__ = use_labels UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range UpperCamelCase__ = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCamelCase__ = (image_size // patch_size) ** 2 UpperCamelCase__ = num_patches + 1 def UpperCAmelCase_ (self ): UpperCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ (self ): return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = TFViTModel(config=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. UpperCamelCase__ = self.image_size // 2 UpperCamelCase__ = pixel_values[:, :, :image_size, :image_size] UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , interpolate_pos_encoding=SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = self.type_sequence_label_size UpperCamelCase__ = TFViTForImageClassification(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. UpperCamelCase__ = self.image_size // 2 UpperCamelCase__ = pixel_values[:, :, :image_size, :image_size] UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , interpolate_pos_encoding=SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase__ = 1 UpperCamelCase__ = TFViTForImageClassification(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = config_and_inputs UpperCamelCase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class __A( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () SCREAMING_SNAKE_CASE__ = ( {"""feature-extraction""": TFViTModel, """image-classification""": TFViTForImageClassification} if is_tf_available() else {} ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False def UpperCAmelCase_ (self ): UpperCamelCase__ = TFViTModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def UpperCAmelCase_ (self ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def UpperCAmelCase_ (self ): pass @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def UpperCAmelCase_ (self ): pass def UpperCAmelCase_ (self ): UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) UpperCamelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_ , tf.keras.layers.Layer ) ) def UpperCAmelCase_ (self ): UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ = [*signature.parameters.keys()] UpperCamelCase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) @slow def UpperCAmelCase_ (self ): UpperCamelCase__ = TFViTModel.from_pretrained("""google/vit-base-patch16-224""" ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def __magic_name__ ( ): '''simple docstring''' UpperCamelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __A( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase_ (self ): return ViTImageProcessor.from_pretrained("""google/vit-base-patch16-224""" ) if is_vision_available() else None @slow def UpperCAmelCase_ (self ): UpperCamelCase__ = TFViTForImageClassification.from_pretrained("""google/vit-base-patch16-224""" ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors="""tf""" ) # forward pass UpperCamelCase__ = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits UpperCamelCase__ = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tf.constant([-0.2744, 0.8215, -0.0836] ) tf.debugging.assert_near(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 )
244
1
from __future__ import annotations from typing import TypedDict class lowerCamelCase_ ( _a ): '''simple docstring''' lowercase_ = 42 lowercase_ = 42 def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> list[str]: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError('The parameter s type must be str.' ) return [s[i:] + s[:i] for i in range(len(__UpperCAmelCase ) )] def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> BWTTransformDict: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError('The parameter s type must be str.' ) if not s: raise ValueError('The parameter s must not be empty.' ) SCREAMING_SNAKE_CASE_ = all_rotations(__UpperCAmelCase ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation SCREAMING_SNAKE_CASE_ = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(__UpperCAmelCase ), } return response def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : int ) -> str: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError('The parameter bwt_string type must be str.' ) if not bwt_string: raise ValueError('The parameter bwt_string must not be empty.' ) try: SCREAMING_SNAKE_CASE_ = int(__UpperCAmelCase ) except ValueError: raise TypeError( 'The parameter idx_original_string type must be int or passive' ' of cast to int.' ) if idx_original_string < 0: raise ValueError('The parameter idx_original_string must not be lower than 0.' ) if idx_original_string >= len(__UpperCAmelCase ): raise ValueError( 'The parameter idx_original_string must be lower than' ' len(bwt_string).' ) SCREAMING_SNAKE_CASE_ = [""""""] * len(__UpperCAmelCase ) for _ in range(len(__UpperCAmelCase ) ): for i in range(len(__UpperCAmelCase ) ): SCREAMING_SNAKE_CASE_ = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": lowerCamelCase__ : Optional[int] = '''Provide a string that I will generate its BWT transform: ''' lowerCamelCase__ : Optional[Any] = input(entry_msg).strip() lowerCamelCase__ : Any = bwt_transform(s) print( f'''Burrows Wheeler transform for string \'{s}\' results ''' f'''in \'{result['bwt_string']}\'''' ) lowerCamelCase__ : Optional[int] = reverse_bwt(result['bwt_string'], result['idx_original_string']) print( f'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' ''' f'''we get original string \'{original_string}\'''' )
368
def UpperCAmelCase_ ( ) -> int: return 1 def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> int: return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> int: return 0 if x < 0 else five_pence(x - 5 ) + two_pence(__UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> int: return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(__UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> int: return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(__UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> int: return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(__UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> int: return 0 if x < 0 else one_pound(x - 1_00 ) + fifty_pence(__UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> int: return 0 if x < 0 else two_pound(x - 2_00 ) + one_pound(__UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : int = 2_00 ) -> int: return two_pound(__UpperCAmelCase ) if __name__ == "__main__": print(solution(int(input().strip())))
210
0
"""simple docstring""" from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) A: Any = logging.get_logger(__name__) # pylint: disable=invalid-name A: Dict = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-prior\")\n >>> pipe_prior.to(\"cuda\")\n >>> prompt = \"red cat, 4k photo\"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-decoder\")\n >>> pipe.to(\"cuda\")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save(\"cat.png\")\n ```\n" def _snake_case ( UpperCamelCase : Any , UpperCamelCase : Any , UpperCamelCase : Any=8 ): UpperCAmelCase : Any = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCAmelCase : Optional[Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> List[Any]: '''simple docstring''' super().__init__() self.register_modules( unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , movq=_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : Any = 2 ** (len(self.movq.config.block_out_channels ) - 1) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' if latents is None: UpperCAmelCase : Optional[Any] = randn_tensor(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ) else: if latents.shape != shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {shape}" ) UpperCAmelCase : Optional[int] = latents.to(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[Any] = latents * scheduler.init_noise_sigma return latents def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE=0 ) -> Optional[int]: '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) UpperCAmelCase : Optional[int] = torch.device(F"cuda:{gpu_id}" ) UpperCAmelCase : Dict = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE=0 ) -> str: '''simple docstring''' if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) UpperCAmelCase : int = torch.device(F"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=_SCREAMING_SNAKE_CASE ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCAmelCase : Union[str, Any] = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCAmelCase , UpperCAmelCase : Optional[Any] = cpu_offload_with_hook(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , prev_module_hook=_SCREAMING_SNAKE_CASE ) # We'll offload the last model manually. UpperCAmelCase : List[str] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(_SCREAMING_SNAKE_CASE , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_SCREAMING_SNAKE_CASE ) def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 100 , _SCREAMING_SNAKE_CASE = 4.0 , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : int = self._execution_device UpperCAmelCase : Optional[Any] = guidance_scale > 1.0 if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCAmelCase : Optional[Any] = torch.cat(_SCREAMING_SNAKE_CASE , dim=0 ) UpperCAmelCase : Any = image_embeds.shape[0] * num_images_per_prompt if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCAmelCase : Optional[int] = torch.cat(_SCREAMING_SNAKE_CASE , dim=0 ) if do_classifier_free_guidance: UpperCAmelCase : Union[str, Any] = image_embeds.repeat_interleave(_SCREAMING_SNAKE_CASE , dim=0 ) UpperCAmelCase : Dict = negative_image_embeds.repeat_interleave(_SCREAMING_SNAKE_CASE , dim=0 ) UpperCAmelCase : Optional[Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_SCREAMING_SNAKE_CASE ) self.scheduler.set_timesteps(_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Dict = self.scheduler.timesteps UpperCAmelCase : Optional[int] = self.unet.config.in_channels UpperCAmelCase , UpperCAmelCase : Optional[int] = downscale_height_and_width(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.movq_scale_factor ) # create initial latent UpperCAmelCase : List[str] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.scheduler , ) for i, t in enumerate(self.progress_bar(_SCREAMING_SNAKE_CASE ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase : str = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase : Any = {"""image_embeds""": image_embeds} UpperCAmelCase : Dict = self.unet( sample=_SCREAMING_SNAKE_CASE , timestep=_SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , added_cond_kwargs=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , )[0] if do_classifier_free_guidance: UpperCAmelCase , UpperCAmelCase : Tuple = noise_pred.split(latents.shape[1] , dim=1 ) UpperCAmelCase , UpperCAmelCase : List[str] = noise_pred.chunk(2 ) UpperCAmelCase , UpperCAmelCase : Dict = variance_pred.chunk(2 ) UpperCAmelCase : Optional[int] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCAmelCase : Optional[Any] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCAmelCase , UpperCAmelCase : Union[str, Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase : Optional[int] = self.scheduler.step( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , )[0] # post-processing UpperCAmelCase : str = self.movq.decode(_SCREAMING_SNAKE_CASE , force_not_quantize=_SCREAMING_SNAKE_CASE )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: UpperCAmelCase : int = image * 0.5 + 0.5 UpperCAmelCase : Optional[int] = image.clamp(0 , 1 ) UpperCAmelCase : int = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase : Union[str, Any] = self.numpy_to_pil(_SCREAMING_SNAKE_CASE ) if not return_dict: return (image,) return ImagePipelineOutput(images=_SCREAMING_SNAKE_CASE )
109
'''simple docstring''' class lowerCamelCase_ : '''simple docstring''' def __init__( self : Tuple , A : Any , A : str , A : Union[str, Any] ): _UpperCAmelCase : Optional[int] = None _UpperCAmelCase : Optional[int] = None _UpperCAmelCase : Any = graph self._normalize_graph(A , A ) _UpperCAmelCase : List[str] = len(A ) _UpperCAmelCase : Tuple = None def _A ( self : Any , A : List[Any] , A : str ): if sources is int: _UpperCAmelCase : List[Any] = [sources] if sinks is int: _UpperCAmelCase : List[Any] = [sinks] if len(A ) == 0 or len(A ) == 0: return _UpperCAmelCase : str = sources[0] _UpperCAmelCase : Union[str, Any] = sinks[0] # make fake vertex if there are more # than one source or sink if len(A ) > 1 or len(A ) > 1: _UpperCAmelCase : Dict = 0 for i in sources: max_input_flow += sum(self.graph[i] ) _UpperCAmelCase : str = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: _UpperCAmelCase : Optional[Any] = max_input_flow _UpperCAmelCase : List[str] = 0 _UpperCAmelCase : str = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: _UpperCAmelCase : Dict = max_input_flow _UpperCAmelCase : List[Any] = size - 1 def _A ( self : Union[str, Any] ): if self.maximum_flow_algorithm is None: raise Exception("You need to set maximum flow algorithm before." ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def _A ( self : Tuple , A : Dict ): _UpperCAmelCase : str = algorithm(self ) class lowerCamelCase_ : '''simple docstring''' def __init__( self : Any , A : str ): _UpperCAmelCase : Optional[int] = flow_network _UpperCAmelCase : Any = flow_network.verticesCount _UpperCAmelCase : List[str] = flow_network.sourceIndex _UpperCAmelCase : Union[str, Any] = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that _UpperCAmelCase : Any = flow_network.graph _UpperCAmelCase : Union[str, Any] = False def _A ( self : List[str] ): if not self.executed: self._algorithm() _UpperCAmelCase : int = True def _A ( self : List[Any] ): pass class lowerCamelCase_ (snake_case__ ): '''simple docstring''' def __init__( self : Optional[int] , A : Union[str, Any] ): super().__init__(A ) # use this to save your result _UpperCAmelCase : Any = -1 def _A ( self : Union[str, Any] ): if not self.executed: raise Exception("You should execute algorithm before using its result!" ) return self.maximum_flow class lowerCamelCase_ (snake_case__ ): '''simple docstring''' def __init__( self : Tuple , A : int ): super().__init__(A ) _UpperCAmelCase : List[str] = [[0] * self.verticies_count for i in range(self.verticies_count )] _UpperCAmelCase : Union[str, Any] = [0] * self.verticies_count _UpperCAmelCase : int = [0] * self.verticies_count def _A ( self : Dict ): _UpperCAmelCase : Dict = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule _UpperCAmelCase : Optional[int] = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list _UpperCAmelCase : Any = 0 while i < len(A ): _UpperCAmelCase : int = vertices_list[i] _UpperCAmelCase : int = self.heights[vertex_index] self.process_vertex(A ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(A ) ) _UpperCAmelCase : Union[str, Any] = 0 else: i += 1 _UpperCAmelCase : List[Any] = sum(self.preflow[self.source_index] ) def _A ( self : Union[str, Any] , A : str ): while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(A , A ) self.relabel(A ) def _A ( self : int , A : Dict , A : List[str] ): _UpperCAmelCase : int = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def _A ( self : Optional[int] , A : Union[str, Any] ): _UpperCAmelCase : str = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): _UpperCAmelCase : Tuple = self.heights[to_index] if min_height is not None: _UpperCAmelCase : Optional[Any] = min_height + 1 if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Optional[int] = [0] __SCREAMING_SNAKE_CASE : Union[str, Any] = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] __SCREAMING_SNAKE_CASE : List[Any] = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network __SCREAMING_SNAKE_CASE : Union[str, Any] = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate __SCREAMING_SNAKE_CASE : Optional[Any] = flow_network.find_maximum_flow() print(F'maximum flow is {maximum_flow}')
31
0
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def _A (lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :float = 1 / sqrt(2 ) ) -> IIRFilter: '''simple docstring''' _a = tau * frequency / samplerate _a = sin(lowerCAmelCase__ ) _a = cos(lowerCAmelCase__ ) _a = _sin / (2 * q_factor) _a = (1 - _cos) / 2 _a = 1 - _cos _a = 1 + alpha _a = -2 * _cos _a = 1 - alpha _a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _A (lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :float = 1 / sqrt(2 ) ) -> IIRFilter: '''simple docstring''' _a = tau * frequency / samplerate _a = sin(lowerCAmelCase__ ) _a = cos(lowerCAmelCase__ ) _a = _sin / (2 * q_factor) _a = (1 + _cos) / 2 _a = -1 - _cos _a = 1 + alpha _a = -2 * _cos _a = 1 - alpha _a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _A (lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :float = 1 / sqrt(2 ) ) -> IIRFilter: '''simple docstring''' _a = tau * frequency / samplerate _a = sin(lowerCAmelCase__ ) _a = cos(lowerCAmelCase__ ) _a = _sin / (2 * q_factor) _a = _sin / 2 _a = 0 _a = -ba _a = 1 + alpha _a = -2 * _cos _a = 1 - alpha _a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _A (lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :float = 1 / sqrt(2 ) ) -> IIRFilter: '''simple docstring''' _a = tau * frequency / samplerate _a = sin(lowerCAmelCase__ ) _a = cos(lowerCAmelCase__ ) _a = _sin / (2 * q_factor) _a = 1 - alpha _a = -2 * _cos _a = 1 + alpha _a = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def _A (lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :float , lowerCAmelCase__ :float = 1 / sqrt(2 ) , ) -> IIRFilter: '''simple docstring''' _a = tau * frequency / samplerate _a = sin(lowerCAmelCase__ ) _a = cos(lowerCAmelCase__ ) _a = _sin / (2 * q_factor) _a = 10 ** (gain_db / 40) _a = 1 + alpha * big_a _a = -2 * _cos _a = 1 - alpha * big_a _a = 1 + alpha / big_a _a = -2 * _cos _a = 1 - alpha / big_a _a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _A (lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :float , lowerCAmelCase__ :float = 1 / sqrt(2 ) , ) -> IIRFilter: '''simple docstring''' _a = tau * frequency / samplerate _a = sin(lowerCAmelCase__ ) _a = cos(lowerCAmelCase__ ) _a = _sin / (2 * q_factor) _a = 10 ** (gain_db / 40) _a = (big_a + 1) - (big_a - 1) * _cos _a = (big_a + 1) + (big_a - 1) * _cos _a = (big_a - 1) - (big_a + 1) * _cos _a = (big_a - 1) + (big_a + 1) * _cos _a = 2 * sqrt(lowerCAmelCase__ ) * alpha _a = big_a * (pmc + aaa) _a = 2 * big_a * mpc _a = big_a * (pmc - aaa) _a = ppmc + aaa _a = -2 * pmpc _a = ppmc - aaa _a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _A (lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :float , lowerCAmelCase__ :float = 1 / sqrt(2 ) , ) -> IIRFilter: '''simple docstring''' _a = tau * frequency / samplerate _a = sin(lowerCAmelCase__ ) _a = cos(lowerCAmelCase__ ) _a = _sin / (2 * q_factor) _a = 10 ** (gain_db / 40) _a = (big_a + 1) - (big_a - 1) * _cos _a = (big_a + 1) + (big_a - 1) * _cos _a = (big_a - 1) - (big_a + 1) * _cos _a = (big_a - 1) + (big_a + 1) * _cos _a = 2 * sqrt(lowerCAmelCase__ ) * alpha _a = big_a * (ppmc + aaa) _a = -2 * big_a * pmpc _a = big_a * (ppmc - aaa) _a = pmc + aaa _a = 2 * mpc _a = pmc - aaa _a = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
104
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features a_ : Optional[int] = logging.get_logger(__name__) a_ : List[Any] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) a_ : List[str] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class a : _lowerCAmelCase = field( default=_SCREAMING_SNAKE_CASE , metadata={"""help""": """Model type selected in the list: """ + """, """.join(_SCREAMING_SNAKE_CASE )} ) _lowerCAmelCase = field( default=_SCREAMING_SNAKE_CASE , metadata={"""help""": """The input data dir. Should contain the .json files for the SQuAD task."""} ) _lowerCAmelCase = field( default=1_2_8 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) _lowerCAmelCase = field( default=1_2_8 , metadata={"""help""": """When splitting up a long document into chunks, how much stride to take between chunks."""} , ) _lowerCAmelCase = field( default=6_4 , metadata={ """help""": ( """The maximum number of tokens for the question. Questions longer than this will """ """be truncated to this length.""" ) } , ) _lowerCAmelCase = field( default=3_0 , metadata={ """help""": ( """The maximum length of an answer that can be generated. This is needed because the start """ """and end predictions are not conditioned on one another.""" ) } , ) _lowerCAmelCase = field( default=_SCREAMING_SNAKE_CASE , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) _lowerCAmelCase = field( default=_SCREAMING_SNAKE_CASE , metadata={"""help""": """If true, the SQuAD examples contain some that do not have an answer."""} ) _lowerCAmelCase = field( default=0.0 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) _lowerCAmelCase = field( default=2_0 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) _lowerCAmelCase = field( default=0 , metadata={ """help""": ( """language id of input for language-specific xlm models (see""" """ tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)""" ) } , ) _lowerCAmelCase = field(default=1 , metadata={"""help""": """multiple threads for converting example to features"""} ) class a ( _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = """train""" _lowerCAmelCase = """dev""" class a ( _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 def __init__( self , __magic_name__ , __magic_name__ , __magic_name__ = None , __magic_name__ = Split.train , __magic_name__ = False , __magic_name__ = None , __magic_name__ = "pt" , ) -> Any: _a = args _a = is_language_sensitive _a = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__magic_name__ , __magic_name__ ): try: _a = Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) _a = mode # Load data features from cache or dataset file _a = 'v2' if args.version_2_with_negative else 'v1' _a = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}' , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _a = cached_features_file + '.lock' with FileLock(__magic_name__ ): if os.path.exists(__magic_name__ ) and not args.overwrite_cache: _a = time.time() _a = torch.load(__magic_name__ ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. _a = self.old_features['features'] _a = self.old_features.get('dataset' , __magic_name__ ) _a = self.old_features.get('examples' , __magic_name__ ) logger.info( f'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' ' future run' ) else: if mode == Split.dev: _a = self.processor.get_dev_examples(args.data_dir ) else: _a = self.processor.get_train_examples(args.data_dir ) _a , _a = squad_convert_examples_to_features( examples=self.examples , tokenizer=__magic_name__ , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=__magic_name__ , ) _a = time.time() torch.save( {'features': self.features, 'dataset': self.dataset, 'examples': self.examples} , __magic_name__ , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ) -> List[Any]: return len(self.features ) def __getitem__( self , __magic_name__ ) -> Dict[str, torch.Tensor]: # Convert to Tensors and build dataset _a = self.features[i] _a = torch.tensor(feature.input_ids , dtype=torch.long ) _a = torch.tensor(feature.attention_mask , dtype=torch.long ) _a = torch.tensor(feature.token_type_ids , dtype=torch.long ) _a = torch.tensor(feature.cls_index , dtype=torch.long ) _a = torch.tensor(feature.p_mask , dtype=torch.float ) _a = torch.tensor(feature.is_impossible , dtype=torch.float ) _a = { 'input_ids': input_ids, 'attention_mask': attention_mask, 'token_type_ids': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'cls_index': cls_index, 'p_mask': p_mask} ) if self.args.version_2_with_negative: inputs.update({'is_impossible': is_impossible} ) if self.is_language_sensitive: inputs.update({'langs': (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: _a = torch.tensor(feature.start_position , dtype=torch.long ) _a = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({'start_positions': start_positions, 'end_positions': end_positions} ) return inputs
104
1
'''simple docstring''' import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class SCREAMING_SNAKE_CASE ( _a , _a ): """simple docstring""" _SCREAMING_SNAKE_CASE = 1 @register_to_config def __init__( self : Dict , UpperCamelCase__ : int = 1_0_0_0 , UpperCamelCase__ : Optional[Union[np.ndarray, List[float]]] = None ): """simple docstring""" self.set_timesteps(UpperCamelCase__ ) # standard deviation of the initial noise distribution UpperCamelCase = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. UpperCamelCase = 4 # running values UpperCamelCase = [] def A ( self : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Union[str, torch.device] = None ): """simple docstring""" UpperCamelCase = num_inference_steps UpperCamelCase = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] UpperCamelCase = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: UpperCamelCase = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: UpperCamelCase = torch.sin(steps * math.pi / 2 ) ** 2 UpperCamelCase = (1.0 - self.betas**2) ** 0.5 UpperCamelCase = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] UpperCamelCase = timesteps.to(UpperCamelCase__ ) UpperCamelCase = [] def A ( self : Tuple , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : int , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : bool = True , ): """simple docstring""" if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) UpperCamelCase = (self.timesteps == timestep).nonzero().item() UpperCamelCase = timestep_index + 1 UpperCamelCase = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(UpperCamelCase__ ) if len(self.ets ) == 1: UpperCamelCase = self.ets[-1] elif len(self.ets ) == 2: UpperCamelCase = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: UpperCamelCase = (2_3 * self.ets[-1] - 1_6 * self.ets[-2] + 5 * self.ets[-3]) / 1_2 else: UpperCamelCase = (1 / 2_4) * (5_5 * self.ets[-1] - 5_9 * self.ets[-2] + 3_7 * self.ets[-3] - 9 * self.ets[-4]) UpperCamelCase = self._get_prev_sample(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCamelCase__ ) def A ( self : List[Any] , UpperCamelCase__ : torch.FloatTensor , *UpperCamelCase__ : Any , **UpperCamelCase__ : List[str] ): """simple docstring""" return sample def A ( self : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Any ): """simple docstring""" UpperCamelCase = self.alphas[timestep_index] UpperCamelCase = self.betas[timestep_index] UpperCamelCase = self.alphas[prev_timestep_index] UpperCamelCase = self.betas[prev_timestep_index] UpperCamelCase = (sample - sigma * ets) / max(UpperCamelCase__ , 1E-8 ) UpperCamelCase = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self : List[str] ): """simple docstring""" return self.config.num_train_timesteps
28
"""simple docstring""" from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor _lowercase : Union[str, Any] = transforms.Compose( [ transforms.Resize((2_56, 2_56)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def lowercase__ ( snake_case_ :List[Any] ): if isinstance(snake_case_ , torch.Tensor ): return image elif isinstance(snake_case_ , PIL.Image.Image ): __UpperCAmelCase = [image] __UpperCAmelCase = [trans(img.convert('''RGB''' ) ) for img in image] __UpperCAmelCase = torch.stack(snake_case_ ) return image class _UpperCAmelCase ( _lowerCAmelCase ): def __init__( self : Any , _lowercase : str , _lowercase : str ): super().__init__() # make sure scheduler can always be converted to DDIM __UpperCAmelCase = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=_lowercase , scheduler=_lowercase ) def a ( self : int , _lowercase : List[str] ): if strength < 0 or strength > 1: raise ValueError(F'''The value of strength should in [0.0, 1.0] but is {strength}''' ) def a ( self : List[Any] , _lowercase : List[Any] , _lowercase : Optional[Any] , _lowercase : int ): # get the original timestep using init_timestep __UpperCAmelCase = min(int(num_inference_steps * strength ) , _lowercase ) __UpperCAmelCase = max(num_inference_steps - init_timestep , 0 ) __UpperCAmelCase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def a ( self : Optional[Any] , _lowercase : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Optional[Any] , _lowercase : List[str] , _lowercase : Tuple , _lowercase : Optional[int]=None ): if not isinstance(_lowercase , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_lowercase )}''' ) __UpperCAmelCase = image.to(device=_lowercase , dtype=_lowercase ) if isinstance(_lowercase , _lowercase ) and len(_lowercase ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(_lowercase )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) __UpperCAmelCase = init_latents.shape __UpperCAmelCase = randn_tensor(_lowercase , generator=_lowercase , device=_lowercase , dtype=_lowercase ) # get latents print('''add noise to latents at timestep''' , _lowercase ) __UpperCAmelCase = self.scheduler.add_noise(_lowercase , _lowercase , _lowercase ) __UpperCAmelCase = init_latents return latents @torch.no_grad() def __call__( self : Any , _lowercase : Union[torch.FloatTensor, PIL.Image.Image] = None , _lowercase : float = 0.8 , _lowercase : int = 1 , _lowercase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _lowercase : float = 0.0 , _lowercase : int = 50 , _lowercase : Optional[bool] = None , _lowercase : Optional[str] = "pil" , _lowercase : bool = True , ): self.check_inputs(_lowercase ) # 2. Preprocess image __UpperCAmelCase = preprocess(_lowercase ) # 3. set timesteps self.scheduler.set_timesteps(_lowercase , device=self.device ) __UpperCAmelCase , __UpperCAmelCase = self.get_timesteps(_lowercase , _lowercase , self.device ) __UpperCAmelCase = timesteps[:1].repeat(_lowercase ) # 4. Prepare latent variables __UpperCAmelCase = self.prepare_latents(_lowercase , _lowercase , _lowercase , self.unet.dtype , self.device , _lowercase ) __UpperCAmelCase = latents # 5. Denoising loop for t in self.progress_bar(_lowercase ): # 1. predict noise model_output __UpperCAmelCase = self.unet(_lowercase , _lowercase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __UpperCAmelCase = self.scheduler.step( _lowercase , _lowercase , _lowercase , eta=_lowercase , use_clipped_model_output=_lowercase , generator=_lowercase , ).prev_sample __UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) __UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __UpperCAmelCase = self.numpy_to_pil(_lowercase ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=_lowercase )
332
0
'''simple docstring''' import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available lowerCamelCase_ = logging.getLogger(__name__) @dataclass class lowercase_ : """simple docstring""" lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = 42 @dataclass class lowercase_ : """simple docstring""" lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = None lowerCamelCase_ = None class lowercase_ ( A ): """simple docstring""" lowerCamelCase_ = '''train''' lowerCamelCase_ = '''dev''' lowerCamelCase_ = '''test''' class lowercase_ : """simple docstring""" @staticmethod def lowerCAmelCase_ ( __lowerCamelCase : int , __lowerCamelCase : Union[Split, str] ): """simple docstring""" raise NotImplementedError @staticmethod def lowerCAmelCase_ ( __lowerCamelCase : str ): """simple docstring""" raise NotImplementedError @staticmethod def lowerCAmelCase_ ( __lowerCamelCase : List[InputExample] , __lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : Tuple=False , __lowerCamelCase : List[str]="[CLS]" , __lowerCamelCase : Dict=1 , __lowerCamelCase : int="[SEP]" , __lowerCamelCase : Tuple=False , __lowerCamelCase : Tuple=False , __lowerCamelCase : Tuple=0 , __lowerCamelCase : Optional[Any]=0 , __lowerCamelCase : Union[str, Any]=-1_0_0 , __lowerCamelCase : int=0 , __lowerCamelCase : List[str]=True , ): """simple docstring""" _SCREAMING_SNAKE_CASE = {label: i for i, label in enumerate(__lowerCamelCase )} _SCREAMING_SNAKE_CASE = [] for ex_index, example in enumerate(__lowerCamelCase ): if ex_index % 1_0_0_0_0 == 0: logger.info("Writing example %d of %d" , __lowerCamelCase , len(__lowerCamelCase ) ) _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] for word, label in zip(example.words , example.labels ): _SCREAMING_SNAKE_CASE = tokenizer.tokenize(__lowerCamelCase ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(__lowerCamelCase ) > 0: tokens.extend(__lowerCamelCase ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(__lowerCamelCase ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. _SCREAMING_SNAKE_CASE = tokenizer.num_special_tokens_to_add() if len(__lowerCamelCase ) > max_seq_length - special_tokens_count: _SCREAMING_SNAKE_CASE = tokens[: (max_seq_length - special_tokens_count)] _SCREAMING_SNAKE_CASE = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] _SCREAMING_SNAKE_CASE = [sequence_a_segment_id] * len(__lowerCamelCase ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: _SCREAMING_SNAKE_CASE = [cls_token] + tokens _SCREAMING_SNAKE_CASE = [pad_token_label_id] + label_ids _SCREAMING_SNAKE_CASE = [cls_token_segment_id] + segment_ids _SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(__lowerCamelCase ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. _SCREAMING_SNAKE_CASE = [1 if mask_padding_with_zero else 0] * len(__lowerCamelCase ) # Zero-pad up to the sequence length. _SCREAMING_SNAKE_CASE = max_seq_length - len(__lowerCamelCase ) if pad_on_left: _SCREAMING_SNAKE_CASE = ([pad_token] * padding_length) + input_ids _SCREAMING_SNAKE_CASE = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask _SCREAMING_SNAKE_CASE = ([pad_token_segment_id] * padding_length) + segment_ids _SCREAMING_SNAKE_CASE = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(__lowerCamelCase ) == max_seq_length assert len(__lowerCamelCase ) == max_seq_length assert len(__lowerCamelCase ) == max_seq_length assert len(__lowerCamelCase ) == max_seq_length if ex_index < 5: logger.info("*** Example ***" ) logger.info("guid: %s" , example.guid ) logger.info("tokens: %s" , " ".join([str(__lowerCamelCase ) for x in tokens] ) ) logger.info("input_ids: %s" , " ".join([str(__lowerCamelCase ) for x in input_ids] ) ) logger.info("input_mask: %s" , " ".join([str(__lowerCamelCase ) for x in input_mask] ) ) logger.info("segment_ids: %s" , " ".join([str(__lowerCamelCase ) for x in segment_ids] ) ) logger.info("label_ids: %s" , " ".join([str(__lowerCamelCase ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: _SCREAMING_SNAKE_CASE = None features.append( InputFeatures( input_ids=__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , label_ids=__lowerCamelCase ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class lowercase_ ( A ): """simple docstring""" lowerCamelCase_ = 42 lowerCamelCase_ = nn.CrossEntropyLoss().ignore_index def __init__( self : Any , __lowerCamelCase : TokenClassificationTask , __lowerCamelCase : str , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Union[str, Any]=False , __lowerCamelCase : Split = Split.train , ): """simple docstring""" _SCREAMING_SNAKE_CASE = os.path.join( __lowerCamelCase , "cached_{}_{}_{}".format(mode.value , tokenizer.__class__.__name__ , str(__lowerCamelCase ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _SCREAMING_SNAKE_CASE = cached_features_file + ".lock" with FileLock(__lowerCamelCase ): if os.path.exists(__lowerCamelCase ) and not overwrite_cache: logger.info(F"""Loading features from cached file {cached_features_file}""" ) _SCREAMING_SNAKE_CASE = torch.load(__lowerCamelCase ) else: logger.info(F"""Creating features from dataset file at {data_dir}""" ) _SCREAMING_SNAKE_CASE = token_classification_task.read_examples_from_file(__lowerCamelCase , __lowerCamelCase ) # TODO clean up all this to leverage built-in features of tokenizers _SCREAMING_SNAKE_CASE = token_classification_task.convert_examples_to_features( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , cls_token_at_end=bool(model_type in ["xlnet"] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ["xlnet"] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=__lowerCamelCase , pad_on_left=bool(tokenizer.padding_side == "left" ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(F"""Saving features into cached file {cached_features_file}""" ) torch.save(self.features , __lowerCamelCase ) def __len__( self : Tuple ): """simple docstring""" return len(self.features ) def __getitem__( self : Optional[Any] , __lowerCamelCase : str ): """simple docstring""" return self.features[i] if is_tf_available(): import tensorflow as tf class lowercase_ : """simple docstring""" lowerCamelCase_ = 42 lowerCamelCase_ = -100 def __init__( self : List[str] , __lowerCamelCase : TokenClassificationTask , __lowerCamelCase : str , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : Split = Split.train , ): """simple docstring""" _SCREAMING_SNAKE_CASE = token_classification_task.read_examples_from_file(__lowerCamelCase , __lowerCamelCase ) # TODO clean up all this to leverage built-in features of tokenizers _SCREAMING_SNAKE_CASE = token_classification_task.convert_examples_to_features( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , cls_token_at_end=bool(model_type in ["xlnet"] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ["xlnet"] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=__lowerCamelCase , pad_on_left=bool(tokenizer.padding_side == "left" ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: _SCREAMING_SNAKE_CASE = tf.data.Dataset.from_generator( __lowerCamelCase , ({"input_ids": tf.intaa, "attention_mask": tf.intaa}, tf.intaa) , ( {"input_ids": tf.TensorShape([None] ), "attention_mask": tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: _SCREAMING_SNAKE_CASE = tf.data.Dataset.from_generator( __lowerCamelCase , ({"input_ids": tf.intaa, "attention_mask": tf.intaa, "token_type_ids": tf.intaa}, tf.intaa) , ( { "input_ids": tf.TensorShape([None] ), "attention_mask": tf.TensorShape([None] ), "token_type_ids": tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self : List[str] ): """simple docstring""" return len(self.features ) def __getitem__( self : Union[str, Any] , __lowerCamelCase : List[str] ): """simple docstring""" return self.features[i]
371
'''simple docstring''' import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class lowercase_ : """simple docstring""" def lowerCAmelCase_ ( self : int , __lowerCamelCase : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple ): """simple docstring""" return None class lowercase_ : """simple docstring""" def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] ): """simple docstring""" return None class lowercase_ ( unittest.TestCase ): """simple docstring""" lowerCamelCase_ = [ # (model_name, model_kwargs) ('''bert-base-cased''', {}), ('''gpt2''', {'''use_cache''': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__lowerCamelCase , "tf" , 1_2 , **__lowerCamelCase ) @require_torch @slow def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__lowerCamelCase , "pt" , 1_2 , **__lowerCamelCase ) @require_torch @slow def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" from transformers import BertModel _SCREAMING_SNAKE_CASE = ["[UNK]", "[SEP]", "[CLS]", "[PAD]", "[MASK]", "some", "other", "words"] with NamedTemporaryFile(mode="w+t" ) as vocab_file: vocab_file.write("\n".join(__lowerCamelCase ) ) vocab_file.flush() _SCREAMING_SNAKE_CASE = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: _SCREAMING_SNAKE_CASE = BertModel(BertConfig(vocab_size=len(__lowerCamelCase ) ) ) model.save_pretrained(__lowerCamelCase ) self._test_export(__lowerCamelCase , "pt" , 1_2 , __lowerCamelCase ) @require_tf @slow def lowerCAmelCase_ ( self : Optional[int] ): """simple docstring""" for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: _SCREAMING_SNAKE_CASE = self._test_export(__lowerCamelCase , "tf" , 1_2 , **__lowerCamelCase ) _SCREAMING_SNAKE_CASE = quantize(Path(__lowerCamelCase ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__lowerCamelCase ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) @require_torch @slow def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: _SCREAMING_SNAKE_CASE = self._test_export(__lowerCamelCase , "pt" , 1_2 , **__lowerCamelCase ) _SCREAMING_SNAKE_CASE = quantize(__lowerCamelCase ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__lowerCamelCase ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) def lowerCAmelCase_ ( self : Tuple , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any , __lowerCamelCase : Dict , __lowerCamelCase : Optional[int]=None , **__lowerCamelCase : int ): """simple docstring""" try: # Compute path with TemporaryDirectory() as tempdir: _SCREAMING_SNAKE_CASE = Path(__lowerCamelCase ).joinpath("model.onnx" ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) return path except Exception as e: self.fail(__lowerCamelCase ) @require_torch @require_tokenizers @slow def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" from transformers import BertModel _SCREAMING_SNAKE_CASE = BertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) _SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(__lowerCamelCase , __lowerCamelCase , "pt" ) @require_tf @require_tokenizers @slow def lowerCAmelCase_ ( self : Any ): """simple docstring""" from transformers import TFBertModel _SCREAMING_SNAKE_CASE = TFBertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) _SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(__lowerCamelCase , __lowerCamelCase , "tf" ) def lowerCAmelCase_ ( self : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] ): """simple docstring""" _SCREAMING_SNAKE_CASE = FeatureExtractionPipeline(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = ["input_ids", "token_type_ids", "attention_mask", "output_0", "output_1"] _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = infer_shapes(__lowerCamelCase , __lowerCamelCase ) # Assert all variables are present self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , __lowerCamelCase ) self.assertSequenceEqual(variable_names[3:] , __lowerCamelCase ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: "batch", 1: "sequence"} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes["output_0"] , {0: "batch", 1: "sequence"} ) self.assertDictEqual(shapes["output_1"] , {0: "batch"} ) def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask", "token_type_ids"] _SCREAMING_SNAKE_CASE = {"input_ids": [1, 2, 3, 4], "attention_mask": [0, 0, 0, 0], "token_type_ids": [1, 1, 1, 1]} _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = ensure_valid_input(FuncContiguousArgs() , __lowerCamelCase , __lowerCamelCase ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(__lowerCamelCase ) , 3 ) # Should have exactly the same input names self.assertEqual(set(__lowerCamelCase ) , set(__lowerCamelCase ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(__lowerCamelCase , (tokens["input_ids"], tokens["token_type_ids"], tokens["attention_mask"]) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = ensure_valid_input(FuncNonContiguousArgs() , __lowerCamelCase , __lowerCamelCase ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(__lowerCamelCase ) , 1 ) self.assertEqual(len(__lowerCamelCase ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens["input_ids"] ) self.assertEqual(ordered_input_names[0] , "input_ids" ) def lowerCAmelCase_ ( self : Optional[int] ): """simple docstring""" _SCREAMING_SNAKE_CASE = generate_identified_filename(Path("/home/something/my_fake_model.onnx" ) , "-test" ) self.assertEqual("/home/something/my_fake_model-test.onnx" , generated.as_posix() )
111
0
import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class __lowerCAmelCase : """simple docstring""" def __init__( self : str , _snake_case : int , _snake_case : str=13 , _snake_case : str=7 , _snake_case : Tuple=6 , _snake_case : int=17 , _snake_case : List[Any]=23 , _snake_case : Tuple=11 , _snake_case : Dict=True , ): __lowercase : List[str] = parent __lowercase : Optional[int] = batch_size __lowercase : Dict = seq_length __lowercase : Tuple = act_dim __lowercase : Optional[int] = state_dim __lowercase : Any = hidden_size __lowercase : Union[str, Any] = max_length __lowercase : Optional[Any] = is_training def snake_case_ ( self : Tuple ): __lowercase : List[str] = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) __lowercase : List[str] = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) __lowercase : Optional[int] = floats_tensor((self.batch_size, self.seq_length, 1) ) __lowercase : List[Any] = floats_tensor((self.batch_size, self.seq_length, 1) ) __lowercase : Tuple = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1000 ) __lowercase : Optional[int] = random_attention_mask((self.batch_size, self.seq_length) ) __lowercase : str = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def snake_case_ ( self : Optional[Any] ): return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def snake_case_ ( self : Tuple , _snake_case : Optional[Any] , _snake_case : Optional[Any] , _snake_case : Tuple , _snake_case : List[Any] , _snake_case : List[str] , _snake_case : Any , _snake_case : List[Any] , ): __lowercase : Union[str, Any] = DecisionTransformerModel(config=_snake_case ) model.to(_snake_case ) model.eval() __lowercase : Optional[Any] = model(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def snake_case_ ( self : Dict ): __lowercase : Union[str, Any] = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) : Any = config_and_inputs __lowercase : str = { '''states''': states, '''actions''': actions, '''rewards''': rewards, '''returns_to_go''': returns_to_go, '''timesteps''': timesteps, '''attention_mask''': attention_mask, } return config, inputs_dict @require_torch class __lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" A__ : Optional[Any] = (DecisionTransformerModel,) if is_torch_available() else () A__ : int = () A__ : List[str] = {'''feature-extraction''': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids A__ : Optional[int] = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features A__ : Optional[Any] = False A__ : Dict = False A__ : Union[str, Any] = False A__ : Union[str, Any] = False A__ : Union[str, Any] = False A__ : Any = False A__ : str = False A__ : Dict = False A__ : Dict = False def snake_case_ ( self : List[Any] ): __lowercase : Tuple = DecisionTransformerModelTester(self ) __lowercase : List[Any] = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def snake_case_ ( self : Optional[Any] ): self.config_tester.run_common_tests() def snake_case_ ( self : Any ): __lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) @slow def snake_case_ ( self : List[Any] ): for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : Tuple = DecisionTransformerModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def snake_case_ ( self : Tuple ): __lowercase , __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Any = model_class(_snake_case ) __lowercase : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : Optional[Any] = [*signature.parameters.keys()] __lowercase : Any = [ '''states''', '''actions''', '''rewards''', '''returns_to_go''', '''timesteps''', '''attention_mask''', ] self.assertListEqual(arg_names[: len(_snake_case )] , _snake_case ) @require_torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def snake_case_ ( self : str ): __lowercase : Tuple = 2 # number of steps of autoregressive prediction we will perform __lowercase : Tuple = 10 # defined by the RL environment, may be normalized __lowercase : int = DecisionTransformerModel.from_pretrained('''edbeeching/decision-transformer-gym-hopper-expert''' ) __lowercase : List[Any] = model.to(_snake_case ) __lowercase : List[str] = model.config torch.manual_seed(0 ) __lowercase : Dict = torch.randn(1 , 1 , config.state_dim ).to(device=_snake_case , dtype=torch.floataa ) # env.reset() __lowercase : str = torch.tensor( [[0.24_27_93, -0.28_69_30_74, 0.8_74_26_13], [0.67_81_52_74, -0.08_10_10_85, -0.12_95_21_47]] , device=_snake_case ) __lowercase : List[Any] = torch.tensor(_snake_case , device=_snake_case , dtype=torch.floataa ).reshape(1 , 1 , 1 ) __lowercase : Union[str, Any] = state __lowercase : List[Any] = torch.zeros(1 , 0 , config.act_dim , device=_snake_case , dtype=torch.floataa ) __lowercase : List[Any] = torch.zeros(1 , 0 , device=_snake_case , dtype=torch.floataa ) __lowercase : str = torch.tensor(0 , device=_snake_case , dtype=torch.long ).reshape(1 , 1 ) for step in range(_snake_case ): __lowercase : int = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=_snake_case )] , dim=1 ) __lowercase : Tuple = torch.cat([rewards, torch.zeros(1 , 1 , device=_snake_case )] , dim=1 ) __lowercase : Any = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): __lowercase , __lowercase , __lowercase : Dict = model( states=_snake_case , actions=_snake_case , rewards=_snake_case , returns_to_go=_snake_case , timesteps=_snake_case , attention_mask=_snake_case , return_dict=_snake_case , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1E-4 ) ) __lowercase , __lowercase , __lowercase , __lowercase : Optional[int] = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=_snake_case , dtype=torch.floataa ), 1.0, False, {}, ) __lowercase : Optional[int] = action_pred[0, -1] __lowercase : Dict = torch.cat([states, state] , dim=1 ) __lowercase : int = returns_to_go[0, -1] - reward __lowercase : List[Any] = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) __lowercase : Union[str, Any] = torch.cat( [timesteps, torch.ones((1, 1) , device=_snake_case , dtype=torch.long ) * (step + 1)] , dim=1 )
156
from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract __lowerCAmelCase : List[Any] = logging.get_logger(__name__) def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: return [ int(1_000 * (box[0] / width) ), int(1_000 * (box[1] / height) ), int(1_000 * (box[2] / width) ), int(1_000 * (box[3] / height) ), ] def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None ) -> List[str]: __lowercase : Optional[int] = tesseract_config if tesseract_config is not None else '''''' # apply OCR __lowercase : Union[str, Any] = to_pil_image(__lowerCAmelCase ) __lowercase , __lowercase : Any = pil_image.size __lowercase : Union[str, Any] = pytesseract.image_to_data(__lowerCAmelCase , lang=__lowerCAmelCase , output_type='''dict''' , config=__lowerCAmelCase ) __lowercase , __lowercase , __lowercase , __lowercase , __lowercase : int = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates __lowercase : str = [idx for idx, word in enumerate(__lowerCAmelCase ) if not word.strip()] __lowercase : List[Any] = [word for idx, word in enumerate(__lowerCAmelCase ) if idx not in irrelevant_indices] __lowercase : Tuple = [coord for idx, coord in enumerate(__lowerCAmelCase ) if idx not in irrelevant_indices] __lowercase : Any = [coord for idx, coord in enumerate(__lowerCAmelCase ) if idx not in irrelevant_indices] __lowercase : str = [coord for idx, coord in enumerate(__lowerCAmelCase ) if idx not in irrelevant_indices] __lowercase : str = [coord for idx, coord in enumerate(__lowerCAmelCase ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format __lowercase : List[Any] = [] for x, y, w, h in zip(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): __lowercase : int = [x, y, x + w, y + h] actual_boxes.append(__lowerCAmelCase ) # finally, normalize the bounding boxes __lowercase : str = [] for box in actual_boxes: normalized_boxes.append(normalize_box(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ), "Not as many words as there are bounding boxes" return words, normalized_boxes class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" A__ : Dict = ['''pixel_values'''] def __init__( self : str , _snake_case : bool = True , _snake_case : Dict[str, int] = None , _snake_case : PILImageResampling = PILImageResampling.BILINEAR , _snake_case : bool = True , _snake_case : Optional[str] = None , _snake_case : Optional[str] = "" , **_snake_case : Union[str, Any] , ): super().__init__(**_snake_case ) __lowercase : Optional[int] = size if size is not None else {'''height''': 224, '''width''': 224} __lowercase : Optional[int] = get_size_dict(_snake_case ) __lowercase : Optional[int] = do_resize __lowercase : List[str] = size __lowercase : Optional[Any] = resample __lowercase : str = apply_ocr __lowercase : List[Any] = ocr_lang __lowercase : Optional[int] = tesseract_config def snake_case_ ( self : str , _snake_case : np.ndarray , _snake_case : Dict[str, int] , _snake_case : PILImageResampling = PILImageResampling.BILINEAR , _snake_case : Optional[Union[str, ChannelDimension]] = None , **_snake_case : Any , ): __lowercase : Optional[Any] = get_size_dict(_snake_case ) if "height" not in size or "width" not in size: raise ValueError(F'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) __lowercase : Dict = (size['''height'''], size['''width''']) return resize(_snake_case , size=_snake_case , resample=_snake_case , data_format=_snake_case , **_snake_case ) def snake_case_ ( self : int , _snake_case : ImageInput , _snake_case : bool = None , _snake_case : Dict[str, int] = None , _snake_case : PILImageResampling = None , _snake_case : bool = None , _snake_case : Optional[str] = None , _snake_case : Optional[str] = None , _snake_case : Optional[Union[str, TensorType]] = None , _snake_case : ChannelDimension = ChannelDimension.FIRST , **_snake_case : Optional[int] , ): __lowercase : str = do_resize if do_resize is not None else self.do_resize __lowercase : int = size if size is not None else self.size __lowercase : Dict = get_size_dict(_snake_case ) __lowercase : Union[str, Any] = resample if resample is not None else self.resample __lowercase : int = apply_ocr if apply_ocr is not None else self.apply_ocr __lowercase : List[str] = ocr_lang if ocr_lang is not None else self.ocr_lang __lowercase : Union[str, Any] = tesseract_config if tesseract_config is not None else self.tesseract_config __lowercase : Union[str, Any] = make_list_of_images(_snake_case ) if not valid_images(_snake_case ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) # All transformations expect numpy arrays. __lowercase : Optional[int] = [to_numpy_array(_snake_case ) for image in images] if apply_ocr: requires_backends(self , '''pytesseract''' ) __lowercase : Optional[int] = [] __lowercase : Tuple = [] for image in images: __lowercase , __lowercase : Dict = apply_tesseract(_snake_case , _snake_case , _snake_case ) words_batch.append(_snake_case ) boxes_batch.append(_snake_case ) if do_resize: __lowercase : int = [self.resize(image=_snake_case , size=_snake_case , resample=_snake_case ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) __lowercase : Tuple = [flip_channel_order(_snake_case ) for image in images] __lowercase : int = [to_channel_dimension_format(_snake_case , _snake_case ) for image in images] __lowercase : Optional[Any] = BatchFeature(data={'''pixel_values''': images} , tensor_type=_snake_case ) if apply_ocr: __lowercase : str = words_batch __lowercase : int = boxes_batch return data
156
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """microsoft/resnet-50""": """https://huggingface.co/microsoft/resnet-50/blob/main/config.json""", } class _a ( lowerCamelCase__ , lowerCamelCase__): _a : Union[str, Any] = 'resnet' _a : int = ['basic', 'bottleneck'] def __init__( self : List[Any] , _SCREAMING_SNAKE_CASE : Optional[int]=3 , _SCREAMING_SNAKE_CASE : List[Any]=64 , _SCREAMING_SNAKE_CASE : List[str]=[256, 512, 1024, 2048] , _SCREAMING_SNAKE_CASE : Optional[int]=[3, 4, 6, 3] , _SCREAMING_SNAKE_CASE : Optional[int]="bottleneck" , _SCREAMING_SNAKE_CASE : Union[str, Any]="relu" , _SCREAMING_SNAKE_CASE : Optional[Any]=False , _SCREAMING_SNAKE_CASE : Optional[Any]=None , _SCREAMING_SNAKE_CASE : int=None , **_SCREAMING_SNAKE_CASE : Optional[Any] , )-> Optional[int]: super().__init__(**_SCREAMING_SNAKE_CASE ) if layer_type not in self.layer_types: raise ValueError(F'layer_type={layer_type} is not one of {",".join(self.layer_types )}' ) lowerCAmelCase__ : Union[str, Any] = num_channels lowerCAmelCase__ : Any = embedding_size lowerCAmelCase__ : Union[str, Any] = hidden_sizes lowerCAmelCase__ : Any = depths lowerCAmelCase__ : List[str] = layer_type lowerCAmelCase__ : str = hidden_act lowerCAmelCase__ : Union[str, Any] = downsample_in_first_stage lowerCAmelCase__ : Dict = ['''stem'''] + [F'stage{idx}' for idx in range(1 , len(_SCREAMING_SNAKE_CASE ) + 1 )] lowerCAmelCase__ , lowerCAmelCase__ : Dict = get_aligned_output_features_output_indices( out_features=_SCREAMING_SNAKE_CASE , out_indices=_SCREAMING_SNAKE_CASE , stage_names=self.stage_names ) class _a ( lowerCamelCase__): _a : Tuple = version.parse('''1.11''') @property def UpperCAmelCase__( self : Union[str, Any] )-> Dict: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def UpperCAmelCase__( self : Tuple )-> Optional[Any]: return 1E-3
356
class _a : def __init__( self : str , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[Any] )-> Tuple: lowerCAmelCase__ : List[Any] = None lowerCAmelCase__ : int = None lowerCAmelCase__ : Union[str, Any] = graph self._normalize_graph(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Tuple = len(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Optional[int] = None def UpperCAmelCase__( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] )-> Union[str, Any]: if sources is int: lowerCAmelCase__ : List[Any] = [sources] if sinks is int: lowerCAmelCase__ : Optional[Any] = [sinks] if len(_SCREAMING_SNAKE_CASE ) == 0 or len(_SCREAMING_SNAKE_CASE ) == 0: return lowerCAmelCase__ : Union[str, Any] = sources[0] lowerCAmelCase__ : Dict = sinks[0] # make fake vertex if there are more # than one source or sink if len(_SCREAMING_SNAKE_CASE ) > 1 or len(_SCREAMING_SNAKE_CASE ) > 1: lowerCAmelCase__ : List[Any] = 0 for i in sources: max_input_flow += sum(self.graph[i] ) lowerCAmelCase__ : Any = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: lowerCAmelCase__ : Optional[Any] = max_input_flow lowerCAmelCase__ : List[str] = 0 lowerCAmelCase__ : List[Any] = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: lowerCAmelCase__ : str = max_input_flow lowerCAmelCase__ : Tuple = size - 1 def UpperCAmelCase__( self : Union[str, Any] )-> Union[str, Any]: if self.maximum_flow_algorithm is None: raise Exception('''You need to set maximum flow algorithm before.''' ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def UpperCAmelCase__( self : str , _SCREAMING_SNAKE_CASE : List[Any] )-> int: lowerCAmelCase__ : int = algorithm(self ) class _a : def __init__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : Tuple )-> Union[str, Any]: lowerCAmelCase__ : Tuple = flow_network lowerCAmelCase__ : Dict = flow_network.verticesCount lowerCAmelCase__ : Optional[Any] = flow_network.sourceIndex lowerCAmelCase__ : Optional[Any] = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that lowerCAmelCase__ : str = flow_network.graph lowerCAmelCase__ : Optional[int] = False def UpperCAmelCase__( self : List[str] )-> Dict: if not self.executed: self._algorithm() lowerCAmelCase__ : Any = True def UpperCAmelCase__( self : Optional[Any] )-> int: pass class _a ( _lowercase): def __init__( self : Any , _SCREAMING_SNAKE_CASE : List[Any] )-> Union[str, Any]: super().__init__(_SCREAMING_SNAKE_CASE ) # use this to save your result lowerCAmelCase__ : Dict = -1 def UpperCAmelCase__( self : Any )-> Optional[Any]: if not self.executed: raise Exception('''You should execute algorithm before using its result!''' ) return self.maximum_flow class _a ( _lowercase): def __init__( self : Any , _SCREAMING_SNAKE_CASE : List[str] )-> List[str]: super().__init__(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Any = [[0] * self.verticies_count for i in range(self.verticies_count )] lowerCAmelCase__ : Optional[Any] = [0] * self.verticies_count lowerCAmelCase__ : str = [0] * self.verticies_count def UpperCAmelCase__( self : Any )-> List[Any]: lowerCAmelCase__ : Optional[Any] = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule lowerCAmelCase__ : Any = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list lowerCAmelCase__ : str = 0 while i < len(_SCREAMING_SNAKE_CASE ): lowerCAmelCase__ : Union[str, Any] = vertices_list[i] lowerCAmelCase__ : Any = self.heights[vertex_index] self.process_vertex(_SCREAMING_SNAKE_CASE ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(_SCREAMING_SNAKE_CASE ) ) lowerCAmelCase__ : Optional[Any] = 0 else: i += 1 lowerCAmelCase__ : Optional[Any] = sum(self.preflow[self.source_index] ) def UpperCAmelCase__( self : List[str] , _SCREAMING_SNAKE_CASE : Optional[Any] )-> Optional[int]: while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.relabel(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : int , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] )-> Union[str, Any]: lowerCAmelCase__ : Union[str, Any] = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def UpperCAmelCase__( self : Optional[int] , _SCREAMING_SNAKE_CASE : Any )-> Optional[int]: lowerCAmelCase__ : Optional[int] = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): lowerCAmelCase__ : List[Any] = self.heights[to_index] if min_height is not None: lowerCAmelCase__ : Optional[Any] = min_height + 1 if __name__ == "__main__": lowerCamelCase = [0] lowerCamelCase = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] lowerCamelCase = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network lowerCamelCase = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate lowerCamelCase = flow_network.find_maximum_flow() print(f'''maximum flow is {maximum_flow}''')
211
0
'''simple docstring''' class lowercase : """simple docstring""" def __init__( self ): '''simple docstring''' UpperCamelCase__ :Union[str, Any] = {} def lowerCAmelCase__ ( self ): '''simple docstring''' print(self.vertex ) for i in self.vertex: print(UpperCamelCase_ , ''' -> ''' , ''' -> '''.join([str(UpperCamelCase_ ) for j in self.vertex[i]] ) ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' if from_vertex in self.vertex: self.vertex[from_vertex].append(UpperCamelCase_ ) else: # else make a new vertex UpperCamelCase__ :Optional[Any] = [to_vertex] def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Dict = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :List[Any] = True print(UpperCamelCase_ , end=''' ''' ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(UpperCamelCase_ , UpperCamelCase_ ) if __name__ == "__main__": __snake_case = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('''DFS:''') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
97
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Union[str, Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE : Union[str, Any] = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE : Dict = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE : str = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE : Dict = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } SCREAMING_SNAKE_CASE : Optional[Any] = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } SCREAMING_SNAKE_CASE : Dict = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } SCREAMING_SNAKE_CASE : List[Any] = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } SCREAMING_SNAKE_CASE : Dict = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } SCREAMING_SNAKE_CASE : Dict = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class _lowerCamelCase( _a ): lowercase_ : Any = VOCAB_FILES_NAMES lowercase_ : Optional[int] = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase_ : str = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ : str = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class _lowerCamelCase( _a ): lowercase_ : Optional[int] = VOCAB_FILES_NAMES lowercase_ : Any = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase_ : str = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ : Union[str, Any] = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE : Optional[int] = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) SCREAMING_SNAKE_CASE : Any = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) SCREAMING_SNAKE_CASE : str = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(_a ) class _lowerCamelCase: def __call__( self, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = False, lowerCamelCase = False, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = None, **lowerCamelCase, ) -> BatchEncoding: """simple docstring""" if titles is None and texts is None: return super().__call__( lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase, max_length=lowerCamelCase, return_tensors=lowerCamelCase, return_attention_mask=lowerCamelCase, **lowerCamelCase, ) elif titles is None or texts is None: _lowercase : Dict = titles if texts is None else texts return super().__call__( lowerCamelCase, lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase, max_length=lowerCamelCase, return_tensors=lowerCamelCase, return_attention_mask=lowerCamelCase, **lowerCamelCase, ) _lowercase : Union[str, Any] = titles if not isinstance(lowerCamelCase, lowerCamelCase) else [titles] _lowercase : Tuple = texts if not isinstance(lowerCamelCase, lowerCamelCase) else [texts] _lowercase : Optional[Any] = len(lowerCamelCase) _lowercase : Any = questions if not isinstance(lowerCamelCase, lowerCamelCase) else [questions] * n_passages if len(lowerCamelCase) != len(lowerCamelCase): raise ValueError( F'''There should be as many titles than texts but got {len(lowerCamelCase)} titles and {len(lowerCamelCase)} texts.''') _lowercase : Any = super().__call__(lowerCamelCase, lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase)['input_ids'] _lowercase : Tuple = super().__call__(lowerCamelCase, add_special_tokens=lowerCamelCase, padding=lowerCamelCase, truncation=lowerCamelCase)['input_ids'] _lowercase : int = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowerCamelCase, lowerCamelCase) ] } if return_attention_mask is not False: _lowercase : Optional[Any] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids]) _lowercase : Union[str, Any] = attention_mask return self.pad(lowerCamelCase, padding=lowerCamelCase, max_length=lowerCamelCase, return_tensors=lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase = 16, lowerCamelCase = 64, lowerCamelCase = 4, ) -> List[DPRSpanPrediction]: """simple docstring""" _lowercase : Union[str, Any] = reader_input['input_ids'] _lowercase , _lowercase , _lowercase : Tuple = reader_output[:3] _lowercase : Tuple = len(lowerCamelCase) _lowercase : str = sorted(range(lowerCamelCase), reverse=lowerCamelCase, key=relevance_logits.__getitem__) _lowercase : List[DPRReaderOutput] = [] for doc_id in sorted_docs: _lowercase : str = list(input_ids[doc_id]) # assuming question & title information is at the beginning of the sequence _lowercase : Any = sequence_ids.index(self.sep_token_id, 2) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _lowercase : List[Any] = sequence_ids.index(self.pad_token_id) else: _lowercase : List[str] = len(lowerCamelCase) _lowercase : Tuple = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len], end_logits=end_logits[doc_id][passage_offset:sequence_len], max_answer_length=lowerCamelCase, top_spans=lowerCamelCase, ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index], relevance_score=relevance_logits[doc_id], doc_id=lowerCamelCase, start_index=lowerCamelCase, end_index=lowerCamelCase, text=self.decode(sequence_ids[start_index : end_index + 1]), )) if len(lowerCamelCase) >= num_spans: break return nbest_spans_predictions[:num_spans] def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ) -> List[DPRSpanPrediction]: """simple docstring""" _lowercase : str = [] for start_index, start_score in enumerate(lowerCamelCase): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]): scores.append(((start_index, start_index + answer_length), start_score + end_score)) _lowercase : Dict = sorted(lowerCamelCase, key=lambda lowerCamelCase: x[1], reverse=lowerCamelCase) _lowercase : List[str] = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F'''Wrong span indices: [{start_index}:{end_index}]''') _lowercase : Dict = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F'''Span is too long: {length} > {max_answer_length}''') if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals): continue chosen_span_intervals.append((start_index, end_index)) if len(lowerCamelCase) == top_spans: break return chosen_span_intervals @add_end_docstrings(_a ) class _lowerCamelCase( _a, _a ): lowercase_ : Union[str, Any] = VOCAB_FILES_NAMES lowercase_ : Any = READER_PRETRAINED_VOCAB_FILES_MAP lowercase_ : Dict = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ : Optional[int] = READER_PRETRAINED_INIT_CONFIGURATION lowercase_ : str = ["""input_ids""", """attention_mask"""]
21
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : int = { 'google/canine-s': 'https://huggingface.co/google/canine-s/resolve/main/config.json', # See all CANINE models at https://huggingface.co/models?filter=canine } class __A (snake_case__): '''simple docstring''' __lowercase: List[str] = """canine""" def __init__( self : Union[str, Any] , UpperCAmelCase_ : str=768 , UpperCAmelCase_ : Union[str, Any]=12 , UpperCAmelCase_ : Optional[Any]=12 , UpperCAmelCase_ : Optional[Any]=3_072 , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : List[str]=16_384 , UpperCAmelCase_ : Tuple=16 , UpperCAmelCase_ : int=0.02 , UpperCAmelCase_ : Tuple=1E-12 , UpperCAmelCase_ : str=0 , UpperCAmelCase_ : int=0XE000 , UpperCAmelCase_ : Optional[int]=0XE001 , UpperCAmelCase_ : Dict=4 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : List[Any]=8 , UpperCAmelCase_ : Dict=16_384 , UpperCAmelCase_ : Optional[int]=128 , **UpperCAmelCase_ : Any , ) ->int: """simple docstring""" super().__init__(pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ ) snake_case_ = max_position_embeddings snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = type_vocab_size snake_case_ = layer_norm_eps # Character config: snake_case_ = downsampling_rate snake_case_ = upsampling_kernel_size snake_case_ = num_hash_functions snake_case_ = num_hash_buckets snake_case_ = local_transformer_stride
233
"""simple docstring""" import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) __SCREAMING_SNAKE_CASE : Tuple = [ 'cross_validation.py', 'gradient_accumulation.py', 'local_sgd.py', 'multi_process_metrics.py', 'memory.py', 'automatic_gradient_accumulation.py', 'fsdp_with_peak_mem_tracking.py', 'deepspeed_with_config_support.py', 'megatron_lm_gpt_pretraining.py', ] class __A (unittest.TestCase): '''simple docstring''' def lowerCAmelCase ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : bool , UpperCAmelCase_ : str = None , UpperCAmelCase_ : list = None ) ->List[Any]: """simple docstring""" snake_case_ = None snake_case_ = os.path.abspath(os.path.join("""examples""" , """by_feature""" ) ) snake_case_ = os.path.abspath("""examples""" ) for item in os.listdir(UpperCAmelCase_ ): if item not in EXCLUDE_EXAMPLES: snake_case_ = os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) if os.path.isfile(UpperCAmelCase_ ) and ".py" in item_path: with self.subTest( tested_script=UpperCAmelCase_ , feature_script=UpperCAmelCase_ , tested_section="""main()""" if parser_only else """training_function()""" , ): snake_case_ = compare_against_test( os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = """\n""".join(UpperCAmelCase_ ) if special_strings is not None: for string in special_strings: snake_case_ = diff.replace(UpperCAmelCase_ , """""" ) self.assertEqual(UpperCAmelCase_ , """""" ) def lowerCAmelCase ( self : Tuple ) ->List[Any]: """simple docstring""" self.one_complete_example("""complete_nlp_example.py""" , UpperCAmelCase_ ) self.one_complete_example("""complete_nlp_example.py""" , UpperCAmelCase_ ) def lowerCAmelCase ( self : Tuple ) ->Dict: """simple docstring""" snake_case_ = os.path.abspath(os.path.join("""examples""" , """cv_example.py""" ) ) snake_case_ = [ """ """ * 16 + """{\n\n""", """ """ * 20 + """\"accuracy\": eval_metric[\"accuracy\"],\n\n""", """ """ * 20 + """\"f1\": eval_metric[\"f1\"],\n\n""", """ """ * 20 + """\"train_loss\": total_loss.item() / len(train_dataloader),\n\n""", """ """ * 20 + """\"epoch\": epoch,\n\n""", """ """ * 16 + """},\n\n""", """ """ * 16 + """step=epoch,\n""", """ """ * 12, """ """ * 8 + """for step, batch in enumerate(active_dataloader):\n""", ] self.one_complete_example("""complete_cv_example.py""" , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) self.one_complete_example("""complete_cv_example.py""" , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) @mock.patch.dict(os.environ , {"""TESTING_MOCKED_DATALOADERS""": """1"""}) class __A (snake_case__): '''simple docstring''' __lowercase: str = False @classmethod def lowerCAmelCase ( cls : Any ) ->List[str]: """simple docstring""" super().setUpClass() snake_case_ = tempfile.mkdtemp() snake_case_ = os.path.join(cls._tmpdir , """default_config.yml""" ) write_basic_config(save_location=cls.configPath ) snake_case_ = ["""accelerate""", """launch""", """--config_file""", cls.configPath] @classmethod def lowerCAmelCase ( cls : List[str] ) ->int: """simple docstring""" super().tearDownClass() shutil.rmtree(cls._tmpdir ) def lowerCAmelCase ( self : List[str] ) ->Optional[Any]: """simple docstring""" snake_case_ = F""" examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , """epoch_0""" ) ) ) def lowerCAmelCase ( self : Any ) ->Optional[Any]: """simple docstring""" snake_case_ = F""" examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} """.split() snake_case_ = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , """step_2""" ) ) ) def lowerCAmelCase ( self : Union[str, Any] ) ->str: """simple docstring""" snake_case_ = F""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , "epoch_0" )} """.split() snake_case_ = run_command(self._launch_args + testargs , return_stdout=UpperCAmelCase_ ) self.assertNotIn("""epoch 0:""" , UpperCAmelCase_ ) self.assertIn("""epoch 1:""" , UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[int] ) ->Tuple: """simple docstring""" snake_case_ = F""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , "step_2" )} """.split() snake_case_ = run_command(self._launch_args + testargs , return_stdout=UpperCAmelCase_ ) if torch.cuda.is_available(): snake_case_ = torch.cuda.device_count() else: snake_case_ = 1 if num_processes > 1: self.assertNotIn("""epoch 0:""" , UpperCAmelCase_ ) self.assertIn("""epoch 1:""" , UpperCAmelCase_ ) else: self.assertIn("""epoch 0:""" , UpperCAmelCase_ ) self.assertIn("""epoch 1:""" , UpperCAmelCase_ ) @slow def lowerCAmelCase ( self : Dict ) ->Dict: """simple docstring""" snake_case_ = """ examples/by_feature/cross_validation.py --num_folds 2 """.split() with mock.patch.dict(os.environ , {"""TESTING_MOCKED_DATALOADERS""": """0"""} ): snake_case_ = run_command(self._launch_args + testargs , return_stdout=UpperCAmelCase_ ) snake_case_ = re.findall("""({.+})""" , UpperCAmelCase_ ) snake_case_ = [r for r in results if """accuracy""" in r][-1] snake_case_ = ast.literal_eval(UpperCAmelCase_ ) self.assertGreaterEqual(results["""accuracy"""] , 0.75 ) def lowerCAmelCase ( self : Optional[int] ) ->int: """simple docstring""" snake_case_ = ["""examples/by_feature/multi_process_metrics.py"""] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def lowerCAmelCase ( self : Dict ) ->Optional[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: snake_case_ = F""" examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase_ , """tracking""" ) ) ) def lowerCAmelCase ( self : List[str] ) ->Union[str, Any]: """simple docstring""" snake_case_ = ["""examples/by_feature/gradient_accumulation.py"""] run_command(self._launch_args + testargs ) def lowerCAmelCase ( self : str ) ->Dict: """simple docstring""" snake_case_ = ["""examples/by_feature/local_sgd.py"""] run_command(self._launch_args + testargs )
233
1
import math def lowerCAmelCase__ ( a__: int ) -> str: '''simple docstring''' _UpperCAmelCase = 0 _UpperCAmelCase = 0 while num > 0: _UpperCAmelCase = num % 8 _UpperCAmelCase = octal + (remainder * math.floor(math.pow(1_0 , _A ) )) counter += 1 _UpperCAmelCase = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return F'''0o{int(_A )}''' def lowerCAmelCase__ ( ) -> None: '''simple docstring''' print('\n2 in octal is:' ) print(decimal_to_octal(2 ) ) # = 2 print('\n8 in octal is:' ) print(decimal_to_octal(8 ) ) # = 10 print('\n65 in octal is:' ) print(decimal_to_octal(6_5 ) ) # = 101 print('\n216 in octal is:' ) print(decimal_to_octal(2_1_6 ) ) # = 330 print('\n512 in octal is:' ) print(decimal_to_octal(5_1_2 ) ) # = 1000 print('\n' ) if __name__ == "__main__": main()
329
'''simple docstring''' import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class a__( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Dict = MvpTokenizer UpperCAmelCase_ : Optional[Any] = MvpTokenizerFast UpperCAmelCase_ : str = True UpperCAmelCase_ : List[Any] = filter_roberta_detectors def a_ ( self): """simple docstring""" super().setUp() lowerCAmelCase = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] lowerCAmelCase = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase)))) lowerCAmelCase = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] lowerCAmelCase = {"""unk_token""": """<unk>"""} lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as fp: fp.write(json.dumps(__lowerCAmelCase) + """\n""") with open(self.merges_file , """w""" , encoding="""utf-8""") as fp: fp.write("""\n""".join(__lowerCAmelCase)) def a_ ( self , **__lowerCAmelCase): """simple docstring""" kwargs.update(self.special_tokens_map) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCAmelCase) def a_ ( self , **__lowerCAmelCase): """simple docstring""" kwargs.update(self.special_tokens_map) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCAmelCase) def a_ ( self , __lowerCAmelCase): """simple docstring""" return "lower newer", "lower newer" @cached_property def a_ ( self): """simple docstring""" return MvpTokenizer.from_pretrained("""RUCAIBox/mvp""") @cached_property def a_ ( self): """simple docstring""" return MvpTokenizerFast.from_pretrained("""RUCAIBox/mvp""") @require_torch def a_ ( self): """simple docstring""" lowerCAmelCase = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] lowerCAmelCase = [0, 250, 251, 17818, 13, 39186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase = tokenizer(__lowerCAmelCase , max_length=len(__lowerCAmelCase) , padding=__lowerCAmelCase , return_tensors="""pt""") self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase) self.assertEqual((2, 9) , batch.input_ids.shape) self.assertEqual((2, 9) , batch.attention_mask.shape) lowerCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase) # Test that special tokens are reset @require_torch def a_ ( self): """simple docstring""" lowerCAmelCase = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase = tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase , return_tensors="""pt""") # check if input_ids are returned and no labels self.assertIn("""input_ids""" , __lowerCAmelCase) self.assertIn("""attention_mask""" , __lowerCAmelCase) self.assertNotIn("""labels""" , __lowerCAmelCase) self.assertNotIn("""decoder_attention_mask""" , __lowerCAmelCase) @require_torch def a_ ( self): """simple docstring""" lowerCAmelCase = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase = tokenizer(text_target=__lowerCAmelCase , max_length=32 , padding="""max_length""" , return_tensors="""pt""") self.assertEqual(32 , targets["""input_ids"""].shape[1]) @require_torch def a_ ( self): """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase = tokenizer( ["""I am a small frog""" * 1024, """I am a small frog"""] , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , return_tensors="""pt""") self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase) self.assertEqual(batch.input_ids.shape , (2, 1024)) @require_torch def a_ ( self): """simple docstring""" lowerCAmelCase = ["""A long paragraph for summarization."""] lowerCAmelCase = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase = tokenizer(__lowerCAmelCase , text_target=__lowerCAmelCase , return_tensors="""pt""") lowerCAmelCase = inputs["""input_ids"""] lowerCAmelCase = inputs["""labels"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item()) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item()) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item()) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item()) def a_ ( self): """simple docstring""" pass def a_ ( self): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase) lowerCAmelCase = self.tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase) lowerCAmelCase = """A, <mask> AllenNLP sentence.""" lowerCAmelCase = tokenizer_r.encode_plus(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase) lowerCAmelCase = tokenizer_p.encode_plus(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""]) , sum(tokens_p["""token_type_ids"""])) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""]) / len(tokens_r["""attention_mask"""]) , sum(tokens_p["""attention_mask"""]) / len(tokens_p["""attention_mask"""]) , ) lowerCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""]) lowerCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""]) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2]) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2]) self.assertSequenceEqual( __lowerCAmelCase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""]) self.assertSequenceEqual( __lowerCAmelCase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""])
272
0
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _a = logging.get_logger(__name__) _a = { '''Salesforce/instruct-blip-flan-t5''': '''https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json''', } class _lowerCAmelCase ( _a ): """simple docstring""" __UpperCAmelCase : str = """instructblip_vision_model""" def __init__( self : Union[str, Any], UpperCAmelCase__ : str=1_4_0_8, UpperCAmelCase__ : str=6_1_4_4, UpperCAmelCase__ : List[Any]=3_9, UpperCAmelCase__ : str=1_6, UpperCAmelCase__ : Optional[int]=2_2_4, UpperCAmelCase__ : Dict=1_4, UpperCAmelCase__ : str="gelu", UpperCAmelCase__ : int=1E-6, UpperCAmelCase__ : Union[str, Any]=0.0, UpperCAmelCase__ : Tuple=1E-10, UpperCAmelCase__ : List[str]=True, **UpperCAmelCase__ : str, ): super().__init__(**__lowerCamelCase ) __lowercase = hidden_size __lowercase = intermediate_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = patch_size __lowercase = image_size __lowercase = initializer_range __lowercase = attention_dropout __lowercase = layer_norm_eps __lowercase = hidden_act __lowercase = qkv_bias @classmethod def _lowercase ( cls : Union[str, Any], UpperCAmelCase__ : Union[str, os.PathLike], **UpperCAmelCase__ : List[str] ): cls._set_token_in_kwargs(__lowerCamelCase ) __lowercase = cls.get_config_dict(__lowerCamelCase, **__lowerCamelCase ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": __lowercase = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls, "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__lowerCamelCase, **__lowerCamelCase ) class _lowerCAmelCase ( _a ): """simple docstring""" __UpperCAmelCase : str = """instructblip_qformer""" def __init__( self : Optional[Any], UpperCAmelCase__ : Optional[int]=3_0_5_2_2, UpperCAmelCase__ : Dict=7_6_8, UpperCAmelCase__ : int=1_2, UpperCAmelCase__ : str=1_2, UpperCAmelCase__ : Optional[Any]=3_0_7_2, UpperCAmelCase__ : List[Any]="gelu", UpperCAmelCase__ : Optional[int]=0.1, UpperCAmelCase__ : Any=0.1, UpperCAmelCase__ : Union[str, Any]=5_1_2, UpperCAmelCase__ : List[Any]=0.02, UpperCAmelCase__ : Optional[int]=1E-12, UpperCAmelCase__ : Tuple=0, UpperCAmelCase__ : int="absolute", UpperCAmelCase__ : str=2, UpperCAmelCase__ : str=1_4_0_8, **UpperCAmelCase__ : Tuple, ): super().__init__(pad_token_id=__lowerCamelCase, **__lowerCamelCase ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = position_embedding_type __lowercase = cross_attention_frequency __lowercase = encoder_hidden_size @classmethod def _lowercase ( cls : Optional[int], UpperCAmelCase__ : Union[str, os.PathLike], **UpperCAmelCase__ : Any ): cls._set_token_in_kwargs(__lowerCamelCase ) __lowercase = cls.get_config_dict(__lowerCamelCase, **__lowerCamelCase ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": __lowercase = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls, "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__lowerCamelCase, **__lowerCamelCase ) class _lowerCAmelCase ( _a ): """simple docstring""" __UpperCAmelCase : Tuple = """instructblip""" __UpperCAmelCase : Optional[Any] = True def __init__( self : Any, UpperCAmelCase__ : Optional[int]=None, UpperCAmelCase__ : Optional[Any]=None, UpperCAmelCase__ : List[str]=None, UpperCAmelCase__ : Dict=3_2, **UpperCAmelCase__ : int ): super().__init__(**__lowerCamelCase ) if vision_config is None: __lowercase = {} logger.info("vision_config is None. initializing the InstructBlipVisionConfig with default values." ) if qformer_config is None: __lowercase = {} logger.info("qformer_config is None. Initializing the InstructBlipQFormerConfig with default values." ) if text_config is None: __lowercase = {} logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`)." ) __lowercase = InstructBlipVisionConfig(**__lowerCamelCase ) __lowercase = InstructBlipQFormerConfig(**__lowerCamelCase ) __lowercase = text_config["""model_type"""] if """model_type""" in text_config else """opt""" __lowercase = CONFIG_MAPPING[text_model_type](**__lowerCamelCase ) __lowercase = self.text_config.tie_word_embeddings __lowercase = self.text_config.is_encoder_decoder __lowercase = num_query_tokens __lowercase = self.vision_config.hidden_size __lowercase = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __lowercase = 1.0 __lowercase = 0.02 @classmethod def _lowercase ( cls : Union[str, Any], UpperCAmelCase__ : InstructBlipVisionConfig, UpperCAmelCase__ : InstructBlipQFormerConfig, UpperCAmelCase__ : PretrainedConfig, **UpperCAmelCase__ : List[Any], ): return cls( vision_config=vision_config.to_dict(), qformer_config=qformer_config.to_dict(), text_config=text_config.to_dict(), **__lowerCamelCase, ) def _lowercase ( self : Tuple ): __lowercase = copy.deepcopy(self.__dict__ ) __lowercase = self.vision_config.to_dict() __lowercase = self.qformer_config.to_dict() __lowercase = self.text_config.to_dict() __lowercase = self.__class__.model_type return output
368
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _a = {'LayoutLMv2Config', 'LayoutLMv3Config'} @is_pipeline_test class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" __UpperCAmelCase : str = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING __UpperCAmelCase : str = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: __UpperCAmelCase : Optional[Any] = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: __UpperCAmelCase : Tuple = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def _lowercase ( self : Optional[int] ): __lowercase = pipeline( task="text-classification", model="hf-internal-testing/tiny-random-distilbert", framework="pt" ) __lowercase = text_classifier("This is great !" ) self.assertEqual(nested_simplify(UpperCAmelCase__ ), [{"label": "LABEL_0", "score": 0.504}] ) __lowercase = text_classifier("This is great !", top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__ ), [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}] ) __lowercase = text_classifier(["This is great !", "This is bad"], top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__ ), [ [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}], [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}], ], ) __lowercase = text_classifier("This is great !", top_k=1 ) self.assertEqual(nested_simplify(UpperCAmelCase__ ), [{"label": "LABEL_0", "score": 0.504}] ) # Legacy behavior __lowercase = text_classifier("This is great !", return_all_scores=UpperCAmelCase__ ) self.assertEqual(nested_simplify(UpperCAmelCase__ ), [{"label": "LABEL_0", "score": 0.504}] ) __lowercase = text_classifier("This is great !", return_all_scores=UpperCAmelCase__ ) self.assertEqual( nested_simplify(UpperCAmelCase__ ), [[{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}]] ) __lowercase = text_classifier(["This is great !", "Something else"], return_all_scores=UpperCAmelCase__ ) self.assertEqual( nested_simplify(UpperCAmelCase__ ), [ [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}], [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}], ], ) __lowercase = text_classifier(["This is great !", "Something else"], return_all_scores=UpperCAmelCase__ ) self.assertEqual( nested_simplify(UpperCAmelCase__ ), [ {"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_0", "score": 0.504}, ], ) @require_torch def _lowercase ( self : Dict ): import torch __lowercase = pipeline( task="text-classification", model="hf-internal-testing/tiny-random-distilbert", framework="pt", device=torch.device("cpu" ), ) __lowercase = text_classifier("This is great !" ) self.assertEqual(nested_simplify(UpperCAmelCase__ ), [{"label": "LABEL_0", "score": 0.504}] ) @require_tf def _lowercase ( self : Union[str, Any] ): __lowercase = pipeline( task="text-classification", model="hf-internal-testing/tiny-random-distilbert", framework="tf" ) __lowercase = text_classifier("This is great !" ) self.assertEqual(nested_simplify(UpperCAmelCase__ ), [{"label": "LABEL_0", "score": 0.504}] ) @slow @require_torch def _lowercase ( self : Dict ): __lowercase = pipeline("text-classification" ) __lowercase = text_classifier("This is great !" ) self.assertEqual(nested_simplify(UpperCAmelCase__ ), [{"label": "POSITIVE", "score": 1.0}] ) __lowercase = text_classifier("This is bad !" ) self.assertEqual(nested_simplify(UpperCAmelCase__ ), [{"label": "NEGATIVE", "score": 1.0}] ) __lowercase = text_classifier("Birds are a type of animal" ) self.assertEqual(nested_simplify(UpperCAmelCase__ ), [{"label": "POSITIVE", "score": 0.988}] ) @slow @require_tf def _lowercase ( self : Tuple ): __lowercase = pipeline("text-classification", framework="tf" ) __lowercase = text_classifier("This is great !" ) self.assertEqual(nested_simplify(UpperCAmelCase__ ), [{"label": "POSITIVE", "score": 1.0}] ) __lowercase = text_classifier("This is bad !" ) self.assertEqual(nested_simplify(UpperCAmelCase__ ), [{"label": "NEGATIVE", "score": 1.0}] ) __lowercase = text_classifier("Birds are a type of animal" ) self.assertEqual(nested_simplify(UpperCAmelCase__ ), [{"label": "POSITIVE", "score": 0.988}] ) def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : str, UpperCAmelCase__ : int, UpperCAmelCase__ : Tuple ): __lowercase = TextClassificationPipeline(model=UpperCAmelCase__, tokenizer=UpperCAmelCase__ ) return text_classifier, ["HuggingFace is in", "This is another test"] def _lowercase ( self : Any, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : str ): __lowercase = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 __lowercase = "HuggingFace is in" __lowercase = text_classifier(UpperCAmelCase__ ) self.assertEqual(nested_simplify(UpperCAmelCase__ ), [{"label": ANY(UpperCAmelCase__ ), "score": ANY(UpperCAmelCase__ )}] ) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() ) __lowercase = ["HuggingFace is in ", "Paris is in France"] __lowercase = text_classifier(UpperCAmelCase__ ) self.assertEqual( nested_simplify(UpperCAmelCase__ ), [{"label": ANY(UpperCAmelCase__ ), "score": ANY(UpperCAmelCase__ )}, {"label": ANY(UpperCAmelCase__ ), "score": ANY(UpperCAmelCase__ )}], ) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() ) self.assertTrue(outputs[1]["label"] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format __lowercase = text_classifier(UpperCAmelCase__, top_k=UpperCAmelCase__ ) __lowercase = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(UpperCAmelCase__ ), [[{"label": ANY(UpperCAmelCase__ ), "score": ANY(UpperCAmelCase__ )}] * N, [{"label": ANY(UpperCAmelCase__ ), "score": ANY(UpperCAmelCase__ )}] * N], ) __lowercase = {"text": "HuggingFace is in ", "text_pair": "Paris is in France"} __lowercase = text_classifier(UpperCAmelCase__ ) self.assertEqual( nested_simplify(UpperCAmelCase__ ), {"label": ANY(UpperCAmelCase__ ), "score": ANY(UpperCAmelCase__ )}, ) self.assertTrue(outputs["label"] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. __lowercase = [["HuggingFace is in ", "Paris is in France"]] with self.assertRaises(UpperCAmelCase__ ): text_classifier(UpperCAmelCase__ ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility __lowercase = text_classifier([[["HuggingFace is in ", "Paris is in France"]]] ) self.assertEqual( nested_simplify(UpperCAmelCase__ ), [{"label": ANY(UpperCAmelCase__ ), "score": ANY(UpperCAmelCase__ )}], ) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() )
144
0
"""simple docstring""" from __future__ import annotations def lowerCAmelCase__ ( _UpperCamelCase : list ) -> float: """simple docstring""" if not nums: raise ValueError('List is empty' ) return sum(_UpperCamelCase ) / len(_UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
150
"""simple docstring""" import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all LED models at https://huggingface.co/models?filter=LED SCREAMING_SNAKE_CASE__ = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } SCREAMING_SNAKE_CASE__ = { "allenai/led-base-16384": 16_384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowerCAmelCase__ ( ) -> int: """simple docstring""" snake_case = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) snake_case = bs[:] snake_case = 0 for b in range(2**8 ): if b not in bs: bs.append(_UpperCamelCase ) cs.append(2**8 + n ) n += 1 snake_case = [chr(_UpperCamelCase ) for n in cs] return dict(zip(_UpperCamelCase , _UpperCamelCase ) ) def lowerCAmelCase__ ( _UpperCamelCase : int ) -> Union[str, Any]: """simple docstring""" snake_case = set() snake_case = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case = char return pairs class lowerCAmelCase_ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase : List[str] = VOCAB_FILES_NAMES _lowerCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase : Union[str, Any] = ["""input_ids""", """attention_mask"""] def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase="replace" , lowerCAmelCase="<s>" , lowerCAmelCase="</s>" , lowerCAmelCase="</s>" , lowerCAmelCase="<s>" , lowerCAmelCase="<unk>" , lowerCAmelCase="<pad>" , lowerCAmelCase="<mask>" , lowerCAmelCase=False , **lowerCAmelCase , ): """simple docstring""" snake_case = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else bos_token snake_case = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else eos_token snake_case = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else sep_token snake_case = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else cls_token snake_case = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else unk_token snake_case = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it snake_case = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else mask_token super().__init__( errors=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , add_prefix_space=lowerCAmelCase , **lowerCAmelCase , ) with open(lowerCAmelCase , encoding='utf-8' ) as vocab_handle: snake_case = json.load(lowerCAmelCase ) snake_case = {v: k for k, v in self.encoder.items()} snake_case = errors # how to handle errors in decoding snake_case = bytes_to_unicode() snake_case = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase , encoding='utf-8' ) as merges_handle: snake_case = merges_handle.read().split('\n' )[1:-1] snake_case = [tuple(merge.split() ) for merge in bpe_merges] snake_case = dict(zip(lowerCAmelCase , range(len(lowerCAmelCase ) ) ) ) snake_case = {} snake_case = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions snake_case = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def snake_case ( self ): """simple docstring""" return len(self.encoder ) def snake_case ( self ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def snake_case ( self , lowerCAmelCase ): """simple docstring""" if token in self.cache: return self.cache[token] snake_case = tuple(lowerCAmelCase ) snake_case = get_pairs(lowerCAmelCase ) if not pairs: return token while True: snake_case = min(lowerCAmelCase , key=lambda lowerCAmelCase : self.bpe_ranks.get(lowerCAmelCase , float('inf' ) ) ) if bigram not in self.bpe_ranks: break snake_case ,snake_case = bigram snake_case = [] snake_case = 0 while i < len(lowerCAmelCase ): try: snake_case = word.index(lowerCAmelCase , lowerCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case = j if word[i] == first and i < len(lowerCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case = tuple(lowerCAmelCase ) snake_case = new_word if len(lowerCAmelCase ) == 1: break else: snake_case = get_pairs(lowerCAmelCase ) snake_case = ' '.join(lowerCAmelCase ) snake_case = word return word def snake_case ( self , lowerCAmelCase ): """simple docstring""" snake_case = [] for token in re.findall(self.pat , lowerCAmelCase ): snake_case = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase ).split(' ' ) ) return bpe_tokens def snake_case ( self , lowerCAmelCase ): """simple docstring""" return self.encoder.get(lowerCAmelCase , self.encoder.get(self.unk_token ) ) def snake_case ( self , lowerCAmelCase ): """simple docstring""" return self.decoder.get(lowerCAmelCase ) def snake_case ( self , lowerCAmelCase ): """simple docstring""" snake_case = ''.join(lowerCAmelCase ) snake_case = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def snake_case ( self , lowerCAmelCase , lowerCAmelCase = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case = os.path.join( lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) snake_case = os.path.join( lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase , ensure_ascii=lowerCAmelCase ) + '\n' ) snake_case = 0 with open(lowerCAmelCase , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) snake_case = token_index writer.write(' '.join(lowerCAmelCase ) + '\n' ) index += 1 return vocab_file, merge_file def snake_case ( self , lowerCAmelCase , lowerCAmelCase = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case = [self.cls_token_id] snake_case = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case ( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase , token_ids_a=lowerCAmelCase , already_has_special_tokens=lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase )) + [1] return [1] + ([0] * len(lowerCAmelCase )) + [1, 1] + ([0] * len(lowerCAmelCase )) + [1] def snake_case ( self , lowerCAmelCase , lowerCAmelCase = None ): """simple docstring""" snake_case = [self.sep_token_id] snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case ( self , lowerCAmelCase , lowerCAmelCase=False , **lowerCAmelCase ): """simple docstring""" snake_case = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase ) > 0 and not text[0].isspace()): snake_case = ' ' + text return (text, kwargs) def snake_case ( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = PaddingStrategy.DO_NOT_PAD , lowerCAmelCase = None , lowerCAmelCase = None , ): """simple docstring""" snake_case = super()._pad( encoded_inputs=lowerCAmelCase , max_length=lowerCAmelCase , padding_strategy=lowerCAmelCase , pad_to_multiple_of=lowerCAmelCase , return_attention_mask=lowerCAmelCase , ) # Load from model defaults if return_attention_mask is None: snake_case = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: snake_case = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. snake_case = len(encoded_inputs['global_attention_mask'] ) != len(lowerCAmelCase ) if needs_to_be_padded: snake_case = len(lowerCAmelCase ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` snake_case = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": snake_case = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
150
1
"""simple docstring""" import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class _SCREAMING_SNAKE_CASE ( A__ , unittest.TestCase ): UpperCAmelCase_ :List[str] = RoCBertTokenizer UpperCAmelCase_ :Optional[Any] = None UpperCAmelCase_ :Optional[int] = False UpperCAmelCase_ :int = True UpperCAmelCase_ :Tuple = filter_non_english def __lowerCAmelCase ( self ) -> Tuple: super().setUp() lowerCAmelCase_ :Union[str, Any] = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """你""", """好""", """是""", """谁""", """a""", """b""", """c""", """d"""] lowerCAmelCase_ :Dict = {} lowerCAmelCase_ :Union[str, Any] = {} for i, value in enumerate(__A ): lowerCAmelCase_ :List[Any] = i lowerCAmelCase_ :List[str] = i lowerCAmelCase_ :List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCAmelCase_ :str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_shape_file"""] ) lowerCAmelCase_ :Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_pronunciation_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) with open(self.word_shape_file , """w""" , encoding="""utf-8""" ) as word_shape_writer: json.dump(__A , __A , ensure_ascii=__A ) with open(self.word_pronunciation_file , """w""" , encoding="""utf-8""" ) as word_pronunciation_writer: json.dump(__A , __A , ensure_ascii=__A ) def __lowerCAmelCase ( self ) -> Dict: lowerCAmelCase_ :Optional[Any] = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) lowerCAmelCase_ :Dict = tokenizer.tokenize("""你好[SEP]你是谁""" ) self.assertListEqual(__A , ["""你""", """好""", """[SEP]""", """你""", """是""", """谁"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(__A ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(__A ) , [5, 6, 2, 5, 7, 8] ) def __lowerCAmelCase ( self ) -> int: lowerCAmelCase_ :List[Any] = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) , ["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def __lowerCAmelCase ( self ) -> Dict: lowerCAmelCase_ :str = RoCBertBasicTokenizer(do_lower_case=__A ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def __lowerCAmelCase ( self ) -> str: lowerCAmelCase_ :Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=__A , strip_accents=__A ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""h\u00E9llo"""] ) def __lowerCAmelCase ( self ) -> Union[str, Any]: lowerCAmelCase_ :Dict = RoCBertBasicTokenizer(do_lower_case=__A , strip_accents=__A ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def __lowerCAmelCase ( self ) -> int: lowerCAmelCase_ :str = RoCBertBasicTokenizer(do_lower_case=__A ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def __lowerCAmelCase ( self ) -> Union[str, Any]: lowerCAmelCase_ :int = RoCBertBasicTokenizer(do_lower_case=__A ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def __lowerCAmelCase ( self ) -> List[Any]: lowerCAmelCase_ :Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=__A , strip_accents=__A ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def __lowerCAmelCase ( self ) -> Any: lowerCAmelCase_ :Any = RoCBertBasicTokenizer(do_lower_case=__A , strip_accents=__A ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def __lowerCAmelCase ( self ) -> Tuple: lowerCAmelCase_ :int = RoCBertBasicTokenizer(do_lower_case=__A , never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def __lowerCAmelCase ( self ) -> str: lowerCAmelCase_ :List[Any] = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] lowerCAmelCase_ :Any = {} for i, token in enumerate(__A ): lowerCAmelCase_ :int = i lowerCAmelCase_ :Union[str, Any] = RoCBertWordpieceTokenizer(vocab=__A , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) , ["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) , ["""[UNK]""", """runn""", """##ing"""] ) def __lowerCAmelCase ( self ) -> Tuple: self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def __lowerCAmelCase ( self ) -> Optional[Any]: self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def __lowerCAmelCase ( self ) -> Tuple: self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) def __lowerCAmelCase ( self ) -> List[str]: lowerCAmelCase_ :List[str] = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(__A ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) if self.test_rust_tokenizer: lowerCAmelCase_ :List[str] = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(__A ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) def __lowerCAmelCase ( self ) -> int: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCAmelCase_ :Union[str, Any] = self.rust_tokenizer_class.from_pretrained(__A , **__A ) lowerCAmelCase_ :Union[str, Any] = f"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" lowerCAmelCase_ :List[Any] = tokenizer_r.encode_plus( __A , return_attention_mask=__A , return_token_type_ids=__A , return_offsets_mapping=__A , add_special_tokens=__A , ) lowerCAmelCase_ :List[str] = tokenizer_r.do_lower_case if hasattr(__A , """do_lower_case""" ) else False lowerCAmelCase_ :List[str] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """Allen"""), ((21, 23), """##NL"""), ((23, 24), """##P"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """allen"""), ((21, 23), """##nl"""), ((23, 24), """##p"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""] ) def __lowerCAmelCase ( self ) -> List[Any]: lowerCAmelCase_ :Tuple = ["""的""", """人""", """有"""] lowerCAmelCase_ :Optional[Any] = """""".join(__A ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCAmelCase_ :str = True lowerCAmelCase_ :Tuple = self.tokenizer_class.from_pretrained(__A , **__A ) lowerCAmelCase_ :str = self.rust_tokenizer_class.from_pretrained(__A , **__A ) lowerCAmelCase_ :Optional[Any] = tokenizer_p.encode(__A , add_special_tokens=__A ) lowerCAmelCase_ :str = tokenizer_r.encode(__A , add_special_tokens=__A ) lowerCAmelCase_ :List[Any] = tokenizer_r.convert_ids_to_tokens(__A ) lowerCAmelCase_ :List[Any] = tokenizer_p.convert_ids_to_tokens(__A ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(__A , __A ) self.assertListEqual(__A , __A ) lowerCAmelCase_ :Union[str, Any] = False lowerCAmelCase_ :Tuple = self.rust_tokenizer_class.from_pretrained(__A , **__A ) lowerCAmelCase_ :str = self.tokenizer_class.from_pretrained(__A , **__A ) lowerCAmelCase_ :Dict = tokenizer_r.encode(__A , add_special_tokens=__A ) lowerCAmelCase_ :Tuple = tokenizer_p.encode(__A , add_special_tokens=__A ) lowerCAmelCase_ :Dict = tokenizer_r.convert_ids_to_tokens(__A ) lowerCAmelCase_ :Optional[Any] = tokenizer_p.convert_ids_to_tokens(__A ) # it is expected that only the first Chinese character is not preceded by "##". lowerCAmelCase_ :int = [ f"""##{token}""" if idx != 0 else token for idx, token in enumerate(__A ) ] self.assertListEqual(__A , __A ) self.assertListEqual(__A , __A ) @slow def __lowerCAmelCase ( self ) -> Any: lowerCAmelCase_ :List[Any] = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) lowerCAmelCase_ :Tuple = tokenizer.encode("""你好""" , add_special_tokens=__A ) lowerCAmelCase_ :Union[str, Any] = tokenizer.encode("""你是谁""" , add_special_tokens=__A ) lowerCAmelCase_ :Dict = tokenizer.build_inputs_with_special_tokens(__A ) lowerCAmelCase_ :List[str] = tokenizer.build_inputs_with_special_tokens(__A , __A ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def __lowerCAmelCase ( self ) -> str: lowerCAmelCase_ :Union[str, Any] = self.get_tokenizers(do_lower_case=__A ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): lowerCAmelCase_ :str = """你好,你是谁""" lowerCAmelCase_ :List[str] = tokenizer.tokenize(__A ) lowerCAmelCase_ :Any = tokenizer.convert_tokens_to_ids(__A ) lowerCAmelCase_ :Tuple = tokenizer.convert_tokens_to_shape_ids(__A ) lowerCAmelCase_ :Dict = tokenizer.convert_tokens_to_pronunciation_ids(__A ) lowerCAmelCase_ :List[Any] = tokenizer.prepare_for_model( __A , __A , __A , add_special_tokens=__A ) lowerCAmelCase_ :Union[str, Any] = tokenizer.encode_plus(__A , add_special_tokens=__A ) self.assertEqual(__A , __A )
353
"""simple docstring""" def _snake_case ( lowercase__ : list , lowercase__ : list , lowercase__ : int , lowercase__ : int , lowercase__ : int ) -> int: '''simple docstring''' if index == number_of_items: return 0 lowerCAmelCase_ :Any = 0 lowerCAmelCase_ :str = 0 lowerCAmelCase_ :Dict = knapsack(lowercase__ , lowercase__ , lowercase__ , lowercase__ , index + 1 ) if weights[index] <= max_weight: lowerCAmelCase_ :str = values[index] + knapsack( lowercase__ , lowercase__ , lowercase__ , max_weight - weights[index] , index + 1 ) return max(lowercase__ , lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod()
1
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) __a = torch.device("cpu") def A_ ( ): '''simple docstring''' snake_case_ :Union[str, Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case_ :Tuple = Image.open(requests.get(_lowercase, stream=_lowercase ).raw ) return im def A_ ( _lowercase ): '''simple docstring''' if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.17_03e00, 2.11_07e00, -2.08_11e00, 8.86_85e-01, 2.43_60e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.96_36e-01, 2.34_78e-01, -1.69_63e00, -1.73_81e00, -8.63_37e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.27_68e-01, -4.74_29e-01, -1.08_97e00, -1.02_48e00, 3.55_23e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.53_30e-01, 2.42_11e-01, -6.01_85e-01, -8.27_89e-01, -6.04_46e-02] ) def A_ ( _lowercase, _lowercase, _lowercase ): '''simple docstring''' snake_case_ :Optional[int] = dct.pop(_lowercase ) snake_case_ :List[str] = val def A_ ( _lowercase ): '''simple docstring''' snake_case_ :List[str] = [] for k in state_dict.keys(): snake_case_ :str = k if ".pwconv" in k: snake_case_ :List[Any] = k_new.replace(""".pwconv""", """.point_wise_conv""" ) if ".dwconv" in k: snake_case_ :int = k_new.replace(""".dwconv""", """.depth_wise_conv""" ) if ".Proj." in k: snake_case_ :Dict = k_new.replace(""".Proj.""", """.proj.""" ) if "patch_embed" in k_new: snake_case_ :Union[str, Any] = k_new.replace("""patch_embed""", """swiftformer.patch_embed.patch_embedding""" ) if "network" in k_new: snake_case_ :Any = k_new.split(""".""" ) if ls[2].isdigit(): snake_case_ :Any = """swiftformer.encoder.network.""" + ls[1] + """.blocks.""" + ls[2] + """.""" + """.""".join(ls[3:] ) else: snake_case_ :Tuple = k_new.replace("""network""", """swiftformer.encoder.network""" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def A_ ( _lowercase, _lowercase, _lowercase ): '''simple docstring''' snake_case_ :Tuple = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size snake_case_ :Optional[int] = 1000 snake_case_ :Dict = """huggingface/label-files""" snake_case_ :Tuple = """imagenet-1k-id2label.json""" snake_case_ :List[Any] = json.load(open(hf_hub_download(_lowercase, _lowercase, repo_type="""dataset""" ), """r""" ) ) snake_case_ :int = {int(_lowercase ): v for k, v in idalabel.items()} snake_case_ :str = idalabel snake_case_ :int = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": snake_case_ :Dict = [3, 3, 6, 4] snake_case_ :str = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": snake_case_ :Union[str, Any] = [3, 3, 9, 6] snake_case_ :Any = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": snake_case_ :Any = [4, 3, 10, 5] snake_case_ :Union[str, Any] = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": snake_case_ :str = [4, 4, 12, 6] snake_case_ :List[str] = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("""https""" ): snake_case_ :str = torch.hub.load_state_dict_from_url(_lowercase, map_location="""cpu""", check_hash=_lowercase ) else: snake_case_ :List[str] = torch.load(_lowercase, map_location="""cpu""" ) snake_case_ :Union[str, Any] = checkpoint snake_case_ :Union[str, Any] = create_rename_keys(_lowercase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(_lowercase, _lowercase, _lowercase ) # load HuggingFace model snake_case_ :Optional[int] = SwiftFormerForImageClassification(_lowercase ).eval() hf_model.load_state_dict(_lowercase ) # prepare test inputs snake_case_ :Any = prepare_img() snake_case_ :Optional[int] = ViTImageProcessor.from_pretrained("""preprocessor_config""" ) snake_case_ :Optional[int] = processor(images=_lowercase, return_tensors="""pt""" ) # compare outputs from both models snake_case_ :List[Any] = get_expected_output(_lowercase ) snake_case_ :int = hf_model(inputs["""pixel_values"""] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5], _lowercase, atol=1e-3 ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) print(f"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(_lowercase ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swiftformer_name", default="swiftformer_xs", choices=["swiftformer_xs", "swiftformer_s", "swiftformer_l1", "swiftformer_l3"], type=str, help="Name of the SwiftFormer model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="./converted_outputs/", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--original_ckpt", default=None, type=str, help="Path to the original model checkpoint.") __a = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
66
"""simple docstring""" import math class lowerCamelCase : '''simple docstring''' def lowerCAmelCase_ ( self: Tuple , snake_case: list[list[float]] , snake_case: list[int] ) -> int: snake_case_ :Any = 0.0 snake_case_ :Tuple = 0.0 for i in range(len(snake_case ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def lowerCAmelCase_ ( self: Optional[int] , snake_case: list[list[int | float]] , snake_case: list[int] , snake_case: int , snake_case: float ) -> list[list[int | float]]: for i in range(len(snake_case ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def A_ ( ): '''simple docstring''' snake_case_ :Dict = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) snake_case_ :List[Any] = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training snake_case_ :Optional[Any] = SelfOrganizingMap() snake_case_ :Dict = 3 snake_case_ :Dict = 0.5 for _ in range(_lowercase ): for j in range(len(_lowercase ) ): # training sample snake_case_ :List[Any] = training_samples[j] # Compute the winning vector snake_case_ :Optional[int] = self_organizing_map.get_winner(_lowercase, _lowercase ) # Update the winning vector snake_case_ :List[str] = self_organizing_map.update(_lowercase, _lowercase, _lowercase, _lowercase ) # classify test sample snake_case_ :str = [0, 0, 0, 1] snake_case_ :List[Any] = self_organizing_map.get_winner(_lowercase, _lowercase ) # results print(f"""Clusters that the test sample belongs to : {winner}""" ) print(f"""Weights that have been trained : {weights}""" ) # running the main() function if __name__ == "__main__": main()
66
1
def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> str: _lowercase : list[list[str]] = [[] for _ in range(lowerCamelCase_ )] _lowercase : str = key - 1 if key <= 0: raise ValueError('Height of grid can\'t be 0 or negative' ) if key == 1 or len(lowerCamelCase_ ) <= key: return input_string for position, character in enumerate(lowerCamelCase_ ): _lowercase : int = position % (lowest * 2) # puts it in bounds _lowercase : Any = min(lowerCamelCase_ , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(lowerCamelCase_ ) _lowercase : Tuple = [''.join(lowerCamelCase_ ) for row in temp_grid] _lowercase : Union[str, Any] = ''.join(lowerCamelCase_ ) return output_string def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> str: _lowercase : Any = [] _lowercase : str = key - 1 if key <= 0: raise ValueError('Height of grid can\'t be 0 or negative' ) if key == 1: return input_string _lowercase : list[list[str]] = [[] for _ in range(lowerCamelCase_ )] # generates template for position in range(len(lowerCamelCase_ ) ): _lowercase : int = position % (lowest * 2) # puts it in bounds _lowercase : Optional[Any] = min(lowerCamelCase_ , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append('*' ) _lowercase : Optional[int] = 0 for row in temp_grid: # fills in the characters _lowercase : List[Any] = input_string[counter : counter + len(lowerCamelCase_ )] grid.append(list(lowerCamelCase_ ) ) counter += len(lowerCamelCase_ ) _lowercase : Tuple = '' # reads as zigzag for position in range(len(lowerCamelCase_ ) ): _lowercase : Optional[Any] = position % (lowest * 2) # puts it in bounds _lowercase : Optional[Any] = min(lowerCamelCase_ , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def UpperCamelCase_( lowerCamelCase_ ) -> dict[int, str]: _lowercase : Dict = {} for key_guess in range(1 , len(lowerCamelCase_ ) ): # tries every key _lowercase : Optional[int] = decrypt(lowerCamelCase_ , lowerCamelCase_ ) return results if __name__ == "__main__": import doctest doctest.testmod()
84
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE : Tuple = { "configuration_mgp_str": ["MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP", "MgpstrConfig"], "processing_mgp_str": ["MgpstrProcessor"], "tokenization_mgp_str": ["MgpstrTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Tuple = [ "MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST", "MgpstrModel", "MgpstrPreTrainedModel", "MgpstrForSceneTextRecognition", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
84
1
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a=2 , _a=True , _a=False , _a=1_0 , _a=3 , _a=3_2 * 8 , _a=3_2 * 8 , _a=4 , _a=6_4 , ) -> str: _a : Union[str, Any] = parent _a : Dict = batch_size _a : Union[str, Any] = is_training _a : int = use_auxiliary_loss _a : Tuple = num_queries _a : int = num_channels _a : Any = min_size _a : Optional[Any] = max_size _a : Optional[Any] = num_labels _a : List[str] = hidden_dim _a : int = hidden_dim def __lowercase ( self ) -> List[Any]: _a : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _a ) _a : str = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_a ) _a : Dict = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_a ) > 0.5 ).float() _a : Union[str, Any] = (torch.rand((self.batch_size, self.num_labels) , device=_a ) > 0.5).long() _a : Tuple = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def __lowercase ( self ) -> Optional[int]: _a : Union[str, Any] = MaskaFormerConfig( hidden_size=self.hidden_dim , ) _a : Dict = self.num_queries _a : Optional[int] = self.num_labels _a : int = [1, 1, 1, 1] _a : Any = self.num_channels _a : Union[str, Any] = 6_4 _a : List[Any] = 1_2_8 _a : Optional[int] = self.hidden_dim _a : Any = self.hidden_dim _a : str = self.hidden_dim return config def __lowercase ( self ) -> Dict: _a , _a , _a , _a , _a : Dict = self.prepare_config_and_inputs() _a : List[Any] = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def __lowercase ( self , _a , _a ) -> Optional[Any]: _a : Optional[int] = output.encoder_hidden_states _a : Tuple = output.pixel_decoder_hidden_states _a : Dict = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_a ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_a ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_a ) , config.decoder_layers ) def __lowercase ( self , _a , _a , _a , _a=False ) -> Optional[Any]: with torch.no_grad(): _a : int = MaskaFormerModel(config=_a ) model.to(_a ) model.eval() _a : Union[str, Any] = model(pixel_values=_a , pixel_mask=_a ) _a : Any = model(_a , output_hidden_states=_a ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_a , _a ) def __lowercase ( self , _a , _a , _a , _a , _a ) -> Tuple: _a : int = MaskaFormerForUniversalSegmentation(config=_a ) model.to(_a ) model.eval() def comm_check_on_output(_a ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): _a : Any = model(pixel_values=_a , pixel_mask=_a ) _a : Optional[int] = model(_a ) comm_check_on_output(_a ) _a : Union[str, Any] = model( pixel_values=_a , pixel_mask=_a , mask_labels=_a , class_labels=_a ) comm_check_on_output(_a ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class UpperCAmelCase_ ( __lowercase , __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () UpperCAmelCase__ : Dict = {"feature-extraction": MaskaFormerModel} if is_torch_available() else {} UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : Dict = False UpperCAmelCase__ : List[Any] = False UpperCAmelCase__ : Optional[Any] = False def __lowercase ( self ) -> Union[str, Any]: _a : Dict = MaskaFormerModelTester(self ) _a : Optional[int] = ConfigTester(self , config_class=_a , has_text_modality=_a ) def __lowercase ( self ) -> List[str]: self.config_tester.run_common_tests() def __lowercase ( self ) -> Tuple: _a , _a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_a , **_a , output_hidden_states=_a ) def __lowercase ( self ) -> str: _a : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_a ) @unittest.skip(reason='''Mask2Former does not use inputs_embeds''' ) def __lowercase ( self ) -> Dict: pass @unittest.skip(reason='''Mask2Former does not have a get_input_embeddings method''' ) def __lowercase ( self ) -> Dict: pass @unittest.skip(reason='''Mask2Former is not a generative model''' ) def __lowercase ( self ) -> List[str]: pass @unittest.skip(reason='''Mask2Former does not use token embeddings''' ) def __lowercase ( self ) -> Dict: pass @require_torch_multi_gpu @unittest.skip( reason='''Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def __lowercase ( self ) -> Dict: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowercase ( self ) -> Union[str, Any]: pass def __lowercase ( self ) -> int: _a , _a : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : List[str] = model_class(_a ) _a : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : List[Any] = [*signature.parameters.keys()] _a : Optional[int] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) @slow def __lowercase ( self ) -> Any: for model_name in ["facebook/mask2former-swin-small-coco-instance"]: _a : Tuple = MaskaFormerModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def __lowercase ( self ) -> Optional[Any]: _a : Dict = (self.model_tester.min_size,) * 2 _a : Tuple = { '''pixel_values''': torch.randn((2, 3, *size) , device=_a ), '''mask_labels''': torch.randn((2, 1_0, *size) , device=_a ), '''class_labels''': torch.zeros(2 , 1_0 , device=_a ).long(), } _a : Union[str, Any] = self.model_tester.get_config() _a : List[Any] = MaskaFormerForUniversalSegmentation(_a ).to(_a ) _a : str = model(**_a ) self.assertTrue(outputs.loss is not None ) def __lowercase ( self ) -> Optional[int]: _a , _a : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_a , **_a , output_hidden_states=_a ) def __lowercase ( self ) -> Union[str, Any]: _a , _a : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : List[str] = model_class(_a ).to(_a ) _a : Optional[int] = model(**_a , output_attentions=_a ) self.assertTrue(outputs.attentions is not None ) def __lowercase ( self ) -> str: if not self.model_tester.is_training: return _a : List[Any] = self.all_model_classes[1] _a , _a , _a , _a , _a : Dict = self.model_tester.prepare_config_and_inputs() _a : Any = model_class(_a ) model.to(_a ) model.train() _a : Optional[Any] = model(_a , mask_labels=_a , class_labels=_a ).loss loss.backward() def __lowercase ( self ) -> Optional[int]: _a : int = self.all_model_classes[1] _a , _a , _a , _a , _a : Optional[Any] = self.model_tester.prepare_config_and_inputs() _a : Tuple = True _a : Optional[int] = True _a : str = model_class(_a ).to(_a ) model.train() _a : List[str] = model(_a , mask_labels=_a , class_labels=_a ) _a : Optional[Any] = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _a : Union[str, Any] = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() _a : List[str] = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _a : Optional[Any] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_a ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) a__ = 1E-4 def __UpperCAmelCase ( ) -> int: """simple docstring""" _a : Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self ) -> str: return "facebook/mask2former-swin-small-coco-instance" @cached_property def __lowercase ( self ) -> int: return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def __lowercase ( self ) -> Dict: _a : Tuple = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_a ) _a : List[str] = self.default_image_processor _a : Tuple = prepare_img() _a : List[str] = image_processor(_a , return_tensors='''pt''' ).to(_a ) _a : Any = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(_a , (1, 3, 3_8_4, 3_8_4) ) with torch.no_grad(): _a : Union[str, Any] = model(**_a ) _a : Any = torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(_a ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _a , atol=_a ) ) _a : List[Any] = torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(_a ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _a , atol=_a ) ) _a : int = torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(_a ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _a , atol=_a ) ) def __lowercase ( self ) -> List[str]: _a : Optional[int] = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_a ).eval() _a : str = self.default_image_processor _a : List[Any] = prepare_img() _a : List[Any] = image_processor(_a , return_tensors='''pt''' ).to(_a ) _a : Union[str, Any] = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(_a , (1, 3, 3_8_4, 3_8_4) ) with torch.no_grad(): _a : Tuple = model(**_a ) # masks_queries_logits _a : List[Any] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) _a : Dict = [ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] _a : str = torch.tensor(_a ).to(_a ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _a , atol=_a ) ) # class_queries_logits _a : Optional[Any] = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) _a : Optional[int] = torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(_a ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _a , atol=_a ) ) def __lowercase ( self ) -> List[str]: _a : str = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_a ).eval() _a : Union[str, Any] = self.default_image_processor _a : Any = image_processor( [np.zeros((3, 8_0_0, 1_3_3_3) ), np.zeros((3, 8_0_0, 1_3_3_3) )] , segmentation_maps=[np.zeros((3_8_4, 3_8_4) ).astype(np.floataa ), np.zeros((3_8_4, 3_8_4) ).astype(np.floataa )] , return_tensors='''pt''' , ) _a : Optional[int] = inputs['''pixel_values'''].to(_a ) _a : Any = [el.to(_a ) for el in inputs['''mask_labels''']] _a : Union[str, Any] = [el.to(_a ) for el in inputs['''class_labels''']] with torch.no_grad(): _a : List[str] = model(**_a ) self.assertTrue(outputs.loss is not None )
235
from math import ceil def __UpperCAmelCase ( __a : int = 1_001 ) -> int: """simple docstring""" _a : List[Any] = 1 for i in range(1 ,int(ceil(n / 2.0 ) ) ): _a : Optional[Any] = 2 * i + 1 _a : Optional[int] = 2 * i _a : str = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: a__ = int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number''')
235
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase_ = { "configuration_roc_bert": ["ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoCBertConfig"], "tokenization_roc_bert": ["RoCBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "RoCBertForCausalLM", "RoCBertForMaskedLM", "RoCBertForMultipleChoice", "RoCBertForPreTraining", "RoCBertForQuestionAnswering", "RoCBertForSequenceClassification", "RoCBertForTokenClassification", "RoCBertLayer", "RoCBertModel", "RoCBertPreTrainedModel", "load_tf_weights_in_roc_bert", ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
366
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "xlm-mlm-en-2048": "https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json", "xlm-mlm-ende-1024": "https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json", "xlm-mlm-enfr-1024": "https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json", "xlm-mlm-enro-1024": "https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json", "xlm-mlm-tlm-xnli15-1024": "https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json", "xlm-mlm-xnli15-1024": "https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json", "xlm-clm-enfr-1024": "https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json", "xlm-clm-ende-1024": "https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json", "xlm-mlm-17-1280": "https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json", "xlm-mlm-100-1280": "https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json", } class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : List[str] = "xlm" A : List[str] = { "hidden_size": "emb_dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", "n_words": "vocab_size", # For backward compatibility } def __init__( self : List[Any] , _lowerCAmelCase : Optional[Any]=3_01_45 , _lowerCAmelCase : Optional[Any]=20_48 , _lowerCAmelCase : Dict=12 , _lowerCAmelCase : int=16 , _lowerCAmelCase : Tuple=0.1 , _lowerCAmelCase : List[Any]=0.1 , _lowerCAmelCase : str=True , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Tuple=False , _lowerCAmelCase : Dict=False , _lowerCAmelCase : Dict=1 , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : Optional[Any]=5_12 , _lowerCAmelCase : List[Any]=20_48**-0.5 , _lowerCAmelCase : List[str]=1e-12 , _lowerCAmelCase : List[Any]=0.02 , _lowerCAmelCase : List[str]=0 , _lowerCAmelCase : Optional[Any]=1 , _lowerCAmelCase : Dict=2 , _lowerCAmelCase : List[str]=3 , _lowerCAmelCase : Tuple=5 , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : Tuple="first" , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : Tuple=5 , _lowerCAmelCase : List[str]=5 , _lowerCAmelCase : Optional[Any]=0 , _lowerCAmelCase : Tuple=0 , _lowerCAmelCase : Union[str, Any]=2 , _lowerCAmelCase : Union[str, Any]=0 , **_lowerCAmelCase : Tuple , ): __snake_case : Optional[Any] = vocab_size __snake_case : Tuple = emb_dim __snake_case : int = n_layers __snake_case : List[str] = n_heads __snake_case : Union[str, Any] = dropout __snake_case : Optional[int] = attention_dropout __snake_case : Optional[Any] = gelu_activation __snake_case : Tuple = sinusoidal_embeddings __snake_case : List[Any] = causal __snake_case : Dict = asm __snake_case : int = n_langs __snake_case : str = use_lang_emb __snake_case : Dict = layer_norm_eps __snake_case : List[Any] = bos_index __snake_case : Union[str, Any] = eos_index __snake_case : Dict = pad_index __snake_case : Any = unk_index __snake_case : Dict = mask_index __snake_case : Any = is_encoder __snake_case : Dict = max_position_embeddings __snake_case : Optional[Any] = embed_init_std __snake_case : List[Any] = init_std __snake_case : str = summary_type __snake_case : Optional[Any] = summary_use_proj __snake_case : str = summary_activation __snake_case : Optional[int] = summary_proj_to_labels __snake_case : Dict = summary_first_dropout __snake_case : Dict = start_n_top __snake_case : int = end_n_top __snake_case : str = mask_token_id __snake_case : int = lang_id if "n_words" in kwargs: __snake_case : Dict = kwargs["""n_words"""] super().__init__(pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , **_lowerCAmelCase ) class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): @property def snake_case__ ( self : Dict ): if self.task == "multiple-choice": __snake_case : Optional[int] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __snake_case : Tuple = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
20
0
'''simple docstring''' import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class _UpperCamelCase : '''simple docstring''' @staticmethod def UpperCamelCase__ ( *lowerCAmelCase__ : List[str] , **lowerCAmelCase__ : List[str] ): """simple docstring""" pass def lowerCAmelCase_ ( _lowerCamelCase: Dict ): return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. UpperCamelCase__ : Optional[int] = ( '''https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png''' ) @is_pipeline_test @require_torch @require_vision class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' _A : Dict = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def UpperCamelCase__ ( self : Union[str, Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = pipeline( """document-question-answering""" , model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = INVOICE_URL __SCREAMING_SNAKE_CASE : Optional[Any] = list(zip(*apply_tesseract(load_image(lowerCAmelCase__ ) , lowerCAmelCase__ , """""" ) ) ) __SCREAMING_SNAKE_CASE : Any = """What is the placebo?""" __SCREAMING_SNAKE_CASE : Optional[int] = [ { """image""": load_image(lowerCAmelCase__ ), """question""": question, }, { """image""": image, """question""": question, }, { """image""": image, """question""": question, """word_boxes""": word_boxes, }, ] return dqa_pipeline, examples def UpperCamelCase__ ( self : str , lowerCAmelCase__ : Any , lowerCAmelCase__ : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = dqa_pipeline(lowerCAmelCase__ , top_k=2 ) self.assertEqual( lowerCAmelCase__ , [ [ {"""score""": ANY(lowerCAmelCase__ ), """answer""": ANY(lowerCAmelCase__ ), """start""": ANY(lowerCAmelCase__ ), """end""": ANY(lowerCAmelCase__ )}, {"""score""": ANY(lowerCAmelCase__ ), """answer""": ANY(lowerCAmelCase__ ), """start""": ANY(lowerCAmelCase__ ), """end""": ANY(lowerCAmelCase__ )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def UpperCamelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = pipeline("""document-question-answering""" , model="""hf-internal-testing/tiny-random-layoutlmv2""" ) __SCREAMING_SNAKE_CASE : Tuple = INVOICE_URL __SCREAMING_SNAKE_CASE : Any = """How many cats are there?""" __SCREAMING_SNAKE_CASE : Dict = [ {"""score""": 0.00_01, """answer""": """oy 2312/2019""", """start""": 3_8, """end""": 3_9}, {"""score""": 0.00_01, """answer""": """oy 2312/2019 DUE""", """start""": 3_8, """end""": 4_0}, ] __SCREAMING_SNAKE_CASE : Tuple = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase__ , decimals=4 ) , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase__ , decimals=4 ) , lowerCAmelCase__ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably __SCREAMING_SNAKE_CASE : Tuple = """./tests/fixtures/tests_samples/COCO/000000039769.png""" __SCREAMING_SNAKE_CASE : List[Any] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual(lowerCAmelCase__ , [] ) # We can optionnally pass directly the words and bounding boxes __SCREAMING_SNAKE_CASE : int = """./tests/fixtures/tests_samples/COCO/000000039769.png""" __SCREAMING_SNAKE_CASE : Any = [] __SCREAMING_SNAKE_CASE : str = [] __SCREAMING_SNAKE_CASE : List[str] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , words=lowerCAmelCase__ , boxes=lowerCAmelCase__ , top_k=2 ) self.assertEqual(lowerCAmelCase__ , [] ) @slow @require_torch @require_detectrona @require_pytesseract def UpperCamelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = pipeline( """document-question-answering""" , model="""tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa""" , revision="""9977165""" , ) __SCREAMING_SNAKE_CASE : str = INVOICE_URL __SCREAMING_SNAKE_CASE : Any = """What is the invoice number?""" __SCREAMING_SNAKE_CASE : Optional[Any] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"""score""": 0.99_44, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, {"""score""": 0.00_09, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, ] , ) __SCREAMING_SNAKE_CASE : Optional[int] = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"""score""": 0.99_44, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, {"""score""": 0.00_09, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, ] , ) __SCREAMING_SNAKE_CASE : List[str] = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {"""score""": 0.99_44, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, {"""score""": 0.00_09, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def UpperCamelCase__ ( self : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = pipeline( """document-question-answering""" , model="""tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa""" , revision="""9977165""" , max_seq_len=5_0 , ) __SCREAMING_SNAKE_CASE : Optional[int] = INVOICE_URL __SCREAMING_SNAKE_CASE : Tuple = """What is the invoice number?""" __SCREAMING_SNAKE_CASE : Dict = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"""score""": 0.99_74, """answer""": """1110212019""", """start""": 2_3, """end""": 2_3}, {"""score""": 0.99_48, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, ] , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"""score""": 0.99_74, """answer""": """1110212019""", """start""": 2_3, """end""": 2_3}, {"""score""": 0.99_48, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, ] , ) __SCREAMING_SNAKE_CASE : str = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {"""score""": 0.99_74, """answer""": """1110212019""", """start""": 2_3, """end""": 2_3}, {"""score""": 0.99_48, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def UpperCamelCase__ ( self : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = AutoTokenizer.from_pretrained( """impira/layoutlm-document-qa""" , revision="""3dc6de3""" , add_prefix_space=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = pipeline( """document-question-answering""" , model="""impira/layoutlm-document-qa""" , tokenizer=lowerCAmelCase__ , revision="""3dc6de3""" , ) __SCREAMING_SNAKE_CASE : Tuple = INVOICE_URL __SCREAMING_SNAKE_CASE : Optional[int] = """What is the invoice number?""" __SCREAMING_SNAKE_CASE : Optional[Any] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"""score""": 0.42_51, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, {"""score""": 0.08_19, """answer""": """1110212019""", """start""": 2_3, """end""": 2_3}, ] , ) __SCREAMING_SNAKE_CASE : Tuple = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"""score""": 0.42_51, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, {"""score""": 0.08_19, """answer""": """1110212019""", """start""": 2_3, """end""": 2_3}, ] , ) __SCREAMING_SNAKE_CASE : Tuple = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {"""score""": 0.42_51, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, {"""score""": 0.08_19, """answer""": """1110212019""", """start""": 2_3, """end""": 2_3}, ] ] * 2 , ) __SCREAMING_SNAKE_CASE : Optional[int] = list(zip(*apply_tesseract(load_image(lowerCAmelCase__ ) , lowerCAmelCase__ , """""" ) ) ) # This model should also work if `image` is set to None __SCREAMING_SNAKE_CASE : Any = dqa_pipeline({"""image""": None, """word_boxes""": word_boxes, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"""score""": 0.42_51, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, {"""score""": 0.08_19, """answer""": """1110212019""", """start""": 2_3, """end""": 2_3}, ] , ) @slow @require_torch @require_pytesseract @require_vision def UpperCamelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer.from_pretrained( """impira/layoutlm-document-qa""" , revision="""3dc6de3""" , add_prefix_space=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = pipeline( """document-question-answering""" , model="""impira/layoutlm-document-qa""" , tokenizer=lowerCAmelCase__ , revision="""3dc6de3""" , max_seq_len=5_0 , ) __SCREAMING_SNAKE_CASE : Tuple = INVOICE_URL __SCREAMING_SNAKE_CASE : Any = """What is the invoice number?""" __SCREAMING_SNAKE_CASE : Any = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"""score""": 0.99_99, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, {"""score""": 0.99_98, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, ] , ) __SCREAMING_SNAKE_CASE : Tuple = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {"""score""": 0.99_99, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, {"""score""": 0.99_98, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, ] ] * 2 , ) __SCREAMING_SNAKE_CASE : List[Any] = list(zip(*apply_tesseract(load_image(lowerCAmelCase__ ) , lowerCAmelCase__ , """""" ) ) ) # This model should also work if `image` is set to None __SCREAMING_SNAKE_CASE : Optional[int] = dqa_pipeline({"""image""": None, """word_boxes""": word_boxes, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"""score""": 0.99_99, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, {"""score""": 0.99_98, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, ] , ) @slow @require_torch def UpperCamelCase__ ( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = pipeline( """document-question-answering""" , model="""naver-clova-ix/donut-base-finetuned-docvqa""" , tokenizer=AutoTokenizer.from_pretrained("""naver-clova-ix/donut-base-finetuned-docvqa""" ) , feature_extractor="""naver-clova-ix/donut-base-finetuned-docvqa""" , ) __SCREAMING_SNAKE_CASE : List[Any] = INVOICE_URL __SCREAMING_SNAKE_CASE : Optional[Any] = """What is the invoice number?""" __SCREAMING_SNAKE_CASE : str = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase__ , decimals=4 ) , [{"""answer""": """us-001"""}] ) @require_tf @unittest.skip("""Document question answering not implemented in TF""" ) def UpperCamelCase__ ( self : List[Any] ): """simple docstring""" pass
112
'''simple docstring''' def lowerCAmelCase_ ( _lowerCamelCase: int ): __SCREAMING_SNAKE_CASE : str = int(_lowerCamelCase ) if n_element < 1: __SCREAMING_SNAKE_CASE : List[str] = ValueError("""a should be a positive number""" ) raise my_error __SCREAMING_SNAKE_CASE : List[Any] = [1] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[int] = (0, 0, 0) __SCREAMING_SNAKE_CASE : List[str] = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": UpperCamelCase__ : Optional[Any] = input('''Enter the last number (nth term) of the Hamming Number Series: ''') print('''Formula of Hamming Number Series => 2^i * 3^j * 5^k''') UpperCamelCase__ : List[str] = hamming(int(n)) print('''-----------------------------------------------------''') print(f"The list with nth numbers is: {hamming_numbers}") print('''-----------------------------------------------------''')
112
1
'''simple docstring''' import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def _lowerCAmelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =checkpoint _SCREAMING_SNAKE_CASE ={} _SCREAMING_SNAKE_CASE =vae_state_dict['encoder.conv_in.weight'] _SCREAMING_SNAKE_CASE =vae_state_dict['encoder.conv_in.bias'] _SCREAMING_SNAKE_CASE =vae_state_dict['encoder.conv_out.weight'] _SCREAMING_SNAKE_CASE =vae_state_dict['encoder.conv_out.bias'] _SCREAMING_SNAKE_CASE =vae_state_dict['encoder.norm_out.weight'] _SCREAMING_SNAKE_CASE =vae_state_dict['encoder.norm_out.bias'] _SCREAMING_SNAKE_CASE =vae_state_dict['decoder.conv_in.weight'] _SCREAMING_SNAKE_CASE =vae_state_dict['decoder.conv_in.bias'] _SCREAMING_SNAKE_CASE =vae_state_dict['decoder.conv_out.weight'] _SCREAMING_SNAKE_CASE =vae_state_dict['decoder.conv_out.bias'] _SCREAMING_SNAKE_CASE =vae_state_dict['decoder.norm_out.weight'] _SCREAMING_SNAKE_CASE =vae_state_dict['decoder.norm_out.bias'] _SCREAMING_SNAKE_CASE =vae_state_dict['quant_conv.weight'] _SCREAMING_SNAKE_CASE =vae_state_dict['quant_conv.bias'] _SCREAMING_SNAKE_CASE =vae_state_dict['post_quant_conv.weight'] _SCREAMING_SNAKE_CASE =vae_state_dict['post_quant_conv.bias'] # Retrieves the keys for the encoder down blocks only _SCREAMING_SNAKE_CASE =len({'.'.join(layer.split('.' )[:3] ) for layer in vae_state_dict if 'encoder.down' in layer} ) _SCREAMING_SNAKE_CASE ={ layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(_UpperCamelCase ) } # Retrieves the keys for the decoder up blocks only _SCREAMING_SNAKE_CASE =len({'.'.join(layer.split('.' )[:3] ) for layer in vae_state_dict if 'decoder.up' in layer} ) _SCREAMING_SNAKE_CASE ={ layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(_UpperCamelCase ) } for i in range(_UpperCamelCase ): _SCREAMING_SNAKE_CASE =[key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key] if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: _SCREAMING_SNAKE_CASE =vae_state_dict.pop( f"encoder.down.{i}.downsample.conv.weight" ) _SCREAMING_SNAKE_CASE =vae_state_dict.pop( f"encoder.down.{i}.downsample.conv.bias" ) _SCREAMING_SNAKE_CASE =renew_vae_resnet_paths(_UpperCamelCase ) _SCREAMING_SNAKE_CASE ={'old': f"down.{i}.block", 'new': f"down_blocks.{i}.resnets"} assign_to_checkpoint(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , additional_replacements=[meta_path] , config=_UpperCamelCase ) _SCREAMING_SNAKE_CASE =[key for key in vae_state_dict if 'encoder.mid.block' in key] _SCREAMING_SNAKE_CASE =2 for i in range(1 , num_mid_res_blocks + 1 ): _SCREAMING_SNAKE_CASE =[key for key in mid_resnets if f"encoder.mid.block_{i}" in key] _SCREAMING_SNAKE_CASE =renew_vae_resnet_paths(_UpperCamelCase ) _SCREAMING_SNAKE_CASE ={'old': f"mid.block_{i}", 'new': f"mid_block.resnets.{i - 1}"} assign_to_checkpoint(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , additional_replacements=[meta_path] , config=_UpperCamelCase ) _SCREAMING_SNAKE_CASE =[key for key in vae_state_dict if 'encoder.mid.attn' in key] _SCREAMING_SNAKE_CASE =renew_vae_attention_paths(_UpperCamelCase ) _SCREAMING_SNAKE_CASE ={'old': 'mid.attn_1', 'new': 'mid_block.attentions.0'} assign_to_checkpoint(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , additional_replacements=[meta_path] , config=_UpperCamelCase ) conv_attn_to_linear(_UpperCamelCase ) for i in range(_UpperCamelCase ): _SCREAMING_SNAKE_CASE =num_up_blocks - 1 - i _SCREAMING_SNAKE_CASE =[ key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key ] if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: _SCREAMING_SNAKE_CASE =vae_state_dict[ f"decoder.up.{block_id}.upsample.conv.weight" ] _SCREAMING_SNAKE_CASE =vae_state_dict[ f"decoder.up.{block_id}.upsample.conv.bias" ] _SCREAMING_SNAKE_CASE =renew_vae_resnet_paths(_UpperCamelCase ) _SCREAMING_SNAKE_CASE ={'old': f"up.{block_id}.block", 'new': f"up_blocks.{i}.resnets"} assign_to_checkpoint(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , additional_replacements=[meta_path] , config=_UpperCamelCase ) _SCREAMING_SNAKE_CASE =[key for key in vae_state_dict if 'decoder.mid.block' in key] _SCREAMING_SNAKE_CASE =2 for i in range(1 , num_mid_res_blocks + 1 ): _SCREAMING_SNAKE_CASE =[key for key in mid_resnets if f"decoder.mid.block_{i}" in key] _SCREAMING_SNAKE_CASE =renew_vae_resnet_paths(_UpperCamelCase ) _SCREAMING_SNAKE_CASE ={'old': f"mid.block_{i}", 'new': f"mid_block.resnets.{i - 1}"} assign_to_checkpoint(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , additional_replacements=[meta_path] , config=_UpperCamelCase ) _SCREAMING_SNAKE_CASE =[key for key in vae_state_dict if 'decoder.mid.attn' in key] _SCREAMING_SNAKE_CASE =renew_vae_attention_paths(_UpperCamelCase ) _SCREAMING_SNAKE_CASE ={'old': 'mid.attn_1', 'new': 'mid_block.attentions.0'} assign_to_checkpoint(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , additional_replacements=[meta_path] , config=_UpperCamelCase ) conv_attn_to_linear(_UpperCamelCase ) return new_checkpoint def _lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : str , ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =requests.get( ' https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml' ) _SCREAMING_SNAKE_CASE =io.BytesIO(r.content ) _SCREAMING_SNAKE_CASE =OmegaConf.load(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =5_12 _SCREAMING_SNAKE_CASE ='cuda' if torch.cuda.is_available() else 'cpu' if checkpoint_path.endswith('safetensors' ): from safetensors import safe_open _SCREAMING_SNAKE_CASE ={} with safe_open(_UpperCamelCase , framework='pt' , device='cpu' ) as f: for key in f.keys(): _SCREAMING_SNAKE_CASE =f.get_tensor(_UpperCamelCase ) else: _SCREAMING_SNAKE_CASE =torch.load(_UpperCamelCase , map_location=_UpperCamelCase )['state_dict'] # Convert the VAE model. _SCREAMING_SNAKE_CASE =create_vae_diffusers_config(_UpperCamelCase , image_size=_UpperCamelCase ) _SCREAMING_SNAKE_CASE =custom_convert_ldm_vae_checkpoint(_UpperCamelCase , _UpperCamelCase ) _SCREAMING_SNAKE_CASE =AutoencoderKL(**_UpperCamelCase ) vae.load_state_dict(_UpperCamelCase ) vae.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--vae_pt_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.") parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.") lowerCamelCase : List[str] = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
369
'''simple docstring''' import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def _lowerCAmelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =checkpoint _SCREAMING_SNAKE_CASE ={} _SCREAMING_SNAKE_CASE =vae_state_dict['encoder.conv_in.weight'] _SCREAMING_SNAKE_CASE =vae_state_dict['encoder.conv_in.bias'] _SCREAMING_SNAKE_CASE =vae_state_dict['encoder.conv_out.weight'] _SCREAMING_SNAKE_CASE =vae_state_dict['encoder.conv_out.bias'] _SCREAMING_SNAKE_CASE =vae_state_dict['encoder.norm_out.weight'] _SCREAMING_SNAKE_CASE =vae_state_dict['encoder.norm_out.bias'] _SCREAMING_SNAKE_CASE =vae_state_dict['decoder.conv_in.weight'] _SCREAMING_SNAKE_CASE =vae_state_dict['decoder.conv_in.bias'] _SCREAMING_SNAKE_CASE =vae_state_dict['decoder.conv_out.weight'] _SCREAMING_SNAKE_CASE =vae_state_dict['decoder.conv_out.bias'] _SCREAMING_SNAKE_CASE =vae_state_dict['decoder.norm_out.weight'] _SCREAMING_SNAKE_CASE =vae_state_dict['decoder.norm_out.bias'] _SCREAMING_SNAKE_CASE =vae_state_dict['quant_conv.weight'] _SCREAMING_SNAKE_CASE =vae_state_dict['quant_conv.bias'] _SCREAMING_SNAKE_CASE =vae_state_dict['post_quant_conv.weight'] _SCREAMING_SNAKE_CASE =vae_state_dict['post_quant_conv.bias'] # Retrieves the keys for the encoder down blocks only _SCREAMING_SNAKE_CASE =len({'.'.join(layer.split('.' )[:3] ) for layer in vae_state_dict if 'encoder.down' in layer} ) _SCREAMING_SNAKE_CASE ={ layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(_UpperCamelCase ) } # Retrieves the keys for the decoder up blocks only _SCREAMING_SNAKE_CASE =len({'.'.join(layer.split('.' )[:3] ) for layer in vae_state_dict if 'decoder.up' in layer} ) _SCREAMING_SNAKE_CASE ={ layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(_UpperCamelCase ) } for i in range(_UpperCamelCase ): _SCREAMING_SNAKE_CASE =[key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key] if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: _SCREAMING_SNAKE_CASE =vae_state_dict.pop( f"encoder.down.{i}.downsample.conv.weight" ) _SCREAMING_SNAKE_CASE =vae_state_dict.pop( f"encoder.down.{i}.downsample.conv.bias" ) _SCREAMING_SNAKE_CASE =renew_vae_resnet_paths(_UpperCamelCase ) _SCREAMING_SNAKE_CASE ={'old': f"down.{i}.block", 'new': f"down_blocks.{i}.resnets"} assign_to_checkpoint(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , additional_replacements=[meta_path] , config=_UpperCamelCase ) _SCREAMING_SNAKE_CASE =[key for key in vae_state_dict if 'encoder.mid.block' in key] _SCREAMING_SNAKE_CASE =2 for i in range(1 , num_mid_res_blocks + 1 ): _SCREAMING_SNAKE_CASE =[key for key in mid_resnets if f"encoder.mid.block_{i}" in key] _SCREAMING_SNAKE_CASE =renew_vae_resnet_paths(_UpperCamelCase ) _SCREAMING_SNAKE_CASE ={'old': f"mid.block_{i}", 'new': f"mid_block.resnets.{i - 1}"} assign_to_checkpoint(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , additional_replacements=[meta_path] , config=_UpperCamelCase ) _SCREAMING_SNAKE_CASE =[key for key in vae_state_dict if 'encoder.mid.attn' in key] _SCREAMING_SNAKE_CASE =renew_vae_attention_paths(_UpperCamelCase ) _SCREAMING_SNAKE_CASE ={'old': 'mid.attn_1', 'new': 'mid_block.attentions.0'} assign_to_checkpoint(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , additional_replacements=[meta_path] , config=_UpperCamelCase ) conv_attn_to_linear(_UpperCamelCase ) for i in range(_UpperCamelCase ): _SCREAMING_SNAKE_CASE =num_up_blocks - 1 - i _SCREAMING_SNAKE_CASE =[ key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key ] if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: _SCREAMING_SNAKE_CASE =vae_state_dict[ f"decoder.up.{block_id}.upsample.conv.weight" ] _SCREAMING_SNAKE_CASE =vae_state_dict[ f"decoder.up.{block_id}.upsample.conv.bias" ] _SCREAMING_SNAKE_CASE =renew_vae_resnet_paths(_UpperCamelCase ) _SCREAMING_SNAKE_CASE ={'old': f"up.{block_id}.block", 'new': f"up_blocks.{i}.resnets"} assign_to_checkpoint(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , additional_replacements=[meta_path] , config=_UpperCamelCase ) _SCREAMING_SNAKE_CASE =[key for key in vae_state_dict if 'decoder.mid.block' in key] _SCREAMING_SNAKE_CASE =2 for i in range(1 , num_mid_res_blocks + 1 ): _SCREAMING_SNAKE_CASE =[key for key in mid_resnets if f"decoder.mid.block_{i}" in key] _SCREAMING_SNAKE_CASE =renew_vae_resnet_paths(_UpperCamelCase ) _SCREAMING_SNAKE_CASE ={'old': f"mid.block_{i}", 'new': f"mid_block.resnets.{i - 1}"} assign_to_checkpoint(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , additional_replacements=[meta_path] , config=_UpperCamelCase ) _SCREAMING_SNAKE_CASE =[key for key in vae_state_dict if 'decoder.mid.attn' in key] _SCREAMING_SNAKE_CASE =renew_vae_attention_paths(_UpperCamelCase ) _SCREAMING_SNAKE_CASE ={'old': 'mid.attn_1', 'new': 'mid_block.attentions.0'} assign_to_checkpoint(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , additional_replacements=[meta_path] , config=_UpperCamelCase ) conv_attn_to_linear(_UpperCamelCase ) return new_checkpoint def _lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : str , ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =requests.get( ' https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml' ) _SCREAMING_SNAKE_CASE =io.BytesIO(r.content ) _SCREAMING_SNAKE_CASE =OmegaConf.load(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =5_12 _SCREAMING_SNAKE_CASE ='cuda' if torch.cuda.is_available() else 'cpu' if checkpoint_path.endswith('safetensors' ): from safetensors import safe_open _SCREAMING_SNAKE_CASE ={} with safe_open(_UpperCamelCase , framework='pt' , device='cpu' ) as f: for key in f.keys(): _SCREAMING_SNAKE_CASE =f.get_tensor(_UpperCamelCase ) else: _SCREAMING_SNAKE_CASE =torch.load(_UpperCamelCase , map_location=_UpperCamelCase )['state_dict'] # Convert the VAE model. _SCREAMING_SNAKE_CASE =create_vae_diffusers_config(_UpperCamelCase , image_size=_UpperCamelCase ) _SCREAMING_SNAKE_CASE =custom_convert_ldm_vae_checkpoint(_UpperCamelCase , _UpperCamelCase ) _SCREAMING_SNAKE_CASE =AutoencoderKL(**_UpperCamelCase ) vae.load_state_dict(_UpperCamelCase ) vae.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--vae_pt_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.") parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.") lowerCamelCase : List[str] = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
114
0
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __init__( self : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int]=7 , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : Dict=3_0 , lowerCAmelCase_ : Optional[int]=4_0_0 , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : str=None , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : List[Any]=[0.5, 0.5, 0.5] , lowerCAmelCase_ : Dict=[0.5, 0.5, 0.5] , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : List[Any]=1 / 2_5_5 , lowerCAmelCase_ : Any=True , ): """simple docstring""" lowercase_ = size if size is not None else {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} lowercase_ = parent lowercase_ = batch_size lowercase_ = num_channels lowercase_ = min_resolution lowercase_ = max_resolution lowercase_ = do_resize lowercase_ = size lowercase_ = do_normalize lowercase_ = image_mean lowercase_ = image_std lowercase_ = do_rescale lowercase_ = rescale_factor lowercase_ = do_pad def _UpperCAmelCase ( self : int): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict=False): """simple docstring""" if not batched: lowercase_ = image_inputs[0] if isinstance(lowercase_ , Image.Image): lowercase_ = image.size else: lowercase_ = image.shape[1], image.shape[2] if w < h: lowercase_ = int(self.size["""shortest_edge"""] * h / w) lowercase_ = self.size["shortest_edge"] elif w > h: lowercase_ = self.size["shortest_edge"] lowercase_ = int(self.size["""shortest_edge"""] * w / h) else: lowercase_ = self.size["shortest_edge"] lowercase_ = self.size["shortest_edge"] else: lowercase_ = [] for image in image_inputs: lowercase_ = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) lowercase_ = max(lowercase_ , key=lambda lowerCAmelCase_: item[0])[0] lowercase_ = max(lowercase_ , key=lambda lowerCAmelCase_: item[1])[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( lowercase__ , unittest.TestCase ): lowercase__ = DetaImageProcessor if is_vision_available() else None def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = DetaImageProcessingTester(self) @property def _UpperCAmelCase ( self : str): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowercase_ , """image_mean""")) self.assertTrue(hasattr(lowercase_ , """image_std""")) self.assertTrue(hasattr(lowercase_ , """do_normalize""")) self.assertTrue(hasattr(lowercase_ , """do_resize""")) self.assertTrue(hasattr(lowercase_ , """do_rescale""")) self.assertTrue(hasattr(lowercase_ , """do_pad""")) self.assertTrue(hasattr(lowercase_ , """size""")) def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"""shortest_edge""": 1_8, """longest_edge""": 1_3_3_3}) self.assertEqual(image_processor.do_pad , lowercase_) def _UpperCAmelCase ( self : int): """simple docstring""" pass def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = self.image_processing_class(**self.image_processor_dict) # create random PIL images lowercase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image) # Test not batched input lowercase_ = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values lowercase_ = self.image_processor_tester.get_expected_values(lowercase_) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase_ = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_) lowercase_ = image_processing(lowercase_ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors lowercase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , numpify=lowercase_) for image in image_inputs: self.assertIsInstance(lowercase_ , np.ndarray) # Test not batched input lowercase_ = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values lowercase_ = self.image_processor_tester.get_expected_values(lowercase_) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase_ = image_processing(lowercase_ , return_tensors="""pt""").pixel_values lowercase_ = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors lowercase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_) for image in image_inputs: self.assertIsInstance(lowercase_ , torch.Tensor) # Test not batched input lowercase_ = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values lowercase_ = self.image_processor_tester.get_expected_values(lowercase_) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase_ = image_processing(lowercase_ , return_tensors="""pt""").pixel_values lowercase_ = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""") with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""") as f: lowercase_ = json.loads(f.read()) lowercase_ = {"image_id": 3_9_7_6_9, "annotations": target} # encode them lowercase_ = DetaImageProcessor() lowercase_ = image_processing(images=lowercase_ , annotations=lowercase_ , return_tensors="""pt""") # verify pixel values lowercase_ = torch.Size([1, 3, 8_0_0, 1_0_6_6]) self.assertEqual(encoding["""pixel_values"""].shape , lowercase_) lowercase_ = torch.tensor([0.2_796, 0.3_138, 0.3_481]) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowercase_ , atol=1E-4)) # verify area lowercase_ = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowercase_)) # verify boxes lowercase_ = torch.Size([6, 4]) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowercase_) lowercase_ = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowercase_ , atol=1E-3)) # verify image_id lowercase_ = torch.tensor([3_9_7_6_9]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowercase_)) # verify is_crowd lowercase_ = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowercase_)) # verify class_labels lowercase_ = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowercase_)) # verify orig_size lowercase_ = torch.tensor([4_8_0, 6_4_0]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowercase_)) # verify size lowercase_ = torch.tensor([8_0_0, 1_0_6_6]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowercase_)) @slow def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""") with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""") as f: lowercase_ = json.loads(f.read()) lowercase_ = {"file_name": "000000039769.png", "image_id": 3_9_7_6_9, "segments_info": target} lowercase_ = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""") # encode them lowercase_ = DetaImageProcessor(format="""coco_panoptic""") lowercase_ = image_processing(images=lowercase_ , annotations=lowercase_ , masks_path=lowercase_ , return_tensors="""pt""") # verify pixel values lowercase_ = torch.Size([1, 3, 8_0_0, 1_0_6_6]) self.assertEqual(encoding["""pixel_values"""].shape , lowercase_) lowercase_ = torch.tensor([0.2_796, 0.3_138, 0.3_481]) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowercase_ , atol=1E-4)) # verify area lowercase_ = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowercase_)) # verify boxes lowercase_ = torch.Size([6, 4]) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowercase_) lowercase_ = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowercase_ , atol=1E-3)) # verify image_id lowercase_ = torch.tensor([3_9_7_6_9]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowercase_)) # verify is_crowd lowercase_ = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowercase_)) # verify class_labels lowercase_ = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowercase_)) # verify masks lowercase_ = 8_2_2_8_7_3 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , lowercase_) # verify orig_size lowercase_ = torch.tensor([4_8_0, 6_4_0]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowercase_)) # verify size lowercase_ = torch.tensor([8_0_0, 1_0_6_6]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowercase_))
136
"""simple docstring""" import argparse from collections import defaultdict def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : int = f"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(__lowerCamelCase, "r" ) as f: UpperCAmelCase_ : List[Any] = f.readlines() UpperCAmelCase_ : int = f"""class {class_name}(""" UpperCAmelCase_ : Optional[Any] = f"""{4 * " "}def {test_name}(""" UpperCAmelCase_ : Optional[Any] = f"""{8 * " "}{correct_line.split()[0]}""" UpperCAmelCase_ : Tuple = f"""{16 * " "}{correct_line.split()[0]}""" UpperCAmelCase_ : int = False UpperCAmelCase_ : Union[str, Any] = False UpperCAmelCase_ : str = False UpperCAmelCase_ : Optional[Any] = False UpperCAmelCase_ : List[str] = 0 UpperCAmelCase_ : Optional[int] = 0 UpperCAmelCase_ : int = [] for line in lines: if line.startswith(__lowerCamelCase ): UpperCAmelCase_ : Tuple = True elif in_class and line.startswith(__lowerCamelCase ): UpperCAmelCase_ : Optional[int] = True elif in_class and in_func and (line.startswith(__lowerCamelCase ) or line.startswith(__lowerCamelCase )): UpperCAmelCase_ : Any = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: UpperCAmelCase_ : Union[str, Any] = True if in_class and in_func and in_line: if ")" not in line: continue else: UpperCAmelCase_ : Any = True if in_class and in_func and in_line and insert_line: new_lines.append(f"""{spaces * " "}{correct_line}""" ) UpperCAmelCase_ : int = False else: new_lines.append(__lowerCamelCase ) with open(__lowerCamelCase, "w" ) as f: for line in new_lines: f.write(__lowerCamelCase ) def __a ( __lowerCamelCase, __lowerCamelCase=None ): if fail is not None: with open(__lowerCamelCase, "r" ) as f: UpperCAmelCase_ : Tuple = {l.strip() for l in f.readlines()} else: UpperCAmelCase_ : str = None with open(__lowerCamelCase, "r" ) as f: UpperCAmelCase_ : Optional[int] = f.readlines() UpperCAmelCase_ : Any = defaultdict(__lowerCamelCase ) for line in correct_lines: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = line.split(";" ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument('--correct_filename', help='filename of tests with expected result') parser.add_argument('--fail_filename', help='filename of test failures', type=str, default=None) _a = parser.parse_args() main(args.correct_filename, args.fail_filename)
61
0
import importlib import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Union import torch from ..utils import BaseOutput UpperCAmelCase__ : List[str] ='''scheduler_config.json''' class __A ( SCREAMING_SNAKE_CASE_ ): __A = 1 __A = 2 __A = 3 __A = 4 __A = 5 __A = 6 __A = 7 __A = 8 __A = 9 __A = 10 __A = 11 __A = 12 __A = 13 __A = 14 @dataclass class __A ( SCREAMING_SNAKE_CASE_ ): __A = 42 class __A : __A = SCHEDULER_CONFIG_NAME __A = [] __A = True @classmethod def _snake_case ( cls , UpperCAmelCase_ = None , UpperCAmelCase_ = None , UpperCAmelCase_=False , **UpperCAmelCase_ , ): lowerCamelCase =cls.load_config( pretrained_model_name_or_path=__a , subfolder=__a , return_unused_kwargs=__a , return_commit_hash=__a , **__a , ) return cls.from_config(__a , return_unused_kwargs=__a , **__a ) def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ = False , **UpperCAmelCase_ ): self.save_config(save_directory=__a , push_to_hub=__a , **__a ) @property def _snake_case ( self ): return self._get_compatibles() @classmethod def _snake_case ( cls ): lowerCamelCase =list(set([cls.__name__] + cls._compatibles ) ) lowerCamelCase =importlib.import_module(__name__.split(""".""" )[0] ) lowerCamelCase =[ getattr(__a , __a ) for c in compatible_classes_str if hasattr(__a , __a ) ] return compatible_classes
350
from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1 / sqrt(2 ) ) -> IIRFilter: lowerCamelCase =tau * frequency / samplerate lowerCamelCase =sin(_UpperCAmelCase ) lowerCamelCase =cos(_UpperCAmelCase ) lowerCamelCase =_sin / (2 * q_factor) lowerCamelCase =(1 - _cos) / 2 lowerCamelCase =1 - _cos lowerCamelCase =1 + alpha lowerCamelCase =-2 * _cos lowerCamelCase =1 - alpha lowerCamelCase =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1 / sqrt(2 ) ) -> IIRFilter: lowerCamelCase =tau * frequency / samplerate lowerCamelCase =sin(_UpperCAmelCase ) lowerCamelCase =cos(_UpperCAmelCase ) lowerCamelCase =_sin / (2 * q_factor) lowerCamelCase =(1 + _cos) / 2 lowerCamelCase =-1 - _cos lowerCamelCase =1 + alpha lowerCamelCase =-2 * _cos lowerCamelCase =1 - alpha lowerCamelCase =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1 / sqrt(2 ) ) -> IIRFilter: lowerCamelCase =tau * frequency / samplerate lowerCamelCase =sin(_UpperCAmelCase ) lowerCamelCase =cos(_UpperCAmelCase ) lowerCamelCase =_sin / (2 * q_factor) lowerCamelCase =_sin / 2 lowerCamelCase =0 lowerCamelCase =-ba lowerCamelCase =1 + alpha lowerCamelCase =-2 * _cos lowerCamelCase =1 - alpha lowerCamelCase =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1 / sqrt(2 ) ) -> IIRFilter: lowerCamelCase =tau * frequency / samplerate lowerCamelCase =sin(_UpperCAmelCase ) lowerCamelCase =cos(_UpperCAmelCase ) lowerCamelCase =_sin / (2 * q_factor) lowerCamelCase =1 - alpha lowerCamelCase =-2 * _cos lowerCamelCase =1 + alpha lowerCamelCase =IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1 / sqrt(2 ) , ) -> IIRFilter: lowerCamelCase =tau * frequency / samplerate lowerCamelCase =sin(_UpperCAmelCase ) lowerCamelCase =cos(_UpperCAmelCase ) lowerCamelCase =_sin / (2 * q_factor) lowerCamelCase =10 ** (gain_db / 40) lowerCamelCase =1 + alpha * big_a lowerCamelCase =-2 * _cos lowerCamelCase =1 - alpha * big_a lowerCamelCase =1 + alpha / big_a lowerCamelCase =-2 * _cos lowerCamelCase =1 - alpha / big_a lowerCamelCase =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1 / sqrt(2 ) , ) -> IIRFilter: lowerCamelCase =tau * frequency / samplerate lowerCamelCase =sin(_UpperCAmelCase ) lowerCamelCase =cos(_UpperCAmelCase ) lowerCamelCase =_sin / (2 * q_factor) lowerCamelCase =10 ** (gain_db / 40) lowerCamelCase =(big_a + 1) - (big_a - 1) * _cos lowerCamelCase =(big_a + 1) + (big_a - 1) * _cos lowerCamelCase =(big_a - 1) - (big_a + 1) * _cos lowerCamelCase =(big_a - 1) + (big_a + 1) * _cos lowerCamelCase =2 * sqrt(_UpperCAmelCase ) * alpha lowerCamelCase =big_a * (pmc + aaa) lowerCamelCase =2 * big_a * mpc lowerCamelCase =big_a * (pmc - aaa) lowerCamelCase =ppmc + aaa lowerCamelCase =-2 * pmpc lowerCamelCase =ppmc - aaa lowerCamelCase =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1 / sqrt(2 ) , ) -> IIRFilter: lowerCamelCase =tau * frequency / samplerate lowerCamelCase =sin(_UpperCAmelCase ) lowerCamelCase =cos(_UpperCAmelCase ) lowerCamelCase =_sin / (2 * q_factor) lowerCamelCase =10 ** (gain_db / 40) lowerCamelCase =(big_a + 1) - (big_a - 1) * _cos lowerCamelCase =(big_a + 1) + (big_a - 1) * _cos lowerCamelCase =(big_a - 1) - (big_a + 1) * _cos lowerCamelCase =(big_a - 1) + (big_a + 1) * _cos lowerCamelCase =2 * sqrt(_UpperCAmelCase ) * alpha lowerCamelCase =big_a * (ppmc + aaa) lowerCamelCase =-2 * big_a * pmpc lowerCamelCase =big_a * (ppmc - aaa) lowerCamelCase =pmc + aaa lowerCamelCase =2 * mpc lowerCamelCase =pmc - aaa lowerCamelCase =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
262
0
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if "cls_token" in name: lowerCAmelCase = name.replace("""cls_token""" , """vit.embeddings.cls_token""" ) if "mask_token" in name: lowerCAmelCase = name.replace("""mask_token""" , """decoder.mask_token""" ) if "decoder_pos_embed" in name: lowerCAmelCase = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: lowerCAmelCase = name.replace("""pos_embed""" , """vit.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: lowerCAmelCase = name.replace("""patch_embed.proj""" , """vit.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowerCAmelCase = name.replace("""patch_embed.norm""" , """vit.embeddings.norm""" ) if "decoder_blocks" in name: lowerCAmelCase = name.replace("""decoder_blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: lowerCAmelCase = name.replace("""blocks""" , """vit.encoder.layer""" ) if "attn.proj" in name: lowerCAmelCase = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: lowerCAmelCase = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowerCAmelCase = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowerCAmelCase = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowerCAmelCase = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowerCAmelCase = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: lowerCAmelCase = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: lowerCAmelCase = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: lowerCAmelCase = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name: lowerCAmelCase = name.replace("""norm.weight""" , """vit.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name: lowerCAmelCase = name.replace("""norm.bias""" , """vit.layernorm.bias""" ) return name def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : str ): '''simple docstring''' for key in orig_state_dict.copy().keys(): lowerCAmelCase = orig_state_dict.pop(SCREAMING_SNAKE_CASE ) if "qkv" in key: lowerCAmelCase = key.split(""".""" ) lowerCAmelCase = int(key_split[1] ) if "decoder_blocks" in key: lowerCAmelCase = config.decoder_hidden_size lowerCAmelCase = """decoder.decoder_layers.""" if "weight" in key: lowerCAmelCase = val[:dim, :] lowerCAmelCase = val[dim : dim * 2, :] lowerCAmelCase = val[-dim:, :] elif "bias" in key: lowerCAmelCase = val[:dim] lowerCAmelCase = val[dim : dim * 2] lowerCAmelCase = val[-dim:] else: lowerCAmelCase = config.hidden_size lowerCAmelCase = """vit.encoder.layer.""" if "weight" in key: lowerCAmelCase = val[:dim, :] lowerCAmelCase = val[dim : dim * 2, :] lowerCAmelCase = val[-dim:, :] elif "bias" in key: lowerCAmelCase = val[:dim] lowerCAmelCase = val[dim : dim * 2] lowerCAmelCase = val[-dim:] else: lowerCAmelCase = val return orig_state_dict def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' lowerCAmelCase = ViTMAEConfig() if "large" in checkpoint_url: lowerCAmelCase = 10_24 lowerCAmelCase = 40_96 lowerCAmelCase = 24 lowerCAmelCase = 16 elif "huge" in checkpoint_url: lowerCAmelCase = 14 lowerCAmelCase = 12_80 lowerCAmelCase = 51_20 lowerCAmelCase = 32 lowerCAmelCase = 16 lowerCAmelCase = ViTMAEForPreTraining(SCREAMING_SNAKE_CASE ) lowerCAmelCase = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE , map_location="""cpu""" )["""model"""] lowerCAmelCase = ViTMAEImageProcessor(size=config.image_size ) lowerCAmelCase = convert_state_dict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase = """https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg""" lowerCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) lowerCAmelCase = ViTMAEImageProcessor(size=config.image_size ) lowerCAmelCase = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) lowerCAmelCase = model(**SCREAMING_SNAKE_CASE ) lowerCAmelCase = outputs.logits if "large" in checkpoint_url: lowerCAmelCase = torch.tensor( [[-0.73_09, -0.71_28, -1.01_69], [-1.01_61, -0.90_58, -1.18_78], [-1.04_78, -0.94_11, -1.19_11]] ) elif "huge" in checkpoint_url: lowerCAmelCase = torch.tensor( [[-1.15_99, -0.91_99, -1.22_21], [-1.19_52, -0.92_69, -1.23_07], [-1.21_43, -0.93_37, -1.22_62]] ) else: lowerCAmelCase = torch.tensor( [[-0.91_92, -0.84_81, -1.12_59], [-1.13_49, -1.00_34, -1.25_99], [-1.17_57, -1.04_29, -1.27_26]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
46
"""simple docstring""" # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests SCREAMING_SNAKE_CASE__ = open # noqa: we just need to have a builtin inside this module to test it properly
46
1
"""simple docstring""" def __lowercase ( _a , _a , _a , _a , _a , ): snake_case_ : str = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError('''All input parameters must be positive''' ) if any(p > 1 for p in parameters[1:4] ): raise ValueError('''Relative densities cannot be greater than one''' ) else: snake_case_ : Union[str, Any] = 1 - (matter_density + radiation_density + dark_energy) snake_case_ : int = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) snake_case_ : int = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation lowercase__ : int = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1e-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
369
"""simple docstring""" def __lowercase ( _a = 4_000_000 ): snake_case_ : Dict = [] snake_case_, snake_case_ : List[str] = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(_a ) snake_case_, snake_case_ : str = b, a + b return sum(_a ) if __name__ == "__main__": print(f'{solution() = }')
155
0
"""simple docstring""" def lowercase ( __snake_case : Union[str, Any] , __snake_case : Tuple ): lowercase_ : Tuple = [1] for i in range(2 , __snake_case ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" lowercase_ : str = [] lowercase_ : str = list(range(__snake_case ) ) # Find permutation while factorials: lowercase_ : int = factorials.pop() lowercase_ , lowercase_ : List[Any] = divmod(__snake_case , __snake_case ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
33
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ : Any =logging.get_logger(__name__) lowerCAmelCase__ : str ={ '''microsoft/unispeech-sat-base-100h-libri-ft''': ( '''https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json''' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class UpperCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ : Dict = '''unispeech-sat''' def __init__( self , _A=32 , _A=768 , _A=12 , _A=12 , _A=3_072 , _A="gelu" , _A=0.1 , _A=0.1 , _A=0.1 , _A=0.0 , _A=0.0 , _A=0.1 , _A=0.1 , _A=0.0_2 , _A=1e-5 , _A="group" , _A="gelu" , _A=(512, 512, 512, 512, 512, 512, 512) , _A=(5, 2, 2, 2, 2, 2, 2) , _A=(10, 3, 3, 3, 3, 2, 2) , _A=False , _A=128 , _A=16 , _A=False , _A=True , _A=0.0_5 , _A=10 , _A=2 , _A=0.0 , _A=10 , _A=0 , _A=320 , _A=2 , _A=0.1 , _A=100 , _A=256 , _A=256 , _A=0.1 , _A="mean" , _A=False , _A=False , _A=256 , _A=(512, 512, 512, 512, 1_500) , _A=(5, 3, 3, 1, 1) , _A=(1, 2, 3, 1, 1) , _A=512 , _A=0 , _A=1 , _A=2 , _A=504 , **_A , ): '''simple docstring''' super().__init__(**_A , pad_token_id=_A , bos_token_id=_A , eos_token_id=_A ) __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = feat_extract_norm __SCREAMING_SNAKE_CASE = feat_extract_activation __SCREAMING_SNAKE_CASE = list(_A ) __SCREAMING_SNAKE_CASE = list(_A ) __SCREAMING_SNAKE_CASE = list(_A ) __SCREAMING_SNAKE_CASE = conv_bias __SCREAMING_SNAKE_CASE = num_conv_pos_embeddings __SCREAMING_SNAKE_CASE = num_conv_pos_embedding_groups __SCREAMING_SNAKE_CASE = len(self.conv_dim ) __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_dropout __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = activation_dropout __SCREAMING_SNAKE_CASE = feat_proj_dropout __SCREAMING_SNAKE_CASE = final_dropout __SCREAMING_SNAKE_CASE = layerdrop __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = num_clusters __SCREAMING_SNAKE_CASE = do_stable_layer_norm __SCREAMING_SNAKE_CASE = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __SCREAMING_SNAKE_CASE = apply_spec_augment __SCREAMING_SNAKE_CASE = mask_time_prob __SCREAMING_SNAKE_CASE = mask_time_length __SCREAMING_SNAKE_CASE = mask_time_min_masks __SCREAMING_SNAKE_CASE = mask_feature_prob __SCREAMING_SNAKE_CASE = mask_feature_length __SCREAMING_SNAKE_CASE = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __SCREAMING_SNAKE_CASE = num_codevectors_per_group __SCREAMING_SNAKE_CASE = num_codevector_groups __SCREAMING_SNAKE_CASE = contrastive_logits_temperature __SCREAMING_SNAKE_CASE = feat_quantizer_dropout __SCREAMING_SNAKE_CASE = num_negatives __SCREAMING_SNAKE_CASE = codevector_dim __SCREAMING_SNAKE_CASE = proj_codevector_dim __SCREAMING_SNAKE_CASE = diversity_loss_weight # ctc loss __SCREAMING_SNAKE_CASE = ctc_loss_reduction __SCREAMING_SNAKE_CASE = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. __SCREAMING_SNAKE_CASE = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __SCREAMING_SNAKE_CASE = list(_A ) __SCREAMING_SNAKE_CASE = list(_A ) __SCREAMING_SNAKE_CASE = list(_A ) __SCREAMING_SNAKE_CASE = xvector_output_dim @property def _A ( self ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
257
0
# Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> int: """simple docstring""" A : List[str] = { """en""": """Machine learning is great, isn't it?""", """ru""": """Машинное обучение - это здорово, не так ли?""", """de""": """Maschinelles Lernen ist großartig, oder?""", } # BLUE scores as follows: # "pair": [fairseq, transformers] A : Any = { """ru-en""": ["""[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)""", """39.20"""], """en-ru""": ["""[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)""", """33.47"""], """en-de""": ["""[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)""", """42.83"""], """de-en""": ["""[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)""", """41.35"""], } A : Any = f'''{src_lang}-{tgt_lang}''' A : List[Any] = f''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt19 - facebook license: apache-2.0 datasets: - wmt19 metrics: - bleu --- # FSMT ## Model description This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}. For more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "facebook/wmt19-{src_lang}-{tgt_lang}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias - The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- {pair} | {scores[pair][0]} | {scores[pair][1]} The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{{..., year={{2020}}, title={{Facebook FAIR\'s WMT19 News Translation Task Submission}}, author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}}, booktitle={{Proc. of WMT}}, }} ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints) ''' os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) A : Optional[int] = os.path.join(_lowerCAmelCase , """README.md""" ) print(f'''Generating {path}''' ) with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(_lowerCAmelCase ) # make sure we are under the root of the project SCREAMING_SNAKE_CASE_:Dict = Path(__file__).resolve().parent.parent.parent SCREAMING_SNAKE_CASE_:Union[str, Any] = repo_dir / """model_cards""" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_:Tuple = model_name.split("""-""") SCREAMING_SNAKE_CASE_:Tuple = model_cards_dir / """facebook""" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
115
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE_:int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_:Any = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : Any = "roberta" def __init__( self, lowerCamelCase__=5_0265, lowerCamelCase__=768, lowerCamelCase__=12, lowerCamelCase__=12, lowerCamelCase__=3072, lowerCamelCase__="gelu", lowerCamelCase__=0.1, lowerCamelCase__=0.1, lowerCamelCase__=512, lowerCamelCase__=2, lowerCamelCase__=0.02, lowerCamelCase__=1e-12, lowerCamelCase__=1, lowerCamelCase__=0, lowerCamelCase__=2, lowerCamelCase__="absolute", lowerCamelCase__=True, lowerCamelCase__=None, **lowerCamelCase__, ): super().__init__(pad_token_id=lowerCamelCase__, bos_token_id=lowerCamelCase__, eos_token_id=lowerCamelCase__, **lowerCamelCase__ ) A : List[str] = vocab_size A : List[Any] = hidden_size A : List[Any] = num_hidden_layers A : Optional[Any] = num_attention_heads A : Union[str, Any] = hidden_act A : Union[str, Any] = intermediate_size A : Optional[int] = hidden_dropout_prob A : List[str] = attention_probs_dropout_prob A : int = max_position_embeddings A : List[str] = type_vocab_size A : List[str] = initializer_range A : Dict = layer_norm_eps A : Optional[int] = position_embedding_type A : Any = use_cache A : Optional[int] = classifier_dropout class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' @property def _lowerCAmelCase ( self ): if self.task == "multiple-choice": A : Optional[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A : int = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
115
1
from __future__ import annotations A : List[str] = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } class A : '''simple docstring''' def __init__(self : str , _UpperCAmelCase : dict[str, list[str]] , _UpperCAmelCase : str ) -> Union[str, Any]: """simple docstring""" lowercase__ = graph # mapping node to its parent in resulting breadth first tree lowercase__ = {} lowercase__ = source_vertex def lowerCamelCase__ (self : Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = {self.source_vertex} lowercase__ = None lowercase__ = [self.source_vertex] # first in first out queue while queue: lowercase__ = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(__a ) lowercase__ = vertex queue.append(__a ) def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : str ) -> Any: """simple docstring""" if target_vertex == self.source_vertex: return self.source_vertex lowercase__ = self.parent.get(__a ) if target_vertex_parent is None: lowercase__ = ( f'''No path from vertex: {self.source_vertex} to vertex: {target_vertex}''' ) raise ValueError(__a ) return self.shortest_path(__a ) + f'''->{target_vertex}''' if __name__ == "__main__": A : List[Any] = Graph(graph, 'G') g.breath_first_search() print(g.shortest_path('D')) print(g.shortest_path('G')) print(g.shortest_path('Foo'))
305
'''simple docstring''' import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class __A ( unittest.TestCase ): def __init__(self : str , __a : Optional[Any] , __a : Optional[Any]=13 , __a : int=30 , __a : Union[str, Any]=2 , __a : Dict=3 , __a : List[Any]=True , __a : Optional[Any]=True , __a : List[Any]=32 , __a : Any=5 , __a : str=4 , __a : Optional[int]=37 , __a : Optional[int]="gelu" , __a : List[str]=0.1 , __a : Tuple=0.1 , __a : List[str]=10 , __a : Optional[int]=0.02 , ): UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = type_sequence_label_size UpperCAmelCase_ = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ = (image_size // patch_size) ** 2 UpperCAmelCase_ = num_patches + 1 def _lowercase (self : Any ): UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , ) return config, pixel_values def _lowercase (self : Dict , __a : Any , __a : List[Any] ): UpperCAmelCase_ = FlaxViTModel(config=__a ) UpperCAmelCase_ = model(__a ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ = (self.image_size, self.image_size) UpperCAmelCase_ = (self.patch_size, self.patch_size) UpperCAmelCase_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def _lowercase (self : Tuple , __a : str , __a : Any ): UpperCAmelCase_ = self.type_sequence_label_size UpperCAmelCase_ = FlaxViTForImageClassification(config=__a ) UpperCAmelCase_ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ = 1 UpperCAmelCase_ = FlaxViTForImageClassification(__a ) UpperCAmelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ = model(__a ) def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) = config_and_inputs UpperCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class __A ( UpperCamelCase__ , unittest.TestCase ): a__ : Tuple = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def _lowercase (self : Any ): UpperCAmelCase_ = FlaxViTModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37 ) def _lowercase (self : Tuple ): self.config_tester.run_common_tests() def _lowercase (self : str ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def _lowercase (self : str ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) def _lowercase (self : Tuple ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(__a ) UpperCAmelCase_ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , __a ) def _lowercase (self : Optional[Any] ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase_ = self._prepare_for_class(__a , __a ) UpperCAmelCase_ = model_class(__a ) @jax.jit def model_jitted(__a : Tuple , **__a : List[Any] ): return model(pixel_values=__a , **__a ) with self.subTest("JIT Enabled" ): UpperCAmelCase_ = model_jitted(**__a ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): UpperCAmelCase_ = model_jitted(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) ) for jitted_output, output in zip(__a , __a ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _lowercase (self : Tuple ): for model_class_name in self.all_model_classes: UpperCAmelCase_ = model_class_name.from_pretrained("google/vit-base-patch16-224" ) UpperCAmelCase_ = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(__a )
1
0
"""simple docstring""" import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __A = logging.get_logger(__name__) __A = "▁" __A = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"} __A = { "sentencepiece_model_file": "sentencepiece.bpe.model", "vocab_file": "vocab.txt", } __A = { "vocab_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", }, "sentencepiece_model_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", }, } __A = { "ernie-m-base": 514, "ernie-m-large": 514, } __A = { "ernie-m-base": {"do_lower_case": False}, "ernie-m-large": {"do_lower_case": False}, } class snake_case ( __snake_case ): SCREAMING_SNAKE_CASE_ : List[str] = ["input_ids"] SCREAMING_SNAKE_CASE_ : Dict = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : List[str] = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : str = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Tuple = RESOURCE_FILES_NAMES def __init__( self : Optional[int] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str=None , UpperCamelCase__ : str=False , UpperCamelCase__ : Tuple="utf8" , UpperCamelCase__ : str="[UNK]" , UpperCamelCase__ : int="[SEP]" , UpperCamelCase__ : Optional[int]="[PAD]" , UpperCamelCase__ : Tuple="[CLS]" , UpperCamelCase__ : int="[MASK]" , UpperCamelCase__ : Optional[Dict[str, Any]] = None , **UpperCamelCase__ : Dict , )-> None: '''simple docstring''' __lowerCAmelCase: Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , vocab_file=UpperCamelCase__ , encoding=UpperCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase__ , ) __lowerCAmelCase: Optional[int] = do_lower_case __lowerCAmelCase: Optional[Any] = sentencepiece_model_ckpt __lowerCAmelCase: str = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(UpperCamelCase__) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: __lowerCAmelCase: Any = self.load_vocab(filepath=UpperCamelCase__) else: __lowerCAmelCase: Union[str, Any] = {self.sp_model.id_to_piece(UpperCamelCase__): id for id in range(self.sp_model.get_piece_size())} __lowerCAmelCase: Tuple = {v: k for k, v in self.vocab.items()} def lowercase_ ( self : Dict , UpperCamelCase__ : int)-> Any: '''simple docstring''' if text is None: return None __lowerCAmelCase: List[str] = self.tokenize(UpperCamelCase__) __lowerCAmelCase , __lowerCAmelCase: str = "", [] for i, ch in enumerate(UpperCamelCase__): if ch in self.SP_CHAR_MAPPING: __lowerCAmelCase: int = self.SP_CHAR_MAPPING.get(UpperCamelCase__) else: __lowerCAmelCase: Dict = unicodedata.normalize("NFKC" , UpperCamelCase__) if self.is_whitespace(UpperCamelCase__): continue normalized_text += ch char_mapping.extend([i] * len(UpperCamelCase__)) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase: Optional[int] = normalized_text, [], 0 if self.do_lower_case: __lowerCAmelCase: str = text.lower() for token in split_tokens: if token[:1] == "▁": __lowerCAmelCase: int = token[1:] __lowerCAmelCase: str = text[offset:].index(UpperCamelCase__) + offset __lowerCAmelCase: Tuple = start + len(UpperCamelCase__) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1)) __lowerCAmelCase: List[str] = end return token_mapping @property def lowercase_ ( self : Dict)-> Union[str, Any]: '''simple docstring''' return len(self.vocab) def lowercase_ ( self : List[Any])-> Dict: '''simple docstring''' return dict(self.vocab , **self.added_tokens_encoder) def __getstate__( self : str)-> List[str]: '''simple docstring''' __lowerCAmelCase: Union[str, Any] = self.__dict__.copy() __lowerCAmelCase: str = None return state def __setstate__( self : str , UpperCamelCase__ : Any)-> Dict: '''simple docstring''' __lowerCAmelCase: Any = d # for backward compatibility if not hasattr(self , "sp_model_kwargs"): __lowerCAmelCase: int = {} __lowerCAmelCase: int = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.sentencepiece_model_ckpt) def lowercase_ ( self : Dict , UpperCamelCase__ : Optional[int])-> str: '''simple docstring''' return "".join((self.SP_CHAR_MAPPING.get(UpperCamelCase__ , UpperCamelCase__) for c in text)) def lowercase_ ( self : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[Any]=False , UpperCamelCase__ : List[str]=6_4 , UpperCamelCase__ : Any=0.1)-> Any: '''simple docstring''' if self.sp_model_kwargs.get("enable_sampling") is True: __lowerCAmelCase: Optional[Any] = True if self.sp_model_kwargs.get("alpha") is not None: __lowerCAmelCase: str = self.sp_model_kwargs.get("alpha") if self.sp_model_kwargs.get("nbest_size") is not None: __lowerCAmelCase: Optional[Any] = self.sp_model_kwargs.get("nbest_size") if not enable_sampling: __lowerCAmelCase: Any = self.sp_model.EncodeAsPieces(UpperCamelCase__) else: __lowerCAmelCase: str = self.sp_model.SampleEncodeAsPieces(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__) __lowerCAmelCase: int = [] for pi, piece in enumerate(UpperCamelCase__): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(UpperCamelCase__) and pi != 0: new_pieces.append(UpperCamelCase__) continue else: continue __lowerCAmelCase: Optional[int] = 0 for i, chunk in enumerate(UpperCamelCase__): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(UpperCamelCase__) or self.is_punct(UpperCamelCase__): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i]) new_pieces.append(UpperCamelCase__) __lowerCAmelCase: Optional[int] = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i]) __lowerCAmelCase: Optional[int] = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i]) __lowerCAmelCase: str = i if len(UpperCamelCase__) > lst_i: new_pieces.append(piece[lst_i:]) return new_pieces def lowercase_ ( self : Tuple , UpperCamelCase__ : Any)-> Optional[int]: '''simple docstring''' __lowerCAmelCase: Dict = "".join(UpperCamelCase__).replace(UpperCamelCase__ , " ").strip() return out_string def lowercase_ ( self : Any , UpperCamelCase__ : Union[str, Any])-> Dict: '''simple docstring''' __lowerCAmelCase: Any = self.convert_ids_to_tokens(UpperCamelCase__) __lowerCAmelCase: Union[str, Any] = "".join(UpperCamelCase__).replace(UpperCamelCase__ , " ").strip() return out_string def lowercase_ ( self : Any , UpperCamelCase__ : int)-> Dict: '''simple docstring''' return self.vocab.get(UpperCamelCase__ , self.vocab.get(self.unk_token)) def lowercase_ ( self : List[Any] , UpperCamelCase__ : Union[str, Any])-> Any: '''simple docstring''' return self.reverse_vocab.get(UpperCamelCase__ , self.unk_token) def lowercase_ ( self : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : int=None)-> int: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowerCAmelCase: Tuple = [self.cls_token_id] __lowerCAmelCase: str = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def lowercase_ ( self : Optional[int] , UpperCamelCase__ : str , UpperCamelCase__ : List[str]=None)-> Optional[int]: '''simple docstring''' if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def lowercase_ ( self : int , UpperCamelCase__ : Dict , UpperCamelCase__ : Any=None , UpperCamelCase__ : List[Any]=False)-> Any: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model.") return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(UpperCamelCase__)) + [1, 1] + ([0] * len(UpperCamelCase__)) + [1] return [1] + ([0] * len(UpperCamelCase__)) + [1] def lowercase_ ( self : List[str] , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None)-> List[int]: '''simple docstring''' if token_ids_a is None: # [CLS] X [SEP] return (len(UpperCamelCase__) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(UpperCamelCase__) + 1) + [1] * (len(UpperCamelCase__) + 3) def lowercase_ ( self : Union[str, Any] , UpperCamelCase__ : int)-> Dict: '''simple docstring''' if "\u4e00" <= char <= "\u9fff": return True return False def lowercase_ ( self : List[Any] , UpperCamelCase__ : int)-> List[Any]: '''simple docstring''' if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def lowercase_ ( self : Any , UpperCamelCase__ : Any)-> List[Any]: '''simple docstring''' if char in ",;:.?!~,;:。?!《》【】": return True return False def lowercase_ ( self : List[Any] , UpperCamelCase__ : Dict)-> int: '''simple docstring''' if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(UpperCamelCase__) == 1: __lowerCAmelCase: Dict = unicodedata.category(UpperCamelCase__) if cat == "Zs": return True return False def lowercase_ ( self : int , UpperCamelCase__ : List[str])-> Dict: '''simple docstring''' __lowerCAmelCase: List[Any] = {} with io.open(UpperCamelCase__ , "r" , encoding="utf-8") as f: for index, line in enumerate(UpperCamelCase__): __lowerCAmelCase: Any = line.rstrip("\n") __lowerCAmelCase: Any = int(UpperCamelCase__) return token_to_idx def lowercase_ ( self : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None)-> Tuple[str]: '''simple docstring''' __lowerCAmelCase: Union[str, Any] = 0 if os.path.isdir(UpperCamelCase__): __lowerCAmelCase: int = os.path.join( UpperCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) else: __lowerCAmelCase: Optional[int] = (filename_prefix + "-" if filename_prefix else "") + save_directory with open(UpperCamelCase__ , "w" , encoding="utf-8") as writer: for token, token_index in sorted(self.vocab.items() , key=lambda UpperCamelCase__: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!") __lowerCAmelCase: Dict = token_index writer.write(token + "\n") index += 1 __lowerCAmelCase: List[Any] = os.path.join(UpperCamelCase__ , "sentencepiece.bpe.model") with open(UpperCamelCase__ , "wb") as fi: __lowerCAmelCase: Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase__) return (vocab_file,)
108
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = { "configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST", "Swinv2ForImageClassification", "Swinv2ForMaskedImageModeling", "Swinv2Model", "Swinv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
108
1
'''simple docstring''' from pathlib import Path import numpy as np from PIL import Image def lowerCAmelCase (__A): """simple docstring""" _a = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.29_89 * r + 0.58_70 * g + 0.11_40 * b def lowerCAmelCase (__A): """simple docstring""" return (gray > 127) & (gray <= 255) def lowerCAmelCase (__A , __A): """simple docstring""" _a = np.zeros_like(SCREAMING_SNAKE_CASE_) _a = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1)) # Copy image to padded image _a = image # Iterate over image & apply kernel for x in range(image.shape[1]): for y in range(image.shape[0]): _a = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() _a = int(summation > 0) return output if __name__ == "__main__": # read original image lowercase_ = Path(__file__).resolve().parent / "image_data" / "lena.jpg" lowercase_ = np.array(Image.open(lena_path)) # kernel to be applied lowercase_ = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) lowercase_ = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image lowercase_ = Image.fromarray(output).convert("RGB") pil_img.save("result_dilation.png")
211
import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values snake_case_ = argparse.ArgumentParser() parser.add_argument('''--user''', type=str, default='''ubuntu''') parser.add_argument('''--host''', type=str, default='''localhost''') parser.add_argument('''--key_path''', type=str, default=None) parser.add_argument('''--instance''', type=str, default='''V100:1''') parser.add_argument('''--provider''', type=str, default='''cheapest''') parser.add_argument('''--use_spot''', type=bool, default=False) parser.add_argument('''--example''', type=str, default='''pytorch/text-generation/run_generation.py''') snake_case_ , snake_case_ = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError('''Cannot specify both BYO and on-demand cluster args''') snake_case_ = rh.cluster( name='''rh-cluster''', ips=[args.host], ssh_creds={'''ssh_user''': args.user, '''ssh_private_key''': args.key_path} ) else: snake_case_ = rh.cluster( name='''rh-cluster''', instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) snake_case_ = args.example.rsplit('''/''', 1)[0] # Set up remote environment cluster.install_packages(['''pip:./''']) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([F'''pip install -r transformers/examples/{example_dir}/requirements.txt''']) cluster.run(['''pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117''']) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([F'''python transformers/examples/{args.example} {' '.join(shlex.quote(arg) for arg in unknown)}''']) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
214
0
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging _SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : int = { "Helsinki-NLP/opus-mt-en-de": "https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json", # See all Marian models at https://huggingface.co/models?filter=marian } class _snake_case ( lowercase_ ): lowerCAmelCase_ : Tuple = "marian" lowerCAmelCase_ : int = ["past_key_values"] lowerCAmelCase_ : Dict = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , a__=58_101 , a__=None , a__=1_024 , a__=12 , a__=4_096 , a__=16 , a__=12 , a__=4_096 , a__=16 , a__=0.0 , a__=0.0 , a__=True , a__=True , a__="gelu" , a__=1_024 , a__=0.1 , a__=0.0 , a__=0.0 , a__=0.0_2 , a__=58_100 , a__=False , a__=58_100 , a__=0 , a__=0 , a__=True , **a__ , ) -> Optional[Any]: '''simple docstring''' snake_case_ = vocab_size snake_case_ = decoder_vocab_size or vocab_size snake_case_ = max_position_embeddings snake_case_ = d_model snake_case_ = encoder_ffn_dim snake_case_ = encoder_layers snake_case_ = encoder_attention_heads snake_case_ = decoder_ffn_dim snake_case_ = decoder_layers snake_case_ = decoder_attention_heads snake_case_ = dropout snake_case_ = attention_dropout snake_case_ = activation_dropout snake_case_ = activation_function snake_case_ = init_std snake_case_ = encoder_layerdrop snake_case_ = decoder_layerdrop snake_case_ = use_cache snake_case_ = encoder_layers snake_case_ = scale_embedding # scale factor will be sqrt(d_model) if True snake_case_ = share_encoder_decoder_embeddings super().__init__( pad_token_id=a__ , eos_token_id=a__ , is_encoder_decoder=a__ , decoder_start_token_id=a__ , forced_eos_token_id=a__ , **a__ , ) class _snake_case ( lowercase_ ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def lowerCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: snake_case_ = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: snake_case_ = {0: "batch"} snake_case_ = {0: "batch", 1: "past_decoder_sequence + sequence"} else: snake_case_ = {0: "batch", 1: "decoder_sequence"} snake_case_ = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(a__ , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. snake_case_ = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: snake_case_ , snake_case_ = self.num_layers for i in range(a__ ): snake_case_ = {0: "batch", 2: "past_sequence + sequence"} snake_case_ = {0: "batch", 2: "past_sequence + sequence"} else: snake_case_ = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def lowerCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: snake_case_ = super().outputs else: snake_case_ = super(a__ , self ).outputs if self.use_past: snake_case_ , snake_case_ = self.num_layers for i in range(a__ ): snake_case_ = {0: "batch", 2: "past_sequence + sequence"} snake_case_ = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def lowerCAmelCase__ ( self , a__ , a__ = -1 , a__ = -1 , a__ = False , a__ = None , ) -> Mapping[str, Any]: '''simple docstring''' snake_case_ = self._generate_dummy_inputs_for_encoder_and_decoder( a__ , a__ , a__ , a__ , a__ ) # Generate decoder inputs snake_case_ = seq_length if not self.use_past else 1 snake_case_ = self._generate_dummy_inputs_for_encoder_and_decoder( a__ , a__ , a__ , a__ , a__ ) snake_case_ = {F'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} snake_case_ = dict(**a__ , **a__ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch snake_case_ , snake_case_ = common_inputs["input_ids"].shape snake_case_ = common_inputs["decoder_input_ids"].shape[1] snake_case_ , snake_case_ = self.num_attention_heads snake_case_ = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) snake_case_ = decoder_seq_length + 3 snake_case_ = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) snake_case_ = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(a__ , a__ )] , dim=1 ) snake_case_ = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered snake_case_ , snake_case_ = self.num_layers snake_case_ = min(a__ , a__ ) snake_case_ = max(a__ , a__ ) - min_num_layers snake_case_ = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(a__ ): common_inputs["past_key_values"].append( ( torch.zeros(a__ ), torch.zeros(a__ ), torch.zeros(a__ ), torch.zeros(a__ ), ) ) # TODO: test this. snake_case_ = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(a__ , a__ ): common_inputs["past_key_values"].append((torch.zeros(a__ ), torch.zeros(a__ )) ) return common_inputs def lowerCAmelCase__ ( self , a__ , a__ = -1 , a__ = -1 , a__ = False , a__ = None , ) -> Mapping[str, Any]: '''simple docstring''' snake_case_ = self._generate_dummy_inputs_for_encoder_and_decoder( a__ , a__ , a__ , a__ , a__ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch snake_case_ , snake_case_ = common_inputs["input_ids"].shape # Not using the same length for past_key_values snake_case_ = seqlen + 2 snake_case_ , snake_case_ = self.num_layers snake_case_ , snake_case_ = self.num_attention_heads snake_case_ = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) snake_case_ = common_inputs["attention_mask"].dtype snake_case_ = torch.cat( [common_inputs["attention_mask"], torch.ones(a__ , a__ , dtype=a__ )] , dim=1 ) snake_case_ = [ (torch.zeros(a__ ), torch.zeros(a__ )) for _ in range(a__ ) ] return common_inputs def lowerCAmelCase__ ( self , a__ , a__ = -1 , a__ = -1 , a__ = False , a__ = None , ) -> Mapping[str, Any]: '''simple docstring''' snake_case_ = compute_effective_axis_dimension( a__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX snake_case_ = tokenizer.num_special_tokens_to_add(a__ ) snake_case_ = compute_effective_axis_dimension( a__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=a__ ) # Generate dummy inputs according to compute batch and sequence snake_case_ = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size snake_case_ = dict(tokenizer(a__ , return_tensors=a__ ) ) return common_inputs def lowerCAmelCase__ ( self , a__ , a__ = -1 , a__ = -1 , a__ = False , a__ = None , ) -> Mapping[str, Any]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: snake_case_ = self._generate_dummy_inputs_for_default_and_seqaseq_lm( a__ , batch_size=a__ , seq_length=a__ , is_pair=a__ , framework=a__ ) else: snake_case_ = self._generate_dummy_inputs_for_causal_lm( a__ , batch_size=a__ , seq_length=a__ , is_pair=a__ , framework=a__ ) return common_inputs def lowerCAmelCase__ ( self , a__ , a__ , a__ , a__ ) -> Any: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: snake_case_ = super()._flatten_past_key_values_(a__ , a__ , a__ , a__ ) else: snake_case_ = super(a__ , self )._flatten_past_key_values_( a__ , a__ , a__ , a__ ) @property def lowerCAmelCase__ ( self ) -> float: '''simple docstring''' return 1e-4
92
'''simple docstring''' import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) _SCREAMING_SNAKE_CASE : Dict = logging.getLogger(__name__) _SCREAMING_SNAKE_CASE : List[str] = {"facebook/bart-base": BartForConditionalGeneration} _SCREAMING_SNAKE_CASE : Union[str, Any] = {"facebook/bart-base": BartTokenizer} def UpperCamelCase_( ): '''simple docstring''' snake_case_ = argparse.ArgumentParser(description="Export Bart model + Beam Search to ONNX graph." ) parser.add_argument( "--validation_file" , type=snake_case , default=snake_case , help="A csv or a json file containing the validation data." ) parser.add_argument( "--max_length" , type=snake_case , default=5 , help="The maximum total input sequence length after tokenization." , ) parser.add_argument( "--num_beams" , type=snake_case , default=snake_case , help=( "Number of beams to use for evaluation. This argument will be " "passed to ``model.generate``, which is used during ``evaluate`` and ``predict``." ) , ) parser.add_argument( "--model_name_or_path" , type=snake_case , help="Path to pretrained model or model identifier from huggingface.co/models." , required=snake_case , ) parser.add_argument( "--config_name" , type=snake_case , default=snake_case , help="Pretrained config name or path if not the same as model_name" , ) parser.add_argument( "--device" , type=snake_case , default="cpu" , help="Device where the model will be run" , ) parser.add_argument("--output_file_path" , type=snake_case , default=snake_case , help="Where to store the final ONNX file." ) snake_case_ = parser.parse_args() return args def UpperCamelCase_( snake_case : Union[str, Any] , snake_case : List[str]="cpu" ): '''simple docstring''' snake_case_ = model_dict[model_name].from_pretrained(snake_case ).to(snake_case ) snake_case_ = tokenizer_dict[model_name].from_pretrained(snake_case ) if model_name in ["facebook/bart-base"]: snake_case_ = 0 snake_case_ = None snake_case_ = 0 return huggingface_model, tokenizer def UpperCamelCase_( snake_case : int , snake_case : Tuple , snake_case : Optional[int] , snake_case : Optional[Any] , snake_case : Optional[Any] ): '''simple docstring''' model.eval() snake_case_ = None snake_case_ = torch.jit.script(BARTBeamSearchGenerator(snake_case ) ) with torch.no_grad(): snake_case_ = "My friends are cool but they eat too many carbs." snake_case_ = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_0_2_4 , return_tensors="pt" ).to(model.device ) snake_case_ = model.generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , num_beams=snake_case , max_length=snake_case , early_stopping=snake_case , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( snake_case , ( inputs["input_ids"], inputs["attention_mask"], num_beams, max_length, model.config.decoder_start_token_id, ) , snake_case , opset_version=1_4 , input_names=["input_ids", "attention_mask", "num_beams", "max_length", "decoder_start_token_id"] , output_names=["output_ids"] , dynamic_axes={ "input_ids": {0: "batch", 1: "seq"}, "output_ids": {0: "batch", 1: "seq_out"}, } , example_outputs=snake_case , ) logger.info("Model exported to {}".format(snake_case ) ) snake_case_ = remove_dup_initializers(os.path.abspath(snake_case ) ) logger.info("Deduplicated and optimized model written to {}".format(snake_case ) ) snake_case_ = onnxruntime.InferenceSession(snake_case ) snake_case_ = ort_sess.run( snake_case , { "input_ids": inputs["input_ids"].cpu().numpy(), "attention_mask": inputs["attention_mask"].cpu().numpy(), "num_beams": np.array(snake_case ), "max_length": np.array(snake_case ), "decoder_start_token_id": np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1e-3 , atol=1e-3 ) logger.info("Model outputs from torch and ONNX Runtime are similar." ) logger.info("Success." ) def UpperCamelCase_( ): '''simple docstring''' snake_case_ = parse_args() snake_case_ = 5 snake_case_ = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() snake_case_ = torch.device(args.device ) snake_case_ , snake_case_ = load_model_tokenizer(args.model_name_or_path , snake_case ) if model.config.decoder_start_token_id is None: raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined" ) model.to(snake_case ) if args.max_length: snake_case_ = args.max_length if args.num_beams: snake_case_ = args.num_beams if args.output_file_path: snake_case_ = args.output_file_path else: snake_case_ = "BART.onnx" logger.info("Exporting model to ONNX" ) export_and_validate_model(snake_case , snake_case , snake_case , snake_case , snake_case ) if __name__ == "__main__": main()
92
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ = { '''configuration_rembert''': ['''REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RemBertConfig''', '''RemBertOnnxConfig'''] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''RemBertTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''RemBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RemBertForCausalLM''', '''RemBertForMaskedLM''', '''RemBertForMultipleChoice''', '''RemBertForQuestionAnswering''', '''RemBertForSequenceClassification''', '''RemBertForTokenClassification''', '''RemBertLayer''', '''RemBertModel''', '''RemBertPreTrainedModel''', '''load_tf_weights_in_rembert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRemBertForCausalLM''', '''TFRemBertForMaskedLM''', '''TFRemBertForMultipleChoice''', '''TFRemBertForQuestionAnswering''', '''TFRemBertForSequenceClassification''', '''TFRemBertForTokenClassification''', '''TFRemBertLayer''', '''TFRemBertModel''', '''TFRemBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
104
from math import sqrt def _snake_case( SCREAMING_SNAKE_CASE__ ) -> bool: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( number >= 0 ), "'number' must been an int and positive" lowercase : Union[str, Any] = True # 0 and 1 are none primes. if number <= 1: lowercase : str = False for divisor in range(2 , int(round(sqrt(SCREAMING_SNAKE_CASE__ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowercase : Any = False break # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'status' must been from type bool" return status def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowercase : str = list(range(2 , n + 1 ) ) lowercase : Tuple = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(SCREAMING_SNAKE_CASE__ ) ): for j in range(i + 1 , len(SCREAMING_SNAKE_CASE__ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowercase : Tuple = 0 # filters actual prime numbers. lowercase : int = [x for x in begin_list if x != 0] # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'ans' must been from type list" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n > 2), "'N' must been an int and > 2" lowercase : Dict = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(SCREAMING_SNAKE_CASE__ ): ans.append(SCREAMING_SNAKE_CASE__ ) # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'ans' must been from type list" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Tuple: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and number >= 0, "'number' must been an int and >= 0" lowercase : Tuple = [] # this list will be returns of the function. # potential prime number factors. lowercase : Optional[Any] = 2 lowercase : Any = number if number == 0 or number == 1: ans.append(SCREAMING_SNAKE_CASE__ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(SCREAMING_SNAKE_CASE__ ): while quotient != 1: if is_prime(SCREAMING_SNAKE_CASE__ ) and (quotient % factor == 0): ans.append(SCREAMING_SNAKE_CASE__ ) quotient /= factor else: factor += 1 else: ans.append(SCREAMING_SNAKE_CASE__ ) # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'ans' must been from type list" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[Any]: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowercase : Tuple = 0 # prime factorization of 'number' lowercase : Optional[int] = prime_factorization(SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = max(SCREAMING_SNAKE_CASE__ ) # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'ans' must been from type int" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> str: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowercase : Union[str, Any] = 0 # prime factorization of 'number' lowercase : Tuple = prime_factorization(SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = min(SCREAMING_SNAKE_CASE__ ) # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'ans' must been from type int" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'number' must been an int" assert isinstance(number % 2 == 0 , SCREAMING_SNAKE_CASE__ ), "compare bust been from type bool" return number % 2 == 0 def _snake_case( SCREAMING_SNAKE_CASE__ ) -> int: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'number' must been an int" assert isinstance(number % 2 != 0 , SCREAMING_SNAKE_CASE__ ), "compare bust been from type bool" return number % 2 != 0 def _snake_case( SCREAMING_SNAKE_CASE__ ) -> int: assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (number > 2) and is_even(SCREAMING_SNAKE_CASE__ ) ), "'number' must been an int, even and > 2" lowercase : Union[str, Any] = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowercase : str = get_prime_numbers(SCREAMING_SNAKE_CASE__ ) lowercase : Any = len(SCREAMING_SNAKE_CASE__ ) # run variable for while-loops. lowercase : Optional[Any] = 0 lowercase : List[Any] = None # exit variable. for break up the loops lowercase : Any = True while i < len_pn and loop: lowercase : str = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowercase : Union[str, Any] = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (len(SCREAMING_SNAKE_CASE__ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowercase : Union[str, Any] = 0 while numbera != 0: lowercase : Optional[int] = numbera % numbera lowercase : Optional[int] = numbera lowercase : Dict = rest # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Tuple: assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowercase : Dict = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowercase : Optional[Any] = prime_factorization(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = prime_factorization(SCREAMING_SNAKE_CASE__ ) elif numbera == 1 or numbera == 1: lowercase : Union[str, Any] = [] lowercase : List[str] = [] lowercase : Dict = max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = 0 lowercase : Optional[Any] = 0 lowercase : List[str] = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowercase : Dict = prime_fac_a.count(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = prime_fac_a.count(SCREAMING_SNAKE_CASE__ ) for _ in range(max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): ans *= n else: lowercase : List[Any] = prime_fac_a.count(SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ ): ans *= n done.append(SCREAMING_SNAKE_CASE__ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowercase : Optional[int] = prime_fac_a.count(SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ ): ans *= n done.append(SCREAMING_SNAKE_CASE__ ) # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Any: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n >= 0), "'number' must been a positive int" lowercase : Dict = 0 lowercase : List[str] = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(SCREAMING_SNAKE_CASE__ ): ans += 1 # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and is_prime( SCREAMING_SNAKE_CASE__ ), "'ans' must been a prime number and from type int" return ans def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: assert ( is_prime(SCREAMING_SNAKE_CASE__ ) and is_prime(SCREAMING_SNAKE_CASE__ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowercase : List[str] = p_number_a + 1 # jump to the next number lowercase : List[Any] = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(SCREAMING_SNAKE_CASE__ ): number += 1 while number < p_number_a: ans.append(SCREAMING_SNAKE_CASE__ ) number += 1 # fetch the next prime number. while not is_prime(SCREAMING_SNAKE_CASE__ ): number += 1 # precondition assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ans[0] != p_number_a and ans[len(SCREAMING_SNAKE_CASE__ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Any: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n >= 1), "'n' must been int and >= 1" lowercase : Optional[Any] = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(SCREAMING_SNAKE_CASE__ ) # precondition assert ans[0] == 1 and ans[len(SCREAMING_SNAKE_CASE__ ) - 1] == n, "Error in function getDivisiors(...)" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Any: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( number > 1 ), "'number' must been an int and >= 1" lowercase : str = get_divisors(SCREAMING_SNAKE_CASE__ ) # precondition assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (divisors[0] == 1) and (divisors[len(SCREAMING_SNAKE_CASE__ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Dict: assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowercase : Tuple = gcd(abs(SCREAMING_SNAKE_CASE__ ) , abs(SCREAMING_SNAKE_CASE__ ) ) # precondition assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def _snake_case( SCREAMING_SNAKE_CASE__ ) -> int: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n >= 0), "'n' must been a int and >= 0" lowercase : List[str] = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n >= 0), "'n' must been an int and >= 0" lowercase : int = 0 lowercase : Union[str, Any] = 1 lowercase : int = 1 # this will be return for _ in range(n - 1 ): lowercase : Optional[int] = ans ans += fiba lowercase : Optional[int] = tmp return ans
20
0
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : int = "time_series_transformer" lowerCAmelCase : Optional[Any] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self : List[str] ,_snake_case : Optional[int] = None ,_snake_case : Optional[int] = None ,_snake_case : str = "student_t" ,_snake_case : str = "nll" ,_snake_case : int = 1 ,_snake_case : List[int] = [1, 2, 3, 4, 5, 6, 7] ,_snake_case : Optional[Union[str, bool]] = "mean" ,_snake_case : int = 0 ,_snake_case : int = 0 ,_snake_case : int = 0 ,_snake_case : int = 0 ,_snake_case : Optional[List[int]] = None ,_snake_case : Optional[List[int]] = None ,_snake_case : int = 32 ,_snake_case : int = 32 ,_snake_case : int = 2 ,_snake_case : int = 2 ,_snake_case : int = 2 ,_snake_case : int = 2 ,_snake_case : bool = True ,_snake_case : str = "gelu" ,_snake_case : int = 64 ,_snake_case : float = 0.1 ,_snake_case : float = 0.1 ,_snake_case : float = 0.1 ,_snake_case : float = 0.1 ,_snake_case : float = 0.1 ,_snake_case : int = 100 ,_snake_case : float = 0.02 ,_snake_case : Optional[int]=True ,**_snake_case : Any ,) -> str: """simple docstring""" lowercase__ : Union[str, Any] = prediction_length lowercase__ : Any = context_length or prediction_length lowercase__ : Union[str, Any] = distribution_output lowercase__ : Optional[Any] = loss lowercase__ : Optional[int] = input_size lowercase__ : Union[str, Any] = num_time_features lowercase__ : Any = lags_sequence lowercase__ : Union[str, Any] = scaling lowercase__ : Union[str, Any] = num_dynamic_real_features lowercase__ : List[str] = num_static_real_features lowercase__ : Optional[int] = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(_snake_case ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) lowercase__ : Tuple = cardinality else: lowercase__ : Optional[int] = [0] if embedding_dimension and num_static_categorical_features > 0: if len(_snake_case ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) lowercase__ : int = embedding_dimension else: lowercase__ : List[str] = [min(50 ,(cat + 1) // 2 ) for cat in self.cardinality] lowercase__ : Dict = num_parallel_samples # Transformer architecture configuration lowercase__ : List[Any] = input_size * len(_snake_case ) + self._number_of_features lowercase__ : List[str] = d_model lowercase__ : str = encoder_attention_heads lowercase__ : str = decoder_attention_heads lowercase__ : List[str] = encoder_ffn_dim lowercase__ : int = decoder_ffn_dim lowercase__ : Dict = encoder_layers lowercase__ : Optional[Any] = decoder_layers lowercase__ : int = dropout lowercase__ : str = attention_dropout lowercase__ : Any = activation_dropout lowercase__ : str = encoder_layerdrop lowercase__ : List[str] = decoder_layerdrop lowercase__ : Tuple = activation_function lowercase__ : Any = init_std lowercase__ : Union[str, Any] = use_cache super().__init__(is_encoder_decoder=_snake_case ,**_snake_case ) @property def UpperCAmelCase ( self : Any ) -> int: """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
363
"""simple docstring""" from __future__ import annotations lowerCAmelCase_ = 1.6021E-19 # units = C def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> tuple[str, float]: if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif conductivity < 0: raise ValueError('''Conductivity cannot be negative''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative''' ) elif mobility < 0: raise ValueError('''mobility cannot be negative''' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
302
0
"""simple docstring""" import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging a : List[Any] = logging.get_logger(__name__) class __UpperCamelCase ( a__ ): lowerCamelCase : List[str] =["""input_features""", """is_longer"""] def __init__( self , lowerCAmelCase__=64 , lowerCAmelCase__=4_8000 , lowerCAmelCase__=480 , lowerCAmelCase__=10 , lowerCAmelCase__=1024 , lowerCAmelCase__=0.0 , lowerCAmelCase__=False , lowerCAmelCase__ = 0 , lowerCAmelCase__ = 1_4000 , lowerCAmelCase__ = None , lowerCAmelCase__ = "fusion" , lowerCAmelCase__ = "repeatpad" , **lowerCAmelCase__ , ) -> str: super().__init__( feature_size=lowerCAmelCase__ , sampling_rate=lowerCAmelCase__ , padding_value=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , **lowerCAmelCase__ , ) a : List[str] = top_db a : str = truncation a : List[Any] = padding a : Dict = fft_window_size a : Tuple = (fft_window_size >> 1) + 1 a : Optional[Any] = hop_length a : List[str] = max_length_s a : Union[str, Any] = max_length_s * sampling_rate a : Optional[int] = sampling_rate a : List[Any] = frequency_min a : Dict = frequency_max a : int = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=lowerCAmelCase__ , min_frequency=lowerCAmelCase__ , max_frequency=lowerCAmelCase__ , sampling_rate=lowerCAmelCase__ , norm=lowerCAmelCase__ , mel_scale="htk" , ) a : str = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=lowerCAmelCase__ , min_frequency=lowerCAmelCase__ , max_frequency=lowerCAmelCase__ , sampling_rate=lowerCAmelCase__ , norm="slaney" , mel_scale="slaney" , ) def __a ( self ) -> Dict[str, Any]: a : Optional[Any] = copy.deepcopy(self.__dict__ ) a : Dict = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> np.ndarray: a : Dict = spectrogram( lowerCAmelCase__ , window_function(self.fft_window_size , "hann" ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=lowerCAmelCase__ , log_mel="dB" , ) return log_mel_spectrogram.T def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]: a : Optional[int] = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk a : Any = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk a : int = [0] # randomly choose index for each part a : Optional[int] = np.random.choice(ranges[0] ) a : List[Any] = np.random.choice(ranges[1] ) a : List[str] = np.random.choice(ranges[2] ) a : Union[str, Any] = mel[idx_front : idx_front + chunk_frames, :] a : List[str] = mel[idx_middle : idx_middle + chunk_frames, :] a : Optional[Any] = mel[idx_back : idx_back + chunk_frames, :] a : Any = torch.tensor(mel[None, None, :] ) a : Any = torch.nn.functional.interpolate( lowerCAmelCase__ , size=[chunk_frames, 64] , mode="bilinear" , align_corners=lowerCAmelCase__ ) a : Optional[int] = mel_shrink[0][0].numpy() a : List[Any] = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> np.array: if waveform.shape[0] > max_length: if truncation == "rand_trunc": a : Optional[Any] = True # random crop to max_length (for compatibility) -> this should be handled by self.pad a : Optional[int] = len(lowerCAmelCase__ ) - max_length a : List[str] = np.random.randint(0 , overflow + 1 ) a : int = waveform[idx : idx + max_length] a : int = self._np_extract_fbank_features(lowerCAmelCase__ , self.mel_filters_slaney )[None, :] elif truncation == "fusion": a : Optional[Any] = self._np_extract_fbank_features(lowerCAmelCase__ , self.mel_filters ) a : str = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed a : Union[str, Any] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. a : Optional[int] = np.stack([mel, mel, mel, mel] , axis=0 ) a : str = False else: a : Optional[int] = self._random_mel_fusion(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) a : Tuple = True else: raise NotImplementedError(f"""data_truncating {truncation} not implemented""" ) else: a : Optional[int] = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": a : Optional[int] = int(max_length / len(lowerCAmelCase__ ) ) a : List[str] = np.stack(np.tile(lowerCAmelCase__ , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": a : Union[str, Any] = int(max_length / len(lowerCAmelCase__ ) ) a : Optional[Any] = np.stack(np.tile(lowerCAmelCase__ , lowerCAmelCase__ ) ) a : Optional[int] = np.pad(lowerCAmelCase__ , (0, max_length - waveform.shape[0]) , mode="constant" , constant_values=0 ) if truncation == "fusion": a : List[str] = self._np_extract_fbank_features(lowerCAmelCase__ , self.mel_filters ) a : int = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: a : str = self._np_extract_fbank_features(lowerCAmelCase__ , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> BatchFeature: a : Union[str, Any] = truncation if truncation is not None else self.truncation a : Dict = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) a : List[Any] = isinstance(lowerCAmelCase__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) a : int = is_batched_numpy or ( isinstance(lowerCAmelCase__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: a : List[str] = [np.asarray(lowerCAmelCase__ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase__ , np.ndarray ): a : int = np.asarray(lowerCAmelCase__ , dtype=np.floataa ) elif isinstance(lowerCAmelCase__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): a : List[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: a : int = [np.asarray(lowerCAmelCase__ )] # convert to mel spectrogram, truncate and pad if needed. a : List[Any] = [ self._get_input_mel(lowerCAmelCase__ , max_length if max_length else self.nb_max_samples , lowerCAmelCase__ , lowerCAmelCase__ ) for waveform in raw_speech ] a : int = [] a : int = [] for mel, longer in padded_inputs: input_mel.append(lowerCAmelCase__ ) is_longer.append(lowerCAmelCase__ ) if truncation == "fusion" and sum(lowerCAmelCase__ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer a : Tuple = np.random.randint(0 , len(lowerCAmelCase__ ) ) a : Union[str, Any] = True if isinstance(input_mel[0] , lowerCAmelCase__ ): a : Dict = [np.asarray(lowerCAmelCase__ , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool a : Optional[int] = [[longer] for longer in is_longer] a : Tuple = {"input_features": input_mel, "is_longer": is_longer} a : Any = BatchFeature(lowerCAmelCase__ ) if return_tensors is not None: a : str = input_features.convert_to_tensors(lowerCAmelCase__ ) return input_features
105
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( _lowercase : float , _lowercase : float ) ->float: '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(F'''{price_plus_tax(100, 0.25) = }''') print(F'''{price_plus_tax(125.50, 0.05) = }''')
105
1
from math import factorial def __lowercase ( a__ , a__ , a__ ) -> Union[str, Any]: if successes > trials: raise ValueError('successes must be lower or equal to trials' ) if trials < 0 or successes < 0: raise ValueError('the function is defined for non-negative integers' ) if not isinstance(lowercase__ , lowercase__ ) or not isinstance(lowercase__ , lowercase__ ): raise ValueError('the function is defined for non-negative integers' ) if not 0 < prob < 1: raise ValueError('prob has to be in range of 1 - 0' ) __SCREAMING_SNAKE_CASE = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! __SCREAMING_SNAKE_CASE = float(factorial(lowercase__ ) ) coefficient /= factorial(lowercase__ ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('''Probability of 2 successes out of 4 trails''') print('''with probability of 0.75 is:''', end=''' ''') print(binomial_distribution(2, 4, 0.75))
362
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('''1.6'''): lowerCAmelCase__ : Optional[int] =True from torch.cuda.amp import autocast lowerCAmelCase__ : List[Any] =logging.getLogger(__name__) @dataclass class UpperCAmelCase_ : '''simple docstring''' UpperCamelCase__ : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) UpperCamelCase__ : Optional[str] = field( default=UpperCamelCase_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCamelCase__ : Optional[bool] = field( default=UpperCamelCase_ , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} ) UpperCamelCase__ : Optional[bool] = field( default=UpperCamelCase_ , metadata={'''help''': '''Whether to log verbose messages or not.'''} , ) UpperCamelCase__ : Optional[float] = field( default=2.0 , metadata={'''help''': '''Maximum temperature for gumbel softmax.'''} ) UpperCamelCase__ : Optional[float] = field( default=0.5 , metadata={'''help''': '''Minimum temperature for gumbel softmax.'''} ) UpperCamelCase__ : Optional[float] = field( default=0.9_9_9_9_9_5 , metadata={'''help''': '''Decay of gumbel temperature during training.'''} ) def __lowercase ( a__ , a__ ) -> Dict: logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) __SCREAMING_SNAKE_CASE = logging.WARNING if model_args.verbose_logging: __SCREAMING_SNAKE_CASE = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): __SCREAMING_SNAKE_CASE = logging.INFO logger.setLevel(a__ ) @dataclass class UpperCAmelCase_ : '''simple docstring''' UpperCamelCase__ : str = field( default=UpperCamelCase_ , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) UpperCamelCase__ : Optional[str] = field( default=UpperCamelCase_ , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) UpperCamelCase__ : Optional[str] = field( default='''train''' , metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' } , ) UpperCamelCase__ : Optional[str] = field( default='''validation''' , metadata={ '''help''': ( '''The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'''' ) } , ) UpperCamelCase__ : Optional[str] = field( default='''file''' , metadata={'''help''': '''Column in the dataset that contains speech file path. Defaults to \'file\''''} , ) UpperCamelCase__ : bool = field( default=UpperCamelCase_ , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) UpperCamelCase__ : Optional[int] = field( default=1 , metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' } , ) UpperCamelCase__ : Optional[int] = field( default=UpperCamelCase_ , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) UpperCamelCase__ : Optional[float] = field( default=2_0.0 , metadata={'''help''': '''Filter audio files that are longer than `max_duration_in_seconds` seconds'''} ) @dataclass class UpperCAmelCase_ : '''simple docstring''' UpperCamelCase__ : WavaVecaForPreTraining UpperCamelCase__ : WavaVecaFeatureExtractor UpperCamelCase__ : Union[bool, str] = "longest" UpperCamelCase__ : Optional[int] = None UpperCamelCase__ : Optional[int] = None def __call__( self , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.feature_extractor.pad( _A , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) __SCREAMING_SNAKE_CASE = self.model._get_feat_extract_output_lengths(batch['input_values'].shape[-1] ) __SCREAMING_SNAKE_CASE = batch['input_values'].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula __SCREAMING_SNAKE_CASE = self.model._get_feat_extract_output_lengths(batch['attention_mask'].sum(-1 ) ).to( torch.long ) __SCREAMING_SNAKE_CASE = torch.zeros( (batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch['input_values'].device ) # these two operations makes sure that all values # before the output lengths indices are attended to __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices __SCREAMING_SNAKE_CASE = _compute_mask_indices( (batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=_A , min_masks=2 , ) return batch class UpperCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' def __init__( self , *_A , _A=1 , _A=0 , _A=1.0 , **_A ): '''simple docstring''' super().__init__(*_A , **_A ) __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = max_gumbel_temp __SCREAMING_SNAKE_CASE = min_gumbel_temp __SCREAMING_SNAKE_CASE = gumbel_temp_decay def _A ( self , _A , _A ): '''simple docstring''' model.train() __SCREAMING_SNAKE_CASE = self._prepare_inputs(_A ) if self.use_amp: with autocast(): __SCREAMING_SNAKE_CASE = self.compute_loss(_A , _A ) else: __SCREAMING_SNAKE_CASE = self.compute_loss(_A , _A ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": __SCREAMING_SNAKE_CASE = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": __SCREAMING_SNAKE_CASE = loss.sum() / (inputs['mask_time_indices']).sum() else: raise ValueError(f"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: __SCREAMING_SNAKE_CASE = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(_A ).backward() elif self.use_apex: with amp.scale_loss(_A , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(_A ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) return loss.detach() def __lowercase ( ) -> Tuple: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses() configure_logger(a__ , a__ ) # Downloading and loading a dataset from the hub. __SCREAMING_SNAKE_CASE = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" __SCREAMING_SNAKE_CASE = DatasetDict() __SCREAMING_SNAKE_CASE = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"""{data_args.train_split_name}[:{data_args.validation_split_percentage}%]""" , cache_dir=model_args.cache_dir , ) __SCREAMING_SNAKE_CASE = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"""{data_args.train_split_name}[{data_args.validation_split_percentage}%:]""" , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" __SCREAMING_SNAKE_CASE = DatasetDict() __SCREAMING_SNAKE_CASE = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split='validation' , cache_dir=model_args.cache_dir , ) __SCREAMING_SNAKE_CASE = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"""{data_args.train_split_name}""" , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported __SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=a__ ) def prepare_dataset(a__ ): # check that all files have the correct sampling rate __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays __SCREAMING_SNAKE_CASE = datasets.map( a__ , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets['train'].column_names ) # filter audio files that are too long __SCREAMING_SNAKE_CASE = vectorized_datasets.filter( lambda a__ : len(data['speech'] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(a__ ): return feature_extractor(batch['speech'] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` __SCREAMING_SNAKE_CASE = vectorized_datasets.map( a__ , batched=a__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets['train'].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 __SCREAMING_SNAKE_CASE = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( 'PreTraining is only supported for ``config.do_stable_layer_norm=True`` and' ' ``config.feat_extract_norm=\'layer\'' ) __SCREAMING_SNAKE_CASE = WavaVecaForPreTraining(a__ ) __SCREAMING_SNAKE_CASE = DataCollatorForWavaVecaPretraining(model=a__ , feature_extractor=a__ ) __SCREAMING_SNAKE_CASE = WavaVecaPreTrainer( model=a__ , data_collator=a__ , args=a__ , train_dataset=vectorized_datasets['train'] , eval_dataset=vectorized_datasets['validation'] , tokenizer=a__ , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
118
0
'''simple docstring''' import math from datetime import datetime, timedelta def __lowercase ( __lowercase ) -> datetime: '''simple docstring''' _A = year % 19 _A = year % 4 _A = year % 7 _A = math.floor(year / 100 ) _A = math.floor((13 + 8 * leap_day_inhibits) / 25 ) _A = leap_day_inhibits / 4 _A = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 _A = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 _A = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon _A = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(__lowercase , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(__lowercase , 4 , 18 ) else: return datetime(__lowercase , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (19_94, 20_00, 20_10, 20_21, 20_23): lowerCamelCase_ = '''will be''' if year > datetime.now().year else '''was''' print(F"""Easter in {year} {tense} {gauss_easter(year)}""")
79
def lowerCAmelCase_ ( __A, __A ) -> None: '''simple docstring''' UpperCAmelCase__ = len(__A ) print("The following activities are selected:" ) # The first activity is always selected UpperCAmelCase__ = 0 print(__A, end="," ) # Consider rest of the activities for j in range(__A ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(__A, end="," ) UpperCAmelCase__ = j if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__ = [1, 3, 0, 5, 8, 5] UpperCamelCase__ = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
65
0
import glob import os import random from string import ascii_lowercase, digits import cva __UpperCAmelCase = '''''' __UpperCAmelCase = '''''' __UpperCAmelCase = '''''' __UpperCAmelCase = 1 # (0 is vertical, 1 is horizontal) def __lowerCamelCase ( ): a__: Optional[int] =get_dataset(__magic_name__ , __magic_name__ ) print("Processing..." ) a__: Optional[int] =update_image_and_anno(__magic_name__ , __magic_name__ , __magic_name__ ) for index, image in enumerate(__magic_name__ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' a__: Dict =random_chars(32 ) a__: int =paths[index].split(os.sep )[-1].rsplit("." , 1 )[0] a__: Optional[Any] =F"{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}" cva.imwrite(F"/{file_root}.jpg" , __magic_name__ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F"Success {index+1}/{len(__magic_name__ )} with {file_name}" ) a__: str =[] for anno in new_annos[index]: a__: int =F"{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}" annos_list.append(__magic_name__ ) with open(F"/{file_root}.txt" , "w" ) as outfile: outfile.write("\n".join(line for line in annos_list ) ) def __lowerCamelCase ( __magic_name__ : str , __magic_name__ : str ): a__: Any =[] a__: Tuple =[] for label_file in glob.glob(os.path.join(__magic_name__ , "*.txt" ) ): a__: int =label_file.split(os.sep )[-1].rsplit("." , 1 )[0] with open(__magic_name__ ) as in_file: a__: int =in_file.readlines() a__: str =os.path.join(__magic_name__ , F"{label_name}.jpg" ) a__: Dict =[] for obj_list in obj_lists: a__: List[str] =obj_list.rstrip("\n" ).split(" " ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__magic_name__ ) labels.append(__magic_name__ ) return img_paths, labels def __lowerCamelCase ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : int = 1 ): a__: List[Any] =[] a__: Optional[int] =[] a__: Optional[Any] =[] for idx in range(len(__magic_name__ ) ): a__: List[Any] =[] a__: List[str] =img_list[idx] path_list.append(__magic_name__ ) a__: List[Any] =anno_list[idx] a__: List[Any] =cva.imread(__magic_name__ ) if flip_type == 1: a__: Union[str, Any] =cva.flip(__magic_name__ , __magic_name__ ) for bbox in img_annos: a__: Optional[Any] =1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: a__: List[Any] =cva.flip(__magic_name__ , __magic_name__ ) for bbox in img_annos: a__: List[str] =1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__magic_name__ ) new_imgs_list.append(__magic_name__ ) return new_imgs_list, new_annos_lists, path_list def __lowerCamelCase ( __magic_name__ : int = 32 ): assert number_char > 1, "The number of character should greater than 1" a__: List[Any] =ascii_lowercase + digits return "".join(random.choice(__magic_name__ ) for _ in range(__magic_name__ ) ) if __name__ == "__main__": main() print('''DONE ✅''')
350
import os def __lowerCamelCase ( __magic_name__ : str = "input.txt" ): with open(os.path.join(os.path.dirname(__magic_name__ ) , __magic_name__ ) ) as input_file: a__: str =[ [int(__magic_name__ ) for element in line.split("," )] for line in input_file.readlines() ] a__: int =len(__magic_name__ ) a__: int =len(matrix[0] ) a__: Optional[Any] =[[-1 for _ in range(__magic_name__ )] for _ in range(__magic_name__ )] for i in range(__magic_name__ ): a__: Dict =matrix[i][0] for j in range(1 , __magic_name__ ): for i in range(__magic_name__ ): a__: int =minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , __magic_name__ ): a__: Tuple =min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): a__: Tuple =min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f"""{solution() = }""")
42
0
"""simple docstring""" import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def _snake_case ( lowercase__ : List[Any] ) -> str: '''simple docstring''' lowerCAmelCase_ :Union[str, Any] = os.path.join(args.tf_model_dir , """parameters.json""" ) lowerCAmelCase_ :str = json.loads(open(_lowercase ).read() ) if not params: raise ValueError( f"""It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.""" ) if not args.output.endswith(""".pt""" ): lowerCAmelCase_ :str = args.output + ".pt" lowerCAmelCase_ :Dict = OrderedDict() with tf.device("""/CPU:0""" ): lowerCAmelCase_ :Optional[int] = tf.train.load_checkpoint(args.tf_model_dir ) lowerCAmelCase_ :Optional[Any] = reader.get_variable_to_shape_map() for key_name in shapes.keys(): lowerCAmelCase_ :Dict = reader.get_tensor(_lowercase ).astype(np.floataa ) if key_name.endswith("""/adam_m""" ) or key_name.endswith("""/adam_v""" ): continue if key_name.startswith("""pasts/""" ): if key_name.startswith("""pasts/mlp""" ): lowerCAmelCase_ :Union[str, Any] = int(key_name[9] ) elif key_name.startswith("""pasts/out""" ): lowerCAmelCase_ :Optional[int] = 8 lowerCAmelCase_ :Dict = "model.sqout.%d.weight" % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time lowerCAmelCase_ :int = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ :Dict = torch.tensor(_lowercase ) elif key_name.startswith("""model/moe""" ): lowerCAmelCase_ :List[str] = int(key_name[9:].split("""/""" )[0] ) if key_name.endswith("""/switch_gating/kernel""" ): lowerCAmelCase_ :str = "model.blocks.%d.feed_forward.mlp.router.classifier.weight" % player lowerCAmelCase_ :Tuple = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ :List[str] = torch.tensor(_lowercase ) elif key_name.endswith("""/softmlp/kernel""" ): lowerCAmelCase_ :Optional[int] = "model.blocks.%d.feed_forward.soft_bypass_mlp.weight" % player lowerCAmelCase_ :Tuple = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ :List[Any] = torch.tensor(_lowercase ) elif key_name.endswith("""/wo/kernel""" ) or key_name.endswith("""/wi/kernel""" ): lowerCAmelCase_ :Any = key_name[-9:-7] for i in range(1_6 ): lowerCAmelCase_ :List[Any] = "model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight" % (player, i, nlayer) lowerCAmelCase_ :str = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided lowerCAmelCase_ :Dict = torch.tensor(_lowercase ) elif key_name.startswith("""model/mlp""" ): lowerCAmelCase_ :Union[str, Any] = int(key_name[9:].split("""/""" )[0] ) if key_name.endswith("""/p1/kernel""" ): lowerCAmelCase_ :str = "model.blocks.%d.feed_forward.mlp.wi.weight" % player lowerCAmelCase_ :Dict = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ :Optional[int] = torch.tensor(_lowercase ) elif key_name.endswith("""/p1/bias""" ): lowerCAmelCase_ :str = "model.blocks.%d.feed_forward.mlp.wi.bias" % player lowerCAmelCase_ :List[Any] = vnp.copy() # same because it is one dimensional lowerCAmelCase_ :Tuple = torch.tensor(_lowercase ) elif key_name.endswith("""/p2/kernel""" ): lowerCAmelCase_ :Union[str, Any] = "model.blocks.%d.feed_forward.mlp.wo.weight" % player lowerCAmelCase_ :Tuple = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ :List[Any] = torch.tensor(_lowercase ) elif key_name.endswith("""/p2/bias""" ): lowerCAmelCase_ :Dict = "model.blocks.%d.feed_forward.mlp.wo.bias" % player lowerCAmelCase_ :List[str] = vnp.copy() # same because it is one dimensional lowerCAmelCase_ :str = torch.tensor(_lowercase ) elif key_name.startswith("""model/ln""" ): lowerCAmelCase_ :List[str] = int(key_name[8:].split("""/""" )[0] ) if key_name.endswith("""/b""" ): lowerCAmelCase_ :Optional[Any] = "model.blocks.%d.feed_forward.norm.bias" % player lowerCAmelCase_ :Tuple = vnp.copy() # same because it is one dimensional lowerCAmelCase_ :int = torch.tensor(_lowercase ) elif key_name.endswith("""/g""" ): lowerCAmelCase_ :Optional[Any] = "model.blocks.%d.feed_forward.norm.weight" % player lowerCAmelCase_ :List[str] = vnp.copy() # same because it is one dimensional lowerCAmelCase_ :Tuple = torch.tensor(_lowercase ) elif key_name.startswith("""model/att""" ): lowerCAmelCase_ :Optional[Any] = int(key_name[9:].split("""/""" )[0] ) if key_name.endswith("""/qkv/kernel""" ): lowerCAmelCase_ :Union[str, Any] = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum lowerCAmelCase_ :List[str] = state[:, 0, :, :] lowerCAmelCase_ :Dict = state[:, 1, :, :] lowerCAmelCase_ :Union[str, Any] = state[:, 2, :, :] lowerCAmelCase_ :str = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ :List[str] = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ :Dict = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ :List[Any] = "model.blocks.%d.self_attn.self_attn.q_proj.weight" % player lowerCAmelCase_ :Union[str, Any] = torch.tensor(_lowercase ) lowerCAmelCase_ :Any = "model.blocks.%d.self_attn.self_attn.k_proj.weight" % player lowerCAmelCase_ :List[str] = torch.tensor(_lowercase ) lowerCAmelCase_ :Optional[Any] = "model.blocks.%d.self_attn.self_attn.v_proj.weight" % player lowerCAmelCase_ :Optional[Any] = torch.tensor(_lowercase ) elif key_name.endswith("""/o/kernel""" ): lowerCAmelCase_ :Any = "model.blocks.%d.self_attn.self_attn.out_proj.weight" % player lowerCAmelCase_ :Optional[int] = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ :Tuple = torch.tensor(_lowercase ) elif key_name.startswith("""model/an""" ): lowerCAmelCase_ :List[str] = int(key_name[8:].split("""/""" )[0] ) if key_name.endswith("""/b""" ): lowerCAmelCase_ :Optional[int] = "model.blocks.%d.self_attn.norm.bias" % player lowerCAmelCase_ :Union[str, Any] = vnp.copy() # same because it is one dimensional lowerCAmelCase_ :List[Any] = torch.tensor(_lowercase ) elif key_name.endswith("""/g""" ): lowerCAmelCase_ :Any = "model.blocks.%d.self_attn.norm.weight" % player lowerCAmelCase_ :str = vnp.copy() # same because it is one dimensional lowerCAmelCase_ :Any = torch.tensor(_lowercase ) elif ( key_name.startswith("""model/wte""" ) or key_name.startswith("""model/wpe""" ) or key_name.startswith("""model/ete""" ) ): lowerCAmelCase_ :Optional[int] = {"wte": "embed_tokens", "wpe": "position_embeddings", "ete": "extra_position_embeddings"}[ key_name[-3:] ] lowerCAmelCase_ :Tuple = "model.%s.weight" % nlayer lowerCAmelCase_ :Any = vnp.copy() # same in embedded lowerCAmelCase_ :Tuple = torch.tensor(_lowercase ) if key_name.startswith("""model/wte""" ): lowerCAmelCase_ :Optional[int] = "lm_head.weight" lowerCAmelCase_ :Optional[int] = vnp.copy() # same in embedded lowerCAmelCase_ :Optional[int] = torch.tensor(_lowercase ) elif key_name.startswith("""model/wob""" ): lowerCAmelCase_ :Optional[int] = "final_logits_bias" lowerCAmelCase_ :Optional[Any] = vnp.copy() # same in embedded lowerCAmelCase_ :Optional[int] = state.reshape((1, -1) ) lowerCAmelCase_ :List[Any] = torch.tensor(_lowercase ) elif key_name == "model/dense/kernel": lowerCAmelCase_ :Optional[int] = "model.last_project.weight" lowerCAmelCase_ :Union[str, Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ :List[Any] = torch.tensor(_lowercase ) elif key_name == "model/dense_1/bias": lowerCAmelCase_ :Dict = "model.last_project.bias" lowerCAmelCase_ :Optional[Any] = vnp.copy() # same because it is one dimensional lowerCAmelCase_ :Any = torch.tensor(_lowercase ) torch.save(_lowercase , args.output ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser( description='model converter.', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('--tf_model_dir', metavar='PATH', type=str, required=True, help='import model') parser.add_argument('--output', metavar='PATH', type=str, required=True, help='output model') __UpperCAmelCase = parser.parse_args() convert_tf_gptsan_to_pt(args)
84
"""simple docstring""" import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class __UpperCamelCase ( a__ ): lowerCamelCase : List[str] =ComputeEnvironment.AMAZON_SAGEMAKER lowerCamelCase : str =True lowerCamelCase : Union[str, Any] ="""ml.p3.2xlarge""" lowerCamelCase : str ="""accelerate_sagemaker_execution_role""" lowerCamelCase : int ="""hf-sm""" lowerCamelCase : int ="""us-east-1""" lowerCamelCase : Tuple =1 lowerCamelCase : Any ="""accelerate-sagemaker-1""" lowerCamelCase : str ="""1.6""" lowerCamelCase : Tuple ="""4.4""" lowerCamelCase : Optional[int] ="""train.py""" lowerCamelCase : Optional[Any] =[ """--model_name_or_path""", """bert""", """--do_train""", """False""", """--epochs""", """3""", """--learning_rate""", """5e-5""", """--max_steps""", """50.5""", ] lowerCamelCase : Union[str, Any] =[ """--model_name_or_path""", """bert""", """--do_train""", """--do_test""", """False""", """--do_predict""", """--epochs""", """3""", """--learning_rate""", """5e-5""", """--max_steps""", """50.5""", ] class __UpperCamelCase ( unittest.TestCase ): def __a ( self ) -> List[str]: # If no defaults are changed, `to_kwargs` returns an empty dict. a : str = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args["model_name_or_path"] , lowerCAmelCase__ ) assert isinstance(converted_args["do_train"] , lowerCAmelCase__ ) assert isinstance(converted_args["epochs"] , lowerCAmelCase__ ) assert isinstance(converted_args["learning_rate"] , lowerCAmelCase__ ) assert isinstance(converted_args["max_steps"] , lowerCAmelCase__ ) with pytest.raises(lowerCAmelCase__ ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
105
0
"""simple docstring""" import importlib.metadata import operator import re import sys from typing import Optional from packaging import version a_ = { '''<''': operator.lt, '''<=''': operator.le, '''==''': operator.eq, '''!=''': operator.ne, '''>=''': operator.ge, '''>''': operator.gt, } def a__ ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) -> Optional[int]: if got_ver is None or want_ver is None: raise ValueError( f"""Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider""" f""" reinstalling {pkg}.""" ) if not ops[op](version.parse(_a ) , version.parse(_a ) ): raise ImportError( f"""{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}""" ) def a__ ( __lowercase , __lowercase = None ) -> Any: _A = f"""\n{hint}""" if hint is not None else "" # non-versioned check if re.match(R"^[\w_\-\d]+$" , _a ): _A = requirement, None, None else: _A = re.findall(R"^([^!=<>\s]+)([\s!=<>]{1,2}.+)" , _a ) if not match: raise ValueError( "requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but" f""" got {requirement}""" ) _A = match[0] _A = want_full.split("," ) # there could be multiple requirements _A = {} for w in want_range: _A = re.findall(R"^([\s!=<>]{1,2})(.+)" , _a ) if not match: raise ValueError( "requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23," f""" but got {requirement}""" ) _A = match[0] _A = want_ver if op not in ops: raise ValueError(f"""{requirement}: need one of {list(ops.keys() )}, but got {op}""" ) # special case if pkg == "python": _A = ".".join([str(_a ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(_a , _a , _a , _a , _a , _a ) return # check if any version is installed try: _A = importlib.metadata.version(_a ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( f"""The \'{requirement}\' distribution was not found and is required by this application. {hint}""" ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(_a , _a , _a , _a , _a , _a ) def a__ ( __lowercase ) -> str: _A = "Try: pip install transformers -U or pip install -e '.[dev]' if you're working with git main" return require_version(_a , _a )
364
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def a__ ( __lowercase ) -> List[Any]: _A = 384 if "tiny" in model_name: _A = [3, 3, 9, 3] _A = [96, 192, 384, 768] if "small" in model_name: _A = [3, 3, 27, 3] _A = [96, 192, 384, 768] if "base" in model_name: _A = [3, 3, 27, 3] _A = [128, 256, 512, 1024] _A = 512 if "large" in model_name: _A = [3, 3, 27, 3] _A = [192, 384, 768, 1536] _A = 768 if "xlarge" in model_name: _A = [3, 3, 27, 3] _A = [256, 512, 1024, 2048] _A = 1024 # set label information _A = 150 _A = "huggingface/label-files" _A = "ade20k-id2label.json" _A = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type="dataset" ) , "r" ) ) _A = {int(__lowercase ): v for k, v in idalabel.items()} _A = {v: k for k, v in idalabel.items()} _A = ConvNextConfig( depths=__lowercase , hidden_sizes=__lowercase , out_features=["stage1", "stage2", "stage3", "stage4"] ) _A = UperNetConfig( backbone_config=__lowercase , auxiliary_in_channels=__lowercase , num_labels=__lowercase , idalabel=__lowercase , labelaid=__lowercase , ) return config def a__ ( __lowercase ) -> List[Any]: _A = [] # fmt: off # stem rename_keys.append(("backbone.downsample_layers.0.0.weight", "backbone.embeddings.patch_embeddings.weight") ) rename_keys.append(("backbone.downsample_layers.0.0.bias", "backbone.embeddings.patch_embeddings.bias") ) rename_keys.append(("backbone.downsample_layers.0.1.weight", "backbone.embeddings.layernorm.weight") ) rename_keys.append(("backbone.downsample_layers.0.1.bias", "backbone.embeddings.layernorm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.stages.{i}.{j}.gamma""", f"""backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.depthwise_conv.weight""", f"""backbone.encoder.stages.{i}.layers.{j}.dwconv.weight""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.depthwise_conv.bias""", f"""backbone.encoder.stages.{i}.layers.{j}.dwconv.bias""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.norm.weight""", f"""backbone.encoder.stages.{i}.layers.{j}.layernorm.weight""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.norm.bias""", f"""backbone.encoder.stages.{i}.layers.{j}.layernorm.bias""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.pointwise_conv1.weight""", f"""backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.pointwise_conv1.bias""", f"""backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.pointwise_conv2.weight""", f"""backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.pointwise_conv2.bias""", f"""backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias""") ) if i > 0: rename_keys.append((f"""backbone.downsample_layers.{i}.0.weight""", f"""backbone.encoder.stages.{i}.downsampling_layer.0.weight""") ) rename_keys.append((f"""backbone.downsample_layers.{i}.0.bias""", f"""backbone.encoder.stages.{i}.downsampling_layer.0.bias""") ) rename_keys.append((f"""backbone.downsample_layers.{i}.1.weight""", f"""backbone.encoder.stages.{i}.downsampling_layer.1.weight""") ) rename_keys.append((f"""backbone.downsample_layers.{i}.1.bias""", f"""backbone.encoder.stages.{i}.downsampling_layer.1.bias""") ) rename_keys.append((f"""backbone.norm{i}.weight""", f"""backbone.hidden_states_norms.stage{i+1}.weight""") ) rename_keys.append((f"""backbone.norm{i}.bias""", f"""backbone.hidden_states_norms.stage{i+1}.bias""") ) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) # fmt: on return rename_keys def a__ ( __lowercase , __lowercase , __lowercase ) -> List[Any]: _A = dct.pop(__lowercase ) _A = val def a__ ( __lowercase , __lowercase , __lowercase ) -> Optional[Any]: _A = { "upernet-convnext-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth", "upernet-convnext-small": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth", "upernet-convnext-base": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth", "upernet-convnext-large": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth", "upernet-convnext-xlarge": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth", } _A = model_name_to_url[model_name] _A = torch.hub.load_state_dict_from_url(__lowercase , map_location="cpu" )["state_dict"] _A = get_upernet_config(__lowercase ) _A = UperNetForSemanticSegmentation(__lowercase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): _A = state_dict.pop(__lowercase ) if "bn" in key: _A = key.replace("bn" , "batch_norm" ) _A = val # rename keys _A = create_rename_keys(__lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) model.load_state_dict(__lowercase ) # verify on image _A = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" _A = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ).convert("RGB" ) _A = SegformerImageProcessor() _A = processor(__lowercase , return_tensors="pt" ).pixel_values with torch.no_grad(): _A = model(__lowercase ) if model_name == "upernet-convnext-tiny": _A = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ) elif model_name == "upernet-convnext-small": _A = torch.tensor( [[-8.8_236, -8.8_236, -8.6_771], [-8.8_236, -8.8_236, -8.6_771], [-8.7_638, -8.7_638, -8.6_240]] ) elif model_name == "upernet-convnext-base": _A = torch.tensor( [[-8.8_558, -8.8_558, -8.6_905], [-8.8_558, -8.8_558, -8.6_905], [-8.7_669, -8.7_669, -8.6_021]] ) elif model_name == "upernet-convnext-large": _A = torch.tensor( [[-8.6_660, -8.6_660, -8.6_210], [-8.6_660, -8.6_660, -8.6_210], [-8.6_310, -8.6_310, -8.5_964]] ) elif model_name == "upernet-convnext-xlarge": _A = torch.tensor( [[-8.4_980, -8.4_980, -8.3_977], [-8.4_980, -8.4_980, -8.3_977], [-8.4_379, -8.4_379, -8.3_412]] ) print("Logits:" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , __lowercase , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowercase ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(__lowercase ) if push_to_hub: print(f"""Pushing model and processor for {model_name} to hub""" ) model.push_to_hub(f"""openmmlab/{model_name}""" ) processor.push_to_hub(f"""openmmlab/{model_name}""" ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="upernet-convnext-tiny", type=str, choices=[f'''upernet-convnext-{size}''' for size in ["tiny", "small", "base", "large", "xlarge"]], help="Name of the ConvNext UperNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) a_ = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
163
0
"""simple docstring""" def lowerCamelCase ( _UpperCamelCase : int , _UpperCamelCase : int ) -> int: '''simple docstring''' while b: __UpperCAmelCase ,__UpperCAmelCase : Tuple = b, a % b return a def lowerCamelCase ( _UpperCamelCase : int , _UpperCamelCase : int ) -> int: '''simple docstring''' return a if b == 0 else euclidean_gcd_recursive(_UpperCamelCase , a % b ) def lowerCamelCase ( ) -> Optional[Any]: '''simple docstring''' print(f'''euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}''' ) print(f'''euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}''' ) print(f'''euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}''' ) print(f'''euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}''' ) print(f'''euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}''' ) print(f'''euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}''' ) print(f'''euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}''' ) print(f'''euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}''' ) print(f'''euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}''' ) print(f'''euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}''' ) if __name__ == "__main__": main()
115
"""simple docstring""" import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : str = """ylacombe/bark-small""" __UpperCAmelCase : List[Any] = tempfile.mkdtemp() __UpperCAmelCase : Optional[Any] = """en_speaker_1""" __UpperCAmelCase : Union[str, Any] = """This is a test string""" __UpperCAmelCase : Dict = """speaker_embeddings_path.json""" __UpperCAmelCase : Any = """speaker_embeddings""" def lowerCamelCase__ ( self : Dict , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' return AutoTokenizer.from_pretrained(self.checkpoint , **UpperCamelCase ) def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : Tuple = self.get_tokenizer() __UpperCAmelCase : Any = BarkProcessor(tokenizer=UpperCamelCase ) processor.save_pretrained(self.tmpdirname ) __UpperCAmelCase : Union[str, Any] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) __UpperCAmelCase : Tuple = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __UpperCAmelCase : Any = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def lowerCamelCase__ ( self : int ): '''simple docstring''' __UpperCAmelCase : List[str] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) __UpperCAmelCase : List[str] = 35 __UpperCAmelCase : Tuple = 2 __UpperCAmelCase : Union[str, Any] = 8 __UpperCAmelCase : Optional[Any] = { """semantic_prompt""": np.ones(UpperCamelCase ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset __UpperCAmelCase : Dict = processor(text=self.input_string , voice_preset=UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(UpperCamelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file __UpperCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(UpperCamelCase , **UpperCamelCase ) __UpperCAmelCase : Optional[int] = processor(text=self.input_string , voice_preset=UpperCamelCase ) __UpperCAmelCase : List[Any] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(UpperCamelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub __UpperCAmelCase : Dict = processor(text=self.input_string , voice_preset=self.voice_preset ) def lowerCamelCase__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : str = self.get_tokenizer() __UpperCAmelCase : Union[str, Any] = BarkProcessor(tokenizer=UpperCamelCase ) __UpperCAmelCase : List[str] = processor(text=self.input_string ) __UpperCAmelCase : Tuple = tokenizer( self.input_string , padding="""max_length""" , max_length=256 , add_special_tokens=UpperCamelCase , return_attention_mask=UpperCamelCase , return_token_type_ids=UpperCamelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
115
1
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets SCREAMING_SNAKE_CASE_ = """\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } """ SCREAMING_SNAKE_CASE_ = """\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. """ SCREAMING_SNAKE_CASE_ = """ Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: \"accuracy\": Accuracy \"f1\": F1 score \"pearson\": Pearson Correlation \"spearmanr\": Spearman Correlation \"matthews_correlation\": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric('glue', 'sst2') # 'sst2' or any of [\"mnli\", \"mnli_mismatched\", \"mnli_matched\", \"qnli\", \"rte\", \"wnli\", \"hans\"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> glue_metric = datasets.load_metric('glue', 'mrpc') # 'mrpc' or 'qqp' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> glue_metric = datasets.load_metric('glue', 'stsb') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({\"pearson\": round(results[\"pearson\"], 2), \"spearmanr\": round(results[\"spearmanr\"], 2)}) {'pearson': 1.0, 'spearmanr': 1.0} >>> glue_metric = datasets.load_metric('glue', 'cola') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'matthews_correlation': 1.0} """ def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' return float((preds == labels).mean() ) def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = simple_accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = float(fa_score(y_true=_SCREAMING_SNAKE_CASE , y_pred=_SCREAMING_SNAKE_CASE ) ) return { "accuracy": acc, "f1": fa, } def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = float(pearsonr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )[0] ) SCREAMING_SNAKE_CASE = float(spearmanr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> str: '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", """ """\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]""" ) return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { """predictions""": datasets.Value("""int64""" if self.config_name != """stsb""" else """float32""" ), """references""": datasets.Value("""int64""" if self.config_name != """stsb""" else """float32""" ), } ) ,codebase_urls=[] ,reference_urls=[] ,format="""numpy""" ,) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : Tuple ) -> List[Any]: '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(lowerCamelCase__ ,lowerCamelCase__ )} elif self.config_name == "stsb": return pearson_and_spearman(lowerCamelCase__ ,lowerCamelCase__ ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(lowerCamelCase__ ,lowerCamelCase__ ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(lowerCamelCase__ ,lowerCamelCase__ )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", """ """\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]""" )
352
from __future__ import annotations import math def __lowercase ( _SCREAMING_SNAKE_CASE ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_SCREAMING_SNAKE_CASE ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __lowercase ( _SCREAMING_SNAKE_CASE ) -> list[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = str(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = [n] for i in range(1 , len(_SCREAMING_SNAKE_CASE ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def __lowercase ( _SCREAMING_SNAKE_CASE ) -> bool: '''simple docstring''' if len(str(_SCREAMING_SNAKE_CASE ) ) > 3: if not is_prime(int(str(_SCREAMING_SNAKE_CASE )[-3:] ) ) or not is_prime(int(str(_SCREAMING_SNAKE_CASE )[:3] ) ): return False return True def __lowercase ( _SCREAMING_SNAKE_CASE = 11 ) -> list[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 13 while len(_SCREAMING_SNAKE_CASE ) != count: if validate(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE = list_truncated_nums(_SCREAMING_SNAKE_CASE ) if all(is_prime(_SCREAMING_SNAKE_CASE ) for i in list_nums ): list_truncated_primes.append(_SCREAMING_SNAKE_CASE ) num += 2 return list_truncated_primes def __lowercase ( ) -> int: '''simple docstring''' return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(F'''{sum(compute_truncated_primes(1_1)) = }''')
193
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCamelCase = { '''configuration_whisper''': ['''WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WhisperConfig''', '''WhisperOnnxConfig'''], '''feature_extraction_whisper''': ['''WhisperFeatureExtractor'''], '''processing_whisper''': ['''WhisperProcessor'''], '''tokenization_whisper''': ['''WhisperTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['''WhisperTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WhisperForConditionalGeneration''', '''WhisperModel''', '''WhisperPreTrainedModel''', '''WhisperForAudioClassification''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWhisperForConditionalGeneration''', '''TFWhisperModel''', '''TFWhisperPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''FlaxWhisperForConditionalGeneration''', '''FlaxWhisperModel''', '''FlaxWhisperPreTrainedModel''', '''FlaxWhisperForAudioClassification''', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
275
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class UpperCAmelCase : def __init__( self : str , __snake_case : Any ) -> str: _lowerCAmelCase = str(id_ ) _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = [] _lowerCAmelCase = {} # {vertex:distance} def __lt__( self : List[str] , __snake_case : Union[str, Any] ) -> Any: return self.key < other.key def __repr__( self : Optional[Any] ) -> Optional[Any]: return self.id def lowercase__ ( self : Union[str, Any] , __snake_case : Tuple ) -> Optional[Any]: self.neighbors.append(__snake_case ) def lowercase__ ( self : Tuple , __snake_case : List[str] , __snake_case : Tuple ) -> Any: _lowerCAmelCase = weight def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , lowerCAmelCase ) graph[b - 1].add_edge(graph[a - 1] , lowerCAmelCase ) def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = [] for u in graph: _lowerCAmelCase = math.inf _lowerCAmelCase = None _lowerCAmelCase = 0 _lowerCAmelCase = graph[:] while q: _lowerCAmelCase = min(lowerCAmelCase ) q.remove(lowerCAmelCase ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): _lowerCAmelCase = u _lowerCAmelCase = u.edges[v.id] for i in range(1 , len(lowerCAmelCase ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" for u in graph: _lowerCAmelCase = math.inf _lowerCAmelCase = None _lowerCAmelCase = 0 _lowerCAmelCase = list(lowerCAmelCase ) hq.heapify(lowerCAmelCase ) while h: _lowerCAmelCase = hq.heappop(lowerCAmelCase ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): _lowerCAmelCase = u _lowerCAmelCase = u.edges[v.id] hq.heapify(lowerCAmelCase ) for i in range(1 , len(lowerCAmelCase ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def UpperCamelCase__ ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
70
0
"""simple docstring""" from __future__ import annotations from statistics import mean def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> list[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = [0] * no_of_processes SCREAMING_SNAKE_CASE__ = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(UpperCamelCase_ ): SCREAMING_SNAKE_CASE__ = burst_time[i] SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = -1 for i in range(UpperCamelCase_ ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(UpperCamelCase_ ) if len(UpperCamelCase_ ) > 0: SCREAMING_SNAKE_CASE__ = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: SCREAMING_SNAKE_CASE__ = i total_time += burst_time[target_process] completed += 1 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> list[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = [0] * no_of_processes for i in range(UpperCamelCase_ ): SCREAMING_SNAKE_CASE__ = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("""[TEST CASE 01]""") __snake_case = 4 __snake_case = [2, 5, 3, 7] __snake_case = [0, 0, 0, 0] __snake_case = calculate_waitingtime(arrival_time, burst_time, no_of_processes) __snake_case = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("""PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time""") for i, process_id in enumerate(list(range(1, 5))): print( F"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t""" F"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}""" ) print(F"""\nAverage waiting time = {mean(waiting_time):.5f}""") print(F"""Average turnaround time = {mean(turn_around_time):.5f}""")
357
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) __snake_case = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation="""relu""") ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation="""relu""")) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=1_28, activation="""relu""")) classifier.add(layers.Dense(units=1, activation="""sigmoid""")) # Compiling the CNN classifier.compile( optimizer="""adam""", loss="""binary_crossentropy""", metrics=["""accuracy"""] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') __snake_case = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 2_55, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) __snake_case = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_55) __snake_case = train_datagen.flow_from_directory( """dataset/training_set""", target_size=(64, 64), batch_size=32, class_mode="""binary""" ) __snake_case = test_datagen.flow_from_directory( """dataset/test_set""", target_size=(64, 64), batch_size=32, class_mode="""binary""" ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save("""cnn.h5""") # Part 3 - Making new predictions __snake_case = tf.keras.preprocessing.image.load_img( """dataset/single_prediction/image.png""", target_size=(64, 64) ) __snake_case = tf.keras.preprocessing.image.img_to_array(test_image) __snake_case = np.expand_dims(test_image, axis=0) __snake_case = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: __snake_case = """Normal""" if result[0][0] == 1: __snake_case = """Abnormality detected"""
169
0